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Abstract 

Unification and Set-valued Functions 

for Functional and Logic Programrningt 

Frank S.K. Silbermann 

Bharat Jayaraman 

Department of Computer Science 

University of North Carolina at Chapel Hill 

Chapel Hill, NC 27514 

\Ve propose a new approach to the integration of functional and logic languages, based 

on a theory of unification and set-valued functions. A set-valued function maps a tuple 

of input sets into an output set. We describe a language called Setlog which illustrates 

this approach, and give its model-theoretic, fixed-point, and operational semantics. The 

model-theoretic semantics and fixed-point semantics resemble that of Horn logic. The 

operational semantics uses outermost reduction (for set-valued functions) and unification 

(for terms). '\Ve establish the correctness of the operational semantics through soundness 

and completeness proofs. 
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1. Introduction 

The integration of functional and logic programming remains a challenging problem, 

despite the many proposals that have appeared since Robinson's LOG LISP in the late sev­

enties [BBLM84, DP85, DFP86, F84, GM84, HHT82, JL87, JS86, JSG86, L85, 11MW84, 

R84, R85, RS82, SP85, T84, YS86]. The challenge lies in designing a language that of­

fers semantic simplicity, computational efficiency, programming power and convenience. 

By semantic simplicity, we mean that the language is amenable to a logical treatment, 

i.e., model theory and proof theory; by computational efficiency, we mean the language is 

amenable to a straightforward procedural interpretation; by programming power, we mean 

the language provides at least the capabilities of first-order functional and Horn-logic lan­

guages; and, by programming convenience, we mean that programs model the problem 

domain as closely as possible. 

We offer an approach based on a theory closely related to predicate logic-set-theory. 

V.fe use definite clauses to define set-valued functions. Functional expresssions denote 

(possibly infinite) sets of terms. Computation involves proving set-membership assertions, 

i.e. solving for variables which make the assertions true. The operational procedure uses 

concepts central to functional and logic programming: outermost reduction and unification 

of terms. 

The language within which we develop these concepts is called Setlog. We provide 

both a model-theoretic semantics and an eguivalent fixed-point semantics for Setlog pro­

grams, along the lines of van Emden and Kowalski (VK76]. We also provide an operational 

semantics, based on outermost reduction of functions and unification of terms, and prove 

its correctness with soundness and completeness proofs. Our approach clearly separates 

function symbols from constructors. Unification is restricted to first-order terms; function 

application uses one-way substitution. Setlog can consequently be extended to include 

higher-order functions without requiring higher-order unification, which is known to be 

undecidable [H71]. 

A Setlog program is basically a collection of definite clauses involving set-membership 
-

assertions, and may take one of two forms: 

2. term'E f(PI>· .. , Pn) +-term E set-expression, ... , term E set-expression 

Setlogter~s;a:;inJogic, a.rem~de up of con~tructors, atoms, and logical variables. The 
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. arguments p1 , .•. , Pn in the above rules are formal parameter variables, and they must be 

mutually distinct. Because Setlog distinguishes function symbols from constructors, the 

formal parameters of a function are distinguished from the logical variables that appear 

in terms; formal parameters denote sets of terms, whereas logical variables denote single 

terms. Set expressions are built up of composition of set-valued functions, and the primitive 

set constructor is { }, which must contain a single term. The symbol +-- should be read 

as "if'; that is, the membership asserted on the left of +-- is true if all the memberships 

asserted on the right of +-- are true. The top-level goal is of the form 

?- term E set-expression. 

The goal may also be a conjunction of sue h expressions. The overall computation of a Setlog 

program proceeds similar to Horn-clause resolution, except that unification is restricted to 

terms, with outermost reduction used to reduce set-functions. 

1.1 Related Work 

Several declarative semantic bases integrating functional and logic languages have 

been proposed: many-sorted Horn-clause logic with equality [GM84J, equational logic [F84, 

GM84, DP85, YS86J, and others [MMW84, T84]. Various operational strategies have also 

been proposed: narrowing [GM84, DP85, R85, YS86], clausal superposition [F84], etc. 

[JS86, 11MW84]. Setlog differs from these various approaches in that it is based on sets, 

rather than equations or predicates. Because Setlog does not rely on equations, it avoids 

a computationally expensive unification relative to an equational theory; instead it uses a 

simple, syntactic unification algorithm. 

