
An Interpreter for EqL

TRBi-037

August, 1987

Gopal Gupta

The Un1versity of North Carolina at Chapel Hill
Department of Computer Science
S itterson Hall, 083A
Chapel Hil l, NC 27599-3175

' ' 7. ., , l~ ~ ..

LINC is <111 8qual Opportuuily/ ,\ Hlrmat1ve Action TJJ.stiLution.

An Interpreter for EqL

by

Gopal Gupta

A thesis submitted to the faculty of the University of North Carolina at

Chapel Hill in partial fulfillment of the requirements

for the degree of Master of Science in the

Department of Computer Science.

Chapel Hill

Aug, 1987

Approved by:

(;\
/ I
' ~~ I 1/; -......--1 ..

Reader

I . , ..
J .,~ •• - ... -*/. ... ;
. --
'l

I

@1987

Gopal Gupta

ALL RIGHTS RESERVED

GO PAL GUPTA: An Interpreter for EqLt (Under the direction ofDr. BHARAT

JAYARAMAN.)

Abstract

EqL is a general-purpose language that combines the capabilities of functional

and logic programming languages. A program in EqL consists of a collection of

conditional, pattern-directed rules, where the conditions are expressed as a con

junction of eq11ations, and the patterns are terms built up of data-constructors and

basic values. The computational paradigm in EqL is equation solving. In this paper,

we describe EqL informally, giving examples illustrating the various features of the

language: nondetcrminism, logical variables, deferred evaluation of primHives, and

user-defined constructors. We also describe the novel aspects of a sequential inter

preter for EqL: compile-time flattening and re-ordering of equations; and run-time

equation-delaying, last-equation optimi~ation, and rule-indexing.

t The research has been supported by grant DCR-8603609 from the National Science Foundation.

To Deepa

Acknowledgements

First of all I would like to thank my advisor, Dr. Bharat Jayaraman, for his

constant guidance and help throughout my work. He enthusiastically programmed

in EqL and helped pinpoint the bugs in the interpreter. Most of the programs

presented in this thesis have been written by him. This project could not have been

completed without his help.

I would like to express my gratitude t.o t he other members of my M.S. thesis

committee, Dr. David Plaisted and Dr. J. Dean Brock, for consenting to be in the

committee and for their comments.

I would also like to thank members of the SoftLab group, Sundar Varadara

jan, Vikram Biyani and Alex Nelson for providing the expert he lp on Unix and C

whenever I needed it.

I would also like to thank the Sun Corporation for their wonderful window

environment and for dbxtool which made debugging C programs so easy and fun.

Thanks are also due to my parents, brothers, sisters, and friends for their help

and encouragement all along.

Lastly, I would like to thank Mr. Ashok Kumar Singh, one of the greatest

teachers I have known, for his encouragement and inspiration during my high school

years.

Table of Contents
Chapter I. Introduction .. 1

Chapter ll. EqL: Language Features 3

ILl. Data 0 bjects • , 3

11.2. Rules • 4

Chapter ill. The EqL Interpreter 10

m.1. Interacting with the Interpreter 10

ID.2. Consulting Files .. 11

m.3. Obtaining Multiple Solutions ... 13

ITI.4. Errors and Debugging 14

III.S. Miscellaneous features • ... •.. • 17

Chapter IV. Programming in EqL 19

IV.!. Nondetermlnism 19

IV.J.I. Famlly Database 19

IV.l.l.l. The use of <· • 20

TV.l.2. N Queens Problem 21

TV.2. Delayed Evaluation of Primitives 22

TV.2.1. Simulating Sets with Lists .. 22

TV.2.2. Arithmetic primitives 24

TV.3. Logical Variables 25

IV.3.1. Difference Lists 25

IV .4. Higher-order operations • • 26

TV.S Strings and User-defined Structures 27

IV.6. Input/Output 27

IV.7. Programmlng Hints • 29

Chapter V. Implementation of EqL 30

V.l. The Compilation Phase ... 30

V.l.l. Flattening .. 30

V.1.2. Equation Re-ordering 31

V.l.3. Compiling if-then-else 32

V.1.4. Int ermediate Code Structure•.. 33

Chapter VI. The Interpretation Phase 35

VI. L. Overview 35

VI.Z. Equation Solution • 36

Vl.2.1. Solution of term 1 = term2 36

VI.2.l.2. Structure Sharing : Constructors and Strings 37

VI.2.2. Solution of term= f (e1 , •.• , e,.) 37

VI.2.2.1. Control Stack •. 39

VI.2.2.2. The Variable Stack 40

VI.2.2.3. Control Algorithm : Overview 40

VI.2.3. Solution of term = if-than-else 43

VI.2.4. Solution of term = primitive •............. • 44

VI.2.4.1. Equation Delaying• 45

VI.2.4.2. Solving Arithmetic Equations 45

VI.2.5. Solution of term E expression45

VI.2.6. Solution of term= read(lilespec} 46

VI.3. Optimizations •. 47

V1.3.1. Last Equation Optimization 47

VI.3.2. Rule-indexing • 48

VI.3.3. Runtime Equation Re-ordering 49

VI.3.4. Performance analysis 00 00 ••••• 00 •• 50

Chapter VII. Conclusions ... 52

References • 54

Chapter I. Introduction

The integration of functional and logic languages ha.s received considerable interest

recently, and a number of different approaches have been proposed jRS82, 083,

F84, GM84, DP85, YS86J. EqL represents one such approach, unifying first-order

functional and Rom-logic programming through the paradigm of equational pro

gramming [JS86, JSG86). An EqL program is a collection of conditional rewrite

rules, where the conditions are expressed as a set of equations, and the top-level

goal to be solved is also a set of equations. It has been shown that this framework has

the capabi lities of first-order functional and Horn logic programming [J87, J SG86,

JS86), with the following properties:

• pattern-directed rules;

• functional, rather than relational, notation;

• declarative semantics based on complete set of solutions IJ87J;

• operational semantics based on object refinement [J87J;

• potential for parallel execution [JG86J.

