
Practical Higher-Order Functional
and Logic Programming Based on

Lambda-Calculus and Set-Abstraction

TR88-004

January 1988
(Revised December 1988)

Frank S. K. Silbermann
Bharat Jayaraman

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportun ity/Affirmative Action Institution.

''

Abstract

Practical Higher-order Functional a nd Logic Programming

based o n

Lambda Calculus and Set Abstract ioni

StatUJ Report

Frank S.I<. Silbermann

Bharat Jayaraman

Department of Computer Science

UniverJity of North Carolina at Chapel Hill

Chapel Hill, NC 27514

Tel: {919} 962-1764

Arpan et: bj@cs .unc. edu

This dissertation addresses the unification of functional and logic programming. We

concentrate on the role of set abstraction in this integration. The proposed approach

combines the expressive power of lazy higher-order functional programming with not only

first-order Rom logic, but also a useful subset of higher-order Horn logic. Set abstrac

tions take the place of Horn logic predicates. Like functions, they are first-class objects.

The denota~ional semantics of traditional functional programming languages is based on

an extended lambda calculus. Set abstractions are added to the semantic domain via

angelic powerdomains, which are compatible with lazy evaluation and are well-defined

over even non-fla t (higher-order) domains. From the denotational equations we derive an

equivalent operational semantics. A new computation rule more efficient than the parallel

outermost rule is developed and proven to be a correct computation rule for this type of

language. Concepts from resolution are generalized to provide efficient computation of

set abstractions. T he implementation avoids computationally explosive primitives such as

higher-order unification or general theorem-proving.

i ThiJ reJearch waJ .mpported by grant DCR-8603609 from the Na.ttonttl Sciencr. Foun

dation and contract 00014 -86-K-0680 from the Office of Navel ReJea.rch.

1. INTRODUCTION AND RELATED WORK

Declarative languages are noted for thei r simple and elegant semantics, being based

on well-known mathematical theories. The use of declarative languages has been llmited

by expensive evaluation procedures. but as the ratio of programmer costs to hardware

costs rises, with programs becoming longer and more complex. declarative languages are

becoming ever more attractive. Fut·thermore. declarative languages show potential for

great efficiency if implemented on massively parallel hardware.

Two of the most popular declarative paradigms are functional and logic program

ming. Most functional programming languages are built around the lambda calculus, and

most logic programming langua_ges a.re based on a subseL of first-order predicate logic,

called Hom clauses. From the perspective of predicate-logic programming, ftmctional pro

gramming offers three important additional capabilities: infinite data objects, higher-order

objects, and directional (non-backtrackablc) execution. From the perspective of functional

programming, the unique capabilities of predicate-logic programming are its support for

constraint reasoning, via unification over ftrst-order terms, and flexible execution moding

(non-directiona.li ty).

Many attempts have been made to combine the advantages of functional and logic

programming into a single language (see IDL86j for a recent survey). Existing approaches

fall short in that they either

(a) support no higher-order programming at all IGM84, DP85, YS86j, or

(b) require computationally difficult primitives higher-order unification [MN86, R86j

(undecidable in worst case), unjfication relative to an equational theory IGM84], or general

theorem proving [MMW84j, or

(c) have no extensional declarative semantics [SP85, W83}, or

(d) have no identifiable purely functional subset IR85, L85j.

We seek a declarative language with simple semantics (including referential trans

parency), reasonable higher-order capabilities, with the potential for efficient execution.

Backtracking should not be used where simple rewriting is sufficient, and the interpreter

should not rely on potentially explosive pr imitiYes. such as higher-order unification or

unification relative to an equational theory. In our approach, we have chosen to supple

ment a functional programming language with set abJtraction. We believe that functional

1

programming is a better basis for a unified declarative language than Horn logic, because

a) simple propagation of objects can be managed without unification or proofs of

equality;

b) ordinary ftu1ctional computations not involving set abstraction may be performed

in the usual way without backtracking; and

c) since the semantics of Hom logic programming is described in the language of

set-theory, it may be more natural to deal directly with sets as objects.

An early attempt at set abstraction was David Turner's KRC [T81]. In this language,

programmers may define operations on sets {relative set abstraction) , encoded as list com

prehensions [P87]. implicitly invoking a backtracking mechanism. This feature allows some

problems to be expressed in a manner analogous to logic programming style. However,

these list comprehensions may be used in ways inconsistent with their in terpretation as

sets. If one chooses to \-iew list comprehensions as abstraction, one must admit that refer

ential transparency is violated. Funhermore, many Horn logic programs have no obvious

translation into this language.

Darlington [D83J and Robinson [RS6J were the first advocates of adding logic program

ming capability to functional programming through set abstraction. Robinson suggests

that a functional language should have a construct denoting the complete set of solutions

to. a Hom logic program, and that the user be able to build functions accepting such sets

as arguments. Darlington called his version absolute set abstraction, to distinguish it from

Turner's notation. Absolute set abstraction permits expressions such as

{x: p(x)},

to denote define t he set of all x satisfying p(x). The work of Darlington and Robinson

work leave open several interesting problems. To our knowledge, the semantics of set

abstraction in functional cum logic programming ha\·e never been rigorously worked out.

The degree with which this construct can freely interact with other traditional functional

language features (such as lazy evaluation. fi1·st-dass higher-order objects, etc.) has been

questioned. In his recent paper [DFP86J, Darlington sketched only a partial and informal

operational semantics.

Both Darlington and Robinson claim that extending their approach to a higher-order

language would require higher-order unification. \\"hich is known to be undecidable. Fur

thermore, some higher-order programs in Darlington's language are unexecutable. Darling-

2

tOn believes these inexecutable prognuns sel'·e as useful program specifications. Robinson

bas criticized existing combinations of higher-order functional programming with first

order relational programming as inelegant [RSG]. The challenge is to create a language

permitting higher-order relational programming, without arbitrary unorthogonal restric

tions on usage of higher-order objects.

Our work solves these problems by using results from the theory of power-domains to

formalize a lazy higher-order functional language with true relative set abstraction. Our

approach is motivated by the observation that the nondetermioism in logic programming

is essentially 'angelic nondeterminism'. This is fortunate, because the theory of power

domains for angelic nondetenninism extends even for base domains containing higher-order

functions and infinite objects. A ~ugared lambda-calculus language can be augmented with

set abstraction using only a few new simple ptimitives. These primitives are nothing more

than the basic powerdomain constructors and deconstructor, proven to be well-defined

and continuous (and easily implemented}. This approach avoids the problems associated

with higher-order first-class objects; for example, higher-order unification is not needed to

evaluate this language.

lrl proposing a new language, one must:

a) specify the syntax and provide examples;

b) define its declarative semantics lwhat programs mean);

c) define its operational semantics (how programs are executed); and

d) prove that the dcnotacional semantics ~nd the opcradonal semantics describe the

same language.

Our goal is a thorough understanding of the sema.ntic and operational aspects of this

language. In Section 2, we describe (through formal syntax and program examples) a

new language to subsume both Hom logic programming and higher-order lazy functional

programming. In this Languages. functions and set abstractions are first-class objects. In

Section 3, we review the basics of angelic powerdomain theory, the semantic basis for

relative set abstraction. This pennits us to provide t he language's deuotational semantics,

mapping the features of the language to well-understood semantic primitives in a way

which maintains referential transparency.

In Section 4, we show that by impo~ng constraints on the definitions of semantic

primitives, the denotational semantics for a functional language can be written so that a

3

provably equivalent operational semantics is automatically implied. In other words, the

denotational equations simultaneously pro,·ide both the declarative meaning of programs in

the language, and an operational procedure for language interpretation. These results are

used to provide a.n operational semantics mechanism for correctly interpreting programs

in the new language. In Section S. we improve the effiency of this procedure, for certain

kinds of set abstractions. \Vhen the set of ''first-o rder terms" is the generator of a relative

set abstraction. we calculate members not through a simple generate and filter mechanism

(the default e,·aJuation mechanism for relative set abstractions), but rather through a set of

program transformation rules, inspired by theories of narrowing in term rewriting systems,

and resolution in logic programming. Since these transformations are used only for certain

types of set abstractions, we avo~d the problems associated wi th tUlrestrictcd narrowing.

Section 6 surrunarizes our accomplislunents, in both general and specific terms.

2. LANGUAGE DEFINITION

2.1 Syntax and Constructs

In this section we desct;be a language synthesizing logic and functional program

ming through set abstraction. We call this language PowerFuL, because it uses angelic

Powerdomains to unite Functional and Logic programming. A PowerFuL program is an

expression to be evaluated. The syntax is:

e:tpr

set-clawe

qualifier

. •:::

. ·=
: : =

(e:tpr) I atom

cons (e:tpr, e:tpr) car(e:tpr) I cdr(e:z;pr)

atomeq? (e:tpr , expr) I null? (ezpr) I ezpr = expr •

bool?(ezpr) I atom? (e:tpr) I pair?(e:tpr) I func?(e:tpr) I set?(e:tpr)

if e:tpr then expr else e:tpr fi 1 no~(e:tpr)

identifier

L identifiers . e:cpr

ezpr (e:tpr , ... , expr)

l etrec identifier be e:tpr , ... , identifier be e:tpr in e:tpr

phi I atoms I terms I set.clattse I U (set-cla'U.!c, .!ct-c/a'U.!e)

{ expr : qualifierli.,t}

enumcrat1on I condition

4

enumeration : : =

condition .. ;;
expr -> identifier

expr

An enumeration is a rcla~ive set abstractiOll. For each identifier introduced within the

set-clause, a set is provided to generate possible values. \-Ve prefer relative set abstraction

because it has a simpler higher-order generalization. To simulate absolute set abstraction,

simply declare that each "logical variable" ta...l.(es its values from the set of first-order terms

(this set, terms, is provided as a primiti,·e, though it could be defined in terms of the other

constructs).

The scope of the enumerated identifier contains the principal expression (left of the

': '), and also all qualifiers to the right of its introduc~ion. In case of name conflict, an

identifier takes its value from the latest definition (innermost scope). In any case, the

scope of an enumerated identifier never reaches beyond the set-clause of its introduction.

Lists may be written in the [...) notation, e.g. [•apple, 'orange, 'grape) as a

syntactic sugar. Similarly, elo.-pressions of the form U(Jet1 , ••• , Jet") are syntactic sugar

for a nesting of binary unions. Furthermore, when the list of qualifiers is empty one may

omit the':'.

As is required for full referential transparency (extensionality), equality is not defined

over higher-order objects. The result of equaling higher-order objects, such as sets or func

tions, is .l (even without set abstraction, correctly implementing a higher-order equality

preclicate would require solving the halting problem). For simplicity, we omit discussion

of integers and their operations in ~his paper, although they can ea.~ily be added to the

language.

0

2.2 Examples

Functional Programming

letrec

in

append be L 11 12. if null?(l1) then 12

else cons(car(ll), append(cdr(l1),12)) fi

map be L f.L l.if null?(l) then (]

else cons(f(car(l)), map(f,cdr(l)))fi

infinite be cons('a, infinite)

5

First-order and higher-order functions, as well as infinite objects can be defined in the

usual manner. The map example shown aboYe is in curded form.

Set OperationJ

letrec

in

crossprod beL sl s2. {cons(X,Y) : sl->X, s2->Y}

filter be L p s. {X : s -> X, p(x)}

intersection be L sl s2. {X : sl->X, s2->Y, X=Y}

The operations crossprod and filter are similar to those in Miranda [T85). Note that

one cannot define an operation t.O compute the size of a set, nor can one test whether a

value is or is not a member. Such operations. analogous to Prolog's meta-logical features,

would not be continuous on our domruns; furthcnnore, they are not needed to obtain the

declarative capabilities of logic programming.

