
Solid Modeling

Near Real.:fime CSG Rendering Using
Tree Normalization and Geometric Pruning
Jack Goldfeather, Carleton College

Steven Molnar, Greg Turk, and Henry Fuchs
University of North Carolina

In this article we describe a set of algorithms for effi­
ciently rendering a CSG-defined object directly into a
frame buffer without converting first to a boundary rep­
resentation. This method requires only that the frame
buffer contain sufficient memory to hold two color
values, two depth values, and three one-bit flags. The
algorithm first converts the CSG tree to a normalized
form that is analogous to the sum-of-products form for
Boolean switching functions. Expanding on earlier
results, 1 we develop the following:

1. The dynamic interleaving of Boolean tree nor­
malization with bounding-box pruning, allowing
efficient rendering for most CSG objects.

2. A method tor extending the technique to non­
convex primitives.

3. Implementation of these ideas in an interactive
CSG design system on Pixel-planes 4.

In this system the designer directly manipulates the
CSG structure while continuously viewing the color ren­
dering of the object being designed. We believe that our
algorithms will attain similar speeds on many of the
next-generation high-performance graphics systems
that have frame buffers with many bits per pixel.

A serious drawback for designers using constructive
solid geometry (CSC) is the inability to create and modify
shaded esc objects in an interactive environment.
Recent advances in graphics hardware have made it pos­
sible to achieve near real-time rendering of shaded esc
objects by taking advantage of the hardware's parallel­
ism. Attention has turned to adapting some traditional
rendering algorithms to this parallel environment.

Conversion of a CSC description to a boundary repre­
sentation (B-rep) allows rapid display of the boundary
polygons using conventional rendering engines. How­
ever, the B-rep must be recomputed every time the object
is modified. Thibault and Naylor2 demonstrated
dynamically rendered CSC images based on B-reps with
a recent system using binary-space partitioning trees, but
their system can handle only a limited set of modifica­
tions without incurring many seconds of delay. For
example, moving a beveled hole would be time con­
suming.

Algorithms such as Atherton's CSC scan-line algo­
rithm,3 which displays directly from the esc descrip­
tion, are slow when implemented on a conventional
machine, but can be sped up using object-parallel hard­
ware. For example, Kedem and Ellis currently are build-

20 U~72-17·l!iiWLO:i00-002USOI 00 Jqgq lEI-:! IEEE Computer Graphics & Applications

Figure 1. Consecutive frames
during an editing session
(0.142 seconds per frame).

ing a parallel ray-casting machine for fast scan-line
rendering.4 Their machine allocates one processor per
node in the CSG tree. An arbitrary CSG tree with fewer
nodes than the number of hardware processors can be
rendered directly, and larger trees may be rendered using
multiple passes.

Depth-buffering algorithms involve generalizations of
the z-buffer hidden-surface algorithm. Speed can be
gained using pixel-parallelism in special-purpose hard­
ware. Rossignac and Requicha published an algorithm
for directly rendering CSG objects using point­
classification and z-buffering." Jansen published a simi­
lar algorithm,n specifically designed for pixel-parallel
machines like Pixel-planes. 7 In this algorithm a number
of flags (log2 n bits, where n is the number of primitives)
are used to hold intermediate point-classification results
while traversing the tree. Our approach is a depth­
buffering algorithm which rearranges and prunes the
CSG tree before rendering, eliminating the need for
these "place-holding" bits. Okino, Kakazu, and
Morimoto published a paper on depth-buffering
algorithms,H which also may employ tree rearrange­
ment, but we have been unable to verify this.

The algorithm we present here will render any CSG
object using a constant number of bits per pixel (::; 128).
Our rendering system, based on this algorithm, displays
modestly sized CSG objects in fractions of a second, even
if the user changes the geometric structure of the CSG
tree each and every frame (see Figure 1).

