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The application of direct volume visualization techniques to the presentation of CT data is explored. 
No surface detection or fitting of geometric primitives is involved. Images are formed by directly 
shading each data sample and projecting it onto the picture plane. The visualizations in this study 
are based on a hybrid physical model incorporating aspects of both surfaces and semi-transparent 
gels. Using a surface model, shading calculations are performed at every voxel with local gradient 
vectors serving as surface normals. In a separate step, surface classification and enhancement 
operators are applied to obtain a partial opacity for every voxel. Independence of _shading and 
classification calculations insures an undistorted presentation of 3-D shape. The use of non-binary 
classification operators insure that small or poorly defined features are not lost The resulting 
colors and opacities are merged from back to front along view rays using volumetric compositing, 
an approximation to the visibility calculations required to render a semi-transparent gel. The tech­
nique is simple and fast, yet produces images exhibiting smooth surface silhouettes and few other 
aliasing artifacts. The use of selective blurring and super-sampling to further improve image qual­
ity is also described. 

1. Introduction 

The techniques of computed tomography (C1) and magnetic resonance (MR.) imaging 
represent an embarrassment of riches to the radiologist in that they produce an abundance of 3-D 
information for which no fully satisfactory presentation method yet exists. The currently dominant 
method - slice-by-slice - makes comprehension of convoluted, small, or faint structures difficult. 
From a densitometric point of view, the human body is a complex arrangement of biological tis­
sues, each of which is fairly homogeneous and of predictable density. Oinicians are mainly 
interested in the boundaries between tissues, from which the sizes and spatial relationships of ana­
tomical features can be inferred. This has led to the development of alternative presentation 
modalities based on computer-generated projections of surfaces. 

Most techniques for displaying surfaces from CT data segment the data into regions, fit 
geometric primitives to the boundaries between adjacent regions, then render these primitives using 
classical image synthesis. The techniques differ from one another mainly in the choice of primi­
tives and the scale at which they are defined. In the earliest efforts, data was thresholded to form a 
binary representation, which was in turn rendered by treating 1-voxels as opaque cubes having six 
polygonal faces [Herman79]. By augmenting this binary representation with the local grayscale 
gradient, superior shading can be obtained, as demonstrated by [Schlusselberg86, Goldwasser86, 
Trousset87, Hoehne86]. In [Pizer86], edge tracking is applied on each slice to yield a set of con­
tours defining regions of interest, then a mesh of polygons is constructed connecting the contours 
on adjacent slices. [Lorensen87] applies an isovalue surface detector to each set of eight data 
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samples defining the vertices of cubes in the acquisition lattice, yielding a very large collection of 
voxel-sized polygons, which are then rendered using standard techniques. 

All of these techniques suffer from the common problem of having to make a binary 
classification decision: either a surface passes through the current voxel or it does not. As a result, 
these methods often present false positives (spurious surfaces) or false negatives (erroneous holes in 
surfaces), particularly in the presence of thin structures. 

To avoid these problems, researchers have begun exploring the notion of direct volume visu­
alization wherein the surface detector and intermediate geometric representation are both omitted. 
Images are formed by shading all data samples and projecting them onto the picture plane. The 
lack of explicit geometric primitives means that some kind of data selection, classification, or 
enhancement must be incorporated into the projection process. Otherwise, one simply obtains the 
equivalent of a computed radiograph, i.e. an X-ray. The goal is to perform the minimal amount of 
classification necessary to make the desired features visible, and, in particular, to avoid making any 
binary decisions. In this sense, volume visualization is not rendering at all, merely enhanced 
presentation of the original data. The principal advantage of this approach is that voxels having 
transitional values are not misclassified, insuring that small or poorly defined features are not lost 
or misrepresented. 

