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ABSTRACT

A class of families of linear congruential pseudo-random
sequences is defined, for which it is possible to branch at any event without
changing the sequence of random numbers used in the original random
walk, and for which the sequences in different branches show properties
analogous to mutual statistical independence. This is a hitherto
unavailable, and computationally desirable, tool.

1. INTRODUCTION

During the last forty or fifty years, the Monte Carlo method has
been used with considerable success, to solve large mathematical
problems too computationally complicated to yield to the classical
numerical methods developed during the previous four centuries. For
general discussions, the reader is referred to, e.g., BUS 62, HAM 64,
HAL 70, ERM 71, SOB 73, KLE 75, YAK 77, or RUB 81 [references in this format
are to the Bibliography at the end of this paper]. In particular, there is
an extensive history of the effective application of the Monte Carlo
method to particle-transport problems, such as arise in the design of
radiation shielding, nuclear reactors, and fission and fusion bombs
(see, e.g., CAR 75, SPA 69).

While the method was originally conceived in terms of
representing the solution of a problem as a parameter of a hypothetical
population, and using a [truly] random sequence of numbers to
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construct a sample of the population, from which statistical estimates
of the parameters can be obtained (see HAL 70); it soon became
apparent, from the point of view of the need, both for repeatable
results to ‘debug’ the Monte Carlo computer programs and for a large,
stable supply of suitable ‘random numbers’, that certain deterministic
sequences exhibiting some of the properties of truly random
sequences would be more useful in practice. These became known as
pseudo-random sequences (and, by corruption of terms, as sequences
of ‘pseudo-random numbers’) (see the above-mentioned references,
and also LEH 51, HUL 62, TAU 65, JAN 66, and NIE 78). Somewhat later, even
less ‘random-looking’ sequences, dubbed quasi-random, having
exceptionally good uniformity properties and leading to fast
convergence of the resulting Monte Carlo estimates, were proposed
(see HAM 60, HAL 60, ZAR 66, and HAL 72). The uniformity of distribution of
the pseudo-random sequences was found to be imperfect when they
were used to define points in several dimensions (FRA 63, GRE 65,
MAR 72), and several non-statistical approaches were developed for
error-analysis.

One of the most successful classes of pseudo-random number-
generators is the so-called linear-congruential algorithm (originally

due to Lehmer; see LEH 51). The sequence [§y, &1, 89, 83, . . . 1= léj];;o
of canonical pseudo-random numbers, which should be independently
uniformly distributed in the semi-open unit interval [0, 1), is obtained
from an integer sequence [xg, x;, X5, X3, . . . ] = [xj];o, by

& = x/2M; (1)

and the Xx; are uniquely determined by selecting M, a, b, and x;, and
taking

Vj20 0<x<2M x,, =aq+b (mod 2M). (2)

Given the integer parameters a and b and an initial integer xj; each
successive x;,; is the residue of ax; + b modulo 2M (i.e., the remainder
when ax; + b is integer-divided by 2M). Given integers Z and Q > 0, we
shall henceforth write

R=<zZ|g> & {0<R<©Q R-=2Z (modQ)). 3)

(When, as here, @ = 2M and we perform a binary computation, such as
is now universally used in digital computers, this residue is easily
obtained, as the integer consisting of the M least significant bits of Z.)
Therefore (2) will take the form:
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vy 2 0 x,, = <ax+b|2M>. (4)

Many calculations using the Monte Carlo method (including
those of particle transport alluded to above) involve the use of long
sequences of pseudo-random numbers to generate sequential histories
of flights and collisions, usually referred-to as random walks. By
averaging appropriately-selected scores (functions of single random
walks generated in this way) over large numbers of such random
histories, it is possible to estimate the parameters of interest with
considerable accuracy.

It is clear that different random sequences will, in general,
produce different random-walk histories; and these latter, in turn, will
generally lead to different scores. While it is inherent in the Monte
Carlo method that its results should show random fluctuations, it is
extremely convenient to be able to reproduce a given computational
result exactly, when we wish to do so. In particular, this is important
in the initial ‘debugging’ stage of developing a new program (or
program-module), when we need to separate the effects of desirable
randomness from those of undesirable programming errors, so as to
ensure that the program or module will do correctly what the
programmer intends; and it is also useful when several runs must be
made, to develop intentionally-correlated random samples, all
depending on the same random walk. Some of these ends can be
achieved by storing, and later retrieving, the values of the thousands,
millions, or even billions, of random numbers required; but it is clearly
much more convenient to redesign the random generator (algorithm)
in such a way that no such mass-storage is required. The original
invention of pseudo-random sequences was partly motivated by this
need.

When one attempts to refine the physics underlying a particle-
transport computation, by taking into account the concomitant
generation and subsequent motion of additional particles or radiation,
it is useful to compare the scores obtained with and without these
refinements, for the same random walks. Since this leads to situations
in which the random walks branch in a tree-like manner, requiring
random sequences of differing lengths and unpredictable
relationships, the problem becomes far more complex. We are now
required to be able to generate a tree-structure of pseudo-random
numbers, with good uniformity properties within each branch and
good properties of independence between branches. In a typical
conventional particle-transport calculation, using non-branching
random walks, we may compute some 103 - 10° random walks,
averaging perhaps 102 - 10% steps each, with every step requiring
around 10 random numbers; this adds up to a need for something of
the order of 106 - 1010 random numbers. With current generators

-8
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having periods of the order of 1014, such a requirement is acceptable;
and techniques are available to increase the periods (without
unacceptably increasing the time required to generate the random
numbers) to the order of 1090 or so.