In a previous paper [JS86], we described a language called EqL, which is closely 

related to Setlog. EqL is a non-deterministic equational programming language combining 

functional and logic programming. A key idea distinguishing EqL from other equational 

languages is its separation of constructors from function symbols. A program in EqL has 

rules of the form 

f(PI, ... ·,Pn) =expression where subgoal-equations. 

where each p; is a formal parameter. The top-level goal is a set of equations. An equation 

is of the form 

. . 
expresston1 = expresszon2 

where an expression .could have both constructors as well as functions. Because of .non-
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determinism, functional expressions denoted sets of terms, and therefore the above = 

predicate is satisfied if the sets denoted by expression1 and expression 2 have non-empty 

intersection. This predicate represents true equality only when relating two deterministic 

expressions (which denote singleton term sets.). As we investigated the semantics of EqL, 

we realized that the equational-style syntax was misleading, as our equality was really 

set-intersection. Improvements to the syntax led to better understanding of the semantic 

theory, resulting in Setlog. 

The need to deal with sets in functional and logic programming has been recognized 

by several researchers [T81, R84, N85, DFP86, JS86]. Darlington proposes an absolute set 

abstraction construct for collecting together the solutions of a set of equations [DFP86]; 

this extends the relative set abstraction construct of Turner [T81]. Naish [N85] surveys 

a variety of all-solutions predicates proposed for Prolog. Many of these approaches lack 

a simple declarative semantics. Plaisted and Jayaraman show one way to obtain sets 

for functional programming without sacrificing their declarative semantics [JP87]; their 

language does not, however, support logic programming. 

The rest of this paper is sectioned as follows: section 2 presents the syntax of Setlog 

programs, accompanied by examples and its relation to functional and logic languages; 

sections 3 and 4 give the model-theoretic and fixed-point semantics for Setlog; section 

5 is devoted to the operational semantics and ideas for interesting extensions; finally, 

section 6 presents conclusions and related work. Correctness proofs relating the formal 

and operational semantics may be found in the appendix. 

2. Setlog 

2.1 Syntax and Informal Semantics 

The syntax of Setlog programs is given by the grammar below. Note that the symbols 

--+, J, and E are meta-symbols, and do not belong to Setlog. The symbols <--, E, {, }, (, 

) , , , and?- are language-defined tokens. The symbols setfunctor, constructor, atom, and 

logical-variable re12resent user-defined tokens. 

program --+ clauses goal 

clauses --+ E J clause clauses 

goal-->.?- body 

4 



unit --+ term E { term } I head 

conditional --+ head +- body 

head--+ term E setfunctor() I term E setfunctor(pl, ... , Pn) 

body --> term E setexpr I term E setexpr, body 

setexpr --+ { term } I setfunctor() I setfunctor(setexprs) 

setexprs --> setexpr I setexpr, setexprs 

term --> atom I logical-variable I constructor(terms) 

terms--> term I term, terms 

Note- that we distinguish between- a setfunctor and a constructor. The former is used 

_ for the name of a set-valued function, the latter for a data constructor. A ground term is 

a term without any variables; similarly a ground set expression is a set expression without 

any logical variables. In the· rule for unit, p1 , •.• , Pn represent formal parameters. Our 

convention is that logical-variables must begin with an uppercase letter, formal parameters 

begin with a lowercase letter, and non-numeric atoms are quoted (as in LISP). 

We use the constructor cons for constructing binary trees, as in LISP. Lists are a 

special form of binary trees, and we write them using the [ ... ] notation, e.g. [1,2,3]. 

[] stands for the empty list, and is regarded as an atom. Thus the list [1, 2, 3] is 

represented as cons (1, cons (2, cons (3, []))). We use the notation [H I T], as in 

Prolog [CM81], to refer to a non-empty list, with head H and tail T. Thus, [H I T] 

cons (H, T). 