CSG rendering using the normalization
method

In this section we outline a method for transforming
any CSG tree into a "normalized" form. In the worst
case, such a transformation can create a combinatorial
explosion in the number of nodes, but in a later section
we will show pruning techniques that keep the node
growth under control.

Normalizing a CSG tree is analogous to converting a
Boolean expression to a sum-of-products form. One rea­
son for converting Boolean expressions into this form is
to enable fast combinatorial logic with only two gate
delays. In an analogous manner, a CSG expression writ­
ten as a sum of products can be rendered using two

May 1989

image (z and color) buffer pairs. This enables any CSG
object composed of convex primitives to be rendered in
a frame buffer with a constant number of bits per pixel.

A CSG tree is a Boolean expression: each union (U) is
a sum, each intersection (n) is a product, and each
difference (-)is a product of a complement. The primi­
tives in a CSG tree correspond to literals in the Boolean
expression. For example, the CSG tree ((A- B) U C) n D
can be written as (AB' +C) D. In particular, we will define
a normalized CSG tree in terms of well-known Boolean
constructs. We say a CSG tree is in normal form if its
Boolean representation is in disjunctive normal form,
that is, if it is a sum of products of literals and comple­
ments of literals.

In addition to allowing rendering with a constant
number of bits per pixel, normalizing a CSG tree allows
the rendering algorithm to be simpler than it would be
otherwise. Each product in the normalized expression
can be rendered using primitive/primitive interaction
rather than subtree/subtree interaction. In a later section
we will see that normalization also allows unnecessary
portions of the CSG tree to be recognized and pruned
easily.

The normalization algorithm

I. X- (Y u Z) =(X- Y)- Z
2. X n (Y u Z) = (X n Y) u (X n Z)

3. X- (Y n Z) =(X- Y) u (X- Z)

4. X n (Y n Z) =(X n Y) n Z
5. X- (Y- Z) =(X- Y) u (X n Z)
6. X n (Y- Z) =(X n Y)- Z
7. (X u Y) - Z = (X - Z) u (Y - Z)

8. (Xu Y) n Z =(X n Z) u (Y n Z)

Figure 2. Set equivalences for normalization.

The normalization algorithm introduced earlier1 uses
the eight basic set equivalences of Figure 2 to reduce a
CSG tree to normal form. These equivalences encapsu­
late the associative and distributive properties of set
operations and were chosen because they represent all
of the possible unnormalized configurations at a single
node. Equivalences 2, 3, 5, 7, and 8 decompose an expres­
sion into sums, and the remaining equivalences replace

21

normalization

A

/".
/".

E

D

/".
/".

E

n o
/".

c B C

((AuBlnC)-(DnE) 'um of products
decomposition

(An C-D- E) u (B n C-D- E) Figure 3. CSG tree before and after

normalization.

right association with left association. The normaliza­
tion algorithm can be written recursively as follows:

procedure nomwli:e(T: tree);
l reduce a CSG tree to sum-of-products form)

begin
if T = PRIMITIVE then return:
repeat

while T matches left side of any set e4uivalence
replace with right side, using
e4uivalences I - 6 before 7 or 8:

normali:e(T.left);
until T = u or (T.riglll =PRIMITIVE and T.left 7= u)
normali:e(T.right);

end normali:e;

This version corrects an error in an earlier presenta­
tion of the algorithm. I Figure 3 shows a sample esc
tree before and after normalization. The algorithm above
is not the only possible normalization algorithm, since
there are many ways to convert a Boolean expression to
disjunctive normal form. We have proved, however, that
normalize has the following desirable properties:

1. It terminates given any esc tree as input.

2. Upon termination, it leaves the esc in normal
form.

3. Each restructuring step requires only local infor­
mation (node type and child node types).

4. If the initial tree contains no redundant subtrees or
repeated primitives, normalize will not add redun­
dant product terms or repeat primitives within a
product.