However, if our model is expanded to allow branching at every
step, a comparable tree-structured calculation would, in principle,

need perhaps 104 x 210%, or about 103000 random numbers. It is, of
course, entirely out of the question, in any case, to use this many
random numbers; since, according to current astrophysical thought,
the calculation would hardly have begun when the Sun, in its red-giant
phase, would consume the Earth, just a mere 1026 - 1027 nanoseconds
from now! The problem is, rather, to provide theoretical access to
suitably-distributed random numbers; so that they will be available as
and when needed. The actual consumption of random numbers in a
computation of this kind could hardly exceed some 1016 or so, unless
computer technology makes rather remarkable progress even in
comparison with its astonishing record; thus, we must rely on
sampling techniques such as ‘Russian roulette’ to keep the overall
needs down. Nevertheless, we must be able to generate those random
numbers that we do need, with appropriate properties of distribution.
The present development is an attempt to address this potential need.
The problem was first raised by Warnock (see WAR 83, FRE 84) and
useful suggestions of a general and heuristic nature were made by him
as to its solution. In the present paper (expanding on ideas first
presented in HAL 87), I propose a possible explicit approach to the task
of generating a large number of branching pseudo-random sequences
which are mutually independent in a rigorously specified manner.

2. PRELIMINARIES
For any positive integer n and real aq, let
Sola) = 0 and Sya@ = l+a+a?2+ad+...+avl (5)
This is consistent, since the sum S, (a) has n terms. Then
Sla =n, if a=1, (6)
and Spla) = (@*-1)/(a-1), if a= 1. (7)
Lemma 1. For any non-negative integer m and real z,

Soml(2 = (1 + 2) S.,(22). (8)
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<<By (5), if m = 0, then (8) is immediate; and, otherwise,
Som(@ = (1 +2) + (22 +23) +. ..+ (22M2 4 22m-])
= (1+2Q+22+2%+...+22m2), (9)
which yields (8) at once.>> [Proofs will, throughout this paper, be
enclosed between << and >>.]

Definition 1. If Nis any positive integer, then we express the
fact that another positive integer k is a factor of N [i.e., integer-divides
it, without remainder] by the usual notation

k| N. (10)

We now see, in particular, that there is a unique non-negative integer
u, such that k" divides N, but k¥*! does not. We shall write

k“ T N (11)
to express this situation. If v < u, then we also have, as in (10), that

kv | N. | (12)
We extend the notation (11) to N = O by writing, for any k > O,

k> To. (13)

The notation defined in (11) and (13) is slightly tricky: while k | N is

a relation between two integers, k and N; k“ T N is a relation between
three integers, k, u, and N. When we use an abbreviation, such as

“8 T x”, it will be understood to mean “23 f x”: the member on the

left of the symbol T will always be a pure power of one uniquely
determined k. Hereinafter, we shall particularly make use of the
special case, when k = 2.

Lemma 2. For any odd positive integer a, there are unique
positive integers q and r, such that

a = (2r-1)29-1. (14)

<<Since a is odd, a + 1 is necessarily even. Thus, there is a

unique maximum q for which 29 | (a + 1), and q 2 1. For this g, we
have 291 (a + 1). Also, the quotient, when we divide (a + 1) by 29, is

odd; whence it can be expressed uniquely in the form (2r - 1). This
immediately yields (14).>>
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Lemma 3. With a, q, and r defined as in Lemma 2; if u2 0 and
v 2 0 are the unique integers such that 24 T n and 2V T S_(a), then
v=u+q-1; that is,

2wl S (@ ifandonlyif 2¢Tn (15)
<<By repeated application of Lemma 1, we get that
Sp (a)

(1+a) Syo@® = (1+a) 1 +a?)Syulah) = ...
=(l+a(1+a1+ay...1+a®7) s a2 (16)

Also, by (14), 291 (1 + a), and q = 1; and every binomial factor on the
right of (16), after the first one, is of the form 1 + a?™, with integer
m > 1. Since a is odd, either a= 1 or a = 3 (mod 4); whence a2 = 1
(mod 4); and, therefore,

Vm =21 a2m™ = 1 (mod 4). (17)

Hence, (Ym=1) 1+ a?M= 2 (mod 4); i.e., (Vm=21) 21T (1 + a2™).
Therefore, the product of all the binomial factors on the right of (16)
is divisible by 2 exactly q + (u - 1) times. Finally, we observe that,
since a is odd by our hypothesis, every power of a is odd too; whence,
by (5), the last factor on the right of (16) is the sum of an odd number,
n/24, of odd numbers, and so must itself be odd. Thus, when u and v

are defined as stated, v=q + u - 1, and (15) follows immediately.>>

Definition 2. If[xy, x;,x5,...1]= [xj];o is a sequence of
numbers, and if we are given that, for some 0 < i<},

(Vk 2 0) X = Xyppe (18)

then we say that the sequence is periodic. If 1 is the least value of the
difference j - i, for which (18) holds, then we say that the period is A.

If his the least value of i satisfying (18) for j - i = A, we say that
the periodicity starts at index h; and if h = O, then we say that the
sequence is completely periodic.

Note that, if the sequence [xj];;o is periodic, with period A,

starting at index h; then, for any offset o, the same is true of the
sequence [x; - a];o.
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Lemma 4. Given that the sequence [xj];o is periodic with

period A, starting at index h, and given i and j, with i < j, satisfying the
relation (18); it follows that u = j - i is an integer multiple of A; that is,

Al (19)

<<Since 1 is minimal, we have 0 < A < u. Because the sequence
is periodic with period A, starting at index h; it is clear from (18) that

Xhik = X(he )+k = Xhe(A+k) = X(h+ed)+(A+k) = Xn+(22+k) = - - - + that is, by
induction on integers r,

Vk 2 0 (Vr 2 0) Xpiri+k = Xhselo (20)
and, similarly, by (18) for i and j, by induction on integers s,

Vik 2 0) (Vs 2 0) Xyguppe = Xk (21)

Write n = max{i, h}, so that n> h and n > {; and replace k, throughout
(20), by k + n - h and, throughout (21), by k + n - i. Then, whatever

is true with the resulting universal quantifiers, namely, (Vk > h - n)
and (Vk 2 i - n), is also true with the quantifier (Vk = 0); so that

(Vk 2 0) (Vr 2 0) (Vs 2 0) Xpiriske = Xnsk = Xpaspske  (22)