Logic Programming

letrec

split be L list. { (XIY) : terms->X, terms->Y, append(X,Y)•list}

append be L 11 12. if null?(l1) then 12

else cons(car(ll), append(cdr(l1),12))fi

in

The enumerations terms->X, terms->Y in split are needed because the set-abstraction

is relative, n~t absolute. For efficiency, an operation such as append might be compiled in

different ways corresponding to whether or not it was used within a set-abstraction.

To demonstrate that any first-order Hom logic program can be mechanically con

verted into PowerFuL, consider the sem;wtics of Horn logic programming. The universe

of discourse is t-aken to be the Herbrand Cni,·ersc (this corresponds to our se t terms. the

set of terms). A predicate symbol gets it~ mPaning from the .5et of ground instantiations

in the Herbrand model (those instnmiations implied true by the program clauses).

6

we could write our logic programs in terms of sets, instead of predicates. A predicate

which is true for certrun tuples of tcm1s becomes a seL which includes just those tuples

of terms as members. Where a conventional Prolog program asserts P(tuple}, we could

equivalently assert that tuple E P, 1' now referring to a set.

Consider the following program and goal, written in Prolog synta.'< (CMSlj.

app([], Y, Y).

app([B IT). Y, [HI Z)) ·- app(T, Y, Z) .

rev ([] , []) .

rev([HIT], Z) · - rev(T , Y), app(Y, [H), Z).

?- rev(L, [a, b, c)).

ln the style oriented towards sets, we would write:

[[] , Y, Y] E app

[[HIT). Y, [HI Z]] E app :- [T, Y, Z] E app

[[] , []] E rev

[[HIT] , Y] E rev ·- [T, Z] E rev, [Z , [H) , Y] E app

? - [X, [a, b, c)] E rev

In one sense, all we have done is create a new Prolog program defu1ing the predicate

'E'- But we prefer to '"iew the clauses as defining sets, with 'E' taken as a mathematical

primitive. With this second viewpoint, tnU1slaLion to PowerFUL is strrugbtforwa.rd. Log

ical variables represent enumeration variables implicitly generated from the set of terms,

corresponding to 'terms'. Fw-thcnnore, it is easy to see that

'
term E generating-ut

is equivalent to the conjunction

generating-&et -> Nev-enum-var, !lev- enum-var • term.

Converting to PowerFuL synla.'< results in:

letrec

app be U({ [(] ,L,L] : terms->L},

{[[HIT), Y, [HIZ]] : terms->H ,T,Y,Z ,

app->11, II=[T,Y,Z]})

rev be U({ [[], []] } ,

{[[HIT). Z]: terms- >H,T,Y,Z, rev->V, app- >11,

V : [T, Y). \1 s [Y, [H). Z)})

in

{ L : terms - > L, rev -> V, V = [L , [•a, 'b, 'c)] }

We have taken the liberty of writing terms -> h, t, y ,;: instead of four separate enmner

ations.

The PowerFuL program uses sets to express Prolog predicates, which the Prolog pro

gram used t.o express functions. With so many layers of indirection, it is no wonder this

PowerFuL version is ugly. But this is to be expected from a mechanical translation. A

better PowerFuL style would be to use Lisp-like functions where functions are intended,

and sets only where necessary. Still , this technique of Horn logic to PowerFuL conversion

demonstrates that we have indeed captured the full expressive power of Horn logic.

Higher-order Functional and Horn logic p1·ogrammi1l9

letrec

one be L v. 'a

t vo be L v. 'b

three be L v. 1 c

in

{F : U<{one}. {tvo}. {three}) - > r , map(E')([• x , ' y, ';:]) • ['c, 'c, •cJ}

The result of the above set-abstraction is the set {three}. In this example, the generator

set for r, U<{one}, {two}, {three}) is first enumerated to obtain a function which is

then passed on to ma p. Those functions which satisfy the equality condition are kept in

the resulting set , while the others are scre~ned out.

•
3. DENOTATIONAL SEMANTICS FOR POWERFUL

3.1 Power domains

Set abstraction gives functional programming its logic programmil\g capability. In

this section, we describe angelic powerdomains. the semantic basis for set abstraction.

Intuitively, given a domain D. each elen~tmt of domain D's powerdomain P(D) is to be

viewed as a set of elements from D. In theory it is a bit more complicated. The details of

powerdomain construc~iou are summarized below. For more infonnation, see [SS6J, (B85J,

[A82J and (A83].

8

'P(D) is the angelic powerdoroain constructed from domain D. Powerdomain theory

was developed to describe the behavior non-detem1inistic calculations. The original ap·

plication was operating system modelling, where results depend on t he random timing of

events, as well as on the values of the inputs. Suppose a procedure accepts an element of

domain D, and based on th.is element produces another element in D, nondeterministically

choosing from a number of possibilities. We say that the set of possibilities, as subset of

D, is a member of 'P(D). Such a procedure is therefore of type D ,.... 1' (D). Computation

approximates th.is set by non-deterministically returning a member.

Suppose f and g are non-deterministic computations performed in sequence, first f

and then g. For each possible output of f, g defines a set of possible results. The union

of these sets contains all possibl: results of the sequence. We express th.is sequencing of

non-deterministic functions by ..\x. g+ (f(x)) . The •+• functional is of type

(D~-t'P(D)) ,... (1'(0)~--t'P(D)),

defined as ..\t . ..\set. U {f(x): x E set}.

The larger the set denoted by f(x) is, the larger the set denoted by g+(t(x)) will be,

and the larger the likelyhood that the complete sequence can terminate wi th any com;~;t

result. One powerdomain construction ensures that larger sets are considered more defined

than t heir subsets, the empty set being lca.~t-defined. Special problems must be considered

when building powerdomains of non-flnt bMe domains. A set becomes more defined in two

completely different ways: individual set elements can be made more defined according to

the partial order of the base domain, or the more-defined elements can be added to the

set. Thus, the same information can be combined in different ways to create sets that are

distinct, yet computationally equivalent. So theoretically one works not with sets, but with

equivalence classes of sets. Th.is should not be too disconcerting. Even in mathematics, a

set has not single canonical representation, and equivalent set expressions can be gotten

by permuting the ordering of of elements.

Definition: The symbol t;;;_, pronmmced ' less defined than or equivalent to', is a

relation between sets. For A, B ~ D, we say that A t;;;_ 8 iff for e\'ery a E A and Scott-open

set U ~ D, if a E U then there exists a b E B such that b E U also.

Definition: We say A ::::< B iff both A t;;;_ B and B t;;;_ A. We d~?note the equh·alence

class containing A M [A] . This class contains aU sets B ~ D such that A ::::< B. We definE" the

panial order on equivalence classes as: (Aj t;;; (BJ iff At;;;_ B. For domain D, the powerdoma.in

of D, written 'P(D), is the set of equivalence classes, each member of an equivalence class

being a subset of D.

Theorem (Schmidt [586]): The following operations are well-defined and continuous:

,P: 'P(D) denotes [{}] .This is the least element.

{-}: 0 ,_. 1'(0) maps d E D to [{d}] .

U: 'P(D) x'P (D)~-+'P(D) maps [A] U [B) to (AU B).

+: (D~-+'P(D)) ,..... (P(D)~-+'P(D)) is >.t.>.[A).[U{f(a): a E A}).

3.2 Semantic Equations

PowerFuL's domain is the sqlution to:

D • (BJ.s + AJ.. + DxD + D,_,D + 'P(D))J.0 ,

where 'B' refers to the booleans, and 'A ' to a finite set of atoms.

PowerFuL is a functional programming language, so we present its semantics in the

denotational style usual for such languages [SII]. Our convention to differentiate language

constructs from semantic primitives is to write the primitives in b oldface. Language

constructs are in teletype. Variables in rewrite rules will be italicized.

In the definitions below, the semantic function£ maps general expressions to denotable

values. The equations for most expressions are the conventional ones for a typical lazy

higher-order functional language. The environment, p, maps identifiers to deootable values.

and belongs to the domain [Id>-+D]. The $emantic equations for set-abstractions provide

the novelty. For simplicity, the semantic equations ignore simple syntactic sugars.

Many of Power.FuL's denotational equations are sinLilar to those of any typical lazy

functional language. For instance, for each syntactic atom (represented by A,) in a program.

we assume the existance of an atomic object in the semantic domain (represented by A ;).

£(A;) p = A,

We can group objects into ordered pairs to create lists and binary trees.

£ficons(ezpr 1, ezpr2)D p = <(£(ezpr 1 D p) , (E[ezpr£~ p>)

EUcar(ezpr)j p - left(pair!(£[ezprD p))

qcdr(expr)) p - right(pair!(£(ezprj p))

£hbool?{ezpr)) p = bool?(£(ezprB p)

10

&Hatom?(ezpr)l p - atom?(t:ffezpr) p)

t:[pair?(ezpr)~ p - pa it·?(t:[ezpr] p)

£!func?(expr)l p - fuuc?(t:(ezpr) p)

t:flset?(ezpr)] p = set?(£ffezpr) p)

Testing atoms for equality relies on the primitive definition of the atoms.

&(atomeq?(ezprt , ezpr2)) p = atomeq?(atom!(£(expr1] p), atom!(£(expr2! p))

£[(expr1 = ezpr£)) p = equal?((£fiexprl] p),(£1expr.2] p))

A conventional sugar tests whether a "list" is empty (whether the object equals the atom

"nil~).

-
£ffnull?(ezpr)l p - if(atom?(£:expr) p)then is' nill?([ezprl p)else FALSE fl)

We can negate a condition.

£ffnot(expr)] p = not(bool!(£fiexprj p))

We can add new identifiers to the environment, and later look up their meaning.

t:[letrec de/J i n ezpre3sion] p = qezp1·wion] (Didef.•D p)

£ff identifier] p = p(identifier)

D [id be ezpr) p = p{{F[fix))(>.X. (£1ezprl p{X / id)))/ id)

D[id be ezpr,de/JD p = (D[defs] p) [(F[fix))(>.X . (£«ezpr~ (D[defs] p[Xjid])))/idj

Rather than treat the fixpoint operator as a primitive, we define fix in the semantic

equations. For reasons to become apparent later. we wish to have only one source of

potentially unbounded recursion, and we wish that source to be the semantic equations

t hemselves.

F fitix) = >.f. f ((F[fixJ)(f))

We can create conditional Cll.""])ressions:

£[if(expr1, expr2, expr3)I p = if(bool!(£ fi exprl) p), (£[expr2] p), (£[ezpr3~ p))

We can create functions through lambda abstraction, and apply functions to their argu

ments.

£[Lid. expr] p = >. x. (£1e:tpr~ p[x/idJ)

In the above equation, we considered lmly functions of one argument. A function of

11

multiple arguments can be considered syntactic sugar either for a curried function, or for

a function whose single argument is an orqcred sequence, or list.

