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ABSTRACT 

We present means of interactive definition of anatomic objects in medical images via a desl.Tiption 
of the image in terms of visually sensible regions. The description is produced by computing 
srrucrures capturing image geometry and following them through the image simplification of 
Gaussian blurring. In particular, we suggest that the s1l'llcture made from intensity "ridge" and 
"course" curves defined by the locus of intensity level curve vertices, augmented by the pile of 
internal and external symmetric axes of these level curves, satisfies desirable criteria for a srrucrure 
on which to base such object definition. 

1. INTRODUCTION 

Analysis of propenies, such as volume and shape, of anatomic objects in medical images require 
first that the objects be defined. Also, all 3D display methods benefit from, and most such methods 
require, definition of the objects to be displayed. Clin.ical usefulness depends on these object 
def'lllition methods being both accurate and quick. We report some progress in developing such 
methods. 

Object defuution in images re{juires an intelligent understanding of the images. TI1e source of 
intelligence, be ira human interacting with the display of the linage or a computer program 
exhibiting anificial intelligence, tits ilS model of the world to the image information in order to 
define or recognize an object. An image description in terms of a hierarchy of visual ly sensible 
regions can provide an important basis for this object defin ition process. In this paper we first 
present a means of producing such image descriptions and then lay out methods for tl1eir interactive 
use by a human user to define image objects quickly. 

The methods that we discuss are applicable to images of any number of dime.nsions, though we 
will cliscuss only images of two and three spatial dimensions. ln dimensions higher than two they 
operate directly in tlnn space and not slice by slice. 

2. MULTlRESOLUTlON IMAGE DESCRIPTION VIA ESSEJ\1TIAL STRUcruRE 
ANNIHlLATlON 

A major advance in tl1e study of images has been the realization that they sunultaneously represent 
information at many levels of scale [Burt, 1983; Robson, 1983; Crowley, !984; Koenderink, 
1984; Rosenfeld, 1984]. That is, an understanding of lhe image requires that global (large scale) 
properties be combined wi th more local (smaller scale) properties. An image description in tem1s of 



visually sensible image regions should therefore be created by viewing the image at multiple scales. 

Our fundamemal approach for providing such an image description is to represent the image by a 
structure that capru.res essential image infonnarion and 1hen define a hierarchy of components of 
that structure by the order of annihilation of those components as the image is continuously 
simplified by lowering the scale. The infonnarion-capntring "essential structure" is chosen so th~t 
image regions are associated with each structme component during the image simplification. 
Objects can then be defined by taking unions of selected regions. 

The idea is that image objects are deftned first by regions of large scale, with detail of these objects 
defined by regions of smaller scale. Regions of large scale are those that are retained as the image 
is simplified by reducing resolution (blurring), while small-scale regions disappear under less 
blurring. The small-scale regions define themselves as components of larger-scale regions by 
blurring to become part of them. Image regions are thus defined by the annihilation of their 
essential structure components under blurring, or to take a more constructive point of view. by the 
creation of these components as deblurring is successively applied to the fully blurred image. 

To guarantee image simplification [Witkin, 1983; Yuille, 1983; Koenderink, 1984, 1988], 
successive Gaussian blurring is chosen as the means of scale lowering. The avoidance of local 
creation of new values of any linear function of derivatives of the image, as the blurring proceeds, 
is retained even when the Gaussian blurring is non·isorropic or non-stationary [Lifshitz, I987a]. 
The variation of the parameters of the blurring Gaussian across the image could be used to reflect a 
priori or tentative knowledge about the scene. 

An essential structure should be an image descriptor that has the following five properties: 

1. It induces a subdivision of the image into regions. 
2. It captures essential region properties, including the way intensity varies across it and the spatial 
properties of the region, i.e., its shape, and therefore the regions it induces are semantically 
sensible. 
3. The structure relating image componentS does not change until a component annihilates. 
4.11 induces a hierarchy of regions by defining for each component the containing component intO 
which it annihilates. 
5. lL is applicable for images of any spatial dimension. 

3. AN EXTREMA-BASED ESSENTIAL STRUCTURE 

Based on the idea of Koenderink [1984], we began by choosing as our essential structure the set of 
intensity extrema. augmented by iso-intensity contour set,'T!1ents [Lifshitz, l987a,b). As illustrated 
in Figure J, the technique is to follow exrremal paths, i.e. the tracks of each exrremum as image 
blurring increases and the extremum intensity changes monontonically, ttntil the extremum 
annihilates with a saddle point. lso-intensiry paths, i.e., paths connecting each image location to 
the closest location at the next higher scale with the same intensity, are also followed until they run 
into an extremal path. 