The Euclidean Algorithm Theorem states that, if ¥ denotes the
g.c.d. of positive 4 and u (so that y | A and Y | u, and yis maximal),
there are integers Uy and V|, such that y= Ugd + Vou. Proof: <<Let Z
be the set of all integers. The set ® = {0 =UA+ Vu: Ue Z, Ve Z}, has
asubset ® ={0=UA+ Vu: Ue Z, Ve Z, 6 > 0}, which is non-empty,
since0<A=1x1+0xue ® andO<u=0xA+1xpue ©*. Let k=
UgA + Vou be the least 6 € ©*. Integer-divide A by x; then A = ox + p
(where 0 < p<«x), and so p=A4 -0k = (1 - oUy)A - oVyu € ©. Since
p < k, and k is minimal in ©*, p ¢ ©*; and therefore p = O (i.e., x | ).
Integer-divide u by x, to show, similarly, that « | u; whence x | ¥, since
vy is the maximal divisor. Since we also know that y fra; Y | u, and
ke ©; 7| x. Therefore, x =7 This proves the theorem.>> Now, U,

and V;; must have opposite signs, since we have that 0 < y< 1 < yu; so
that there must be non-negative integers ry and sg, such that either (i)

roA — Soi = yor (ii) sou - rgA = 7. In both cases, take r=ry and s = s;
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in (22); then, in case (i), replace n by v - sgu; in case (ii), replace n by
v - roA. Either way, we see that

(Vk > O) xV+’ﬂ-k = xv+k. (23)

But this means that the sequence is periodic, with period at most ¥.
Since A is minimal, by Definition 2, we must have A < y. Thus, y= 4,
and the lemma follows at once.>>

This means that the period of a periodic sequence is unique.

Definition 3. Given a semi-open interval [A, B) on the real line,

and a set Jof Q points z; <25 <...< zg in it, we say that the points
are cyclically equally spaced in [A, B) if
Zpy1 -2, = B-4)/Q for h=12...,0-1 (24)

Note that this implies that (z; - A) + (B - zg) = (B - A)/Q also,
since zg - z; = (@ - 1)(B-A)/Q. If we imagine the interval [A, B), with

the points of J in it, wrapped around a circle; then these Q points
would be equally-spaced around the circle. Note, too, that, if the set J

is cyclically equally spaced in [A, B), so is any offset set of points z, - «
(reduced, modulo B - A, to fall in the interval).

Definition 4. Given a set J of Q points cyclically equally spaced
in an interval [A, B); if the sequence [xj];() is periodic, with period 4,

starting at index h, and if the set K = {xj}; n of values taken by the X,

once the periodicity is established, is a subset of J, with P distinct

points in it, and P = 4; and if, further, these P values are also cyclically

equally spaced in the interval [A, B); then we say that the sequence is
uniform in J, with coarseness Q/P.

Lemma 5. In the situation described in Definition 4,

Pl g; (25)

so that the coarseness of a uniform sequence is always a positive
integer.

<<The points of J may be thought of as equally spaced around a

circle of circumference B - A; the points of K (which are also in J) are
also equally spaced around the circle. Thus, there is an integer G,
such that adjacent points of K have a spacing just G times as great as
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that of adjacent points of J; that is, PG = Q; whence (25) follows. G is
therefore the coarseness of the sequence in J.>>

Note that, if the period of the sequence [xj];o passes through all

the points of J (that is, if P = Q), then the coarseness of the sequence
in J takes its minimum possible value, namely, 1.

Definition 5. Given a set J of Q points cyclically equally spaced
in an interval [A, B); if two sequences [le;o and [x*j];o are such, that

the difference-sequence, [é'j];_.o, where

(Vj 20 § = <x;-xt|2M>, (26)

is periodic, and is uniform in J with coarseness G; then we say, by
analogy with the definition of uniformity and coarseness, that the two
sequences are independent with respect to J, and that their
consonance is G.

3. ANALYSIS OF LINEAR CONGRUENTIAL GENERATORS

We are interested in generating a canonical pseudo-random
sequence [éj];lo of numbers in [0, 1), for use in Monte Carlo

computations. We therefore want the éj to take a large number of

distinct values, distributed with near-constant density in [0, 1). Our
present consideration will be limited to the linear congruential
sequences, which are related through (1) to the integer sequences

[xj];;o defined in (2) or (4), with M a non-negative integer. This
implies that, if we write (as we shall do henceforth)

2 = 0, (27)

then Vj20 xe J=1{012...,0-1}, (28)
and therefore

vVj20 ¢&e F=1{0 1/Q, 2/Q, ..., (Q-1)/0} (29)
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In the terminology of Definition 3, the sets J and F are cyclically
equally spaced, in the semi-open intervals [0, Q) and [0, 1),
respectively.

Note that we may assume, without loss of generality, that a and b
are also integers selected from J. We further assume henceforth that
a# 0. [If a= 0, then, clearly, by (4), for all j > 1, x; = b.]

Lemma 6. The recurrence relation (4) is satisfied, for all n =2 O,

by
x, = <a'xy+ S,(a bl g>: (30)
where S, (a) is defined as the sum in (5).

<<When n = 0, we know that a™ = 1 and the sum S,(a) = 0; so
that, in fact, x, = axy + S,(a)b. Suppose that the relation holds for

n = k, say (this is initially true when k = 0). Then, by (4) with (3), we
have that

X1 = <axe+ bl @> = <aldkxy+ Sla) bl + bl 0>
= Ldk*l x, + [a Si{a) + 11b| @>; (31)
and, by (5), it is easily seen that
aSla +1 = Sp,,(a); (32)

whence the congruence will also hold for n= k + 1. The lemma
follows by induction.>>

Lemma 7. The sequence [xj];:o is periodic, with period not
exceeding Q.

