
An Introduction to Ray Tracing

TR87-038

December, 1987

Roinan Kuchkuda

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall, 083A
Chapel Hill, NC 27599-3175

~ \

I

~!-,.....

An Introduction to Ray Tracing

Roman Kuchkuda
University of North Carolina

Chapel Hill

December 20, 1987

Abstract

This paper is a practical guide to ray tracing for those famil
iar with graphics. It consists of a conceptual model of ray
tracing, C code for a basic system, and an explanation of how
and why the code works.

Key Words & Phrases
Ray Tracing, C code, Conceptual Model, Spheres, Boxes, Tri
angles, Superquadrics, Reflection, Shadows, Transparency,
LEX,YACC

1 INTRODUCTION

Ray tracing is one of the most popular algorithms for render
ing high quality computer graphics images. It is conceptually
simple; rendering is reduced to finding the intersection of a
line with an object and then shading the point of intersection.
It is powerful; almost any type of object can be rendered. It
is extensible; adding a variety of new effects is easy and nat
ural.

For all its conceptual simplicity, it can be a difficult subject
to learn. The classic computer graphics texts only mention
it . Current technical journals contain articles about advanced
features and special extensions. Articles on the basics were
printed many years ago and can be difficult to find .

This paper attempts to fill the need for a beginner's guide
to ray tracing. It consists of three parts:

• Part 1 presents a conceptual model of ray tracing and
discusses the translation of the model into code.

• Part 2 presents C code for a basic ray tracing system.
Each section of code is accompanied by an explanation
of how and why it works. Figure 1 shows the image
generated by the basic system, using the default image
parameters .

1

• Part 3 presents extensions to the basic system. Figures
2 - 4 show images generated by the full system.

All of the code necessary to build a simple ray tracer is
included. Figures 1-4 were produced using code which was
filtered from the text of this document. Only the standard
features of C are used. In some cases, execution speed has
been sacrificed in the interest of clarity.

1.1 CAUTIONS

The chief drawback of ray tracing is that it is slow. Com
plicated images take HOURS of CPU time. Be kind to your
fellow users; run your ray tracer in the background at low
priority.

Image files are large. Keeping many images on disk will
quickly use a lot of space.

Finally, beware - ray tracing is addictive. The beauty of
your images will' entrance you. There is always one more
effect that can be added to produce a new and more spectac
ular picture.

1.2 CONCEPTUAL MODEL

The fundamental idea behind ray tracing is to follow rays of
light from a light source. Their paths and intensity /color are
computed as they reflect off and refract through objects.

Imagine a camera on a tripod sitting in a room filled with
a variety of objects. The room is lit by a single light bulb.
Rays of light from the light bulb reflect off objects. Some
of the light rays travel through the cameras lens and hit the
film, creating an image. This is the process which ray tracing
attempts to simulate.

Everything in the room can be represented mathemati
cally. The light bulb has an x ,y,z position and a brightness.
The objects can be modeled as geometric primitives, such

as spheres or polygons, or as collections of primitives. The
camera can be described by its position, orientation, and the
field of view of the lens.

In the program, light rays are sent out from the light bulb
in all directions. The angles of reflection and refraction of the
light rays are computed as they bounce off objects. The sur
face properties (color, shininess, etc.) of the objects change
the color and intensity of the rays. Some of the rays eventu
ally strike the film. The color and intensity of those that do
are recorded.

To produce a clear image, many rays must strike the film.
Because only a small percentage reach the film, a tremendous
number of rays must be traced. It is incredibly expensive,
but the image should be nearly perfect if the model of light
interaction is good.

The key to practical ray tracing is a slight adjustment to
this process. Rather than trace rays from the light source,
with most of the rays missing the film, rays are traced from
points on the film out of the camera into the room. One
ray is traced for each spot on the film, with the color of the
object hit recorded as the color for that spot. On the graphics
display, each pixel corresponds to a spot on the film.

1.3 HISTORY

The earliest reference in computer graphics to ray tracing is
[Appel 68). [Goldstein 71) described image production soft
ware at MAGI. [Whitted 80) extended ray tracing by adding
reflection and refraction. Since this early work, ray tracing
has benefitted from the efforts of many researchers. Some
areas of development are described in Section 3.9.

2 FIRST PROGRAM

The first ray tracing program is designed to allow you to
quickly produce some simple images. It also provides a solid
base for further development.

A ray tracing system includes routines for many types of
object primitives. The first program includes only the code
for spheres. In the full system, the code for boxes, triangles,
and superquadrics is presented. As you develop your ray
tracer, you can add more primitives.

The shading model in the first program is fairly sophis
ticated. It includes ambient, diffuse, and specular lighting.
Several point light sources are allowed. In the full system
shadows, reflections and transparency will be added.

In a flexible system many values are specified by the user
at run time. The code to obtain user input is fairly long. So,

2

the values are hard coded in the basic system. In section 3.6,
user input routines are presented. For now, run the program
and see what the image looks like. Try changing some of the
hard coded values and see how the image changes.

2.1 MAIN ROUTINE

The main routine determines a color value for each pixel in
the image and writes this value to the pixel output file.

Initializations are performed by a call to setup. viewing
is called to calculate the direction and spacing of the rays to
be traced. The pixel output file is opened and the image size
written to it in startpic.

The actual ray trace is then performed. The rays are gen
erated, in order, from left to right, top to bottom, by two
nested loops. The outer loop is 1 to n, where n is the num
ber of lines in the image. The inner loop is 1 to m, where
m is the numbers of pixels across each line. Inside the inner
loop, a ray is sent into the world by a call to intersect.

intersect computes the intersections of a ray with all ob
jects. It determines the point of closest intersection and re
turns the color of the object at that point. This color value
is stored. If the ray doesn't hit any objects, the background
color is stored.

When the colors of all of the pixels across a line have been
determined, the line is output through a call to linepic. Ev
ery tenth line a status message is sent to stdout. When all
of the lines in the image have been completed, end pic closes
the output file.

!••• main.c •••/
#include <stdio.h>
#include "typedefs.h"
#include "maindecl.h"

main()
{

int line_y,pixel_x;
t_3d scrnx,scrny,firstray,ray;
t_color color;
double dis, line[SCREENWIDTH][3];

setup();
vieving(iscrnx,iscrny,ifirstray);
startpic(outfilename,sizey,sizex);

for (line_y = 0; line_y < sizey; line_y++)
{

for (pixel_x = 0; pixel_x < sizex; pixel_x++)
{

ray.x = firstray.x + pixel_x•scrnx.x-

•

•

}

}

line_y•scrny.x;
ray .y firstray.y + pixel_x•scrnx.y

line_y•scrny.y;
ray.z firstray.z + pixel_x•scrnx.z -

line_y•scrny.z;
normalize(lray);

I• actual ray trace •I
dis = intersect(-1,teyep,lray,icolor);
if (dis > 0) I• ray intersected object •I
{

}

line[pixel_x][O] = color.r;
line[pixel_x][1] = color.g;
line[pixel_x][2] = color.b;

else I• use background color •I
{

}

line[pixel_x][O] = background.r;
line[pixel_x][1] = background.g;
line[pixel_x][2] = background.b;

linepic(line); I• output line of pixels •I
if (line_y%10 == 0)
{

printf("done line Y.d\n",line_y);
fflush(stdout);

}

}

endpic(); I• done vith picture •I

2.2 INCLUDE FILES

Include files define structure types, global variables, con
stants, and function types. Their use simplifies later modifi
cation of the program.

The first include file, typedefs.h, defines the structures for
the basic ray tracer. Structures allow conceptual grouping of
data and simplify information passing between routines. New
attributes can easily be added to structures.

Spheres, boxes, triangles, and superquadrics are defined.
Each object is described in two structures. The first structure
has the fields which are common to all objects. The second
has the fields that are unique to a given object.

includes the triangle's plane description, three edge vectors,
and three edge constants.

The superquadric object structure, Lsuperq, has all of
the values of the box structure, plus some new values. These
values are described in section 3.5 .

The t_object structure contains the fields which are com
mon to all objects. It has object id, which is unique for each
object, surface type number, which specifies the color of the
surface, object type, and object pointer, which points to one
of the object type structures defined above.

The tJight type defines a point light source. It has an
x,y,z position in space and a brightness value.

The t...surface structure describes the properties of an ob
ject's surface. The color is specified by red, green, and blue
components for each of ambient, diffuse, and specular light
ing. The specular coefficient controls the size and intensity of
the specular highlight. It is a positive integer and the higher
the coefficient, the smaller and brighter the specular high
light. The reflectivity of the surface is specified by a number
from zero to one, with zero being no reflection, one being a
perfect mirror. Transparency is specified in a similar manner,
with zero being opaque, one completely transparent. Reflec
tions and transparency are not included in the basic program;
they are added later.

Three-dimensional vectors are represented by the t_3d
structure. It is used throughout the program for both po
sitions and vectors in 3 space.

Lastly, the t_color structure specifies a red, green, blue
color trio. Color values are passed throughout the program
in this form.

