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ABSTRACT

We present means of interactive definition of anatomic objects in medical images via a description
of the image in terms of visually sensible regions. The description is produced by computing
structures capturing image geometry and following them through the image simplification of
Gaussian blurring. In particular, we suggest that the structure made from intensity "ridge" and
“course” curves defined by the locus of intensity level curve vertices, augmented by the pile of
internal and external symmertric axes of these level curves, satisfies desirable critena for a structure
on which to base such object definition.

1. INTRODUCTION

Analysis of properties, such as volume and shape, of anatomic objects in medical images require
first that the objects be defined. Also, all 3D display methods benefit from, and most such methods
require, definition of the objects to be displayed. Clinical usefulness depends on these object
definition methods being both accurate and quick. We report some progress in developing such
methods.

Object definition in images requires an intelligent understanding of the images. The source of
intelligence, be it a human interacting with the display of the image or a computer program
exhibiting artificial intelligence, fits its model of the world to the image information in order to
define or recognize an object. An image description in terms of a hierarchy of visually sensible
regions can provide an important basis for this object definition process. In this paper we first
present a means of producing such image descriptions and then lay out methods for their interactive
use by a human user to define image objects quickly.

The methods that we discuss are applicable to images of any number of dimensions, though we
will discuss only images of two and three spatial dimensions. In dimensions higher than two they
operate directly in that space and not slice by slice.

2. MULTIRESOLUTION IMAGE DESCRIPTION VIA ESSENTIAL STRUCTURE
ANNIHILATION

A major advance in the study of images has been the realization that they simultaneously represent
information at many levels of scale [Burt, 1983; Robson, 1983; Crowley, 1984; Koenderink,
1984: Rosenfeld, 1984). That is, an understanding of the image requires that global (large scale)
properties be combined with more local (smaller scale) properties. An image description in terms of



visually sensible image regions should therefore be created by viewing the image at multiple scales,

Our fundamental approach for providing such an image description is to represent the image by a
structure that captures essential image information and then define a hierarchy of components of
that structure by the order of annihilation of those components as the image is continuously
simplified by lowering the scale. The information-capturing “essential structure” is chosen so that
image regions are associated with each structure component during the image simplification.
Objects can then be defined by taking unions of selected regions.

The idea is that image objects are defined first by regions of large scale, with detail of these objects
defined by regions of smaller scale, Regions of large scale are those that are retained as the image
is simplified by reducing resoluton (blurring), while small-scale regions disappear under less
blurring. The small-scale regions define themselves as components of larger-scale regions by
blurring to become part of them. Image regions are thus defined by the annihilation of their
essential structure components under blurming, or to take a more constructive point of view, by the
creation of these components as deblurring is successively applied to the fully blurred image.

To guarantee image simplification [Witkin, 1983; Yuille, 1983; Koenderink, 1984, 1988],
successive Gaussian blurring is chosen as the means of scale lowering. The avoidance of local
creation of new values of any linear function of derivatives of the image, as the blurring proceeds,
is retained even when the Gaussian blurring is non-isotropic or non-stationary [Lifshitz, 1987a].
The variation of the parameters of the blurring Gaussian across the image could be used to reflect a
priori or tentative knowledge about the scene.

An essential structure should be an image descriptor that has the following five properties:

1. It induces a subdivision of the image into regions.

2. It captures essential region properties, including the way intensity varies across it and the spatial
properties of the region, Le., its shape, and therefore the regions it induces are semantically
sensible.

3. The structure relating image components does not change until 4 component annihilates.

4. It induces a hierarchy of regions by defining for each component the containing component into
which it annihilates.

5. It is applicable for images of any spatial dimension.

 ANEXTREMA - DE RE

Based on the idea of Koenderink [1984], we began by choosing as our essential structure the set of
intensity extrema, augmented by iso-intensity contour segments [Lifshitz, 1987a,b). As illustrated
in Figure 1, the technique is to follow extremal paths, i.e. the tracks of each extremum as image
blurring increases and the extrermum intensity changes monontonically, until the extremum
annihilates with a saddle point. Jso-intensiry paths, 1.e., paths connecting each image location to
the closest location at the next higher scale with the same intensity, are also followed undl they run
into an cxtremal path,

This essential structure satisfies criteria 1, 4, and 5, and fails criterion 3 only in an unimportant
wiy by allowing extremnum creation, but it fails in an important way on critenia 2.