<<By (28), there are at most Q possible distinct values of X;i
among the @ + 1 numbers Xy, X}, Xy, . . . , X, there must be two values

alike, and we can always further specify that all intermediate values
different from these and each-other: x;= X, say, with 0 < i<jand

Xp Xig 10 Xiggo + + 0 Xj] all different [if some intermediate value x;. = x;,
say, replace j by k; if two intermediate values x; = X, say, replace i by

h and j by k]. It is now clear from the form of (4) that (18) will hold,
since each member of the sequence is determined solely and uniquely
by its immediate predecessor, without regard to its position in the

A T, T
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sequence. Hence, the sequence is periodic and, by Lemma 4, j - iis a
multiple of the period, which thus, clearly, cannot exceed Q.>>

Lemma 8. If a is any even integer, the sequence [Xj];o is
periodic, with period 1.

<<We have already seen that the period is 1 when a = 0. For

any even a, clearly aM = 0 (mod Q); so there will be a unique minimal
h, such that a* = 0 (mod Q). If n> h; then, by (5),

Sp@ = Spla) + a'S, (@ = Spla) (mod Q). (33)
Therefore, in particular, by (30) and (33),

Xn, = <a®lxy+Sp, @ bl@> = <Sya@ bl@>

= <ahxy+Sp@ blO> = xu (34)

whence, by Definition 2, the sequence is periodic, starting at index h,
with period 1.>> :
Of course, a period of length 1 is of very little use for the

generation of pseudo-random numbers; so we shall henceforth assume
that a is odd.

Lemma 9. If ais any odd integer, then the sequence [xj];_o is
completely periodic.

<<Consider the @ integers 1, a, a2, . .., a¥, reduced modulo Q.
Their values must lie in the set J; so, arguing exactly as in proving
Lemma 7, we see that we must have 0 < i< j< Q, such that <al'|Q> =
<d|@>, while <di|@>, <ai*l|@>, <dai*2|@>, ..., <dl|@> are all
different. Thus, @ - al = a{{a~! - 1) must be divisible by @; and since a

is odd, it follows that @ | (@/-! - 1); so that there must be a positive
integer m=j - i< Q, such that

a™ = 1 (mod Q). (35)

By (2) and (35), we have that x;_; = a™x;_; = a™ !(x; - b) (mod Q); so
that, writing ¢ = @™ ! and d = —cb, we have

(vj 2 1) Xj_1 = cxj+d (mod Q), (36)

G 7
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or, by (3), V2 1) x, = <cg+dlo>. (37)

Thus, each member of the sequence is determined solely and uniquely
by its immediate successor, without regard to its position in the
sequence, and the equation (18) also holds for negative k, so long as
the index i + k 2 0. This extends the periodicity of the sequence
(already established in Lemma 7) to the starting index O, proving the

present lemma.>>

From now on, we shall always suppose that a is odd, satisfying
(14) and thereby uniquely defining positive integers g and r, as stated
in Lemma 2. Since we also suppose (without loss of generality) that
ae J, we see, by (28), that 1 < (2r-1)29-1<2M _ 1; whence r > 1,
and therefore 29 < 2M, Since q > 1, we conclude that

1 <qgs M (38)

Now write W = <x; -x%|0> = <(a-1)x,+b|O>: (39)
and, by appeal to Definition 1, put

2¢ b, 25Mx, 24N (a-1), and 291 W. (40)

Since (again without loss of generality) we also suppose that b € J and
Xg € J, it now follows that, unless b = 0 [¢ = =] or x5 = 0 [s = ],

O0<c¢c<M and O < s<M; (41)

and, since a is odd, a - 1 is even, whence d > 1.
Lemma 10. The period A of the completely periodic sequence
[xj];o is given by
A =24 where u = max(O, M-g-q+ 1}, (42)
and g is defined uniquely by (39) and (40).
<<By Definition 2 and (30), 1 is the least j for which

X = % = <dxy+Sfa)blg>. (43)

Ifa=1, by (7), d x5 -xg = Sj(@) (a - 1) xy; whence, by (3), (39), and
(43),

Sj(a) W = 0 (mod Q). (44)

- 12—
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If a = 1, we note that W = b, and so (43) implies (44) directly. Thus
(44) is true for all a. Therefore, either

W = 0 (mod Q) . (45)

(i.e., g 2 M, including the possibility that W = 0 and g = «); or g < M,
and

oM-g | Sj(a). (46)

If (45) holds, then clearly, by (4) and (39), x; = x: so that 4 = 1.
Thus, u=0and M -g-q + 1 < O [since, by the assumption of (45),
g =M, and, by (38), q = 1]; so that (42) is satisfied.

If, instead, g < M and (46) holds, we observe that, by Lemma 3,
2u+d-1 T Sj(a) if and only if 2 T j; whence there is an integer u 2 0,
such that u+q-12>M -g and 24 T A. Thus, since the period A is
minimal, u will be the least non-negative solution of

A =24 and u+q-12 M-g. 47)
Clearly, this is given by (42).>>

Lemma 11. With g defined by (39) and (40);
(i) ifc<s+ d, theng=c;

(i) ifc=s+ d, theng> c;

(iii) ifc>s+ d, theng=s +d.

<<By (40), 2541 (a - 1)xg and 2¢ T b. Write (a - 1)xp = 25*4 U

and b = 2¢V, where U and V are odd integers. By (39), there are now
three cases, characterized as in our lemma. (i) If c < s + d, then

W=<Zl(a-1)xy+ bl@> = <2¢@std<cy+ v} @> = 2¢ X,, and the factor
X, is odd; so that g =c. (ii) If c =s + d, then W = <2¢U + V}|Q>
= 2¢ X,, and the factor X, is even, being the sum of two odd numbers;
so that 2¢+*! | W (that is, g >¢). (i) If ¢ >s + d, then W =
<2s+d(y 4+ 2¢-s-d y}| 9> = 25+d X3, and the factor X is odd; so that
g=s+d.>>

The value of M is mainly machine-dependent (M = 48 is typical
of ‘supercomputers’, and then Q = 248 = 2.8 x 1014). As we shall see

later, it is not always possible to control the parity of b; but we can,
and do, control the value of a (and thus the parity of a - 1). We