This essen rial strucnire satisfies criteria 1. 4, and 5, and fails criterion 3 only in an w1important 
way by allowing extremum creation. but it fails in an imponant way on criteria 2. 

Region Definition. Image regions are defined by associating pixels with extrema according tO 
the extremal paths into which their iso-intensity paths run. 



Region Hierarchy. The regions formed by linking iso-in tensity paths tO extremal paths are 
associated as subregions of other extremal regions according to the behavior of the iso-imensity 
paths which begin where an extremum annihilates. The extremal path into which this new iso· 
intensity path evemually links identiftes the parent region for the subregion (for example, sec 
Figure 1). 

!so-Intensity Contours 
Extremal Paths 

- Iso-lmensiry Paths 
""" Saddle Pt. Paths 

Figure 1: The behavior of extremal paths under resolution reduction. Note that maxima (6), and 
saddle points (0} move together and annihilate. The resulting non-extremal point (•) is then linked 
via an iso-intensiry path w another extremal path. 

Generali:~.ation to all dimensions. Lifshitz has demonstrated the method for 2D and 3D 
images and has described how the image representation can be extended to any number of 
dimensions. 

Region sensibleness. Applying these ideas to 20 and 3D medical images, we have shown that 
the regions in the description thus produced frequently form anatomic objects, or can be easily 
formed into such anatomic objects using the operations of union and difference (for example, see 
Figure 2). However, sometimes the resulting regions are not semantically sensible. 

First, an extremal region may be made of disconnected components, with neither component itSelf 
being an extremal region. If these two components are separated by another region with which 
each component has a visually apparent edge, we would wish that each edge would fonn the 
boundary of an extremal region, but this does not always happen (see Figure 3). This misbehavior 
results from the fact that the edges of regions may be heavily blurred before either of their iso­
intcnsiry sets run into extremal pnths, so both sets can run into the same extremal path and thus 
form pans of the S<iJ!le region. 

Second, regions which obviously hang wgether as a si.ngle object do not always combine into 
single regions in the tree. This problem is especially apparent with long branching regions, such as 
a blood vessel rree. 

We suggest that these difficulties arise from the fact that the essential structure of intensity extrema 
and iso-imensites inadequately reflectS spatial shape and edges. If we view the image as a terrain 
map, with intensity as height, edges can also be cnnsidered as shape features. We thus consider 
multiresolution description of the shape of such terrain surfaces. 



Figme 2: A CT slice through the upper abdomen LOgether with a collection of anatomic regions 
automatically defined using Lifshitz's program. 

b) C) 

Figure 3: The halftone image in 3a depictS the sirualion where two dark regions in an image are 
separtated by a narrow lighter region. The two image segments in 3b illusrrate how pixels linking 
to local extrema can ;;ometimes result in unnatural image segments. In 3c we see an e.xample 
where Lifshitz's program has identified part of a kidney and the whole liver as a single object in an 
abdominal cr image. 

4. A SHAPE-BASED ESSENTIAL STRUCrURE 

Since the intensity dimension is incommensurate with the spatial dimensions, we must treat height 
specially. At the same rime, we would like to make use of structures designed for the Spatial shape 
description of binary objects. We therefore view the terrain map as being made up of a continuous 
pile of binary images, each corresponding to a (not necessarily planar or level) slice through the 
terrain, and having valueO where there is air and value l where there is earth. The stntCtures 



deftning the objects on each slice can themselves be thought of as piled on each other in the 
intensity direction. Such piles ("one parameter families") of slice structures fonn an attractive shape 
based essential S!l1.lcture. 

The appropriate cut surfaces may be image dependent (see Figure 4); how to choose them is a 
subject of research. and we avoid that question for now by allowing only the selection of intensny 
level sets as the cut surfaces after preprocessing of the image (e.g. by a locally adaptive conrrast 
enhancement I Pizer, 1987b]). 

a) 

Figure 4: Intensity proflle of an image with a raised area on a rdmp. The iso-intensity slices in 
figure 4a may be less nan1ral for describing the image than the incH ned slices in 4b. 

A shape descriptor whose pile catisifies our criteria for behavior under Gaussian blurring is based 
on the symmetric, or medial, axis (SA) [Blum, 1978]. The internal SA of a figure is defined as 
the locus of centers of maximal spheres (d isks, in 20) inside the figme (see Figure 5a). The 
internal SA of a connected figure is a connected tree that by division at branch points induces a 
decompos ition into regions. For objects without holes, each region has an unbranching axis and 
two associated boundary sides. When the SA component includes an SA endpoint, the two sides 
meet at a point of maximal boundary curvature. The axis is the center of a figure and its associated 
raclius function specifies the locations inside the figure. The external SA of a figure is simply the 
internal SA of the complement of the figure. 