I••• typedefs.h •••I
typedef struct{double x,y,z;} t_3d;

typedef struct{double r;
double x,y,z;

}o_sphere ;

typedef struct{int sidehit;
double xs,ys,zs;
double x,y,z;

}o_box;

I• radius •I
I• position •I

I• side intersected •I
I• size of sides •I
I• center position •I

t...sphere describes spheres. It has fields for the sphere's typedef struct{
radius and its x,y,z center position.

t_3d nrm;
double d;

I•
I•

triangle normal •I
plane constant •I

The box object type is defined by the t_box structure. It
has x,y,z center position, sizes for the x, y, and z sides and
sidehit. Sidehit is used in the computation of the surface
normal of the box.

Triangles are described by the t_triangle structure. It

3

t_3d el,e2,e3;
double dl,d2,d3;

} o_triangle ;

typedef struct{int sidehit;
double xs,ys,zs;

I• edge vectors •I
I• plane constants •I

I• side intersected •I
I• size of sides •I

•

•

double x,y,z; I• center position •I
double pow; I• n in formula •I
double a,b,c,r; I• coefficients •I
double err; I• error measure •I

}o_superq;

typedef struct{int id; I• object number •I
int objtyp; I• object type •I
int surfnum; I• surface number •I
union {

o_sphere *p_sphere;
o_box *p_box;
o_triangle *p_triangle;
o_superq *p_superq;

} objpnt; I• object pointer •I
}t_object ;

typedef struct{double x,y,z,bright;} t_light;

typedef struct{double ar,ag,ab; I• ambient r , g,b •I
double dr,dg,db; I• diffuse r,g,b •I
double sr,sg,sb; I• specular r,g,b •I
double coef; I• specular coef •I
double refl; I• reflection 0-1 •I
double transp; I• transparency 0-1 •I

}t_surface;

typedef struct {double r,g,b;} t_color;

constants.h contains a variety of constant definitions.
First, the sizes of the light, object, and surface type arrays
are defined. The array sizes must be increased as you render
images with more objects (or lights or surface types) in them.
Only the main program should require recompilation when
these sizes are changed.

Next the screen size is defined. It should not change unless
you move to a frame buffer with a different resolution or as
pect ratio. The gamma correction constant is likewise frame
buffer dependent.

Finally, object type constants are specified. These con
stants relate the object type to the routines used to find
intersections and normals . The constants (0 - n) correspond
to the order of the intersection and normal routines in the
objint and objnrm arrays in maindecl.h.

I••• constants . h •••I
#define LIGHTS 4
#define OBJECTS 50
#define SURFACES 50
#define SCREENW"IDTH 512
#define SCREENHEIGHT 512
#define ASPECTRATIO 1.0
#define GAMMA 1.8
#define OTYPSPHERE 0

#define OTYPBOX 1
#define OTYPTRIANGLE 2
#define OTYPSUPERQ 3

maindecl.h contains the declaration of the global van
abies and is included in the main program.

4

Global information has been minimized. This tends to
lessen unforseen interactions among routines. The global
variables consist mainly of values which define the ray tracing
world.

First, the object intersection routine and obj ect normal
routine pointer arrays are declared. The objint array has
pointers to the ray-object intersection routine for each type
of object. The objnrm array has pointers to the surface
normal routine for each object type.

Next, the arrays for objects, lights, and surface types are
declared. A maximum size for each array is kept, along with
a count of how many items in each array are currently being
used.

The viewing parameters are declared next . They include
the size of the image to be produced, the eye point, look
point, up vector, and horizontal and vertical fields of view.
Section 2.5 describes these parameters.

The current level and maximum level of reflection are used
in the full system to limit the number of levels of reflection
which are rendered.

The string for the pixel output file name is then declared.
Finally, the background color is defined. It is used when a
ray does not hit any object.

I••• maindecl.h •••I
#include "conStants. h"
#include "funcdefs.h"

I• intersection routines •I
double (•objint[])() = {intsph,intbox,inttri,intsup};
I• normal routines •I
int (•objnrm[])() = {nrmsph,nrmbox,nrmtri,nrmsup};

I• global variables •I
int nlight; I• presently in us e •I
int lightlim = LIGHTS; I• maximum declared •I
t_light light[LIGHTS]; I• array of lights •I
int nobject; I• presently in use •I
int objectlim = OBJECTS; I• maximum declared •I
t_object object[OBJECTS]; I• array of objects •I
int nsurface; I• presently in use •I
int surfacelim = SURFACES ; I• maximum declared •I
t_surface surface[SURFACES]; I• array of surfaces •I
int sizex, sizey; I• image sizes •I
t_3d eyep,lookp,up; I• view definition •I
double hfov,vfov; I• fields of view •I

..

4

int level,maxlevel;
char outfilename[60];
t_color background;

I• reflection level •I
I• pixel file name •I
I• background color •I

globalvar.h contains the definition of the global variables
and is included in routines which access the global variables.

I••• globalvar.h •••I
extern double (•objint[]) 0;
externint (•objnrm[]) ();
externint nlight,lightlim;
extern t_light light[];
extern int nobject,objectlim;
extern t_object object[];
extern int nsurface,surfacelim;
extern t_surface surface[];
extern int sizex,sizey;
extern t_3d eyep,lookp,up;
extern double hfov,vfov;
extern int level,maxlevel;
extern char out filename[];
extern t_color background;

funcdefs.h defines the names and types for all of the rou
tines in the ray tracer. It is included in all routines which
have calls to other routines.

I••• funcdefs.h •••I
double brightness();
int crossp();
double dotp() ;
int endpic();
int gammacorrect();
double intersect();
int lightray();
int linepic();
double normalize();
int setup();
int shade();
int startpic();
int viewing();
int yyparse();

int maksph();
double intsph();
int nrmsph();
int makbox();
double intbox();
int nrmbox();
int maktriO;
double inttri();
int nrmtriO;
int maksup();
double intsup();
int nrmsup();

5

2.3 SETUP ROUTINE

setup intializes global variables and sets defaults for user
specified values. yyparse is called to get user input.

I••• setup.c •••I
#include "typedefs.h"
#include "globalvar.h"

int setup()
{

}

I• set defaults •I
nlight = 0;
nobject = 0;
nsurface = 0;
level 0;
sizex = 512;
sizey = 512;
hfov = 50;
vfov = 50;
eyep.x = 100.0;
eyep.y = 0.0;
eyep.z = 0.0;
lookp.x 0.0;
lookp.y = 0.0;
lookp.z = 0.0;
up.x = 0.0;
up . y = 1.0;
up.z = 0.0;
strcpy(outfilename, "raytrace.pix");
yyparse(); I• parse user input •I

2.4 FIRST PROGRAM STUBS

The basic system contains stubs for routines which will be
defined in the full system. yyparse and the intersection and
normal routines for boxes, triangles, and superquadrics are
stubbed .

The intersection and normal routines are empty, returning
zero when called. There is no user input in the basic sys
tem; yyparse consists of a series of hard coded assignment
statements.

I••• stubs.c •••I
#include "typedefs.h"
#include "global var. h"

I• intersection and normal routines •I
int makbox(){return;}
int maktri(){return;}
int maksup(){return;}
double intbox(){return(O);}
double inttri(){return(O);}

•

double intsup(){return(O);}
int nrmbox(){return;}
int nrmtri(){return;}
int nrmsup(){return;}

int yyparse 0
{

}

nlight = 1; I• light source •I
light[O].x -= 100;
light[O].y = 300;
light[O].z = 0;
light[O].bright = 1.0;
I• sphere - surface type 0, radius 40, •I
I• center at 5, 30, 40 •I
maksph(0,40.0,5.0,30.0,40.0);
nobject++;
I• sphere - surface type 1, radius
I• center at -10, -10, -40
maksph(1,30.0,-10.0,-10.0,-40.0);
nobject++;
nsurface = 2;
surface[O].ar = 30; I• surface 0 -red shiny •I
surface[O].ag = 0;
surface[O].ab = 0;
surface[O].dr = 90;
surface[O].dg = 0;
surface[O].db = 0;
surface[O].sr = 190;
surface[O].sg = 120;
surface[O].sb = 120;
surface[O].coef = 15;
surface[1].ar = 0; I• surface 1- green, duller •I
surface[1].ag =50;
surface[1].ab = 0;
surface[1].dr = 0;
surface[1].dg = 100;
surface[1].db = 0;
surface[1].sr = 30;
surface[1].sg = 40;
surface[1].sb = 30;
surface[1] . coef = 2;
background.r = 100;
background.g = 200;
background.b = 250;
return(O);

I• background color •I
I• light blue •I

2.5 VIEWING ROUTINE

To produce an image, a ray is sent into the world for each
pixel. The viewing routine calculates the direction and the
spacing of the rays. It uses either the viewing parameters
specified by the user or the defaults defined in setup.

The viewing definition is complicated. It is described using

6

the camera analogy introduced earlier. The points, vectors,
and angles involved are shown in the following diagram.

L - lookpoint
E- eyepoint
U- up vector
H- hfov
V- vfov
G - gaze vector
X- screen x
Y- screen y
F- firstray

The eyepoint (E) describes the camera position. The look
point (L) describes where the camera is pointing. It is the
center of the image plane. Together, the eyepoint and the
lookpoint define the gaze vector (G). The up vector (U) de
scribes the orientation of the camera about the gaze vector.

