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Abstract

We propose a new approach to the integration of functional and logic languages, based
on a theory of unification and set-valued functions. A set-valued function maps a tuple
~of input sets into an output set. We describe a language called Setlog which illustrates
this approach, and give its model-theoretic, fixed-point, and operational semantics. The
model-theoretic semantics and fixed-point semantics resemble that of Horn logic. The
operational semantics uses outermost reduction {for set-valued functions) and unification
(for terms). We establish the correctness of the operational semantics through soundness

and completeness proofs.
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1. Introduction

The integration of functional and logic programming remains a challenging problem,
despite the many proposals that have appeared since Robinson’s LOGLISP in the late sev-
enties [BBLMS4, DP85, DFP86, F84, GMs4, HHT82, JL87, JS86, JSG86, L85, MMWs4,
R84, R85, RS82, SP85, T84, YS86]. The challenge lies in designing a language that of-
fers semantic simplicity, computational efficiency, programming power and convenience.
By semantic simplicity, we mean that the language is amenable to a logical treatment,
i.e., model theory and proof theory; by computational efficiency, we mean the language is
amenable to a straightforward procedural interpretation; by programming power, we mean
the language provides at least the capabilities of first-order functional and Horn-logic lan-
guages; and, by programming conven_ience, we mean that programs model the problem

domain as closely as possibie.

We offer an approach based on a theory closely related to predicate logic—set-theory.
We use definite clauses to define set-valued functions. Functional expresssions denote
(p-ossibly infinite) sets of terms. Computation involves proving set-membership assertions,
L.e. solving for variables which make the assertions true. The operational precedure uses
concepts central to functional and logic programnming: outermost reduction and unification

of terms.

The language within which we develop these concepts is called Setlog. We provide
both a model-theoretic semantics and an equivalent fixed-point semantics for Setlog pro-
grams, along the lines of van Emden and Kowalski [VK76]. We also provide an operational
semantics, based on outermost reduction of functions and unification of terms, and prove
its correctness with soundness and completeness proofs. Our approach clearly separates
function symbols from constructors. Unification is restricted to first-order terms; function
application uses one-way substitution. Setlog can consequently be extended to include
higher-order functions without requiring higher-order unification, which is known to be
undecidable {71}

A Setlog program is basically a collection of definite clauses involving set-membership

. assertions, and may take one of two forms:

5 2 terme f(pl L ,pn) <~ term E.,g_e't-_grprés;gz'qn, . _.‘_,' term € set-expression
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-arguments Dls.--, Py int the \above rules are formal parameter variables, and they must be
mutually distinct. Because Setlog distinguishes function symbols from constructors, the
formal parameters of a function are distinguished from the logical variables that appear
in terms; formal parameters denote sets of terms, whereas logical variables denote single
terms. Set expressions are built up of composition of set-valued functions, and the primitive
set constructor is { }, which must contain a single term. The symbol +- should be read
as “if”; that is, the membership asserted on the left of « is true if all the memberships

asserted on the right of + are true. The top-level goal is of the form
1. term € sel-expression.

The goal may also be a conjunction of such expressions. The overall computation of a Setlog
program proceeds similar to Horn-clause resolution, except that unification is restricted to

" terms, with outermost reduction used to reduce sei-functions.

1.1 Related Work

Several declarative semantic bases integrating functional and logic languages have
been proposed: many-sorted Horn-clause logic with equality [GMB84], equational logic [F84,
GM84, DP85, Y388), and others [MMW84, T84|. Various operational strategies have also
been proposed: narrowing [GMS84, DP85, R85, YS86], clausal superposition [F'84], etc.
[JS86, MMW84]. Setlog differs from these various approaches in that it is based on sets,
rather than equations or predicates. Because Setlog does not rely on equations, it avoids
a computationally expensive unification relative to an equational theory; instead it uses a
simple, syntactic unification algorithm.

In a previous paper (JS86], we described a language called Eql, which is closely
related to Setlog. EqlL is a non-deterministic equational programming language combining
functional and logic programming. A key idea distinguishing EqL from other equational
languages is its separation of constructors from function symbols. A program in EqL has

rules of the form
f(p1s-..5pn) = exzpression where subgoal-equations.