In this paper, we focus on visualizing surfaces for the same reason that has attracted other 
researchers - surfaces succinctly present the 3-D shape of typical anatomical features. Since these 
features are normally hidden from view, not to mention lacking any illumination, any image thereof 
is necessarily abstract. Adherence to a strict physical model is thus not necessary. On the other 
hand, visualizations based at least loosely on real-world phenomena are likely to be more intui­
tively understandable than those without such a basis. The visualizations in this study are based on 
a hybrid physical model incorporating aspects of both surfaces and semi-transparent gels. 
Specifically, the reflection of light from opaque surfaces is used as the basis for the shading calcu­
lations, while the transmission of light through a semi-transparent gel is used to drive classification. 
By keeping these two processes independent, the apparent orientation of a surface does not depend 
on the success or failure of classification. This robustness can be contrasted with classical render­
ing techniques, in which only voxels lying on detected surfaces are shaded. In such systems, any 
errors in classification results in incorrectly oriented surfaces. 

A general introduction to volume visualization is contained in [Smith87]. Its application to 
CT data has been demonstrated by PIXAR [Drebin87], but no details of their approach have been 
published. The technique described in this paper grew out of the author's earlier work on the use 
of points as a rendering primitive [Levoy85]. Its application to CT data was first reported in 
[Levoy87]. 

2. Visualization pipeline 

The overall layout of the visualization pipeline is summarized in figure 1. We begin with a 
3-D array of acquired values f 0(xiJ at voxel locations xt = (xi.Yjh). The first step is data prepara­
tion which may include correction for patient motion artifacts, contrast enhancement, and interpola­
tion of additional samples. The output of this step is an array of prepared values / 1 (x1). This array 
is used as input to the shading model described in section 2.1, yielding an array of voxel colors 
c~..(x1), A.= r,g,b. In a separate step, the array of prepared values is used as input to the 
classification procedure described in section 2.2, yielding an array of voxel opacities a(xJ. Rays 
are then cast into these two arrays according to the current viewing parameters. For each ray, a 
vector of sample colors c~..(x1) and opacities a(x1) is computed by re-sampling the voxel database at 
K evenly spaced locations x1 = (x;,Jj,zv along the ray and tri-linearly interpolating from the colors 
and opacities in the eight voxels closest to each sample location as shown in figure 2. Finally, a 
fully opaque background of color C!Jkg). is draped behind the dataset and the re-sampled colors and 
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opac1Ues are merged with each other and with the background in back-to-front order using the 
volumetric compositing algorithm described in section 2.3, yielding a single color C~..(u;) for the 
ray, and, since only one ray is cast per image pixel, for the pixel location u; = (u;.v;) as well. 

2.1. Shading 

Using the visualization pipeline presented above, the mapping from acquired data to color 
provides 3-D shape cues, but does not participate in the classification operation. Accordingly, a 
shading model was selected that provides a satisfactory illusion of smooth surfaces at a reasonable 
cost It is not the main point of the paper and is presented mainly for completeness. The model 
chosen is due to [Phong75]: 

Cp). r ] 
C).(xJ = cp,).ka). + k

1 
+ kzd(xu td,).(N(x1)-L) + kz).(N(x1)·Ht 

where 

C).(x0 = A.'th component of color at voxellocation xh A.= r ,g,b, 

cp;,. = A.'th component of color of parallel light source, 

ka). =ambient reflection coefficient for A.'th color component, 

kd). =diffuse reflection coefficient for A.'th color component, 

ks,;. = specular reflection coefficient for A.'th color component, 

n = exponent used to approximate highlight, 

kl> k2 = constants used in linear approximation of depth-cueing, 

d(xi) = perpendicular distance from picture plane to voxel location xi> 

N(x0 = surface normal at voxellocation xi> 

L = normalized vector in direction of light source, 

H = normalized vector in direction of maximum highlight. 

Since a parallel light source is used, L is a constant. Furthermore, 

where 

H= V+L 
IV+LI 

V = normalized vector in direction of observer. 

(1) 

Since an orthographic projection is used, V and hence H are also constants. Finally, the surface 
normal is given by 
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There are many ways to estimate the gradient vector 11/(xi). The selection of an operator 
depends on the frequency spectra of the data being rendered and the features being sought. Since 
the gradient vector is used in both the shading and classification calculations, efficiency considera­
tions prompted the use of the same operator for both tasks. Typical operators are given in the next 
section. 