Field of view refers to the length of the camera's lens, from
wide angle to telephoto. Both horizontal (H) and vertical (V)
fields of view are defined. For the usual rectangular display,
the horizontal field of view is somewhat larger than the ver
ticaL For a square display, they are equaL

After the view has been defined, several values are derived
from it. The screen x (X) and screen y (Y) vectors describe
the image plane. They are scaled to the width and height of
one pixel on the image plane. Firstray (F) describes the ray
from the eyepoint to the pixel in the top left corner of the
image plane. Screen x, screen y, and firstray are used in the
main program to generate the individual rays for each pixeL

I••• vieving.c •••I
#include <math.h>
#include "typedefs.h"
#include "funcdefs.h"
#include "globalvar.h"
#define DEGREETORADIAN (3.14159261180.)

int vieving(scrnx,scrny,firstray)
t_3d •scrnx,•scrny,•firstray;
{

int i,j;
t_3d gaze;
double dist,magnitude;

gaze.x = lookp.x - eyep.x;
gaze.y = lookp.y - eyep.y;
gaze.z = lookp.z - eyep.z;
dist = normalize(lgaze);
I• scrnx = gaze cross up •I
crossp(scrnx, lgaze, lup);

}

I• scrny = scrnx cross gaze •I
crossp(scrny, scrnx, lgaze);

dist •= 2.0;
magnitude = dist * tan(hfov•DEGREETORADIAN) I sizex;
scrnx->x •= magnitude;
scrnx->y •= magnitude;
scrnx->z •= magnitude;
magnitude = dist * tan(vfov•DEGREETORADIAN) I sizey;
scrny->x •= magnitude;
scrny->y •= magnitude;
scrny->z •= magnitude;

firstray->x = lookp.x - eyep.x;
firstray->y = lookp.y - eyep.y;
firstray->z = lookp.z - eyep.z;
firstray->x += sizeyl2•scrny->x - sizexl2•scrnx->x;
firstray->y += sizeyl2•scrny->y - sizexl2•scrnx->y;
firstray->z += sizeyl2•scrny->z - sizexl2•scrnx->z;

2.6 INTERSECTION ROUTINE

intersect finds the closest intersection between a ray and
any of the objects in the world. The source of the ray, the
ray vector, and the ray start position are input. The distance
to the closest intersection and the color of the object at the
point of intersection are returned. If the ray doesn't hit any
object, a value of zero is returned .

For each object:

• The intersection routine associated with it is called.
The distance to intersection is returned. Zero is re
turned if the ray misses the object.

• If the intersection is closer than any found previously,
the object identity and distance to intersection are
saved.

After the closest intersection is found, the point of inter
section is computed. Letting Xp,Yp,Zp be the ray origin,
Xr,Yr,Zr the ray direction, and s the distance to the inter
section: the parametric equations for the ray give the point
of intersection.

X Xp+s•Xr
Y Yp+s•Yr
Z Zp+s•Zr

The normal at the point of intersection is found by calling
the normal routine for the object hit by the ray. Then the
shading routine is called to calculate the color at the point
of intersection.

I••• intersect.c •••I

7

#include <math . h>
#include "typedefs.h"
#include "globalvar.h"
#define FAR_AVAY 99.99E+20

double intersect(source,pos,ray,color)
int source;

{

}

t_3d •pos,•ray;
t_color •color;

int objhit, objtry;
double s, ss;
t_3d hit,normal;

objhit = -1;
ss = FAR_AVAY;
I• check for intersection of ray vith all objects •I
for (objtry=O; objtry<nobject; objtry++)
{

}

I• special check used for reflections •I
if (objtry != source) I• don't try source •I
{

}

s = (•objint[object[objtry].objtyp])
(pos,ray,lobject[objtry]);

I• keep track of closest intersection •I
if ((s > 0.0) ll (s <= ss))
{

}

objhit = objtry;
ss = s;

if (objhit < 0) return(O); I• ray hit no objects •I

I• find point of intersection •I
hit.x = pos->x + ss • ray->x;
hit.y = pos->y + ss • ray->y;
hit.z = pos->z + ss • ray->z;
I• find normal •I
(•objnrm[object[objhit].objtyp])

(lhit,lobject[objhit],lnormal);
I• find color at point of intersection •I
shade(lhit,ray,lnormal,lobject[objhit],color);
return(ss);

2. 7 SPHERE ROUTINES

The maksph routine allocates the space for a sphere descrip
tion and fills it with the values passed to the routine.

intsph computes the intersection between a ray and a
sphere. The source position of the ray, the ray vector, and
the object, a sphere, are passed to the routine. The distance

to the nearest intersection is returned. A value of zero is int maksph(surf,r,:x,y,z)
returned if no intersection is found .

The equation of a sphere is X 2 + Y 2 + Z 2 = R 2

The equations for the ray in parametric form, where
Xp,Yp,Zp is the ray source and Xr,Yr,Zr is the ray vector,
are

X Xp+S•Xr
Y Yp+S•Yr
Z Zp+S•Zr

Substituting the parametric form in the sphere equation
gtves

S2 *X r 2 + 2 * S *X p *X r +X p2+
S2 * Y r 2 + 2 * S * Yp * Y r + Yp2+
S2 * Z r 2 + 2 * S * Z p * Z r + Z p2 - R 2 = 0

This is a quadratic of the form A* S 2 + B * S + C = 0

A X r 2 + Y r 2 + Z r 2

B 2•(Xp•Xr+Yp•Yr+Zp•Zr)
C Xp2 +Yp2 +Zr-R2

Therefore, there are solutions

S _ -B±yB'-4•A•C
- 2•A

Several simplifications can be made.

Since the ray is normalized with length one:

A= Xr2 + Yr2 + Zr2 = 1

Let B = 2 * D with

D = Xp* Xr+ Yp•Yr+ Zp• Zr

This produces

S _ -2•D±yr.4.,-•D""'""' ---,-4•,-,C"'
- 2

Which simplifies to

S= -D±vD2 -C

This form of the equation is solved in the intsph routine.
Since there are two solutions; the smallest one greater than
zero is returned. If no solution is found, zero is returned.

nrmsph finds the surface normal at a point on the sphere's
surface. If the point of intersection is P, the sphere center C,
and its radius R , then the normal vector is

Nx (Px- Cx)/R
Ny (Py- Cy)/ R
Nz (Pz-Cz)/R

I*** sphere.c ***I
#include <math.h>
#include "constants. h"
#include "typedefs.h"
#include "globalvar.h"

I• create sphere object •I

8

{

}

int surf;
double r,:x,y,z;

int size;
o_sphere •sphere;

size= sizeof(o_sphere);
sphere= ((o_sphere •) malloc(size));
object[nobject].id = nobject;
object[nobject].objtyp = OTYPSPHERE;
object[nobject].surfnum =surf;
object[nobject].objpnt.p_sphere =sphere;
sphere->r = r;
sphere->:x = :x;
sphere->y = y;
sphere->z = z;

double intsph(pos,ray,obj)

{

}

t_3d *pos; I• origin of ray
t_3d •ray;
t_object-"•obj;

I• ray vector •I
I• sphere description •I

double b,t,s;
double :xadj,yadj,zadj;
o_sphere •sph;

sph = obj->objpnt.p_sphere;
I• translate ray origin to object's space •I
:xadj = pos->:x - sph->:x;
yadj = pos->y - sph->y;
zadj = pos->z - sph->z;

I• solve quadratic equation •I
b = :xadj•ray->:x + yadj•ray->y + zadj•ray->z;
t = b•b - :xadj•:xadj - yadj•yadj - zadj•zadj +

sph->r•sph->r;
if (t < 0) return(O . O);
s = -b- sqrt(t); I• try smaller solution •I
if (s > 0) return(s);
s = -b + sqrt(t); I• try larger solution •I
if (s > 0) return(s);
return(O); I• both solutions <= zero

int nrmsph(pos,obj,nrm)

{

t_3d *pos; I• point of intersection •I
t_object •obj; I• sphere description •I
t_3d •nrm; I• return surface normal •I

o_sphere •sph;

sph = obj->objpnt.p_sphere;
nrm->:x = (pos->:x-sph->:x)lsph->r;

•I

•

}

nrm->y = (pos->y-sph->y)lsph->r;
nrm->z = (pos->z-sph->z)lsph->r;

2.8 SHADING ROUTINE

The shading routine calculates the color of a point on an
object's surface. It models ambient light as well as diffuse and
specular lighting from multiple point light sources. White
light is assumed for all light sources.

The point of intersection, surface normal at the point, in
tersection ray, distance to intersection, and object pointer
are passed to the shading routine.

surface normal
ray to light

Object Surface

Using the rays shown above and the object's surface prop
erties, the color of the point being shaded is determined.

The reflection ray from the surface is calculated from the
intersection ray and the surface normal. The angle between
the reflection ray and the surface normal is equal to the angle
between the surface normal and the intersection ray.

The initial color for the point being shaded is the ambient
color.

For each light, the diffuse color and the specular highlight
color are computed and added to the color of the point being
shaded.

• The ray to the light source is calculated by the lightray
routine. The brightness of the light is found by a call
to the brightness routine.

• The strength of the diffuse lighting is given by the dot
product of the surface normal and the ray to the light.
If it is less than zero, the surface is facing away from the
light. Thus, the light does not contribute to the color
of the surface. If it is greater than zero, the surface
faces the light. The dot product is multiplied by both
the brightness of the light and the diffuse surface color.

• The specular highlight is computed as the dot product
of the reflection ray and the ray to the light. The dot

9

product, if greater than zero, is raised to the power of
k, the surface specular coefficient. This result is multi
plied by the specular surface color.