The computational paradigm underlying EqL is equation solution. This para

digm subsumes expression evaluation in a functional language because an expression

e to be evaluated is simply viewed a.s an equation 11 = e, where 11 is some distinct

variable. It also subsumes goal solution in logic languages because a goal g to be

solved can also be viewed a.s an equation, namely, g = true.

In this thes is we illustrate EqL with examples drawn from the literature in func

tional and logic programming. We also describe the salient features of a sequential

implementation of EqL, written in C. For the sake of efficiency, this sequential im

plementation searches for solutions depth-first with backtracking, similar to Prolog

implementations jWPP77, H84j. Although depth-first search docs sacrifice com

pleteness in theory, we have not found this to be a serious limitat ion in practice.

1

Ultimately performance for such a language must be realized through parallelism

which would also facilitate a complete implementation. Because sequential machines

are still in widespread use, we feel it is worthwhile investigating efficient sequential

implementations. The current implementation has two phases:

1. compilation, in which the source code is transformed by flattening and

reordering equations, in accordance with their semantics; and

2. interpretation, in which equations are solved using a seven-stack execution

model.

The rest of this document is organized as follows: chapter U describes the data

objects of EqL and the informal meaning of EqL rules. Chapter III describes the

user interface of the EqL interpreter and its various features. Chapter IV presents

examples of EqL programs for functional and logic programming, illustrating non

determinism, logical variables, and deferred evaluation of primitives. Chapters V

and VJ describe the implementation of the EqL interpreter. Chapter VII presents

summary and conclusions.

Chapters II through IV can be used as a manual for the interpreter. Our

convention throughout this document is to use type-writer font, e.g. cons, for EqL

program text and italics, e.g. equation, for syntactic categories.

2

Chapter II. EqL: Language Features

In this chapter we describe the data objects in EqL and the informal meaning of

rules.

II.l. Data Objects

The data objects in EqL are defined below:

(i) Numbers: The current implementation of EqL provides only integers, e.g. 10.

- 3999, etc.

(ii) Boolec.ns: true, false.

(iii) Atoms: Any identifier beginning with an upper-case letter or any sequence of

characters enclosed within single quotes, e.g. Apple. • a lso an a tom', etc.

(iv) Variables: Normally begin with a lower-case letter, e.g. x. tree. q1. etc.

"Anonymous" variables begin with the underscore symbol, and serve as place

holders in data structures, e.g. cons (h. .dontcare). The underscore symbol

by itself is also an anonymous variable.

(v) Structures: In the current implementation of EqL, there are two built-in struc

tured data objects: trees and strings. User-defined structures may be specified

using the constructor declaration, explained later. We explain trees and

st rings below.

As in LISP, the built-in constructor cons (x. y) defines a binary tree. Examples:

cons(lO. 20),

cons(lO. cons(20.30)).

cons(cons(a,lO), cons(B . 20))

In the third example, note that a is a variable, bu t B is a atom.

Because list-processing is a common application of functional and logic lan

guages, EqL provides a special notation for lists. Similar to lists in LISP and

3

PROLOG, EqL lists are a special case of trees; they correspond to trees which

"slope to the right" and end with the special symbol []. The following examples

illustrate the connection between lists and trees:

List Notation

[1.2,3]

[[[1]]]

[]

Tree Notation

cons(1,cons(2,cons (3,[])))

cons(cons(cons(1, []), []), [])

[]

Similar to PROLOG, the notation

[X I y J

is used to stand for cons (x, y).

String constants are defined by a sequence of characters enclosed within a pair

of double-quotes, e.g. "abc", "123", "longer string", etc. The empty string is

'"' Analogous to the above notation for lists, we use

(X : y)

to refer to the string obtained by prepending the one-character atom denoted by

variable x in front of string denoted by y. For example, [• a •

"abc" , and ['a':""] isthestring"a".

"be"] is the string

We use the word term to refer to any data object of EqL that is built up from

the above entities. We sometimes use the word structured term to refer to a term

that has a constructor at the outermost level.

II.2. Rules

We illustrate program rules through examples. Below is a program to find the

maximum depth of a binary tree of integers.

depth(x) => 0 where numberp(x) = true

depth([left l right]) => if dl > dr then dl+1 else dr+1

where

4

dl = depth(left);

dr 2 depth(right).

Program ILl: Maximum depth of a binary tree

The above program has two rules, which define the two cases for the depth function:

the case for a leaf (an integer), and the case for a nonleaf (a tree built up from cons) .

In general, an EqL rule may take one of two forms:

1. f(patterns) => expression.

2. !{patterns) • > expression where equations.

We explain each component of a rule below:

(i) Patterns. The word pattern is a synonym for term, which was defined in the

previous section. Two or more patterns in a sequence are separated by commas,

e.g.,

f([xl I y1), [x2 : y2) , z) => ...

Zero-argument operations are permitted, and are defined by

f{) => ...