R - R




Tree-Structured Psecudo-Random Sequences

naturally seek to make the period of the sequence as long as possible.
The absolute maximum is clearly Q = 2M, but this cannot always be
attained. Referring to Lemma 10, we see that both q and g should be
as small as possible; and, since, by (38), g 2 1, we stipulate that

By the definition (14) of q and r, this is equivalent to a = (2r - 1)2 -1
= 4(r - 1) + 1; so that

a=1 (mod 4). (49)
By the definition (40) of d, we have that, for some integer r,
a=(@2r-124+1 (50)
[compare (14)], which implies that
a = 1 (mod 29. (51)
Now, we have (above) that a - 1 = 4(r - 1); so that, by (50),
d 2 2. (52)

Conversely, by (50), if we assume (52), a - 1 = (2r - 1)24 = 47", which -
implies (49); further, a = (2r" + 1)2 - 1, which yields (48), by (14).]

First, let us consider what happens when b # O.

Lemma 12. Under the conditions of Lemmas 10 and 11, if we
impose the restrictions (50) and (52) on the parameter a and suppose
that b # O, then

(i) ifc<s+d -1, the period of the sequence is 2M-¢ > 2;

(ii) if c = s + d, the period of the sequence is max{1, 2M-9},
where g2 c + 1;

(iii) ifc>s +d + 1, the period of the sequence is 2M-s-d > 4,

<<As we have seen, (50) and (52) imply that g = 1. Thus, (42)
reduces to

A

and the three cases of Lemma 11 are the same as those of the present
lemma.

24, where u = max{0, M - g}; (53)

(i) Iffc<s+d-1, then g=c. By (41), since b # 0, ¢c < M, and
it follows that M - g = M - ¢ 2 1; so that, by (53), A = 2M¢> 21 = 2,

e e
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() If c = s + d, then g > ¢; and, by (53), A = max{1, 2M-9}.

(iii) f c>2s+d+ 1, theng=s+d. Since b # 0, by (41) and our
hypothesis, s+d <c< M, sowe getthat M-g=M-s -d 2 2; so

that, by (53), A = 2M-s-d > 22 =4>>

Now we turn to the omitted case, when b = 0 and ¢ = «. By (4)
or (30), we see that

x, = <a'x, | o>. (54)

Therefore, if x; = 0, every x, = O too; so that 2 = 1. If, on the other
hand, x5 # O, so that 2° f Xo, with 0 < s < M; we can write x; = 2% a,

where o is odd, and we see that (since a is odd) 25 T x,, too; so that,
for all n,

X, = 2%, (55)

n n

where o, is odd. Thus, (54) reduces, on division by 25, to

0, = <La"ay|2M-5>. (56)
We are therefore led to examine the dependence on m = M - s of the
period 4, of the sequence [coJ];o with wy (and therefore all the coj)

odd, when all numbers are reduced modulo 2™. By (56), this problem
is seen to be equivalent to that of finding the least n for which

a®* = 1 (mod 2™). (57)
By (50) and (52), and since, clearly, if u 2 v,
X=Y mod2¥) = X =Y (mod 2Y); (58)
it follows that the 4, are nondecreasing as m — -, and that
M=A=...=24 = 1. (59)
As a further preliminary, we need the following result.

Lemma 13. When a satisfies (50) and (52), the least value of n
for which (57) holds is 2™-4, for all m > d.

T 1
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<< Since Ay is the least n for which (57) holds; for each m,
there is an integer q,,, such that

a’m = 1+ q, 2™ (60)

Suppose it known that 1, = 2m-d for all d < m < h; by (59), this is
certainly true for h = d. Putting 1, = 2h-d in (60), we get that
2" =1+ an 2h: and, on squaring, this yields

2" = (@92 = (1+g,2M)% = 1+qp2M1+ g2 22h
Therefore, since h>d 2 2, by (52); we get that
a2 = 1 (mod 2h*1); 61)

whence 1,,; < 2M*1-d. Further, since the A, are nondecreasing, we

get Ap,q 2 Ay =204, If welet X = 1;,, - 24, so that 0 < X < 2h-4,
then

atrr = X2 = @X @2 = aX (1 4 g, 2D, (62)

Let aX = Y + s 21, with 0 < Y < 2", Then a*h1 = (Y + s 2 (1 + g, 2 =
Y+(Yqp+s )2h = Y + Z2" (mod 2h*1), where Z = <Ygq,+ s|2> is

0 or 1. Since a*k+1 = 1 (mod 2h*1) and 0 < Y < 2N, it is clearly

necessary that Y = 1 and Z = 0; so that aX = 1 (mod 2"); whence
X > 2h-d, Since we also have X < 24, it follows that X = 2"-4; whence
Apep = 24 + X = 2h-d 4 2h-d = gh+1-d  The lemma now follows by

induction.>>

Lemma 14. When a satisfies (50) and (52) and b = O, the
period of the sequence [xj];lo is max{1, 2M-s-d},

<<(i) If xy = 0, s = = and, as we have seen, 1 = 1, agreeing with
the lemma. (ii) f xp#0and M-s-d <0;then1<M-s<d, by (41).

Since m = M - s in (57), we get by (59) that A = 1), = 1, again
agreeing with the lemma. (iii) Otherwise, x5 # O and M -s -d > O,

and the lemma asserts that the sequence [xj];o has a period 2M-s-d,

Now, the period of the sequence [xj];o, given by (54), is clearly, by
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(55) and (56), the same as that of the sequence [wj];o with @, odd;

and this, in turn, equals the least n for which (57) holds, when
m = M - s. By Lemma 13, this is 2M-5-d, completing the proof of our

lemma.>>

Lemmas 12 and 14 show the general desirability of using odd
values of b. Then, ¢ = 0, and we are in Case (i) of Lemma 12, with

A = 2M  the optimal situation. However, as we shall see later, this will
not always be possible to achieve.