At each step, lighting components are added to the color
of the surface. The surface becomes brighter as each suc
ceeding term is processed. This matches what you would
expect. An object lit only by ambient light is fairly dark and
evenly shaded. If the surface is lit from a light source, it is
brighter and shows more shape. If it is shiny, bright specular
highlights appear.

A more complicated shading model, which includes reflec
tion, transparency and shadows is presented in sections 3.1
and 3.2.

I*** shade.c ***I
#include <math.h>
#include "typedefs. h"
#include "funcdefs.h"
#include "globalvar.h"

int shade(pos,ray,nrm,obj,color)
t_3d *pos,•ray,•nrm;

{

t_object •obj;
t_color •color;

int lnum;
double k,bright,spec,diffuse;
t_surface •surf;
t_3d refl,ltray;

I• Ambient light contribution •I
surf= lsurface[obj->surfnum];
color->r = surf->ar;
color->g = surf->ag;
color->b = surf->ab;

I• calculate reflected ray •I
k = -2.0 * dotp(ray, nrm);
refl.x = k•nrm->x + ray->x;
refl.y = k•nrm->y + ray->y;
refl.z = k•nrm->z + ray->z;

for (lnum=O; lnum < nlight; lnum++)
{

I• get ray to light •I
lightray(lnum,pos,lltray);
diffuse= dotp(nrm, lltray);
if (diffuse > 0)
{

I• object faces light, add diffuse •I
bright= brightness(obj->id,lnum,pos,lltray);
diffuse •= bright;
color->r += surf->dr * diffuse;

}

}

}

color->g += surf->dg * diffuse;
color->b += surf->db * diffuse;

spec= dotp(irefl, iltray);
if (spec > 0)
{

}

I• highlight is here, add specular •I
spec= bright* pow(spec,surf->coef);
color->r += surf->sr * spec;
color->g += surf->sg * spec;
color->b += surf->sb * spec;

2.9 LIGHT ROUTINE

The lighting model supports multiple point light sources of
varying brightnesses. It is implemented using two routines.

The lightray routine takes the light number and the sur
face point as input. It computes the ray from the surface to
the light. This ray is used to determine whether the point
on the object is facing towards or away from the light. The
ray is normalized (length = 1.0) and returned.

The brightness routine takes as input the object number,
the surface point, the light ray, and the light number. The
brightness of the light as seen from the object surface is re
turned. Later, this routine will be extended so that it can
determine whether the surface is in shadow.

I••• light.c •••I
#include "typedefs. h"
#include "funcdefs.h"
#include "globalvar.h"

int lightray(lnum,objpos,lray)
int lnum;

{

}

t_3d •objpos, •lray;

lray->x = light[lnum].x- objpos->x;
lray->y = light[lnum].y- objpos->y;
lray->z = light[lnum].z- objpos->z;
normalize(lray);

double brightness(source,lnum,pos,ray)
int source,lnum;
t_3d •pos,•ray;

{

return(light[lnum].bright);
}

2.10 OUTPUT ROUTINE

Once the image is generated, it must be stored and displayed.
This is the one part of a ray tracing system which will vary
greatly from site to site. Each site has different frame buffers
and programs to load them.

A very simple version of pixel output is presented here.
You may have to modify it to suit your equipment. It consists
of four routines. The first, start pic, opens a file and writes
a header. The header consists of the image height and width,
each an integer.

The second routine, linepic, outputs one line of pixels per
call. Its input is an array of pixel r, g, b values. The pixel
values are gamma corrected and converted to integer by the
gammacorrect routine. The shading routine assumes a lin
ear brightness response. However, frame buffers have non
linear brightness response. Gamma correction is the pro
cess which adjusts brightness values to account for nonlinear
monitor response. The corrected pixel values are stored in a
buffer. After the entire line of pixels has been processed, the
buffer is written to the output file.

The final routine is end pic, which simply closes the output
file. If you are using a more sophisticated output algorithm,
such as pixel run length encoding, you may want to print the
number of runcodes or other performance information.

I••• outputp.c •••I
#include <stdio.h>
#include <math.h>
#include "constants.h"
#include "funcdefs.h"

10

int width;
int out file;
int linesize;

int startpic(fname,y,x)
char •fname[];
int y,x;
{

int header [2] ;

outfile = creat(fname, 0666);
if (outfile == -1)
{

}

fprintf(stderr, "\nERROR CREATING FILE\n");
fflush(stderr);
abort();

width = x;
linesize = 3•width•sizeof(unsigned char);
header[O] = y;
header[l] = x;

•

write(outfile, header, 2•sizeof(int));
}

int linepic(pixels)
double pixels[SCREENWIDTH][3];
{

}

unsigned char buffer[SCREENVIDTH][3];
int i,r,g,b;
double dr,dg,db;

for (i=O; i<width; i++)
{

}

r = gammacorrect(pixels[i][O]);
g = gammacorrect(pixels[i][1]);
b = gammacorrect(pixels[i][2]);
buffer[i][O] = r;
buffer[i] [1] = g;
buffer[i][2] = b;

write(outfile, buffer, linesize);

int endpicO
{

close(outfile);
}

int gammacorrect(intensity)
double intensity;

{

}

int ival;
double dval;

I• scale to 0 - 1 range •I
dval = intensityl255.0;
if (dval > 1.0) dval = 1.0;
if (dval < 0.001) dval = 0.001;
I• do gamma correction •I
dval = exp(log(dval) I GAMMA);
I• convert to integer, range 0-255 •I
dval •= 255.0;
ival = (int) (dval + 0.5);
return(ival);

2.11 RAY FUNCTIONS

Several functions operating on rays have been used through
out the basic system.

The normalize routine scales a ray to have length one.
The ray's original length is also returned . The dotp routine
returns the dot product of two rays. The crossp routine
returns the cross product of the two rays.

f*** raymath.c ***I
#include <math.h>
#include "typedefs.h"

double normalize(a)
t_3d •a;

{

}

double d;

d = sqrt(a->x * a->x + a->y * a->y + a->z * a->z);
a->x I= d;
a->y I= d;
a->z I= d;
return(d);

double dotp(a, b)
t_3d •a, •b;

{

}

double d;

d = (a->x * b->x) + (a->y * b->y) + (a->z * b->z);
return(d);

int crossp(o, a, b)
t_3d •o, •a, •b;

11

{

}

3

double d;

o->x (a->y * b->z) - (a->z * b->y);
o->y (a->z * b->x) - (a->x * b->z);
o->z (a->x * b->y) - (a->y * b->x);
d = sqrt(o->x•o->x + o->y•o->y + o->z•o->z);
o->x I= d;
o->y I= d;
o->z I= d;

SYSTEM DEVELOPMENT

By now you should have produced several ray traced images.
It's time to extend the capabilities of the first program into
a full scale system.

The shading routine was adequate; now it is extended to
produce shadows, reflections, and transparency. Shadow gen
eration can be added by itself. It is easiest to add reflections
and transparency together because the shade routine is mod
ified for each of them.

Spheres are ok for test images. For real images, many
different primitives are useful. Each new primitive can be
added by itself. For each primitive, four things a re needed :

•

a 'make' routine, an intersection routine, a normal routine,
and a structure definition. Routines and structures to handle
boxes, triangles, and superquadrics are presented.

3.1 SHADOWS

Shadows are an extension to the basic shading routine. They
give very strong depth cues and add to the realism of images.
In discussing shadows, it is important to differentiate between
two terms. Shading is the process of finding the color at a
point on an object's surface. Shadowing refers to blocking
the light which would have fallen on the object's surface.

Two routines are used to determine whether the point be
ing shaded is in shadow. lightray calculates a shadow ray
between the point and the light source, saving the distance
between the two.

brightness returns zero if the point is in shadow. Oth
erwise, it returns the light's brightness value. brightness is
very similar to intersect, calculating inters~ctions between
the shadow ray and all objects. It stops as soon as it finds one
object between the point being shaded and the light source.

I••• light2.c ***I
#include "typedefs. h"
#include "funcdefs.h"
#include "globalvar.h"

double s_litdis;

int lightray(lnum,objpos,lray)
int lnum;

{

}

t_3d •objpos, •lray;

lray->x = light[lnum].x- objpos->x;
lray->y = light[lnum].y- objpos->y;
lray->z = light[lnum].z- objpos->z;
s_litdis = normalize(lray);

double brightness(source,lnum,pos,ray)
int source,lnum;

{
t_3d •pos, •ray;

int objtry;
double s;

for (objtry=O; objtry<nobject; objtry++)
{

if (objtry != source)
{

I• don't try source •I

s = C•objint[object[objtry].objtyp])
(pos,ray,lobject[objtry]);

if ((s > 0.0) ll (s <= s_litdis))

}

return(O); I• object in shadow •I
}

}

I• object not in shadov •I
return(light[lnum].bright);

3.2 REFLECTION & TRANSPARENCY

Reflection and transparency are extensions to the shading
routine. Each adds a new component to the color of the
point being shaded.

reflection ray

original ray

transparency ray

A reflection ray is sent from the point being shaded by
a call to intersect. intersect finds the closest intersection
with another object. Then it calls shade to determine the
color at the point of intersection and returns the color. This
color is combined with the color already calculated for the
point being shaded.