(ii) Expressions. All expressions are evaluated in "applicative order," that is,

leftmost-innermost expression first. The different kinds of primitives in the

current implementation are listed below:

a. Terms: atoms, num bers, booleans, variables and structures.

b. Arithmetic: +, -, *. I. di v, mod, and unary -. The operators + and -

have lower precedence than • and I, which in turn have lower precedence t han

di v and mod. Unary - has the highest precedence. The operators I and di v

both return the integer quotient. All binary operators are left associative. The

function abs (x) returns the absolute value of x.

c. Relatiorwl: <, >, <=, and >=. The equality symbol = is reserved for defin

ing equations. The function eq(x,y) maps identical atoms, numbers, and

booleans to true; otherwise it returns false. The functions lessp(x, y),

grea terp(x, y), lesseq (x. y), and greatereq(x, y) are identical to <, >,

<•, and >= respectively.

d. Boolean: and . or and not. The operator not has precedence over and,

which has precedence over or. The following domain predicates are provided

in the language.

numberp(x) true if x is a number; false otherwise.

boolean(x) true if x is a boolean; false otherwise.

atom(x) true if xis an atom; false otherwise.

var(x) true if xis an unbound variable; false otherwise.

listp(x) true if x is a list; false otherwise.

null(x) : eq(x,(]).

e. If then else:

if boolean-expr then expd else t:tprt

returns expr1 if boolean-expr reduces to true, and exprf! if boolean-expr reduces

to false. Both the then- and the else-part may have equations associated with

them. Thus, for example,

(exprl where equations)

may be used in place of expr 1 above. We explain equations further below.

f. Application:

f (arguments)

where f is the name of some built-in or user-defined function, or a variable

that is bound to such a function, and arguments is a sequence of zero or more

expressions separated by commas.

g. Input:

read(filespec)

returns the next EqL data item in the file specified by filespec. The read

operation is discussed in detail in Chapter IV.

h. Output:

wri te(filespec, e1 , ••• , e,.)

evaluates e1 through e,. and writes their values in the file specified by filespec.

It returns the value of e,., the last argument. The write operation is discussed

in detail in Chapter IV.

6

{iii) Equations. An equation is of the form

expression1 = expression2.

However, for the purpose of explaining how equations are solved, we assume that

an equation is of the form:

term = expression or expression = term.

Although permitted by our implementation, an equation expression1 = expression2

offers no extra power since it is equivalent to the pair of equations: v= expression 1;

v = expression2 , where v is a distinct variable. Actually, it suffices to permit

equations of the form v = expression, but permitting a term in place of variable v

often leads to fewer intermediate variables in the source program, and hence clearer

definitions.

Two or more equations in a sequence are separated by semi-colons. Because

the interpreter is sequential, it solves equations in the sequence presented. There

are two notable exceptions:

(1) An equation composed of terms, i.e., without any primitive or

user-defined operations, would be solved prior to other types of equations.

This re-ordering will not affect the correctness of the program's answer,

and can help in avoiding unnecessary nontermination.

(2) An equation involving one of the primitive operators, such as x =
y + z or atom(x) = false, would be defened until sufficient information

becomes available to solve the equation. This delaying is discussed in

greater detail in section IV.2.

In the equation-solving rules described informally below, we refer to expressions

being 'evaluated', but the reader should note that an expression e is evaluated by

solving an equation v = e. We asswne henceforth that an equation is of the form

term = expression; the symmetric case is treated similarly. There are six cases for

an equation, corresponding to the six forms of an expression:

l. term 1 = term2. This is solved by syntactic unification. The equation is unsat

isfiable if unification fails, and initiates backtracking.

7

2. term = f(e 1 , •.• , en}, where each e; is an expression, and f is a user-defined

operation, whose first rule is

I(t 1, ••• , t,) => expression where equations.

The equation reduces to the following sequence of equations, where each v; is

a distinct variable:

... ' equations; te rm =

expresston.

That is, the expressions et ... en are first evaluated and their results then

unified with t 1 ... tn respectively; the eqU<Jlions in the body of f are then

solved; and finally, the expression in the body off is evaluated and unified with

term. If at any stage unification fails, backtracking occurs to the dynamically

most recent operation having an untried rule. Note that the evaluation order is

essentially call-by-value. Also, the implementation ensures that each e; is not

re-evaluated when an alternate rule for f is attempted upon backtracking.

3. term = if p then e1 else e2 • If expression p evaluates to a boolean, the

equation term = e 1 or term = ez is solved. lf p evaluates to an unbound

variable, say x, two nondeterministic paths arise: (1) the equation term = e1

is to be solved, where x +- true; and (2) the equation term = e2 is to be

solved, where x +- false. These two paths are tried out sequentially, with

backtracking. Note that if e1 or ez were accompanied by equations, these

equations would be solved before solving term = e1 or term= e2 •

4. term = primitive. Here primitive stands for an expression with an arithmetic,

relational or boolean operator at the top-level. The arguments of the primitive

operator are first evaluated. If they are fully instantiated, the operator is

applied to the arguments to produce a result, which is then unified with term.

Otherwise, the equation is deferred, or delayed, until all unbound variables are

fully defined.

5. term = read(filespec). The next EqL term is read from the file filespec and

unified with the left hand s ide term. The equation is unsatisfiable if unification

fails, and initiates backtracking.

8

6. term = write(filespec, e1 , ••• , e,.). This equation is equivalent to the following

sequence of equations:

v1 = e1 ; .•• ;v,. =e.,; term= write(filespec, v1 , ... ,v.,).

