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Abstract 

A fundamental approach for providing an image description in terms of visually sensible image 
regions is described. It involves a) the representation of the image by a structure that captures 
essential image information and then b) the definition of a hierarchy of components of that structure 
by the order of annihilation of those components as the image is continuously simplified by 
lowering the scale. The information-capturing "essential structure" is chosen so that image 
regions are associated with each structure component during the image simplification. To guarantee 
image simplification, successive Gaussian blurring is chosen as the means of scale lowering. 

A number of candidates for essential structures are discussed. We argue that an essential structure 
that describes shape in both the spatial and intensity dimensions will produce an image description 
most likely to be useful for computer or human specification of image objects. In particular, we 
suggest that the intensity "ridge" and "course" curves defmed by the locus of intensity level cutve 
vertices, augmented by the pile of internal and external symmetric axes of these level curves, 
satisfies all desirable criteria for an essential structure. With such shape-based essential structures 
the approach of image description via annihilation under image simplification becomes a very 
attractive paradigm. 

Introduction 

Any process for the definition and labeling of objects appearing in images benefits from 
transforming the original image data into a description in terms of visually sensible regions. With 
such a description a source of intelligence, be it a human interacting with the display of the image 
or a computer program exhibiting artificial intelligence, has a good basis for fitting the image 
information to its model of the world in order to recognize an object. 

In this paper we discuss approaches to producing such a useful image description. In particular, 
we describe the idea of generating a description by measuring an essential structure in the image 
and following it to annihilation as the resolution of the image is reduced. We give five properties 
which ensure that the image description is well behaved for image analysis. Several essential 
structures that we have recently investigated for image description are presented. The power of the 
overall approach is thereby illustrated, and the relative strengths of the structures for producing a 
useful description are compared. 

Early Multiresolution Analysis 

The most popular models of the human visual system (Robson [1983], Koenderink [1984], 
Wilson [1979], Ginsburg [1977]) recognize that it preprocesses the image by analyzing it 
simultaneously at multiple scales. In computer vision Crowley [1984] realized early that analysis at 
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multiple scales could provide an important means of image description on which model-based 
pattern recognition could be based, and not just efficient analysis, as suggested by many (e.g., 
Burt [1983], Rosenfeld [1984] ). Crowley based his analysis on various Difference OfGaussians 
approximations to the Laplacian of the image. He followed peaks and ridges (or their negative 
counterparts) in this Laplacian image through many scales while keeping the energy of the blurred 
Laplacian operator constant Describing the image involved locating the scale at which each peak 
appeared most strongly. 

A somewhat more attractive idea is to take advantage of a blurring approach that simplifies the 
image and to defme objects in terms of the disappearance of their features with simplification. The 
idea is that image objects are defined first by regions of large scale, with detail of these objects 
defined by regions of smaller scale. Regions of large scale are those that are retained as the image 
is simplified by reducing resolution (blurring), while small-scale regions disappear under less 
blurring. The description must also include the relation between small- and large-scale regions. 

Witkin [1983], Yuille [1983], and Koenderink [1984, 1988] each suggested that Gaussian 
convolution was the best form of blurring, since it guaranteed image simplification with blurring, 
i.e., was the only form of blurring that did not allow the local creation of new values of any linear 
function of derivatives of the image as the blurring proceeded. Thus, for example, neither local 
image intensities (Oth derivatives) nor Laplacian zeroes are created by this process. One of us 
[Lifshitz, 1987a] has shown that the required Gaussian blurring need be neither isotropic nor 
stationary for the simplification guarantee to be met, and he has suggested that variation of the 
parameters of the blurring Gaussian across the image could be used to reflect a priori or tentative 
knowledge about the scene. 