&[exprl expr2) p = func!(£[exprlJ p)(qexpr2] p)

Empty sets and singleton sets form the building blocks. We can union smaller sets to

form larger sets, and via a relative set abstraction we can transform elements of one set to

create another. We can denote the empty set e:>:plicitly:

t:[phi) p =if>

We can create a singleton set from a base domain:

£({ expr : }J p = { £(e:tprl p}

We can choose to include only those elements meeting a specified condition:

£([{ expr : . condition, qv.alifierlist}) p)

= set!(if £(condition! p then £1{ expr : qualifierlist }J p else ¢fi)

We can combine the smaller sets to form larger sets:

£[U(ezpr1 ,ezpr2)] p= set!([ezpr1) p)Usct!([expr2] p)

We can build a set based on the elements included in some another set. The •+' operator

was defined for this purpose:

£(({ezpr : genrtr->id, qua/ifier/i$t}i p)

= p, X . t:H{ expr : qualifierlist}) p[X fid])+(set!(£fgcnrtrD p))

The sets bools, atoms and terms may be ,·iewed as syntactic sugars, since the user

could program these using the previously given constructs. In that sense, their presence

adds nothing to the expressive power of tile language. l"everthele.ss, providing them in

the syntax permits important optimizations through run-time program transformation

(discussed later). Thus we have:

CUboolsj p = FUbools)

Fibools) = {TRUE} U {FALSE}

ClatomsJ p = F(atoms)

Fiatomsj = u({AJ}, ... , {A.,})

£[terms) p = Fijterms]

Fijterms) =

12

u(.F[boolsl. F[atoms). (>.s.((.Xt.{ < ~. t >})+(.F[terms])))+(.Fffterms))

The functions £, 'D and .1" are mutually recursive. Their meaning is the least fixed

point of the recursive definition. This fixed-point exists because we have combined contin

uous primitives with continuous combinators. Most of these primitives are fairly standard,

and will be described in a later section.

However, a few words must be said about some of the novel primitives. The primitive

•+' for distributing elements of a powerdomain to a function has already been discussed.

The other novel primitives are the coerJionJ, related to the type-checking primitives. They

are described below.

PowerFuL is basically an untyped language. For limited run-time type-checking, we

rely on these primitive semantic-functionl! over D B.L: atom?, boo!?, pair ?, func?

and set?.

For instance, func? returns TRUE if the argument is a primitive function or a

lambda. expression, FALSE if the argument is 1\Jl atom, an ordered pair or a set. The only

other possibility is .l o, so func? (.lv) rewrites to .in. The other type-checking functions

are defined analogously.

Most of our primitives are defined over only ponions of the domain D. The boolean

operators are defined only over B.L. Only ordered pairs have left and right sides. Function

application is defined only when the left argument is in fact a function. Only sets can

contribute to a set union. Since PowerFuL is an untyped language. we will need a way to

coerce arguments to the appropriate type. One way is to use the type-checking primith·es

in conjuction with typed-if primitives. We find it simpler to define five primitiYe coercions.

They are: bool!, atom!, pair!, func! and set!.

The function boo!!: D B.L maps arg to itself if arg is a member of 8.1., and to .la

otherwise.

The function atom!: D >-+ A.1. maps arg to itself if arg is a member of A.1., and to .l,1

otherwise.

The function pair!: D ,_. DxD maps arg to itself if arg is a member of DxD, and to

.ivxD (that is. < .iv, .iv >)otherwise.

The function func!: D >-+ [0 0] nwps arg to itself if arg is a member of o-o and

to .iv-o (that is, >.x. .iv) otherwise.

13

The function set!: D >-+ P(D). maps arg to itself if arg is a member of 'P(D) and to

.LP(D) (that is, c) otherwise.

Theorem: These coercions are continuow..

Proof: We will prove the continuity of 'set! '. Consider a sequence of objects from domain

D, t 0 , t1 , t 2 , •• • , such that fori < j, t; !; tj. If there is no i such that t; is in P (D) , then

for all i, set!(i) = .lp(D) = ¢. Thus,

lim set!(t;) = set!(.lim t;) = J.P(D) = p.
•-oo t-oo

If there iJ ani such that t; is in P(D). then let tk be the first one. That is, for all i, if t, is

in P(D). then It!; t;. Then for_all i < k, t, = .Lo, and set!(t;) = set~(J.o) = .iP(D)=¢·

For all i;:::: k, and set!(t,) = t,. Therefore,

.lim set!(t;} = lim set!(t;) = set!(lim t;) - set!(lim t,).
•-oo k-oc k-c:o 1-0QI

Hence, 'set!' is continuous.

Proof of the continuity of the other coercions is left to the ;·eader.

4. FROM DENOTATIONAL TO OPERATIONAL SEMANTICS

The desigp of a new programming language must contain a concise yet precise de

scription of what language constructs mean. This description is usually provided by the

denotational semantics. Though the desi~ner is not responsible for creating an efficient

and practical compiler, he should show that the language can be efficiently implemented.

Ususally, a separate operational semanLics connsisting of a system of rewri te rules is given,

with rules closely related to the denotatioual equations. The designer is then obligated to

prove that the denotational and operational semantics are in some sense equivalent.

We favor a. different approach. The set of denotational equations resembles a functional

program. In fact, a denotational semantics can be viewed as the program for an interpreter,

written in a declarative (functional) psuedocode. In this section, we show that if we adopt

a certain discipline for writing denotational semantics, the resulting equations are not

merely pseudocode, but an actual program in a functional meta-language whose correct

implementation is well understood. The denounional "quations thus have two equivalent

interpretations: they are the declarative <lescription of the object language's semnntics,

1-l

and they form a program to interpret programs written in the object language. This idea

is not new. Peyton Jones [PS7] describes systems for automatically generating compilers

from a language's denotational semantics.

In detailing our method, we rely on results from the literature, some of which are

reviewed in this section. Also in the section we show how these results can be adapted to

meet our needs. The next section is based on Vuillemin IV74).

4.1 Least Fixpoints and Safe Computation Rules

Consider a recursive definition of the form

F(x) ~ riFJ(x)

where r[F](Y) is a functional o~r ([01 , ... , Dn) ,.... D), expressed by composition of

known monotonic fWlctions, called primitives, and the function variable F, constructing

a tenn from these and the individual variables x =< x1, x2, ... , Xn >. It is generally

agreed that the function defined by a recursive program P

P : F(x) ~ r[F)(:c)

is f., the lea~t fixpoint of r. We denote this fixpoint by f p.

For example, suppose that ·•' (multiplication), '-' (subtraction), '•' (equality) and

'if' (i f/then/else/fi) are primitive fWlctions. Given a program P:

P: fact(x) ~ if((x = O),l,x x fact(x - 1)),

T is the functional

)..f. if((.r = 0), l.x x f(x- 1))

and fact is the name of recursive fWlction. represented b>• F in the schema. The fi.xpoint

of this functional is the factorial function.

Definition: A canonical simplification. is defined by a set of simplification rules, that

have have the following properties:

(a) for each term t there is a unique term t' into which t simplifies, where t' cannot

be further simplified;

(b) the set of simplification rules for a primitive is consistent with the primitive's

interpretation (intended meani1lg); and

(c) the simplification set for a primitin' is complete. i.e., it completely specifies the

primitive.

15

Rewrite rules for standard simplifications are terminMing and confluent. Let us assume

that all the primitive functions aJ'e defin('d by canonical simplifications. We permit no

primitives of zero arity. Each constant i~ a unique data constructor; collectively, they

make up the fiat domain of atoms.

Given primitives defined as standard simplifications, and a recursive program defining

a function, we can compute the function for a given value of d. During computation, the

interpreter constructs a sequence of terms to, t1, t2, ... , called the computation 3equence

ofF for d. The first term t 0 is F(d) . For each i > 0, the term t;+1 is obtained from t; in

two steps, by 3ubJtitution and .nmplification. In the substitution stage, some occurrences

of F in t, are each replaced by r[F].

Definition: A computat1on rule-C tells us which occurrences of F (e) should be replaced

by T(F)(e) in each step.

In the simplification stage, primiti\'e functions are rewritten according to the simplification

rules, wherever possible, until no further rewritings can be made. For each term t, we

construct ti by replacing with n (the und<•fined function) all remaining occurrences ofF,

and then simplifying. The computed value C p(d} is limit of the sequence { ti}. We wish

our simplification rules to be confluent, so that the order of simplifications performed be

irrelevant, and so that the primitive function they represent be well-defined. We want the

simplification rules to terminate, so that each computation step require a finite amount of

work.

Theorem (Cadiou [V74)): For any computation rule C,

Cp ~ fp.

That is, the computed function Cp approximates the fix point f p.

Definition: A computation rule is said to be a fixpoint computation rule if for every

recursive program P, for all din the relevMt domain,

Cp(d):: fp(d).

We need to give a condition which, if sat isfiecl, will imply that a computation rule is a

fixpoint rule.

Definition: A Jub3titution 3tep is a computMion step in which some of the recursive

function calls in a term are expanded.

Definition: For a substitution step, let F 1 , • .• , F' be the occurrences of the recur-

16

sive function expanded in the term, and let p•+ 1, ••• , pk be ~he occurrences not ex

panded. Compare the result obtained by replacing replaced P 1• • • • , pi each by n. and

F'+1, 00., pk each by f p, with the result obtained br replacing P1 . . 00, pi, p•+l, 00., P*

each by n. If the results are equal. then we say the substitution step is a $afe Ubtitution.

3tep.

Intuitively, a safe substitution is one which performs enough essential work. That is, if this

work were never done, then all other work would be irrelevant. If enough essential work is

performed io each step, then every essential piece of work will eventually be done.

Definition: A computation rule is 8aje if it provides for only safe substitution steps.

Theorem (Vuillemin [V74)): If the computation rule used in computing Cp is a safe, then

Using Cadiou's theorem and Vuillemin's theorem. then for any safe computation rule,

Cp:: fp,

and therefore all $afe computation ruleJ are fi.:tpoint ruleJ.

Theorem (Vuillemin [V74]): The parallel uute1most rule (replace all outermost occurences

of P simultaneously) is a safe rule.

Therefore the sequence of computed values t"o. t1, t2, ... , using the parallel outermost

computation rule produces arbritrarily good finite approximations to the denoted ''alue.

If a tenn t* contains no occurrences of the symbol P, then the sequence is finite, and tk is

itself the denoted value.

4.2 Relaxing the Notation

It is sometimes more convenient to specify a recursive function via equations, rather

than the notation of lambda abstraction. Consider the append function, which can be

written:

P: append(x,y) ~ if(null?(x),y, < car(x),append(cdr(x), y) >).

For this program P, r is the functional

).j. if(null?(x),y,< car(x),/(cdr(x), y) >.

Alternatively, we can define append by tlww <'C(Uhtions:

append(!], y) = y

li

append(< h, t >, y) = < h, append(!. y) >

The equations handle mutually exclusiYe cases. A function defined through lambda

abstraction is applied using ,8-reduction. To apply a function defined by a set of equations,

one finds the equation wlllch matches the format of the argument. replaces the equation

variables in the right-band side '"itb the parts of the arguments matching them on the left.

In tills case, our functional is

>.f.{!([}, y) =Vi f(< h,t >. y) = < h, f(t, y) >}

Despite the new notation, and its associated mechanics for function application, the same

theorems hold as before.

We can also permit a system of mutually-recursive functions. If the equations define

two functions, g(x) 1\Jld ll(.t), they can be viewed as a single function f(w , x), where the

first argument to f tells whether the rules for function g or h are to be used. Vuillemin notes

that the extension of his results to a set of mutually-recursive functions is straightfon,=d.

4.3 Implementing Denotational Semantics

The semantics describes the meaning a programming language's syntax. After de

scribing the syntactic and semantic domains. the designer defines the function wlllch maps

syntactic objects into the semantic domain. When the function is described procedu

rally, then we call it the operational 3emanticJ. If implemented, tills function is called

the interpreter. We usc the word 'metalang~Lage' to refer to the language in which the

implementation is written.