We also permit the notation { ... } to define a set literal, e.g. {1, 2, 3}. This is just 

syntactic sugar for a set-function, say s123 (),defined as follows: 

1 E s123() 

2 E s123() 

3 E s123() 

A Setlog program consists of two kinds of definite clauses: unit and conditional. Both 

11nit and conditional clauses assert set membership. Examples of well-formed unit clauses 

are: 

_s12S() 

set2) 
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Examples of well-formed conditional clauses are: 

X E f(s1) <-- [X IT] E g(h({25}, {X})) 

[X I T] E f(s1, s2) <-- X E g(s1), T E h(s2) 

A clause may introduce logical variables in any singleton-sets used in its body, e.g. {X} 

in the first example above. A conditional clause states that, for any substitution of set 

expressions for its formal parameters and any substitution of terms for its logical variables, 

if all the conditions in its body are true, then the condition in its head is also true. 

The procedural interpretation of Setlog clauses is similar to that for -Horn clauses, 

except that both unification and reduction are used in simplifying a goal. In order to 

reduce a goal 

tern11 E f(expr, ... ,expn) 

using a clause 

tern12 E f (p1, ... , pn) <-- body 

we ul'ify term 1 and term2, and if the unification is successful, we replace all occurrences cf 

the formal parameters p1, ... , pn throughout the body off by exp,1, .. , , expn respectively, 

and then reduce the goals in the body similarly. Unification can bind logical variables in 

both the goal and in the clause. A top-level goal is solved if all intermediate goals are 

solved in this maiL'ler. 

2.2 Examples 

Set Union 

X E union(s, t) <-- XEs 

X E union(s,t) <-- X E t 

?-X E union({1,2}, {2,3}) 

A solution would bind X to one of elements from the set {1, 2, 3}. If the implemen­

tation is sequentia1 with backtracking, X would be in turn bound to 1, 2, 2, and 3. 

There is no need in Setlog to define special cases for when one of the arguments to 

union is the empty set-there is no explicit representation of the empty set in Setlog. If 

the program clauses do not imply any terms to be :members of a set e:>..-pression's denoted 

set, then that set expression denotes the empty set. 
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Set Intersection 

X E intersect(s, t) +- XEs, X E t 

?-X E intersect(union({1,2}, {3}), {2,3,4}) 

In finding solutions to the goal, X would be bound in turn to the elements 2 and 3. 

Cross Product 

[X I Y] E prod(s, t) +- X E s, Y E t 

?-answer E prod({1,2}, {3,4}) 

In computing successive solutions to the goal, answer would in turn be bound to each 

term from the set {[1I3J. [114J. [2i3J. [214J} . 

2.3 Syntactic Sugars 

We introduce two syntactic sugars to make programs more readable: First, we let a 

function definition, 

term E f( ... , termi, ... ) +- condition 

be used as syntactic sugar for 

termr E f( ... , Pi, ... ) +- termi E Pi, condition 

where Pi is the ith formal parameter. Using this sugar, the cross product example becomes 

[XiYJ E prod(X, Y) 

For the other syntactic sugar, whenever a term t is used in the goal clause or in a 

program clause body where a set expression is expected, it is treated as {t}, the singleton 

set containing t. For example, 

X E f(A, B) 

is syntactic sugar for 

X E f({A}, {B}) 

where f is a set-valued function, and A and B are logical variables. 

2.4 Expressive Power of Setlog 

To show the flexibility of the Setlog paradigm, ·we translate typical functional and 

logic programs into Se~log. Below aree~~ational definitions for the familiar LISP functions 

ap;~ncl O.nd reverse .. · 
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append([ ], y) = y. 

append([h It], y) = cons(h,append(t, y)) 

reverse([ ]) = [] 

reverse([h It])= append(reverse(t), [h]) 

These functions can be translated mechanically into sugared Setlog functions: 

Y E append([] , Y) 

[HIZJ E append( [HITJ , Y) +- Z E append(T, Y) 

[] E reverse ( []) 

Z E reverse ( [HITJ) <- Z E append(reverse (T), [H]) 

Expanding the syntactic sugars, the Setlog definitions become: 

Y E append(sl, s2) +- [] E s1, Y E s2 

[HIZJ E append(s1, s2) +- [HITJ E s1, Z E append({T}, s2) 

[] E reverse (s) +- [] E s 

Z E reverse (s) +- [HjT] E s, Z E append(reverse ( {T} ) , { [HJ} ) 

To see that the translations are correct, note that when input sets are singleton (and 

ignoring the difference between a term and the singleton set containing that term), then 

term E expression 

is equivalent to 

term = expression. 