Property 3 follows directly from the set equivalences.
Formal proofs for properties 1, 2, and 4 are not included
here due to lack of space.9

Displaying a CSG tree in normal form
Rendering a esc tree in normal form requires suffi­

cient memory at each pixel for two z/color buffer pairs,
(ztemp,ctemp) and (zfinal,cfinal), and three one-bit flags.
We will describe the process for convex primitive solids
now and refer the reader to a later section for an exten­
sion of the rendering algorithm to nonconvex solids. The
basic idea is to break each product into separate terms,

22

render each term into the (ztemp,ctemp) image buffer,
then composite the terms into the (zfinal,cfinol) image
buffer using a standard z-buffer algorithm. A product
with n primitives will contain n terms. Rendering each
term consists of rendering the surface of a primitive and
trimming it by the remaining n- 1 primitives in the
product.

The following algorithm performs a standard in/out
classification 10 of points on primitive boundaries to ren­
der a product of primitives. A primitive is complemented
if the corresponding literal in the normalized Boolean
expression is complemented. Zfar is a constant equal to
the largest value representable in the z-buffers. The front
surface of a primitive refers to all of the points on the
exterior of a primitive that are visible from the eye point.
In our case this is simply the set of front-facing polygons.

procedureji-om(P: primitive);

l place front surface of Pinto (:temp.ctenzp))

procedure hack(P : primitive);

! place back surface of Pinto (::temp.ctemp))

procedure intersect(?: primitive);

! if ::temp not between front and back surfaces of P)
! then set :temp =:far)

procedure suhtract(P: primitive);

! if :temp between front and back surfaces of P)
! then set :temp = :{ar)

procedure render(M : product);

! render a product into the final image buffer)
begin

for each primitive P in M do begin
if P is uncomplemented thenjim1t(P)

else hack(P);
for each primitive Q (Q 7= P) in M

if Q is uncomplemented then intersect(Q)
else suhtract(Q);

composite (:tcmp.ctemp) into (:filwl,cfinal);
end;

end render;

Figure 4 illustrates the entire rendering process for the

IEEE Computer Graphics & Applications

ctemp cfinal
u

/"' - n

/\ 1\
n B

/\
c D

A D

(AnD -B) u (C nD)

back(B) n A n D

back(B)
A
D

/ front(D)
A
B' front(D) n A - B

front(A)
D
B'

AnD-B

front(A) n D-B

front(D)

c

front(C)

D

""
front(D) n C

CnD

Figure 4. Rendering a CSG tree.

esc tree ((A- B) U C) n D. The photographs illustrate the
contents of the temporary and final image buffers at each
stage in the rendering process.

May 1989

front(C) nD Final Image

Geometric pruning
Normalization can add many primitive leaf nodes to

a esc tree; for certain trees the increase can be dramatic

23

Qui~! Ds:s~riptiQn !::lll!!llll:r Qf primitivs;s Fa~s:s ss;nttQ fri.l!!lQ lluffs:r Average Rendering

norrnahzed after no diff with diff
product lime in

user
Name Source tree tree pruning pruning pruning

length seconds
(k)

1. Tube Okino
I 11 15 15 75 75 3.0 0.19

2. Cut Tube Okino
I 12 20 20 140 136 4.0 0.24

3. MBB Okino
I 23 30 30 150 150 2.0 0.14

4. Tie Rod BRC 19 19 19 127 91 3.2 0.14

5. Phone Randy Brown 32 62 31 852 456 4.6 0.11

6. Joystick Randy Brown 45 75 47 151 139 1.7 0.82

7. Die Greg Turk 44 44 44 380 252 1.9 4.02

8. GEB
3

Steven Molnar 29 297 164 2252 2036 8.2 0.71

9. Enterprise BRC 165 165 164 884 820 2.4 6.46
10. Truck BRC 180 180 180 352 352 1.3 2.77
II. Rod- MBB (above) 42 69120 96 1152 928 6.1 0.59

I

20kino, Kakazu and Morimoto (sec references)
US Army Ballistic Research Laboratory

3 inspired by cover of Godcl, Escher, Bach, by Douglas Hofstadtcr

Figure 5. Rendering times and statistics.