12

Colorp = Colorp + R *Col orr

where
Colorp is the color already calculated for the point.
R is the reflectivity of the surface being shaded, which ranges
from 0.0 for nonreflecting to 1.0 for a perfect mirror .
Colorr is the color of the object hit by the reflection ray. The
background color is used if the reflection ray didn't hit any
object.

Adding transparency is similar to adding reflection. The
transparency ray is sent from the point being shaded by a
call to intersect. The color returned is mixed with the color
already calculated for the point being shaded.

Colorp = (1 - T) * Colorp + T * Colort

where
Colorp is the color already calculated for the point, including
reflection.
T is the transparency of the surface being shaded, which
ranges from 0.0 for opaque to 1.0 for completely transparent.
Colort is the color of the object hit by the transparency ray.
The background color is used if the transparency ray didn ' t

•

hit any object.

It is important to understand that shading is now defined
recursively. shade calls intersect which calls shade ...
A count is used to limit the depth of the recursive calls.

~ The net result is that reflections can be seen in reflections.

I••• shade2.c •••/
#include <math.h>
#include "typedefs.h"
#include "funcdefs. h"
#include "globalvar.h"

int shade(pos,ray,nrm,obj,color)
t_3d •pos,•ray,•nrm;

{

t_object •obj;
t_color •color;

int lnum;
double k,dis,bright,spec,diffuse;
t_surface •surf;
t_3d refl,ltray;
t_color nevcol;

I• calculate reflected ray •/
k = -2.0 * dotp(ray, nrm);
refl.x = k•nrm->x + ray->x;
refl.y k•nrm->y + ray->y;
refl.z = k•nrm->z + ray->z;

I• Ambient light contribution •I
surf= tsurface[obj->surfnum];
color->r = surf->ar;
color->g = surf->ag;
color->b = surf->ab;

for (lnum=O; lnum < nlight; lnum++)
{

I• get ray to light •/
lightray(lnum,pos,tltray);
diffuse= dotp(nrm, tltray);
if (diffuse > 0)
{

I• object faces light, add diffuse•/
bright= brightness(obj->id,lnum,pos,tltray);
diffuse •= bright;
color->r += surf->dr * diffuse;
color->g += surf->dg * diffuse;
color->b += surf->db * diffuse;

spec= dotp(trefl, tltray);
if (spec > 0)
{

I• highlight is here, add specular •I
spec= bright* pov(spec,surf->coef);
color->r += surf->sr * spec;

13

}

}

}

}

color->g += surf->sg * spec;
color->b += surf->sb * spec;

I• reflection •I
k = surf->refl;
if ((k > 0) tt (level < maxlevel))
{

}

level++;
dis= intersect(obj->id, pos, trefl, tnevcol);
if (dis > 0)
{

}

color->r += nevcol.r * k;
color->g += nevcol.g * k;
color->b += nevcol.b * k;

else
{

color->r += background.r * k;
color->g += background.g * k;
color->b += background.b * k;

}

level--;

I• transparency •I
k = surf->transp;
if (k > 0)
{

}

color->r •= (1-k);
color->g •= (1-k);
color->b •= (1-k);
dis= intersect(obj->id, pos, ray, tnevcol);
if (dis > 0)
{

}

color->r += nevcol.r * k;
color->g += nevcol.g * k;
color->b += nevcol.b * k;

else
{

}

color->r += background.r * k;
color->g += background.g * k;
color->b += background.b * k;

3.3 BOXES

The makbox routine allocates the space for a box descrip
tion and fills it with the values which were passed to the

routine.

intbox computes the intersection between a ray and a box.
The source position of the ray, the ray vector, and the object,
a box, are passed to the routine. The distance to the nearest
intersection is returned. A value of zero is returned if no
intersection is found .

The ray can hit any of the six sides of the box. Therefore,
the six possible intersections must be checked.

Each intersection calculation has two parts. First, the in
tersection of the ray with the plane of the box side is found .
Then the point of intersection with the plane is checked to
determine whether the it lies within the box side.

Let Xp,Yp,Zp be the ray origin, Xr,Yr,Zr the ray, Xc,Yc,Zc
the box center, and Xs,Ys,Zs the sizes of the box sides. The
intersection calculation for the plus X side of the box is

S = ((Xc + Xs)- Xp)/Xr
This gives the point of intersection with the plane

X=Xc+Xs

Then , the y and z coordinates of the point are found .

Y Yp+s•Yr
Z Zp+s•Zr

IfY is within Y s of Y c and Z is within Zs of Zc, the point
is on the box.

This calculation is performed for all six sides. The distance
to the closest valid intersection is returned. The code is fairly
long, but simple.

The normal is found by keeping track of which side of the
box is intersected. The normal is 1.0 in the direction of that
side of the box.

I*** box. c ***I
#include <math.h>
#include "constants. h"
#include "typedefs.h"
#include "globalvar.h"
#define FAR_AVAY 99.99E+20

I• create box object •I

int makbox(surf,x,y,z,xs,ys,zs)
int surf;

{

double x,y,z;
double xs,ys,zs;

int size;
o_box •box;

size= sizeof(o_box);
box= ((o_box •) malloc(size));
object[nobject].id = nobject;

}

object[nobject].objtyp = OTYPBOX;
object[nobject].surfnum =surf;
object[nobject].objpnt . p_box =box;
box->x = x;
box->y = y;
box->z = z;
box->xs xs;
box->ys "' ys;
box->zs zs;

I• intersection calculation for ray and box •I

double intbox(pos,ray,obj)

{

14

t_3d •pos; I• origin of ray •I
t_3d •ray; I• ray vector •I
t_object •obj; I• box description •I

double s,ss,xhit,yhit,zhit;
double xadj,yadj,zadj;
o_box •box;

box = obj->objpnt.p_box;
ss = FAR_AVAY;
I* translate ray origin to objects space •I
xadj = pos->x - box->x;
yadj = pos->y - box->y;
zadj = pos->z - box->z;

if (ray->x != 0)
{

I• check x faces •I

}

s = (box->xs-xadj)lray->x;
if ((s > 0) ll (s < ss))
{

}

yhit = fabs(yadj + s * ray->y);
zhit = fabs(zadj + s * ray->z);
if ((yhit < box->ys) ll (zhit < box->zs))
{ box->sidehit = 0; ss = s;}

s = (-box->xs-xadj)lray->x;
if ((s > 0) ll (s < ss))
{

}

yhit = fabs(yadj + s * ray->y);
zhit = fabs(zadj + s * ray->z);
if ((yhit < box~>ys) ll (zhit < box->zs))
{ box->sidehit = 1; ss = s;}

if (ray->y != 0)
{

I• check y faces •I

s = (box->ys-yadj)lray->y;
if ((s > 0) ll (s < ss))
{

xhit = fabs(xadj + s * ray->x);

"

}

}

}

zhit = fabs(zadj + s * ray->z);
if ((xhit < box->xs) ~~ (zhit < box->zs))
{ box->sidehit = 2; ss = s;}

s = (-box->ys-yadj)lray->y;
if ((s > 0) ~~ (s < ss))
{

}

xhit = fabs(xadj + s * ray->x);
zhit = fabs(zadj + s * ray->z);
if ((xhit < box->xs) ~~ (zhit < box->zs))
{ box->sidehit = 3; ss = s;}

if (ray->z != 0)
{

I• check z faces •I

}

s = (box->zs-zadj)lray->z;
if ((s > 0) ~~ (s < ss))
{

}

xhit = fabs(xadj + s * ray->x);
yhit = fabs(yadj + s * ray->y);
if ((xhit < box->xs) ~~ (yhit < box->ys))
{ box->sidehit = 4; ss = s;}

s = (-box->zs-zadj)lray->z;
if ((s > 0) ~~ (s < ss))
{

}

xhit = fabs(xadj + s * ray->x);
yhit = fabs(yadj + s * ray->y);
if ((xhit < box->xs) ~~ (yhit < box->ys))
{ box->sidehit = 5; ss = s;}

if (ss == FAR_AVAY) return(O.O);
return(ss);

I• normal calculation for box •I

int nrmbox(pos,obj,nrm)

{

t_3d *pos; I• point of intersection •I
t_object •obj; I• box description •I
t_3d •nrm; I• return surface normal •I

o_box •box;

box = obj->objpnt.p_box;
nrm->x = 0.0;
nrm->y = 0.0;
nrm->z = 0.0;
switch(box->sidehit)
{

case(O): nrm->x
break;

1.0;

case(l): nrm->x = -1.0;
break;

case(2): nrm->y 1.0;
break;

case(3): nrm->y -1.0;
break;

case(4): nrm->z 1.0;
break;

case(5): nrm->z -1.0;
break;

}

return;
}

3.4 TRIANGLES

The maktri routine allocates the space for a triangle struc
ture and fills the fields. The three corner points of the triangle
are passed into maktri. In order to make the ray-triangle
intersection calculation fast, some values are precomputed.
A plane is defined by a normal vector and a plane constant.
The normal vector and plane constant for the triangle are
computed and stored. Each edge of the triangle can be de
fined by a plane which is perpendicular to the plane of the
triangle. The vectors and constants for the triangle's three
edges are computed and stored.

The normal vector for the triangle is the cross product of
the vectors from the first point to the second and the second
point to the third. The plane constant is the dot product of
the normal vector and any one of the triangle's points.