When append is applied to non-singleton sets s1 and s2, the resulting denoted set contains 

all terms which can be constructed by appending a term in s2 at the end of a term from 

s1. Similarly, reve.rse applied to a set of lists denotes the set containing every list which 

can be constructed by reversing a list in the input set. 

By translating to Setlog, we gain the ability to run functions backward, as in Prolog. 

Not only can we solve goals of the form 

?-answer E append([1,2], [3,4]) 

corresponding to the functional goal 

?- append([1,2], [3, 4]) 

but we can also solve goals of th~ fo~rn 
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?- [1,2,3,4] E reverse(X) 

which corresponds to solving the equation 

?- reverse(X) = [1, 2, 3, 4) 

The ability to run functions backward integrates functional and logic progra=ing. 

Setlog retains the full power of Horn logic programming. Any Horn logic program 

can be mechanically translated into a Setlog program. Consider the following program, 

written in DEC-10 Prolog [CM81): 

apd([], Y, Y). 

apd([H I T), Y, [HI Z)) : - apd(T, Y, Z) . 

. rev([), [ )). 

rev([H I T],Y) :- rev(T,Z),apd(Z,[H),Y). 

?- rev(X, [1, 2, 3, 4)). 

The converted sugared Setlog program would be: 

'true E apd( [], Y, Y) 

'true E apd( lHITJ . Y. lHIZJ) f- 'true E apd(T, Y, Z) 

'true E rev([], []) 

'true E rev C [HITJ , Y) f- 'true E rev(T, Z), 'true E apd(Z, 

?- 'true E rev(X, [1,2 ,3,4]) 

[H]. Y) 

In the next two sections, we develop the formal semantics of Setlog. Our development 

closely parallels that of Van Emden and Kowalski [VK76) and Lloyd [184]. The key 

difference is that a Horn logic program defines predicates operating on terms, whereas a 

Setlog program defines functions mapping tuples of term sets into new term sets. Setlog 

promotes a different point of view, more so than a new mathematical theory. 

3. Model-theoretic Semantics 

A set function maps a tuple of ground term-sets, denoted by its argument set expres­

sions, to a new ground term-set. An interpretation maps a ground set-expression to a set 

of ground terms, thereby giving meaning to the set functions. An interpretation can be 

expressed as a set of statements of the form: 

{gt1 E gse1, gt2 E gse2, .. . } 

where g(is a ground term.and gse; is a ground set-expression. Also included are all 

statements of the form: · ·. 
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gt E {gt} 

where gt is a ground term - the tautology that any given ground term is a member of 

the singleton-set containing that ground term. 

A program model is an interpretation under which all the program clauses are true. 

For any program P there must exist at least one model, Bp, the model containing 

gt E gse 

for every possible combination of ground term gt and ground set expresston gse. The 

intersection of all models of a program P is therefore also a model. We call this the least 

model, Mp. 

Theorem 1: Let P be a Setlog progr-am. Then 

Mp = {gt E gse of Bp I gt E gse is a logical consequence of program P}. 

Proof: 

gt E gse is a logical consequence of P 

iff P and gt ¢: gse is logically unsatisfiable 

iff P has no model consistent without gt E gse 

iff gt E gse is included in all models of P 

iff gt E gse is in Mp. 

End of Proof. 

The model-theoretic semantics of a Setlog program P is given by lvfp. 

4. Fixed Point Semantics 

We define zBp to be the set of all interpretations of a Setlog program P. These 

interpretations form a complete lattice under the partial order set inclusion, s;;. The top 

element is Bp, and the bottom element, .l, is the set containing all statements of the form 

gt E {gt} 

where gt is a ground term, but containing no other statements involving set-functions. The 

Jub (least upper b-ound) of any set of interpretations is the union of those interpretations. 

The glb (greatest lower bound) of any set of interpretations is their intersection. 

Let P be a program. The mapping Tp: zBp -+ zBp is defined as follows. Let I be 

an interpretation of P. Then Tp(I) · -:- _l U {A E Bp I A +- A 1 , ... , An is a ground 

·instance of a clause in P and {Al> ... ,An} s;; I}. 
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We say that I is a model for P 

iffforeachgroundinstanceA +- Al, ... ,AnofeachclauseinPwehave{A1 , ... ,An} C I 

implies A E I 

iff Tp (I) <:;; I. 