It is common practice to provide both a declarative semantics (written in a declarative
• language or psuedocode) and a non-declarative operational semantics. The declarative

semantics becomes the official definition of the language, liS it is simpler and easier to

understand. In it one describes the mapping desired via a well-understood mathematical

theory (recursive fw1ction theory for functional programming, predicate logic for logic

programming). The operational semantics can be optimized to execute fas~er. since it can

be written in a language closer to the architecture of the physical maclllne. Before using

such an operational semantics bowe,·er, it is considered proper to describe (and prove) the

extent to which the funct ion implemented equals the funct ion described dcclnratively.

If the language of the declarative semantics is not just a mathematical IMguage, but

a programming language in its own right. then the declarative semantics can serve as both

13

a definition and an implementation. Assuming the metalanguage can be implemented

correctly, both views are equivalent.

A language's denotational umantics is a declarative semantics written in a meta

language consisting of a system of recursive equations. Each semantic equ;1tion handles

a different catagory of syntactic expression. Using care, we can write the denotational

equations in such a way that all primitive functions qualify as standard simplifications.

Vuillemin's results {described above) then pro,;de a correct implementation of the meta

language. In this way, the denotational semantics provides simultaneously a declarative

description of the language and an equivalent interpreter. This interpreter does not pro

vide the most efficient operational semantics possible, but it is guaranteed to correspond

completely to the declarative sen;antics.

Below is the denotational definition of a simple, higher-order functional language.

The language has 'cons' for constructing lists. 'L • for constructing lambda e:>.-pressions

{functions), and 'letrec' for creating recursively-defined objects. With the primiti,·es

properly defined, the denotational definition also serves as a. program in Vuillemin 's meta

language. We then execute this meta-program, using a simple object-language program as

inpue. We use boldface for semantic primitives, typewriter font for syntactic primitives.

The semantic domain, D, is the solution to:

0 • (BJ.8 + AJ.,. + OxO + D,_.D) J.o.

where 'B' refers to the booleans, and 'A' to a finite set of atoms.

£ijA;] p = A,

£ffcar(expr)) p - left(pair!(£[exprD p))

£Ucdr(expr)) p - right(pair!(£[expr~ p))

Effcons(exprl, expr£)D p = <(E(e:r:prlD p). (£(expr21 p>)

t'(atom?(e:r:pr)J p - atom?(£(expr) p)

£[pair?(e:r:pr)J p - pair?(£[e:tprfl p)

£[null?(cxpr)) p - if(atom ?(£lexpr] p)then is'nil?(fexpr] p)else FALSE fl)

£Uit(cxprl, expr£ , expr9)) p = if((£ffexprlfl p), (£Uexpr2fl p), (t'[exprS) p))

t'(letrec deb in expre,<3i011j p = £lexpres3ion8 ('D(cle/38 p)

£(identifier) p = p(identifier)

l!l

Viid be e:z:pr) p = p[(F(fix))(>.X. (£«ezpr) p[X/idl))/idj

V(id be ezpr , defs) p = (V(de/JJ p) [(F (fix))(>. X. (£1ezprJ (V (defsB p[X / id)}))/idj

F ijfix) = >.f. / ((F[fix))(f))

E[L id. ezprD p = >. z. (E[ezpr] p[:z:/id])

£~ezpr1 ezpr2~ p = func!(qe:z:prl) p)(E[expr2 fi p)

Note that the function •£• ususally has two parameters, a syntax expression (within

the brackets) and an environment. The same is true for the ''D'. ::>:ote that the 6..\.-point

operator would never qualify as a standard simplification. as it does not tenninate. There

fore, rather than treat it as a primitive, we chose to define the fixpoint operator in the

denotational equations. To complete the semantic description, we must define the primi

tive funct ions left , right, if thei1 else fl , isA., atom!, pair!, fw1c! , atom? and pair?.

Equations, interpreted as left-to-right rewlite rules, provide both a definition and an exe

cution mecharusm. The primiti,·es left and right are defined on the subdomain DxD, the

ordered pairs.

left(<1st, 2nd>) • 1st

right(<lJt, Jlnd>) • Jlnd

The only boolean primitive used in t his small language is the conditional.

if(TRUE, argJl, arg3) • arg2

if(FALSE, arg2, arg3) 5 arg3

if(.ls , arg2, arg3) • J.D

For every atom A;, there is a primit ive function ' is A,?'. The rules are
•

isA,?(.lA) 2 .ls

isA;?(A;) = TRUE

isA,?(Aj) = FALSE fori -:J j

Since tlus is an untyped language, the user may request a primitive operation be

performed on data from an inappropriate subset of t he domain. One solution is to expand

the definitions of primitives, explicitly st<>ting their result (.l) for all the ways this can

occur. We find it easier to define what we call coercionJ, one for each major subset of the

domaiu. That way, we need not repea t tht• entire li:~t uf subdomains on which a primitive

is undefined, for each primitive designed to operate on a specific subdomain.

20

A coercion transforms inappropriate objects to .L., (where :r is the appropriate sub

type), but acts as the identity function if the object is appropriate.

For instance, if A is from the subdomain B.L, then booi'(A) equals A, otherwise.

boo!!(A) equals .Ls. Similarly, if A is from the subdomain DxD, then pair!(.1} equals .4,

itself; otherv..;se pair!(A) equals< .Lo, .Lo >, (which is .loxo). The coercions for atoms

and functions is analogous. The semantic equations associate these coercions with the use

of primitive functions where necessary. In the section giving the denotational semantics of

PowerFuL, we proved that these coercions are continious.

Finally, we provide predicates atom? and pair?. If A is an element of A.L .. , then

atom?(A) equals TRUE. H A is a member of one of the other subdomains. then atom?(A)

equals FALSE. However, atom?_{.Lo) equals .La. Other type p~edicates are defined anal

ogously.

We avoided making the fi,_-point operator a semantic primitive. Such a primitive

could never be defined as a standard simplification, as it does not terminate. Instead.

the recursive defintion of the fixpoint operator was built into the denotational equations

themselves. Creating a denotational description sui,table for direct interpretation requires

such special care.

Some semantic equations introduce lambda variables. These may have to be renamed

at times to avoid variable capture. This, howe,·er, is standard practice in executing lan

guages based on lambda calculus, Because functions are written as lambda expressions

(primitive functions are an exception), P-reduction is treated as a primitive, strict in its

first argument. Actually, defining p-reduction as a primitive is dangerous, as it does not

necessarily qualify as a standard simplification. For some lambda expressions, fi-reduction

will not terminate. For the time being, we will assume that in every computation step. the

P-reductions will terminate. Later, we will discuss conditions under which this assumption

is valid.

4 .3.1 Executing a Program

Let us execute {translate into the semantic domain) the object program:

letrec

inf be cons(•joe, inf)

in

car(inf).

21

\Ve start with an empty environment, so the ini tial input is:

£[letrec inf be cons(' joe, inf) in car(inf)] Q.

Expanding the outermost call yields:

£[car(inf)](D[inf be cons(' joe, inf)] 0).

There are still no simplifications to be performed, so we again eXj)and the outermost

function call, yielding:

left(pair!(£[inf)(D[inf be cons(' joe, inf)D 0))).

Expanding the outermost function call yields:

left(pair!((D(inf be cons(' joe, inf)B U)inf)),

and then:

left(pair!([((F[fixJ).XX. (£[cons(' joe, i nf)D [] [X/inf]))/inf]inf)).

Note that when introducing new lambda variables, one must be careful to standardize

variables apart (rename bound variables to as not to confuse them with pre-existing lambda

variables). Simplfiying (applying the environment) yields

leCt(pair!((.F(fix])(.XX.(£[cons(1 joe, int)D [X/inf))))).

Expanding the outermost call yields:

left(pair!((.AF. F((F[fixR)F))(.XX. (£[cons(' joe, inf)] [X/ inf])))).

Performing ,8-reduction yields:

•

left(pair!((>.X. (£[cons('joe, inf)ll [X/inf]))

((F[fix])(.XX. (£Hcons('joe, inf)] [X/inf]))))) .

Performing another ,B-reduction yields:

left(pair!(£[cons('joe, inf)] p)),

where pis:

[((F[f ix])(.AY.(£[cons(' joe, inf)] [Y/inf])))/ inf].

Expanding the outermost function call yields:

car(pair!(< (£['joe] p), (£ Uinf} p) >)).

T his simplifies to:

£['joe] p.

22

Expanding the remaining function call yields:

'joe.

4.4 Alternative Computation Rules

4.4.1 Motivation

Vuillemin(V74) proves that for a language with strict primitives and flat domain (ex

cept the if/else, which is strict in its first argument), leftmost reduction is safe. However,

many interesting languages do not meet these criteria. Consider the problem of non-fiat

domains. Suppose we have built a hierarchical domain using a sequence constructor, in

our case'<,>' the ordered pair constructor. Suppose we are trying to compute an ordered

pair, of which both elements are infinite lists. If we evaluating this object as a top-most

goal using the !eft-most rule, no part of the right side would ever be computed.

:\evertheless, one would like to limit computation to a primiti,·e's strict arguments,

rather than to rewrite function occurences in all arguments (even non-strict arguments)

simultaneously. It is not always necessary to expand all outermost function calls in every

step. Consider the if/then/else primitive, which is strict in just one of its arguments.

\Ve would prefer to evaluate the st rict argument first, postponing evaluation of non-strict

arguments, which may never be needed. Even if the ptimitive is strict in all its arguments,

we may prefer to concentrate on just one at a time. If evaluation of the chosen strict

argument fails to terminate (effectively computing the .l of the appropriate domain or

subdomain), then the primitive expression as a whole denotes .l, and the values of the other

arguments do not matter. If evaluation does produce a non-bottom value, the primitive

may be able to simplify immediately. o

For a higher-order language this evaluation strategy is not always safe. Consider

the unlikely (but valid) example in which we are computing 4n Un4pplied function as a

topmost goal. Assume expl denotes an infinite list, and the interpreter is asked to evaluate

the function

The if primitive is strict in the first argument. Though evaluation of j(expr 1) fails to

terminate, we cannot say that this application denotes bottom: its value depends on the

hypothetical value symbolized by the lambda variable. Since the lambda expression is not

being applied to any argument here, the first argument of 'ir will not reduce to an element

23

of the semantic dom!Un. It rem!Uns as a parameterized description of a dom!Un element. If

the computed value is to be equivalent to the fixpoint definition in this circumstance, we

must evaluate all three arguments of the ·if expression simultaneously. To use leftmost

evaluation with higher-order language. we must be content to evaluate a function only

within the context of its application. It is not sufficient if we wish to compute a function

for its own sake, where we cannot rely on evaluating the first argument and then reducing.

Most functional languages are highet· order, and many interesting ones do permit

infinite lis ts. Yet , these are often implemented with a leftmo3t computation rule. This

works so long as:

a) all primitives are strict in the first argument (this is ususally true);

b) one is only concerned with computing finite objects (computations for which the

parallel-outermost rule terminates), though parts of infinite objects may be used during

the computation.

If the parallel outermost rule f!Uls to terminate, then so will any other rule, and one might

not care whether two non-terminating calculations are approaching the same limit. This

compromise is inadequate for set abstract ion. Sets can be infinite; even finite sets may

cont!Un non-terminat ing (but empty) branches. In such cases, computation of the set will

never terminate.