(sample object 11 in Figure 5 expanded from 42 primi­
tives before normalization to 69,120 primitives after nor­
malization). However, in most cases, large subtrees in the
normalized tree will not contribute to the final image,
since primitives within them may not intersect. Informa­
tion about which primitives overlap provides us with
"don't care" conditions similar to those used to minimize
logic expressions.

Bounding boxes
A standard approach to pruning a eSC tree is to use

bounding boxes.h.I< We review this technique and, in
addition, describe how the bounding-box pruning pro­
cess can be integrated with tree normalization to mini­
mize tree growth.

The idea behind bounding-box pruning is to calculate
a few numbers that bound the region occupied by a esc
object. Only if the bounding boxes intersect do we need
to compute the actual intersection between objects. Simi­
larly for subtraction, if the bounding box of an object to
be subtracted does not intersect the bounding box of the
object from which it will be subtracted, the subtraction
need not be computed. Entire subtrees can be eliminated
as well as primitives, since each subtree has a bounding
box derived from the subtrees below it.

To compute bounding boxes for primitive nodes, we
must first transform them into a common coordinate sys­
tem. We then compute a bounding box for each primi­
tive by finding the minimum and maximum x, y, and z
coordinates of the vertex set. Min(x,y,z) and Max(x,y,z)
define the corners of a box (aligned with the coordinate

24

axes) that completely encloses the primitive.
We compute bounding boxes for an operator node

from the bounding boxes of its children using the follow­
ing rules:

I. Bound(A u B) = Bound(Bound(A) u Bound(B))
2. Bound(A n B)= Bound(A) n Bound(B)
3. Bound(A -B) = Bound(A)

Intersection and difference nodes can potentially be
pruned. If the operator is n, we compare Min(x,y,z) with
Max(x,y,z). If the minimum in any coordinate exceeds the
maximum, the bounding box describes a null volume
and we prune the subtree An B. If the operator is -,we
compare Bound(A) with Bound(B). If they do not inter­
sect, we replace the subtree A- B with A. We can prune
subtrees that do not intersect the viewing frustum as
well.

Pruning and normalization
Normalization, even though tending to increase the

number of tree nodes, separates large subtrees (with
large bounding boxes) into a set of products (generally
with smaller bounding boxes). This makes pruning very
effective on normalized trees, in many cases reducing the
number of primitive leaf nodes by orders of magnitude.
For example, geometric pruning reduced the number of
primitives from 69,120 to 96 in sample object 11 of Fig­
ure 5.

An even more effective approach is to prune the tree

IEEE Computer Graphics & Applications

before it ever reaches its maximum size. We can do this
by pruning during normalization rather than after.
Integrating pruning into the tree-normalization process
restricts the growth of the normalized tree. This integra­
tion is achieved by computing new bounding boxes every
time a set equivalence is applied or after normalizing a
left or right subtree. The pruning operation is fast, since
it depends only on bounding-box information for at most
two nodes.

The dynamic pruning process can be made even more
effective by adding one more set equivalence to the nor­
malization algorithm:

6.5 (X- Y) n Z = (X n Z) - Y

This transformation forces intersections to the left in
a product. Since intersection can reduce the size of
bounding boxes, but subtraction and union cannot, this
allows subtracted subtrees to be pruned which might not
be pruned otherwise. It also allows null subtrees to be
detected as early as possible, rather than having the nor­
malization algorithm manipulate them many times
before pruning. For a subtree of the form given in equiva­
lence 6.5, if the bounding boxes for Y and Z are disjoint,
then the form of the tree on the left will not result in
pruning Y. Transforming the tree into the form on the
right will result in having Y pruned from the tree when
the bounding box for Y is compared with that of X n Z.