Since 2BP is a complete lattice, and Tp is a continuous mapping, the fixed-point semantics 

of P, lfp(Tp) = Tp 00 (.l). 

The following theorem establishes the equivalence of the fixed-point and model-theoretic 

semantics. 

Theorem 2: Mp = Tp 00 (..L). 

Proof: 

Mp 

= glb( {I I I is a model for P} 

= glb({I I Tp(I) <:;; I}) 

= lfp(Tp) 

End of Proof. 

A program goal G is a set of statements, possibly containing logical variables. An 

answer substitution for P U { G} replaces the logical variables in the goal with ground 

terms. Let P be a program, G a goal, and B an answer substitution. () is a correct answer 

substitution for goal G under program P iff GfJ is a logical consequence of P. Thus, 0 is a 

correct answer substitution for G under P iff GO is true with respect to every model of P 

iff GO is true with respect to the least model of G. 

5. Operational Semantics 

A goal G; is a list of statements 8 1 , ... , Sk, where each Sj is of the form 

term E set-expr. 

Both the term and· the set expression may contain logical variables to represent unspecified 

ground terms. 

·. Let .R be some computation rule that selects a statement Sm from goal G;. We have 
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Sm is of the form term E {termo}. 

Let Oi+ 1 = mgu(term, termo). 

Let /i+l = q, (the null substitution). 

Case 2: Outermost Reduction 

Sm is of the form term E f(set-exprl, ... , set-exprn), 

and the program contains a clause of the form 

termo E f(Pl, ... , Pn) +-condition. 

Let Oi+1 = mgu(term, termo). 

Let li+l = {p1 +- set-exprr, ... , Pn +- set-exprn}· 

Let G;+l = (Sr, ... , Bm-l, condition /i+l, Sm+l, ... , Sk)Oi+l· 

In either case, we say that 

where a is the partial answer substitution associated with G;. Note that computation 

of "'i+l, which binds the formal parameters in an outermost reduction step, is a simple 

one-way substitution; it requires no unification. 

Suppose there is a derivation 

Then we say 

where¢ is the empty answer substitution, and Or, 82, ... ,On are the subs-titutions associated 

with steps G 1, G2, ... , Gn. Suppose 

G -v+* <>with 01 ... On, 

where <> is the empty goal. We say that 

is a most general computed answer substitution, where V (G) stands for the variables in the 

top-level goal G. 

soundness and completeiless theorems state the equivalence of the operational and 

model-theortic semanticS. Proofs a~e given in an apperldix. 
' - ' ' -- ' ',- -_ -- - . ;, - '. 
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Soundness Theorem:. If 8 is a most general computed answer substitution, and 'rJ is any 

extension such that Ory binds ground terms to all the variables of V (G), then Ory I V (G) is 

a correct answer substituion as defined by the fixed-point and model-theoretic semantics. 

Completeness Theorem: For any correct answer substitution a, there exists a derivation 

of a most general computed answer substitution 8 and extension 'rJ such that a = Ory. 

5.2 Example Derivation 

We illustrate the operational semantics with the following pTOgram for appending two 

lists, taken from section 2.2. 

Y E app(s1, s2) +- [] E s1, Y E s2 

[HIZJ E app(s1, s2) +- [HITJ E s1, Z E app( {T}, s2) 

?- Ans E app({[1,2]}, {[3,4]}) 

The top-level goal would be written as: 

Ans E app({[1,2J}, {[3,4]}) with q, 

The reduction steps leading to a solution are given below: 

"-"" [HliTd E {[1,2]}, Z1 E app({Tl}, {[3,4]}) 

with {Ans +- [H1IZ 1J} 

'"'-"" Z1 E app({[2J}. {[3,4J}) 

with {Ans +- [11Zd, H1 +- 1, T1 +- [2]} 

"-"" [H2IT2J E {[2]}, Z2 E app({T2}. {[3,4]}) 

with {Ans +- [1 I [H21Z2]]. Hl +- 1, Tl +- [2]. zl +- [H21Z2J} 

'""'" Z2 E appC{T2}. {[3,4]}) 

with {Ans +- [1 I [2IZ2]]. Hl +- 1' Tl +- [2]. zl +- [2IZ2]. 