-where each p; is a formal parameter. The top-level goal is a set of equations. An equation

- is of the fc_)rm _

LU ezpressiony = expression, .o

"~ where an expression could have both constructors as well as functions. ‘Because of non-- =




- determinism, fﬁnctiona.l eﬁpressions denoted sets of terms, and therefore the above =
predicate is satisfied if the sets denoted by ezpresston, and exrpression, have non-empty
intersection. This predicate represents true equality only when relating two deterministic
expressions (which denote singleton term sets.). As we investigated the semantics of EqL,
we realized that the equational-style syniax was misleading, as our equality was really
set-intersection. Improvements to the syntax led to better understanding of the semantic

theory, resulting in Setlog.

The need to deal with sets in functional and logic progra.mming has been recognized
by several researchers [T81, R84, N85, DFP86, J386|. Darlington proposes an absolute set
abstraction construct for collecting together the solutions of a set of equations [DFP86];
this extends the relative set abstraction construct of Turner iT81], Naish [N85] surveys
a variety of all-solutions predicates proposed for Prolog. Many of these approaches lack
a simple declarative semantics. Plaisted and Jayaraman show one way to obtain sets
for funclional programming without sacrificing their declarative semantics [JP87]; their

language does not, however, support logic programming.

The rest of this paper is sectioned as follows: section 2 presents the syntax of Setlog
pr:)gramé, accornpanied by examples and its relation to functional and logic languages;
sections 3 and 4 give the model-theoretic and fixed-point semantics for Setlog; section
5 is devoted to the operational semantics and ideas for interesting extensions; finally,
section 6 presents conclusions and related work., Correctness proofs relating the formal

and operational semantics may be found in the appendix.
2. Setlog

2.1 Syntax and Informal Semantics

The syntax of Setlog programs is given by the grammar below. Note that the symbols
—, |, and € are meta-symbols, and do not belong to Setlog. The symbols «—, €, {, }, (,
), ., and 7- are language-defined tokens. The symbols setfunctor, constructor, atom, and
logical-variable represent user-defined tokens.
~ . program — claus_lc_ss goal

clauses — €| clause clauses.




unit —» term € { term } | head
. conditional —— head «— body
head — term € setfunctor() I term € setfunctor(py, ..., pn)
body — term € setezpr | term € setexpr, body
setexpr — { term } | setfunctor() | setfunctor{(setexprs)
setexprs — seterpr | setexpr, seterprs
term — atom | logical-variable | constructor(ierms)
terms —— term | term, terms

' Not-eA thaf_ we distinguish between a setfunctor and a constructor. The former is used
- for the name of a set-valued function, the latter for a data constructor. A ground term is
a term without any variables; similarly a ground set expression is a set expression without
any logical variables. In the rule for unit, py,..., p, Tepresent formal parameters. Our
convention is that logical-variables must begin with an uppercase letter, formal parameters

begin with a lowercase letter, and non-numeric atoms are quoted {as in LISP).

We use the constructor cons for constructing binary trees, as in LISP. Lists ate a
special form of binary trees, and we write them using the [...] notation, e.g. [1.2 3]
[] stands for the empty list, and is regarded as an atom. Thus the Hst [1, 2, 3] is
represented as cons(1, cons(2, cons(3, [1))). We use the notation [H | T], as in
Prolog [CM81], to refer to a non-empty list, with head H and tail T. Thus, [H | T] =
cons{H, T). '

We also permit the notation {...} to define a set literal, e.g. {1,2 3} This is just

syntactic sugar for a set—functlon, say 5123(), defined as follows:

1€ s123()
2 € s123()
3 € 8123()

A Setlog program consists of two kinds of definite clauses: unit and co_nditionél. Both

unit and conditional clauses assert set membership. Examples '_pf_w‘fall-formgd_gnit clauses el
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Exémplés of wéll—formed conditional clauses are:

X€£(s1) « IX|T] € ghl{25}, {X}))

[X | T] € £(s1, 82) + X € g(s1), T € h(s2)
A clause may introduce logical variables in any singleton-sets used in its body, e.g. {X}
in the first example above. A conditional clause states that, for any substitution of set

expressions for its formal parameters and any substitution of terms for its logical varisbles,

if all the conditions in its body are true, then the condition in its head is also true.