The value returned by write is that of u,.. This value is unified with term. The

equation is unsatisfiable if unification fails, and initiates backtracking.

Finally, in any place where an equation might appear, EqL permits a membership

assertion of the form:

term E expression

The above membership is satisfiable if term is unifiable with some object in the set of

objects that expression evaluates to. The remaining objects, if any, arc immediately

discarded from further consideration, analogous to the "cut" in Prolog. We explain

E in greater detai l in section IV.l.l.l.

9

Chapter III. The EqL Interpreter

In this chapter we describe the user interface of the interpreter, and the various

capabilities provided, such as consulting files, tracing execution, etc. The interpreter

is interactive: it reads the user queries, solves them, and prints results back.

Ill.l. Interacting with the Interpreter

The top-level query of an EqL program is either an expression or an equation or a

set of equations, terminated by a period. A top-level expression e is actually treated

internally as an equation, _ = e, where _ is the anonymous variable.

A typical session in EqL is a "conversation" between the user and the inter

preter. The interpreter is first invoked by the command

X eql

where we assume)\ is the Unix command-level prompt. The interpreter would

respond as follows:

EqL Version 1.0

eql>

For example, the response to a query

eql> 2+4.

would be

6

eql>

To exit EqL, type CTRL-d when the above prompt appears. The interpreter will

respond with

[EqL execution halted]

10

ill.2 Consulting Files

Often, a set of EqL rules are kept in a file, which can be read in by a consult oper

ation (as in C-Prolog). For example, if depth is the name of a Unix file containing

the two rules for the depth function, it can be read in as follows.

eql> consult('depth ').

EqL will respond with

true

eql>

Now, the depth function can be invoked on some input tree, e.g., [10 I [20 I [30

40]]), as follows:

eql> depth([lO I [20 I [30 I 40])]).

The interpreter would respond with

3

eql>

The consult operation can be used in any EqL rule, and will have the effect of

reading in the rules contained in the file specified as the argument of consult. The

consult returns true if the specified file is found, otherwise it returns false. ~ote

that the rules from the specified file are read in only after the query evaluation is

over and not at the time of the evaluation of the consult in the query. Note that

consult augments the set of rules currently known to the interpreter; it does not

replace any rule. Replacement of existing rules can be accomplished through the

operation reconsult, described below.

Suppose that, after the file depth has been read in, the function depth is to be

modified, say, to accept both atoms and numbers at the leaf of a tree. This could

be achieved as follows: Use CTRL-z to suspend the interpreter; then edit the file

depth so that the first rule reads as follows:

depth(x) => 0 where numberp(x) or atom(x) = true.

Re-enter the interpreter using the Unix foreground command, and re-consult the

changed fi le by typing:

11

eql> reconsult('depth').

The new rules in the file depth will replace the old rules, and the interpreter will

respond with:

true

eql>

In general, rules read in by re-consulting a file would replace all existing rules that

define the same operations as those defined in the rules read in.

The user can input rules directly, without suspending the interpreter, by exe

cuting:

eql> consult('tty').

After receiving the prompt,

true

the user can type in one or more rules. The end of the input is specified with a

period on a new line. This mode of supplying rules is sometimes convenient when

the rules are short.

The interpreter may also be initially invoked by specifying any number of input

files in the command line, e.g.

X eql -f file1 file2 file3

A query may be included in a file by preceding it with a?. Queries may be

placed at the beginning of a file, between rules, or at the end of a file.

Before we proceed further, we note again that the top-level query can, in gen

eral, be an equation or a sequence of equations. For example, the following goal is

equivalent to depth([10 I [20 I [30 I 40]]]) :

eql> x = depth([10 I [20 I [30 I 40]] J).

The interpreter's response to this goal would be:

X = 3

eql>

12

Actually, the top-level query depth([10 I [20 I (30 I 40))]) would in fact. be

internally converted into an equation, _ = depth((10 I [20 I [30 I 40)])).

If the EqL interpreter finds that it cannot solve the top-level query, it would respond

with the message,

no solution

This might happen, for example, when the top-level query is:

eql> depth([]).

because [] is not an atom. To account for this case, an explicit rule,

depth((]) => 0 .

can be provided.

ill.3. Obtaining Multiple Solutions

Consider the following definition for the familiar append function of LISP, for non

destructively concatenating two lists:

append ((] . x) => x.

append([hlt). y) => [h I append(t,y)).

Program DI.l: List append

For example, the result of the query

eql> append([1, 2). (3, 4]) .

would be the list

(1. 2. 3, 4].

It is just as easy to find out the lists x and y such that when appended together

will yield the list [1. 2. 3. 4). This query can be expressed as follows:

eql> append(x.y) = (1.2,3.4).

The interpreter will respond with:

X = [)
y = [1, 2. 3, 4)

13

Upon typing a semi-colon at the end of the second line above, the interpreter will

respond with the second solution:

X = [1)

y = [2. 3. 4]

Typing a carriage return instead of a semi-colon will cause the interpreter to discard

remaining solut ions and return with the

eql>

prompt. All five solutions to the above query can be inspected by typing a semi

colon at the end of each preceding solution.

In general, when a semi-colon is typed and there are no further solutions, the

interpreter will respond with the message:

no solution

eql>

The interpreter for EqL, like a PROLOG interpreter, explores alternative solutions

to a query by dep th-first search with backtracking.

ID.4. Errors and Debugging

The EqL in terpreter detects errors arising in different stages of the interpretation

process. The parser detects all syntactic and lexical errors. A few runtime errors,

such as divide by zero, undefined operation, etc. are also detected. Debugging facili

ties have been built into the interpreter to help detect other sources of programming

error.

