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ABSTRACT 

A class of families of linear congruential pseudo-random 
sequences is defined, for which it is possible to branch at any event without 
changing the sequence of random numbers used in the original random 
walk, and for which the sequences in different branches show properties 
analogous to mutual statistical independence. This is a hitherto 
unavailable, and computationally desirable, tool. 

1. INTRODUC'fiON 

During the last forty or fifty years, the Monte Carlo method has 
been used with considerable success, to solve large mathematical 
problems too computationally complicated to yield to the classical 
numerical methods developed during the previous four centuries. For 
general discussions, the reader is referred to, e.g., BUS 62. HAM 64, 
HAL 70, ERM 71, SOB 73, KLE 75. YAK 77, or RUB 81 [references in this format 
are to the Bibliography at the end of this paper]. In particular. there is 
an extensive history of the effective application of the Monte Carlo 
method to particle-transport problems. such as arise in the design of 
radiation shielding, nuclear reactors, and fission and fusion bombs 
(see, e.g., CAR 75, SPA 69). 

While the method was originally conceived in terms of 
representing the solution of a problem as a parameter of a hypothetical 
population, and using a [truly] random sequence of numbers to 
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construct a sample of the population, from which statistical estimates 
of the parameters can be obtained (see HAL 70); it soon became 
apparent, from the point of view of the need, both for repeatable 
results to 'debug' the Monte Carlo computer programs and for a large, 
stable supply of suitable 'random numbers', that certain deterministic 
sequences exhibiting some of the properties of truly random 
sequences would be more useful in practice. These became known as 
pseudo-random sequences (and, by corruption of terms, as sequences 
of 'pseudo-random numbers') (see the above-mentioned references, 
and also LEH 51, HUL 62, TAU 65, JAN 66, and NIE 78). Somewhat later, even 
less 'random-looking' sequences, dubbed quasi-random, having 
exceptionally good uniformity properties and leading to fast 
convergence of the resulting Monte Carlo estimates, were proposed 
(see HAM 60. HAL 60. ZAR 66. and HAL 72). The uniformity of distribution of 
the pseudo-random sequences was found to be imperfect when they 
were used to define points in several dimensions (FRA 63, GRE 65. 
MAR 72}, and several non-statistical approaches were developed for 
error-analysis. 

One of the most successful classes of pseudo-random number­
generators is the so-called linear-congruential algorithm (originally 

00 

c;Iue to Lehmer; see LEH 5~). The sequence [~0 • ~ 1 • ~2 • ~3 •.. : ] = l~}J=O 

of canonical pseudo-random numbers, which should be independently 
uniformly distributed in the semi-open unit interval [0, 1}, is obtained 

00 

from an integer sequence [XQ. x 1, ~· x3 , ... ] = l~h=O· by 

~J = JC_JI2M; (1) 

and the x1 are uniquely determined by selecting M, a, b, and x0 , and 
taking 

('v'j ~ 0) 0 ~ XJ < 2M, XJ+l =: axj + b (mod 2M). (2) 

Given the integer parameters a and b and an initial integer x0 ; each 
successive xJ+l is the residue of axj + b modulo 2M (i.e., the remainder 
when WJ + b is integer-divided by 2M). Given integers Z and Q > 0, we 
shall henceforth write 

R = <zl Q> <=> {0 ~ R < Q, R = z (mod Q)}. (3) 

(When, as here, Q = 2M and we perform a binary computation, such as 
is now universally used in digital computers, this residue is easily 
obtained, as the integer consisting of the M least significant bits of Z.) 
Therefore (2) will take the form: 
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(4) 

Many calculations using the Monte Carlo method (including 
those of particle transport alluded to above) involve the use of long 
sequences of pseudo-random numbers to generate sequential histories 
of flights and collisions, usually referred-to as random walks. By 
averaging appropriately-selected scores (functions of single random 
walks generated in this way) over large numbers of such random 
histories, it is possible to estimate the parameters of interest with 
considerable accuracy. 

It is clear that different random sequences will, in general, 
produce different random-walk histories; and these latter, in tum, will 
generally lead to different scores. While it is inherent in the Monte 
Carlo method that its results should show random fluctuations, it is 
extremely convenient to be able to reproduce a given computational 
result exactly, when we wish to do so. In particular, this is important 
in the initial 'debugging' stage of developing a new program (or 
program-module), when we need to separate the effects of desirable 
randomness from those of undesirable programming errors, so as to 
ensure that the program or module will do correctly what the 
programmer intends; and it is also useful when several runs must be 
made, to develop intentionally-correlated random samples, all 
depending on the same random walk. Some of these ends can be 
achieved by storing, and later retrieving, the values of the thousands, 
millions, or even billions, of random numbers required; but it is clearly 
much more convenient to redesign the random generator (algorithm) 
in such a way that no such mass-storage is required. The original 
invention of pseudo-random sequences was partly motivated by this 
need. 

When one attempts to refine the physics underlying a particle­
transport computation, by taking into account the concomitant 
generation and subsequent motion of additional particles or radiation, 
it is useful to compare the scores obtained with and without these 
refinements, for the same random walks. Since this leads to situations 
in which the random walks branch in a tree-like manner, requiring 
random sequences of differing lengths and unpredictable 
relationships, the problem becomes far more complex. We are now 
required to be able to generate a tree-structure of pseudo-random 
numbers, with good uniformity properties within each branch and 
good properties of independence between branches. In a typical 
conventional particle-transport calculation, usin:f non-branching 
random walks, we may compute some 103 - 10 random walks, 
averaging perhaps 102 - 104 steps each, with every step requiring 
around 10 random numbers; this adds up to a need for something of 
the order of 106 - 1010 random numbers. With current generators 
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having periods of the order of 1014, such a requirement is acceptable; 
and techniques are available to increase the periods (without 
unacceptably increasing the time required to generate the random 
numbers) to the order of 1 o60 or so. 

However, if our model is expanded to allow branching at every 
step, a comparable tree-structured calculation would, in principle, 
need perhaps 104 x 2 10 5 , or about 103000 random numbers. It is, of 
course, entirely out of the question, in any case, to use this many 
random numbers; since, according to current astrophysical thought, 
the calculation would hardly have begun when the Sun, in its red-giant 
phase, would consume the Earth, just a mere 1026- 1027 nanoseconds 
from nowf The problem is, rather, to provide theoretical access to 
suitably-distributed random numbers; so that they will be available as 
and when needed. The actual consumption of random numbers in a 
computation of this kind could hardly exceed some 1016 or so, unless 
computer technology makes rather remarkable progress even in 
comparison with its astonishing record; thus, we must rely on 
sampling techniques such as 'Russian roulette' to keep the overall 
needs down. Nevertheless, we must be able to generate those random 
numbers that we do need, with appropriate properties of distribution. 
The present development is an attempt to address this potential need. 
The problem was first raised by Warnock (see WAR 83, FRE 84) and 
useful suggestions of a general and heuristic nature were made by him 
as to its solution. In the present paper (expanding on ideas first 
presented in HAL 87), I propose a possible explicit approach to the task 
of generating a large number of branching pseudo-random sequences 
which are mutually independent in a rigorously specified manner. 

2. PRELIMINARIES 

For any positive integer n and real a, let 

S0 (a) = 0 and Sn(a) = 1 + a + a2 + a3 + ... + an-1. (5) 

This is consistent, since the sum Sn(a) has n terms. Then 

and 

Sn(a) = n, if a = 1, 

Sn(a) = (an - 1)/(a- 1), if a "# 1. 

Lemma 1. For any non-negative integer m and real z, 

(6) 

(7) 

S2 m(z) = (1 + z) Sm(z2 ). (8) 
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<<By (5). if m = 0, then (8) is immediate; and, otherwise, 

~m(z) = (1 + z) + (z2 + z3) + ... + (z2m-2 + z2m-l) 

= (1 + z) (1 + z2 + z4 + .. . + z2m-2); (9) 

which yields (8) at once.>> [Proofs will, throughout this paper, be 

enclosed between<< and>>.] 

Definition 1. If N is any positive integer, then we express the 
fact that another positive integer k is a factor of N [i.e., integer-divides 
it, without remainder] by the usual notation 

kIN. (10) 

We now see, in particular, that there is a unique non-negative integer 
u, such that ku divides N, but ku+l does not. We shall write 

(11) 

to express this situation. If v :s; u, then we also have, as in (10), that 

kV IN. 
We extend the notation (11) toN= 0 by writing, for any k > 0, 

IC"' 1t 0. 

(12) 

(13) 

The notation defined in (11) and (13) is slightly tricky: while k I N is 
a relation between two integers, k and N; ku 1t N is a relation between 
three integers, k, u, and N. When we use an abbreviation, such as 
"8 1t x", it will be understood to mean "23 1t x": the member on the 
left of the symbol 1t will always be a pure power of one uniquely 
determined k. Hereinafter, we shall particularly make use of the 
special case, when k = 2. 

Lemma 2. For any odd positive integer a, there are unique 
positive integers q and r, such that 

a = (2r - 1) 2q - 1. (14) 

~~Since a is odd, a + 1 is necessarily even. Thus, there is a 

unique maxi mum q for which 2q I (a + 1). and q :2:: 1. For this q , we 
h ave 2 q 1t (a + 1). Also, the quotient, when we divide (a + 1) by 2q, is 
odd ; whence it can be expressed uniquely in the form (2r - 1) . Th is 
immediately yields (14) .> > 
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Lemma 3. With a, q, and r defmed as in Lemma 2; if u ;;::: 0 and 
v ;;::: 0 are the unique integers such that 2u 11 n and 2v 11 Sn(a) , then 
v = u + q - 1: that is, 

2u+q-l 11 Sn(a) if and only if 2u 11 n. (15) 

<<By repeated application of Lemma 1, we get that 

Sn (a) = (1 + a) Sn;2(a2) = (1 + a) (1 + a2) Sn;4(a4) = . . . 
= (1 + a) (1 + a2) (1 + a4) . . . (1 + a2u-l) sn/2u(a2u). (16) 

Also, by (14), 2q 11 (1 +a), and q;;::: 1; and every binomial factor on the 
right of (16), after the first one, is of the form 1 + a 2 m, with integer 
m ;;::: 1. Since a is odd, either a = 1 or a = 3 (mod 4); whence a 2 = 1 
(mod 4): and, therefore, 

(V'm ;;::: 1) a2m = 1 (mod 4). (17) 

Hence, ('v'm;;::: 1) 1 + a2m= 2 (mod 4); i.e., ('v'm;;::: 1) 211 (1 + a2m). 
Therefore, the product of all the binomial factors on the right of ( 16) 
is divisible by 2 exactly q + (u - 1) times. Finally, we observe that, 
since a is odd by our hypothesis, every power of a is odd too; whence, 
by (5). the last factor on the right of (16) is the sum of an odd number, 
n/ 2 u, of odd numbers, and so must itself be odd. Thus, when u and v 
are defined as stated, v = q + u- 1, and (15) follows immediately.>> 

00 

Definition 2. If [x0 , x 1• x 2 • ... ] = [xJ]J=O is a sequence of 

numbers, and if we are given that, for some 0 ~ i <j, 

('v' k ;;::: 0) xJ+k = xt+k• (18) 

then we say that the sequence is periodic. If A is the least value of the 
difference j- i. for which (18) holds, then we say that the period is A. 

If his the least value of i satisfying (18) for j- i =A, we say that 
the periodicity starts at index h; and if h = 0, then we say that the 
sequence is completely periodic. 

00 

Note that, if the sequence [xJ]J=O is periodic, with period A, 

starting at index h; then, for any offset a, the same is true of the 
00 

sequence [xJ - a]J=O· 
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Lemma 4. Given that the sequence [x}J=O is periodic with 

period A., starting at index h. and given i andj, with i <j, satisfying the 

relation (18): it follows that J.l = j - i is an integer multiple of A. ; that is, 

A I J.l . (19) 

<<Since A. is minimal, we have 0 < A. ~ J.l. Because the sequence 

is periodic with period A., starting at index h: it is clear from (18) that 
xh+k = x(h+A.)+k = xh+(A.+kl = x(h+A.)+(A.+k) = xh+(2A.+k) = · : that is , by 
induction on integers r, 

('Vk ;::: 0) (V'r ;::: 0) xh+rA.+k = xh+k; (20) 

and, similarly, by (18) for i andj, by induction on integers s , 

('V k ;::: 0) (V' S ;::: 0) Xi+SJ.l+k = Xi+k" (21) 

Write n = max{i. h}, so that n ;::: h and n ;::: i; and replace k, throughout 
(20), by k + n- h and, throughout (21), by k + n- L Then, whatever 
is true with the resulting universal quantifiers, namely, (V' k ;::: h - n) 
and (V'k;::: i-n), is also true with the quantifier (V'k;::: 0): so that 

(V' k ;::: 0) ('V r ;::: 0) (V' s ;::: 0) Xn+rA.+k = Xn+k = Xn+SJ.l+k· (22) 

The Euclidean Algorithm Theorem states that, if r denotes the 
g.c.d. of positive A. and J.l (so that r I A. and r I J.l, and r is maximal) , 

there are integers u0 and v0 such that r = U0 A. + V0 J.l. Proof: <<Let 2 

be the set of all integers. The set e = {8 = UA. + VJ.l: U e 2, V e 2 }, has 
a subset e+ = {8 = UA. + VJ.l: U e Z, V e Z, 8 > 0}, which is non-empty, 
since 0 < A = 1 X A + 0 X J.l E e+ and 0 < J.l = 0 X A + 1 X J.l E e+. Let 1C = 
UoA. + VoJ.l be the least 8 E e+. Integer-divide A by K:; then A = OX+ p 

(where 0 ~ p < 7C), and so p = A - (J1C = (1 - <1Uo)A - CJVoJ.l E e. Since 

p < K:, and 1C is minimal in e+. p E e+: and therefore p = 0 (i.e ., 1C I A) . 
Integer-divide J.l by K:, to show, similarly, that K: I }.l: whence K: I y, since 
'Y is the maximal divisor. Since we also know that r I A, r I J.l , and 
1C E e: r I JC. Therefore, 1C = r. This proves the theorem.>> Now, Uo 

and v0 must have opposite signs, since we have that 0 < r ~ A. ~ J1,: so 
that there must be non-negative integers r0 and s 0 , such that either (i) 

r 0 A. - s0 J.l = r or (ii) s0 J.l - r 0 A. = y. In both cases, take r = r 0 and s = s0 
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in (22): then, in case (i), replace n by v- s0J.l; in case (ii), replace n by 

v- r0 A.. Either way, we see that 

(23) 

But this means that the sequence is periodic, with period at most y. 

Since A. is minimal, by Definition 2, we must have A. ~ y. Thus, y = A., 

and the lemma follows at once.>> 

This means that the period of a periodic sequence is unique. 

Definition 3. Given a semi-open interval [A, B) on the real line, 
and a set J of Q points z 1 < z2 < ... < zg in it, we say that the points 
are cyclically equally spaced in [A. B) if 

zh+l- zh = (B -A)/Q for h = 1, 2, .... Q- 1. (24) 

Note that this implies that (z1 -A) + (B- zg) = (B- A)/Q also. 
since zg- z 1 = (Q- l)(B- A)/Q. If we imagine the interval [A, B). with 
the points of J in it, wrapped around a circle; then these Q points 
would be equally-spaced around the circle. Note, too, that. if the set J 
is cyclically equally spaced in [A, B), so is any offset set of points zh- a 
(reduced, modulo B -A, to fall in the interval). 

Definition 4. Given a set J of Q points cyclically equally spaced 
00 

in an interval [A, B); if the sequence [x}J=O is periodic, with period A., 
00 

starting at index h. and if the set Ko = {x}J=h of values taken by the xj, 

once the periodicity is established, is a subset of J, with P distinct 
points in it, and P =A.; and if, further, these P values are also cyclically 
equally spaced in the interval [A, B); then we say that the sequence is 
uniform in J, with coarseness Q/P. 

Lemma 5. In the situation described in Definition 4, 

PI Q: (25) 

so that the coarseness of a uniform sequence is always a positive 
integer. 

<<The points of J may be thought of as equally spaced around a 
circle of circumference B - A; the points of K (which are also in J) are 
also equally spaced around the circle. Thus, there is an integer G, 
such that adjacent points of K have a spacing just G times as great as 
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that of adjacent points of J: that is, PG = Q: whence (25) follows . G is 
therefore the coarseness of the sequence in J.> > 

00 

Note that, if the period of the sequence l~h=o passes through all 

the points of J (that is, if P = Q), then the coarseness of the sequence 
in J takes its minimum possible value, namely, 1. 

Definition 5. Given a set J of Q points cyclically equally spaced 

in an interval [A, B): if two sequences [x};o and [xt};o are such, that 

00 

the difference-sequence, l~h=O• where 

(26) 

is periodic, and is uniform in J with coarseness G: then we say, by 
analogy with the definition of uniformity and coarseness, that the two 
sequences are independent with respect to J, and that their 
consonance is G. 

3. ANALYSIS OF LINEAR CONGRUENTIAL GENERATORS 

We are interested in generating a canonical pseudo-random 
00 

sequence l~}J=O of numbers in [0, 1), for use in Monte Carlo 

computations. We therefore want the ~J to take a large number of 
distinct values, distributed with near-constant density in [0, 1). Our 
present consideration will be limited to the linear congruential 
sequences, which are related through (1) to the integer sequences 

00 

[x}J=O defined in (2) or (4), with M a non-negative integer. This 

implies that, if we write (as we shall do henceforth) 

2M = Q, (27) 

then (Vj ;;:: 0) XJ e J = {0, 1, 2 , . . . , Q - 1}, (28) 

and therefore 

(Vj ;;:: 0) ~J E F = {0, 1/Q, 2/Q, . . . • (Q- 1)/Q}. (29) 
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In the terminology of Definition 3, the sets J and F are cyclically 
equally spaced, in the semi-open intervals [0, Q) and [0, 1), 
respectively. 

Note that we may assume, without loss of generality, that a and b 
are also integers selected from J. We further assume henceforth that 
a# 0. [If a= 0, then, clearly, by (4), for allj;;:: 1, ~ = b.] 

Lemma 6. The recurrence relation (4) is satisfted, for all n ;;:: 0, 

.xn = <anXo + Sn(a) bl Q>: 

where Sn(a) is defined as the sum in (5). 

(30) 

<<When n = 0, we know that an= 1 and the sum Sn(a) = O: so 
that, in fact, xn = anx0 + Sn(a)b. Suppose that the relation holds for 
n = k, say (this is initially true when k = 0). Then, by (4) with (3), we 
have that 

xk+l = <axk+ bl Q> = <a[akXo+ SJJa) b] + biQ> 

= <ak+l Xo + [a SJJa) + 1]b I Q>: 

and, by (5), it is easily seen that 

aSk(a) + 1 = Sk+ 1(a): 

(31) 

(32) 

whence the congruence will also hold for n = k + 1. The lemma 
follows by induction.>> 

00 

Lemma 7. The sequence [~]J=O is periodic, with period not 

exceeding Q. 

<<By (28), there are at most Q possible distinct values of xj; 

among the Q + 1 numbers Xo· x 1, X2· ... , xQ, there must be two values 
alike, and we can always further specify that all intermediate values 
different from these and each-other: xi= xJ, say, with 0 ~ i <j and 
xi, xi+l' xi+2, ...• xJ-l all different [if some intermediate value xk =xi, 
say, replace j by k: if two intermediate values xh = xk, say, replace i by 
h and j by k]. It is now clear from the form of (4) that (18) will hold, 
since each member of the sequence is determined solely and uniquely 
by its immediate predecessor, without regard to its position in the 
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sequence. Hence. the sequence is periodic and, by Lemma 4, j - i is a 
multiple of the period. which thus. clearly. cannot exceed Q.>> 

00 

Lemma 8. If a is any even integer, the sequence [x}J=O is 

periodic, with period 1 . 

<<we have already seen that the period is 1 when a= 0. For 

any even a. clearly aM = 0 (mod Q); so there will be a unique minimal 
h. such that ah = 0 (mod Q). If n ~ h; then. by (5). 

Sn(a) = Sh(a) + ah Sn-h(a) = Sh(a) (mod Q) . (33) 

Therefore. in particular. by (30) and (33). 

xh+1 = <ah+1 Xo + sh+1(a) biQ> = <sh(a) bl Q> 

= <ah Xo + Sh(a) bl Q> = xh; (34) 

whence. by Defmition 2. the sequence is periodic, starting at index h , 

with period L>> 

Of course. a period of length 1 is of very little use for the 
generation of pseudo-random numbers; so we shall henceforth assume 
that a is odd. 

00 

Lemma 9. If a is any odd integer, then the sequence [x}J=O is 

completely periodic. 