Since the elements of a ~et are not ordered, one cannot isolate a finite subset (analogous

to taking a prefix of an infinite list), nor direct one's reference to the ·first' element of the

set. At least, one cannot do this within the programming language. Yet. even when

computation of the set never terminates, certain elements of the set might be computed

within only a finite amount of computation. The user would cert!Unly like to sec those

elements, as they are computed. We must have a reasonable way to compute a non

terminating goal. P rolog provides a precedent for this. A Prolog program with goal

denotes a (possibly infinite) set of correct answer substitutions. Rather than w!Uting for

the entire set to be computed, the system suspends and turns control over to the user every

time another member of this set is computed. To e"aluate a (possibly infinite) set, thl'

system must provide the user with a series of finite approximations. This could be done

interactively, with the system suspending each time a new element is ready for output,

resuming at the option of the user.

Definition: An infinite object is computable if it is the limit. of an infinit<' series of

finite objects.

D efinition: Completenes$ for such an interpreter means that any finite member of

the denoted set will eventually be computed, even if only by providing an infinite series of

finite approximations.

Sequential Prolog interpreters are not complete in this regard, but, in principle, complete

(breadth first) Prolog interpreters could be built. Perhaps in an interactive implementation

of language with set abstractions, the pro~:,<rammer will be able to direct where in the set

expression the computational effort should be concentrated. Analogous to online-debugger

commands, such features pertain to the meta-linguistic environment, not to the language

itself, so we will not consider these details any further.

4.4.2 Better Computation Rules

Vuillemin describes some computation rules. each based on a single type of substitution

step. Choosing the substitution step depending on the form of the expression can provide

greater efficiency without sacrificing safety. We describe a new safe computation rule below.

H uses the parallel-outermost substitution step as a last resort, but seeks a more selective

step when circumstances permit. The computation rule is recursively defined, in that in

each substitution step, the recursive function calls chosen for function substituion, depends

on those chosen by the computation rule applied to each subeJ..-pression individually.

We consider four separate cases: when the expression is a recur~-ive function call (not

a primitive or constructor); when the expression is headed by either a data constructor;

when the expression is headed by a primitive function occurring within the context of a

lambda expression; and when the expression js headed by a primitive function not \\-ithin

the context of a lambda expression (where we need not consider the presence of unbound

lambda variables).

Lemma: U the expression is a recursive function call, expanding only the main (single

outermost) function call is a safe substitution.

P r oof: This is a parallel outermost substitution step. a substitution already pro,·en to be

save [V74).

Lemma: If the expression is headed by n. <.lata constructor, and if the set of function calls

chosen to be expanded is the union of sets compnted by applying a safe computation rule

individually to each argument, then this i~ a safe substitution.

Proof: By induction on the height of the tt-rm. If the substitution steps calculated for each

subterm are safe, then the safety-defining equality holds individually for each argument,

and therefore must also hold for the expression as a whole.

Lemma: If the expression is headed by a primitive function occuring within the context

of a lambda expression (so that unbound lambda variables may appear in the arguments),

then choosing to e:x"Pand all outermost function calls (parallel outermost) is a safe substi

tution.

Proof: This is a parallel outermost substitution step, a substitution already proven to be

save (V74).

Lemma: Suppose the expression is headed by a primitive function not within the context

of a lambda expression, represent-ing a parallel operation not strict in any of its arguments

indlvidually. In that ca5e, expandlng the function calls in the union of sets computed by

applying a safe computation rule individually to each argument is a safe substitution.

Proof: By induction on the height of the term. If the substitution steps calculated for each

subtenn are safe, then the safety-defining equality holds individually for each argument,

and therefore must also hold for the expression as a whole. One example of a primitive

not strict in either argument would be the "parallel-AND" primitive. which evaluates co

TRUE if either argument is true, even if the other argument diverges.

Lemma: Suppose the expression is headed by a primitive function not within the context

of a l'ambda expression, representing an operation strict in at least one of its arguments.

Then let Arg be any of the arguments in which the primitive is strict, and let Set be a set

of function calls chosen by a safe computation rule applied to Arg. Then any substitution

step chosing all the occurrences in Set is a safe computation step for that expression.

Proof: Because Set was chosen by applying a safe computation rule to arg, replacing these

recursive function calls by n (and che remaining calls by the recursive function fixpoint)

will give the save result in arg as if we had replaced all arg's function calls by n. Either

this result is 1., or we already knew the outermost constructor of arg. But, we cannot have

already known the outermost constructor , or the primitive function would already have

simplified. Therefore it is 1.. Since the ptimitive function is sttict in that a.rgun1ent, it too

evaluates to 1.. Thus, the safety equation holds for the primitive funct ion expression, too.

Note that if the primitive is s trict in seYentl arguments, this computation rule gives us a

choice of substitution steps.

26

These cases are all the possibilities. \\'e must now prove the computation rule is safe.

Theorem: A computation rule which chooses from among the above substi tution steps

depending upon the situa~ion is safe.

Proof: A safe computation rule is. by definition, one which uses only save computation

steps. All the substitution steps described above were proven safe.

The main advantage of this approach over simple parallel outermost is that , when

a prixnitive is strict in an argument, and does not occur within the context of a lambda

expression, we need look only in the strict argument for function calls to expand. This

gives us some of the computational advantages of the leftmost (outermost) rule, without

sacrificing safety.

Irrespective of the need to compute infinite lists (and later sets), some may argue that,

there is never any good reason to compute an unapplied function, nor any list structure

containing such a function as an element. If one wishes to learn about a function, one

can apply it on any number of arguments. Therefore, we only ask that our operational

semantics be correct when computing objE'cts from the domain 'E', where

E • (B.Lo -+ A.LA -+ ExE).J..

Though we will use functions as objects in defining objects in domain 'E', these functions

will be either applied or ignored; they will never be included as part of the final answer.

With this limitation, we need never compute an object within the context of a lambda

expression. The body of a lambda expressiun needs not be evaluated until after application

{P-reduction). Consider an application of the form:

Since a ,8-reduction is strict in the first ~~rgumcnt, we only expru1cl the fust outermost

occurrance of&:

This immediately simplifies to:

&(bodyD PI [(t:(arg)Pl)/x).

The ex'j)rcssion 'body' no longer occurs within the context of a lambda ex'j)ression. So

long as the outermost expression being cmnp\ttcd denote~ an element oft:, we nt'('d never

compute anything within the context of a lrunbd11 expression.

Earlier, we commented that .8-reduction of lambda. expressions does not always ter

minate. This can only happen when a lambda e;,·pression is applied to another lambda

expression, so that one /3-redudion enables more. Consider the evaluation of:

func!(E(Lx.xx] p)(t'(Lx.xxj p)

If we simplify both argument s of this .8-reduction simultaniously, we eventually get:

(>. y.yy)(>. y.yy),

a synonym for .l, whose .8-reduction will never terminate. V>ie do not want non-termination

to be expressed this way. This e;,-pression may be only a small piece of the m.Un expression,

and we do not want endless simplification to prevent computation of the other parts. When

we use the new computation rule, delaying computation of a function until it is needed,

the evaluation proceeds in a more orderly fashion:

func!(>.y. E[xxJ p[y/xl)(E(Lx.xx) p)

becomes:

(E[xx) p[(E(Lx.xx)p) / x]),

which becomes:

func!((£ [x)p[(£ffLx.xx)p) / xj)(£ix)p[(t'ijLx.xx)p)/x]).

This, in tum, becomes:

func!(t'[Lx.xx)p)(£[x)p{(t'(Lx.xx)p)/x]).

To see that this is getting nowhere, let us do an expansion at E([xJl:

func!(£HLx.xx)p)(t'(Lx.xx}p),

which is exactly what we started with. Therefore. all partial computations will simplify to

.l, yet because we never evaluate a function until its application, in no computation step

need we deal with an infinity of simplifications.

We proved the correctness of our computation rule under the assumption that within

in each computation step, only a finite number of simplifications will be a,·ailable, and

then showed that, provided we use this computation rule, the assumption is correct. This

completes the circle.

Further optimizations are needed to tnake the implementation efficient. If each opti

mization m<llntains correctness, then the resulting efficient operational semantics will also

28

be correct with respect to the normative denotational description. Much research has al

ready been done on teclmiques to implement lazy functional languages (see (P87)). and

we will not discuss these techniques het·e. When proposing a language, it is good to show

that it can be correctly implemented, at leas~ theoretically. We have shown that if the

denotational semantics is written carefully, so that all semantic primitives can be viewed

as standard simplifications, and one correct implementation is automatically available.

4.5 Imp lementing PowerFuL

A previous section gave the denotatiooal semantics for PowerFuL. In writing the de

notational equations, we took great care to ensure that all primitive functions (except

13-reduction) could be defined as_ qualified as standard simplifications. The denotational

equations themselves can be interpreted as a functional program, serving as both a declar

ative description of the language a.nd an equivalent operational semantics, simultaneously.

The computation rule described in Chapter 3 is used, and it is assumed that programs will

compute (at the top level) values from the domain 'E', such that:

As in the simpler language used in demonstrating the methodology, functions are only

computed in the context of application.

Below is a summary of the PowerFuL primitives.

4 .5.1 Function Application

In the semantic equations we treat explicitly only functions of one argument. A multi

argument function can be thought of as syntactic sugar for a curried functions, or for a

function taking a sequence as its argument. Application is essentially 8-reduction of the

lambda calculus. An application is strict in its first argument, the function to be applied.

4.5.2 Boolean Input P r imit ives

In the semantic domain we use the conditional if: B.1.xDxD D. This primitive is

strict in the first argument. The equations defining if are:

if(T RUE, arg2 , a.rg!J) "' arg2

if(FALSE, arg2, a.rg!J) • arg!J

i f(l.B, a.rg2, a.rg!J) : .Lv

29

In both the syntactic and the semantic domruns, we shall feel free to express nested con

ditionals using common sugars such as "if/then/elseif/then/clse/fi.''

are:

Negation, called not : B.L >-+ B.L, is strict in its only argument. Its simplification rules

not(TRUE) • FALSE

not(FALSE) • TRUE

uot(J..a) • J..s .

4.5.2 Atomic Input Primitives

We assume that (for each pr~gram) there is a finite set of atoms (which always includes

'nil). For each such atom A.; in the syntax there exists a corresponding semantic prirrutive

A;. These primitives, together with J..,~, make up the subdomrun A.L. For every atom

A., there is a primitive function ' isA,?: A.L >-+ B.L', strict in its only argument. The

simplification rules are:

isA;? (J..A) • J..s

isA;? (A;) • TRUE

isA,?(Ai) • FALSE for ·if,j

Also provided is atomeq?: A.L x A.L _, B.L, to compare atoms for equality. Strict

in both arguments, the simplification rule~ are:

atomeq? (J..;~ , a.rg2) = ..L B

atomeq? (argl, J..A) = J..a

atomeq?(A., a.rg2) a isA,?(argJl)

atomeq?(argl , A;) = isA,?(argl).

Note that the thlrd and fourth rules are actually rule schemas, instantiated by each atom

A;.

4.5.3 List Primitives

The primitive functions left and right, of type DxD, D, are strict in the single

arguments. The simplificA-tion rules art:':

left(<!Jt, 2nd>) = 1st

right(<ht, 2nd>) = 2nd

30

4.5.4 Powerdomain Input Primitives

The primitive •+• lets us iterate a function of typeD -> 'P(D) over the elements of an

input set, combining the results via union into a single new set. It is strict in t he second

argument. We can define •+• recursively via the rules:

F+(~) • 1/J

f +({Expr}) a F(Expr)
f +(set 1 U Set2) = (F+(set t) u F+(set 2))

Theoretically, it is also strict in the first argument, since

However, we will ignore crus strictness in the operational semantics, as lhc simplification

rules for •+• require knowledge about the second argument.