The EqL parser reports the line numbers on which errors occurred and the

token on the line near which the error occurred. No further analysis of the error is

made. Usual causes of errors are: unmatched parentheses and brackets; omitting

important punctuation, such as commas and semicolons; and using a reserved word

as a variable name. The reserved words are as follows:

true, false, abs, div, mod, and, or, not , if, then, else, where, read, write,

readb,writeb,line, list,cbar, int, consult, reconsult, trace, constructor,

14

cons, car, cdr, eq,atom,numberp,listp,var,boolean,greaterp,lessp,lesseq,

greatereq, cputime, timer, save, nul l .

The keyword save, for saving the execution state, has not yet been implemented.

One of the most co=on sources of run-time error, during initial program

development, is the invocation of an undefined operation, or an operation with

incorrect number of arguments. The interpreter will fail whe.n this happens, and

backtrack as usual, but will print out a message indicating that it did not find the

desired operation.

Errors in logic can often be detected using the trace feature. Two forms of

tracing are available: non-selective tracing, and selective tracing. The former is

specified by

eql> trace .

which prints out a trace of every call of every function . To turn off the trace, the

same command is issued. To selectively trace a function foo, type

eql> trace('foo').

and to tum off the tracing of foo, repeat the above command.

Because the interpreter performs last-equation optimiwtion, which is a gener

alization of tail-recursion optimization, exit information for an operation may not

always be printed out. We illustrate the trace feature for the following program,

which computes (naively) the reverse of a list:

rev([]) •> [].

rev([hit]):> app(rev(t) , [h)).

Program ITI.2: Naive reverse

Suppose the top-level query were:

eql> rev([1, 2 , 3)).

The trace would be as follows:

trying rev at frame 0 wi th

trying rev at fra:ne 1 with

trying rev at frame 2 with

[1. 2, 3]

[2, 3)

[3]

15

trying rev at frame 3 with []

Exiting frame 3

trying app a t frame 2 with [] [3]

E..."<i ting frame 2

t r ying app at frame 1 with [3] [2]

trying app at frame 1 with [J [2]

Exiting frame 1

trying app at frame 0 with [3. 2] [1]

trying app at frame 0 with [2] [1]

trying app a t frame 0 with [J [1]

[3. 2. 1]

eql>

Notice that all invocations of the append operation (see program III.l) are

performed on the same frame, and hence no exit information for these operaLions

is printed. Also, because of rule-indexing, unproductive choice poi nts are discarded

based on the arguments to rev and app (rule-indexing is explained in section V1.3.2).

A trace feature showing a fuller account of the execution has not been ins talled in

this version of the interpreter. The above information, nevertheless, is of much use

in identifying errors in the program.

The current version of the interpreter does not have a garbage collector. As

a result if the interpreter runs out of space an error message is printed, slating

that a stack overflow occurred, and the interpreter returns to the top level. Tn

such a situation the user should reinvoke the interpreter with more space, using the

command line options.

Errors in the interpreter would result in one of the following types of messages:

panic

Bus error:

Segmentation violation:

The latter message is also produced when attempting to unify two infinite objects

or printing out an infinite object.

16

m.s. Miscellaneous features

Timing:

The current time, in microseconds, is obtained from the variable cputi:ne. To

time the execution of a goal, such as rev([l.2,3 .4.5,6,7,8,9.10] }, one may

write the following query:

eql> before • cputi:ne;

answers rev([1 .2,3,4,5,6,7,8,9,10]) ;

time • cputime - before.

The response, on a Sun-2, might be something like:

bef ore = 2516666

answer= (10, 9, 8 , 7, 6 , 5. 4 . 3, 2, 1]

time = 150000

indicating tha t the run-time for the rev(...) goal was approximately .15 Sun-2

seconds.

The automatic timing of goals can be requested by the command

eql> timer.

which gives the cpu-time for all successive top-level queries, until turned off expHc

itly by the same command.

Interrupt:

The execution of any goal can be interrupted while in progress. The interpreter

will trap the interrupt and respond as follows:

What now? (type h f or help):

Upon typing h, the response would be:

type a for abort

type c for continue

type t for trace

t ype u for untrace

type r for reset

17

type e for erase constructors

What now? (type h for help):

Typing a causes the current query to be aborted; c continues execution; t starts

tracing; u stop tracing; r causes all rules to be discarded; and e causes all constructor

declarations to be wiped out.

Interpreter options

As mentioned in section n1.2, the EqL interpreter may be invoked on any

number of input files using the -f option. The other options allow the user to

specify the si:~:es for various internal run-time data-structures except the equotion

trail stock which is implemented as a part of the troil stack. The general form of

the Unix command line is

~ eql [- c control-stock-size]

[- e equation-delay-stack-size I
I -f file-names I
I -h static-area-size I
I -r reod-stack-size I
I - t trail-stack I
I - v variable-stack-size I
[-w write-stack-size I

The control-stack holds the control information for each invocation of a user-defined

operation; the space for variables is allocated separately in a variable-stack. Except

for numbers and booleans, each entry in t he variable-stack is a pointer. For struc

tured objects, this pointer points to a molecule-heap. As in Prolog implementations,

the trail-stack is used lo record variables whose binding must be undone upon back

tracking. The read-stack and write-stack are used to implement backtrackable read

and write operations respectively. The equation-delay-stack is used to implement

delayed execution of equations. The default allocations, measured in terms of stack

entries, for each of the above data structures are: 75000 (-c), 10000 (-e), 75000

(-h), 10000 (-r), 75000 (- t), 150000 (-v), and 10000 (-w).