Region Definition. Image regions are defined by associating pixels with extrema according to
the extremal paths into which their 150-intensity paths run.



Region Hierarchy. The regions formed by linking iso-intensity paths to extremal paths are
associated as subregions of other extremal regions according to the behavior of the iso-intensity
paths which begin where an extremum annihilates. The extremal path into which this new iso-
intensity path eventually links identifies the parent region for the subregion (for example, see
Figure 1).

——  Iso-Intensity Contours
— Extremal Paths

Iso-Intensity Paths
Saddle Pt. Paths

lurring

Figure 1: The behavior of extremal paths under resolution reduction. Note that maxima (A}, and
saddle points (O) move together and annihilate. The resulting non-extremal point (+) 1s then linked
via an iso-intensity path to another extremal path,

Generalization to all dimensions. Lifshitz has demonstrated the method for 2D and 3D
images and has described how the image representation can be extended to any number of
dimensions.

Region sensibleness. Applying these ideas to 2D and 3D medical images, we have shown that
the regions in the description thus produced frequently form anatomic objects, or can be easily
formed into such anatomic objects using the operations of union and difference (for example, see
Figure 2). However, sometimes the resulting regions are not semantically sensible.

First, an extremal region may be made of disconnected components, with neither component 1tself
being an extremal region. If these two components are separated by another region with which
each component has a visually apparent edge, we would wish that each edge would form the
boundary of an extremal region, but this does not always happen (see Figure 3). This misbehavior
results from the fact that the edges of regions may be heavily blurred before either of their 150-
intensity scts run into extremal paths, so both sets can Tun into the same extremal path and thus
form parts of the same region.

Second, regions which obviously hang together as a single object do not always combine into
single regions in the tree. This problem is especially apparent with long branching regions, such as
a blood vessel tee.

We suggest that these difficulties arise from the fact that the essential structure of intensity extrema
and iso-intensites inadequately reflects spatial shape and edges. If we view the image as a terrain
map, with intensity as height, edges can also be considered as shape features. We thus consider
multiresolution description of the shape of such terrain surfaces,



Figure 2: A CT slice through the upper abdomen together with a collecton of anatomic regions
antomatically defined using Lifshitz's program.

. a) b) )

Figure 3: The halftone image in 3a depicts the situation where two dark regions in an image are
separtated by a narrow lighter region. The two image segments 1n 3b illustrate how pixels linking
to local extrema can sometimes result in unnatural image segments. In 3c we see an example
where Lifshitz's program has identified part of a kidney and the whole liver as a single object in an
abdominal CT image.

4, A SHAPE-BASED ESSENTIAL STRUCTURE

Since the intensity dimension 15 incommensurate with the spatial dimensions, we must treat height
specially. At the same time, we would like to make use of structures designed for the spatial shape
description of binary objects. We therefore view the terrain map as being made up of a continuous
pile of binary images, each corresponding to a (not necessarily planar or level) slice through the
terrain, and having value 0 where there is air and value 1 where there is earth. The structures



defining the objects on each slice can themselves be thought of as piled on each other in the

intensity direction. Such piles ("one parameter families") of slice structures form an attractive shape
based essential structure.

The appropriate cut surfaces may be image dependent (see Figure 4); how to choose them is a
subject of research, and we avoid that question for now by allowing only the selection of intensity

level sets as the cut surfaces after preprocessing of the image (e.g. by a locally adaptive contrast
enhancement [Pizer, 1987b]).

é ; a) b)
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Figure 4: Intensity profile of an image with a raised area on a ramp. The iso-intensity slices in
figure 4a may be less natural for describing the image than the inclined slices in 4b.

A shape descriptor whose pile catisifies our criteria for behavior under Gaussian blurring is based
on the symmetric, or medial, axis (SA) [Blum, 1978). The internal SA of a figure is defined as
the locus of centers of maximal spheres (disks, in 2D) inside the figure (see Figure 5a). The
internil SA of a connected figure is a connected tree that by division at branch points induces a
decomposition into regions. For objects without holes, each region has an unbranching axis and
two associated boundary sides. When the SA component includes an SA endpoint, the two sides
meet at a point of maximal boundary curvature. The axis is the center of a figure and its associated

radius function specifies the locations inside the figure. The external SA of a figure is simply the
internal SA of the complement of the figure.

a) b)

Figure 5: The region associated with an SA branch in 5a is the union of all maximal circles
centered on the axis branch. For each SAP sheet in 5b, we combine the SA regions associated with
each intensity level to obtain an intensity volume.