Essential Structures and Their Annihilation 

Using the notion of following image features through simplification, Koenderink [1984] suggested 
that the following of intensity extrema and of iso-intensity paths through Gaussian blurring could 
define sensible image regions: you followed each extremum to annihilation with a saddle point and 
defmed the region as those locations whose iso-intensity paths ran into the path in scale space 
tracked by the extremum (the extremal path). Koenderink and we realized that this approach could 
be used to form an image description made from a hierarchy of these regions, where regions lower 
in the hierarchy were of smaller scale and blurred into their parent regions in the hierarchy. 

We suggest that a most important feature of this approach was that image regions were defined by 
the annihilation of their extrema under blurring, or to take a more constructive point of view, by the 
creation of these extrema as deblurring was successively applied to the fully blurred image. In this 
paper we develop a generalization of this idea of creating an image description that is hierarchical 
by scale by following what we call essential structures to annihilation. 

The concept is that an essential structure should be an image descriptor that has the following five 
properties: 

1. It induces a subdivision of the image into regions. 
2. It captures essential region properties, including the way intensity varies across it and the 

spatial properties of the region, i.e., its shape, and therefore the regions it induces are 
semantically sensible. 

3. The structure relating image components does not change until a component annihilates. 
4. It induces a hierarchy of regions by defming for each component the containing 

component into which it annihilates. 
5. It is applicable for images of any spatial dimension. 
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Intensity Extrema and lso-intensities as Essential Structures 

Based on the idea of Koenderink: [ 1984], we began by choosing as our essential structure the set of 
intensity extrema, augmented by iso-intensity contour segments [Lifshitz, 1987a,b]. As illustrated 
in Figure 1, the technique is to follow extremal paths, i.e. the tracks of each extremum as image 
blurring increases and the extremum intensity changes monotonically, until the extremum 
annihilates with a saddle point. /so-intensity paths, i.e., paths connecting each image location to 
the closest location at the next higher scale with the same intensity, are also followed until they run 
into an extremal path. 

This essential structure satisfies the following three properties of essential structure. 

Region Definition. This method defmes image regions by following iso-intensity paths, i.e., 
paths in scale space connecting each image location to the closest location at the next higher scale 
with the same intensity. These iso-intensity paths run into extremal paths as intensity changes 
monotonically along the extremal paths. The resulting association of image locations with an 
extremum forms image regions. 

Region Hierarchy. The regions formed by linking iso-intensity paths to extremal paths are 
associated as subregions of other extremal regions according to the behavior of the iso-intensity 
paths which begin where an extremum annihilates. The extremal path into which this new iso­
intensity path eventually links identifies the parent region for the subregion (for example, see 
Figure 1). 

!so-Intensity Contours 
Extremal Paths 
!so-Intensity Paths 

.,,,. Saddle Pt. Paths 

Figure 1: The behavior of extremal paths under resolution reduction. Note that maxima (Ll), and 
saddle points (0) move together and annihilate. The resulting non-extremal point ( •) is then linked 
via an iso-intensity path to another extremal path. 

Generalization to all dimensions. Lifshitz has demonstrated the method for 2D and 3D 
images and has described how the image representation can be extended to any number of 
dimensions. 
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Figure 2: A cr slice through the upper abdomen together with a collection of anatomic regions 
automatically defined using Lifshitz's program. 

However, this image description fails on two of the above-mentioned criteria. 

Consistent Simplification. Extrema can misbehave under Gaussian blurring. Koenderink has 
shown that intensity extrema can be created out of nowhere by Gaussian blurring, for example 
when the image is made from two Gaussian peaks connected by a steep, narrow hill whose ridge 
monotonically falls from the higher of the peaks to the lower. The effect of intensity extremum 
creation is that regions can be associated with extrema that appear at scales greater than that of the 
original image rather than with just those in the original image. Lifshitz's results suggest that no 
difficulty arises from this fact. 

Region Sensibleness. Applying these ideas to 2D and 3D medical images, we have shown that 
the regions in the description thus produced frequently form anatomic objects, or can be easily 
formed into such anatomic objects using the operations of union and difference (for example, see 
Figure 2). However, sometimes the resulting regions are not semantically sensible. The first type 
of misbehavior listed is of little consequence, but the second and third are bothersome. 