2.2. Classification 

The mapping from acquired data to opacity performs the essential task of surface 
classification. The procedure employed in this study is based on the following simplified model of 
anatomical scenes and the CT scanning process. We assume that scenes contain an arbitrary 
number of tissue types bearing CT numbers falling within a small neighborhood of some known 
value. We further assume that tissues of each type touch tissues of at most two other types in a 
given scene. Finally, we aSsume that, if we order the types by CT number, then each type touches 
only types adjacent to it in the ordering. Formally, given N tissue types bearing CT numbers 
J., n = 1, ... N. N ~ 1 such that fv <fv , m = 1, ... N-1, then no tissue of CT number J. 

n m m+l n1 

touches any tissue of CT number fv , ln1-n21 > 1. 
"2 

If these criteria are met, each tissue type can be assigned an opacity and a piecewise linear 
mapping can be constructed that converts voxel value f. to opacity a., , voxel value fv to opacity 

II ll 1 11+1 

a., , and intermediate voxel values to intermediate opacities. The interpretation of these opacities 
1t+l 

depends on our model of a semi-transparent gel and is discussed in the next section. Note that all 
voxels are typically mapped to some non-zero opacity and will thus contribute to the final image. 
This scheme insures that thin regions of tissue will still appear in the image, even if only as faint 
wisps. Note also that violation of the adjacency criteria leads to voxels that cannot be unambigu­
ously classified as belonging to one region boundary or another and hence cannot be rendered 
correctly using this algorithm. 

The superimposition of multiple semi-transparent surfaces such as skin and bone can substan­
tially enhance the comprehension of CT data. In order to obtain such effects using volume visuali­
zation, we must suppress the opacity of tissue interiors while enhancing the opacity of their bound­
ing surfaces. We implement this by scaling the opacities computed above by an approximation to 
the magnitude of the local gradient vector. Again, we avoid using a binary operator in order to 
preserve the appearance of small features. 

Combining these two operations, we obtain a set of expressions 

0 otherwise 

for n = 1, ... N-1, N ~ 1. The gradient vector 11/(x.) is approximated using the operator 

11f(x1) = 11/(xi.Yj.ZJ 

(2) 
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z [~ ~~I.YJ•'J- J(X;-I>YJ~J l ~ ~X;.Y;>1.'J- J(x;.YJ-i.'J ], ~ ~x;,YJ·'kH)- J(x;,Jj.'k-1)]]. 

Since resolution is an important consideration in medical imaging, the narrower asymmetric approx­
imation 

'l.f(x(J = 'lf(xi.Yjh) 

::: [flxi+l>Yi.ZV - flxi.Yi.zt), flxi•Yi+l.ZV - f(xi>yi,zk), f(xi.Yih+l)- flxi.Yi·z,,;)]. 

may be substituted if the data is relatively noise-free or has been pre-smoothed. 

A graph of a(x1) as a function of f(x1) and l'lf(x1)1 for three tissue types A, B, and C, having 
typical ValUeS offv,...fv8./vc• UyA., Uy8 , and UyC iS ShOWn in figure 3. 

2.3. Volumetric compositing 

The merging of colors and opacities is performed using volumetric compositing, an approxi­
mation to the visibility calculations required to render a semi-transparent gel. The following 
development is adopted loosely from [Blinn82]. Figure 4 shows the rectangular beam defined by 
projecting a pixel through image space. Let us decompose this beam into voxels numbered 0 
through Z, back-to-front, each having unit volume. Let us define a gel as a transparent medium in 
which a large number of opaque spherical particles of fixed radius p but varying density and bright­
ness are suspended. Let us assume that the density and brightness of particles in a single voxel is 
fixed, i.e. voxel z in the figure contains exactly n, randomly distributed particles of brightness Bz. 

In order to implement opacity, particles are allowed to shadow each other along the line of 
sight. Let us consider the brightness due to a a cylindrical sub-beam of radius p as shown in the 
figure. The intersection of each voxel with the sub-beam defines a sub-voxel having volume Vz. If 
the density of particles in each voxel is low, and we consider a particle to lie in a sub-voxel only if 
the particle center lies within the sub-voxel boundaries, then the probability that one or more parti­
cles occupies sub-voxel z is given by the Poisson density 

-nV 
P(>O;VJ = 1- P(O;VJ = 1- e ''. 