The procedural interpretation of Setlog clauses is similar to that for Horn clauses,
- except that both unification and reduction are used in simplifying a goal. In order to

reduce a goal

termy € £{expr,...,ezpn)
using a claﬁse

terms € £(pl,...,pn) + body

we unify ferm; and terms, and if the unification is successful, we replace all occurrences cf
fhe formal parameters p1,...,pn throughout the body of £ by ezpy,. .., expx respectively,
and then reduce the goals in the body similarly. Unification can bind logical variables in
both the goal and in the clause. A top-level goal is solved if zl]l intermediate goals are

solved in this manner.

2.2 Examples
Set Union
X € union{s,t) « X€s
Xe union(s,t) — XEt
?- X € union{{1,2}, {2,3}

A solution would bind X to one of elernents from the set {1, 2, 3}. If the implemen-

tation is sequential with backtracking, X would be in turn bound to 1, 2, 2, and 3.

There is no need in Setlog to define special cases for when one of the arguments to

. . union is the empty set—there is no explicit representation of the empty set in Setlog. If

. the prooTam clauses do not unply any terms to be members of a set expression’s denoted

' set, then that set expresswn denotes the empty set
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Set l;?.’r_,térseétio.r;_

Xe iﬁtersect(s,t) +— X€8, X€%

7. X € intersect(union({1,2}, {3}), {2,3,4})
In finding solutions to the goal, X would be bound in turn to the elements 2 and 3.
Cross Product

{XIY] € prod(s, t) +«— X €s, YE
?- answer € prod{({i,2}, {3.4})

In computing successive solutions to the goal, answer would in turn be bound to each

term from the set {[1[31, [1[4]. [2[3]. [24]} .

2.3 Syntactic Sugars
We introduce two syntactic sugars to make programs more readable: First, we let a

function definition,
term € £(..., termy,...) « condition
be used as syntactic sugar for
| termy € £(..., p;,...}) +— term; € p;, condition
where p; is the ¢** formal parameter. Using this sugar, the cross product example becomes
[X]Y] € prod(X, V)

For the other syntactic sugar, whenever a term ¢ is used in the goal clause or in a
program clause body where a set expression is expected, it is treated as {{}, the singleton

set containing ¢. For example,
X e f4, B

is syntactic sugar for
X e £({4}, .{B})

where f is a set-valued function, and A and B are logical variables.

2. 4 Expresswe Power of Setlog

: 'I‘o show the ﬂex1b111ty of the Setlog paradigm we translate typmal functlonal and_

R 1og1¢ prog1a.ms 1nto Setlog Below are equatlonal deﬁmtlons for the fa,mlhar LISP functlons o o




append([ ], y) = v

append(|

reverse([ ) =[]

reverse([k | t]) = append(reverse(t), [h])

These functions can be translated mechanically into sugared Setlog functions:

Y € append([], Y)

(H|Z] € append([H|T}, Y} + Z € append(T, Y)
[1 € reverse([])

Z € reverse([H|T]) <+ Z € append(reverse(T), [HI)
- Expanding the syntactic sugars, the Setlog definitions become:

Y € append(si, 82). — [1€sel, YEs2
[H|Z] € append(si, s2) +« [H|T] € s1, Z € append({T}, s2)

[1 € reverse(s) <+ [] € s

Z € reverse(s) « [H|T] € 8, Z € append(reverse( {T} ), {[HI} )

To see that the translations are correct, note that when input sets are singleton (and

ignoring the difference between a term and the singleton set containing that term), then

term € expression
is equivalent to

term = expression.

When append is applied to non-singleton sets s1 and 82, the resulting denoted set contains
21l terms which can be constructed by appending a term in s2 at the end of a term from
g1, Similarly, reverse applied to a set of lists denotes the set containing every list which

can be constructed by reversing a list in the input set.

By translating to Setlog, we gain the ability to run functions backward, as in Prolog.