<<Consider the Q integers 1, a. a2 • .• •• aQ, reduced modulo Q. 
Their values must lie in the set J; so. arguing exactly as in proving 
Lemma 7, we see that we must have 0 ::::;; i < j ::::;; Q. such that < ai I Q> = 

<diQ>. while <atiQ>, <al+1 IQ>. <al+2 IQ> •...• <d-1 IQ> are all 
different. Thus. d - at = a~c::J-l - 1) must be divisible by Q; and since a 
is odd. it follows that Q I (af-t - 1); so that there must be a positive 
integer m = j - i::::;; Q. such that 

am = 1 (mod Q) . (35) 

By (2) and (35). we have that x1_1 = amx1_1 = am-1(x1 - b) (mod Q) ; so 
that. writing c = am-1 and d = -cb. we have 

('<tj ~ 1) x1_1 _ = cx1 + d (mod Q), (36) 
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or. by (3). ('Vj 2: 1) XJ-1 = < C!X_j + d I Q>. (37) 

Thus. each member of the sequence is determined solely and uniquely 
by its immediate successor. without regard to its position in the 
sequence. and the equation (18) also holds for negative k. so long as 
the index i + k 2: 0 . This extends the periodicity of the sequence 
(already established in Lemma 7) to the starting index 0. proving the 
present lemma.>> 

From now on. we shall always suppose that a is odd. satisfying 
(14) and thereby uniquely defining positive integers q and r. as stated 
in Lemma 2. Since we also suppose (without loss of generality) that 
a e J. we see. by (28). that 1 ~ (2r- 1) 2q - 1 ~2M - 1; whence r 2: 1. 
and therefore 2q ~2M. Since q 2: 1. we conclude that 

1 ~ q ~ M. (38) 

Now write (39) 

and. by appeal to Definition 1. put 

2c 1t b. 2 5 1t XO· 2d 1t (a- 1). and 2g 1t W. (40) 

Since (again without loss of generality) we also suppose that b e J and 
X(} E J, it now follOWS that, unless b = 0 (C = oo) Or X0 = 0 (S = oo), 

0 ~ c < M and 0 ~ s < M; (41) 

and. since a is odd. a - 1 is even. whence d 2: 1. 

Lemma 10. The period A. of the completely periodic sequence 
00 

[-X_j]J=O is given by 

A. = 2u. where u = max{O. M- g- q + 1}. (42) 

and g is defined uniquely by (39) and (40). 

<<By Definition 2 and (30). A. is the leastj for which 

(43) 

If a:¢: 1. by (7). a1 x0 - x 0 = S}a) (a - 1) x0 : whence. by (3). (39). and 
(43). 

S}a) W = 0 (mod Q). (44) 
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If a = 1, we note that W = b, and so (43) implies (44) directly. Thus 
(44) is true for all a. Therefore, either 

W = 0 (mod Q) (45) 

(i.e., g ~ M, including the possibility that W = 0 and g = oo): or g < M, 
and 

(46) 

If (45) holds, then clearly, by (4) and (39), x 1 = x0 : so that A = 1. 
Thus, u = 0 and M- g- q + 1 s 0 [since, by the assumption of (45) , 
g ~ M, and, by (38), q ~ 1]: so that (42) is satisfied. 

If, instead, g < M and (46) holds, we observe that, by Lemma 3, 
2u+q-1 1t S}a) if and only if 2u 1t j: whence there is an integer u ~ 0, 

such that u + q - 1 ~ M - g and 2u 1t A. Thus, since the period A is 
minimal, u will be the least non-negative solution of 

A = 2u and u + q - 1 ~ M - g. 

Clearly, this is given by (42).>> 

Lemma 11. With g defined by (39) and (40): 

(i) if c < s + d, then g = c: 

(ii) if c = s + d, then g > c: 

(iii) if c > s + d, then g = s + d. 

(47) 

<<By (40), 2s+d 1t (a - 1)x0 and 2c 1t b. Write (a - 1)x0 = 2s+d U 
and b = 2c V, where U and V are odd integers. By (39), there are now 
three cases, characterized as in our lemma. (i) If c < s + d, then 
W= <(a- 1)XQ + bl Q> = <2c{2s+d-c U + V} I Q> = 2c X1, and the factor 

X 1 is odd: so that g = c. (ii) If c = s + d, then W = <2c{u + V} I Q> 
= 2c X2 , and the factor x2 is even, being the sum of two odd numbers: 

so that 2c+ 1 I W (that is, g > c). (iii) If c > s + d, then W = 

<2s+d{u + 2c-s-d V} I Q> = 2S+d x3. and the factor x3 is odd: so that 

g = s +d.>> 

The value of M is mainly machine-dependent (M = 48 is typical 
of 'supercomputers', and then Q = 248 = 2.8 x 1014). As we shall see 
later, it is not always possible to control the parity of b: but we can, 
and do, control the value of a (and thus the parity of a - 1). We 
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naturally seek to make the period of the sequence as long as possible. 
The absolute maximum is clearly Q = 2M, but this cannot always be 
attained. Referring to Lemma 10, we see that both q and g should be 
as small as possible; and, since, by (38), q ~ 1, we stipulate that 

q = 1. (48) 

By the definition (14) of q and r, this is equivalent to a= (2r- 1)2 - 1 
= 4(r - 1) + 1; so that 

a = 1 (mod 4). (49) 

By the definition (40) of d, we have that, for some integer r', 

a = (2r' - 1)2d + 1 (50) 

[compare (14)], which implies that 

a = 1 (mod 2d). 

Now, we have (above) that a - 1 = 4(r- 1); so that, by (50), 

d ~ 2. 

(51) 

(52) 

Conversely, by (50), if we assume (52), a - 1 = (2r' - 1)2d = 4r'', which . 
implies (49); further, a = (2r'' + 1)2 - 1, which yields (48), l?Y (14) .] 

First, let us consider what happens when b -:F. 0. 

Lemma 12. Under the conditions of Lemmas 10 and 11, if we 
impose the restrictions (50) and (52) on the parameter a and suppose 
that b -:F. 0, then 

(i) if c ~ s + d- 1, the period of the sequence is 2M-c ~ 2; 

(ii) if c = s + d, the period of the sequence is max{l, 2M-g}, 
where g ~ c + 1: 

(iii) if c ~ s + d + 1, the period of the sequence is 2M-s-d ~ 4 . 

<<As we have seen, (50) and (52) imply that q = 1. Thus, (42) 
reduces to 

ll = 2u, where u = max{O, M - g}; (53) 

and the three cases of Lemma 11 are the same as those of the present 
lemma. 

(i) If c ~ s + d - 1, then g = c. By (41), since b -:F. 0, c < M, and 
it follows that M- g = M- c ~ 1; so that, by (53), ll = 2M-c ~ 21 = 2 . 
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(ii) If c = s + d, then g > c; and, by (53), A = ~ax{1, 2M-g}. 

(iii) If c;::: s + d + 1, then g = s + d. Since b "# 0, by (41) and our 
hypothesis, s + d < c < M, so we get that M- g = M- s - d ;::: 2; so 
that, by (53), A= 2M-5-d;::: 22 = 4.>> 

Now we turn to the omitted case, when b = 0 and c = oo . By (4) 
or (30), we see that 

(54) 

Therefore, if x0 = 0, every xn = 0 too; so that A = 1. If, on the other 

hand, x0 "# 0, so that 2 5 1l x0 , with 0 ~ s < M; we can write x0 = 2 5 co0 , 

where co0 is odd, and we see that (since a is odd) 2 5 1l xn too; so that, 
for all n, 

where con is odd. Thus, (54) reduces, on division by 25 , to 

con = <an coo I2M-5>. 

(55) 

(56) 

We are therefore led to examine the dependence on m = M - s of the 
00 . 

period Am of the sequence [ co}J=O with co0 (and therefore all the co} 

odd, when all numbers are reduced modulo 2m. By (56), this problem 
is seen to be equivalent to that of finding the least n for which 

an = 1 (mod 2m) . (57) 

By (50) and (52), and since, clearly, if u ;::: v, 

X = Y (mod 2u) => X = Y (mod 2V); (58) 

it follows that the Am are nondecreasing as m ~ oo, and that 

(59) 

As a further preliminary, we need the following result. 

Lemma 13. When a satisfzes (50) and (52), the least value of n 
for which (57) holds is 2m-d, for all m;::: d. 
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<<Since Am is the least n for which (57) holds; for each m, 
there is an integer qm, such that 

(60) 

Suppose it known that Am = 2m-d for all d ~ m ~ h; by (59), this is 

certainly true for h = d. Putting Ah = 2h-d in (60), we get that 
a2h-d = I + qh 2h; and, on squaring, this yields 

a2h+l-d = (a2'42 = (I + qh 2 h)2 = I + qh 2 h+l + qh2 22h. 

Therefore, since h -:2 d -:2 2, by (52); we get that 

a2h+l-d = I (mod 2h+1); (6I) 

whence Ah+ 1 ~ 2h+ 1-d. Further, since the Am are nondecreasing, we 

get A.h+l -:2 Ah = 2h-d. If we let X= Ah+ 1 - 2h-d, so that 0 ~X~ 2h-d, 

then 

aA-h+l = aX+2h-d = aX a2h-d = aX (I + qh 2h]. (62) 

Let aX= Y + s 2h, with 0 ~ Y < 2h. Then aA-h+l = (Y + s 2h) (I + qh 2h) = 
Y + (Yqh + s )2h = Y + z2h (mod 2h+ 1), where Z = <Yqh + sl2> is 

0 or 1. Since dA-h+l = I (mod 2h+ 1) and 0 ~ Y < 2h, it is clearly 
necessary that Y = I and Z = 0; so that aX = I (mod 2h); whence 
X -:2 2h-d. Since we also have X~ 2h-d, it follows that X= 2h-d; whence 
Ah+ 1 = 2h-d + X = 2h-d + 2h-d = 2h+ l-d. The lemma now follows by 

induction.>> 

Lemma 14. When a satisftes (50) and (52) and b = 0, the 
period of the sequence [x);o is max{ I, 2M-s-d}. 

< < (i) If x0 = 0, s = oo and, as we have seen, A = I, agreeing with 
the lemma. (ii) If x0 '# 0 and M- s- d ~ 0; then I ~ M- s ~ d, by (4I). 

Since m = M - s in (57), we get by (59) that A = AM-s = I, again 
agreeing with the lemma. (iii) Otherwise, x0 '# 0 and M - s - d > 0, 

and the lemma asserts that the sequence [~];o has a period 2M-s-d. 

00 

Now, the period of the sequence [x)J=O• given by (54), is clearly, by 
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00 

(55) and (56), the same as that of the sequence [ro}J=O with ro0 odd; 

and this, in turn , equals the least n for which (57) holds , when 
m =M-s. By Lemma 13, this is 2M-5-d, completing the proof of our 

lemma.>> 

Lemmas 12 and 14 show the general desirability of using odd 
values of b. Then, c = 0, and we are in Case (i) of Lemma 12, with 
A= 2M, the optimal situation. However, as we shall see later, this will 
not always be possible to achieve. 

It is interesting to see under what circumstances the least 
desirable situation (namely, when A= 1) occurs. We already know, by 
Lemma 8, that this can happen when a is even. Lemma 12 now tells 
us that, when a is odd and satisfies (50) and (52), and b ~ 0, it can only 
happen in Case (ii), when c = s + d. Let us write 

Xo = 2M - 8, a - 1 = 2M - a, b = 2M - {3; (63) 

where, by (50), a = 2d (2U - 1) with 1 s;; Us;; 2M-d-l; and, since b and 
x0 are in J, {3 = 2 5 +d (2V- 1) with 1 s;; V s;; 2M-5-d-l~ and 8 = 2 5 (2X- 1) 
with 1 s;; X s;; 2M-5 - 1 . Then, by (39), 

w = <22M- 2M (a+ 8- 1) + a8- f31 Q>. (64) 

and therefore, by (53), we get that A = 1 if and only if g :2: M; i.e ., if and 
only if 

{3 = a8, or V = 2UX- U- X+ 1. (65) 

Finally, Lemma 14 tells us that we can have A= 1 when b = 0, either if 
x0 = 0 or if xo is a multiple of 2M-d. 

00 

Lemma 15. If the sequence l~h=o is generated by (4), with the 

parameter a odd, then, given (40), we have that 

(a)ijcs;;s-1, ('ifj:2: 0) {2c+liX2J and 2c'fl'X2J+l}; 

(b) ifc=s, ('ifj :2: 0) {2c1l'X2J and 2c+ll X2J+l} ; 

(c) if C :2: S + 1 or C = S = oo, ('ifj :2: 0) 2 5 'fl' x1. 
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<<For all j ~ 0, define the powers ~ by 

2~ 1l' x1. (66) 

Then, by (4), since a is odd, 2~ 1l' ax1, and, by (40), 2c 1l' b. We recall 
that it is possible for b or any JC_j to vanish, yielding that c = oo or ~ = oo, 

respectively [see (13)]. Using an argument exactly analogous to that 
used in proving Lemma 11, we see that (i) if b = x1 = 0, then c = ~ = oo, 

and, in fact, every xn = 0 (including x0 = 0): so that s = oo and (Vj ~ 0) 

2 5 1l' x1: (ii) if c < ~· then 2c 1l' x1+1: (iii) if c = ~· then x1+ 1 must be an 

even multiple of 2c, so that 2c+ 1 I x1+ 1: and (iv) if c > ~· then 2 ~ 1l' JC_J+ 1 . 

Thus, 

~ > c ~ ~+ 1 = c: ~ = c ~ ~+ 1 > c: ~ < c ~ ~+ 1 = ~· (67) 

But the sequence l9;o begins with t0 = s: whence the lemma follows 

immediately.>> 

Lemma 16. Given M :> 0, with Q =2M and L = [0, Q): define the 
00 

set J by (28), and let the sequence [xJ]J=O be periodic, with period A, 
00 

starting at index h. Let the set KQ = {x} J= h• of values of the JC_j· once 

the periodicity has started, be a subset of J, consisting of just A 
00 

distinct values. Then a su.fftcient condition for the sequence [x}J=O to 

be uniform in J, is that there be integers a and p, with 0 ~ p ~ M, such 
that 

A = 2M-p and (Vj ~ h) 2P I (x1 - a). (68) 

<<Since the sequence [JC_Jl;o is periodic, with period A, starting 

00 

at index h; the sequence [x1 - a]J=O• offset from the first by -a, is also 

periodic, with the same period A, starting at the same index h, as is 
noted after Definition 2. That the set K 0 has just A distinct elements 

00 

indicates that the period has no repeated values. Let Ka = {x1 - a}J=h 

be the set of periodic offset values, reduced modulo Q; clearly, these 
are also just A in number. If we write 
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J 0 = J and JP = {r2P: 0 ~ r ~ 2M-p- 1}, (69) 

then JP is obviously the set of all integer multiples of 2P in J (and so in 
L). Hence, the total number of such multiples is 2M-p, and JP is 
cyclically equallJ- spaced in L (by Definition 3, since adjacent points are 
2P = (Q - 0) /2 -p apart). If (68) holds, then Ka is clearly a subset of 

JP' since 2P divides every JC_J- a; and so, since A.= 2M-p, Ka must equal 
J p· Thus, Ka is cyclically equally spaced in L: and therefore so is the 

original set K0 , offset from Ka by +a, as is noted after Definition 3 . 
00 

Thus, by Definition 4, the sequence [x}J=O is uniform in J, with 

coarseness Q/A..>> 

00 

Lemma 17. The period A. of the sequence [x}J=O generated by 

00 

(4) equals the number P of distinct values in the set Ko = {x}J=h· 

<<we refer to the proof of Lemma 7. The j - i values xi, xi+ 1 , 

Xi+2' ... , XJ-1 are all different, and thereafter the values repeat, 
because, by (2) or (4), equal predecessors in the sequence have equal 
immediate successors, and because xt = JC_j· Thus, P = j - L Therefore, 
by Lemma 4, P is a multiple of A.. But, since all P values in the above 

list differ, IL cannot be less than P; whence A.= P.>> 
In Lemmas 9, 10, 12, 14, 15, 16, and 17, we have now 

marshalled all the facts we need to prove our main result. 

Theorem 1. Given the set J defined in (28) and the sequence 
00 

[x}J=O generated by (4) with parameter a satisfying (50) and (52): the 

sequence is uniform in J, in the sense of Defmition 4. When g is 
defmed by (39) and (40), the coarseness of the sequence is given by 

(i) 2C, if C ~ S + d- 1; 

(ii) min{2M, 29}, if c = s + d: 

(1.1·1·) m1'n{2M, 2s+d}, if > d 1 t c _ s + + or c = s = oo, 
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<<Lemma 9 tells us that the sequence [x)_i=o generated by (4) 

is completely periodic, since the parameter a is odd; and Lemma 1 7 
tells us that the number, P, of distinct values of JC_J in the period of the 

sequence equals its period, A (i.e., the period consists of A different 
values, with no repetitions). Lemma 16 gives sufficient conditions for 
the sequence to be uniform; and, in the present case, all of that 

00 

lemma's preliminaries are satisfied, with h = 0 and Ko = {x}J=O• so that 

I K0 I =A, as required. By (53) [see Lemmas 10 and 12], A takes the 
form 2u with 0 ~ u ~ M; which translates, if we write u = M- p, into 
the first part, A = 2M-p, of the condition (68) of Lemma 16. Further, 
Lemmas 12 and 14 specify the corresponding values of p. Therefore, 
the second part of the condition (68), which becomes 

('Vj :2: 0) 2P I (~-a), (70) 

alone remains to be verified, with the help of Lemma 15. Given that 
the sequence is indeed uniform in J, it then follows from Definition 4 
that the coarseness of the sequence is Q/P = Q/A = 2M12M-p = 2P. An _ 
examination of Lemmas 12, 14, and 15 indicates that there are six 
cases to be considered. Necessary correspondences between cases 
are shown in Table 1, below. 

TABLE 1 

Case Lemma 12 Lemma 14 Lemma 15 

(I) c ~ s - 1 (i) p = c < M (a) 

(II) c = s (i) p = c < M (b) 

(III) c :2: s + 1 and 

c~s+d-1 (i) p = c < M (c) 

(IV) c=s+d<g (ii) p = min{M, g} (c) 

(V)c:2:s+d+1 (iii) p = s + d < M p = min{M, s + d} (c) 

(VI)c=s=oo p=M (c) 

(I) If c ~ s - 1, then we have Case (a) of Lemma 15: members 
00 

x2J of the sequence [x)J=O are even multiples of 2c, and members x2J+ 1 

are odd multiples of 2c; so all xJ are multiples of 2c. Thus, (70) holds, 
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. " 

if we take a= 0 and apply p = c (from Lemma 12). The sequence is 
therefore uniform in J, with coarseness 2c. 

(II) If c = s, then we have Case (b) of Lemma 15; members x 2J of 
the sequence are odd multiples of 2c. and members x2J+l are even 
multiples of 2c; so that, again, all xJ are multiples of 2c; whence, as 
before, since p = c, the sequence is uniform in J, with coarseness 2c. 

In all remaining cases, we have Case (c) of Lemma 15: all the JC_j 

are odd multiples of 25 • 

(III) If s + 1 s c s s + d - 1, then, once more, p = c. Now, every 
odd multiple of 2 5 clearly equals 2 5 plus some multiple of 2 5 + 1 = 2c; 
thus, if we take a = 2 5 , (70) follows; so that the sequence is, once 
again, uniform in J, with coarseness 2c. This completes the proof of 
Part (i) of our theorem. 

(IV) If c = s + d then, by Lemma 12, p = min{M, g}, where g is 
defined by (39) and (40). By Lemma 6, with equation (5), 

JC_J = <Xo + (al- 1)Xo + S}a)b I g> = <Xo + S}alWI Q>. (71) 

It follows from this that every JC_J- x0 is divisible by the g.c.f. of 2g and 

2M, i.e., by 2P. Taking a = x0 , we see that (70) holds; whence the 

sequence [x}_i=o is uniform in J, with coarseness 2P = min{2M, 2g} . 

This proves Part (ii) of our theorem. 

(V) If c;;:: s + d + 1, then p = min{M, s + d}, by both Lemmas 12 
and 14. In Lemma 12, Case (iii), we have shown that M- s- d;;:: 2; so 
that, if p = M s s + d, then we must have b = 0, as treated in 
Lemma 14, and therefore 1 s M- s s d [since we are not in Case (VI) 

(i.e., x0 '# 0) s < M]. In this case, A. = 1, and therefore all the xJ are 
equal: whence we see that every xJ - x 0 = 0, which is divisible by 2M. 

Thus, taking a= x0 , we derive (70): whence our sequence is uniform 
in J, with coarseness 2P = 2M = min{2M, 2 5+dJ. 