Recall that the rendering process for products with n
primitives requires that each primitive boundary (front
or back) be trimmed by all of the other primitives in the
product. Once the dynamic pruning process is complete,
a further optimization, called difference pruning, can
simplify some of the terms to be rendered. This is
achieved by comparing the bounding boxes of each sub­
tractive primitive within the product. When the bound­
ing boxes of two subtractive primitives are disjoint,
certain of the terms to be rendered simplify. For exam­
ple, when rendering A-B-C, if the bounding boxes of
B and C do not intersect, the term back(BJ n A- C is
equivalent to back(B)nA. Difference pruning results in
a significant speedup for product terms with disjoint
subtraction primitives, since trimming a primitive with
another requires comparisons with both front and back
surfaces of the subtractive primitive.

From here on we will refer to the process outlined
above as the "normalization and geometric pruning"
algorithm (NGP).

Rendering nonconvex primitives
We say that a solid is k-convex if a ray intersecting the

solid can enter and exit it at most k times. A 1-convex
solid is convex in the usual sense and 2-convex solids
include primitives such as the torus and the helix prim­
itive (that is, one turn of a coil spring).

To render a k-convex primitive, its boundary surface

May 1989

must be divided into entirely front-facing and back­
facing subsurfaces. Planar polygons satisfy this condi­
tion. We assume primitives are tiled with polygons in the
algorithm below.

The front and back routines now must send the poly­
gons of a k-convex primitive to the frame buffer k times.
In each pass we retain a portion of the primitive's sur­
face, perform in/out classification with respect to the
other primitives in the product term, and then compos­
ite what remains into the final image buffer. We use a
small buffer (of size log2k) called count in the frame
buffer to ensure that all potentially visible points on the
primitive are captured in at least one of the passes. If a
surface point is captured more than once, no harm will
be done. The following two algorithms are called within
loops inside front and back, respectively, and perform
one front- or back-surface pass:

procedure ji·ont __pass(? : k-convex primitive, n : integer);
(called by front k times for l
(uncomplemented k-convex primitives l
begin

COU!If := 0;
for each front-facing polygon of P do

for each pixel in polygon do begin
count := count + I;
if count = n then

end:
end front JWSs;

scan polygon into (:temp,ctemp);

procedure hackJJass(P : k-convex primitive, n : integer);
(same as front __pass, but for l
(complemented k-convex primitives l

A 1-bit parity flag at each pixel is used to perform
in/out classification on a k-convex primitive:

procedure in_out_classify(P: k-convex primitive);
(toggle parity each time a surface l
(is encountered with :<:temp l
begin

paritv := 0;
for each polygon of P do

for each pixel in polygon do
if: of polygon <:temp then toggle parity;

end in out _classify;

procedure intersect(? : k-convex primitive);
(trim a term using an l
{ uncomplemented k-convex primitive l
begin

in _out_ classify(?);
for each pixel do

if parity= 0 then :temp :=::far;
end intersect;

25

procedure subtract(?: k-convex primitive);
(trim a term using a complemented k-convex primitive I
begin

in _out_ classtfy(P);
for each pixel do

if parity = I then ztemp := zfar;

end subtract;

The procedures fronLpass and back_pass are called
k times from the procedures front and back in the sec­
tion on displaying a CSC tree in normal form. Intersect
and subtract replace the corresponding routines in that
section. These routines allow 1-convex and k-convex
primitives to be rendered simultaneously without
sacrificing any of the speed of the 1-convex algorithms.

Time complexity
The time complexity of a depth-buffering algorithm in

a pixel-parallel machine is proportional to the number
of times that a front or back face of a primitive needs to
be sent to the frame buffer, since the various pixel­
oriented "bookkeeping" operations are fast. In calculat­
ing the time complexity of the NC P algorithm, we ignore
the time required to normalize and prune the tree, since
we have found this to be negligible for all of the objects
we have rendered.