It is interesting to see under what circumstances the least
desirable situation (namely, when A = 1) occurs. We already know, by
Lemma 8, that this can happen when a is even. Lemma 12 now tells
us that, when a is odd and satisfies (50) and (52), and b # O, it can only
happen in Case (ii), when ¢ = s + d. Let us write

xXg=2M-6, a-1=2M-¢o, b=2M-g; (63)

where, by (50), & = 29 (2U - 1) with 1 < U < 2M-d-1; an(, since b and -
Xo are in J, B =25*4 (2V - 1) with 1 £ V< 2M-s-d-1 and ¢ = 25 (2X - 1)
with 1 < X < 2M-s-1_ Then, by (39),

W= <22M_oM (g +0-1) +ab - Bl Q>, (64)

and therefore, by (53), we get that A = 1 if and only if g > M; i.e., if and
only if

B=aB, or V=2UX-U-X+1. (65)

Finally, Lemma 14 tells us that we can have A = 1 when b = O, either if
Xo = 0 or if x is a multiple of 2M-4,

Lemma 15. If the sequence [le;o is generated by (4), with the
parameter a odd, then, given (40), we have that

@ ifc<ss-1, (Vj = 0) {2‘”‘1 |xzj and 2Cﬂxzj+1};
(b) ifc = s, (VJ > 0) {2Cﬂxzj and 2¢+1 | x2j+1}:

(©ifczs+lorc=s=0o, (Vj20) 2sﬂxj.
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<<For all j 2 0, define the powers t; by
241 x;. (66)

Then, by (4), since a is odd, 2% T ax;, and, by (40), 2¢ T b. We recall
that it is possible for b or any x; to vanish, yielding that ¢ = « or t; = e,

respectively [see (13)]. Using an argument exactly analogous to that
used in proving Lemma 11, we see that (i) if b = x; = 0, then c = t; = ,

and, in fact, every x,, = 0 (including x5 = 0); so that s = « and (Vj 2 0)
2s x;; (i) if ¢ < t;, then 2c Xpy1s (iii) if ¢ = t;, then x;,, must be an

even multiple of 2¢, so that 2¢+1 | xp,1; and (@) if ¢ > t;, then 25T x;, ;.
Thus,

t>c= =0 H=c=> t,>c f<c = b, =t (67)

But the sequence [tj];o begins with t; = s; whence the lemma follows
immediately.>> ‘

Lemma 16. Given M > 0, with @ = 2M and L = [0, Q); define the
set J by (28), and let the sequence [xj] ;=0 be periodic, with period 4,
starting at index h. Let the set K, = {xj j=h, Of values of the x x;, once

the periodicity has started, be a subset of J, consisting of just A
distinct values. Then a sufficient condition for the sequence [xj];;o to

be uniform in J, is that there be integers a and p, with 0 < p < M, such
that

A=2MP and (vj2 h 2P| (x-a. (68)
<<Since the sequence [xj];O is periodic, with period A, starting

at index h; the sequence [x; - a];o, offset from the first by -, is also

periodic, with the same period A, starting at the same index h, as is
noted after Definition 2. That the set K, has just 4 distinct elements

indicates that the period has no repeated values. Let K, = {xj - a}“; B

be the set of periodic offset values, reduced modulo Q; clearly, these
are also just A in number. If we write
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Jo=4J and J, = {r2P: 0 < r < 2MP -1} (69)

then Jp, is obviously the set of all integer multiples of 2P in J (and so in
L). Hence the total number of such multiples is 2M-P, and Jp

cychcally equall N?r spaced in L (by Definition 3, since adjacent pomts are
= (@ - 0)/2™"P apart). If (68) holds, then K, is clearly a subset of

Jp, since 2P divides every x; - &; and so, since A =2M-p, K must equal
Jp. Thus, K, is cyclically equally spaced in L; and therefore so is the

original set K, offset from K, by +a, as is noted after Definition 3.
Thus, by Definition 4, the sequence [xj]j;o is uniform in J, with

coarseness Q/1.>>

Lemma 17. The period A of the sequence [xj];__o generated by

(4) equals the number P of distinct values in the set K, = {x} j_

<<We refer to the proof of Lemma 7. The j - i values x; X,
Xiy9+ -+ -+ X1 are all different, and thereafter the values repeat,

because, by (2) or (4), equal predecessors in the sequence have equal
immediate successors, and because x; = X;. Thus, P =j - i Therefore,

by Lemma 4, P is a multiple of 2. But, since all P values in the above
list differ, A cannot be less than P; whence A = P.>>

In Lemmas 9, 10, 12, 14, 15, 16, and 17, we have now
marshalled all the facts we need to prove our main result.

Theorem 1. Given the set J defined in (28) and the sequence
[xj];o generated by (4) with parameter a satisfying (50) and (52); the

sequence is uniform in J, in the sense of Definition 4. When g is
defined by (39) and (40), the coarseness of the sequence is given by

i 2¢, if c £ s+d-1;
(ii) min{2M, 29}, if ¢

(iii) min{2M, 254}, if c > s+d+1 or c=s = .

s+d;
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<<Lemma 9 tells us that the sequence [)9];0 generated by (4)

is completely periodic, since the parameter a is odd; and Lemma 17
tells us that the number, P, of distinct values of x; in the period of the

sequence equals its period, A (i.e., the period consists of A different

values, with no repetitions). Lemma 16 gives sufficient conditions for
the sequence to be uniform; and, in the present case, all of that

lemma's preliminaries are satisfied, with h = 0 and K, = {xj];o, so that

|K0| = A, as required. By (53) [see Lemmas 10 and 12], 1 takes the
form 2% with O < u < M; which translates, if we write u = M - p, into
the first part, A = 2M-P, of the condition (68) of Lemma 16. Further,

Lemmas 12 and 14 specify the corresponding values of p. Therefore,
the second part of the condition (68), which becomes

(vj 2 0 27| (x-0), (70)

alone remains to be verified, with the help of Lemma 15. Given that
the sequence is indeed uniform in J, it then follows from Definition 4
that the coarseness of the sequence is Q/P = Q/A = 2M/2M-P = 2P An
examination of Lemmas 12, 14, and 15 indicates that there are six

cases to be considered. Necessary correspondences between cases
are shown in Table 1, below.