If p = s + d < M, on the other hand, then, by (52), M- s > d;;:: 2 . 
Let us write 

JC_j = 25 JS· (72) 

where every }[_j is an odd number. Then, by (2), 

JS+l = a}[_j + 2-5 b (mod 2M-5), (73) 
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.. 

with 2 -s b divisible by 2d [recall that, in the present case, c ~ s + d + 1, 
and that, by (40), b is divisible by 29. Hence, by (51), 

JS+l = K.J (mod 2d); (74) 

so that all the XJ are not only odd, but congruent to the same odd 
number, modulo 2d. This means that every -X_} equals Xo = 2 5 XQ plus a 

multiple of 2s+d = 2P. Taking a = x0 , we see that (70) holds, and 
00 

therefore, again, the sequence [-X_}]J=O is uniform in J, with coarseness 

2P = 2s+d = min{2M, 2s+d}. 

(VI) Finally, if c = s = oo, then, as we have seen, every xJ = 0; 

whence A. = 1 and so p = M. By the same token, (70) holds for a = 0; 
so that our sequence is indeed uniform in J, with coarseness Q. This 
completes the proof of our theorem.>> 

00 

Corollary 1. The coarseness of the sequence [-X_}]J=O• defined as 

in Theorem 1, attains its minimum possible value, namely, 1, if and 
only ifc = 0. 

<<It is clear from the definitions (39) and (40) underlying 
Theorem 1 that s ~ 0 and c ~ 0. In Case (i) of the theorem, the 
coarseness 2c = 1 only when c = 0; implying that s + d - 1 ~ 0 and 
thus in no way restricting the allowable values of s [since s ~ 0 anyway, 
and, by (52), d ~ 2]. In Case (ii), g ~ c + 1 = s + d + 1 and the 
coarseness is min{2M, 29}. Now, by (52), g ~ d + 1 ~ 3, since s ~ 0, 
and 5 ~ 2d + 1 ~ a = (2r - 1) 2d + 1 < 2M, by (50) and since a e J; 
whence 

M~3. (75) 

Thus, either way, the coarseness is at least 8. In Case (iii). similarly, 
by (75) and because s ~ 0 and d ~ 2, the coarseness min{2M, 2s+d} is at 
least 4. Thus, the absolutely best coarseness, 1, is attained when and 
only when c = 0 [in Case (i)].>> 

Corollary 2. Given the set F defined in (28) and the sequence 
00 . 

[g}J=O• defined by (1) and (2), with parameter a satisfying (50) and 

(52); the sequence is uniform in F, in the sense of Definition 4, and 
the coarseness of the sequence is given by the values in Cases (i) , (ii), 
and (iii) of Theorem 1. 
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.. 

<<Both sets, J and F, have Q members (points) and are 
respectively cyclically equally spaced, in [0, Q) and [0, 1) . The 

~ ~ 

sequence [x}J=O stands in the same relation to J as does [ c;}J=O to F, 

~ ~ 

and the corresponding sets K 0 = {x}J=O and K1 = {c;}J=O both have just 

A, members. Thus, by Definition 4 and Theorem 1, the corollary 

follows.>> 

We have now collected sufficient information, on the uniformity 
properties of linear-congruential pseudo-random sequences, to enable 
us to move on to the main purpose of our study; namely, the 
generation and analysis of tree-structured families of generators. We 
shall discover that the results, embodied, for the most part, in 
Theorem 1 and its corollaries, which tell us about the uniformity and 
coarseness of a single sequence, suffice to analyze the properties of 
independence and consonance between members of families of such 
sequen<:es. 

4. TREE-STRUCTURED FAMILIES OF GENERATORS 

We now proceed to consider tree-like branching processes. We 
take particle-transport problems as important and typical paradigms. 
The model often used has steps representing the rectilinear (or, in 
the presence of effective force-fields, curved) particle flight across 
empty physical space (using a statistical Poisson distribution of path­
length, determined by the ·mean free path' parameter); alternating 
with steps representing ·collision' events, terminating such free 
flights. Collision events include elastic or inelastic rebound-collisions 
and various nuclear reactions, which often generate new particles (of 
matter or radiation); these last lead to a branching of the particle 
histories. The creation of •virtual particles' (used, for example, in the 
Monte Carlo ·particle-splitting' technique, and in obtaining Monte 
Carlo scores at small-aperture detectors) also leads to branching. 
Since each step in a particle-history (or random-walk) may typically 
require about 10 random numbers, we may expect our pseudo-random 
sequence to entail branching at every T-th term, where T is of the 
order of 10. While it is certainly feasible to allow branching at every 
random number, it is likely to be more economical to pick such a T 
and only allow branching at every T-th step of the random sequence. 
The price we pay is that T must be an over-estimate, so as to ensure 
that, at least, most of the time, T random numbers suffice to compute· 
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a random-walk step [if more are needed, in a particular step, then we 
must allocate an integer multiple ofT random numbers to this step]; 
thus, quite a few random numbers will be wasted in the process. 

Before we can move forward, we must consider the behavior of 
00 

the sequence [xT_1, x 2T_1, x 3T_1, x 4T_1, . .• 1 = [xJT_1]J= 1 corresponding 

to the branch-points of the process (xJT- 1 is the current pseudo­
random number last obtained, when T numbers have been generated 
and a branch may occur). 

00 

Lemma 18. The behavior of the sequence [xJT-111=1 of branch-

points is given by 

(76) 

when we write 

A = <aT I Q>, B = <S-rfa)b I Q>. and }(_] = x.JT-1. (77) 

<<By Lemma 6, the .relation (30) holds; so that, -using (5), we 
see that, modulo Q, 

xU+1lT-1 = aU+1)T-1 XO + SU+1)T-1(a) b 

_ aU+1)T-1 X0 + (aU+1)T-2 + aU+1)T-3 + ... + a2 +a+ 1) b 

_ aT [ aJT-1 xo + (afT-2 + afT-3 + ... + a2 +a+ 1) b] 
+ (aT-1 + aT-2 + aT-3 + . . . + cP- +a+ 1) b 

- aT ( aJT-1 XQ + SJT-1 (a) b) + S-r{a) b 

- aT x.JT-1 + S-r{a) b. (78) 

With the notations of (3) and (77), (78) takes the form (76).> > 

The recurrence relation (76) is exactly of the same form as (4); 
so that all our earlier analysis applies here. By Corollary 1, we observe 
that odd values of Bare preferable; and, clearly, by (77) with Lemma 3 , 
B will be odd, if and only if both b and T are odd. It is easily seen, by 
(51), that 

(79) 
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00 00 

that an equally-spaced subsequence [xJT-1]J= 1 of [xJ]J=O may well be 

what we are really dealing with. 

The recurrence relation (4), with parameters a, b, and x0 (we 
take Q and M as fixed), generates a linear-congruential sequence 

00 

[x}J=O of integers in J. It constitutes a pseudo-random generator, 

which we may denote by <I>= i)(a, b, Xo). Having analyzed the periodic 
behavior and uniformity of a single linear congruential sequence, we 

00 

can now consider a pair of such sequences: (i) [x}J=O• with generator 

<I> = S) (a, b, x0 ). characterized by (4), and (ii) [xt}j:0 • with generator 

<I>t = i)(at, bt, xto). say, characterized by 

(80) 

00 

We may now define the difference-sequence [~]J=O as we did in (26); 

and observe at once that 

('Vj;;:: 0) ~+ 1 = <~+(a- at)xtJ + (b- bt) I Q>. (81) 

Further, by applying (71), we see that 

8n = < 80 + Sn(a) [(a - 1)Xo + b] - Sn(at) [(at - 1)xt 0 + bt] I Q> 
(82) 

where wt is the counterpart, for the generator <I> t , of W, defined in 
(39). This formula is rather difficult to analyze for the period and 
uniformity of the difference-sequence; but a particular case proves to 
be more tractable. Suppose that we restrict our consideration to 
at= a; then 

(83) 

which is exactly similar to ( 4), except that b is replaced by {3 = 
<b- bt I Q>. It follows that all the results obtained so far (up to and 

00 

including Theorem 1 and its corollaries) for the sequence l~h=o apply 
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00 

also to the sequence [8}J=O· It is just another linear-congruential 

sequence, whose generator may be written as~= ~(a, [3, 80). 

All this can now be generalized to a family of generators, which 
we may denote by <t>J.l = ~(aJl' bJl' xJ.l0), with parameters aJ.l, bJ.l, and xJ.l0' 

satisfying 

(84) 

We restrict our consideration, by taking ('v',u) aJ.l = a, and write 

f3J.lv = <bJ.l- b) Q> and 8J.Lv) = <xJ.LJ - xv) Q>. (85) 

Then (86) 

It is reasonable to minimize the coarseness of each individual 
sequence; and, by Corollary 1, the absolute minimum, 1, is attainable 
when and only when every ·cJ.L = 0, i.e., every bJ.l is odd. The values of 
the parameters xJ.l0 and a, subject .only to (50) ai_ld (52), are arbitrary. 
This means that we have at our disposal fully half of all possible linear­
congruential sequences; altogether 2M-I sequences, for each choice of 
x0 , when a is fixed. However, this does entail that every f3J.Lv will now 
be even. (There is no choice of the bJ.l which will permit us to get all 

odd f3J.Lv'l 

Now let us consider the kind of branching random walk for 
which the present study is intended to provide effective pseudo­
random generators. In Figure 1, we see the frrst five levels of a binary 
tree with the nodes numbered in a simple, systematic manner. The 
caption explains the system. From any odd-numbered node, say 
Nf = 2,u + 1, (,u = 0, 1, 2, ... ), we define a random walk, or sequence 
o nodes, 

TJ.l = [NJ.l ~ 2NJ.l ~ 4NJ.l ~ .. . ~ 2mNJ.l ~ .. . ], (87) 

obtained by taking the left-slanting branch at every node (i.e., going 
from parent to left-child, every time), which will correspond, for 
example, in the case of a particle-transport problem, to the history of 
a single particle. 
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Level2 

Level3 

Level4 
16 17 l8 19 20 21 22 23 24 25 26 Z1 28 29 30 31 

FYnJre 1. 

Binal'y Tree Structure. 

Level khas 2k nodes, numbered 2k, 2k + 1, 2k + 2, . . . , 2k+l- 1. Children of 
node number n are nodes numbers 2n (on left) and 2n + 1 (on right). Left 
branches are shown thicker: they denote continuing random walks, 
generated by single linear-congruential generators. 

Associated with the walk rw there will be, at each node, an array 
or other data-structure, giving the properties of the corresponding 
event, e.g., of a collision in the particle-history. The statistical 
samples occurring at every node of the random walk will be computed 
using pseudo-random numbers coming from a single generator of type 
<I» f.l = ~(a, bJ.l.' xf.l0). satisfying (84), with parameters xf.l0• bJ.l.' and af.l = a , 
satisfying (50) and (52). When an additional particle is generated at 
node number v, this will correspond to taking a right-slanting branch, 
to the child-node numbered Nv = 2v + 1, where a new pseudo-random 
generator <~»v = ~(a, bv• xval. with parameters a, bv• and xvO, initiates a 
concurrent history, rv. 

Since it is typical that branching does not actually occur at every 
node (and, indeed, since, as has been explained in § 1, it would be 
totally impossible, in practice, to perform the computations needed if 
every branch did occur), it is of great practical utility, that the 
generator <~»v. needed on branching at node number v, should be 
identified by appeal only to the index v, or, at worst, to a small number 
of parameters computed and stored at the node v. 
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Suppose that 

2m 1l' v, so that v = 2m(2J1 + 1), (88) 

since such is the form of all nodes on the random walk r J.l' Then we 
may associate, with the node v, a record, 

(89) 

consisting of (i) the current node number, v = 2mNJ.L (whence both m 
and J1 can be uniquely determined); (ii) the value of the parameter bJ.L 

of the current generator <I> J.L (remember that the parameter a is 
supposed to be common to all random generators in this scheme, or 
family); and (iii) the current random number xJ.Lm' We now begin the 

new random walk r v• with new parameters, bv and xvo• and the 
particular scheme that we adopt is specified when we define the 
functional relationships between these new parameters and the 
record: 

bv = 1J(2mNJ.L' bJ.L' XJ.Lm) 

xvO = X(2mNJ.L' bJ.L' XJ.Lm) 

This can also be formalized by putting: 

= 1J(Ry)} 
= X(R) . 

(90) 

RNv = (Nv, bv, Xva) = n(2mNJ.L' bJ.L' XJ.Lm) = n(Rv). (91) 

The mapping n (or, more explicitly, the functions 1J and X 
comprising it) determine the particular algorithm we choose. 

Consider, first, the relationship between two segments of the 
00 

same random sequence [xJ]J=O· If the separation between them is H, 

say, then we may take 

(92) 

so that, by (83) with bt = b, we see that the sequence [~1}:0 defined in 

(23) has generator ~= i)(a, 0, x0 - xH). 
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Lemma 19. Given the set J defined in (28), the sequence 

[x};o generated by (4) with parameter a satisfying (50) and (52), and 
00 00 

given any positive integer H; the sequences [x}J=O and [x}J=H (which 

differ only by the positional offset H) are independent with respect to 
J, in the sense of Definition 5. When c, s, d, and g are defined by (39) 
and (40), and 

2K 1l H, (93) 

the two sequences have consonance min{2M, 2K+g+d}. 

<<Applying Theorem 1 to the generator /1, we see at once that 

the sequence [8}.i=o is uniform in J; and therefore, by Definition 5, we 

00 00 

immediately conclude that the two sequences [x}J=O and [x}J=H are 

independent with respect to J. Since, by (13), 200 1l 0, and the second 
parameter of the generator is 0, the correspondi~g 'power of 
divisibility' of that parameter is oo; so that, by Theorem 1, the 

coarseness of [~J.i=o is G = min{2M, 2a+d}, where d is defined by (50) 

and (52), and a is defined by 2a 1l (x0 - xH). Hence, by Definition 5, 
00 00 

the consonance of [xJ]J=O and [xJ]J=H is G. 

Now, by (15) with (48), 2K 1l SH(a); by (39) and (40), 2g 1l W; 

and, fmally, by (71), x0 - xH = < -SH(a)WI Q>. Therefore, we see that 

a= 1C + g; and so G = min{2M, 2K+g+dJ.>> 

Just as we stipulated, first, that the parameter a be odd, and 
then that it should satisfy (50) and (52)., so as to minimize the 
coarseness [that is, maximize the uniformity] of the individual 
sequences; so we now seek to minimize the consonance G of a pair of 
sequences. To this end, we may minimized, subject to (52), by 

d = 2, (94) 

so that, by (50), this is equivalent to a = (2r' - 1)4 + 1 = 8(r' - 1) + 5 , 
or 

a = 5 (mod 8). (95) 
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Corollary 3. Under the conditions of Lemma 19, if we impose 
the additional constraint (95). and choose the parameter b to be odd; 
then the consonance of the two sequences becomes min{2M, 2n2}. 

<<Since (95) is equivalent to (94), direct substitution of 2 for d 

in the formula given by the lemma yields G = min{2M, 2K+g+2}. Since b 
is made odd, so that c = 0, we have c < s + 2 = s + d, by (94); whence 
Case (i) of Lemma 11 yields that g = c = 0. The corollary now follows 
immediately.>> 

Warnock (see WAR 83) proposes, in our notation, that all 
'left-slanting' generators <t>J.l. should share common parameters a and b. 

Thus, his function of type :8, say :Bw, is the projection of the second 
argument, unchanged: 

(96) 

His function of type X, say Xw. applies a step of type (4). with its own 
independent parameters, at and bt, say, to go from the last random 
number xJ.Lm to the fir.st one of the new sequence: 

x\-Q = "w(2mNJ.l.' bw xf.l.ml = <atxJ.l.m + bt I Q>. (97) 

Since all the left-slanting generators in Warnock's scheme have 
the same parameters a and b, if we select a satisfying (95) [and so (50) 
and (52)] and b odd [c = 0]; then, by Corollary 1, all the resulting 
sequences will be uniform in J, with minimal coarseness 1. Thus, the 
period has length Q; that is, every value in J occurs in each such 
sequence. Consequently, all the possible sequences are just positional 
offsets of each other; and therefore, by Corollary 3 , if a pair of such 
sequences has positional offset H satisfying (93), it will exhibit the 
consonance min{2M, 2n2}. 

Unfortunately, it is impossible to improve the situation optimally 
by making all K: = 0. This is because of the structure of the integers, 
with respect to divisibility by powers of 2. The s equence of K:-values 
takes the form shown in Figure 2. 
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1C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 

3 3 3 

4 

5 

00 

FiJnu'e 2. 
Divisibility of the Integer Sequence by Powers of 2. 

For a segment of the sequence of integers H. the corresponding values of 
~ such that 21( 11' H. are tabulated, with each row having a single value of JC. 
(The structure is reminiscent of the "Sieve of Eratosthenes" used to find 

. plime numbers.) Observe that, to be as far as possible from JC ~ JC0 , one has 
to be close to a value of H with JC = JC0 - 1. For example, with JC0 = 4 and H 
lying between 16 and 32, it is best to choose H = 21 or 23, somewhat closer 
to the lesser of the extreme JC-values, 4 and 5. The two extreme values 
will, of course, never be equal. 

2 

We can, at best, hope that sequences corresponding to 
immediately adjacent events will have low values of JC. The generator 
<I> J.L begins at the node numbered N J.L = 2J.L + 1 and passes, in a left­
slanting direction, through the node numbered v = 2mNJ.L; from which 
a branch goes to its right-child node, numbered Nv = 2v + 1. The 

00 

generator <l>v begins there, and its sequence [xv}J=O• in Warnock's 

scheme, is, as we have seen, just a positionally-offset copy of the 
00 

sequence [xJ.L}J=O of generator <l>w We certainly want the two histories, 

beginning at the left and right children of node v, to have the least 
possible consonance; so we would like the offset, between xJ.L(m+ 1) = 
<axJ.Lm + bl Q> and xva = <atxJ.Lm + bt I Q>. to be odd; this is clearly 
equivalent to having the offset between xJ.Lm and xvo even. By an 
obvious extension of (30), we require that there be an integer n, such 
that 
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(98) 

or, by (3), at = <a2nl Q> and bt = <~n(a)b I Q>. · (99) 

Since (99) is independent of xJ..Lm' we see that a single transformation 
of the form (97) will work in all cases. 

However, our advantage is somewhat brittle. It is physically 
desirable that the history, generated by <l>v and beginning at node Nv, 
should also have small consonance with histories beginning at nodes 
neighboring node 2v in the chain generated by <I> ; i.e., corresponding 
to sequential (positional) offsets close to, but different from, 2n - 1 
(with n the same as that in (99)). These offsets will be even, in about 
half the cases, and examination of the sequence of ~e-values in Figure 2 
indicates that, if we wish to avoid 1C ~ ~e0 , say, we shall certainly have a 

near-neighbor with 1C = ~e0 - 1. As for more distant histories, across 
the tree, these will have a variety of offsets, but this is hardly to be 
avoided. After all, we are looking at a universe of only 2M distinct 
sequences, to fill 2k-1 histories [left-slanting branches], in a binary 
tree of height k, with 2k - 1 branch-points and 2k+ 1 nodes. Since a 
typical value of this k is perhaps 1 o2 - 104, while a typical value of M is 
about 48, the capacity of the scheme is evidently overloaded . 

The plausible argument, that computational runs requiring some 
105 - 108 random numbers should be pretty unrelated, when taken 
from random segments of a pseudo-random sequence with period of 
the order of 248 ,.. 3 x 1014, at least three million times longer, turns 
out not to be entirely valid. However, in mitigation, it should be 
pointed out that, until now, no rigorous analysis of the algorithm was 
available. 

If one nevertheless decides to adopt this scheme, the indication 
is strong that one should adopt a satisfying (95), b odd, and at and bt 
satisfying (99), with values of n such as 11, 12, 22, 23, or 24 (for H = 
21, 23, 43, 45, or 4 7, respectively). 

We now leave Warnock's algorithm, and return to our 
consideration of the more general relationship between two 

sequences, [x}}:o and [xt}j=O• whose respective generators are <I> = 

~(a, b, XQ) and ct>t =~(a, bt, xt0), and whose difference [~1.}:0 • with ~ = 

<XJ- xt) Q>. satisfies (83). with f3 = < b- bt I Q> -:~: 0. We shall 
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assume that both b and bt are odd integers, and that a satisfies (95). 
Following (39) and (40), let 

n = <81 - 8o I Q> = <(a- 1)80 + ,BI Q>. (100) 

and (10 1) 

By Theorem 1 and Definition 5, we now obtain: 

Theorem 2. Given the set J defined in (28) and the 
parameters a, with (95), and band bt, both odd, with <b- bt I Q> ~ 0; 

the sequences [xii=o and (xtJ];0 , with generators <t> = i) (a, b, x 0 ) and 

<t>t = i) (a, bt, xt 0), respectively, are independent with respect to J. If 

Q, r. a, and 1: are defined as in (100) and (101), then the consonance 
of the sequences is given by 

(i) 2Y 
' 

(ii) min{2M, 2'9 with 1: > r. 
(iii) 20'+2 ; 

if r s; a+ 1: 

if r = a+ 2: 

if r ~ a+ 3. 