Not only can we solve goals of the form

7 answer € append([1,2], [3,41)

' . corresponding to the functionall_.goa,l ' L

“but we can aes selvegosls of the formm




7- [1 2 8 43 6 reverse(X)
Wh;ch corresponds to solvmg the equatmn
7 reverse()() =[1,2,3,4]
The ability to run functions backward integrates functional and logic programming.

Setlog retains the full power of Horn logic programming. Any Horn logic program
can be mechanically translated into a Setlog program. Consider the following program,
written in DEC-10 Prolog [CMS81]: '

apd{[], Y, Y).

apd{([H |T), V,[H | Z]) : — apd(T, Y, Z)}.
re(( 1]

rev([H | T|,Y) :— rev(T,2),apd(Z,|H|,Y).
7- rev(X,11,2,3,4]).

The converted sugared Setlog program would be:

*true € apd{[l, Y. 1)

‘true € apd([H|T], ¥, [H]Z]) + ‘true € apd(T, Y, Z)

“true € rev([l, [1)
Ctrue € rev([H|TI, ¥) « ’true C rev(T, Z), ’true € apd{Z, [H], V)
?- true € rev(X, t1,2.3,4])

In the next two sections, we develop the formal semantics of Setlog. Our development
"closeljf parallels that of Van Emden and Kowalski [VK76] and Lloyd [L84]. The key
difference is that a Horn logic program defines predicates operating on terms, whereas a
Setlog program defines functions mapping tuples of term sets into new term sets. Setlog

promotes a different point of view, more so than a new mathematical theory.

3., Model-theoretic Semantics

A set function maps a fuple of ground term-sets, denofed by its argument set expres-
. sions, to a new ground term-set. An interpretation maps a ground set-expression to a set
of ground ierms, thereby giving meaning to the set functlons An interpretation can be

-expressed as a sef of statements of the form

{gt1 E gsel, gtg E 9882, }

o .:-'Where g'z%z IS a, ground term and: gse1 isa ground set-expressmn Also 1nc1uded are alll

'.--:statements of the form"'




T ._.“-'lnsta.nce of a cla,use in P and {Al, .

gt € {gt}
where gt is a ground term — the tautology that any given ground term is a member of

the singleton-set containing that ground term.

A program model is an inferpretation under which all the program clauses are true.

" For any program P there must exist at least one model, Bp, the model containing
gt E' gse
for every possible- combination of ground term g¢¢ and ground set expression gse. The

intersection of all models of a program P is therefore also a2 model. We call this the least

model, Mp.
Theorem 1: Let P be a Setlog program. Then
Mp = {gt € gseof Bp | gt € gseis a logical consequence of program P},
Proof:
gt € gse is a logical consequence of P
iff P and gt ¢ gse is logically unsatisfiable
iff P haé no model consistent without gt & gse
iff gt € gse is included in all models of P
iff gt € gseisin Mp.
£nd of Proof.

The model-theoretic semantics of a Setlog program P is given by Mp.

4. Fixed Point Semantics

We define 287 to be the set of all interpretations of a Setlog program P. These
interpretations form a complete lattice under the partial order set inclusion, €. The top

element is Bp, and the bottom element, 1, is the set containing all statements of the form

gt € {gt}
where gt is & ground term, but containing no other statements involving set-functions. The -
lIub (least upper bound) of any set of interpretations is the union of those interpretations.

-+ The glb (gr eatest Iower bound) of any set of interpretations is their intersection.

Let P be a provra,m The mappmg Tp: 2Br  —x 9Br i5 deﬁned as foliows Let I be

-_;"an mterpretatlon ofP Then Tp( )= e U {A E Bp [ A — Al, An is a ground'_'._..‘_"..




We say that I 1s a lni;).d‘el.‘for P

iff for ea;:h ground instance A «— Ay,..., 4, of eachclausein P wehave {A41,..,4,} C T
implies A € I |

if Tp(I) C 1.

Since 277 is a complete lattice, and T is a continuous mapping, the fixed-point semantics
of P, Ip(Tp) = Tp™ (L).

The following theorem establishes the equivalence of the fixed-point and model-theoretic

semantics.
Theorem 2: Mp =Tp* (L}).