TABLE 1

Case Lemma 12 Lemma 14 Lemma 15
Mc<ss-1 () p=c<M - (a)
(I) c=s ) p=c<M — (b)
(Il) c2s+1 and

c<s+d-1 @)p=c<M - (0
(IV) c=s+d<g (i) p = min{M, g} - (c)
Vicz2s+d+1 (i)p=s+d<M p=’min[M,s+d} (c)
(V) c=s = - p=M (c)

() If c<s - 1, then we have Case (a) of Lemma 15: members
Xo; of the sequence [xj];o are even multiples of 2¢, and members x,; ,

are odd multiples of 2¢; so all x; are multiples of 2¢. Thus, (70) holds,
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if we take o = O and apply p = c (from Lemma 12). The sequence is
therefore uniform in J, with coarseness 2°€.

(I If ¢ = s, then we have Case (b) of Lemma 15; members x,; of
the sequence are odd multiples of 2¢, and members x,;,, are even
multiples of 2¢; so that, again, all x; are multiples of 2¢; whence, as
before, since p = ¢, the sequence is uniform in J, with coarseness 2€.

In all remaining cases, we have Case (c) of Lemma 15: all the X;
are odd multiples of 25.

(Im Ifs+1<c<s+d -1, then, once more, p =c. Now, every
odd multiple of 25 clearly equals 25 plus some multiple of 25*1 = 2¢;

thus, if we take a = 25, (70) follows; so that the sequence is, once

again, uniform in J, with coarseness 2€¢. This completes the proof of
Part (i) of our theorem.

(IV) If c = s + d then, by Lemma 12, p = min{M, g}, where g is
defined by (39) and (40). By Lemma 6, with equation (5),
x5 = <xp+(@-1x+8fablg> = <xp+SaWl@>. (71

It follows from this that every x; - X is divisible by the g.c.f. of 29 and
2M je., by 2P. Taking o = Xxg., we see that (70) holds; whence the
sequence [xj];o is uniform in J, with coarseness 2P = min{2M, 29)}.
This proves Part (ii) of our theorem.

(V)Ifc>2s+d+ 1, then p = min{M, s + d}, by both Lemmas 12
and 14. In Lemma 12, Case (iii), we have shown that M -s -d = 2; so
that, if p=M <s + d, then we must have b = 0, as treated in
Lemma 14, and therefore 1 < M - s < d [since we are not in Case (VI)

(i.e., xg # 0) s < M]. In this case, A = 1, and therefore all the x; are
equal; whence we see that every X;—Xg = 0, which is divisible by 2M,

Thus, taking a = x;, we derive (70); whence our sequence is uniform
in J, with coarseness 2P = 2M = min{2M, 25+d},

If p=s+d< M, on the other hand, then, by (52), M -s>d > 2.
Let us write

x; = 25X, (72)
where every X, is an odd number. Then, by (2),

X1 = aX;+2°b (mod 2M), (73)
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with 27 b divisible by 24 [recall that, in the present case, c>s +d + 1,
and that, by (40), b is divisible by 2¢]. Hence, by (51),

X1 = X; (mod 29; (74)

so that all the X; are not only odd, but congruent to the same odd
number, modulo 24¢. This means that every X equals x5 = 2% X, plus a

multiple of 25+4 = 2P. Taking a = x, we see that (70) holds, and
therefore, again, the sequence [xj];o is uniform in J, with coarseness
op = 9s+d _— min{2M, 25+d}.

(VD) Finally, if ¢ =s = , then, as we have seen, every x; = O;

whence A =1 and so p = M. By the same token, (70) holds for a = O;
so that our sequence is indeed uniform in J, with coarseness Q. This

completes the proof of our theorem.>>

Corollary 1. The coarseness of the sequence [xj];;o, defined as

in Theorem 1, attains its minimum possible value, namely, 1, if and
only ifc = 0. : -

<<It is clear from the definitions (39) and (40) underlying

Theorem 1 that s 2 0 and ¢ 2 0. In Case (i) of the theorem, the
coarseness 2¢ = 1 only when ¢ = O; implying that s + d - 1 2 0 and
thus in no way restricting the allowable values of s [since s 2 0 anyway,
and, by (52), d 2 2]. In Case (ii), g=2c+1=s+d + 1 and the
coarseness is min{2M, 29}. Now, by (52), g=>d + 1 > 3, since s > 0,
and 5<29+1<a=(2r-1) 2494+ 1 <2M by (50) and since a € J;
whence

M2 3. (75)

Thus, either way, the coarseness is at least 8. In Case (iii), similarly,
by (75) and because s > 0 and d 2> 2, the coarseness min{2M, 25+d} is at
least 4. Thus, the absolutely best coarseness, 1, is attained when and

only when ¢ = 0 [in Case (i)].>>
Corollary 2. Given the set F defined in (28) and the sequence
léj];o, defined by (1) and (2), with parameter a satisfying (50) and

(52); the sequence is uniform in F, in the sense of Definition 4, and
the coarseness of the sequence is given by the values in Cases (i), (ii),
and (iii) of Theorem 1.
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<< Both sets, J and F, have Q members (points) and are
respectively cyclically equally spaced, in [0, Q) and [0, 1). The

sequence [xj];o stands in the same relation to J as does [éj];_.o to F,
and the corresponding sets K =,{xj};0 and K, = {éj};o both have just

A members. Thus, by Definition 4 and Theorem 1, the corollary
follows.>>

We have now collected sufficient information, on the uniformity
properties of linear-congruential pseudo-random sequences, to enable
us to move on to the main purpose of our study; namely, the
generation and analysis of tree-structured families of generators. We
shall discover that the results, embodied, for the most part, in
Theorem 1 and its corollaries, which tell us about the uniformity and
coarseness of a single sequence, suffice to analyze the properties of
independence and consonance between members of families of such
sequences.