Assuming that the normalized tree has j products,
each of length k, the time complexity for the NC P algo­
rithm is 2jk(k- 1). The relationship between j and k varies
depending on an object's esc expression and the geom­
etry of the primitives. Thus the algorithm's overall time
complexity depends on the structure of the tree as well
as the number of primitives. Pathological objects will
always exist for which the NCP algorithm's time com­
plexity explodes. Nevertheless, its performance on actual
objects has been very good. From the limited data we
have taken, it appears to perform somewhere between
O(n) and O(n 2

) in the number of primitives.
We have obtained CSC data sets from a number of

sources, and local students have used our interactive
modeler to design a number of their own objects. Figure
5 gives statistics and rendering times for 11 objects rang­
ing from 11 to 180 primitives. The table illustrates how
small the average length of each product term (k] is after
pruning. With k-values so small and relatively indepen­
dent of the number of primitives, the NCP algorithm's
time complexity approaches O(n].

An interactive CSG modeler
We have incorporated these algorithms into an inter­

active CSC modeler. The modeler displays a smooth­
shaded, hidden-surface-removed image of the objects on
Pixel-planes 4's monitor. The user interface runs on the
host DEC VaxStation 11/CPX running Ultrix 2.2 using
X Windows. It allows users to manipulate both the geo-

26

metric descriptions of primitives and the structure of the
esc tree interactively.

Figure 6 shows the Pixel-planes 4 monitor and the user
interface screen of our modeling system. The user can
modify the esc tree by dragging icons and can alter the
sizes and positions of primitives and subtrees using a
pair of joysticks.I.l Changes are displayed by the system
in fractions of a second for objects between 20 and 50
primitives. Figure 7 shows images and rendering times
for a number of the objects described in Figure 5.

Pixel-planes 4's front-end processor is a single fast
floating-point processor based on the Weitek XL floating­
point chip set. We have found this to be the bottleneck
in our system. The majority of the CSC objects we have
rendered use only approximately 10 percent of Pixel­
planes 4's frame-buffer cycles. This makes us believe that
the NCP algorithm may perform better on systems with
more front-end processing power, in particular, high­
performance graphics workstations with large-grain par­
allelism among front-end processors.

Future extensions
We intend to increase the speed of our renderer in two

ways. First, we can increase the power of our front-end
processor. The NCP algorithm adapts well to the large­
grain MIMD front-end paradigm. Jansen describes an
algorithm for a multiprocessor system that divides the
frame buffer into multiple regions, allocating a proces­
sor per region. 11 Each processor maintains its own ver­
sion of the esc tree and prunes it using its particular
viewing frustum as a bounding volume. We intend to
implement this algorithm on Pixel-planes 5 (scheduled
for completion in summer 1989). 14 Second, we can use
the quadratic expression evaluator of Pixel-planes 5 to
render primitives with quadratic surfaces. This will
allow us to render primitives with curved surfaces
rapidly.

Conclusion
We have presented a set of algorithms for efficiently

rendering CSC-defined objects directly into a frame
buffer without first converting to a boundary represen­
tation. unlike other depth-buffering esc algorithms, the
NC P algorithm requires only a constant number of bits
per pixel (two image buffers plus three flag bits) to ren­
der objects with convex primitives. It also can take advan­
tage of pixel-parallelism available in such new-generation
high-performance graphics workstations as the AT&T
Pixel Machine and the Stellar CS-1000 graphics worksta­
tion. Although the NCP algorithm has a worst-case time
complexity much poorer than the O(n 2

) complexity of
other algorithms,5 its time complexity compares favora­
bly on all of the data sets we have encountered. We have
incorporated the NCP algorithm into an interactive CSC
modeling system that renders shaded images of moder­
ately sized objects in fractions of a second. •

IEEE Computer Graphics & Applications

Figure 6. Pixel-planes 4 monitor
and modeler interface screen.