The normal for an edge is defined by the cross product
of the vector from its start point to its end point and the
triangle's normal vector. The plane constant for an edge is
the dot product of the edge vector and one of the points in
the edge.

15

inttri computes the intersection between a ray and a trian
gle in two steps. First, it finds the intersection of the ray with
the plane of the triangle. Next, it determines whether the
point of intersection is inside the triangle. Plane equations
are used for each step. Note that the points of the triangle
are either in clockwise or counterclockwise order. You must
be consistent , because the direction of the triangle's normal is
determined by the order of the points. The convention used
is that as you look at a triangle, its normal points towards
you, and its points are in counterclockwise order.

I••• triangle . c ***I
#include "constants . h"
#include "typedefs.h"
#include "globalvar.h"
#include "funcdefs.h"

int maktri(surf,p1,p2,p3)
int surf;

{

}

t_3d •pi, •p2. •p3;

int size;
o_triangle •triangle;
t_3d vc1,vc2,vc3;

size= sizeof(o_triangle);
triangle= ((o_triangle •) malloc(size));
object[nobject].id = nobject;
object[nobject].objtyp = OTYPTRIANGLE;
object[nobject].surfnum =surf;
object[nobject].objpnt.p_triangle =triangle;
vel. x = p2->x - p1->x; l• edge vectors •I
vc1.y = p2->y - p1->y;
vc1.z = p2->z - p1->z;
vc2.x = p3->x - p2->x;
vc2.y = p3->y - p2->y;
vc2.z = p3->z - p2->z;
vc3.x = p1->x - p3->x;
vc3.y = p1->y - p3->y;
vc3.z = p1->z - p3->z;
I• plane of triangle •I
crossp(ltriangle->nrm,lvc1,lvc2);
triangle->d = dotp(ltriangle->nrm,p1);
I• edge planes •I
crossp(ltriangle->e1,ltriangle->nrm,tvc1);
triangle->d1 = dotp(ltriangle->e1,p1);
crossp(ltriangle->e2,ltriangle->nrm,lvc2);
triangle->d2 = dotp(ltriangle->e2,p2);
crossp(ltriangle->e3,ltriangle->nrm,lvc3);
triangle->d3 = dotp(ltriangle->e3,p3);

double inttri(pos,ray,obj)
t_3d •pos, •ray;

{
t_object •obj;

double s,k;
t_3d point;
o_triangle •triangle;

triangle = obj->objpnt.p_triangle;
I• plane intersection •I
k = dotp(ltriangle->nrm,ray);
if (k == 0) return(O);
s = (triangle->d - dotp(ltriangle->nrm,pos)) I k;
if (s <= 0) return(O.O);

point.x = pos->x + ray->x • s;
point . y = pos->y + ray->y • s;
point.z = pos->z + ray->z • s;

I• edge checks •I
k = dotp(ltriangle->e1,
if (k < 0) return(O);
k = dotp(ltriangle->e2,
if (k < 0) return(O);
k = dotp(ltriangle->e3,
if (k < 0) return(O);

return(s);

lpoint) - triangle->d1;

tpoint) - triangle->d2;

tpoint) triangle->d3;

}

int nrmtri(pos,obj,nrm)
t_3d •pos;
t_object •obj;
t_3d •nrm;

{

o_triangle •triangle;

triangle = obj->objpnt.p_triangle;
nrm->x = triangle->nrm.x;
nrm->y = triangle->nrm.y;
nrm->z = triangle->nrm.z;

}

3.5 SUPERQUADRICS

Superquadrics can be described as boxes with rounded cor
ners. They are specified by equations of the form

16

a* lxln + b *!Yin+ C * lzln = rn

The maksup routine allocates the space for a superquadric
description and fills it with the values which were passed to
the routine and values which it calculates.

The superquadric structure has all of the fields in the box
structure, along with some new fields. The values which cor
respond to the box structure fields are passed into the rou
tine. The new fields are the A, B, C, R, and N values in the
superquadric equation, along with an error metric . The N
value is passed into the routine. The other values are derived
from the box values . R is the size of the largest box side. A,
B, and Care found by dividing the box sizes by R. The error
metric is used in the iterative solution of the ray-object inter
section. The solution is accurate enough when the measured
error is less than this value.

The intersection of a ray with a superquadric cannot be
calculated directly because the solution of an order N polyno
mial is required . Therefore, an iterative technique is needed .
The secant method is used because it is very simple.

The superquadric surface lies entirely within the box used
to define it. Any ray which will strike the superquadric will
first strike the box. So, the ray-box intersection is used as
the initial value for the ray-superquadric intersection. This

..

also gives an inexpensive rejection criteria for most of the
rays which would not hit the superquadric.

There is one special case. If the ray starts within the sur
rounding box, it can hit the superquadric without hitting the
box.

I••• superquadric.c ***I
#include <math.h>
#include "constants.h"
#include "typedefs.h"
#include "funcdefs.h"
#include "globalvar.h"
#define ERRCONST 1.05

int maksup(surf,x,y,z,xs,ys,zs,pover)
int surf;

{

}

double x,y,z;
double xs,ys,zs;
double pover;

int size;
double max;
o_superq •super;

size= sizeof(o_super q);
super = ((o_superq •) malloc(size));
object[nobject].id = nobject;
object[nobject].objtyp = OTYPSUPERQ;
object[nobject].surfnum =surf;
object[nobject].objpnt.p_superq =super;
super->x
s uper->y

x· .
y;

super->z z;
super->xs xs;
super->ys = ys;
super->zs = zs;
super->pov = pover;
max = xs;
if (ys > max) max = ys ;
if (zs > max) max = zs ;
super->a xs lmax;
super->b yslmax;
super->c zslmax;
super->r pov(max,pover);
super->err = pov((ERRCONST * max),pover) - super->r;

double intsup(pos ,ray,obj)
t_3d •pos,•ray;

{
t_object •obj ;

double xsiz,ysiz,zsiz;
double s,s1,t;
double xadj,yadj,zadj;
double old,result,p;

17

}

o_superq •super;

I• find box intersection •I
s = intbox(pos,ray,obj);
if (s == 0) return(O);
super = obj->objpnt.p_superq;
xadj = pos->x - super->x;
yadj pos->y - super->y;
zadj pos->z - super->z;

I• special case - ray origin
if ((fabs (xadj) < super->xs)

(fabs(yadj) < super->ys)
(fabs(zadj) < super->zs))

I• initial solution •I
p = super->pov;

vi thin box •I
u
u

s = 0;

result= pov(fabs((xadj + ray->x•s) I super->a), p)
+ pov(fabs((yadj + ray->y•s) I super->b), p)
+ pov(fabs((zadj + ray->z•s) I super->c), p)
- super->r;

if (result< super->err) return(s);

s1 = s;
s = s + 0.001;
I• iterative refinement •I
vhile (result > super->err)
{

}

old =result;
result pov(fabs((xadj + ray->x•s) I super->a), p)

+ pov(fabs((yadj + ray->y•s) I super->b), p)
+ pov(fabs((zadj + ray->z•s) I super->c), p)
- super->r;

if (result>= old) return(O.O);
t = (result•(s-s1))1(result-old);
s1 = s;
s -= t;

return(s);

int nrmsup(pos,obj,nrm)
t_3d •pos, •nrm ;
t _object •obj;

{

double k;
o_superq •super;

super = obj->objpnt.p_superq;
nrm->x (pos->x-super->x) I super->a;
nrm- >y (pos->y-super->y) I super->b;
nrm- >z (pos- >z-super->z) I super->c;

~

}

k = super->pov- 1;
if (nrm->x > 0) nrm->x = pov(nrm->x,k);
else nrm->x = -pov(-nrm->x,k);
if (nrm->y > 0) nrm->y = pov(nrm->y,k);
else nrm->y = -pov(-nrm->y,k);
if (nrm->z > 0) nrm->z = pov(nrm->z,k);
else nrm->z = -pov(-nrur>z,k);
normalize(nrm);

3.6 INPUT PROCESSING

Writing routines to parse and process user input is a large
task. In a ray tracing system, many things should be under
user controL It should be easy to specify viewing parameters.
Large files of object descriptions should be easy to process.
Files containing surface type descriptions should be produced
once and used for many different images.

The many and varied requirements of the user interface
make it quite complicated. Additionally, it is very nice to
be able to change. the interface easily. One of the cleanest
solutions is to use parsing tools, in particular, the UNIX tools
LEX and YACC. They are simple to use and because they
generate C code, are easily added to the ray tracer.

LEX handles character by character input processing. It
recognizes key words and can read numbers in just about any
form. It produces tokens which are used by YACC.