4. TREE-STRUCTURED FAMILIES OF GENERATORS

We now proceed to consider tree-like branching processes. We
take particle-transport problems as important and typical paradigms.
The model often used has steps representing the rectilinear (or, in
the presence of effective force-fields, curved) particle flight across
empty physical space (using a statistical Poisson distribution of path-
length, determined by the ‘mean free path’ parameter); alternating
with steps representing °‘collision’ events, terminating such free
flights. Collision events include elastic or inelastic rebound-collisions
and various nuclear reactions, which often generate new particles (of
matter or radiation); these last lead to a branching of the particle
histories. The creation of ‘virtual particles’ (used, for example, in the
Monte Carlo ‘particle-splitting’ technique, and in obtaining Monte
Carlo scores at small-aperture detectors) also leads to branching.
Since each step in a particle-history (or random-walk) may typically
require about 10 random numbers, we may expect our pseudo-random
sequence to entail branching at every T-th term, where T is of the
order of 10. While it is certainly feasible to allow branching at every
random number, it is likely to be more economical to pick such a T
and only allow branching at every T-th step of the random sequence.
The price we pay is that T must be an over-estimate, so as to ensure
that, at least, most of the time, T random numbers suffice to compute
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a random-walk step [if more are needed, in a particular step, then we
must allocate an integer multiple of T random numbers to this stepl;
thus, quite a few random numbers will be wasted in the process.

Before we can move forward, we must consider the behavior of
the sequence [xp_;, Xo1_1, X31-1> X110 - - - 1 = [ij_I];l corresponding

to the branch-points of the process (x;;_; is the current pseudo-

random number last obtained, when T numbers have been generated
and a branch may occur).

Lemma 18. The behavior of the sequence [’{1'1‘-1];1 of branch-
points is given by

X, = <AX+B|g>, (76)
when we write

A = <d'|@> B = <S{abl@>, and X; = xg5,. (77

<<By Lemma 6, the relation (30) holds; so that, using (5), we
see that, modulo Q,
X(j+1)T-1 = aFIT-1 x5 + S(j+1)7-1(@) b
= a# VT x4 (@HDT2 4 g#UTS 4 4 a2+a+1) b
aT[afT'1x0+ (@™2+ad™3+...+a®+a+1) b]

+(a™+a™2+a™8+...+a+a+1)b

aT [@T! xo + Sjp.y(@) b] + SH{a) b
With the notations of (3) and (77), (78) takes the form (76).>>

The recurrence relation (76) is exactly of the same form as (4);
so that all our earlier analysis applies here. By Corollary 1, we observe
that odd values of B are preferable; and, clearly, by (77) with Lemma 3,
B will be odd, if and only if both b and T are odd. It is easily seen, by
(51), that

A =al = 1 (mod 29, (79)
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that an equally-spaced subsequence [ij_ll;l of [xj];;o may well be

what we are really dealing with.

The recurrence relation (4), with parameters a, b, and x; (we
take Q and M as fixed), generates a linear-congruential sequence

[xj]};o of integers in J. It constitutes a pseudo-random generator,

which we may denote by ® = &(a, b, x;). Having analyzed the periodic
behavior and uniformity of a single linear congruential sequence, we

can now consider a pair of such sequences: (i) [xj];o, with generator
® = $(a, b, xy), characterized by (4), and (ii) [x']jZo. with generator
ot = $(at, bt, x'y), say, characterized by
iz 0 xt,, = <alxt+bt|g>. (80)

We may now define the difference-sequence [é‘j];o as we did in (26),
and observe at once that

(Vj20) &, = <ad+(a-alxt;+ (b-bH@>. (81)
Further, by applying (71), we see that

&, = <8 + Spla) [(a - 1)xy + bl - Splah) [(at - 1)xtg + b1 @>

= <K&+ S,y@ W-S (a) Wt @>, (82)

where W' is the counterpart, for the generator @', of W, defined in
(39). This formula is rather difficult to analyze for the period and
uniformity of the difference-sequence; but a particular case proves to

be more tractable. Suppose that we restrict our consideration to
a' = a; then

(vj20) &, = <ad+(b-bHlg>, (83)

which is exactly similar to (4), except that b is replaced by B =
<b-bt|@>. It follows that all the results obtained so far (up to and

including Theorem 1 and its corollaries) for the sequence [xj];o apply
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also to the sequence [§ 14 lj=0. It is just another linear-congruential

sequence, whose generator may be written as A = &(a, B, &;).

All this can now be generalized to a family of generators, which
we may denote by ®, = §(a b X 0) with parameters a,, bﬂ, and X0

satisfying
Vj 2 0 x5, = <ax,+b,|9>. (84)

We restrict our consideration, by taking (Vyu) a, = a, and write
By = <b,-b,l@> and §,, = <x,-x,0>. (85)

Then Vi20) 8y = <ady,+B,10>. (86)

It is reasonable to minimize the coarseness of each individual
sequence; and, by Corollary 1, the absolute minimum, 1, is attainable
when and only when every ¢, = O, i.e., every b, is odd. The values of

the parameters x,, and a, subject only to (50) and (52), are arbitrary.
This means that we have at our disposal fully half of all possible linear-
congruential sequences; altogether 2M-1 sequences, for each choice of
X, when a is fixed. However, this does entail that every ,Buv will now
be even. (There is no choice of the b, which will permit us to get all

odd B,,.)

Now let us consider the kind of branching random walk for
which the present study is intended to provide effective pseudo-
random generators. In Figure 1, we see the first five levels of a binary
tree with the nodes numbered in a simple, systematic manner. The
caption explains the system. From any odd-numbered node, say

N,=2u+1,u=0,1,2,...), we define a random walk, or sequence
of nodes,
I’u=[Nu—>2Nu—>4N”—>...—>2mNu—->...], (87)
obtained by taking the left-slanting branch at every node (i.e., going
from parent to left-child, every time), which will correspond, for

example, in the case of a particle-transport problem, to the history of
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