If there are one or more particles in sub-voxel z and no particles in sub-voxels z+ 1 through Z, then 
the brightness seen at the top of the cylinder will be brightness B,. Since each voxel is indepen­
dent, the joint probability of this event is given by 

-nV Z -nV 
P(>O;V,, O;Vz+l• ... ,O;Vz) = P(>O;VJ P(O;Vz+1) • • • P(O;Vz) = (1- e '') IT e "''". 

ro=z+l 

The expected brightness due to the entire rectangular beam is then given by 

B = ± [s.(l- e-") IT e-" .. ]. 
z:=O ro = z+l 

Volume terms drop out because they sum to unity. 

We can simplify this expression slightly by defining the opacity a, of unit volume voxel z as 

a.= 1- e-",. 

Substituting, the expected brightness is now given by 
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B = f [s.a .. fi (1 - Cl.o)J. 
z=O m= z+l 

We note in passing that, if we look at a single voxel along the beam, the exiting brightness B0 .,1 is 
related to the entering brightness Bu. and the brightness B. and opacity a. in the voxel by the well­
known transparency formula 

Applying this method to our visualization pipeline gives us an expression for pixel color 
Ct.(UJ) in terms of the vector of sample colors c,_(x1) and opacities a(x1) along the associated view­
ing ray: 

c,_(UJ) = c,_(u,,v;) = f [c~.(xr.Y;.zva(xr,Jj,ZV IT (1 - a(xr.Y;.z,J)l 
.t=o M=f+l 

(3) 

where Ct.Cxr.Y;.zo) = cbkg). and a(x,,yJ,zo) = 1. 

3. Discussion 

3.1. Computational complexity 

One of the strengths of the visualization method presented in this paper is its low computa­
tional expense. Since intermediate results are stored at various stages along the pipeline, the cost 
of producing a new image depends on which parameters are changed. Let us ~nsider some typical 
cases. 

Given input value f(x1) and gradient magnitude 1Vf(x1)1, application of surface classification to 
yield opacity a(xt) can be implemented with one lookup table reference. This implies that if we 
store gradient magnitudes for all voxels, computation of new opacities following a change in 
classification parameters entails only generation of a new lookup table followed by one table refer­
ence per voxel. 

The cost of computing new colors c,_(xt) following a change in observer direction V, light 
source direction L, or other shading parameter is more substantial. Effective rotation sequences 
can be generated, however, using a single set of colors. The visual manifestation of fixing the 
shading is that light sources appear to travel around with the data as it rotates and highlights are 
incorrect Since volume visualizations are of imaginary or invisible phenomena anyway, observers 
are seldom troubled by this effect 

The most efficient way to produce a rotation sequence is then to hold both colors and opaci­
ties constant and alter only the direction in which rays are cast If we assume a square image n 
pixels wide and use orthographic projection, in which case sample coordinates can be efficiently 
calculated using differencing, the combined cost of ray tracing, re-sampling, and compositing to 
compute n2 pixels is 3Kn2 additions, 2Kn2 tri-linear interpolations, and Kn1 linear interpolations, 
where K is the number of sample locations along each ray. 

3.2. Image quality 

Although the notation used in equation (3) has been borrowed from the literature of image 
compositing [Porter84], the analogy is not exact, and the differences are fundamental. Acquired 
volumetric data consists of samples taken from a bandlimited 3-D scene, whereas the data acquired 
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from an image digitizer consists of samples from a bandlimited 2-D projection of a 3-D scene. 
Unless we reconstruct the 3-D scene that gave rise to our volumetric data, we cannot compute an 
accurate projection of it Volumetric compositing performs no such reconstruction. Image quality 
is therefore limited by the number of viewing rays. In the current implementation, we cast one ray 
per pixel. Such point sampling would normally produce strong aliasing, but, by using non-binary 
classification decisions, we carry much of the bandlimiting inherent in the acquired data over into 
the image, substantially reducing aliasing artifacts. Stated another way, we are depending on 3-D 
bandlimiting to avoid aliasing in 2-D projections. 