1. Since an extremum annihilates with a saddle point, we would expect that the extremal 
region should include all of the image pixels inside of the iso-intensity contour surrounding 
the annihilating extremum at the intensity level at which the extremum annihilates. In 
[Lifshitz, 1987a] this is shown not always to be true, but this failure seems to occur only in 
unusual circumstances. 

2. An extremal region may be made of disconnected components, with neither component 
itself being an extremal region. If these two components are separated by another region 
with which each component has a visually apparent edge, we would wish that each edge 
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would form the boundary of an extremal region, but this does not always happen (see 
Figure 3). This misbehavior resul ts from the fact that the edges of regions may be heavily 
blurred before either of their iso-intensity sets run into extremal paths, so both sets can run 
into the same extremal path and thus form parts of the same region. 

3. Regions which obviously hang together as a single object do not always combine into 
single regions in the tree. This problem is especially apparent with long branching regions, 
such as a blood vessel tree. 

b) 

Figure 3: The halftone image in 3a depicts the situation where two dark regions in an image are 
separtated by a narrow lighter region. The two image segments in 3b illustrate how pixels linking 
to local extrema can sometimes result in unnatural image segments. In 3c we see an example 
where Lifshitz's program has identified part of a kidney and the whole liver as a single object in an 
abdominal cr image. 

We suggest that these difficulties arise from the fact that the essential structure of intensity extrema 
and iso-intensites inadequately reflects shape and edges. Structures that are designed as shape 
descriptors would seem attractive candidates as essential structures. In the following we discuss a 
number of such candidates. We divide our discussion into those structures that describe shape via 
object boundaries and those that describe shape via the interior of the objects, which we call the 
figure. 

Essential Structures via Boundary Shape 

Richards and Hoffman [ 1985] have noted the importance of boundary curvature extrema in the 
perception of objects with these boundaries. They thus have defined boundaries in terms of pieces 
which range from a curvature minimum, through a curvature maximum, to another curvature 
minimum. They call these boundary pieces codons. One of us [Gauch, 1987] has noted that if we 
apply some form of resolution reduction to the boundary itself, these codons annihilate, one by 
one, and these annihilations can induce a hierarchy. For each such annihilation a maximum of 
boundary curvature annihilates with a minimum of boundary curvature, and we can take the 
remaining codon sharing the annihilated minimum to be the hierarchical parent of the annihilating 
codon. 

A somewhat more attractive boundary-based description, produced by Leyton [1987], defines the 
boundary in terms of the growth of codons from one another by cardinal deformations, rather than 
the concatenation of codons suggested by Richards and Hoffman. The deformations take place at 
the maximum curvature points of the boundary. The shape description is then given by the 
deformation sequence rather than by a subdivision into regions. The difficulty is that the process is 
ambiguous; there are many sequences of cardinal deformations that can produce the same object. 
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By defining codons as components of those into which they annihilate under resolution reduction 
of the boundary, our multiresolution approach can select a particular sequence as the descriptor. 

The difficulty of both of these approaches for image description is that they depend on having a 
predefined boundary. While there remain interesting proposals for ways in which such boundaries 
could be created [e.g., Grossberg, 1985), the question remains whether edges should not be the 
result of region definition rather than the progenitor of them. This turns our attention to figure­
based methods. With such methods a pre-process of edge or contrast enhancement could be used 
to reflect edge information (cf. Crowley's work). Alternatively, measures of edge strength might 
be made part of figure-based essential structures. 