H2 +- 2, T2 +- [J} 

"-"" [] E { []}, Z2 E {[3, 4]}) 

with {Ans. +- [1 [2IZ2]], H1 +- 1, T1 ,._:. [2], Z1 +- [2IZ2] , 
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with {Ans . .__.: [1 I [21Zz) l. Hl +--- 1, Tl +--- [2). zl +--- [21Zz]. 

Hz +--- 2, Tz +--- []. Ya +--- Zz} 

with {Ans +--- [1,2,3,4], H1 +--- 1, T1 +--- [2], Z1 +-- [2,3,4], 

Hz +--- 2, Tz +--- [], Ya +--- [3,4], Z2 +-- [3,4]} 

The restriction of the final substitution to the variables in the top-level goal yields { Ans 

+--- [1,2,3,4]} asthecomputedanswer. 

5.3 Possible Extensions to Higher Order Functions 

In Prolog and other Horn logic languages, all variables are bound by unification. Ex­

tending these languages to handle higher-order predicates requires higher-order unification, 

a procedure known to be undecidable [H71]. In contrast, Setlog distinguishes between log­

ical variables and formal parameters, and binds the latter by one-way substitutions. For 

this reason, we believe Setlog is more amenable to higher-order extension. For instance, it 

is possible to generalize LISP's mapcar function to operate upon set-valued functions and 

sets of lists, written as follows: 

[] E mapcar(f, []) 

EAIBJ E mapcar(f, [HIT]) +--- A E f(H), BE mapcar(f, T) 

In this example, we have let the formal parameter f stand for a function, instead of a set 

expresswn. 

We do not envision the need to solve for logical variables denoting functions or pred­

icates, since neither first-order logic languages nor higher-order functional languages offer 

this capability. We feel that one of the chief advantages of the Setlog approach is its poten­

tial to deal with higher-order functions without getting into the problem of higher-order 

unification. 

1. Conclusions 

We have shown that Setlog has semantic and operational simplicity comparable to 

.pure Prolog (Horn logic), and has equal power. Setlog is similar in that a program con­

sists of a· set of definite .clauses, and execution searches for substitutions binding terms to 

logical variables )n a goal .clause, making the goal a logical consequence of the program. 
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Whereas Prolog clauses describe predicates defined on terms, Setlog clauses describe func­

tions defined on sets of terms. In Prolog there is no distinction between logical variables 

and procedural formal parameters. Incorporating higher-order objects into Prolog would 

require higher-order unification. In Setlog, the distinction between logical variables and 

formal parameters is marked. A logical variable stands for a term; a formal parameter 

stands for a set of terms. Logical variables are bound through unification, as in Pro­

Jog. The substitutions binding formal parameters to expressions are created by a one-way 

matching, as in functional programming. As a result, incorporating higher-order functions 

into Setlog may be easier. Functions can be passed as arguments without requiring uni­

fication of functions. We are at present investigating a higher-order extension of Setlog 

[887]. 

Set theory and predicate logic are closely related mathamatical formalisms. The 

semantics of predicate logic are defined in terms of set theory (the Herbrand universe is 

a set, as is a Herbrand interpretation and a Herbrand model). On the other hand, the 

axioms of set theory can be encoded as a theory within predicate logic. Thus, set theory 

and the predicate logic are two alternative but equivalent theories [Q82], though some 

problems are expressed more naturally in one than in the other. Because set theory and 

predicate logic are so closely related, the semantics of Setlog resemble the semantics of 

Horn clause logic programming [VK76, 184]. However, our semantics defines a system of 

set-valued functions, instead of general predicates operating upon terms. 

As we wished to concentrate on semantics, we have not addressed implementation 

issues in this paper. However, the reader may see that techniques for sequential Horn logic 

implementation [WPP77] are adaptable to the implementation of Setlog. It is also possible 

to exploit both and and or parallelism [CK81] in the execution of Setlog programs. 
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Appendix - Correctness Proofs 

We establish here the correctness of the operational semantics. We build up to the 

soundness and completeness theorems by first proving a series of lemmas. These proofs re­

semble the proofs for soundness and completeness of Horn clause resolution. The similarity 

is to be expected, since both Setlog and pure Prolog define a program as a collection of 

definite clauses. In the case of Setlog, the definite clauses determine the terms included in a 

set-expression's denoted set; in Prolog the clauses establish the truth of ground predicates. 