Theorem: Though •+' is defined recursively, simplifications during computation must

terminate.

Proof: Each recursion goes deeper into the union-tree, and, at any stage of computation,

such a set will have been computed only to finite depth.

4.5.5 Run-time Type-checking and Coercions

PowerFuL is basically an untyped language. For limited run-time type-checking, we

rely on these primitive semantic functions over D, 8.1.: atom?, bool?, pair?, func?

and set?.

For instance, func? returns TRUE if the argument is a primitive function or a
0

lambda expression, FALSE if the argument is an atom, an ordered pair or a set. The only

other possibility is .Lo, so func?(.Lo) rewrites to .Le. The other type-checking functions

are defined analogously.

Most of our primitives are defined over only portions of the domain D. The boolean

operators are defined only O\"er 8.1.. Only ordered pairs have left and right sides. Function

application is defined only when the left argument is in fact a function. Only sets can

contribute to a set union. Since PowerFuL is an untyped language, we will need a way to

coerce arguments to the appropriate type. One way is to use che type-checking primitives

in conjuct ion with typed-i f primitives. \\'e find it simpler to define five primitive coercion~.

They arc: boo!!, atom! , pair!. func! and set!.

31

The function boo!!: D 8.1 maps arg to itself if arg is a member of 8.1, and to .is

otherwise.

The function a t om!: 0 A.J. maps arg to itself if arg is a member of AJ., and to .LA

otherwise.

The function pair!: D ,_.. DxD maps arg to itself if arg is a member of DxD, and to

.l o,. o (that is, < .l D, .l D >) otherwise.

The function func!: D ,_. [D,.....D] maps arg to itself if a.rg is a member of o o and

to .lo-o (that is, .>.x. .Lo) otherwise.

The function set!: D ,..... 'P(D). maps a.rg to itself if arg is a member of 'P(D) and to

.l-pc D) (that is, ¢) otherwise.

4.5.6 Equality

A first-order object is one whose meaning is identified with its syntactic structure.

First-order objects are equal iff they are identical. Equality is the same as identity. They

include atoms, booleans, and nested ordered pairs whose leaves are atoms and boolenns.

Given access to the ato meq primitive, tlw user could write his own equality predicate to

test first-order objects for equality. Nevertheless, defining equality as a primitive strict in

both arguments frees the interpreter to choose which argument to evaluate first. This can

be important when computing certain types of set expressions, as will be seen in a later

section. Simplification rules arc eKplained below:

equal? (.L, arg2) c .is

equal?(argt, .l) • .Ls

If we know anything at all either argument , we know whether it is a me~ber of BJ. (a

boolean), A.J. (an atom), DxD (an ordered pair). D>-D (a function) or 'P(D) (a set). As

soon as we know this about one of the arguments, we can apply one of the following

equalities.

If B is known to be a boolean, then

equal?(B, expr) =

if bool?(exp) then if(B. bool!(exp), not(bool!(exp))) else FALSE fi

and similarly

equal?(ezpr, B) -

32

if boo!?(ezp) then if(bool!(expr), B. not(B)) else FALSE ft

If A is an atom, then

equal?(A, expr) -

if atom?(ezp) then atomeq?(A, atom1(ezp)) else FALSE fl

and similarly

equal?(ezpr, A) =

if atom?(ezp} then atomeq?(atom!(e:tpr),A) else FALSE fl

If F is a function, then

-
equal?(F, ezpr) - if func?(e:tp) then l.s else FALSE ft

equal?(ezpr, F) - if func?(exp) then l.s else FALSE fi

If S is a set, then

equal?(S, ezpr) - if set?(exp) then l.s else FALSE fi

equal?(e:tpr, S) - if set?(exp) then l.n else FALSE fl

If Pis an ordered pair, then

equal?(P , ezpr) =

ari'd similarly

if not(pair?(ezp)) then FALSE

elseif not(equal?(left(P), left(pair!(e:z:p)))) then FALSE

else equal?(right(P), right(pair!(ezp))) ft

equal?(expr , P) =

if not(pair?(ezp)) then FALSE

elseif not(equal?(left(pair!(e:tp)), left(P))) then FALSE

else equal?(right(pair!(exp)), right(P))fl

Theorem: Though this primitive is deiitwd recursively, its application is bound to termi

nate.

Proof: Each recursion goes deeper into the ordtrcd-pair tree, and at any stage of

computation, only a finite portion of any object is available for the primitives to act upon.

33

Proposition: All our primitives are continuous, and all (except for P-reduction)

satisfy Vuillemin's criteria of standard simplifications. If the primitive is strict in one of its

arguments, and if the outermost data constructor of that argument is already computed,

then the primitive can simplify immediately.

5. OPTIMIZATIONS

This section describes some of the wt<ys the basic operational procedure can be im

proved. The main thrus t will be towards improving the efficiency of set abstraction compu

tation. More general techniques for improving the efficiency of (pure) functional languages

are available {P87], but we "'ill not discuss them here.

5.1 Intuition Behind Optimizations

Consider a Hom logic interpreter coastructed directly from the fi.xpoint semantics.

The set of all possible instantiations for a logical variable is the H erbrand univer3e. This

set is analogous to the set 'terms' in Pow<'rFuL. It consists of all finite objects which can

be built from constructors and atoms. A Hom logic program consists of a set of program

clauJeJ and a goal clauJe. Each program clause represents an infini te set. of ground clau3e3,

each produced by instantiating the claus<''s logical variables with elements from the set

of terms (Herbrand universe). For instance, if a program clause 'progc/au,e' has logical

variables ' A' and 'B', then the program clause represents the set of ground clauses:

(,\A. (,\B. {progc/au,e })+ H erbrand Univer3e)+ H erbrand UniverJe.

In Horn logtc, this is usually written:

"'A.VB.progclaU3e,

often with the quantifiers omitted, but understood.

use the notation:

term(x}.body

to mean

Similarly, in PowerFuL we choose to

(,\x .body)+ F((termsJl,

and similarly atom(x).body and bool(x).botlq for (,\x.body)+ F [(atcmsJJ, and (>.x.body)+ .1"({boo:.s)l .

respectively.

In Hom logic, each ground clause is of the form:

Po :- P1 • ... , Pn.

Each 'P,' stands for a ground predica~.e. The ground clause means, '·If ground predicates

P1 through Pn are true, then so is Po." The predicates P1 through P, are referred to as the

body of the clause; predicate Po is referred to as the head. When there are no predicates in

the body, then the ground clause asserts the head predicate (Po). Using the set of ground

clauses represented by the non-ground program clauses, and mod'!<$ ponenJ inferences, we

can derive many other ground clauses implied by the program. Modus ponens states that,

given two ground clauses of the form:

Po P1, ... , P,,

and

if P 1 equals Q 1 , then the two clauses imply a third clause:

Po :- Ql. . . . • Qm, P1 • ...• P,.

Some of the ground clauses derived from the program will have no body. In these cases.

the program implies that the predicate in the clause head is true. The set of ground

predicates implied by the progrm is called the Herbrand model. Herbranti'J method [q82]
is a procedure for computing members of the. Herbrand model by doing modus ponens

inferences on ground instantiations of the program clauses. This method is closely related

to the fixpoint semantics of Horn logic programming. The goal clause is a conjunction

of non-ground predicates. An answer substitution maps an element from the Herbrand

Universe to each logical variable of the goal clause. An answer solution is correct if, when

applied to the goal clause, it results in a conjuction of ground predicates, each of which is

in the Herbrand model. Program execution computes members of the set of correr.t answer

substitutions.

In Section 2, we showed how a Horn logic program could be specified in PowerFuL.

using only 'letrec' (the feature for creating recursive definitions). set abstraction, the con

ditional and the equality primitive. If we executed this program directly using PowerFuL's

denotational equations as the interpreter, the execution would be analogous to solving a

problem in Horn logic using HE"rbrand's met hod. This "generate-and-test" approach is

easy to unders tand, but inefficient.

Oft~:n, members of the ~et of correct answer substitutions can be grouped into families.

Each answer within the family has certain common elements, with thP rpmaining details

35

varying freely. The derivation of one member of the family is almost identical derivation for

any other member. Deriving each member of the fanuly individual ly produces an infinity

of essentially similar derivations. This leads to t he idea of a general answer substi tut ion.

A general answer subsititution would instantiate a goal's logical variables only partially,

in such a way that a.ny completion of the instantiation would result in a correct answer

substitution. The derivation of the general answer subsitut10n resembles the derivation of

any member of the family, but parameterized by t hose parts to be left uninstantiated.

The resolution method is a technique for deriving general answer substitutions. In

resolution, one attempts to perform modus ponens inferences using the non-ground clauses

directly, rather than instantiating them first. Logical variables become instantiated only to

the extent necessary to satisfy tli"e inference rule's equality test . This partial instantiation

to ensure equali ty of non-ground predicates is called unificat ion, and the substitution is

called a unifier. If a non-ground clause represents a set of ground instantiations, then

application of the unifier narrows the the set of ground instantiations to those which could

participate in a modus ponens inference with an instantiation of the other clause.

A resolution derivation produces an answer substitution parameterized by unbound .
logical variables, called a m oJt general co1nputed aruwer 3UbJti tiotion, each unbound log

ical variable representing a term from the Herbrand universe. Any ground instantiation

of the most general computed answer substitution would be a correct answer substitution.

Applying any of these ground instantiations to each line of the derivation would produce

a trnditional derivation for the associated (ground) correct answer substitution. Clearly, a

most general computed answer substitution summarizes in compact form an entire family

of correct correct answer substitutions. Each resolution s~ep represents a modus ponens

inference in an infinity of concrete fully instantiated derivations. Though it is easy to

in~tantiate a most general answer substitution, to generate all the correct answer subsiti

tuions within the family, this is never done. Reporting results in t he general form is much

more economical than outputting individually all the (infinite) ways in wluch each most

general answer can be extended. Theoretically, the calculation of correct answer substitu

tions is left un.finished. Since the remaining work is trivial, we are willing to put up with

that.

5.2 Strat egy

In PowerFuL, we compute relative SE·t expressions by computing the generator set.

36

Each time we identify elements of trus set, we replace the associated parameter in the

remainder of the expression. We then computed the instantiated expression, once for each

possible instantiation. We would like to modify this procedure when we know that the

generating set is simply the set of terms (or a subset):

or

term(x).body,

atom(x).body,

bool(x).body.

Rather than recomputing the 'body' for each trivial instantiation, we will evaluate ' body' in

its uninstantiated form, leaving iJ parameterized by the enumeration variable. The goal is

to compute a single parameterized set expression which stands for the union of all possible

instantiations. We can do this because e.'l:pansions of re<:ursive function calls (translation

from syntax to semantics) does not depend upon these parameters. Not only is this a

more compact form for expressing final results, but we can freely use such parameterized

set expressions as generators for other set expressions, since:

can be rewritten as:

This is because the first expression is an alternate notation for:

and the second is an alternate notation for

and these are equal, due to the associativity of set union.

To compute the parameterized body of:

term(x).body

we must consider one possible complication: the simplification of primitives. Primitive

simplification may depend upon which term is being represented by the parameter. For

instance, during a simplification stage of computation of the body, we may find a subex

pression of the form p(x}. where ·p· is a !<emantic primiti,·e. and •.r · is a parameter rep

resenting an arbitrary tem1. Were an actual term provided, ~he primitive might simplify

37

immediately. Therefore, we must have a way to perform simplifications when primitives

are applied to parameters.