Proof:

= glb({I | I is a model for P}
— gb({T | To(1) € T}
= 1fp(Tp)

End of Proof.

A program goal G is a set of statements, possibly containing logical variables. An
answer substitution for P U {G} replaces the logical variables in the goal with ground
terms. Let P be a program, G a goal, and § an answer substitution. 8 is a correct answer
substitution for goal G under program F iff G8 is a logiczal consequence of . Thus, fis a
correct answer substitution for G under P iff G is true with respect to every model of P

iff G@ is true with respect to the least model of G.

5. Operational Semantics

A goal G; is a list of statements Sy, ..., Sk, where each S is of the form

term € set-expr.
Both the term and- the set expression may contain logical variables to represent unspecified
ground terms. |

Let ,E'bé some _cclnﬁ‘lput'a;tion:;ulle_lthat selects 2 éfétement_sm from goal G;. We have




o _"“top level goal G

Sy is of the form term E {térmo}

Let f41 = mgu(term termo)

Let ;41 = ¢ (the null substitution).

Let Gig1r = (S1y s Sm—1y Smt1s woes Sk)Fita.
Case 2: Outermost Reduction

Sy is of the form term € f(set-expry, ..., set-expry),

and the program contains a clause of the form

termo € f(pi, - Pa) ¢— condition.

Let 0;.41 = mgu(term, termg).

Let yiy1 = {p; « set;exprl, ...,. p;l - set-exprn}.

Let Gip1 = (S, .oy Sm-1, condition Yir1, Smat, ooy Sk)bit1.
In either case, we say that

G; with ¢ ~» Giy; With ofiyq,

where o is the partial answer substituiion associated with ;. Note that computation
of ~;4.1, which binds the formal parameters in an outermost reduction step, is a simple

cne-way substifution; it requires no unification.
Suppose theré is a derivation
G = Gy with ¢ ~ ... ~ G, with 0 ... 0,,.
Then we say
G = Gy with ¢ ~* G, with 8; ... 9,

where ¢ is the empty answer substitution, and 61, 0», ..., f5, are the substitutions associated

with steps G1,G9,...,Gy. Suppose
G ~* & with 6y ... 0y,

where ¢ is the empty goal. We say that
=0, ..6,-T V(G

isa most general computed answer substttutzon where 'V( ) stands for the variables in the

Soundness and compll

__.model th“"ortm_rsemantlcs Pr 'ofs are : en in an append1x

':ness-:theorems state the equwalence of the operatzonai and s



Soundness Theorem If 9 isa most general computed answer subst1tut10n and # is any
extensmn such that 6'1] bmds ground terms to all the variables of V(G), then 6n T V(G) is

a correct answer su_bstltmon as defined by the ﬁxed-pomt and model-theoretic semantics.

Completeness Theorem: For any correct answer substitution o, there exists a derivation

of a most general computed answer substitution § and extension n such that o = 7.

5.2 Example Derivation

We illustrate the operational semantics with the following i)rogram for appending two

lists, taken __from section 2.2.
Y e app(éi, s2) [l €1, Y€ s2
[H[Z]' € a'pp(si 32) = [H]T] € s1, Z € app({T}
% hns € app({[:L 23} {18,411
The top-level goal would be written as:
Ans € app({[1,21}. {[38,4]1}) with ¢

The reduction steps leading to a solution are given below:

e [HTy1 € {[1.2]1}, Z; € epp({Ty}. {I3.41})
with {Ans « [H;]Z;1}

~ Z; € app({[21}, {[3,41}))

with {Ans « [1{Z;], H; « 1, T, « [2]}

with {Ans « [1 | [H2|Z:1], Hy « 1, Ty « [2], Z; « [H:|Z21}
~ 7o € app({Ta}, {[3.,41})
with {&ns - [1 | [2|25]], H1 « 1, Ty « [2]., Z; « [2]Z.],

Hy - 2, Ty « [1}

e [] € {[]} Zz‘_G {{3.4]})




with {Ans — [1 | [2)2201, H; « 1, T; « [2]. 73 « [2]Z,],

Hz. — 2, Ty « [1, Y3 « 22}

o
with {Ans « [1,2,3,4], H; « 1, Ty « [2], 2; « [2,3,4],
Hy «— 2, Ty « [1, Yz « [3,41, Z, « [3,4]}

The restriction of the final substitution to the variables in the top-level goal yields {Ans
«— [1,2,3,4]1} as the computed answer.