<<By (83) and (95), which implies (94) , we have the conditions 

of Theorem 1, with d = 2, and Q, r. a, and 1: respectively taking the 
places of W, c, s, and g. By our assumptions, 

1 s; r < M: (102) 

whence the case of r = a = oo is impossible, and M > r > a + 2 [compare 

Lemma 12]. Theorem 2 follows immediately.>> 

Corollary 4. Under the conditions of Theorem 2, if 80 = 
x0 - xt 0 = 0, then the consonance of the sequences is 2r. 

< <If 80 = 0, then, by (101) with (13), a= oo. Thus, by (102) , we 

are in Case (i) of Theorem2; and the corollary is immediate.>> 

It is instructive to note the dependence on a , for any given y, 
of the consonance determined by Theorem 2 . This is sketched in 
Figure 3 . 
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p =log consonance 
2 

M - 1 1-------------, 

r<-r<M 

r + 1 1------------i 

2 

0 

= (1 +2 

Case (W) 

r-3 r -1 
r-2 

Figure 3. 

P =r 

Case (l) 

Consonance as a Function of cr, for Fixed y. 

The logarithm to base 2 of the consonance of two sequences, [~l}:o and 

[xtjlj:0 • with generators <I>= 6(a. b, XQ) and <I> t = 6(a. bt, xt o) . respectively, 

is plotted against (j (where 20' 1l' Do= <.xa- xto I Q>). for given r (where 

2 r 1l' {3 = < b - b t I Q> :~:- 0) . Cases indicated are those used for 
classification of results in Theorem 2 . 

In the general situation described by (84) - (91), in which a 
family of generators <I> J.l' with a single common parameter a, satisfying 
(95), and with all their individual parameters bJ.I. odd, is matched to 
the odd-numbered nodes NJ.L and left-slanting random walks rJ.L of a 
binary tree; we seek, as ever, to minimize the consonance between the 
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sequences generated by the different <I> J.L' and especially between those 
sequences close to each other in the tree. The closest physical 
relationship will be between the sequences originating at the two 
child -nodes of any given node; for example, if the parent node is 

00 00 

numbered v, the sequences are [xut1J=m+ 1 = [xJ.L(i+m+ 111 i=O• beginning at 

00 

node 2v, and [xv}J=O• begining at node 2v + 1 = Nv. If, in Theorem 2, 

we take 

XJ = XJ.L(m+J+1)• b = bJ.L' xtJ = Xvj• bt = bv; (103) 

so that 13 = <b- bt I Q> = <bJ.L - b) Q> = f3J.Lv "# 0 (104) 

and 81 = <(x1 - xt1 1 Q) = <xJ.L(m+j+1) - xvj I Q>: (105) 

then the conditions of the theorem are satisfied and the conclusions of 
the theorem hold, for all indices v and functions :B and X . 

Let us write 

(106) 

(the notation makes sense, since, by (88), J.l and v determine m) . 
Then we note, by (105), that, in particular, 

(107) 

We shall denote the logarithmic consonance (i.e. , the logarithm to base 
2 of the consonance) of our two sequences by PJ.Lv1• 

Corollary 5. If .1J.Lv1 is cxld, then the logarithmic consonance of 
00 00 

the sequences [xJ.L(i+m+ 1)] i=O and [xv}J=O is given by 

(i) PJ.Lv1 = 1, ifr = 1; 

(ii) 2 < PJ.Lv1 =:; M , ifr = 2· 
' 

(iii) PJ.Lv1 = 2, ifr~ 3; 

where r is defmed by (101). 
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<<If .1.uvl is odd, then (J = 0, and, by (102), the three cases of 
Theorem 2 become those listed above: whence the values of P,uvl are 

as stated.>> 

This result suggests that we should take -1,uvl odd and 

r ~ 3: (108) 

the latter condition is easily satisfied, e.g., by taking every b.u = 1 

(mod 8). Note that, if -1,uvl is even and not zero, it is much harder to 
confme the values of P,uvl. 

Now consider, as we did for Warnock's scheme, what happens if 
00 00 

we compare the sequences [x.u(t+m+Hl] t=O and [xv}J=O• with a positional 

offset in one sequence. Then f3 (and therefore also y) is unaffected: but 
80 (and therefore also n. (J, and -r) will depend on H, since now 

(109) 

Theorem 2 will clearly still apply. For different values of H, the 
logarithmic consonance of our two sequences, which is denoted by 
P,uvH• will depend on (J as shown in Figure 3, with an isolated 

maximum-value 'spike' when (J = r- 2 and r < P,uvH < M. The 

dependence of (Jon H will be scattered, rather as in Figure 2: and, as 
for Warnock's algorithm, this creates a problem. 

By (71) and (106), we see that 

-1,uvh = <.1.u\'{) + Sh(a)W.um I Q>: (11 0) 

where 

is analogous to Win (39). Thus, by (110) with h = 1, 

-1,uvl = <.1.u\'{) + sl (a)W.um I Q>. 

(111) 

( 112) 

Since, by (111) with (49) and because all the b.u are going to be odd in 
our present discussion, W.um is odd; and since, also, S 1 (a) = 1: we see 
that 

if and only if (113) 
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Further, by (93). (48), and Lemma 3, we have that 21( 1l SH(a)WJ.Lm· 
Now, let us write 

20',uvh 1l ~J.Lvh· (114) 

Then, our usual line of argument, applied to (110) with h = H, yields 
that: 

(a) (JJ.LVH = (JJ.L\0 

(b) (JJ.LVH > 1C 

(C) (JJ.LVH = 1C 

if (J j.L\0 < K; 

if (JJ.L\0 = K; 

if (J J.L\0 > 1C. 

(115) 

Using Figure 3 as a guide, it is not too hard to derive, from (115) and 
Theorem 2 with a= aJ.LvH• the relationships shown in Figure 4. The 
consequences are shown in Table 2, below. (D denotes the diameter 
of the cube in which the triangles T1, T2 , and T3 meet.) 

TABLE2 

Region Case in (115) Case in Theorem 2 PJ.LvH 

'1' (a) (iii) (JJ.LvO + 2 

'2' (c) (iii) 1C+2 

'3' (a), (c) (i) r 

Tl (c) (ii) p>y 

T2 (a) (ii) p>y 

T3 (b) indeterminate ? 

D (b) (i) r 

Theorem 3. Define y by (101). 1C by (93). ~J.Lvh by (106). and 

aJ.Lvh by (114); and let ~J.Lvl be odd (Le., aJ.Lvl = 0). Then ~J.LvO is even; 

and, if a clear minimum occurs (Le., one of a J.LVO + 2 , 1C + 2, and y, is 
strictly smaller than the other two), then 

PJ.LvH = min{aJ.LvO + 2 , 1C + 2 , y} . ( 116) 
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1C + 2 

O'JlVO + 2 

Y = 1C + 2 < O'JlVO + 2 

Y = O'JlVO + 2 < 1C + 2 

1C + 2 = O'JlVO + 2 < Y 

0 I<+ 2 > "pvO + 2 < y 

® "pvO + 2 > "' + 2 < Y 

0 I<+ 2 > y < "pvO + 2 

Fi@re4. 

Logarithmic Consonance as a Function of <TJl\0' IC, andy. 

The numbered solid regions, '1 ', '2', and '3', are pyramidal portions of the 
cube, bounded by faces of the cube and by triangular plane regions shaded 
othetwise than their own shading-key, and lying opposite to the 
similarly-shaded triangles: Region '1' is bounded by T2 and T3 , and lies 
opposite to T1: Region '2' is bounded by T3 and T1, and lies opposite to T2 ; 

and Region '3' is bounded by T1 and T2 • and lies opposite to T3 . The 
resulting values of the logarithmic consonance PJ.lvH are given in Table 2. 
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<<The first conclusion of the theorem, that D.JJ.vO is even, 

follows at once from (113), since D.JJ.vl is postulated to be odd. The 
result ( 116) follows immediately from Table 2 and the information in 
Figure 4, where we see that a "clear minimum" occurs precisely when 
we are in the interior of one of the regions '1', '2', or '3' .~ ~ 

When H = 1 (so that 1( = 0), Theorem 3 yields that aJJ.vO > 7(: 
whence PJJ.vl = yif r< 1( + 2 = 2, and PJJ.vl = 1( + 2 = 2 if r< 1( + 2. Thus 
we recover Cases (i) and (iii) of Corollary 5. 

a JJ.vO + 2 and y 

TABLES 

1( + 2 < (J'jJ.vO + 2 

1( + 2 = (J'jJ.vO + 2 

aJJ.vO + 2 < 1( + 2 < r 

1(+2=r 

1(+2>r 

1(+2<r 

1(+2=r 

1(+2>r 

1(+2<r 

1(+2=r 

r < 1( + 2 < a JJ.vO + 2 

1( + 2 = (J'jJ.vO + 2 

1( + 2 > (J'jJ.vO + 2 
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'2' 

'1' 

• 1' 

'1' 

'2' 

D 

T2 

'2' 

Tl 

' 3 ' 

' 3' 

'3 ' 

1(+2 

? 

1(+2 

r 
p>r 

1(+2 

p>r 

r 
r 
r 



We observe that we can, to some extent, control the values , first , 
of y, and then, of CTJ.Lvo: but we have no control over 1C, since H is 
arbitrary. Table 3 (based on Figure 4 and Table 2) shows the 
·dependence of the logarithmic consonance PJ.LvH on all three 
parameters, for all their possible relative magnitudes. The 'bad' cases 
arise in the triangular plane regions T1, T2 , and T3 : and, clearly, the 
least damage is done, if trouble arises for as few values of Has possible. 
Now, half the values of Hare odd (1C = 0), a quarter are divisible by 2 

but not by 4 (1C = 1), an eighth are divisible by 4 but not by 8 (1C = 2) , 

and so on: with the value 1e accounting for 2-K'-1 of all values of H: and 
with all values greater than 1e accounting for the same fraction. Thus, 
if aJ.LvO + 2 < y, a fraction 2-a,uv0-1 > 2-r+ 1 of the H-values (when 1e = 
O').LvO) are bad: if O').Lv0 + 2 = y, the fraction is 2-r+1 (when 1( > r- 2): and 

if 0' ).LVO + 2 > y, the fraction is again 2-r+ 1 (when 1( = r - 2) . We 

therefore see that it is desirable to take, first, ilJ.Lv1 odd [O'J.Lv 1 = 0] and 

r;;::: 3 [as noted in (108)], and then 

aJ.LvO ;;::: r- 2. ( 11 7) 

Since the fraction of 'bad' values of H is then 2-r+ 1, it is probably wise 
to exceed the criterion in ( 1 08) somewhat, to make this fraction 
smaller. A reasonable condition might be 

y;;::: 8, (118) 

yielding a fraction 2-7 (less than 1 %) of bad values of H . This is 
achieved, for example, by taking every bJ.L = 1 (mod 256). As the lower 
bound on r increases, (a) the 'good' values of H yield somewhat less 
desirable consonances, and (b) the numbers of available distinct values 
of bJ.L and of xJ.L0 decrease correspondingly: so there is a trade-off here, 
as in so many such situations, and an 'engineering solution' (i.e. , 
a compromise) is indicated. 

Note the special solution, when 

ilJ.LvO = O: i.e., aJ.L\.-0 = oo, (119) 

Then, as is pointed out in Corollary 4, we have PJ.LvH = r for all H; but at 

the cost of no choice of aJ.LvO' 

We must not overemphasize the importance of the consonances 
of positionally offset pairs of sequences. The unfortunate results can, 
to some extent, be minimized by suitably avoiding unfavorable offsets: 
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but only at the cost of wasting some random numbers which might 
otherwise be put to use. Again, suitable compromises are indicated. 

Finally, we consider the consonance between sequences not 
arising from the same branch-point. Of course, Theorem 2 still 
applies. Let <I>J..L and <I>v begin at nodes numbered NJ..L = 2J.L + 1 and Nv = 
2v + 1, respectively, but now without the relation (88) . Then NJ..L will 
be at Level m. if and only if 

2m-l ~ J.L ~ 2m- 1; i.e., m = llog2 (J.L + Ill. (120) 

and Nv will be at Level n, determined similarly. Now, {3 will still be 
defined by (104), and r by (101); but the appropriate 8o will be given 
by 

k = max:{m, n}, 80 = xJ..L(k-m) - xv(k-n) · (121) 

If m ~ n, then k = n and 80 = xJ..L(n- m) - xl-{) . Whatever condition, such 
as (108) or (118), we apply to the bJ..L will still hold here; but the 
conditions on the xJ..L0 will no longer work for us here. Thus cr will be 
effectively out of our control; and so the consonance of the sequences 
will float freely, in accordance to Theorem 2 and Figure 3, with 
logarithmic consonance not greater than r. except for the 'bad' cases, 
when cr = r- 2. Again, this will tend to occur about 2 - 141 of the time. 

5. SPECIFIC PROCEDURES 

We now have all the underlying machinery that we shall need, to 
select specific procedures, to generate tree-structured families of 
linear congruential pseudo-random generators, yielding sequences 
which are individually uniform, with minimal coarseness, and which 
are mutually independent, with acceptably low consonances. 

To put things in perspective, we observe that, for a given fixed 
choice of the parameter a [which we have supposed to satisfy (95)], 
there are 2M-3 distinct possible values of bJ..L satisfying ( 1 08) [and 2M-8 

distinct possible values satisfying (118)], and altogether 2M distinct 
possible values of xJ..L0 [if we choose to make .1J..Lvl odd (crJ..Lvl = 0), then 
this number is halved]. The possible distinct pseudo-random 
sequences are thus in any case no more than 22M - 3 in number; and 
probably less, in any given procedure (e.g., in Wamock's algorithm, 
there are only at most 2M distinct sequences). Since the sequences 

- 41 -



begin at all the odd-numbered nodes (numbered NJ.l. = 2J.L + 1) of a 
binary tree [see Figure 1]. it is clear that there must be at least one 
repetition in the first 2M - 1 levels. and thereafter. more and more 
frequently within each level (since Level 2M - 2 alone has 22M-2 
nodes. and so 22M-3 odd-numbered nodes; and each level has twice as 
many nodes as its immediate predecessor). We thus cannot expect to 
avoid the recurrence of the same pseudo-random sequences at 
scattered points in our binary tree. (Even if we were to exploit every 
possible sequence of the form (4) in our tree. there would still have to 
be at least one repetition in the first 3M+ 2 levels.) In practice. it is 
extremely difficult to avoid the occurrence of repetitions somewhat 
more frequent than these extreme bounds. However. we must recall 
that the nodes of our binary tree correspond to batches of T 
consecutive pseudo-random numbers [see Lemma 18]. one of which 
usually suffices to generate a single physical event; and these events 
will rarely lead to actual branching (or. as has been pointed out. the 
resulting computations would be enormously. impossibly. too 
laborious). Thus only a very sparse. random sample of the branches is 
actually exploited in any realistic calculation. This is what saves us. in 
practice. Nevertheless. any repetitions that do occur must be 
minimized with respect to quantity. and dispersed as far as possible in 
their distribution over the tree. 

Perhaps the simplest hypothesis to adopt would be that 

(122) 

This is comparable in economy to Warnock's definition of :Bw in (96). 
and is equivalent. of course. by (106). to (119). It then follows. by 
(113) and Corollary 5. that. if (108) holds. the logarithmic consonance 
of the sequences is 2: a highly satisfactory result. 

Now. all the parameters bv are postulated to be odd. with (108) 
holding; which we can ensure by choosing c = 0. 1. 2. or 3. and then 
taking 

('v'v ;;:?; 0) bv = 2c + 1 (mod 8). (123) 

Since every starting node of a new generator <l>v has an odd number. 
Nv = 2v + 1. with all the v different. of course; it is natural to adopt the 
simple relation 

bv = :BN,3(2mNW bw xJJ.ml = <8v + 2c +II Q>. (124) 

As a slight generalization. we may consider 
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(125) 

where q ;;::: 3. Since bv e J, we see that there will be exactly 2M -q 
distinct possible values of bv satisfying (125). Obviously, for (125), 

(126) 

whence, r;;::: q. This result would indicate that, in fact, (124), with 
q = 3, is the best choice; though the considerations leading to (118) 
would suggest something closer to q = 8, instead. 

Corollary 5 tells us that, so long as the parameters a, bll' and bv 
satisfy (95) and (123), and so long as, using (113), we require that 

8.JlvO = < xJlm- xl-{> I Q> be even; the consonance between 'parallel' 

sequences, [xJJ.(i+m+l)]:o. beginning at node 2v = 2m+ 1(2,u + 1), and 

[xv);o. begining at node 2v + 1, will be 22 = 4, which is just fme. 

Consider now the situation (125), for some suitable q. A little 
thought indicates that any given b-value will occur just once in the 
triangular ·apex of the binary tree, consisting of Levels 0 through M - q 
(in this part of the tree, there will be 2M-q+l - 1 nodes in all; of these, 
2M-q - 1 will be even-numbered, and just 2M-q will be odd­
numbered). The same value will clearly recur, by (125), at intervals of 
2M-q in the node-index v, which correspond to intervals of 2M-q+ 1 in 
the node-number 2 v + 1. Consequently, since Level k of the binary 
tree contains 2k consecutively-numbered nodes, half of which are odd­
numbered [see Figure 1]; we see that the same b-value will occur just 
once in Level M- q + 1, twice in Level M- q + 2, four times in Level 
M- q + 3, ... , and 2k-M+q-l times in Level k > M- q. Thus, the total 
number of occurrences of each possible b-value is 1 + 1 + 2 + 4 + . .. 
+ 2k-M+q-l = 2k-M+q, as one would expect, since Levels 0 through k of 
the tree contain just 2k odd-numbered nodes. 

Now let us count how many x-values are generated altogether, in 
these k + 1 first levels of the tree, for a given b-value. The single 
sequence, with this b-value, starting in the apex may begin in any of its 
levels; so that the number rk of x-values it generates satisfies 

k - M + q + 1 ~ rk ~ k + 1. (127) 

The single sequence starting in Level M - q + 1 will generate just 
k - M + q values, the two sequences starting in Level M - q + 2 will 
generate 2(k - M + q - 1) values, and so on. The total number of 
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.,. 

x-values generated in Levels 0 through k, using any one given b-value is 
thus 

N k = rk + (k - M + q) + 2(k - M + q - 1) + 4(k - M + q - 2) 

+ ... + 2h-M+q(k _ h) + ... + 2k-M+q-l. (128) 

Now, there are altogether Q = 2M possible x-values, and every 
sequence with parameter a satisfying (95) and odd b-value passes 
through all of them; so let us suppose that we arrange for the 
sequences listed above to occupy disjoint pieces of their single 
common period. Since all .1JL\{} should be even, and the x-values in any 
sequence alternate in parity, we can arrange for each sequence to 
begin with an x-value of the correct parity if we allow a possible 
additional step. Allowing for this, we must have a range of N k + 
2k-M+q available x-values, and this cannot exceed 2M. It follows that 
we can rearrange (128), with (127), noting that each term may be 
multiplied by 2 - 1, to yield that 

2(k- M + q) - { k-M+q ~ 

+ 4(k - M + q - 1) - 2(k - M + q - 1) 

+ 8(k - M + q - 2) -'- 4(k - M + q - 2) 

+ 
+ { 2k-M+q ~ _ 2k-M+q- l 

+ { 2k-M+q ~ :s; 2M, 

if k is to be adequate for every b-value. The middle expression above 
partially •telescopes' (excepting the terms in { .. . ~) to yield 

{ M - q + 1 ~ + 2 + 4 + 8 + . .. + 2k-M+q-l + { 2k-M+q+l ~ :s; 2M, 

and this, in turn, sums, if 

- 2k-M+q < M - q - 1 :s; 2k-M+q, ( 129) 

to give, since the upper bound in (129) is an integer power of 2 , that 

M - q - 1 + 2k-M+q + 2k-M+q+ 1 

= M - q - 1 + 3 X 2k-M+q :s; 2k-M+q+2 :s; 2M, ( 130) 

is sufficient for all b-values. Let us write 

M' = M - q and k' = k - M' = k - M + q ; (131) 

then, remembering that k > M- q, we see that the inequalities (129) 
and (130) become 
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and 

2 - 2k' :::; M' :::; 1 + 2k' 

1 :::; k' :::; M' + q - 2 . 