Essential Structures via Figure Shape 

Figure-based shape description is based on decomposition of the figure into cardinal regions. One 
of the most attractive approaches of this type has focused on axes of symmetry [Blum, 1978; 
Brady, 1984; Leyton,1987). Of the various alternatives the symmetric, or medial, axis (SA) stands 
out by being a connected tree that by division at branch points induces a decomposition into 
regions. For objects without holes, each region has an unbranching axis and two associated 
boundary sides. When the SA component includes an SA endpoint, the two sides meet at a point of 
maximal boundary curvature. The axis is the center of a figure and its associated radius function 
specifies the locations inside the figure. The major weakness of the SA [Pizer, 1987a) was the fact 
that detail, or noise, destroyed the naturalness of the decomposition it induced. However, were 
resolution reduction to cause the SA branches corresponding to detail to shrink and annihilate early 
into the limbs off which they branch, the regions corresponding to these branches would be 
defined as subregions and, more important, the limbs would be restored to the natural 
correspondence with a single region rather than two regions interrupted by a detail. A natural 
hierarchy would result (see Figure 4) . 

Figure 4: The desired effects of resolution reduction on the SA of figure 4a are shown in 4b and 
4c. Upon annihilation of branch 'D', we would identify that branch as a subobject of the 
combined branch 'CE'. Similarly, branch 'B' would be determined to be a sub-branch of 'ACE'. 

But what means of resolution reduction can achieve this behavior? We must avoid boundary-based 
approaches, partially to avoid the need for predefinition of image boundaries, partially to allow 
figures with nearby, disconnected pieces to be described as a single object, and partially to retain 
consistency with the figure-based SA. That is, resolution should be reduced by Gaussian 
convolution with the characteristic function specifying the figure [Koenderink, 1986a]. But 
Gaussian convolution turns a characteristic function into a function with many grey levels, i.e., an 
image. It is therefore necessary to define an axis that is sensible for an image and not just for an 
object. Such an axis would be applicable to characteristic functions as special cases of an image. 
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To accomplish this axis definition, we cannot take Koenderink's approach [1986a] of choosing an 
intensity threshold to make the image into a characteristic function. Such a choice causes SA 
branches to break into pieces as we blur the image (see criterion 3). Instead, we view the image as 
a terrain map, with intensity as height. Since the intensity dimension is incommensurate with the 
spatial dimensions, we must treat height specially and view the terrain map as being made up of a 
continuous pile of binary images, each corresponding to a (not necessarily planar or level) slice 
through the terrain, and having value 0 where there is air and value 1 where there is earth. The 
appropriate cut surfaces may be image dependent (see Figure 5); how to choose them is a subject 
of research, and we avoid that question for now by allowing only the selection of intensity level 
sets as the cut surfaces after preprocessing of the image (e.g., by a locally adaptive contrast 
enhancement [Pizer, 1987b]). 

a) 

Figure 5: Intensity proflle of an image with a raised area on a ramp. The iso-intensity slices in 
figure 5a may be less natural for describing the image than the inclined slices in 5b. 

Symmetric Axis Pile and Ver tex Curves as Essential Structures 

The image I(x,y) has thus been characterized as a sequence of binary images, with height (intensity 
level L) parameterizing the selection of the slice. In order to capture both light objects on dark 
backgrounds and dark objects on light backgrounds, we specify two SAs on each level L of the 
'terrain map': the SA of the earthen objects (x,y such that I(x,y) ~ L) and the SA of the air (x,y 
such that I(x,y) ~ L). Looking at these SAs as a function of level L produces what we call the 
symmetric axis pile (SAP). Gauch [1987] has shown that the SAP is continuous except at critical 
points of I(x,y). He shows that the SAP consists of a forest of branching sheets, each such branch 
characterizing shape in both space and intensity of a corresponding part of the image. 
Corresponding to each sheet in the SAP is a radius function, and a region image R defined by 
R(x,y) = the maximum intensity level for which the radius function of a sheet point at that level 
includes x,y (see Figure 6). Furthermore, branches in the SAP shrink to annihilation under 
Gaussian blurring of the image I (see Figure 7) inducing a hierarchy, or multiple hierarchies, on 
SAP sheets and their associated image regions. The question of how multiple hierarchies should be 
formed into one is still under investigation. 