5.3_Possib1é Extensions to Higher Order Functions

In Prolog and other Horn logic languages, all variables are bound by unification. Ex-
tending these languageé to handle higher-order predicates requires higher-order uniﬁcation,'
a procedure known to be undecidable [H71]. In contrast, Setlog distinguishes between log-
ical variables and formal parameters, and binds the latter by one-way substitutions. For
this reason, we believe Setlog is more amenable to higher-order extension. For instance, it
is possible to generalize LISP’s mapcar function to operate upon set-valued functions and

sets of lists, written as follows:

Nal= wapcar(f, [1)
[A|B] € mapcar(f, [H|T]) + A € f(H), B € mapcar(f, T)

In this example, we have let the formal parameter £ stand for a function, instead of a set

expression.

We do not envision the need to solve for logical variables denoting functions or pred-
icates, since neither first-order logic languages nor higher-order functional languages offer
this capability. . We feel that one of the chief advantages of the Setlog approach is its poten-
tial to deal with higher-order functions without getting into the problem of higher-order

unification.

¥. Conclusions ~

We have -shown that Setlog has semantic and operational simplicity compa.rable to

. .pure Prolog (Horn loglc) and has equal power. Setlog is similar in that a program con- :

e f'.:SIStS of a sct of deﬁnlte cla.uses and executlon searches for subs titutions bmdmg terms to

- .;-."_.4‘__:-10g1€a1 Varlables_ln a. goal cla,uqe makmg the goal a loglral consequernce 01F the progra.m

: .14..7 G




Whe:'re_as'ProIog c}ausés..‘deséz:‘ribe predicates defined oﬁ terms, Setlog clauses describe func-
tions defined on sets of terms. In Prolog there is no distinction between logical variables
and procedural formal para.méters. Incorporating higher-order objects into Prolog would
require higher-order unification. In Setlog, the distinction between logical variables and
formal parameters is marked. A logical variable stands for a term; a formal parameter
- stands for a set of terms. Logical variables are bound through unification, as in Pro-
log. The substitutions binding formal parameters to expressions are created by a one-way
matching, as in functional programming. As a result, incorporating higher-order functions
into Setlog may be easier. Functions can be passed as arguments without requiring uni-
fication of functions. We are at present investigating a higher-order extension of Setlog
[887]. '

- Set theofy and predicate logic are closely related mathamatical formalisms. .The
semantics of predica.té logic are defined in terms of set theory {the Herbrand universe is
a set, as is a Herbrand interpretation and a Herbrand model). On the other hand, the
axioms of set theory can be encodéd as & theory within predicate logic. Thus, set theory -
and the predicate logic are two alternative but equivalent theories [Q82], though some
problems are expressed more naturally in one than in the other. Because set theory and
predicate logic are so closely related, the semantics of Setlog resemble the semantics of
Horn clause logic programming [VK76, 1.84]. However, our semantics defines a system of

set-valued functions, instead of general predicates operating upon terms.

As we wished to concentrate on semantics, we have not addressed implementation
issues in this paper., However, the reader may see that techniques for sequential Horn logie
implementation [WPPT77] are adaptable to the implementation of Setlog. It is also possible

to exploit both end and or parallelism [CK81] in the execution of Setlog programs.
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Appendix — Correctness Proofs

We establish here the correctness of the operational semantics. We build up to the
- soundness and completeness theorems by first proving 2 series of lemmas. These proofs re-
semble the proofs for soundness and cdmpieteness of Horn clause resolution. The similarity
is to be expected, since both Setlog and pure Prolog define a program as a collection of
* definite clauses. In the case of Setlog, the definite clauses determine the terms included in a
set-expression’s denoted set; in Prolog the clauses establish the truth of ground predicates.