( 132) 

( 133) 

These inequalities are illustrated in Figure 5, in which we see that 
(since we seek to avoid repetitions as long as possible. and therefore 
want k , and so also k', as large as possible. given M and q) the 
operative bound is k' = M' + q - 2, or 

k = 2M- q- 2. ( 134) 

If we choose q = 3 . as in (124). then the optimum is k = 2M - 5; if 
q = 8. then it Is k = 2M - 10. 

k' 

I 
k'= M 

k' = 1 

-3 -2 -1 0 1 2 3 4 5 6 7 

Figure 5. 

Graph of allowed (M' , k ') region. 

M' = M - q and I<= k - M + q satisfy the lnequalJUes (132) and ( 133). ThlS 
makes allowable the region shaded In the figure. Since M and q are given 
first. and we seek the greatest possible k. It Is clear that the sloptng line I< 
= M' + q - 2, or k = 2M - q - 2 yields the best value of lc. 
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Now. let us suppose that the first occurrence of a particular 
b-value. say b•. is at the node numbered Nv

0 
= 2v0 + 1. This Is in the 

apex of the tree. and so v0 < 2M-q. The Initial x-value. xvoO· Is 
arbitrary. say x•. By (125). subsequent occurrences of b• will then be 
at nodes numbered Nv, = 2v5 + l. with v5 = v0 + s 2M-q (s = 1. 2 .... ). 
For the second occurrence of b•. in Level M- q + 1 (s = 1). we must 
select the Initial x-value xv

1
o to be either xvolk+ll or xvo{k+21 . so as to 

match the partty of the x-value at the parent-node. numbered v1• and 
to skip over all possible x-values (in the frrst k + 1 levels of the tree) of 
the sequence beginning at Nv

0 
. We generalize to the s-th occurrence 

of b •. where the initial x-value xv,o must skip over all previously 
accounted-for x-values (alloWing for the correct parity) by Jumping to 
the value xvoTs or Xvo(Ts+lJ· This means that we must have available all 
the coefficients (compare (77)1 

As = <aTsiQ>. s = s Sr,la). Bs = <ssb· IQ>: ( 135) 

and. ln particular. we see that 

Level M- q + 1: Tl = k + 1 = 2M- q - l. ( 136) 

Note that A 5 , S5 , and T 5 are all independent of the b-value b•. For 
successive occurrences of b•. It Is easily verified that 

Level M - q + 2: T2 = T 1 + 1 + (k - M + q) 

= T 1 + M- 1 = 3M -q - 2. 

T3 = T2 + 1 + (k - M + q - 1) 

= T2 + M- 2 = 4M -q- 4; 

Level M - q + 3: T4 = T3 + M - 2 = 5M -q- 6. 

Ts = T4 + M - 3 = 6M - q- 9. 

Ts = T5 + M - 3 = 7M - q - 12. 

T7 = T6 + M- 3 = BM - q- 15: 

Level M - q + 4: Ta = T7 + M- 3 = 9M- q- 18, 

Tg = T8 + M- 4 = 10M - q- 22. 

TIO = Tg + M- 4 = 11M- q- 26. ( 137) 
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and so on. Clearly. the rule Is: 

T
5
+ 1 - T

5 
= M- n5 • where 211•-1 ::;: s < 2"•. 

with n
5 

evidently unique. It follows that 

s-1 s 
T5 = T1 + L,IT,+1 -T,J = T1 +L,IM -n,.)-M + n5 

~~ ~I 

s 
= (s + 1)M + n5 - q - 1 - L, "r · 

r::l 

( 138) 

(139) 

We observe that. for any Integer n > 0. n, = n, when r = 2n- 1, 211- 1 + 1. 
2 11- l + 2 ..... 211 - 1 (I.e .. for 211-1 consecutive values of r). Thus. 

s 
L "' = 1 + 2 X 2 + 22 

X 3 + 23 X 4 + ... 
r=l 

= 2 X l - 1 X 1 

+ 22 x2 -2 x2 

+ 23 x3 - 22 x 3 

+ 24 x4 -23 x 4 

+ 

+ 2 11s- 1 (n
5

- l) - 2 11s-2 (n
5

- 1) + n
5 

(s + 1 - 2 11• -1) 

= 211• - 1 (n
5

- 1) + n
5 

(s + 1 - 2 11•- 1) - {1 + 2 + 22 + ... + 211s-2j 

= n5 (s + 1)-{1 + 2 + 22 + .. . + 2 11•-1) = n5 (s + 1) - 2 11• + 1, 

where. again. we have taken advantage of the 'telescoping' trtck used 
in deriving (130): so that 

T5 = (s + l)M - n5 s + 2 11•- q - 2. ( 140) 

It is easily verified that this agrees with the values in (137). 

By (134), the total number of occurren ces of b • In Levels 0 
through k = 2M- q - 2 Is. as we have seen. 2k-M+q = 2M-2. and so s 
wtll run from 0 through 2M-2 - 1. Even though, as we have seen. we 
can economise by using the same parameters for all values of b• [see 
(135)]. it is still not practical to store such a large number of 
coefficients (typically. as we have noted. M = 48 and 2M-2 .. 7 x 1013). 
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so they must be computable when needed. To do this. we return to 
the concept of a node record Rv (see (89)) carrying all the Information 
needed to generate both the left-slanting ·regular' branch/sequence. 
and any right-slanting children whenever the latter are appropriate. 
In order to continue the left-slanting branch. according to the 
generator ct> J.l = £> (a. b w xJ.lol. it suffices that Rv should carry b J.l and 

Xp.m when v = 2m(2p. + 1). In addition. Rv should carry sufficient 
Information to yield bv and x\10 at the right-child node Nv· By (125). q 
(or 2C!) and b0 = 2c + 1 are universal parameters of the algorithm. like 

M (or Q = 2M) and a; so Rv need only carry the index v to enable us to 

compute bv = <2qv + b0 I Q> = b•. 

If we adopt the simplest algorithm. embodied by (122). then 
(89) suffices: but. as we have seen. there will be many Identical 
replications of sequences. 

Algorithm 1. The procedure carrtes at each node. numbered 
v = 2mNP. = zm(2v + 1). a record Rv = (2mNw bw Xp.ml· the 
transformation for whiCh, on passage to the two child·nodes is given 
q; 

R2v = Ls,q!Rvl. ~V+l = RN. = ns.q!R.) . 

These mappings are defined by 

(2v = 2m+lN) 
jJ. 

Ls.qU<vl = b-value at 2 v 

xjl.(m+ ll 

{ 

(2v + 1 = 2m+lNP. + 1)} 

(b-value at Nv = bJ = 
x\-0 

2 x (v = 2mN) jJ. 

= (b-value at v = b!i) 

<axp.m + b1tl Q> 

2 x (v = 2mNP.) + 1 

<2qv+ b0 IQ> 

Xp.m 
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This agrees with (122) and (125). Thus. xvo = :X: 8 (R vl and 

bv = 1lw.q!Rvl· 

Now consider, Instead. reducing the frequency and proximity of 
repetitions, by the scheme outlined above, In which 

where 

{ 
whichever has the }· 
same parity as xJ.IITI 

( 144) 

( 145) 

and T
5 

is given by (138) and (140), with T0 = 0. The choice of the 
initial x-value x• = xvoO for the first occurrence of any b• Is still open: 

so. looking to (122). let us determine mo and Jlo (uniquely) by 

v0 = 2111o (2,u0 + 1). ( 146) 

and arbitrarily select. say: 

Xoo = fo : at the root of the tree: 

= { <2q+ 
1 
v0 + fo I Q> = x-} { whtchev~r has the }. 

Xvr/1 <ax-+ b• I Q> same panty as xJ.Io17lo 

( 147) 

Here. ]0 • like b0, is a uruversal parameter of the algorithm. Note that. 
fortunately, this does not disturb the x-value counts developed above; 
since the only case in which rk attains its upper bound. k + 1 [see 
(127)]. is that of the root-node, when an extra step is neuer required 
by (147). The only modification is that. because xvoO now does not 
necessarily equal x•. we have to select the exact form of x~; following 
(135). we choose to have 

(148) 

which makes the formula accessible without keeping a record of the 
actual values of all xvoO· 
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Let us express the index v in binary notation as 

v = (Bk- 1 ··· BM-q BM-q-1 ··· Bo}: (149) 

where the s1 are the uniquely determined (0 or 1) bits of v, given by 

s1 = L<vi21+1>;2,/J; (150) 

and. since there are just 2k odd-numbered nodes (numbered from 0 
through 2k - 1) in Levels 0 through k. the k bits shown in (149) 
suffice. Then. by (88). 

8 0 = 8 1 = ... = Bm_1 = 0. but Bm = 1. (151) 

and ( 152) 

while. by (142). 

s = {Bk_1 ... BM-ql and v0 = (BM-q-l ... B0}: ( 153) 

and, by ( 138). n
5 

is defined as the number of signijl.cant bits in s, i.e .. 
Bk-1 = ... = BM-q+ns = 0, and 

s = (BM-q+n.-l ... BM-q} with BM-q+ns-l = 1. (154) 

The node record \vill now have to be somewhat extended. beyond Rv. 
to carry all the information needed to continue the process from the 
paren t-node v to its left and right children: and we shall denote this 
superset by R•.,. Clearly. the information In the subset Rv suffices. to 
generate both the subset ~v and the first two components, the node­
number and b-value. of R Nv . However. to determine x-<> by (147) and 
(148). we need, apart from the universal parameters b0 = (Cq-l ... C0) 

and fo = (F q- t ... F 0} of the algorithm. to have 

b" = {BM-q- 1 ... Bo Cq-l ... C0 ). 

x• = {BM-q-2 ... Bo F q- 1 ... Fo}. 

and, in R •v· the coefficients A5 and 5 5 . 

(155) 

( 156) 

Observe, by (135) , that A
5 

and 5 5 depend only on s (through T5): 

and that. In passing from a parent-node v to its children 2v and 2v + l. 
we change 
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{0 0 ... 0 0 • B M-q-1 ... B0} 

Into {0 0 ... 0 BM- q-l + BM-q-2 ... B0 0} (157) 

and {0 0 ... 0 BM-q-l + BM-q-2 ... 8 0 1} 

so long as v < 2M- q (I.e .. s = 0; nodes numbered 2v and 2v + 1 are in 
the apex of the binary tree): thereafter. when v ~ 2M-q (I.e .. s > 0). we 
change 

into 

and 

(0 1 BM-q+ n.-2 ... BM- q + BM-q-1 ... Bo} 

{1 BM- q+n,-2 ... BM-q BM-q-1 + BM-q-2 ... Bo 0} 

{ 1 8 B B • 8 M-q-2 .. · Bo I ) M-q+n.-2 ... M - q M-q-1 

( 158) 

the diamond ( • ) marks the separation between the bits of s and of v0 : 

so that, if we denote the values of s and ns for the left child by s' and 
ns·· and for the right child by s" and n5 ... then 

ns· = fls- = {fls + Y. lf s = 0, }} 

s' = s" = 2s :~~ 1. if 

5 

~ l. 
( 159) 

where, for brevity. we write Y for BM-q-1• Consequently. the children 
will share the values of T5• = T5 ... As·= A5 ... and S5 • = S5 .. ; and. by (140). 
once v ~ 2M-q-l (I.e .. the children are out of the apex). 

T
5

• = T
5 

.. = (2s + Y + l)M- (n
5 

+ 1)(2s + Y) + 2f1s+l - q- 2 

= 2T
5 

- 2s - Y(M - n
5 

- 1) - (M- q - 2). (160) 

Until then. n5 and s both remain zero. 

We note. by Lemma 13. that a2M-
2 

• 1 (mod 2M); so that 

- 2M·2-l a = a ( 161) 

acts as the reciprocal of a. modulo 2M = Q ; whence any factor a·'. 
appearing in integer-valued algebraic expressions reduced modulo Q. 
may be replaced by a factor d'. Thus. by (135). (140). and (161). 

-51-



As= <aT• I g> = <a<s+1)M-n,s+2"--q-2 1 g> 

= < aM-q-2 aMs an,s a2"' 1 Q>. ( 162) 

When we turn to the other coefflclent. S5 = Srs(a). that we shall need 
to carry at every node. we need to establish some straightforward 
properties of the function Sn(z). 

Lemma 20. For any non·negatiue integers p and q. and real z. 

Sp+q(z) = Sp(Z) + zP Sq(z). ( 163) 

sp-q(Z) = Sp(z) - zP-Q Sq(Z). 

Spq(z) = SP(z) Sq(zP): 

and, in particular. 

~P(z) = (1 + z) SP(z2) = (1 + zP) SP(z). 

( 164) 

(165) 

( 166) 

<<we refer to the definition (5). If z = 1, then. by (6), (V' n 2: 0) 
z" = 1 and Sn(l) = n: whence (163) - (166) all hold, as Is trivial to 
verify. Suppose. therefore. that z ~ 1. Then. 

Sp+q(z) = 1 + z + z2 + ... + zP-1 + zP + zp+l + . , . + zP+q-1 

= (1 + z + z2 + ... + zP-1) + zP (1 + z + z2 + ... + zQ-1). 

from which (163) follows at once. Replacing p by p' In (163) and 
rearranging terms. we get 

Sp·(Z) = sp'+q(Z) - zP' Sq(Z): ( 16 7) 

whence (164) follows Immediately. when we write p ' = p- q. Now. by 
repeated appUcaUon of (163). we see that 

Spq(z) = Sp+p(q- ll(z) = SP(z) + zPSp(q-l)(z) 

= Sp(z) + zPSP(z) + z2PSp(q-z)(z) 

= Sp(z) + zPSP(z) + z2PSP(z) + z3PSp(q-3)(z) 

= ... = Sp(z) {1 + zP + z2P + z3P + ... + z(q-1)P}, 

which yields (165). Finally. we note that the equality of the first and 
second members of (166) is Lemma l (equation (8)1. while. if we put 
q = p In (163). we get the equality of the first and third members of 
( 166). Also, the same two identities are obtained. respectively. by 
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putting p = 2 (and then replacing q by p) and by putting q = 2. in 

(165!.>> 

By (140). and (163) and (164) of Lemma (20). we see that 

Sr)al = S(s+ l)M-nss+2"<-q-2(a) 

= 5 ( ) Ms-n s+2"- 5 (a) Ms-n,s+2"- a + a • M-q-2 

= SMs-nss(a) + aMs-nss {S2,_(a) + a2"• SM-q-2(a)) 

= SMs!a) - aMs-n,s { sn.s!a) - S2n,(a) - a2"" SM-q-2(a)} 

= SM(a) S5 (aM) 

- aMs-n,s { sn,s(a) - s2 .... (a) - a2"" SM-q-2(a)}; ( 168) 

so that. by (135). 

5 5 = Sr.!al = <S~a) S5 (aM) 

- aMs dn..s {snss(a)- s2,_(a)- a2"- SM-q-2(a)} I Q>. (169) 

An exa.mlnaUon of (162) and (169) reveals the parameters which 
need to be carried In the record R • V' and updated from father-node to 
children. to execute the algorithm. The supplementary universal 
parameters of the algorithm, 

Ko = S.Jal. Ko* = SM-q-2(a), 

Kl = c/'f, K* 1 = aM-q-2, ( 1 70) 

1<2 = d2. ~· = 
2M-2_2 a = a2 {mod Q). 

are computed once and for all. and stored with M (and Q = 2M). a. q. 
b0 , j 0 • and d. to be used at all nodes. This leaves thirteen coefficients 
to be added to IR,.. to make up .R• v; namely. 
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V • - a-n. s - • W • - a·n.s s - . 

(171) 

Using (1 59) and Lemma 20. we can now compute the update­
relations for these. First. observe that. when 0 ::; v < 2M-q. ns = s = 0: 

whence. for all such v. 

Us = Vs = Ws = us• = vs• = ws• = Xs* = Xst 

Y5 = Ys" = Z5 = Z5* = 0. and Xs = a. 
( 172) 

Next, note that the bit Y = 8 M-q-l 
and sl (z) =: l , so that 

can only be 0 or l. and S0(z) = 0 

Sy(z) = Y and ( 17 3) 

Also. an additive term haVing a factor Y. or a multipl!catlve factor 
whose exponent ha s a factor Y. is disregarded unless Y = 1 (and. in 
that case. the factor Y may be omitted). Thus. for all v ~ 2M-q-t. we 
see that: 

Us·= Us"= a2(2s+Y) = u
5
2J.SY. 

Vs. = V5 .. = an.+l = an. a = V5 a. 

Ws· = Ws .. = alns+I)(2S+Y) = cz2nss+2S+n.Y+Y 

= W/ Us (Vs a)y = Ws2 Us Vs.Y• 

Us.• = u
5 

.. • = a2!2s+Y) _ U •2 K .v - s 2 • 

vs.· = vs .. • = ans+1 = an• a = vs· a. 

W
5
.• = Ws••* = alns+l)(2s+Y) = a2n.s+2s+n5Y+Y 

= Ws"2 Us• (Vs• d)y = ws•2 Us• Vs.·Y. 

Xs· = Xs" = azn..•l = (a2"')2 = Xs2· 
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( 17 4) 

( 175) 

( 176) 

( 177) 

(178) 

( 179) 

( 180) 



Ys· = Ys· = ~(2s+Yl(a) = (l + a2s+Y) ~s+Y(a) 

= (1 + U5 a Y) l~s!al + a25 Sy(a)) 

= (1 + U
5 

aY) (Y
5 

+ U
5 

Y). 

Z5 • = Z5 .. = Sns+ 1(a) = Sn.(a) + an• S 1(a) = Z5 + V5 , 

xs.· = xs .. • 

Ys·" = Ys .. * 

Zs·" = Zs·" 

= aMl2s+YJ - X •2 K y - s 1 • 

= S2s+Y(aM) = S2s(aM) + a2Ms Sy(aM) 

= (1 + aMS) Ss(aM) + Xs · 2 y 

= (1 + Xs*l Ys" + Xs"2 Y. 

= Sins+ l)(2s+Y)(a) = S2nsS+2s+nsY+Y(a) 

= ~ (a)+ a2n.s+2s+n.Y Sy(a) 
nss+2s+n.v 

= ~nsS+2S(a) + a21lsS+2S Slls y(a) + Ws 2 US V S y y 

= ~n.s(a) + a2n,s ~s(a) + wsz Us y (Zs + Vs) 

= (1 + an•S) S11.s(a) + Ws 2 [Y5 + U5 Y (Z
5 

+ V
5
)] 

( 181) 

( 182) 

( 183) 

( 184) 

= (1 + W5) Z/ + W5
2 [Y5 +Us Y (Z5 + V5}}. (185) 

xs.t = Xs"t = ~,.+J!a) = ~ x 2...,(a) = (1 +X) X5t. ( 186) 

In terms of these coefficients. we now see that (162) and (169) 
become 

As = <K1• X 5* W5• X5 IQ> ( 187) 

and S5 = < Ko Y5• -X5• Ws" [Zs" -X5t -X5 Ko*liQ> . ( 188) 

Algorithm 2. The procedure carries at each node, numbered 
v = 2mN11 = 2m12v + 1). a record 

R • v = !Rv: Cvl 

= [2mN
11

• bll' xllm: 

US' vs· Ws Us". Ws"· 
( 189) 

Vs"· 

XS' YS' Zs. Xs" · Ys"· Zs"· Xstl. 
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the transformation for which, on passage to the two child-nodes is 
given by 

IR*zv = LT.q!IR*vl. R *zv+l = JR•N. = n T.q(IR*vl · (190) 

These mappings are defined as follows. 

and 

(a) for Rv : 

4 (v = 2mN) = (2v = 2m+l N,). ,q J.l ,.. 

4 .q!b-value at v = bill = b!l' 

.l.r.q!x-value at v = x!lm) = (x!llm+ 11 = <a XJ1m + bill Q>l : 

J"'!T.q(v = 2m Nil) = (2v + 1 = 2m+l Nil+ 1). 

:l"t.r.q!b-value at v = bill = <2q v + b0 I Q> . 

.l"'t.r.q!x-value at v = xilml = (xl{) = <As x• +55 b*l Q>l , 

where x• = <2q+l v0 + f0 IQ>. b* = <2q v + b0 l Q>. andA
5 

and 5
5 

are 

computed from (187) and (188). using the coefficients in :Cv. 

(b) for Cv: the coeffrcients remain at the values in (172) . 
so long as v < 2M-q: thereafter, when v ~ 2M-q- 1. 

4 .q(U5 ) = U5 • = n T. q!U5 ) = U5 .. = <U5
2 K./IQ>. 

4 .q(V5) = V5 • = J"'!T.q(V5 ) = V5 .. = <V5 aiQ> . 