Figure 7. Images generated with the Pixel-planes 4 solid modeler.

Acknowledgments
We would like to thank Clare Durand for her partici­

pation in creating the interactive modeler, Don Stanat for
help in developing the tree-normalization algorithm,
Fred Brooks for encouragement and suggestions about
the modeler, and the reviewers of this article for valua­
ble suggestions for improvement. We also thank David
Banks, Randy Brown, and Brice Tebbs for being early
users of our system, and the members of the Pixel-planes
team for creating an exciting graphics environment.

This work was supported by the Defense Advanced
Research Projects Agency, ISTO order no. 6090, the
National Science Foundation, grant no. MIP-8601152,
and the Office of Naval Research, contract no.
N 00014-86-K-0680.

May 1989

References
I.). Goldfeather.).I'M. Hultquist, and H. Fuchs. "Fast Constructi"'

Solid Geometry Display in the Pixel-Powers Graphics System ...
Computer Cmphics (Proc. SIGGRAP!l). \'ol. 20. :--:o. 4. :\ug. 1'l81l.
pp. 107-1 Hi.

2. W.C. Thibault and B. F. Naylor. "Set Operations on Polyhedm t: sing
Hi nary Space Partitioning Trees." Computer Gmphics (Proc. SIC­
GRAPH), Vol. 21, No.4, July 1987, pp. 153-11l2.

3. P.R. Atherton, "A Scan-Line Hidden Surface Remo,·al Procedure
for Constructive Solid Geometry ... Computer Cmphics (l'ror.. SIC­
GRAPH), Vol. 17, No.3, July 1983. pp. 73-82.

4. G. Kedern and J.L. Ellis. "Computer Structures for Cune-Solid
Classifir.ation in Geometric. Modeling," Tec.h. Report TRB4-37.
Microelectronic Center of North Carolina. Research Triangle Park.
N.C .. 1984.

5. J.R. Rossignac and A.A.G. Requir.ha. "Depth-Buffering Display
Techniques for Constructive Solid Geometrv ... CG&A. Vol. £3. No.
9, Sept. 1986, pp. 29-39. .

:.!.7

fi. F.W. jansen. "A Pixel-Parallel Hidden Surface Algorithm for Con­
structive Solid Geometry," Proc. Eurogmphics 86, Elseviers
Science Pub!.. New York, 1986. pp. 29-40.

7. H. Fuchs eta!., "Fast Spheres, Shadows. Textures, Transparencies
and Image Enhancement in Pixel-Planes," Computer Grophics
(Proc. SIGGRAPH). Vol. 19. No.3, July 1985. pp. 111-120.

8. N. Ukino. Y. Kakazu, and M. Morimoto. "Extended Depth-Buffer
Algorithms for Hidden-Surface Visualization," CG&A, Vol. 4, No.
5. May 1984, pp. 79-88.

9. J. Goldfeather and S. Molnar. "CSG ·n·ee R.estructuring," tech.
report, Computer Science Dept., Univ. of North Carolina at Chapel
Hill, 1989.

10 R.B. Tilove, "Set Membership Classific.ation: A Unified Approach
to Geometric Intersec.tion Problems." IEEE Tmns. on Computers.
C:-29. 1\,;o. 10, Piscataway. NJ. Oc.t. 19HO. pp.B74-BH3.

II. F.VV. Jansen and R..J. Sutherland. "Display of Solid Models with a
M ulti-l'rocessor System, "I' me. Eurogruphir·s 117. Elsevier Science
Pub!.. 1987. pp.377-387.

12. K. Bouatouch eta!., "A New Algorithm of Space Trac.ing Using a
CSG Model," Proc. Eurographics 87, Elsevier Science Pub!., New
York. 1987. pp. 65-77.

l:J. C. Durand and S. Molnar. "CSG User's tvlanual," Computer
Science Dept., Univ. of North Carolina at Chapel Hill, 1987.