We begin with two delinitions::

An unrestricted derivation is like the ~+-derivations described earlier, except that the

unifiers need not be most general.

The success set of a Setlog program is the set of all ground conditions A in Bp such
that A ~* O.

The empty goal <, i.e. the goal with no conditions, is trivially satisfied, and is thus a
logical consequence of all Setlog programs. Given a goal G (a set of conditions) containing
logical variables, and a Setlog program P, we say that G is a logical consequence of P if for
all substitutions n° which bind the logical variables of ¢ to ground térms, Gn is a logical

consequence of P.
Lemimma 1. Suppose we have a derivation
Gg ~* G with ¢
then for 2 = 0,...n, G; contains no formal parameters.

Proof: Gy is a toia-levei goal clause. By definition, it cannot contain formal parameters.
To prove by induction, we need only show that if G; contains no formal parameters,

than neither does G;11. We must consider two cases, depeﬁding on whether this step is a

;de_le_z’_aior_;; ﬁpon;'uniﬁca,tion", or aﬁ'outermdst redu.c_t_ipn'.. In the case of deletion by unification, =~

we unify two terms, term ra.nd.-t_ermo (neither of which may contain formal parameters), |




- delete the :condi.tion, and aﬂply the unifier to the remaining conditions in the goal clause.
Since neither the unifier nor the -remaining conditions contain formal parameters, than
neither does the new goal clause. In the case of an outermost reduction, §;,1 unifies two
terms, term and fermo, both free of formal parameters, and thus introduces no formal
parameters intc the new goal. The condition of the program clause does contain formal

parameters, but these are all removed by the application of ;4.

End of Proof.

Lemma 2. Given some goal G under some Setlog program, and a derivation

Go ~+* G With 0
T Gr s .a. .Io.gical conseciuenée of. -f.he p.rbgram, then so is God.
Proof: The proof is by induction on the number of steps in the derivation. It is obviously
true with a denvatlon of zero steps, for which Gg = G,,, and ¢ is the empty substitution
¢. Suppose it is true for a derivation of n — 1 steps. We need show that it is then true

for a derivation of n steps. Suppose (o consists of the conditions Ay, ..., Ak, and that the

unifiers of the n-step derivation are #4,..., 8,. Since we have
G ~* G, with §,...6,,,

G183...0, is a logical consequence of the program, which is the same as G6;...6,, (since the
last step in forming G4 from Gy is application of #1. To examine the truth of Gof;:...0,,
we must consider two cases. If the first derivation step was a deletion upon unification,
then Gpf;...0,, contains exactly the same conditions as G1#,...0,,, but with an additional

condition of the form
term € {term},

which is a logical conseguence of all Setlog programs. Since G;4;...9,, is a logical conse-

quence of P, then so is Gobop...0.

Otherwise, the first derivation step was an outermost reduction, applied to a condition in

Go )

term € f(set-exprl, s set-ezprn),

using progrﬂm clause of the form

termo _6 f(Ph




6, = mgu(term, term;)j, :
o= {p1 — set-eTpri, ... p,;'_'._é.set-e:cprfn}. '
Goly and G are identical, excei)t that Gpf; has a condition which can be written as
(term € f{p1, ..., Pn))101
where 7y has
condition~y0y.

The program clause states that any substitution making the latter true also makes the

former true. Since G10,...0,, is a logical consequence of the program, so is Gof183...6,.

' End of Proof.

" Theorem 3: Soundness Theorem. If 4 is a computed answer substitution of goal G

(under Setlog program P}, then_ G is a logical consequence of the program.

Proof: There is a derivation G- ~»* & with ¢, where § = ¢’ 1 V(G). Since the empty
" goal is a logical consequence of all programs, and by Lemma 2, G§' = Gf is a logical

 consequence of the program, # is a correct answer substitution.

- End of Proof.

Now we develop the completeness proof.

Lemma 4: MGU Lemma. Suppose there is a goal G and a Setlog program P with an

unrestricted derivation:
G ~* & with §,...0,,

Then there exists a restricted derivation
G ~* & with 6]...6],

(04, ..., 0y are most general unifiers) and a substitutions ¢ such that
0;...000 = 6}..6] 0.