The internal SA pile (SAP) captures light objects on dark backgrounds. Tt is made by piling the
internal SAs for earthen regions: the x,y at each terrain map level L such that I(x,y) = L. The
external SAP captures dark objects on light backgrounds. It is made by piling the SAs of the air;
x,y such that I(x,y) £ L. Gauch [1987] has shown that each SAP consists of branching sheets,
each such branch characterizing shape in both space and intensity of a corresponding part of the
image. The internal and external SAPs touch, orthogonally, at intensity saddle points.
Furthermore, branches shrink to annihilation under Gaussian blurring of the image 1 (see Figure
6). A hierarchy of SAP sheets is thus induced. Corresponding to each sheet in the hierarchy is a
radius function on the sheet, and a region image R for a sheet is defined by R(x,y) = the maximum
intensity level for which the radius function of a sheet point at that level includes x,y {see Figure

Figure 6: The effects of resolution reduction on the SAP of figure 6a are shown in 6b and 6c.
When branch 'C' annihilates, we identify it as a subobject of the combined branch 'BD',
Similarly, branch 'A’ s determined to be a sub-branch of 'BDE".

The hierarchy induced by Gaussian blurring prevents detail, or noise, from destroying the
naturalness of the decomposition that the SAP induces [Pizer, 1987a). SAP branches
corresponding to detail shrink and annihilate early into the limbs off which they branch, so the
regions corresponding to these branches are defined as subregions and, more importantly, the
limbs are restored to the natural correspondence with a single region rather than two regions
interrupted by & detail. Such a hierarchical description applies not only to images but also to simple
figures, when they are represented by charaeteristic functions.

The SAP for an n-dimensional image is an n+1-dimensional tree of sheets, a prodigious object to
follow through image blurring. However, Gauch has pointed out that since each SA is terminated
by a boundary point of maximum curvature magnitude (a vertex), each SAP sheet is terminated by
a curve of level curve vertices (a vertex curve - see Figure 7). These veriex curves are simply
tracks in the original image, corresponding to ridges or courses in the terrain map. They can be
followed through image blurring, and when a vertex curve annihilates, the SAP sheet that it
terminates must also annihilate. Therefore, it is possible to compute the SAP only for the original
image, and for each vertex curve annihilation to follow the corresponding SAP sheet to its branch
curve. The sheet defines a region image R and specifies R as a subregion of the region image
corresponding to the limb sheet into which it connects.



[:] SAP Sheets — M+ Vertices
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Figure 7: &) The relationship between the symmetmnc axis pile for an image and the venex curves
corresponding to the end curves of the 'earthen’ SAP. For clarity, only the vertex curves
corresponding to positive curvature maxima (M+), are shown. b) Iso-intensity contours and
vertex curves corresponding to positive curvature maxima (M+) and negative curvature minima
(m-).

Figure § shows level curve curvature and vertex curves for various degrees of Gaussian blurring
of a digital subtraction angiogram, an image of blood vessels and also for an abdominal CT image,
In the curvature images high positive curvature (M+) is shown as white, and low negative
curvature (m-) is shown as black, The grey points on white and black curves correspond to saddle
points in the image. Only M+ and m- vertex curves can be the tops of SAP sheets, and these SAP
sheets can help in following the vertex curves across saddle points. The vertex curves move
continuously to annihilation and induce the hierarchical description described in the previous
paragraph.

The level curve curvature K at each image point is computed as K = W hessian(l) v, where [ is the
image and v is the unit vector in the direction of the level curve tangent, (-dl/dy, dlidx). The K
values were computed by the multiresolution n-jet approach of Koenderink [1986]. This approach

involves computing Y/ dy-M for all n less than some limit, all m < n, and all degrees of
blurring. From these, many feature values, including level curve curvature, Laplacian value, etc.
can be easily computed. Listing useful essential structures that can be computed in this way ought
to be the subject of active research.

Vertex curves togther with the SAP of the original image seem to sausfy all of the criteria specified
for an essential smucture.

Region definition. It induces a subdivision into regions that also carry information on intensity
variation.