Often, this presents no problem, as the same simplification would be performed re

gardless of which term the parameter might symbolize. In such cases, parameterization

does not hinder simplification of the primiti,·e. For instance, in

term(u).(... func?(u) ...),

we can simplify 'func?(u)' to 'FALSE', since the primitive would so simplify for any

object that 'u' might represent. Below is a list of similar cases.

term.(u).(. .. func?(u) ...) -+ term(u).(... FALSE ...)

term(u).(. .. func!(u) . ..) -+ term(u).(... J.o-o . . .)

atom(u).(. . . func?(u) ...) -+ atom(u).(. .. FALSE ...)

atom(u).(... func!(u) . ..) --. atom(u).(... J.o- o .. .)

bool(u).(... func?(u) ...) -+ boo/(u).(.. . FALSE ...)

bool(u).(.. . func!(u) ...) -+ bool(u).(.. . .lo- o .. .)

term(u).(.. . set?(u) . . .) -+ term(u).(. .. FALSE . ..)

term(u).(... set!(u) ...) -+ term(u). (... c ...)
atom(u).(... set?(u) .. .) _, atom(u).(... FALSE .. .)

atom(u) .(.. . set!(u) .. .) -+ atom(u).(... ¢ ...)

boo/(u).(... set?(u) ...) --. boo/{u).(... FALSE ...)

bool(u).(.. . set!{u) ...) -+ bool(u).(... ~ ...) =

atom(u).(... bool?(u) ...) -+ atom(u).(... FALSE ...)

atom(u).(.. . bool!(u) .. .) --+ atom(u).(. . , J.a ...)

bool(u).(... bool?(u) ...) _, bool(u).(... TRUE ...)

bool(u).(.. . bool!(u) ...) -+ bool(u).(... u . ..)

atom(u).(... atom?(u) ...) -+ atom(u).(... TRUE ...)

atom(u).(. . . atom!(u) ...) -+atom(u).(... t< .. .)

bool(u).(... atom?(u) ...) -+ boo/(u).(... FALSE ...)

bool(u).(... atom!(u) ...) -+ boo/(u).(... .l.~ ...)

38

atom(u).(. . . pair?(tt) ...) - atom(tt).(. . . FALSE ...)

atom(u).(... pair!(u) ...) --+ atom(u).(. . . .Loxo ...)

bool(u).(. .. pair?(u) ...) _, bool(u).(... FALSE .. .)

bool(u).(.. . pair!(u) ...) --+ bool(u).(... .LoxD .. .)

bool(u).(... equal?(u, e::r:) ...) _, if(bool?(ex), if(u,e::r:, not(bool!(e::r:))), FALSE)

bool(u).(. . . equal?(ex, u) . ..) --+ if(bool?(e:z:), if(bool!(e::r:), u,not(t•)), FALSE)

atom(u).(... equal?(u, ex) ...) _, if(atom?(ex), atomeq?(u, atom!(ex)), FALSE)

atom(u).(... equal?(ex, u) ...) --+ if(atom?(ex), atomeq?(atom!(ex), u), FALSE)

term(u).(. . . equal?(u, u) . ..) -? term(u).(... TRUE ...)

atom(u).(. . . atomeq?(u, u) ...) -> atom(tt) .(... TRUE . ..).

Note also that if a parameter is a nonstricL argument of a primitive, the primit ive might

not simplifify, anyway, no matter what term were substituted. For example, consider

tcrm(u).(... if((£[1e::r:pd) p)u, exp2) ••.) .

The primitive 'if is strict in its first argument , and would not simplify e.t this time,

regardless of what term might replace 'u '. In such a case, leaving the body parameterized

by 'u' is acceptable.

5.3 Partial Instantiation for Type Primitives

Suppose the primitive applied to the parameter is one of these fottr: ' boo!?', ' boo!!' .

t ? t I ' ? • I a om . , a om., patr. or pan ..

We have already described that these could simplify immediately when applied to

a parameter symbolizing a boolean or an atom. When the va1i.able is enumerated from

' terms', the simplification chosen depends upon which term. Luckily, we do not need

to consider each possibility, individually. The set of terms consists of just three subsets,

namely the set of booleans, the set of atoms, and the set of ordered pairs, such that

both left and right members of the pair are terms. For each of these subsets, each of the

primitives above simplifies in a w1iform manner. Let 'prim' represent one of these four

primit ives. An expression of lhe form

term(u).(... prim(u) ...)

is an alternate notation for

39

(... prim(u) .. .)+(F[[terms]J)

Since •+• is strict in the second argumenc, it must be correct to rewrite the argument to:

(F([bool sj])

U (Jl(atoms)])

u (term(u).term(v). < u,11 >).

Distributing(. . . prim(u) . . .) over the union yields:

(... prim(u) .. .)+(F[(bools]J)

U (... prim(u) .. .)+(F[(atomsiJ)

U (... prim(u) ...)+(term(v).term(w). < v,w >).

This is equivalent to:

bool(v.).(.. . prim(u) .. .)

U atom(u).(... prim(u) ...)

U term(v).term(w).(. .. prim(u) ...)[< v, w > /u].

In all three subsets, the primitive fuuction simplifies immediately. For each branch

of the union, we can continue evaluating the body. For each branch, we have partially

instantiated the parameter 'u'. In the first branch, w(! ha\'e instantiated it to represent

a boolean. In the second branch, we have instantiated it to represent an atom. In the

third branch, we have instantiated it to represent a term which is an ordered pair. This is

analogous to the usc of most general unifiers in Hom logic resolution. Resolution prepares

two clauses for modus ponens by applying a unifier that is mo3t general. It instantiates

the clauses no more than necessary to satisfy the equality requirement.

One difference is that in Horn logic does not use negative information, so we are only

concerned with instantiations to make the equality true. In PowerFuL, we arc concerned

with all possible outcomes. Actually, some variations of Horn logic do consider negative

information through the use of an inequality predicate and negative unifiers [NS5] (KS4j.

We discuss primitives based on equality in the next sec~ion.

5.4 Simplify ing Equali t ies

Equality is strict in both arguments. and simplifies whenever the type of either argu·

mentis known. However, it simplifies to an expression which. to compute any value, must

40

know (before all else) whether the remaining argument is an atom, boolean, ordered pair,

set or function. If one argument is a lambda variable enumerated from the set of terms,

it is a aU nor modification to delay this trivial simplification until we know the subdomrun

(boo!, atom, prur, set or function) of other argument. That way, the preliminary computa

tion of the other argument need be done only once, rather than once for each of the three

subsets comprising 'terms '. T he worst that could happen is that computation of the other

argument mjght diverge. In that case, we would ne,·er be able to compute the predicate

anyway, whether or not we performed the trivial simplification on the basis of the term

variable.

If both arguments of the equali ty predicate are parameters, we co.nnot delay them

both. Suppose we have an ex-pression of the form:

term(u).(... term(v).(. .. equal?(v, u) .. .))

(remember that 'equal?(u, u)' i=ediately simplifies to 'TRUE). Theoretically, one could

break this into an infinity of special cases, in each case u and v each being replaced by an

element of the set of terms. For some combinations the predicate 'equal?' would simplify

to 'TRUE', and 'FALSE' for other combinations. This could also have been done with

the primitives described earlier, but we prderred to split the enumerated set into subsets,

so that for each subset the predicated simplified the same way. That way we could deal

with whole categories of terms simultaneously. Here we have two sets to enumerate, and

splitting them into atoms, boolcans and ordered prurs does not work. The subset handling

the cases in which the two terms are equal can be summarized by replacing all occurrences

of 'v' with occurrences of 'u ':

term(u).(... term(v).(.. . equal?(v, u) .. .) [vfu]).

This then simplies di rectly to

term(u).(.... (... TRUE ...) [vfu)).

It is easy to see that this is the case. Since there are no more occurances of 'v' in the

body of 'term(v).body2 ', we are laking the union of instantiations by ·v' in which all

possible instantiations of 'bod112' are identical (since the body no longer depends on 'v').

Clearly, 'term(v).body2 ' can now be replac•-d by 'body2 '. (In fact, this simplification can be

perfot med whenever a body does not dcpC'nd on t.he enumerating \'ariablc. For instance,

the expression 'term(x).<JI' can ccrt.a.inly be rep laced by'<)>'.)

We also need to summarize the cases when u and v are not equal. This could be

41

swnmarized by

term(u).(... term(v).if not(equal?(v, u)) then (... FALSE ...) else¢).

This summarizes the elements of the set for which which the two terms 'u' and 'v' are

not equal. Is there a way to compute this further, without trying individually all possible

combinations of unequal terms?

Lee Naish (N85] proposes for Prolog an inequality predicate. defined on terms. His

inequality predicate would fail when two terms are identical, succeed when two terms are

identical, and delay when two terms are unifiable. but not identical. In the last case, the

other subgoals would be executed first, until the values of logic variables have been instan

tiated enough to prove either tb~ terms' equality or their inequality. If all other subgoals

succeed, without instantiating the variables enough, Naish's Prolog gives an error mes

sage. This is not ideal behavior, since unequal instantiations can certainly be computed.

A better alternative would be to make the inequality part of the solution, as a kind of

negative unifier. I<habaza describes a way in which this can be done (1(84). In essence, the

inequality becomes part of the general solution. Specific ground solutions can be generated

from the general solutions by instantiating logical va~iables in all possible way~ ~ybject to

the inequality con~traint. Constraint logic programming (JL8i] sets another precedent for

this approach. We accept general non-ground solutions, because it yields great efficiency,

and because replacing tenn variables by arbitrary ground tenus is such a trivial operation.

Requiring such term enumerations to satisfy a few inequalities adds little to the complexity

of the output, and makes it more compact.

To express such a constraint, we could write the above subset as:

term.(u).(.• .. term(v)u # v.(... FALSE . ..)).

We have simplified the equality predicate by splitting into two expresions: one expression

representing the cases for which the equality holds, and the other e>..-pression representing

the cases for which it is false, without the need to consider every case individually.

Solving subsequent inequalities result in a constraint which is a conjunction of inequal

ities. If the satisfaction of other predicatc.;s cause •u' and ·v' to become refined into the

ordered pairs,'< u,,u2 >'and'< v1 ,112 >'. respecti\'ely, then the inequality 'u # v' will

become'< Ut.U2 >#< v,,v1 >',which simplifies to 'or(11 1 # v1, u2 i: "2l' · In genC'rtll,

the total constraint will be an and/or tr(;'C of simple inequalities. As these simpll:' con

straints are satisfied, they can be replaced by 'TRUE'. Those inequalities which become

42

unsatisfia.ble can be replaced by 'FALSE', leading to further simplifications of the and/or

tree. If the whole tree simplifies to 'FALSE', then we are enumerating an empty set, and

the whole expression within can be replaced by 4>. Similar techniques are used for the

predicates 'atomeq?' and 'isA, ? '.

We summarize the optimizations relating to equality below. For the inequality of two

term variables:

term(u) .(... term(v) ... con3traint.(... equal?(v, u) . . .))

can be replaced by

term(u).(... condtraint(... equal?(v, u} ...) {v/ul>

U term(u).(... term(v}and1 con3traint,(u # v)).(... FALSE ...)).

For the inequality of two atom Yariablcs, we have:

atom(u).(. .. atom(v} ... cofl.3traint.(.. . at{)meq?(v, tt) ...))

replaced by

atom(u).(.. . con3traint(. . . atomeq?(t•, u} .. .) [v/u])

U atom(u).(. .. atom(v)and(conJtraint, (u ::f:; v)).(.. . FALSE ...)).