14. H. Fuchs eta!., "A lleterogeneous Multiprocessor Graphics Sys­
tem \.Ising Processor-Enhanced Memories," Tech. Report
TR89-005. Dept. of Computer Science. Univ. of North Carolina at
Chapel Hill, 1989.

28

CORNELL NATIONAL
SUPERCOMPUTER

FACILITY
The Cornell National Supercomputer Facility (CNSF), a
major multidisciplinary research center and a leader in
parallel processing, is expanding the staff of its Visualiza­
tion group to include the following position:

GRAPHICS CONSULTANT: support graphics
applications running on the supercomputer and on high-level
workstations networked to the CNSF. Develop software tools
and support services for users nationwide. Requirements: Ex­
tensive experience with graphics workstations; experience
with VM/CMS FORTRAN-based graphics and IBM PC-RT,
IRIS or SUN workstations desirable.

Send cover letter and resume to: Bill Webster, Dept. CGA,
Staffing Services, CORNELL UNIVERSITY, 160 Day Hall,
Ithaca, New York 14853.

CORNELL
THEORY
CENTER

•••••••• ••••••••
... ,.,.""1""1"'11. . ,., ,. ... '"'•

An Affirmative Action I Equal Opportunity Employer

by Henry Fuchs.

Jack Goldfeather is associate professor of
mathematics and computer science at Carleton
College in Northfield. Minnesota. where he
teaches a variety of undergraduate mathematics
and computer science courses. Trained as an
algebraic topologist. he has recently turned his
attention to mathematical problems related to
hardware and software design for graphics sys­
tems. In 1984 he began working as a mathematics
consultant on the Pixel-planes project directed

Goldfeather received a BA in mathematics from Rutgers University
in 1969 and an MS and PhD in mathematics from Purdue Universit\
in 1971 and 1975, respectively. He taught at the Uni\·ersit:-· of Wiscor;­
sin at Milwaukee from El75 to 1977 before joining the Carleton facult:-·.

Goldfeather can be contacted at Carleton College. Dept. of
Mathematics. 1 North College St .. Northfield, MJ'.,; 55057.

Steven Molnar is a research associate in com­
puter science at the University of North Carolina
at Chapel Hill. His research interests include
architectures and algorithms for real-time 30
graphics. He is currently involved in hardware
and software development for the Pixel-planes 5
graphics system, a VLSI-based architecture for
raster graphics being built at UNC Chapel Hill.

Molnar received a BS in electrical engineering
from the California Institute of Technology in

computer science from the University of North
e is a member of ACM.

Greg Thrk is a graduate student in the Computer
Science Department at the University of North
Carolina at Chapel Hill. His research interests
include computer animation, image rendering
techniques, and virtual worlds.

Turk received a BA in mathematics from UCLA
in 1984. He is a member of ACM and IEEE Com­
puter Society.

Henry Fuchs is Federico Gil Professor of com­
puter science at the University of North Carolina
at Chapel Hill. He teaches graduate courses in
computer graphics and directs the research of
PhD students and research associates in graphics
algorithms and VLSI architectures. He is prin­
cipal investigator for several research projects
funded by DARPA/ISTO, NIH. and NSF. He has
consulted for a variety of industrial organiza­
tions, and he is presently a member of the Tech­

nical Advisory Board for Stellar Computer, a company producing
high-performance graphics workstations. He served as chairman of
the 1985 Chapel Hill Conference on VLSI and the 1986 Workshop on
Interactive 3D Graphics held at UNC-Chapel Hill.

Fuchs received a BA from the Universitv of California at Santa Cruz
in 1970 and a PhD from the University ~f Utah in 1975 .

Molnar, Turk, and Fuchs can be contacted at the Computer Science
Department. Sitterson Hall, University of North Carolina, Chapel Hill,
North Carolina 27599.

IEEE Computer Graphics & Applications