.l.r.q(W5) = W 5 • = 'l't.r.q(W5) = W 5 .. = <W5
2 U5 V/IQ>. 

.l.r.q!U5 *) = U5 ·* = nT.q(U5*) = U5 .. * = <U5*2 K2•YIQ>. 

4.q(V5 *) = V 5 .* = J"'!T.q(V/) = V5 .. * = <V5* aiQ>. 

£-r.q!Ws*) = Ws.• = J"'!T.q(W/) = Ws .. • 

= <ws•Z Us" vs .• v I Q>. 
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f-r.q!X5 ) = X5 . = 1't.r.q(X5) = X5• = <Xs 2 1 Q>. 

Lr.q<Ysl = Ys· = 1't.r.q<Ysl = Ys•· 

= <U + U5 aY) (Y5 + U5 Y) I Q>. 

Lr.q!Zsl = Zs· = nT.q<Zsl = Zs" = <zs + vs I Q>. 

L.r.q!X/) = Xs·· = n T.q!Xs •) = Xs .. • = <xs"2 Kl y I Q>. 

£..q<Ys *) = ys,• = J't.T.q(Ys•) = Ys .. • 

= <(1 + xs·l ys· + Xs"2 y I Q>. 

i..r.q!Z5 •) = Z5 .• = J'1.7 .q(Z5 •) = Z5 . • 

= <O + WJ z5 • + w521Ys + U5 Y (Z5 + VsJII Q>. 
l..r.q(X5 t) = X5-t = J'1.T.q(X5t) = X 5 .. t = <(1 + X5) X5 t>: 

where the various symbols are defined in (170) and ( 171). 

A multiplication-count {there are no divisions. and we may 
suppose that the reductions modulo Q are performed by truncation of 
binary computer-words; also. we do not count multiplications by 
powers of 2, which can be performed by fast bit-shifts! yields l for 
generating the three components of Rzv by l..r.q· and 9 for generating 

the three components of R 2v+l by J'f.T.q; while. for generating the 
thirteen components of C2 v and C2 v+ 1 (which are Identical) . we 
require 15 multiplications when Y = 0 and 22 when Y = 1. Thus, from 
Level M- q - l on. the algorithm takes. altogether. an average of 28.5 
multiplications to generate the records .R• of both children of any 
given node (considerably less In the apex of the tree). an average of 
14.25 multiplications per node. Since these nodes occur only every T 
pseudo-random numbers. as we explained earlier [see Lemma 18]. and 
we expect T to be of the order of 10. with other steps taking 1 
multiplication to perform, by (4): the overall expected number of 
multiplications per pseudo-random number generated will only be 
about 2.325; that Is. between 2 and 3 times the time required by the 
highly-efficient Unear congruential generator Itself. without any tree­
structure. This would appear to be highly satisfactory. 
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6. COMPUTATIONAL RESULTS 

A program was written in ·c· to execute Algorithm 1 . A typical 
complete output [part of which Is condensed into two-column format 
to save space) is given in Appendix A. and the listing of the program is 
gtven in Appendix B. The section which inputs and computes the 
universal parameters of the algorithm and initializes the flrst record 
lakes essentially 10 commands ["fo r t .• . >"and "while ( .. . >"are each 
counted as one command. additional to what they control; and 
inessential commands, used to keep track of what is happening in this 
test-program. are not counted]. The section which "builds the tree". 
i.e .. computes the records at the child-nodes of a given parent-node. 
takes essentially 6 commands [note that such variables as .. space" , 
"level", "mu". "power". "as". "xs". and "Ns" are used for bookkeeping 
functions in the test-program and are Ignored]. 

With M = 6 and q = 3. the computations covered the first 255 
nodes of the tree (8 levels). Eight sets of data were tried. yielding the 
following results, with respect to repetitions. 

DATA- SET 1 

a - 21, bO • 3 , f O - 7 

Level 0 : 
Leve l 1 : 
Level 2 : 
Level 3 : 
Le ve l 4: 
Level 5 : 
Level 6: 
Level 7 : 

0 r e pe t itions 
0 repet.it.ions 
0 repe titions 
0 repetitions 
3 repetit.ions 
7 repe tit.ions 

16 repetitions 
35 repetitions 

61 r epe t itions i n all 

DATA-SET 2 

a = 37 , bO • 63 , fO = 57 

Level 0: 
Level 1: 
Level 2: 
Level 3: 
Level 4 : 
Level 5 : 
Level 6 : 
Le ve l 7: 

0 repetitions 
0 repetitions 
0 r epetitions 
0 repetit.ions 
3 repet i tions 
7 repetitions 

16 repeti~:ions 
35 repe~:itions 

61 r epetitions in a ll 
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DATA- SET 3 

a • 51 bO • 7, fO = 5 

Leve l 0 : 
Level 1: 
Level 2: 
Leve l 3 : 
Level 4: 
Level 5: 
Level 6: 
Level 7; 

0 repetitions 
0 repe~:i~:ions 

0 repe1:itions 
0 repetitions 
3 repet.itions 
7 repetit.ions 

16 repeti tions 
35 repetitions 

61 repetitions in a ll 

DATA-SET 4 

a = 53, bO • l , fO = 1 

Level 0: 
Level 1: 
Level 2: 
Level 3: 
Level 4: 
Level 5: 
Le ve l 6: 
Le ve l 7: 

0 repet i t.ions 
0 repetitions 
0 repetitions 
0 repetit i ons 
3 r e petit ions 
7 repetitions 

16 repetitions 
3S repetitions 

61 repetitions in all 



DATA-SET 5 

a = 45, bO • 11, fO • 37 

Level 0: 
Level 1: 
Level 2: 
Level 3: 
Leve l 4: 
Level 5 : 
Level 6: 
Level 7: 

0 repetitions 
0 repetitions 
0 repetitions 
0 repet itions 
3 repetitions 
7 r epetitions 

16 repetitions 
35 repetitions 

61 repetitions in all 

DATA-SET 6 

a • 13, bO 

Level 0: 
Level 1: 
Level 2: 
Level 3: 
Level 4: 
Level 5 : 
Level 6: 
Level 7: 

33 , fO • 33 

0 repetitions 
0 repetitions 
0 repetitions 
0 repetitions 
3 repetitions 
7 repetitions 

16 repetitions 
35 repetitions 

61 repetitions in all 

DATA-SET 7 

a = 21, bO • 11, :o = 0 

Level 0: 
Level 1: 
Level 2: 
Level 3: 
Leve l 4 : 
Le"el S: 
Leve l 6: 
Level 7 : 

0 repetitions, 
0 repetitions 
0 repetitions 
0 repetitions 
3 repetitions 
7 repetitions 

16 repetitions 
35 repetitions 

61 repetitions in all 

DATA- SET 8 

a = 5, bO • 33, EO = 42 

Level 0 : 
Level 1: 
Level 2: 
Level 3: 
Level 4: 
Level 5: 
Level 6: 
Level 7: 

0 repetitions 
0 repeti~:ions 
0 repetitions 
0 repetitions 
3 repetitions 
7 repe~: itions 

16 repetitions 
35 repetitions 

61 repetitions in all 

Since the values of a (subject only to (95)). b0 (odd). and fo were 
chosen quite aimlessly. the recurring pattern of repetitions suggests 
that a th eorem underlies it; the number of repetitions a t each level is 
probably a constant. depending only on M and q. Further 
experimentation. varying M and q. supports this conjecture. For 
example. covering the first 511 nodes. when M = 7 and q = 5. we get: 

DATA-SET 9 

a • 5 , bO = 5 , fO • 5 

Level 0: 
Level 1: 
Level 2: 
Level 3 : 
Level 4: 
Level 5: 
Level 6: 
Level 7: 
Level 8: 

0 repetitions 
0 repetitions 
0 repetitions 
2 repetitions 
4 repetitions 
9 repetitions 

17 r epetitions 
22 repetitions 
2 1 repetitions 

75 repetitions in all 
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DATA-SET 10 

a • 37, bO • 23 , fO = 30 

Level 0: 
Level 1: 
Level 2 : 
Level 3: 
Level 4: 
Level 5: 
Level 6: 
Level 7: 
Level 8: 

0 repetit ions 
0 repetitions 
0 repe~:itions 
2 repetitions 
4 repetitions 
9 repetitions 

17 repetitions 
22 repeti tions 
21 repetitions 

75 repetitions in all 



Another program was written in "C" to execute Algorithm 2 . 
Agatn. a typical complete output is given in Appendix A. partly 
abbreviated . and the listing of the program is given in Appendix B. 
The section which Inputs an d computes the universal parameters of 
the algorithm and ln1tializes the first record n ow takes essentially 
47 commands. and now the section which "butlds the tree" (a simpler 
section butlds the ·apex' of the tree: we consider the much more 
complicated section which builds the lower part of the tree) takes 
essentially 59 commands ["if < •.• 1" or "if ( ... ) ... else . . . " is 
counted as an additional command. wherever it occurs. as are 
"for < ... 1 .. and "while < . . . 1 " ; Inessential commands are ignored). 
Thus. the avoidance of repetitions in the first k + 1 = 2M - q - l levels 
of the tree (and commensurate avoidance of repetitions thereafter. 
within 2k- M+q = 2M- 2 occurrences of any b-value) costs a factor of 
59/6 ~ 10 in program-complexity. 

With M = 6 and q = 3. the computations again covered the first 
255 nodes (8 levels) of the tree. The same eight sets of data were 
tried. yielding the theoretically predicted absence of repetitions in the 
first k + 1 =2M - q - 1 = 8 levels. Only the firs t two outputs are given 
below: the other six are identical. Clearly. the same conjectured 
theorem applies here. too. 

DATA-SET 1 

a = 21, bO • 3, fO = 7 

!...evel 0: 
~evel 1: 
:.evel 2: 
Level 3: 
Level 4: 
Level 5 : 
Level 6 : 
Level 7: 

0 repetitions 
0 repet i tions 
0 repetit i ons 
0 repetitions 
0 repetitions 
0 repetitions 
0 repetit.ions 
0 repetitions 

0 repetitions in all 
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DATA- SET 2 

a = 37, bO • 63, fO = 57 

Leve l 0: 
Level 1: 
Leve l 2: 
Level 3: 
Level 4: 
Level 5: 
Level 6: 
Level 7: 

0 repetitions 
0 repetitions 
0 repetitions 
0 repetitions 
0 repetitions 
0 repetitions 
0 repetitions 
0 repetitions 

0 repetitions in all 



BUS62 

CAR75 

ERM71 

FRA63 

FRE84 

CRE65 

HAL60 

HAL70 

HAL72 

HAL87 
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APPENDIX A 

Computational Results 

An example of the output of the program for Algorithm 1 
below. 

is given 

M = 6 . a • 21. bO - 3 (Q - 7. q- 3 

~ode I~c::w:e l am Cl:Qkfe .t b ll Hade Le:!Zel mn "Qli'~t b ~ 
1 0 0 0 3 7 41 5 20 0 35 8 
2 l 0 1 3 22 42 5 10 1 19 a 
3 l 1 0 11 7 43 5 21 0 43 33 
4 2 0 2 3 17 44 5 5 2 43 24 
5 2 2 0 19 22 45 5 22 0 51 57 
6 2 1 1 11 30 46 5 11 1 27 41 
7 2 3 0 27 7 47 5 23 0 59 22 
8 3 0 3 3 40 48 5 1 4 11 43 
9 3 4 0 35 17 49 5 24 0 3 32 

10 3 2 1 19 33 50 5 12 1 35 56 
11 3 5 0 43 22 51 5 25 0 11 l 
12 3 l 2 11 1 52 5 6 2 51 16 
13 3 6 0 51 30 53 5 26 0 19 41 
14 3 3 1 27 46 Sot 5 13 1 43 33 
15 3 7 0 59 7 55 5 27 0 27 30 
16 4 0 4 3 11 56 5 3 3 27 16 
17 4 a 0 3 40 57 5 28 0 35 33 
18 4 4 1 35 8 58 5 14 1 51 57 
19 4 9 0 11 17 59 5 29 0 43 46 
20 4 2 2 19 8 60 5 7 2 59 33 
21 4 10 0 19 33 61 5 30 0 51 14 
22 4 s 1 43 57 62 5 15 1 59 14 
23 4 11 0 27 22 63 5 31 0 59 7 
24 4 1 3 11 32 64 6 0 6 3 53 
25 4 12 0 35 1 65 6 32 0 3 42 
26 4 6 l 51 41 66 6 16 1 3 42 
27 4 13 0 43 30 67 6 33 0 11 ll 
28 4 3 2 27 33 68 6 8 2 3 42 
29 4 14 0 51 46 69 6 34 0 19 11 
30 4 7 1 59 14 70 6 17 1 11 19 
31 4 15 0 59 7 71 6 35 0 27 40 
32 5 0 5 3 42 72 6 4 3 35 10 
33 5 16 0 3 11 73 6 36 0 35 11 
34 s 8 1 3 11 74 6 18 1 19 59 
35 5 17 0 11 40 75 6 37 0 43 8 
36 5 4 2 35 11 76 6 9 2 11 59 
37 5 18 0 19 8 77 6 38 0 51 48 
38 5 9 1 11 48 78 6 19 1 27 0 
39 5 19 0 27 17 79 6 39 0 59 17 
40 5 2 3 19 59 80 6 2 4 19 42 
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Nod~ Lev~l ron ppwer b " Nqde L.j::loyel mu power h X 

81 6 40 0 3 59 136 7 8 3 3 53 
82 6 20 1 35 11 137 7 68 0 35 42 
83 6 H 0 11 8 138 7 34 1 19 58 
84 6 10 2 19 59 139 7 69 0 43 11 
85 6 42 0 19 8 140 7 l7 2 11 26 
86 6 21 1 43 32 141 7 70 0 51 19 
87 6 43 0 27 33 142 7 35 1 27 35 
88 6 5 3 43 35 143 7 71 0 59 40 
89 6 44 0 35 24 144 7 4 4 35 53 
90 6 22 1 51 32 145 7 72 0 3 10 
91 6 45 0 43 57 146 7 36 1 35 10 
92 6 11 2 27 56 147 7 73 0 11 ll 
93 6 46 0 51 H 148 7 18 2 19 42 
94 6 23 1 59 9 149 7 74 0 19 59 
95 6 47 0 59 22 150 7 37 1 43 19 
96 6 1 5 11 18 151 7 75 0 27 8 
97 6 48 0 3 43 152 7 9 3 11 H 
98 6 24 1 3 35 153 7 76 0 35 59 
99 6 49 0 11 32 154 7 38 1 51 35 

100 6 12 2 35 59 155 7 77 0 43 48 
101 6 50 0 19 56 156 7 19 2 27 27 
102 6 25 1 11 32 157 7 78 0 51 0 
103 6 51 0 27 1 158 7 39 1 59 32 
104 6 6 3 51 3 159 7 79 0 59 17 
lOS 6 52 0 35 16 160 7 2 5 19 5 
106 6 26 1 19 48 161 7 80 0 3 42 
107 6 S3 0 43 41 162 7 40 1 3 26 
108 6 13 2 43 32 163 7 81 0 11 59 
109 6 54 0 51 33 164 7 20 2 35 10 
110 6 27 1 27 17 165 7 82 0 19 ll 
111 6 55 0 59 30 166 7 41 1 11 51 
112 6 3 4 27 43 167 7 83 0 27 8 
113 6 56 0 3 16 168 7 10 3 19 42 
1H 6 28 1 35 24 169 7 84 0 35 59 
115 6 57 0 11 33 170 7 42 1 19 59 
116 6 14 2 51 32 171 7 85 0 43 8 
117 6 58 0 19 57 172 7 21 2 43 11 
118 6 29 l 43 49 173 7 86 0 51 32 
119 6 59 0 27 46 174 7 43 1 27 16 
120 6 7 3 59 48 175 7 87 0 59 33 
121 6 60 0 35 33 176 7 5 4 43 10 
122 6 30 1 51 25 177 7 88 0 3 35 
123 6 61 0 43 14 178 7 44 1 35 27 
124 6 15 2 59 33 179 7 89 0 11 24 
125 6 62 0 51 14 180 7 22 2 51 19 
126 6 31 l 59 14 181 7 90 0 19 32 
127 6 63 0 59 7 182 7 45 1 43 24 
128 7 I) 7 3 28 183 7 91 0 27 57 
129 7 64 0 3 53 184 7 ll 3 27 51 
130 7 32 1 3 53 185 7 92 0 35 56 
131 7 65 0 11 42 186 7 46 1 51 16 
132 7 16 2 3 53 187 7 93 0 43 41 
133 7 66 0 19 42 188 7 23 2 59 56 
134 7 33 1 ll 50 189 7 94 0 51 9 
135 7 67 0 27 11 190 7 47 1 59 9 
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Node Level mn PQWII!ot b X Node lre ye l mp power b X 

191 7 95 0 59 22 224 7 3 5 27 3~ 
192 7 l 6 11 5 225 7 112 0 3 43 
193 7 96 0 3 18 226 7 56 1 3 19 
194 7 48 1 3 10 227 7 113 0 11 16 
195 7 97 0 11 43 228 7 28 2 35 27 
196 7 24 2 3 34 229 7 114 0 19 2~ 
197 7 98 0 19 35 230 7 57 1 11 0 
198 7 49 1 11 43 231 7 115 0 27 33 
199 7 99 0 27 32 232 7 14 3 51 19 
200 7 12 3 35 58 233 7 116 0 35 32 
201 7 100 0 35 59 234 7 58 1 19 0 
202 7 50 1 19 43 235 7 117 0 43 57 
203 7 101 0 43 56 236 7 29 2 .;3 48 
204 7 25 2 11 43 237 7 118 0 51 49 
205 7 102 0 51 32 238 7 59 1 27 33 
206 7 51 1 2.7 48 239 7 119 0 59 46 
207 7 103 0 59 1 240 7 7 4 59 43 
208 7 6 4 51 50 241 7 120 0 3 48 
209 7 104 0 3 3 242 7 60 1 35 24 
210 7 52 1 35 51 243 7 121 0 11 33 
211 7 lOS 0 11 16 244 7 30 2 51 0 
2 12 7 26 2 19 3 245 7 122 0 19 25 
213 7 106 0 19 48 246 7 61 1 43 17 
214 7 53 1 43 8 247 7 123 0 27 14 
215 7 107 0 27 41 248 7 1 5 3 59. 48 
216 7 13 3 43 11 249 7 12 4 0 35 33 
217 7 106 0 35 32 250 7 62 l Sl 25 
218 7 54 1 51 40 251 7 1 2 5 0 13 14 
219 7 109 0 43 33 252 7 31 2 59 33 
220 7 27 2 27 0 253 7 126 0 51 H 
221 7 110 0 51 17 254 7 63 1 59 l4 
222 7 55 1 59 49 255 7 127 0 59 7 
223 7 111 0 59 30 

' b. ~ l at cs::u:!e i lel£,:llll 
( 3, 10) 145 (7): 194 (7) 
( 3, 11) 16 (4): 33 (5). 34 (5) 
( 3, 35) 98 ( 6) : 177 (7) 
( 3, 40) 8 (3): 17 (4) 
( 3, 42) 32 ( 5) : 65 (6). 66 ( 6) ' 68 ( 6)' 161 (7) 
( 3, 43) 97 ( 6) : 225 (7) 
( 3, 53) 64 ( 6) : 129 (7)' 130 (7), 132 (7), 136 (7) 
( 11, l) 12 ( 3) : 51 (5) 
( 11, 11) 67 ( 6) : 147 (7) 
( 11, 16) 211 (7): 227 (7) 
( 11, 32) 24 ( 4) : 99 ( 6) ' 102 ( 6) 
( 11, 33) 115 (6); 243 (7) 
( 11, 43) 48 (5) J 195 (7) ' 198 (7) • 204 (7) 
( 11, 59) 76 ( 6) J 163 (7) 
( 19, 8) 20 ( 4) ; 37 (5) • 42 (5) • 85 ( 6) 
( 19, 11) 69 ( 6); 165 (7) 
( 19, 33) 10 ( 3); 21 (4) 
( 19, 42) 80 ( 6): 133 (7)' 148 (7). 1 68 (7) 
( 19 , 48) 106 ( 6) : 213 (7) 
( 19, 59) 10 ( 5) : 74 ( 6 ) ' 84 ( 6 ) ' 1 49 ( 7), 170 (7) 
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( b, x) at: node (level) 
( 27, 0) 78 ( 6) ; 220 {1) 
( 27, 8) lSl {1); 167 {1) 
( 27, 16) 5 6 (5) ; 174 (7) 
( 27' 17) 39 ( 5) ; 110 ( 6) 
( 27, 33) 28 ( 4); 87 (6) ' 231 (1) ' 238 {1) 
( 27 , 41) 46 ( 5 ) ; 215 (7) 
( 27, 46) 14 (3); 119 ( 6) 
( 35, 8) 18 ( 4) ; 41 (5) 
( 35, 10) 72 ( 6); 146 (7) ' 164 (7) 
( 35, 11) 36 ( 5) ; 73 ( 6) ' 82 (6) 

( 35, 24) 89 ( 6); 114 ( 6) ' 242 (7) 
( 35, 27) 178 ( 7); 228 (1) 
( 35, 32) 217 (1) ; 233 (7) 
( 35, 33) 57 (5) ; 121 ( 6) ' 249 (7) 
( 35, 56) so (5) ; 185 (7) 
( 35, 59) 100 ( 6) ; 153 (1), 169 (7)' 201 (1) 
( 43, 8) 75 (6); 171 (1)' 214 {1) 

( 43, ll) 139 (1); 172 {1) ' 216 {1) 
( 43, 14) 123 ( 6) ; 251 (1) 
( 43, 2 4J 44 (5) ; 182 (7) 
( 43, 32) 86 ( 6) ; 108 (6) 
( 43, 33) 43 (S) ; 54 (5) ' 219 (1) 
( 43, 4l) 107 ( 6) ; 187 (7) 
( 43, 48) I SS (7) ; 236 (7 ) 
( 43, 57) 22 ( 4) ; 91 ( 6 ) ' 235 ( 7) 
( 51, 0) 157 ( 7) ; 244 (7) 
( 51, 14) 61 ( 5) ; 125 ( 6) ' 253 (7) 
( 51, 16) 52 (5); 18 6 (1) 
( 51, 19) 14 1 (1) ; 180 (..,) ' 232 (7) 
( 51, 25) 122 ( 6) ; 250 (1) 
( 51, 32) 90 ( 6) ; 116 ( 6) ' 173 (1). 205 (7) 
( 51, 41) 26 ( 4) ; 93 ( 6) 
( 51. 57) 45 ( 5) ; 58 (5) 
( 59, 7) 15 (3) ; 31 ( 4) ' 63 ( 5) • 127 (6), 255 (1) 
( 59, 9) 94 ( 6) ; 190 (1) 
( 59 , 14) 30 ( 4) ; 62 ( 5) • 126 ( 6) • 254 (7) 
( 59 , 17) 79 ( 6) ; 159 (7) 

( 59, 22) 41 (5) ; 95 ( 6 )' 191 ( 7) 
( 59, 30 ) 111 ( 6) ; 223 (7) 
( 59, 33) 60 ( 5) ; 124 ( 6) ' 175 (7) . 252 (7) 
( 59 , 48) 120 ( 6) ; 2 48 (1 ) 

An example of the output of the program for Algorithm 2. fo r the 
same data as above, is given below. 