Within these limitations, there are two ways to improve image quality, blurring and super­
sampling. If the array of acquired values are blurred slightly before image generation, the 
oversharp surface silhouettes produced by volumetric compositing are softened. Alternatively, we 
can apply blurring to the opacities generated by the classification procedure, but leave the shading 
untouched. This has the effect of softening silhouettes without adversely affecting the crispness of 
surface detail. 

The decision to reduce aliasing at the expense of resolution arises from two conflicting goals: 
producing artifact-free images and keeping image generation costs low. In practice, the slight loss 
in image sharpness might not be disadvantageous. Indeed, it is not clear that the accuracy afforded 
by more expensive visibility calculations is useful. Specifically, the sharpness of surface silhouettes 
in [Pizer86, Lorensen87] can be misleading. Blurry silhouettes have less visual impact, but they 
reflect the true imprecision in our knowledge of surface locations. 

An alternative means for improving image quality is super-sampling. The basic idea is to 
interpolate additional samples between the acquired ones prior to volumetric compositing. If the 
interpolation method is a good one, the accuracy of the visibility calculations is improved, reducing 
some kinds of aliasing. Another option is to apply this interpolation during data preparation. 
Although this alternative substantially increases computational expense throughout the remainder of 
the pipeline, it improves the accuracy of our shading and classification calculations as well as our 
visibility. 

4. Implementation and results 

The dataset used in figure 5 is of a cadaver, and was acquired as 113 transverse slices of 256 
x 256 samples each. Using the shading and classification calculations described in sections 2.1 and 
2.2, two sets of colors and opacities were computed, one showing the air-skin interface and a 
second showing the tissue-bone interface. The computation of each set required 2 hours on a VAX 
11nso having sufficient physical memory to prevent paging. Using the volumetric compositing 
algorithm described in section 2.3, two views were then computed from each set of colors and opa­
cities, producing four images in all. The computation of each view required an additional 2 hours. 
Correction for the non-square aspect ratio of the dataset was incorporated into the ray tracing step 
by casting two rays per voxel in the vertical direction. The horizontal bands through the patient's 
teeth in all of these images are artifacts due to scattering of X-rays from dental fillings and are 
present in the acquired data. The bands across her forehead and under her chin in the air-skin 
images are gauze bandages used to immobilize her head during scanning. Her skin and nose car­
tilage are rendered semi-transparently over the bone surface in the tissue-bone images, although 
mechanical reproduction may degrade its visibility in the published paper. 

Figure 6 was generated by combining halves from each of the two sets of colors and opaci­
ties already computed for figure 5. In this rotated view, slight blurring due to the inexpensive 
interpolation method used during resampling is evident, but shading is comparable to that of the 
orthogonal views since it was computed prior to ray tracing. Heightened transparency of the tem­
poral bone and the bones surrounding the maxillary sinuses - more evident in moving sequences 
than in a static view - is due to generalized osteoporosis. It is worth noting that presentation 
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techniques based on surface detectors would likely display holes here instead of thin, wispy sur­
faces. 

The dataset used in figures 7 and 8 is of the same cadaver, but was acquired as 113 slices of 
512 x 512 samples each. Figure 7 was generated using the same procedure as for figure 5, but 
casting four rays per voxel in the vertical direction in order to correct for the aspect ratio of the 
dataset. Figure 8 was generated by expanding the dataset to 452 slices using a cubic B-spline in 
the vertical direction, then generating an image from the larger dataset using the procedure already 
outlined. Since the aspect ratio of each voxel in the interpolated data is cubic, only one ray was 
cast per voxel in each direction. The B-spline is an approximating rather than an interpolating 
spline, thus combining aspects of both the blurring and super-sampling methods discussed in sec­
tion 3.2. As predicted, more detail is apparent in figure 8 than figure 7. Note: mechanical repro­
duction may degrade the effectiveness of this comparison in the published paper. 

5. Conclusions 

Direct volume visualization has been shown to be an effective modality for the presentation 
of 3-D CT data As demonstrated by the figures, it can produce images exhibiting approximately 
equivalent resolution, yet fewer interpretation errors, than techniques relying on fitting and render­
ing of surfaces. These visualizations need not adhere to strict physical models in order to succeed. 
A hybrid surface and gel model has been used in this paper with satisfactory results. 