Figure 5: The region associated with an SA branch in 5a is the union of all maximal circles 
centered on the axis branch. For each SAP sheet in Sb, we combine the SA regions associated with 
each intensity level to obtain an intensity volume. 



The internal SA pile (SAP) captures light objects on dark backgrounds. It is made by piling the 
internal SAs for eanhen regions: the x,y at each terrain map level L such that I(x,y) ~ L. The 
external SAP captures dark objects on light backgrounds. It is made by piling the SAs of the air: 
x,y such that I(x,y)::; L. Gauch [1987] has shown that each SAP consists of branching sheets, 
each such branch characterizing shape in both space and intensiry of a corresponding pan of the 
image. The internal and external SAPs touch, onhogonally, at intensiry saddle points. 
Furthermore, branches shrink to annihilation under Gaussian blurring of the image I (see Figure 
6). A hierarchy of SAP sheets is thus induced. Corresponding to each sheet in the hierarchy is a 
radius function on the sheet, and a region imageR for a sheet is defined by R(x,y) = the maximum 
intensity level for which the radius function of a sheet point at that level includes x,y (see Figure 
5). 

a) b) c) 

Figure 6: The effects of resolution reduction on the SAP of figure 6a are shown in 6b and 6c. 
When branch 'C' annihilates, we identify it as a subobject of the combined branch 'BD'. 
Similarly, branch 'A' is determined to be a sub-branch of 'BDE'. 

The hierarchy induced by Gaussian blurring prevents detail, or noise, from destroying the 
naturalness of the decomposition that the SAP induces [Pizer, 1987a). SAP branches 
corresponding to detail shrink and annihilate early into the limbs off which they branch, so the 
regions corresponding to these branches are defined as subregions and, more innponantly, the 
limbs are restOred to the natural correspondence with a single region rather than two regions 
interrupted by a detaiL Such a hierarchical description applies not only to images but also to simple 
figures, when they are represented by characteristic functions. 

The SAP for an o-diroensional image is an n+ !-dimensional tree of sheets, a prodigious object ro 
follow through image blurring. However, Gauch has poin ted out that since each SA is terminated 
by a boundary point of maximum curvature magnitude (a vertex), each SAP sheet is terminated by 
a curve of level curve vertices (a vertex curve see Fig we 7). These venex curves are simply 
tracks in the original image, corresponding to ridges or courses in the terrain map. They can be 
followed through image blurring, and when a venex curve annihilates, the SAP sheet that it 
terminates must also annihilate. Therefore, it is possible to compute the SAP only for the original 
image, and for each venex curve annihilation to follow the corresponding SAP sheet to its branch 
curve. The sheet defines a region imageR and specifies Rasa subregion of the region image 
corresponding to the limb sheet into which it connects. 



[ill SAP Sheets 
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b) 

Figure 7: a) The relationship between the symrneoic axis pile for an image and the vertex curves 
corresponding to the end curves of the 'earthen' SAP. For clarity, only the vertex curves 
corresponding 10 positive curvature maxima (M+), are shown. b) Tso-imensiry contours and 
vertex curves corresponding tO positive curvature maxima (M+) and negative curvature minima 
(m-). 

Figure 8 shows level curve curvature and vertex curves for various degrees of Gaussian blurring 
of a digital subtraction angiogram, an image of blood vessels and also for an abdominal cr image. 
In the curvature images high positive curvature (M+) is shown as white, and low negative 
curvature (m-) is shown as b!ack. The grey points on white and black curves correspond to saddle 
points in the image. Only M+ and m- venex curves can be the tops of SAP sheets, and these SAP 
sheets can help in following the vertex curves across saddle poin L~. Tile vertex curves move 
continuously tO annihilation and induce the hierarchical description described in the previous 
paragraph. 

The level curve curva1.1.1re K at each image point is computed asK: v1 hessian(/) v, where I is the 
image and y is the unit vector in the direction of the level curve tangent, (-al/()y, oll()x). The K 
values were compmed by the multiresolution n-jet approach of Koenderink [1986]. This approach 
involves computing ()'lfliJxm()yn-m for all n Jess than some lintit, all m s n, and all degrees of 
blurring. From these, many fearure values, including level curve curvature, Laplacian value, etc. 
can be easily computed. Listing useful essential structures that can be computed in this way ought 
to be the subject of active research. 

Vertex curves togther with the SAP of the original image seem to satisfy all of the criteria specified 
for an essential structure. 

Region definition. It induces a subdivision into regions that also carry infom1arion on imensity 
variation. 