We begin with two definitions: 

An unrestricted derivation is like the ""-derivations described earlier, except that the 

unifiers need not be most general. 

The success set of a Setlog program is the set of all ground conditions A in B p such 

that A rv>* 0. 

The empty goal 0, i.e. the goal with no conditions, is trivially satisfied, and is thus a 

logical consequence of all Setlog programs. Given a goal G (a set of conditions) containing 

logical variables, and a Setlog program P, we say that G is a logical consequence of P if for 

all substitutions TJ which bind the logical variables of G to ground terms, Cry is a logical 

consequence of P. 

Lemma 1. Suppose we have a derivation 

Go rv-* Gn with e 
then for i = 0, ... n, G; contains no formal parameters. 

Proof: G0 is a top-level goal clause. By definition, it cannot contain formal parameters. 

To prove by induction, we need only show that if G, contains no formal parameters, 

than neither does Gi+I· We must consider two cases, depending on whether this step is a 

.. deletion upon unification, or an outermost reduction. In the case of deletion by unification, 

we unify two terms, term and term0 (neither of which may contain formal parameters), 
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delete the condition, and apply the unifier to the remaining conditions in the goal clause. 

Since neither the unifier nor the remaining conditions contain formal parameters, than 

neither does the new goal clause. In the case of an outermost reduction, ei+l unifies two 

terms, term and term0 , both free of formal parameters, and thus introduces no formal 

parameters into the new goal. The condition of the program clause does contain formal 

parameters, but these are all removed by the application of l'i+ 1 . 

End of Proof. 

Lemma 2. Given some goal Go under some Setlog program, and a derivati.on 

Go -v+* Gn with B 

If Gn is a logical consequence of the program, then so is G0 B. 

Proof: The proof is by induction on the number of steps in the derivation. It is obviously 

true with a derivation of zero steps, for which G 0 = Gn, and e is the empty substitution 

¢. Suppose it is true for a derivation of n - 1 steps. We need show that it is then true 

for a derivation of n steps. Suppose Go consists of the conditions A 1, .•. , Ak, and that the 

unifiers of then-step derivation are Br, ... , Bn. Since we have 

G182 .•• Bn is a logical consequence of the program, which is the same as G1B1 .•• Bn (since the 

last step in forming G 1 from G0 is application of 81 • To examine the truth of G0 01 .•• Bn, 

we must consider two cases. If the first derivation step was a deletion upon unification, 

then G0 81 ... Bn contains exactly the same conditions as G 1 B1 ••. Bn, but with an additional 

condition of the form 

term E {term}, 

which is a logical consequence of all Setlog programs. Since G1 B1 ..• Bn is a logical conse­

quence of P, then so is GoBo ... Bn. 

Otherwise, the first derivation step was an outermost reduction, applied to a condition in 

Go 

term E f(set-exprl> ... , set-exprn), 

using a program clause of the form . 

termo E.l{Pl, ·, .. ,Pn) ~·condition, 

with 
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8I = mgu(term, term0 ), 

"/I = {PI <--- set-expri, ... , Pn <--- set-exprn}· 

GoBI and GI are identical, except that GoBI has a condition which can be written as 

(term E f(pJ, ... , Pn))"/I8I 

where G1 has 

condition"JI oj. 

The program clause states that any substitution making the latter true also makes the 

former true. Since G18z ... 8n is a logical consequence of the program, so is Go8J8z ... 8n. 

End of Proof. 

Theorem 3: Soundness Theorem. If 8 is a computed answer substitution of goal G 

(under Setlog program P), then GO is a logical consequence of the program. 

Proof: There is a derivation G """* <> with 8', where 8 = 8' I I! (G). Since the empty 

· goal is a logical consequence of all programs, and by Lemma 2, GO' = GO is a logical 

consequence of the program, 8 is a correct answer substitution. 

End of Proof. 

Now we develop the completeness proof. 