Despite its advantages, volume visualization has several problems. Firstly, the omission of an 
intermediate geometric representation makes selection of appropriate shading parameters critical to 
the effectiveness of the visualization. Slight changes in opacity ramps or interpolation methods 
radically alter the features that are visualized as well as the overall quality of the image. Algo­
rithms are needed that automatically select optimum shading parameters for a given dataset and a 
particular clinical application. 

Secondly, volume visualization is very sensitive to artifacts in the acqu.isition process. For 
example, most CT scanners have anisotropic spatial sensitivity. This problem manifests itself as 
striping in images. With live subjects, patient motion is also a serious problem. Since surface 
shading is strongly dependent on the orientation of the local gradient, slight mis-alignments 
between adjacent slices produce strong striping. 

Thirdly, most internal soft tissue organs do not meet the tissue adjacency criteria described in 
section 2.2 and are not easily displayed using volume visualization. One simple solution would be 
for users to interactively clip or carve away unwanted tissues, thus isolating subsets of the acquired 
data that meet the adjacency criteria. Since the user or carving algorithm is not called upon to 
define surface geometry, but merely to isolate regions of interest, this approach promises to be 
easier and to produce better images than techniques involving surface fitting. A more sophisticated 
approach would be to combine volume visualization with high-level object definition in an interac­
tive setting. Initial visualizations, made without the benefit of object definition, would be used to 
guide scene analysis and segmentation algorithms, which would in tum be used to isolate regions of 
interest, producing a better visualization. If the output of such segmentation algorithms included 
confidence levels or probabilities, they could be mapped to opacity and thus modulate the appear­
ance of the image. 

In order to be clinically useful, several ancillary tools should be incorporated into the visuali­
zation pipeline. The ability to clip an acquired dataset along any plane, then superimpose a 2-D 
grayscale slice, properly re-sampled, onto the exposed surface would be a useful capability. Visu­
alizations combining acquired data and synthetic geometry such as medical prosthesis devices 
would also be useful. To obtain correct visibility, a true 3-D merge of the acquired and synthetic 
data must be performed. One possible solution is the rgba.z buffer presented in [Duff85]. Another 
is to scan-convert the geometry directly into the acquired database and render the ensemble. A 
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third is to incorporate classical rendering of the geometry directly into the pipeline. Yet another 
useful tool would be the ability to perform a true 3-D merge of two or more visualizations, allow­
ing, for example, the superimposition of radiation treatment planning isodose surfaces over CT 
data. The hardest part of this problem - the alias-free visualization of isovalue surfaces - is 
explored in [Levoy88]. 

The prospects for real-time or near real-time rotation of volumetric data are encouraging. By 
pre-computing colors and opacities and storing them in intermediate 3-D datasets, we simplify the 
image generation problem to one of geometrically transforming two values per voxel and composit­
ing the results. One promising technique for speeding up these transformations is to combine a 3-
pass version of the 2-pass texture mapping technique presented in [Catrnull80] with volumetric 
compositing. By re-sampling separately in each of three orthogonal directions, computational 
expense and algorithmic complexity are reduced. Given suitably interpolated inputs, it might be 
possible to omit the third pass entirely, compositing transformed 2-D slices together to form an 
image. This further suggests that hardware implementations might be feasible. A recent survey of 
architectures for rendering voxel data is given in [Kaufman86]. A suitably interconnected 2-D 
array of processors with sufficient backing storage might be capable of producing visualizations of 
volumetric datasets in real-time or near real-time. 
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Figure 1 -Overview of visualization pipeline 
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Figure 2 - Ray tracing I re-sampling steps 
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Figure 3 - Mapping from acquired value and gradient magnitude to opacity 
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Figure 4 - Volumetric compositing of semi-transparent gel 



Figure 5 - Orthogonal views of 256 x 256 x 113 voxel dataset 

Figure 6- Rotated view of same dataset 



Figure 7- View of 512 x 512 x 113 voxel dataset, post-interpolated 

Figure 8 - View of same dataset, pre-interpolated 