~ • 6:. a - 2l. bll = 1. fO 21 Q • J1 Q • 2AM • 6•, Z"'Q I! 2"" U1-gl • II 
a"' • 61. ISO 5Q, fS:O:* • ll tsl - ~1. JSl *• 2l. 112 52. 1:12* ~ 2 
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Node Level mu powe~ b l< s n s T l\ s XXX 
!1 Y. kl Ul l Y.Y. b1Ji ll X z ~n~ '(X, zz 
1 0 0 0 3 7 0 0 0 0 0 0 
0 0 2 0 0 Q Q 0 Q Q _Q 0 
2 1 0 1 3 22 0 0 0 0 0 0 
Q Q g Q g Q g Q Q !l !l !l 
3 1 1 0 11 23 0 0 0 0 0 0 
2 !! Q 2 !! !l 2 !! !! Q g Q 

4 2 0 2 3 l1 0 0 0 0 0 0 
0 Q 2 Q Q Q 2 0 0 Q Q Q_ 

5 2 2 0 19 6 0 0 0 0 0 0 
0 Q Q Q Q Q Q !l 0 Q Q Q 
6 2 1 1 11 46 0 0 0 0 0 0 
0 Q Q Q Q Q Q Q 0 Q Q Q 
7 2 3 0 27 55 0 0 0 0 0 0 

Q 0 Q Q Q Q Q Q Q Q 0 0 

3 3 0 3 3 40 0 0 0 0 0 1 
1 1 l 1 1 1 21 2 !l 1 Q Q 
9 3 4 0 35 7 0 0 0 0 0 1 
1 l 1 1 l 1 21 !l !l 1 !l Q 

10 3 2 1 19 17 0 0 0 0 0 1 
1 1 1 1 1 ~ ~1 Q 0 l 0 0 

11 3 5 0 43 14 0 0 0 0 0 1 
1 1 1 1 1 1 ~1 0 Q 1 0 0 

12 3 l 2 ll 17 0 0 0 0 0 l 
1 1 1 1 1 1 ~~ 0 Q ~ Q 0 

13 3 6 0 5 1 38 0 0 0 0 0 1 
1 l l 1 1 1. ~1 Q 0 1 Q 0 

14 3 3 1 27 30 0 0 0 0 0 l 
1 1 1 1 1 1 21 !! Q 1 !! Q 

15 3 7 0 59 55 0 0 0 0 0 l 

1 1 1 1 1 1 21 Q Q 1 Q Q 
16 4 0 4 3 11 1 1 0 0 0 22 
:p 2 1 21 2 61 ~ 1 ~7 22 1 41 1 l 
17 4 8 0 3 62 1 1 3 33 56 22 
~7 21 2! 2 61 ~l ~7 22 1 41 1 1 
18 4 4 1 35 5 4 1 1 0 0 0 22 
~7 2 1 ~1 2 61 61 ~2 22 1 41 1 1 
19 4 9 0 11 31 1 1 8 33 56 22 
~7 21 2! 2 61 61 ~2 22 1 ~1 1 1 
20 4 2 2 19 56 1 1 0 0 0 22 
57 21 21 9 61 61 52 22 \ . 41 1 1 
21 4 10 0 19 47 1 1 8 33 56 22 

~7 ~ 1 '1 2 §1 §1 ~7 ~' 1 H 1 1 
22 4 5 1 43 17 1 1 0 0 0 22 
~~ 2 1 ~! 2 61 ~ 1 ~7 22 1 ~1 1 1 
23 4 11 0 27 6 1 1 8 33 56 2 2 
~7 21 2! 2 61 61 ~7 22 1 41 1 1 
2 4 4 1 3 11 48 1 1 0 0 0 22 
~7 21 21 2 61 61 ~7 22 1 H 1 1 
25 4 12 0 35 15 1 1 3 33 56 22 
:ii 21 21 9 61 61 ~7 22 1 4l 1 1 
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Node Level mu power b X 3 ns T A s XXX 
!! ll li !ill ':lY. ffi~ l5: X Oil l!:l!: XX z.z 

26 4 6 1 5 1 17 1 1 0 0 0 7.2 
:i7 21 -· 2~ ~ 61 21 !l7 22 1 41 1 1 
27 4 13 0 43 54 1 1 8 33 56 22 
:i7 n 21 2 §1 H ~7 ~' 1 n 1 ~ 
28 4 3 2 27 17 1 1 0 0 0 22 
:i7 n ~1 2 !il H ~2 zz 1 H l 1 
29 4 14 0 51 14 l 1 8 33 56 22 
~~ 2 1 21 2 61 61 :i1 ~' 1 41 1 1 

30 ~ 7 1 59 62 1 1 0 0 0 22 
___a_ 21 2l. 2 §! 61 :i7 22 1..___41 1 1 

31 4 15 0 59 63 1 1 8 33 56 22 
52 2l 2l 2 fil fil 52 22 l ~ J 

f:igde Le~e l JII)J Q!:ll:l!e t: b ll ~ DS I 
32 5 0 5 3 42 2 2 0 
33 5 16 0 3 61 2 2 13 
34 5 8 1 3 25 2 2 0 
35 5 17 0 11 10 2 2 13 
36 5 4 2 35 17 2 2 0 
37 5 18 0 19 2 2 2 13 
38 5 9 1 11 22 2 2 0 
39 5 19 0 27 29 2 2 13 
4 0 5 2 3 19 43 2 2 0 
u 5 20 0 3 5 5 0 2 2 13 
42 5 10 1 1 9 46 2 2 0 
43 5 21 0 43 29 2 2 13 
44 5 5 2 43 16 2 2 0 
45 5 22 0 51 61 2 2 13 
46 5 11 1 27 25 2 2 0 
47 5 23 0 59 26 2 2 13 
48 5 1 4 11 59 3 2 0 
49 5 24 0 3 38 3 2 17 
50 5 12 1 35 30 3 2 0 
51 5 25 0 11 33 3 2 17 
52 5 6 2 51 24 3 2 0 
53 5 26 0 1 9 33 3 2 17 
54 5 13 1 43 25 3 2 0 
55 5 27 0 27 46 3 2 17 
56 5 3 3 27 0 3 2 0 
57 5 28 0 35 33 3 2 ~~ 

58 5 l4 1 51 25 3 2 0 
59 5 29 0 ~3 30 3 2 17 
60 5 7 2 59 17 3 2 0 
61 5 30 0 51 5 4 3 2 17 
62 5 15 1 59 38 3 2 0 
63 5 31 0 5 9 33 3 2 17 
64 6 0 6 3 53 4 3 0 
65 6 32 0 3 58 4 3 21 
66 6 16 l 3 4 4 3 0 
67 6 33 0 11 37 4 3 21 
68 6 8 2 3 16 4 3 0 
69 6 34 0 19 5 4 3 21 
70 6 l7 1 11 29 4 3 0 
71 6 35 0 27 34 4 3 21 
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MQdf: Id:l:Y.0 l mJJ t:u:~iie::: b ll :1 D~ l: 
72 6 4 3 35 8 4 3 0 
73 6 36 0 35 5 4 3 21 
74 6 18 1 19 61 4 3 0 
75 6 37 0 43 18 4 3 21 
76 6 9 2 11 25 4 3 0 
77 6 38 0 51 10 4 3 21 
78 6 19 1 27 60 4 3 0 
79 6 39 0 59 37 4 3 21 
80 6 2 4 19 26 5 3 0 
81 6 40 0 3 31 5 3 24 
82 6 20 l 35 61 5 3 0 
83 6 41 0 11 38 5 3 24 
84 6 10 2 19 25 5 3 0 
85 6 42 0 19 62 5 3 24 
86 6 21 1 43 12 5 3 0 
87 6 43 0 27 15 5 3 24 
88 6 5 3 43 59 5 3 0 
89 6 44 0 35 46 5 3 24 
90 6 22 1 51 52 5 3 0 
91 6 45 0 43 47 5 3 24 
92 6 ll 2 27 40 5 3 0 
93 6 46 0 51 63 5 3 24 
94 6 23 1 59 29 5 3 0 
95 6 47 0 59 54 5 3 24 
96 6 1 5 l ~ 34 6 3 0 
97 6 48 0 3 35 6 3 27 
98 6 24 1 3 33 6 3 0 
99 6 49 0 11 40 6 3 27 

100 6 12 2 35 25 6 3 0 
101 6 50 0 1 9 48 6 3 27 
102 6 2 5 l 11 0 6 3 0 
103 6 51 0 27 51 6 3 27 
104 6 6 3 51 43 6 3 0 
105 6 52 0 35 0 6 3 27 
106 6 26 1 19 8 6 3 0 
107 6 53 0 43 19 6 3 27 
108 6 13 2 43 56 6 3 0 
109 6 54 0 51 3 6 3 27 
110 6 27 1 27 33 6 3 0 
1 11 6 55 0 59 2 4 6 3 27 
112 6 3 4 27 27 7 3 0 
113 6 56 0 3 20 7 3 30 
114 6 28 1 35 24 7 3 0 
115 6 57 0 11 45 1 3 30 
116 6 l4 2 51 0 7 3 0 
117 6 58 0 19 13 7 3 30 
118 6 29 1 43 33 7 3 0 
ll9 6 59 0 27 12 1 3 30 
120 6 7 3 59 32 7 3 0 
12 1 6 60 0 35 13 7 3 30 
122 6 30 1 51 33 7 3 0 
123 6 61 0 43 28 7 3 30 
124 6 15 2 59 25 7 3 0 
125 6 62 0 51 4 1 3 30 
126 6 31 l 59 48 7 3 0 
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~a:de 'o~e!le l mu QO!:iB:t b llO a DS: I 
127 6 63 0 59 45 7 3 30 
128 7 0 7 3 28 8 4 0 
129 7 64 0 3 49 8 4 33 
130 7 32 1 3 5 8 4 0 
131 7 65 0 11 14 8 4 33 
132 7 16 2 3 23 8 4 0 
133 7 66 0 19 38 8 4 33 
134 7 33 1 11 20 8 4 0 
135 1 67 0 27 49 8 4 33 
136 1 8 3 3 19 8 4 0 
137 1 68 0 35 22 8 4 33 
138 1 34 1 19 60 8 4 0 
139 1 69 0 43 49 8 4 33 
140 1 11 2 11 44 8 4 0 
141 7 10 0 51 49 8 4 33 
142 1 35 1 27 37 8 4 0 
143 7 71 0 59 30 8 4 33 
144 7 4 4 35 ll 9 4 0 
145 7 72 0 3 8 9 4 35 
146 7 36 1 35 12 9 4 0 
10 7 73 0 11 27 9 4 35 
148 7 18 2 19 20 9 4 0 
149 1 H 0 19 11 9 4 35 
150 7 37 1 43 37 9 4 0 
151 7 75 0 27 32 9 4 35 
152 7 9 3 11 24 9 4 0 
153 7 76 0 35 43 9 4 35 
154 1 38 1 51 5 9 4 0 
155 7 77 0 43 48 9 4 35 
156 7 19 2 27 7 9 4 0 
157 7 78 0 51 56 9 4 35 
158 1 39 1 59 4 9 4 0 
159 1 79 0 59 59 9 4 35 
160 1 2 5 19 53 10 4 0 
161 1 80 0 3 10 10 4 31 
162 7 40 1 3 H 10 4 0 
163 7 81 0 11 53 10 4 37 
164 1 20 2 35 36 10 4 0 
165 1 82 0 19 21 10 4 37 
166 1 41 1 11 41 10 4 0 
167 1 83 0 27 so 10 4 37 
168 1 10 3 19 32 10 4 0 
169 7 84 0 35 21 10 4 37 
170 1 42 l 19 41 10 4 0 
171 7 85 0 43 34 10 4 37 
172 7 21 2 43 39 10 4 0 
173 7 86 0 51 26 10 4 37 
174 7 43 1 27 22 10 4 0 
175 7 87 0 59 53 10 4 37 
17 6 7 5 4 43 2 ll 4 0 
177 7 88 0 3 47 ll 4 39 
178 7 44 1 35 41 ll 4 0 
179 7 89 0 ll 36 ll 4 39 
180 7 22 2 51 55 11 4 0 
181 7 90 0 19 12 11 4 39 
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tfQd~ l1Cl£~ l mu ggwet b ~ s D:i I 
182 7 45 1 43 6 11 4 0 
183 7 91 0 27 31 11 4 39 
184 7 11 3 27 35 11 4 0 
185 7 92 0 35 28 11 4 39 
186 7 46 1 51 30 11 4 0 
187 7 93 0 43 63 11 4 39 
188 7 23 2 59 28 11 4 0 
189 7 94 0 51 15 11 4 39 
190 7 47 1 59 41 11 4 0 
191 7 95 0 59 20 11 4 39 
192 7 1 6 11 21 12 4 0 
193 7 96 0 3 30 12 4 41 
194 7 48 1 3 34 12 4 0 
195 7 97 0 11 57 12 4 41 
196 7 24 2 3 56 12 4 0 
197 7 98 0 19 57 12 4 41 
198 7 49 1 11 19 12 4 0 
199 7 99 0 27 38 12 4 41 
200 7 12 3 35 48 12 4 0 
201 7 100 0 35 57 12 4 41 
202 7 50 1 19 3 12 4 0 
2 03 7 101 0 43 22 12 4 41 
204 7 25 2 11 11 12 4 0 
205 7 102 0 51 4 6 12 4 4l 
206 7 51 1 27 10 12 4 0 
207 7 103 0 59 57 12 4 41 
208 7 6 4 51 58 13 4 0 
209 7 104 0 3 51 13 4 43 
210 7 52 1 35 35 13 4 0 
211 7 105 0 11 56 13 4 43 
212 7 26 2 19 59 13 4 0 
213 7 106 0 19 0 13 4 43 
214 7 53 1 43 58 13 4 0 
215 7 107 0 27 3 13 4 43 
216 7 13 3 43 3 13 4 0 
217 7 108 0 35 16 13 4 43 
218 7 54 l 51 50 13 4 0 
219 7 109 0 43 35 13 4 n 
220 7 27 2 27 16 13 4 0 
221 7 110 0 51 19 13 4 43 
222 7 55 1 59 51 13 4 0 
223 7 111 0 59 40 13 4 43 
224 7 3 5 27 18 14 4 0 
225 7 112 0 3 29 14 4 45 
226 7 56 1 3 39 14 4 0 
227 7 113 0 11 42 14 4 45 
228 7 28 2 35 27 14 4 0 
229 7 114 0 19 34 14 4 45 
230 7 57 1 11 60 14 4 0 
231 7 115 0 27 61 14 4 45 
232 7 14 3 51 51 H 4 0 
233 7 116 0 35 18 14 4 45 
234 7 58 1 19 36 14 4 0 
235 7 117 0 43 61 14 4 45 
236 7 29 2 43 32 14 4 0 
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I:!!Qde: Il~l!A] mn I,:!Q~H~l: b ll s CiS T 
237 7 118 0 5 1 29 14 4 45 
238 7 59 1 27 23 i4 4 0 
239 7 119 0 59 58 1 4 4 45 
240 7 7 4 59 2 7 15 4 0 
241 7 120 0 3 36 15 4 47 
242 7 60 1 35 52 15 4 0 
243 7 121 0 11 7 15 4 47 
244 7 30 2 51 40 15 4 0 
245 7 122 0 19 23 15 4 47 
246 7 61 1 43 55 15 4 0 
247 7 123 0 27 28 15 4 47 
248 7 15 3 59 8 15 4 0 
249 7 124 0 35 55 15 4 47 
250 7 62 l 51 7 1 5 4 0 
251 7 125 0 43 44 1 5 4 47 
252 7 n 2 59 43 15 4 0 
253 7 126 0 51 20 15 4 47 
254 7 63 1 59 44 15 4 0 
255 7 127 0 59 39 15 4 47 
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APPENDIX B 

Programs 

The first program executes Algorithm 1, given by (l41) - (143). 