!••• input_lex.l ***I
%{
#include <stdio.h>
#include "y.tab.h"
%}
alpha [a-zA-Z]
special [\. _]
digit [0-9]
exp [Ee][-+]?{digit}+
string {alpha}({alpha}l{digit}l{special})•
%start COMMENT
%%

\t
\n
''/*" {BEGIN COMMENT;}
<COMMENT>[~ /\n]•\n

<COMMENT>[~ /\n] +"/" {if (yytext[yyleng-2]
BEGIN 0;}

eyep {return(TEYEP);}
lookp {return(TLOOKP);}
up {return(TUP);}
fov {return(TFOV);}
screen {return(TSCREEN);}
light {return(TLIGHT);}

=='•')

surface
background
maxlevel
sphere
box
triangle
superq
outfile
{string}

[+-]?{digit}+

{return(TSURFACE);}
{return(TBACKGROUND);}
{return(THAXLEVEL);}
{return(TSPHERE);}
{return(TBOX);}
{return(TTRIANGLE);}
{return(TSUPERQ);}
{return(TOUTFILE);}
{yylval.c=yytext;

return(TSTRING);}
{sscanf(yytext, "7.d" ,lyyl val. i);

return(TINT) ; }

[+-]?{digit}+"."{digit}•({exp})?
[+-]?{digit}•"."{digit}+({exp})?
[+-]?{digit}+{exp}

18

7.7.
yyvrap() {return(!);}

{sscanf(yytext, "7.F" ,lyyl val. d);
return(TFLOAT); }

YACC recognizes patterns of tokens and performs user
specified actions based on them.

For example, LEX recognizes the letters 'e' 'y' 'e' 'p' as the
string "eyep". It recognizes the characters '1' '0'' ''0'' ''0'
as the numbers 10 0 0. For each string of characters, it sends
a token to Y ACC. In this case it sends TEYEP TINT TINT
TINT, with each TINT having a numerical value associated
with it. YACC recognizes that this sequence of tokens spec
ifies an eyepoint position. User written C code actions then
process the eyepoint position.

!••• input_yacc.y ***I
%{
#include <stdio.h>
#include "typedefs.h"
#include "globalvar.h"
int number;
t_3d pl,p2,p3;
%}

%union {
char •c;
int i;
double d;
}

%token <i> TINT
%token <d> TFLOAT
%token <c> TSTRING
%token TEYEP TLOOKP TUP TFOV TSCREEN TMAXLEVEL
%token TLIGHT TSURFACE TSPHERE TBOX TTRIANGLE TSUPERQ
%token TBACKGROUND TOUTFILE
%type <d> Fnumber
%type <c> String
%%

File

Item

Eyep

Lookp

... Up

Fov

Screen

Maxlevel

Background

Light

File Item
Item

Eyep
Lookp
Up
Fov
Screen
Maxlevel
Background
Light
Surface
Sphere
Box
Triangle
Superq
Outfile

TEYEP Fnumber Fnumber Fnumber
eyep.x $2;
eyep.y $3;
eyep.z $4;

}

TLOOKP Fnumber Fnumber Fnumber
{ lookp.x $2;

lookp.y $3;
lookp.z $4;

}

TUP Fnumber Fnumber Fnumber
{ up.x $2;

up. y $3;
up.z = $4;

}

TFOV Fnumber Fnumber
{ hfov = $2; vfov = $3; }

TSCREEN TINT TINT
{ sizey = $2; sizex

TMAXLEVEL TINT
{ maxlevel = $2; }

$3; }

!BACKGROUND Fnumber Fnumber Fnumber
{ background.r = $2;

background.g = $3;
background.b = $4;

}

TLIGHT Fnumber
Fnumber Fnumber Fnumber

{ if (nlight == lightlim)
yyerror("too many lights");

Surface

Sphere

Box

Triangle

19

}

light[nlight].bright = $2;
light[nlight].x = $3;
light[nlight].y $4;
light[nlight].z $5;
nlight++;

TSURFACE TINT
Fnumber Fnumber Fnumber
Fnumber Fnumber Fnumber
Fnumber Fnumber Fnumber
Fnumber Fnumber Fnumber

{ number = $2;

}

if (number >= surfacelim)
yyerror("surface

surface [number] . ar
surface[number].ag
surface[number].ab
surface[number].dr
surface[number].dg
surface[number].db
surface[number].sr
surface[number].sg
surface[number].sb

#too big");
$3;
$4;
$5;
$6;
$7;
$8;
$9;
$10;
$11;

surface[number].coef
surface[number].refl

$12;
$13;

surface[number].transp = $14;
nsurface++;

TSPHERE TINT Fnumber
Fnumber Fnumber Fnumber

{ if (nobject == objectlim)
yyerror("too many objects");

maksph($2,$3,$4,$5,$6);
nobject++;

}

TBOX TINT
Fnumber Fnumber Fnumber
Fnumber Fnumber Fnumber

{ if (nobject == objectlim)
yyerror("too many objects");

makbox($2,$3,$4,$5,$6,$7,$8);
nobject++;

}

TTRIANGLE TINT
Fnumber Fnumber Fnumber
Fnumber Fnumber Fnumber
Fnumber Fnumber Fnumber

{ if (nobject == objectlim)
yyerror("too many objects");

p1.x $3; p1.y $4; p1.z $5;
p2.x = $6; p2.y = $7; p2.z = $8;

Superq

Out file

Fnumber

String

'!.'!.
yyerror(s)

char •s;
{

}

p3.x = $9; p3.y = $10; p3.z = $11;
maktri($2,lp1,ip2,lp3);
nobject++;

TSUPERQ TINT
Fnumber Fnumber Fnumber
Fnumber Fnumber Fnumber
Fnumber

{ if (nobject == objectlim)
yyerror("too many objects");

maksup($2,$3,$4,$5,$6,$7,$8,$9);
nobject++;

}

TOUTFILE String
{ strcpy(outfilename, $2); }

TFLOAT
{ $$=$1; }
I TINT
{ $$=$1; }

TSTRING
{ $$ = $1; }

• fprintf(stderr, "7.s\n" ,s);

;.

}

3. 7 SAMPLE INPUT FILES

An image description consists of a series of keywords and pa
rameters read from standard input. The keywords can occur
in any order with spaces and C-like comments interspersed.

basic.pds contains the image description to create the de
fault picture produced by the basic system (figure 1). The
command tracer2. go < basic. pds runs the full system, to
produce this image.

I*** basic.pds ***I
screen 512 512
fov 50 50
eyep 100 0 0
lookp 0 0 0
up 0 1 0
maxlevel 0
outfile basic.pix
light I• brightness •I 1.0

I• position •I 100.0 300.0 0.0
sphere I• color •I o

I• radius •I 40
I• center •I 5 30 40

sphere I• color •I 1
I• radius •I 30
I• center •I -10 -10 -40

surface 0
30 0 o I• ambient •I
90 0 o I• diffuse •I

190 120 120 I• specular •I
15 o.o o.o I• coef,transp,refl •I

surface 1
0 50 o I• ambient •I
0 100 o I• diffuse •I

30 40 30 I• specular •I
2 0.0 0.5 I• coef,transp,refl •I

background I• color •I 100 200 250

all.pds contains the image description for figure 2. Each
of the four object types as well as reflection and transparency
is shown in this image.

I••• all.pds •••I
screen 512 512
fov 20 20
eyep 100 150 90
lookp 0 0 0
up 0 1 0
maxlevel 1
out file all.pix
light I• brightness •I 1.0

I• position •I 100.0 300.0 0.0
superq I• color •I o

I• center •I 20 10 10
I• size •I 10 20 5
I• power •I 5

sphere I• color •I 1
I• radius •I 10
I• center •I -10 25 -20

triangle I• color •I 2
I• point •I -30 30 0
I• point •I -34 15 19
I• point •I -34 -12 -9

box I• color •I 3
I• center •I -17 -10 7
I• size •I 12 5 25

surface 0
0 50 0 I• ambient •I
0 100 0 I• diffuse •I

30 60 0 I• specular •I
6 0.0 0.2 I• coef,transp,refl •I

surface 1
90 90 0 I• ambient •I

230 230 0 I• diffuse •I
110 90 30 I• specular •I

2 0.0 0.0 I• coef,transp,refl •I

20

":

•

surface 2
0 90 90 I• ambient •I
0 230 230 I• diffuse •I

30 110 90 I• specular •I
8 0.0 o.o I• coef,transp,refl •I

surface 3
60 0 90 I• ambient •I

210 0 230 I• diffuse •I
90 30 110 I• specular •I
15 0.2 0.0 I• coef,transp,refl •I

background I• color •I 0 0 250

3.8 UNIX MAKEFILE

Unix provides a very convenient tool for building large pro
gramming systems: the makefile. It specifies the routines
needed to build the system, dependencies between the rou
tines , and the process for building each routine.

If you are not on a Unix system, you should be able to
build command files to compile and link the basic system
and the full system.

#::: makefile :::
C compile command for all routines #
.c.o:;cc -0 -c $•.c

build basic system #

basic: main.o setup.o vie~ing.o intersect.o shade.o \
light.o raymath.o stubs.o sphere.o outputp . o

cc -0 -o tracer1.go \
main.o setup.o vie~ing.o intersect.o shade.o \
light.o raymath.o stubs.o sphere.o outputp.o -lm

build full system #

system: main.o setup . o vie~ing.o intersect.o shade2.o \
light2 . o raymath.o input_lex.o input_yacc.o \

sphere.o box.o triangle.o superquadric.o outputp.o
cc -0 -o tracer2.go \

main.o setup.o vie~ing.o intersect.o shade2.o \
light2.o raymath.o input_lex.o input_yacc.o \

sphere.o box . o triangle.o superquadric.o outputp.o \
-lm

YACC and LEX for full system #

input_yacc . c: input_yacc.y
yacc -d input_yacc.y
mv y.tab.c input_yacc.c

input_lex.c: input_lex.l input_yacc.c
lex -t input_lex . l > input_lex.c

21

3.9 FURTHER SUGGESTIONS

This article described only a small subset of wha t can be
accomplished with ray tracing. A few important topics are
listed below.