18

Chapter IV. Programming m EqL

We now illustrate through examples the various features of EqL: non-determinism,

delayed evaluation of primitives, logical variables, and higlter orde.r operations.

!V.I. Nondeterminism

We already saw in the previous chapter that multiple solutions may exist for an

equation. We illustrate nondeterminism in EqL further through two examples: the

family database, and the N Queens problem.

IV.!.!. Family Database

Shown below are four operations: f (x), which returns the father of some person

x; m(x), which returns the mother of x; p(x), which returns the parent of x; and

gp(x), which returns the grand-parent of x.

f (Bob) => Gary.

m(Bob) => ~lary.

f(Ann) => Gary.

m(Ann) => Mary.

f(Gary) => Joe.

m(Gary) => Jane.

f(Mary) => Steve.

m(Mary) => Sue.

p(x) => f(x) .

p(x) => m(x).

gp(x) => p(p(x)).

Program IV.l: Family Relationships

19

The operation p(x) is nondeterministic because there are two rules for operation p.

This reflects the fact that a person in tills database has more than one parent-two

to be precise. Because gp(x) is defined in terms of p(x), it is easy to see that gp(x)

is also nondeterministic. The grand-parent of some person, say Bob, could be found

by:

eql> gp(Bob).

The first answer produced by the interpreter would be Joe, because p(Bob) would

first return Gary, and p(Gary) would first return Joe. Upon requesting the next

answer (by typing semi-colon), the interpreter would backtrack to the latest point

where another choice is possible. Thus p(Gary) is recomputed, via m(x), to be

Jane, which becomes the next answer to the top-level query. The other answers,

Steve and Sue, arc determined similarly.

The grand-children of some person, say Joe, could be found with query such as:

eql> gp(x) = Joe.

IV.l.l.l. The use of<-

Suppose that we wanted to find the siblings of some person. Let us assume that

two people are siblings if they have the same parents, and it suffices to check that

they have one parent in common. We might initially try the following rule:

sib(x) •> y where p(x) • p(y); eq(x,y) = false.

With tills definition of sibling, the response to a goal,

eql> ai b(Bob).

would first be Ann. Upon requesting another solution, we would once again receive

Ann as the answer. The reason for this behavior is that the same answer, Ann, is

discovered in two ways, first via the father of Bob, and again via the mother of Bob.

We can avoid this behavior by select ing one parent of x, and then making sure that

tills parent is the same as that for y. In order to select an element from a set, t he

element-of construct,<- , can be used. The desired sibling definition is as follows:

sib(x) => y where z <- p(x);

z • p(y); eq(x,y) ~false.

20

Whenever the element-of construct is used to discard alternative solutions,

the user should be aware that the "hi-directionality" of the operation using this

construct could be affected. For example, a goal such as

eql> s ib(x) = y.

will not enumerate all possible sibling pairs; rather, it will produce at most one

answer, depending upon whether the first parent found in the database had two

children or not. In our example, the response to the above query will be

X = Bob

y = Ann

Upon typing a semi-colon, t he interpreter would respond

no solution

eql>

indicating thereby that there are no further solutions.

IV.1.2. N Queens Problem

We now present a more complex example of nondeterministic programming. The

problem is to place N queens on an N by N chess board in such a way that no two

queens are attacking one another. A simple approach to this problem is to place

queens on successive columns so that each new queen placed is not attacked by any

queen in the preceding columns. If a queen cannot be placed on a. given column,

we go back to the preceding column to see if the queen there has another "safe"

position. If there are no safe positions remaining on that column, we back up to

the preceding column, and so on. A solution is found if we can thus place queens

on all N columns. We have exhausted all solutions if we attempt to go back from

the first column to the 0-th column.

Below is an EqL program for specifying the desired search:

queens(n) =>solve (1 . [] . n).

solve(col. safelist. n) => if eq(col,n+1) then safelist

else place ([col 1 row(n)], safelist, n).

place(q, safelist, n) => solve (col+l , (ql safelist] , n)

where q = (collrow];

21

safe(safelist, q) = true.

safe([) ,q) => true.

safe([ql I t). q) => safe(t,q) where threatened(q . ql) • false.

threatened([c1lr1]. [c2lr2]) => eq(r1,r2) or eq(abs(r1-r2), abs(c1-c2)).

row(n) => n

row(n) => row(n-1)

where n>O = true.

where n>O = true.

Program IV.2 : N Queens Problem

The nondeterminism in the above program lies in the operation row(n), which

generates the sequence of integers n, n-1, ... , 1, one at a time. Thls provides a way

for stepping through the rows in any particular column.

IV.2 . D elayed Evaluation of Primitives

An interesting aspect of the execution of an EqL program is the way primitive oper

ators are handled. Basically, when a primitive operation, such as +. atom(x) , >,

etc., has all of its arguments defined, it is simplified to produce a result. However,

when its arguments are not sufficiently defined when first encountered, it will be de

ferred until sufficient information is available to simplify it. This delayed evaluation

has many uses, a.s we will illustrate in this and subsequent sections.

IV.2.1. Simulating Sets with Lists

The following rules define the familiar LISP operation member, which tests if an

element:< is a member of a list.

member([] , x) => false.

member([xlt] ,x) => true.

member([ylt] .x) => member(t,x) where eq(x,y) =false.