When comparing an atom variable to a specific atom we have:

atom(u).(... coMtraint.(.. . is A, ?(u) ...))

(where ' A;?' is a particular atom), is rep),.{:ed by

(... con3traint(... isA;?(u) . . .) [u/ A,]).

U atom(u).(... and(con-..traint, (t• #A;)).(... FALSE ...)).

Note that as soon as the substitutions are performed, the predicates in' question will

be ready to simplify, using optimizations described earlier.

These optim izations are of course synunetrical in t he order of argtunents to 'equal?'

and ' atomeq?' .

5.5 Boolean P rimitives

When faced with an expression of the form

boo/(u). body ,

and within 'body' is an occw,·ence of ' not(u)' or ' if(u. ezpp exp1)'. then simplification

requires the specific value 'u' represents. Since the set of booleans is "ery small, the default

43

e,·aluation of •+• is good enough. The default evaluation (enumerate 'boola' first) results

in this step:

bool(u).exp -+ (exp)+{TRU E} U (exp)+{FALSE}.

5.6 Putting It All Together

Using the procedure set forth in this chapter, it is often pcssible to avoid full enumer

ation from the special sets ' terms ', 'atoms' and 'bools'. VVbere a relat ive ~et expression is

enwnerated by the set of terms, we treat the enumeration parameter as a logical variable.

An enumeration variable from the set 'atoms' is simply a logical ,·ariable carrying the con

straint that it must be bound to an atom, and analogously for enumeration variables from

'bools ' . Inequality constraints relating two logical variables are also handled. Compuation

with such 'logical variables' and constraints gives the set abstraction facility the power of

logic programming, even some of the expressiveness of constraint logic programming.

Yet, a relative set abstraction is not limited to using 'terms ' as a generating set.

Semantically, the set 'terms ' is no different from any other set the user might construct,

and theoretically could be executed the same way. The logical variable is an operational

concept which improves the execution efficiency when using the set of terms. Wi th logical

variables, one evaluates the generating set (the second argument of •+ ') only as needed to

compute the body (the first argument of •+ ').

This mechanism is practical because the generating set ' terms' is so simple in struc

ture. Wherever a logical variable (a term parameter) is the argument of a primitive func

tion, and the primitive function needs more infonnatiou about its argument to e-xecute,

the generating set is divided into a few subsets, thereby dividing the whole eJ..-pression
~

into subsets. In each subset, the range of the logical variable is narrowed enough that the

primitive has enough information to execute.

There a:re three ways to narrow the range of the logical variable. The choice depends

upon the primitive being applied, and the constraints already in force. If the logical

variable is constrained to be a boolean. and the primitive a boolean operations, then the

expression divides into two cases. one case in which the logical variable must be bound

to 'TRUE', the other in which it must be bound to 'FALSE'. If the primitive function

compares two logical variables for equality (or an atom variable with an atom), th<:>n thr

expression divides into two cases, one <"ase in which the equality holds, and the other

case in which, for all instantiations. the equality is constrained not to hold. For all other

44

primitives needing more information about a logical variable, it is enought to know whether

the variable refers to an atom, a boolean, or an ordered pair of terms. In this case. the

generating set is narrowed into precisely these three subsets.

For efficiency, it is a good idea to do first those s implifications which do not split the

computation into sub cases, then those which split into two subcases and save for last those

requiring a three-way split. Eventally, we are left with subsets described in a general way,

parameterized by variables representing arbitrary terms, atoms or booleans.

Soundness Theorem: [f t; is a partially computed parameterized set expression, and t ;'

is an approximation produced by setting all unevaluated function calls ('D, £ or F) to J..,

then for every instantiation 11 replacing parameters with terms satisfying the constraints,

t;'11 approximates a subset of lim;-00t/.

Proof: T he theorem is true because of the meaing of a parameterized expression (in terms

of •+•), and the fact that all steps in a parameterized derivation replace expressions by

equals.

Completeness Theorem: A parameterized derivation computes (at least implicitly) all

members of the set .

Proof: This theorem is true because when dividing a parameterized expression into cases

(for the purpose of simplifying a primitive), every possible instantiation of logical vari

ables (parameters) which satisfies the constraints is a possible instantiation of one of the

subcases. No possible instant iation is ever lost.

6. CONCLUSIONS

0

Proponents of declarative programming languages have long called for the combina-

tion of functional and logic programming styles into a single declarative language. Most

difficult has been the problem of maintaining functions (and other higher-order construc

tions) as first-class objects, without losing referential transparency and practical efficiency.

Our work contains a solution to this problem. \\'e designed a small, elegant, orthogonal

language to meets the objectives. Representative sample programs attest to the power and

generality of the language.

A short. but thorough denotational description maps the syntax on to well-undersrood

semantic primitives. All primitives are continuous (computable). Of special interest is

the novel usc of angelic powerdomains. Although powerdomain theory was developed to

45

described non-deterministic languages, we use powerdomains to provide the semantics for

an explicit data type, -relative set abstraction.

To derive an operational semantics, we extended Vuillemin's theory of correct im

plement.ation of recursion to accept rewrite rules as a notation for describing recursive

functions. We developed a computation rule more efficient than the parallel outermost

rule, but a correct computation rule, nonetheless, as established by a proof of its safety.

\Vith these de,·elopments, the dcootational equations themselves serve as an interpreter of

the new language. Use of this methodology requires that denotational equations handle

most recursion e:-..-plicitly, as primitive functions must always terminate.

Of special interest in logic pt·ogramming is the set of terms (objects for which identity

is synonymous with equality). When the set of terms is used as a generating set in a rel

ative set abstraction, we showed that, for greater operational efficiency, the enumeration

parameter can be treated as a logical variable. In the general case, however, the enumera

tion parameters are instantiated by the various generator set elements, as these elemenrs

are computed. Thus, we need not arbitrarily restrict generator sets to contain first-order

types.

Expensive operational mechanisms (~>.g. higher-order unification, general theorem

proving and unrestricted narrowing) are often associated with higher-order functional and

logic programming combinations. Ordinary higher-order functional languages avoid these

difficulties, as they propagate higher-order objects via one-way substitution, and they de

fine equality only over first-order objects. By retaining these characteristics, our approach

also avoids computationally difficuh primitives. We have shown that logic programming

can be combined with higher-order lazy functional programming in a way that is not only

aesthetically pleasing, but also operationally feasible.

References

[A82] S. Abramsky, ·'On Semantic Foundations for Applicative Multiprogramming."'

In LNCS 154: Proc. 10th ICALP, Springer, Berlin, 1982, pp. 1-14.

[A83J S. Abramsky, "Experiments, Powerdomains, and Fully Abstract Models for

Applicative Multiprogramming," In LNCS 158: FonndationJ of CompuL<ttion

Tkeory, Springer, Berlin. 1983, pp. 1-13.

[885J :\1. Broy. '·Extensional Behavior of Concurrent, i\ondetenninistic, and Com-

46

[BL86J

[C~I81j

[DP85J

[D83J

[DFP86J

[GMS4j

IJL87J

[JS86J

municating Systems," In Control-flow and Data-flow Concept.! of D~tributed

Programming, Springer-Verlag, 1985, pp. 229-276.

M. Bellia and G. Levi , "The Relation between Logic and Functional Lan

guages: A Survey," In J. of Logic Programming, vol. 3, pp.217-236, 1986.

W. F. Clocksin and C. S. Mellish, Programmmg in Prolog, Springer-Verlag,

New York, 1981.

N. Dcrshowitz and D. A. Plaisted, "Applicative Programming cum Logic

Programming," In 1985 Symp. on Logic Programming, Boston, MA, July

1985, pp. 54-66.

J. Darlington, "Unification of Functional and Logic Programming," unpub

lished manuscript, 1983.

J. Darlington, A.J. Field, and H. Pull, "Unification of Functional and Logic

Languages,'' In DeGroot and Lindstrom (eds.), Logic Programming, Rela

tionJ, Fufl.ctionJ and EquationJ, pp. 37-70, Prentice-Hall, 1986.

J. A. Goguen and J. MeSC!,'Uer, "Equality, Types, Modules, and (Why NoL?)

Generics for Logic Programming," J. Logic Prog., Vol. 2, pp. 179-210, 1984.

J. Jaffar, J.-L. Lassez, "Constraint Logic Programming,'' In 14th ACM POP£,

pp. 111-119, Munich, 1987.

B. Jayaraman and F.S.K Silbe1maon, ''Equations, Sets, and Reduction Se

mantic~ for Functional and Logic Programming,'' ln 1986 A CM Con f. on

LISP and Functional Programming, Boston, MA. Aug. 1986, pp. 320-331.

[K84J T. Khabaza, '·l'\egation as Failure and Parallelism." In lnternatJ. Symp. Logic

Programmmg, IEEE, Atlantic City 1984, pp. 10-75.

[L85J G. Lindstrom, "Functional Programming and the Logical VariA.ble,'' In 12th

ACM Symp. on Prine. of Prog. LangJ. , New Orleans, LA, Jan. 1985, pp. 266·

280.

[~65J

[Mi4J

J. McCarthy, eta!, "LISP 1.5 Programmer's Manual," ~nT Press, Cambridge,

~ass. , 1065.

z. Manna,. "~'[athematical Theory of Computation," McGrnw-Hilllnc., New

York, 1974.

41

(M}.!\V84] Y. Malachi, Z. Manna, and R. Waldinger, "TAB LOG: The Deductive-Tableau

Programming Language," In A CM Symp. on LISP and F1Lnctional Program

ming, Austin, TX, Aug. 1984, pp. 323-330.

(MK86] D. Miller and G. Nadathur, "Higher-Order Logic Programming," In Third

International Conference on Logic Programming, London, July 1986,448-462.

(N85] L. Naish, "Negation and Control in Prolog," Doctoral Dissertation. University

of Melbourne, 1985.

(P87] S.L. Peyton Jones, ''The Implementation of Functional Programming Lan

guages," Prentice-Hall, 1987.

(R85] U. S. Reddy, "Nar;:owing as the Operational Semantics of FUnctional Lan

guages," In 1985 Symp. on Logic Programming, Boston, MA, July 1985,

pp. 138- 151.

(R86j J. A. Robinson, "The Future of Logic Programming.'' IFIP Proceedings, Ire

land, 1986.

(S77] J. E. Stoy, "Denotational Semantics: The Scott-Strachey Approach to Pro·

gramming Language Theory," MIT Press, Cambridge, Mass., 1977.

(S86] D. A. Schmidt, ''Denotational Semantics: A Methodology for Language De·

velopment," Allyn and Bacon, Inc., Xewton, Mass., 1986.

(SP85] G. Smolka and P. Panangaden, ·' A Higher-order Language wit.h Unification

and Multiple Results," Tech. Report TR 85-685, Cornell liniversity, ti·Iay

1985.

[TSl] D. A. Turner, "The semantic elegance of applicative languages," In A CM

Symp. on F1Lnc. Prog. and Comp. Arch., New Hampshire, October. 1981.

pp. 85-92.

(V74] J. Vuillemin, "Correct and Optimal Implementat ions of Recursion in a Simple

Programming Language" Journal of Computer and System Sciences 9. 197-1,

332-354.

(W83]

[YSSG(

D. H. D. Warren., "Higher-order Extensions of Prolog: Are they needed'?"

Machine Intelligence 10, 19S2, 441-454.

J-H. You and P. A. Subrahmanyam, "Equational Logic Programming: an

Extension to Equational Programming," In 13th A CM Symp. on Prine. of

48

Prog. Lo.ngs., St. Petersburg, FL, 19SG, pp. 209-218.