Region sensibleness. The fact that it is based on ridges and courses seems to allow object
curving to be followed and objects not to break into unrelated pieces. Like the essential structure of
intensity extrema augmented with iso-intensity contour segments, the vertex curve / SAP structure
captures the behavior of critical points, but it is more oriented to a whole object rather than one
point.



Figure 8: A sequence of blurred digital subtraction angiogram images (top row) with their
corresponding level curve curvature (second row) and vertex curve images (third row). Rows
four, five and six show analagous sequences for an abdomen CT image.



Consistent simplification. Under image blurring no new values of level curve curvature are
created, but the topology of the associated vertex curves can change, These changes occur when
saddle-extremum pairs annihilate (or form) and also when locally concave or convex regions on the
side of hills and valleys are destroyed, By following the smooth evolution of vertex curves, the
simplification of SAP structure can be deduced.

Region hierarchy. The hierarchy induced by image simplification involves only a selection
among branch sheets of the SAP which are already in the form of a tree (or a forest of trees).
Furthermore, the regions they induce are directly described in termis of intensity and spatial shape
by the properties of the symmetric axis transform.

Generalization to all dimensions. The method seems extendable to higher dimensions,
though details need 1o be investigated.

The vertex curves / SAP essential structure thus seems quite promising. However, the usefulness
of this description and some of its mathematical properties are still under investigation.
Furthermore, the dependence on intensity level curves seems unfortunate, and improved means of
slicing the image surface need to be developed.

VE M

The production of an image description by the above-mentioned approaches 15 a completely
automnatic process. The result 1s a set of image regions and a hierarchical relaton among them.
Even for the simple extremum-based essential structure the regions in the image description
frequently correspond to semantically meaningful image objects. For the vertex-curve-based
structure, we expect this to occur even more frequently. For these regions object definition can be
accomplished by a user simply by pointing to a pixel (voxel) in the region and displaying the
resulting region next to the original image, for user verification (see Figure 2). We have shown this
operation o be computable at interactive speeds. If the region displayed is a subregion of the
desired object, a simple button push can cause the next larger containing region 1o Be selected and
displayed, also at interactive speeds. During image description each region can be labeled by its
scale (degree of blurring to achieve annihilation) or intensity (of a critical point at annihilaton).
This allows the selection of a region by a scale window or an intensity window, an operation that
has appeared useful. Selection could also be based on other region properties, such as area, mean
intensity, and intensity variance.

Since these regions in the image description are defined only by image intensities, they cannot be
expected always to reflect semantic information. Some means will be necessary either to edit the
resulting descriptions, especially by moving regions within the hierarchy, or to edit objects defined
from these descriptions, as follows. For the extremum-based descriptions we have found that
operations of region union and difference, combined with the ability to divide a region into two by
painting out a few connecting pixels, were adequate to define most objects of anatomic interest.
Another operation that may sometimes be helpful is to change which of the branches intersecting at
a specified branch point form the limb and which forms the branch. We must develop a method 1o
allow such editing without requiring the user to comprehend the image description hierarchical
structure for his particular image.

The definition of late annihilating (important) regions sometimes suffers from the fact that they
include their subregions by definition, despite the fact that these subregions are not part of the
corresponding semantically meaningful object . Means for subtracting subregions en masse, €.g.,
by the blurring level at which they annihilated, have proved necessary to obtain adequately fast
operation.



A final tool necessary for the application of this interactive object definition approach to 3D images
is a means of displaying a selected 3D region and the original 3D image data, for user verification
of the region. The volumetmic rendering work by Levoy [see this volume] and others seems to hold
promise in this regard.

6. SUMMARY

We have shown that describing images hierarchically by following essennal structures to
annihilation 1s attractive if the essential structures satisfy a number of criteria. The idea can be
applied to a wide range of essential structures. However, the vertex curve / SAP essential structure
seems particularly attractive in meeting all of the criteria. Other structures based on geometrical
features of the intensity surface might also have these strengths. Interactive object definition
methods that operate in a few seconds on a 1 MIPS machine have been demonstrated.

This paper has left many open directions for exploration, including how cuts through terrain
images should be made, how useful the vertex curve-based descriptions will be, and what other
essential structures ought to be investigated. Means for 3D display to allow a user to compare 3D
regions selected from an image description to the onginal image data need to be developed. We are
confident that such research will lead to the production of object definitions in user imes orders of
magnitude faster than is now possible. Work on extending the ideas of this paper to vector-valued
images or time series of images would also seem beneficial,
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