- Proof: The proof is by induction on the length of t_he'derivati_on. Suppose n = _1,7-a,nd _

G~ & with 6y,
where f is not necessarily a most general unificr. Then there exists a most general unifier, -
1, such that . '




(or rp for short). We-prove by'mductwn on n.

G Ao withol
; > 6%,
and there exists a substitution sigma such that
6}_ = ;_0'.
- Suppose the resuit holds for n — 1, and there is an unrestricted derivation
G =Gy ~+* & with 81'-'971.

Let 0 be the most general unifier of the terms unified in the first derivation step. Then

there exists a substitution p such that
Defining G = Gip, we see that
 Go ~ G with 6],

Gfl i G—'z with pﬂg.
G~ O with pfafs...0,.

By the induction hypothesis, there exists a substitution ¢ and restricted derivation
G| ~+* & with 65..6].
phs... 8, = pbl..0,.

Combining this derivation with the first step, we have restricted derivation
G =Gy ~* < with 67..0].
81...8, = 81pbs..0, = 8;..8.c

End of Proof.

Theorem 4. The success set of a Seflog program is equal to its least model. .

Proof: The soundness theorem implies that the success set is contained in the least model.
We need only show that the success set contains the least model. Consider any arbitrary
ground condition A in Bp (A is of the form term € setezpr) By 'I‘heorem 2, there exists

an mteger n such that .

A G Tpn(_L)




Supiaose n ———. 0. Then 4 € "-J_. A is of the form
ground-term € {ground-term}.
We have
A ~ O with ¢,
by deletion upon unification (¢ is the empty substitution). 4 is in the success set.

Suppose the result holds for n — 1. By the definition of T'p, there exists a ground instance

of a program clause

B+ Bl,'..., Bk
(by ground iristan_ce we mean substitution set expressions for the formal parameters with
some substitution y and ground terms for the logical variables with some substitution 6)
" such that A = B~f, and
{Bl'yga very Bk’)’g} CTp1 (n - 1)57
A~ (B1H8, ..., Bp)rd.

with an unrestricted derivation step. By the induction hypothesis, each B;~6 is in the
success set. Because each B;~# is ground, their derivations can be combined into a single

derivation
(Bi, .., Bip)yd ~* O,

Thus A ~* ¢, and by the MGU lemma, there exists a restricted derivation, as well, A is

a member of the success set.

End of Proof.

Lemma 5. Let A be a condition of the form term € setexpr, and a logical consequence

of a Setlog program P. Then there is a derivation
A ~+* & with o,
c T V{4) = ¢.
The second formula states that ¢ does not affect any of the logical variables in A, ie.

Ao = A.

Proof: Suppose-A has_-variables_X_l, wes Xn. Let a7, ..., ap be distinct new constants

e (appearing neither in .thé__'p-rogralnr:t P mor in A). Define 4 = {X; +ay, ., Xp+ on).

o Thepfiﬁxs @ logical '(f,-__.oﬁls'étiuénce of P. Since A#f is ground, Theorem 4 states that

92



AD O with o,
o TV = 6
© Since thé di do not appeai‘ in P ﬁor A, by textually feplacing all a; by X; in this derivation
we obtain the derivation
A ot O with o,
o T V(4) = ¢.
End of Proof.

Theorem 5: Completeness Theorem. Let P be a Setlog program and G a goal. For

every correct answer substitution ¢ there exists a derivation
G ~r* & with o, | |

a,n..d a sﬁiast_itutidh nr sﬁch that
= (o T V(@)

- Proof: Let @ = A1, ., Ap. Since 8 is correct, then G@ is a logical consequence of P.

By Lemms 5,
A; ~* O with o;,
o; 1 ‘V(A,;v) = 9.
We can combine these into a single derivation
G ~* & with o, |
o T V(&) = ¢.
Suppose that the sequence of mgu’s in the derivation is 6y, ..., theta,,. Then
Gf = GO = God;...0,.
By the MGU Lemma,
G ~* & with 64...67
such that for some 5/, 861...0,, = 6}..0" n'. So,let ¢ = §,..8,, andn = n' T V(G).

-End of Proof.