Region sensibleness. The fact that it is based on ridges and courses seems to allow object 
curving to be followed and objects not to break into unrelated pieces. Like the essential structure of 
intensity exrrema augmented with iso-intensiry contour segments, the vertex curve I SAP structure 
captures the behavior of critical points, but it is more oriented to a whole object rather than one 
point. 



Figure 8: A sequence of blurred digital subtraction angiogram images (top row) with their 
corresponding level curve curvature (second row) and venex curve images (third row). Rows 
four, five and six show analagous sequences for an abdomen CT image. 



Consistent simplification. Under image blurring no new values of level curve curvature are 
created, but the topology of the associated vertex curves can change. T hese changes occur when 
saddle-extremum pairs annihilate (or form) and also when locally concave or convex regions on the 
side of hills and valleys are destroyed. By following the smooth evolution of vertex curves, the 
simplification of SAP structure can be deduced. 

Region hierarchy. The hierarchy induced by image simplification involves only a selection 
among branch sheets of the SAP which are already in the form of a tree (or a forest of trees) . 
Furthermore, the regions they induce are directly described in terms of intensity and spatial shape 
by the properties of the symmetric axis transform. 

Generalization to all dimensions. The method seems e xtendable to higher dimensions, 
though details need to be investigated. 

The vertex curves I SAP essential srructure thus seems quite promising. However, the usefulness 
of this description and some of itS mathematical properties are still under investigation. 
Furthermore, the dependence on intensity level curves seems unfortunate, and improved means of 
slicing the image surface need to be developed. 

5. INTERACTIVE OBJECT DEFINJTION 

The production of an image description by the above-mentioned approaches is a completely 
automatic process. The result is a set of image regions and a hierarchlcal relation among them. 
Even for the simple extremum-based essential srrucmre the regions in the image description 
frequently correspond to semantically meaningful image objects. For the venex-ctuve-based 
Stntcnrre, we expect this to occur even more frequently. For these regions object defmition can be 
accomplished by a user simply by pointing to a pixel (voxel) .in the region and displaying the 
resulting region next to the original image, for user verification (see Figure 2). We have shown thls 
operation to be computable at interactive speeds. If the region displayed is a subre1,rion of the 
desired object, a simple button push can cause the next larger containing region to be selected and 
displayed, also at interactive speeds. During image description each region can be labeled by its 
scale (degree of blurring to achieve annihllation) or intensity (of a <.Titical point at annihilation). 
This allows the selection of a region by a scale window or an intensity window, an operation tha t 
has appeared useful. Selection could also be based on other region properties, such as area, mean 
intensity, and intensity variance. 

Since these regions in the image description are defined only by image intensities, they cannot be 
expected always to reflect semantic information. Some means will be necessary either to edit the 
resulting descriptions, especially by moving regions within the hierarchy, or to edit objects defmed 
from these descriptions, as foUows. For the extremum-based descriptions we have found that 
operations of region union and difference, combined with the ability to divide a region into two by 
painting out a few connecting pixels, were adequate to define most objectS of anatomic interest. 
Another operation thar may sometimes be helpful is to change which of the branches intersecting at 
a specified branch p!Jint form the limb and whlch forms the branch. We must develop a method to 
allow such editing witl10ut requiring the user to comprehend the image description hierarchical 
structure for his particular image. 

'The definition o f late annihilating (imponaot) regions .sometimes suffers from the fact that they 
include their subregions by defmition, despite the fact that these subregions are not part of the 
corresponding semantically meaningful object . Means for subrracting subregions e n masse, e.g., 
by the blurring level at which they annihilated, have proved necessary to obtain adequately fast 
operation. 



A final tool necessary for the application of this interactive object definition approach to 3D images 
is a means of displaymg a selected 3D region and the original 3D image data, for user verification 
of the region. The volumetric rendering work by Levoy [see this volume] and others seems to hold 
promise in this regard. 

6. SllMMARY 

We have shown that describing images hierarchically by following essential strucrures to 
annihilation is attractive if the essential structures satisfy a number of criteria. The idea can be 
applied to a wi.de range of essential structures. However, the vertex cUNeI SAP essential structure 
seems particularly attractive in meeting all of the criteria. Other soucrures based on geometrical 
fcarures of the mtensity surface might also have these strengths. In teractive object definition 
methods that operate in a few seconds on a 1 MlPS mach me have been demonstrated. 

This paper has left many open directions for exploration, including how cuts through terrain 
images should be made, how useful the venex curve-based descriptions will be, and what other 
essential structures ought to be mvestigated. Means for 3D display tO allow a user to compare 3D 
regions selected from an image description to the original image data need to be developed. We are 
confident that such research will lead to the production of object definitions in user times orders of 
magnitude faster than is now possible. Work on extending the ideas of this paper to vector-valued 
images or time series of images would also seem beneficial. 
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