Lemma 4: MGU Lemma. Suppose there is a goal G and a Setlog program P with an 

umestricted derivation: 

Then there exists a restricted derivation 

G rv-* <>with Bi ... 8~, 

(OI, ... , On are most general unifiers) and a substitutions a such that 

81 .•. 8na = B~ ... O~a. 

Proof: The proof is by induction on the length of the derivation. Suppose n = 1, and 

G """ <>with 01 , 

'where 81 is not necessarily a most general unifier. Then there exists a most generalunifi~r, 

Bi, such that 
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G "'"0 with IIi, 

1112:11i. 

and there exists a substitution sigma such that 

11 1 = Iii a. 

Suppose the result holds for n- 1, and there is an unrestricted derivation 

Let IIi be the most general unifier of the terms unified in the first derivation step. Then 

there exists a substitution p such that 

Defining Gi = G1p, we see that 

G0 "'" Gi with IIi, 

Gi rv> Gz with pli2. 

Gi rv>" 0 with pli2B3···11n. 

By the induction hypothesis, there exists a substitution a and restricted derivation 

Gi rv>" <>with e; ... IJ~. 
pliz ... en = pe; ... e~. 

Combining this derivation with the first step, we have restricted derivation 

G = G0 -vo-" <>with Iii ... 1!~. 

Bl···lin = Bipli2···0n = Bi ... B~a. 

End of Proof. 

Theorem 4. The success set of a Set log program is equal to its least model. 

Proof: The soundness theorem implies that the success set is contained in the least model. 

We need only show that the success set contains the least model. Consider any arbitrary 

ground condition A in Bp (A is of the form term E setexpr). By Theorem 2, there exists 

an integer n such that 

(or Tpn for short). Weproveby induction on n. 
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Suppose n = 0. Then A E .l. A is of the form 

ground-term E {ground-term}. 

We have 

A """ <> with ¢;. 

by deletion upon unification ( <f; is the empty substitution). A is in the success set. 

Suppose the result holds for n- 1. By the definition of Tp, there exists a ground instance 

of a program clause 

(by ground instance we mean substitution set expressions for the formal parameters with 

some substitution 1 and ground terms for the logical variables with some substitution 8) 

such that A - · B,e, and 

... , Bkie} <:;; Tp t (n- 1), 

with an unrestricted derivation step. By the induction hypothesis, each BnB is in the 

success set. Because each BnB is ground, their derivations can be combined into a single 

derivation 

Thus A """* 0, and by the MGU lemma, there exists a restricted derivation, as well, A is 

a member of the success set. 

End of Proof. 

Lemma 5. Let A be a condition of the form term E setexpr, and a logical consequence 

of a Setlog program P. Then there is a derivation 

A """* <>with a, 

a t V(A) = <f;. 

The second fonn{;:la states that a does not affect any of the logical variables in A, i.e. 

Aa = A. 

Proof: Suppose A has variables X1, ... , Xn. Let a·1 , •.• , an be distinct new constants 

(appearing neither in the program P nor in A). Define B . {X1 <-- a1 , ••• , Xn <--an}· 

Then AB is a logkal consequence of P. Since AO is ground, Theorem 4 states that 
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AO -v>* <>with u', 

u' t IJ ( AO) = ¢. 

Since the a; do not appear in P nor A, by textually replacing all a; by X; in this derivation 

we obtain the derivation 

A -v>* <>with u, 

u t JJ(A) = ¢. 

End of Proof. 

Theorem 5: Completeness Theorem. Let P be a Setlog program and G a goal. For 

every correct answer substitution 8 there exists a derivation 

G -v>* <> with a-, 

and a substitution 7J such that 

fJ = (u t JJ(G))7J. 

Proof: Let G = A 1 , •.. , An· Since fJ is correct, then GfJ is a logical consequence of P. 

By Lemma 5, 

A; ·-v<-* <>with u;, 

u; 1 lJ (A;) = ¢. 

We can combine these into a single derivation 

G -v>* <>with a-, 

u t IJ(A;) = ¢. 

Suppose that the sequence of mgu's in the derivation is 81 , ... , thetam. Then 

ce = cee = ceer···em. 
By the MGU Lemma, 

G 'V> * <> with Bi .. . e;,, 
such that for some 17', 881 .•• 8m - 8i ... e;,7J'. So, let a­

End of Proof. 
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Oi ... e;, and 77 77 1 t lJ(G). 