Program IV.3 : List Membership

It is easy 1.0 see that member will correctly check if an element, say 3, is a

member of some list, say, [1, 2. 3. 4. 5]. Member could just a.s easily be used to

enumerate the elements of a. list, using a goal such as

eql> member([1.2.3,4,6). z) =true.

22

which would return 1. 2. 3. 4. and 5 as the value for z, one at a time. What

would happen if the goal

eql> member([1,2,3.4,5]. z) =false.

were presented to the interpreter? The first rule of member fails because [] does

not match [1. 2. 3. 4, 5]. The second rule initially succeeds in unifying the goal

arguments with its patterns, but its result, true, fails to match false in the top

level query. Thus the third rule of member is taken.

When the operation eq (x. y) is encountered, y is bound to 1 but x is unbound.

The EqL interpreter therefore defers this equation (by moving it to a global stack

of such deferred equations), and proceeds with the recursive call on member. Each

succeeding call on member results in one new deferred equation, eq (z. 2) = false,

eq (z. 3) = false , etc. Finally, the first argument to member is [], and rule 1

succeeds, and all equations are solved, except for the deferred equations. Because

z is still unbound, the EqL interpreter responds as follows:

Input equations not ful l y constrained

z = _16

eql>

The binding of z to a number preceded by the under-score symbol indicates t hat z

is unbound. Although the above behavior might not seem useful at first, consider

the following natural definition of set difference (in terms of member) .

diff(x.y) => d where member(y. d) = false ;

member(x. d) = true.

Program IV.4 : Set Difference

The above rule states that the difference of two sets x and y (represented as lists)

consists of elements d such that d is not a member of y and d is member of x. For

example, the goal

eql> diff([1,2,3,4.5], [1,3,5,6,7]) .

will return 2 and 4 as answers, one at a time.

23

EqL is able to find these answers as follows. At the end of solving the first equa

tion,member(y. d)= false ,wherey = [1,3,6,6,7),therewiUbefivedeferred

equations:

eq(d,l) • false; eq(d,3) = false ; . . . ; eq(d,7) = false.

When att.empting solve member(x, d) = true, with x = [1,2,3,4,6], the bind

ing of d to the values 1, 3, or 5 will cause one of the deferred equations to fail,

and hence these are determined not to be solutions. However, the binding of d to

the values 2 or 4 will cause all the deferred equations to succeed, and hence these

are determined to be solutions.

IV.2.2. Arithmetic primitives

Deferring the evaluation of arithmetic primi tives also has some interesting uses.

Consider the conversion of centigrade to fahrenheit, expressed by the following

rule:

f(c) ~> 32 + 9*c/5.

This rule can be used to convert centigrade to fahrenheit by a goal such as

eql> f (100) .

It can also be used to find the centigrade for some particular fahrenheit, by a goal

such as

eql> f (x) = 212.

To understand the process by which this equation is solved, it should noted that

EqL converts the above rule into the following program:

f(c) •> 32 + t2 where tl • 9*c; t2 • tl/5.

The top-level goal, f (x) = 212, results the following sequence of equations to be

solved:

tl = 9•x; t2 = tl/5; 32 • t2 = 212.

EqL defers the first two equations, and solves the last equation to obtain the value

of t2. With this information t1 is determined from the second equation, and finally

x from the first equation. Note that EqL will solve equations of the form c = a op b

24

where op is an arithmetic operator (.. , - , •. I) and two of the three arguments

{a, b, c) are known. With this capability, the reader may verify that the interpreter

will be able to find the x such that

eql> fact(x) a 24.

where fact is the famil iar factorial function, defined as:

fact(O) => 1.

fact(n) => n•tact(n- 1) where n>O = true.

We also leave it to the reader to explain why, for example, fact(x) = 23 will fail

to terminate.

IV.3. Logical Variables

Much of the power in logic programming lies in its "logical variables." All variables

in EqL are logical variables in that they derive their values not by direct binding but

by the satisfaction of constraints. The following examples will serve as illustrations.

IV.3.1. Difference Lists

A classic example of logical variables is its use in defining "difference lists", which

permit list concatenation in constant-time. The following is the EqL definition of

difference-list concatenation.

dconc ([xlt], [t I y]) => [xl y].

Difference lists can be used to avoid the use of append in many places. Consider,

for example, the following inefficient definition of quick-sort.

qsort ([]) • > [].

qsort([p ll]) •> append(qsort(a). [plqsort(b)])

where [alb] = part(l , p).

part((]. p) => ([] I []].

part([hlt], p) => if p>h then [[hla] I b) else [a I [h lb]]

where

(a lb] = part(t, p).

Program IV.S : Naive Quicksort

25

The above program is inefficient because it employs a linear-time append operation

at each stage of the sorting process. This inefficiency can be avoided by concate

nating the sorted lists in coru;tant-time by representing them as difference lists, as

follows.

sort (l)

dsort((])

;>answer where (answer I (]] = dsort(l).

=> (xlxl .

dsort((p I 1)) ;> (sorta I tail) where

[a I b] = part(l.p);

(aorta I (p i sortb)) = dsort(a);

(sortb tail] ~ daort(b).

Program IV.6 : Quicksort with difference lists

IV.4. Higher-order operations

One of the advantages of functional languages over logic language is their support

of higher-order functions. A well-known example is LISP's map function, which

"maps" a unary function to each element of a list in order to produce a new list

with mapped elements. This function can be expressed in EqL as follows:

map([] . f) a> [].

map([hlt). f) •> [f(h) map(t.f)].