The SAP for an n-dimensional image is an n+ !-dimensional forest of sheets, a prodigious object to 
follow through image blurring. However, Gauch has pointed out that since each SA is terminated 
by a boundary point of maximum curvature magnitude (a vertex), each SAP sheet is terminated by 
a curve of level curve vertices (a vertex curve -- see Figure 8). These vertex curves are simply 
tracks in the original image, corresponding to ridges or courses in the "terrain map". They can be 
followed through image blurring, and when a vertex curve annihilates, the SAP sheet that it 
terminates must also annihilate. Therefore, it is possible to compute the SAP only for the original 

Page 7 



ii 

• 

• 

image, and for each vertex curve annihilation to follow the corresponding SAP sheet to its branch 
curve. The sheet defines a region image R and specifies R as a subregion of the region image 
corresponding to the limb sheet into which it connects. 

a) b) 

c) d) 

Figure 6: a) A simple grey-scale image represented by four level curves, b) its associated 
symmetric axis pile with the SA for each level shown in bold, c) the union of maximal circles 
centered on one branch of the SAP, d) the highest intensity at each point within this union yields 
an image associated with this SAP sheet 
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a) b) c) 

Figure 7: The effects of resolution reduction on the earthen SAP of figure 7a are shown in 7b and 
?c. The branch sheets appear under the ridges of the image represented by the level curves. When 
branch 'C' annihilates, we identify it as a subobject of the combined branch 'BD'. Similarly, 
branch 'A' is determined to be a sub-branch of 'BDE'. 

[) SAP Sheets 
- M+ Vertices 

a) 

M+ Vertices 
m- VerticeS~ 
!so-intensity 

Contours 

b) 

Figure 8: a) The relationship between the symmetric axis pile for an image and the vertex curves 
corresponding to the end curves of the 'earthen' SAP. For clarity, only the vertex curves 
corresponding to positive curvature maxima (M+), are shown. b) !so-intensity contours and 
vertex curves corresponding to positive curvature maxima (M+) and negative curvature minima 
(m-). 

The correspondence between vertex curves and image structures is illustrated in Figure 9. Here, 
we have applied various degrees of Gaussian blurring to a digital subtraction angiogram, an image 
of blood vessels (top row) and calculated the corresponding level curve curvature (second row) 
and the vertex curves (third row) for these images. In the curvature images magnitude of curvature 
is shown by the grey level; high positive curvature (M+) is shown in white, and low negative 
curvature (m-) in black. The grey points on these black and white curves correspond to saddle 
points in the image (where curvature is undefmed). Only M+ and m- vertex curves can be the tops 
of SAP sheets, and these SAP sheets can help in following the vertex curves across saddle points. 
The vertex curves move continuously to annihilation and induce the hierarchical description 
described in the previous paragraph. 
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• Figure 9: A sequence of blurred digital subtraction angiogram images (top row) with their 
corresponding level curve curvature (second row) and vertex curve images (third row). Rows 
four, five and six show analagous sequences for an abdomen CT image. 

Page 10 



,. 

• 

The level curve curvature K at each image point is computed as K = vi hessian( I) v, where I is the 
image and vis the unit vector in the direction of the level curve tangent, (-dlldy, dlldx). The K 
values were computed by the multiresolution n-jet approach ofKoenderink [1986]. This approach 
involves computing iJtl/()xmayn-m for all n less than some limit, all m ~ n, and all degrees of 
blurring. From these, many feature values, including level curve curvature, Laplacian value, etc. 
can be easily computed. Listing useful essential structures that can be computed in this way ought 
to be the subject of active research. 

Vertex curves together with the SAP of the original image seem to satisfy all of the criteria 
specified for an essential structure. 

Region definition. It induces a subdivision into regions that also carry information on intensity 
variation. 