Supersampling & Antialiasing Sending only one ray
per pixel leads to 'jaggies' along the edges of objects. Su
persampling is the process of sending multiple rays per pixel.
Antialiasing deals with which rays to send for a pixel and how
to combine the resulting colors from the rays. [Whitted 80]
suggests sending rays at the corners of each pixel. Adapting
the number of rays sent into a pixel based of the complexity
of the image is suggested in [Lee 85] .

Object Types Many different types of objects have been
ray traced. Ray tracing of prisms, surfaces of revolution, and
fractals is presented in [Kajiya 83].

Bounding Volumes Checking every ray for intersec
tion with every object becomes prohibitively expensive for
large databases. One solution [Rubin 80] is to place bound
ing volumes around complex objects. Simple objects such as
spheres or boxes are used as bo'unding volumes. Intersection
with the complex object is only checked after a ray strikes
the bounding object.

Octree & Other Space Subdivision Algorithms for
automatic generation of bounding volumes led to the idea
of space subdivision. [Glassner 84] used octrees to subdivide
space; [Kay 86] and [Fujimoto 86] present other subdivision
algorithms. 0 bjects are checked for intersection with a ray
only when the ray and the object are in the same region of
space.

Shading Models Many different shading models have
been proposed. The goal of each is to more accurately de
scribe the real world. [Cook 81] and [Hall 84] present two
particularly good models.

Pat terns & Textures Adding patterns and textures is
an efficient way to increase the realism of images. [Blinn 76]
and [Blinn 78] discuss patterns and textures in general. Pro
cedurally defined marble, soap films, water droplets and
waves are presented in [Perlin 85]. Procedurally defined wood
texture is discussed in [Peachey 85].

Distributed Ray Tracing [Cook 84] and [Dippe 85] in
troduced extensions to ray tracing which produce antialiased
images with depth of field, motion blur, surface gloss, shadow
penumbra, and other wonderful effects.

References

[Appel 68] Appel, Arthur Some Techniques for Shading Ma-

chine Renderings of Solids AFIPS Spring Joint Computer
Conference 32 (1968) 37-45.

[Blinn 76] Blinn, James F. Texture and Reflection in Com
puter Generated Images Communications of the ACM
19,10 (October 1976) 542-547.

[Blinn 78] Blinn, James F. Simulation of Wrinkled Surfaces
Communications of the ACM 12,3 (August 1976) 286-292.

[Cook 81] Cook, Robert L. and Torrance, Kenneth E. ARe
flectance Model for Computer Graphics Computer Graph
ics 15,3 (August 1981) 307-316.

[Cook 84] Cook, Robert 1., Porter, Thomas, Carpenter,
Loren Distributed Ray Tracing Computer Graphics 18,3
(July 1984) 137-145.

[Dippe 85] Dippe, Mark A. and Wold, Erling Henry An
tialiasing Through Stochastic Sampling Computer Graph
ics 19,3 (July 1985) 69-78.

[Foley 82] Foley, James D. and Van Dam, Andries Fun
damentals of Interactive Computer Graphics Addison
Wesley, Reading, Mass. 1982

[Fujimoto 86] Fujimoto, Akira, Tanaka, Takyuki, Iwata,
Kansei ARTS: Accelerated Ray Tracing System IEEE
Computer Graphics and Applications 6,4 (April 1986) 16-
26.

[Glassner 84] Glassner, Andrew S. Space Subdivision for
Fast Ray Tracing IEEE Computer Graphics and Appli-

" cations 4,10 (October 1984) 15-22.

[Goldstein 71] Goldstein, Robert A. and Nagel, Roger 3-D
Visual Simulation Simulation 16 (January 1971) 25-31.

[Hall 84] Hall, Roy A. A Testbed for Realistic Image Syn
thesis IEEE Computer Graphics and Applications 3,8
(November 1983) 10-20.

[Kajiya 83] Kajiya, James T. New Techniques for Ray Trac-
ing Procedurally Defined Objects Computer Graphics
17,3 (July 1983) 91-102.

[Kay 86] Kay, Timothy L. and Kajiya, James T. Ray Trac
ing Complex Scenes Computer Graphics 20,4 (July 1986)
269-278.

[Lee 85] Lee, Mark E., Redner, Richard A., Uselton,
Samuel P. Statistically Optimized Sampling for Dis
tributed Ray Tracing Computer Graphics 19,3 (July 1985)
61-67.

[Newman 73] Newman, William M. and Sproul, Robert F.
Principles Of Interactive Computer Graphics McGraw
Hill, New York 1973

[Peachey 85] Peachey, Darwyn R. Solid Texturing of Com
plex Surfaces Computer Graphics 19,3 (July 1985) 279-
286.

[Perlin 85] Perlin, Ken An Image Synthesizer Computer
Graphics 19,3 (July 1985) 287-296.

[Roth 82] Roth, Scott D. Ray Casting for Modeling Solids
Computer Graphics and Image Processing 18 (1982), 109-
144.

[Rubin 80] Rubin, Steven M. and Whitted, Turner A 3-
Dimensional Representation for Fast Rendering of Com
plex Scenes Computer Graphics 14,3 (June 1980) 110-116.

[Whitted 80] Whitted, Turner An Improved Illumination
Model for Shaded Display Communications of the A CM
23,6 (June 1980) 343-349.

The Author

Roman Kuchkuda is a graduate student in Computer Science
at the University of North Carolina at Chapel Hill. He is on
fellowship from Megatek Corp, where he is a software engi- ·
neer in CAD systems development. He previously worked
at Evans & Sutherland on flight simulator software. His re
search interest is graphics software for image synthesis and
animation. Current projects involve procedural and real 3D
textures. He received a BS in Computer Science from Rens
selaer Polytechnic Institute in 1982. He is a member of IEEE
and ACM SIGGRAPH.

22

:

APPENDIX 1: RUNCODE OUTPUT

The pixel output routine presented earlier is very simple and
general. It stores R, G, and B values for every pixel. Often in
ray traced images many adjacent pixels are the same color.

A method which takes advantage of this is run-length en
coding. Strings of pixels which have the same color are only
written once. The image file is written line by line, as in pixel
output. Each line is composed of runcodes. Each runcode
consists of r, g, b and length, with length being the number
of successive pixels of this color.

Buffering is also used in the runcode output routine to
reduce the number of output operations performed.

The interface to the ray tracer is the same as pixel out
put. To get runcode output you simply link with the file
"outputr.o" instead of with "outputp.o".

I*** outputr.c ***I
I* runcode output routines *I
#include <stdio.h>
#include <math.h>
#include "constants.h"
#include "typedefs.h"
#include "funcdefs.h"

#define MAGIC Ox22873
#define MAXBUF 1024

I* TYPES FOR RUNCODE OUTPUT *I
typedef struct {

unsigned char count;
unsigned char red;
unsigned char green;
unsigned char blue;

} CODE;

typedef struct {
int size;
int magic;

} HEADER;

I* STATIC VARIABLES *I
CODE codebuf [MAXBUF];
CODE *code;
int ~rrote;
int width;
int outfile;
int full;

int startpic(fname,y,x)
char *fname;
int y,x;
{

HEADER header;

}

CODE *getcode();
width = x;
full = 0;
wrote = 0;

outfile = creat(fname, 0666);
if (outfile == -1)
{ fprintf(stderr, "ERROR CREATING RUNCODE FILE\n");

exit(1);
}

header.magic = MAGIC;
header.size = width;
write(outfile, lheader, sizeof(header));
code= getcode();

int linepic(pixels)

23

double pixels[SCREENWIDTH][3];
{

}

CODE *getcode();
int j,length;
int r,g,b;
int or,og,ob;

or= gammacorrect(pixels[O][O]);
og = gammacorrect(pixels[0][1]);
ob = gammacorrect(pixels[0][2]);
length = 0;
for (j=1; j<width; j++)
{ r = gammacorrect(pixels[j][O]);

g = gammacorrect(pixels[j][1]);
b = gammacorrect(pixels[j][2]);
if ((r == or) ll (g == og) ll (b

}

(length < 255)) length++;
else
{ code->red or;

}

code->green og;
code->blue ob;
code->count length;
code= getcode();
length = 0;
or r;

og g;
ob b;

code->red = or;
code->green = og;
code->blue = ob;
code->count = length;
code= getcode();

ob) ll

:

int endpic()
{

}

flushrO;
close(outfile);
printf("\nEND runcodes 'l.d\n",vrote);

• CODE •getcode()
{

•

}

if (full == MAXBUF)
{ flushr();

full = 0;
}

return (tcodebuf[full++]);

int flushr()
{

}

if (write (outfile, codebuf, full•sizeof(CODE))
< full•sizeof(CODE))

{ fprintf (stderr, "BAD WRITE\n"); exit (1); }
wrote += full;

int gammacorrect(intensity)
double intensity;

{

}

int ival;
double dval;

I• scale to 0 - 1 range •I
dval = intensityl255.0;
if (dval > 1.0) dval = 1.0;
if (dval < 0.0001) dval = 0.0001;

I• do gamma correction •I
dval = exp(log(dval) I GAMMA);

I• convert to integer, range 0-255 •I
dval •= 255.0;
ival = (int) (dval + 0 . 5);
return(ival);

24