; ~ ·•********~******~***********************~···· · ········~···**********~ 
···~·~·*~************* *********************K*****•* ********~~·-·······~· 

PROGRAM FOR ALGORITHM l 
********* *******••·~···•••* *** ** * ******* ~· ··•••**********•*•*•~····~·*** 
********* *~****************** ******************************•-~***a*~-~~ J 

t include <stdio.h> 
finclude <math.h> 

*define TMAX 256 
idefine TMAX2 TMAX / 2 

long M, Q, a, bO, fO , q, qq, R, h , i , j , k, w, 
rep [101, space, 
l evel[TMAX], mu[TMAX],power[TMAX), bval(TMAX), xva l[TMAX], 
BS (TMAX ) , XS (TMAX), NS[TMAX); 

main() 

long res(): 

FILE •f, 'fopen (); 

f = fopen( "tsrn'', ''w''); 

/* ************ *******************************************************•** 
INPUT AND PREP ROCESS PARAMETERS 

printf("Type M abO fO q: "); 
scant ("%ld \ld Ud \ld %ld", &M, &a, &bO, &fO, &ql; 
Q • l; for (i • 0: i < M; i++) Q • Q • 2; 
qq = l; for ( i • 0; i < q; i ++) qq • qq • 2: 
printf("\n M a bO fO q Q • 2"M\n"); 
print£ ( " %3ld \3ld %3ld \3ld \3ld ~3ld\n\n", 

M, a, bO, fO , q , Q): 
fprintf(f, " M a 
!printf(f, "\3ld \3ld 

M, a, bO, fO, q, Ol: 

bO fO q Q • 2"M\n 11
); 

%3ld \3ld \3ld \3ld\n\ n", 
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{*w*•~••••~******k*** * * ********~******•****~**~****~**~ *** *********~ ~ • ~~ 

INITIALIZE ALL RECORD-ARJV\YS 
**~*********~**** **w**** ***~**~**k**~A••~~~••••*****~** ****~A* A~*~ **** *{ 

level [l] • 0; mu(l] - 0; power(l) • 0: 
bval(l) • bO; xval(l] = fO; 
BS[l] bO; XS[l) • fO; NS(l) • 1; 
space = 1; j • 1: 

f **w*~*•**kk**********•*•~•******************* * **~****************~*~**~ 

BUILD THE TREE 
··························~·········~··········*************···~ ·-~· ·~·t 

for (i • 1; i < TMAX2 ; i++) 
( j++; 

l evel(j) • level[i] + l ; 
rnu(j] • mu[i); 
power(j] • power[i) + l; 
bval(j] • bval(i ) ; 
xval(j) • res(a • xval(i) + bval( i)l; 
insert(j, bval(j), xval(j)); 
j++; 
level(j) • level( i ) + 1; 
mu [j] • i; 
power{j) • 0: 
bva l [ j ) • res (qq • i + bO) ; 
xval[ j ] • xval [ i] ; 
in!!ert (j, bval[j]. xval [j]) ; 

PRINT-OUT ALL NODES G&NERAT£0 

fprintf (f, " Node Level mu 
for (i = 1; i < TMAX; i++) 

power b ~\n\n " J; 

I fprintf ( f , " \Ud %4ld %4ld \4ld %4ld %4ld\n", 
i, level(i) , mu[i), po wer(i] , bva l (i] , xval (i]); 

fprintf (f, "\n\n"); 

PRINT AND COUNT ALL REPETITIONS OF (b, x) 
ww~•~•••~•~ •~• ~•• •*•*•••*•••x~•****•*•••~•••••• • • ********•• ••~•*K*~•••• / 

R = 0; for (i • 0; i < 10; i++) rep(i) • 0; 
h = -1; j - -1; k a -1; W = 0; 
fprint f (f, " ( b , x) at node ( level ) \n\n") ; 
f or (i • 1; i < !MAX; i++) 
if (j == BS(i] && k •• XS[i]) 
if (w •• 0) 

[ fprint!(f, "(\3ld, %3ld) j , k); 
fprintf (!, "\3ld (%lld); \3ld (\lld) ", 

h, level(h). NS(i], level(NS[i))); 
R++; rep(level[NS(iJJJ++; w • 1; 
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else fprintf(f , " %3ld (\lld)", NS{il. level[NS[i]] l; 
e l se 

( h • NS[ i ]; 
j BS[i]; 
k XS[i]; 
if (w > 0) 

t fprint!(f. " \n"); 
w - 0; 

fprint f(f, " \n\n"); 
fprintf (f , " M a bO fO q 
fprintf (f, " \3ld \3ld t3ld %3ld 

M, a, bO, fO, q, Q); 

Q = 2'M\n") ; 
\3ld %3ld\n\n", 

for (i ~ 0, j • l; j <= TMAX2 ; i++, j • 2 • j) 
( printf("Level Uld : %3ld repetit:ions\n", i, rep[ i]); 

fprintf(f, " Level Hld: %3ld repethions \n", i, rep{i)); 

p~intf("\nt3ld repetitions in all\n\n", R); 
fprintf(f, " \n\3ld repetitions in all\n\n", R); 
fclose 1 f) ; 

!·~··~ ·~·········~··••**************~·~·-················~· ~ ~· ~ ··* ~** *** 
INSERT A NEW NODE-RECORD I NTO THE REPETITIONS-LIST 

**************** ************··~················•••*** * ******* ***** **•**/ 

insert (n, p, q) 

long n, p, q; 

long i, j , k; 

space++; 
k = space; i • 1: 
while (k •• ~pace && i < space) 
if (p < BS[i] I I p •• BS[ i) && q < XS[i)) 

{ k = 1; 
for (j • ~pace; j > k; j--) 

( BS[j) • BS{j - i); 
XS(j) • XS[j - l); 
NS(j) • NS(j - l); 

else i ++ ; 
BS(k) • p; XS( k ) • q; NS( k) • n; 

POSITIVE RES I DUE OF ~ MODULO Q 
·· · · ······**** ************ ******** *••••······~••***~* ·~·-~·~'·~·~~ *~ - ~~ / 

long res (P) 

lone; ~; 
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while (? < 0) ~ - P + Q: 
return (P \ Q) : 

The second program executes Algorithm 2 , given by (170) -
( 190). 

!··~··················-~·····~··~··························~····~······ · 
***********~********•••~•••***********•••• •~• •••****?•*********w ••·•~ ·•~ 

PROG~~ FOR ALGoRITHM 2 
****•****** * ***•••·······~··•***** *•··················~······· ~ · ·· ····~~ 
***W** ********************************************************•*•A***••/ 

l i nclude <stdio.h> 
linclude <math.h> 

fdefine TMAX 256 
fdefine TMAX2 TMAX I 2 

long M, Q, QO, Ql, QO, a, bO, fO, q, qq, R, h, i, j, k., u, v, w, 
aa, b, x, y, t, rep[lO], space, KO, KKO , Kl, KKl, K2, KK2, 
level (TMAX], mu (TMAX],power!TMAX], bval(TMAX] , xval (TMAX) , 
BS[TMAX], XS(TMAX], NS[TMAX], 
U( TMAX], UU[TMAX], V(TMAX), VV(TMAX], W(TMAX], WW(TMAX), 
X(TMAX], XX(TMAX], Y(TMAX], YY(TMAX], Z(TMAX], ZZ(TMAX), 
XXX{TMAX] 1 ~t(TMAX), nt[TMAX], T[TMAX], 
A [TMAX], S (TMAX); 

main() 

long res(): 

FILE kf, *fopen(); 

f = fopen("tsrn", "w"); 

INPUT AND PREPROCeSS PARAMETeRS 
···~---~~--·•*****w*•••~**•**••*••••••~···~··-~·-··•A*k***W•WCW*A K****~/ 

pdntf ("Type M a bO fO q: "): 
scanf("\ld \ld tld \ld \ld", &M, &a, &bO, &fO, &q): 

QQ = 1; f or (i • q + 1: i < M: i++) QO - QQ • 2; 
QO - QO • 2: 0 1 • QO • 2; qq • l; 
for (i = 0; i < q; i++) qq = qq • 2; 
0 = qq • QO: 
printf ( " \n M a bO 
printf("%3ld \3ld \3ld 

M, a, bO, fO, q, Q, q_q, 
fprintf (f , M a bO 
fprintf(f, 

fO 
t3ld 
QO); 

fO 

"\3ld \3ld \3ld 
M, a, bO, fO , q, 

KKO = 0: u • M - q 

\31d %3ld 
Q, qq, QO): 
- 2; v = 1; 

q Q 
\ 3ld 

q 0 • 2'M 

\3ld %3ld 
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2'(M-q)\n"); 
%3ld \3ld\n\n ", 

2'(M-q)\n" l: 

\3ld\n\n", 



for (i • 0 ; i < u; i ++) 
( KKO = res{KKO + v) ; 

v = res{v * a); 

KK1 - v; KO -KKO; 
for {i -u; i < M; i++) 

( KO = res{KO + v); 
v = res (v • a); 

K1 = v; KZ • res{a • a ); 
aa = a; u - a; 
for {i = 3; i < M; i ++l 

I u • res{u • u); 
aa- res (aa ~ u ); 

) 
KK2 = aa; KK2 • res (KK2 • KK2) ; 
print£{" ah KO KO* K1 K1• K2 
printf{"\3ld '3ld \31d \ 3ld \3ld 

K2*\n"); 
\3ld \3ld\n\n", 

aa, KO, KKO, Kl, KKl, K2, KK2); 
fprintf(f, " a.... KO KO'II: Kl Kl • K2 
fprintf{f, " '3ld \3ld \ 3ld \3ld \3ld 

aa , KO , KKO, Kl , KKl, K2, KK2l; 

K2•\n" ); 
\3ld \3ld\n\n", 

/ * * K· ~ ·••*****~·-~·W ******** * ** ** ****** *~··~·~···**K**** 'II: 'II:····~· ·*·k~kkk 

I NITI AL I ZE ALL RECORD-ARRAYS 
~ ********** * * * **-******* * * * * *******+WW+ 'II: ~ **** ** * 'II: ** *** ****~~-~K* *******/ 

level ! l l a 0; mu(l] a 0: power[l ] - 0; 
bval[l] = bO; xval{l) • tO; 
BS ( l) • bO; X$ (1) • fO; NS ( l ] • 1; 
space = 1; j • 1; 
!or (i = QO; i < Ql; i++) 

U{i) • 1; v (i] = 1; W(i) • l; UU(i) 
X(i] • a; Y(i] • 0; Z[i] = 0: XX [ i) 
S t [ i ] = 0; nt[i] = 0 ; XXX ( i) • 1; 

1; VV {i ) • 1; WW(i] 
• l; YY(i] • 0; ZZ(i] 

1 ; 
c 0 i 

/*** * ****** ** *** * **'11:* * ** * *************** ****** ************** ******~**~~· 

BUILD THE APEX OF THE TREE 
*****~******** ••·· · ~· ··•••k*******••• ••·~ ·······*~**•***••~ · •k**•* •~··~! 

for <i = 1; i < QO; i++) 
t U - qq A i; 

b = res(u + bO): 
x = res(u • 2 + £0 ) ; 
j++; 
level[j] • leve l (i] + 1; 
mu [ j] • mu[i] ; 
power[j] • power[il + 1; 
bval (j) • bval(i]; 
xval (jJ • res(a • xva l[i] + bval(i]l; 
insert(j , bval(jJ, xva l(j]); 
j++; 
l evel(j) • level(il + 1; 
mu[j) • i; 
pawer (j] • 0; 
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bval(j) • b; 
xval[j) • x; 
if ((xval(i) + x) \ 2 = 1) 

xval(j) • res(a • x +b); 
else x val(j) • x; 
insert(j, bval[j), xval(j)l; 

BUILD THE REST O< THE TREE 

for (i • QO: i < TMAX2; i++) 
{ z - i ' Ql; 

y • z I QO; 
u • restqq • il; 
b • res(u + bO); 
x • res <u • 2 + fOl: 
w • res (W fil • Wfil l: 
z•res(XX(i)• XX [i) ); 
j++; 
st!jJ • 2 • st!il + y: 
nt(j] • nt(i] + 1 ; 
level(j] • level[i) + l; 
mu(j) • mu(i); 
power(j) • power(i) + 1; 
bval(j) • bval[i]; 
U[j} • res(U(i) • U[i} l: 
Vfjl • res(V[il • a); 
Wfjl • res(w • U[i)l; 
l1U ! jl • res (l1U(i) • UU!ill; 
VV[j) • res (VV(i] • aa); 
WW[j) • res(WWfil • WW(il • l1Ufill ; 
X[jJ • res(X[il • X[ill; 
if (y- 1) Y[j) • res(Y[i) + U[ill; 
else Y(j) • Y(iJ; 
if (y- 1) u • res!Uiil • a); 
else u • U[il; 
Y [ j l • res ( ( 1 + u l • Y ( j l l ; 
z [ j J • res ( z I i l + v 1 i Jl ; 
XX(j) • z; 

YY(j) • res((1 + XX(i)) • TI(i)); 
if (y •• 1) u • res(Y[i) + U(i) * (Z(i) + V(i))); 
else u • Y(i); 
ZZ(j) • res((l + W(i)) • ZZ[i) + w * u); 
XXX ( j) • res ( (l + X ( i)) • XXX ( i]) ; 
if (y -- l) 

( U(j) • reS(U(j) * K2l; 

) 

Wfjl • res(W[j] • V(jl); 
UU(j) • res(UU(j] * KK2); 
WW(j) • ras(WW[j] * VV(j)); 
XX[j) • res(XX(j) * K1); 
YY[j] • res(YY(j) + zl; 

xval[j) • res(a • xval(i] + bval) i]); 
insert(j, bval[j), xval(j)l; 
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j ++; 
st {j) • st{j- 1] ; 
nt {j ) • nc {j- 1] ; 
level {j ] • level(j - 1]; 
mu[j] = i; 
powe r {j] • 0; 
bval (j] • b; 
U(j) • U(j- 1); 
V(j ) e V(j- 1); 
W{j ) = W( j- 1] ; 
UU {j) • UU{j - 1) ; 
VV(j) • VV{j - 1] ; 
WW{j) • WW(j- 1) ; 
X(j] • X{ j - 1 ) ; 
Y(j] = Y{j - 1 ] ; 
Z (j] • Z(j - 1 ] ; 
XX ( j ) • XX [ j - 1] ; 
YY [j) • YY[j - 1]; 
ZZ {j) = ZZ[j - 1); 
XXX[jJ • XXX {j - 1); 
A{j] • res(KK1 • XX[j) * WW {j) * X[j)) ; 
S[j] = res(KO * YY[j) - XX[ j) • WW [j) 

* ( ZZ [ j ) - XXX { j l - X [ j I * KKO) l ; 
xva l [ j) • res (A[j] • x + S [ j] * b) ; 
if ( (xval [ i ) + xval [j]) % 2 -- 1 ) 

xval[j ) • res(a • xval (j) +b); 
insert(j, bval(j], xval (j)) ; 

1 -· ~·· ·*******••········••••*****************************•~···~ · ········ 
VERIFY THE 13 COEFFICIENT VALUES BY DIRECT EVALUATION 

· ~ · ········ ······ ··~····························· ······ · · ··········~ ···! 

k - 1; v - 0; w -1 ; u -st I j J ; 
for (h -0; h < u; h++) 

I v - res(v + w); 
w = res(w • Kl); 
k - r es (k • KK2); 

) 
if (YY(j ] !• V) 

p rintf( "Node \4lct : YY-values: '4ld, Hld\ n", j , YY(j], v); 
if ( XX (j) !• w) 

printf ( "Node \Hd : XX-values: \4ld, Hld\n", j, XX(j], w); 

if (UU(j) !• kl 
printf( "Node Hld: UU- values: \4ld, \41d \n", j, UU{j), k): 

v = 0: w • 1 ; u = 2 * st (jJ; 
for (h • 0; h < u; h++) 

[ v • res (v + w) ; 
w = res <w *a); 

'& 
J.• (Y [j) ! • v) 

printf("Node \4ld: Y-values: \4ld, t 4ld\ n", j , Y[j), v); 
' & h (U[j) !• w) 

print£ ("Node \41d : U- values: \4ld, Hld\n", j, u ( j), w); 

I< - 1; v- 0; w -1 ; u = nt I j I : 
for (h - 0; h < u; h++) 

v • re:;s(v + w); 
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w • re s <w • a); 
k res(k • aal; 

) 
if (Z(j) ! = v) 

printf( " Node \4ld: Z- values: \4ld, Hld\n", j , Z(jJ, v); 
if (V(jJ != w ) 

printf( "Node \4ld: v-values: \4ld, \4ld\n" , j , V (j ], w): 
if (W [ j ) I= k ) 

prin t f ( " Node %4ld: W -value s: \4ld, ~4ld\n", j, VV(jJ. kl : 
lc • 1: v • 0; w • 1: u = s t [ j) • nt (j]: 
for (h • 0 : h < u; h++l 

( v • res(v + w); 
w res (w '* a); 
k • res (k 1t a a) ; 

) 
if (ZZ[j] !• v ) 

printf ("Nod e %4ld: z z - va lues: \4ld, ~ 4ld\n " , j, ZZ(j] , v); 
if (W[j) ! = w) 

printf( "Node %4ld: W- value s: Hld, %4ld\n" , j, W(j), w): 
if (WW[j) != k) 

print!("Node \4ld: ww- values: \4ld , \ 4ld\n", j, WW(j], k); 
v - 0: w - 1; u • 1; 
for (h- 0: h < nt(j): h++) u • u • 2: 
for (h • 0: h < u; h++) 

( v • res(v + w); 
w = res (w • a); 

I 
if (XXX(j] != V) 

printf("Node \4ld: XXX-values: \4ld, \4ld\n", j, XXX(j] , v); 
if (X(j] !• w) 

printf( " Node \4ld : x -va lues: \4ld , \4ld\n", j, Xlj ] , w); 

/ ~ * * **~**•*•*•***********~*•*• ***~*•• • *•*w• ~***** ******~*w••w~* ~ ****~~~1 

VERIFY THE As AND Ss ~ARAMETERS BY DIRECT EVALUATION F ROM Ts 
*** * k****** *****W***** •* ****~*********** ***** * ***~*** * **** *****W*kA~A·-1 

u - l; for (h - 0: h < nt(jl: h++) u -u • 2: 
T ( j I - (st { j I + 1) • M - nt(j ] • st!jl + u - q - 2: 
u • T ( j]; v c 0: w • 1; 
for (h • 0: h < u; h++) 

I v - r e s (v + w); 

w - r es(w T a): 
I 

if (A[j] !• w) 

print f ("Node \4ld: A- values: \4ld, \4ld\n" 1 j, A(j), w); 
it (S [ j] ! = v) 

prlntf (" Node \4ld: S-values: \4ld, \4ld\n", j, s [ j J. v); 

PRINT-OUT ALL NODES GENERATED 
* * * ~···· ••*••••~•*•**** ***•** * *****•••················ ·· · · ··· · ··· · ··· · ~; 

fprintf!f, " Node 
fprintf(f, • s 
fprintf(f, " U 

Level mu 
ns T 

v w 

power b 
A S 

w w 
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XXX\n"); 
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fprintf(f, " X Y Z XX YY ZZ \n\n"); 
for (i • 1; i < T~; i·H) 

f fprim:f (!' , "%4ld Hld 'Hd t4ld %4ld %4ld", 

1 

i, level [i), mu [i), power [i), bval [iJ, xva l [il); 
fprintf (f, "%Hd '4ld '4ld \4ld %4ld %4ld\n", 

St[i), nt[ i ). T[i). A[i). S[iJ. XXX [i)); 
fpri.ntf (f, "\41d \4ld \4ld \4ld %4ld \4ld", 
U(i) , V[i), W[J.], UU(i] , VV[i), WW[i)); 

fprintf(f, '' %4ld %4ld %4ld %4ld %4ld %4ld\n\n", 
X(i), Y[ i J. Z[i). XX(i), H[i), ZZ(i]); 

fprintf(f, "\n\n\n"); 

J ~*~*•*~•~•*•*•*••*x*•K~~••••••••••••-~*~ * ************~******••••~•~•••• 

PRINT AND COUNT ALL REPETITIONS OF (b, x) 
-•••••••••********************••••r•••****k***•*•**•••~•••~~•••••~#••*• / 

R - 0; for (i = 0; i < 10: i++) rep[iJ - 0; 
h - -1; j = -1; k = -1; w - 0; 
fprintf (f, " ( b, x) at node (level) \n\n"); 
for (i • 1; i < TMAX; J.++) 

if (j = BS[i) && k •• XS[i )) 
if ( w •• 0) 

I fprintf (f, "(\3ld, \3ld) , j , k) ; 
fprintf (f, "\31d (\lld): %3ld (%lld) ", 

h, level [hJ , NS[i), level(NS(iJJ); 
R++; rep[level(NS (i)J J++; w- 1; 

else fprint f(f, ", %3ld (\lld) •, NS {i), level[NS[i) I); 
else 

I h • NS(i]; 
j BS[iJ; 

I 

k XS[i); 
if (w > 0) 

{ fprint.f(f, "\n"); 
w = 0; 

fprintf(f, "\n\n"); 
fprintf (f, " M a bO fO q 0 = 2'M 2'q 2' (M-q) \n" ): 
fprintf (f , 

"%3ld %3ld %3ld %3ld %3ld \3ld %31d %3ld\n\n", 
M, a, bO, fO, q, Q, qq, 00); 

for (i = 0, j = 1; j <• TMAX2; i++, j • 2 * j) 
( printf( "Level Hld: '3ld repetitions\n" , i, rep[i)); 

fprintf (f, "1.evel Uld: \Jld repe~:itions\n " , i, rep(i)); 
I 

printf( " \nt3ld repetitions in all\n\n", R); 
fprin~:f(f, " \n%3ld repetit ions in all\n\n", R); 
!close(f); 

/ ••···············*························ · ··· ··········•*••~····~ ~-~~~ 
INSERT A NEW NODE-RECORD INTO THE REPETITIONS-LIST 

•~•***w*•************~**********•**************-******•******••-~•••••~t 
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insert (n, p, q) 

long n, p, q; 

long i, j, k; 

space++; 
X • space; i ~ 1; 
while (k •• space && i < space) 
if !p < SS!il I I p == BS i il && q < XS[i)) 

( k = i; 
for (j = space; j > k; j--) 

( BS [ j I • BS ( j 11; 
xs 1 j I - xs 1 j - ll ; 
NS[j] NS(j - 1]; 

else i++; 
BS(k] • p; XS (k] • q; NS (kl • n; 

/ ****··~··**•*~*•***********•*•·~······························~--~····) 
~OSIT1VE RESIDUE OF P MODULO Q 

~******~*****w~•~***************•******•**************•*****~****~***** / 

long res (I?) 

long P: 

while !I? < Ol P 
return(!?% Q); 

I? + Q; 
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