Region sensibleness. The fact that it is based on ridges and courses seems to allow object 
curving to be followed and objects not to break into unrelated pieces. Like the essential structure of 
intensity extrema augmented with iso-intensity contour segments, the vertex curve I SAP structure 
captures the behavior of critical points, but it is more oriented to a whole object rather than one 
point. 

Consistent simplification. Under image blurring no new values of level curve curvature are 
created, but the topology of the associated vertex curves can change. These changes occur when 
saddle-extremum pairs annihilate (or form) and also when locally concave or convex regions on the 
side of hills and valleys are destroyed. By following the smooth evolution of vertex curves, the 
simplification of SAP structure can be deduced. 

Region hierarchy. The hierarchy induced by image simplification involves only a selection 
among branch sheets of the SAP which are already in the form of a tree (or a forest of trees). 
Furthermore, the regions they induce are directly described in terms of intensity and spatial shape 
by the properties of the symmetric axis transform . 

Generalization to all dimensions. The method seems extendable to higher dimensions, 
though details need to be investigated. 

The vertex curves I SAP essential structure thus seems quite promising. However, the usefulness 
of this description and some of its mathematical properties are still under investigation. 
Furthermore, the dependence on intensity level curves seems unfortunate, and improved means of 
slicing the image surface need to be developed 

Discussion 

Hierarchies generated by the annihilation of essential structures meeting the criteria listed in earlier 
sections seem to have great promise. Yet they have a few inherent difficulties. First, since they are 
defined only by image intensities, they cannot be expected always to reflect semantic information. 
Some means will be necessary either to edit the resulting descriptions to reflect such image 
understanding or to let such understanding affect the creation of the descriptions. 

Second, an important weakness of the hierarchical form of description is its sensitivity to the order 
of essential structure annihilation. Similar images have descriptions that are made up of 
qualitatively different regions if their essential structure components annihilate in a different order. 
The difficulty arises from the association of regions only with annihilating structures. Consider the 
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situation illustrated in Figure 10 when two adjoining essential structure components (e.g., 
intersecting SAP branches, or intensity extremal paths connected by an iso-intensity path) are both 
near annihilation. One component annihilates first, defining a region. However, the second 
component simply becomes part of a larger component, and no region is defmed for it, only for the 
larger component of which it is a part Despite the fact that a small change in the image might have 
associated a region with the second component (by changing the order of essential structure 
annihilation) that region appears nowhere in the description. Since a small change in the image can 
cause a large change in the description, equivalence classes of images, the essence of a useful 
object mode, are hard to create. It thus appears that some means needs to be found of forming a 
description in which candidates for hierarchical components are identified and given weights. A 
weight would be given a component according to its degree of retention under Gaussian blurring. 

c c 

a) b) d) 

Figure 10: Effect of resolution reduction on figure lOa through stages b, c, and d illustrates the 
sensitivity of any structural description for such an object. In the case illustrated, region 'B' 
appears in the description, and region 'A' does not, being part of region 'AC'. If region 'B' is 
made slightly longer, resolution reduction will cause the branch 'A' to annihilate sooner, so region 
'A' will appear in the description and region 'B' will not. 

Third, while the approaches we have sketched appear to apply to images of any number of spatial 
dimensions, it is not yet clear how to extend them to vector-valued images or to images of space 
and time. 

Summary 

We have shown that describing images hierarchically by following essential structures to 
annihilation is attractive if the essential structures satisfy a number of criteria. We have seen that the 
idea can be applied to a wide range of essential structures. However, the vertex curve I SAP 
essential structure seems particularly attractive in meeting all of the criteria. Other structures based 
on geometrical features of the intensity surface might also have these strengths. 

This paper has left many open directions for exploration, including how edges should be reflected, 
how cuts through terrain images should be made, how useful the vertex curve-based descriptions 
will be, and what other essential structures ought to be investigated We are confident that such 
research will lead to the production of useful image descriptions. 
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