Program IV.7 : List Mapping

For example, the goal

eql> map((0 . 2,3. 4) . 'fact').

would return the list [1,2,6,24] as the answer.

(As an aside, the reader may note that, because of deferred evaluation of arithmetic

operators, the goal

eql> map([a . b, c . d) . 'fact ') = [1. 2. 6, 24)

would yield a;Q, b=2 . c=3, and d=4 !)

Because function names are a toms, they can be held in data structures. The

following example shows how to take advantage of this ability.

26

simplify([op. e1. e2]) => op(simplify(el). simplify(e2)).

simplify(n) => n where numberp(n) • true.

add(x. y) => x+y.

times(x.y) => X*Y·

sub (x, y) => x-y.

quo(x.y) => x div y.

Program TV.S: Simplification

For example, the goal

eql> simplify(['times'. ['add', 3, 4]. 10]).

would yield 70.

Note that EqL does not permit nested definitions of rules or global variables.

All functions exist at one level; functions do not have any lexically-scoped or

dynamically-scoped environment from which they obtain information. Just as func

tions can take function names as arguments, they may also be returned as results.

IV.s Strings and User-defined Structures

Consider the following definHion for non-destructively concatenating two strings:

cat((] . x) •> x.

cat([h:t]. y) => [h : cat(t,y)].

Program TV.9: String Concatenation

Using the above definition, we may determine the two portions, front and back,

of some strings, such that they are separated by some specific word w, as follows:

split(w. s) • > [front, back] where cat(front, cat(w, back)) = s.

User-defined constructors are declared before their use. They can be declared any

where in a file between the rules, e.g.

constructor: seq . fun.

where seq and fun are the names of the constructors.

IV.6. Input/Output

27

EqL provides two forms of 1/0 operations: non-backtrackable 1/0, and backtrack

able l/ 0. We first discuss non-backtrackable 1/ 0.

Backtrackable I/ 0 is done through the buil t in primitives read and write.

The Unix file name which forms the source and the destination for read and write,

respectively, is passed as an argument. The file name should be an atom. Full Unix

path names of the files can be given provided they are enclosed within single quotes.

The standard input and standard output are referred to by the 6.le name TTY or

'tty'. The primitive

read (filespec)

returns the next EqL data item in the file specified by filespec. This data item

could be an atom, number, boolean, or any structured term, including trees, lists

and strings. The operation

read(line, filespec)

would read the EqL items (which may be numbers or atoms) on the current line,

and return a list of these items. The operation

read(list , filespec)

would look for a list as the next item in the input. The operation

read (char . filespec)

would return the next character in the input, as an atom. The operations read(int ,

filespec) and read(boolean, files pec) allow reading an integer and boolean respec

tively.

All read operations would fail if an unexpected item is found in the input

stream.

The write operation can take any number of arguments, which can be expres

sions. The expression

write (fdespec, el> ... , e,.)

is t reated as

write(t 11 .. . , t,.) where t1 = e1; • • ' I t,. = e,.;

28

where each t; is a distinct variable. The value returned by ·.rri te is that of its

last argument expression, namely, tn. The non-graphic characters newline and tab

are written following the C language convention, namely, '\n' (newline) and '\t'

(tab) .

EqL allows, as a special exception, a write to be used as an expression in any

place where an equation might occur, e.g.,

write(TTY. 'Type a statement ending with period.', ' \ n')

This expression is converted internally into the equation:

_ = write(TTY. 'Type a statement ending with period.', '\n')

Because the current implementation is sequential, read and write operations

have backtrackable variants, which, in this implementation, can occur only with re

spect to 'tty'. To specify backtrackable read and write, use readb instead of read.

and wri teb instead of write, and omit the file$ pee in both cases. Backtracking past

a readb would cause the data item read to be returned back to the input. Similarly,

ba-cktracking past a wri teb would cause the output to be retracted. All output pro

duced with a wri teb will appear only when the top-level query has succeeded-the

implementation maintains a buffer for all intermediate output; a similar buffer is

maintained for backtrackable input.

The interpreter automatically opens a file when 1/ 0 is to be performed with

it. At the end of each query, all files opened during the query are closed.

IV.7. Programming Hints

To conclude this chapter we offer a few suggestions to aid the construction of more

efficient program. These arc not meant to be rigid rules, but general guidelines.

• Try to distinguish the different rules defining an operation based on the first

argument of each rule-this facilitates rule-indexing.

• Use pattern matching instead of if-then-else - this lea-ds to clearer programs

and faster execution.

• Ensure that operands of strict operators are fully instantiated when they are

to be applied - equation delaying is an expensive operation.

29

Chapter V. Implementation of EqL

The implementation of EqL divides into two phases:

t. The compilation phase: the source code is read in and transformed into a

binary-tree intermediate structure.

n. The interpretation phase: the various execution stacks are set up, the query

code evaluated and the results printed.

In the remainder of this chapter, we describe the compilation phase.

V.l. The Compilation Phase

Compilation involves lexical analysis, parsing and generation of intermediate struc

ture. Lexical analysis and parsing are done using the Unix tools Lex and Yacc.

Two key tralll!formations are performed while generating the intermediate code:

flattening and equation reordering. Below we describe the two transformations.

V.l.l. Flattening

To ensure left-most inner-most order of evaluation and to facilitate the temporary

storage of subexpression values prior to expression evaluation, the source code is

flattened. The ftaUening operation is simple: a. subexpression e, which is not a term,

is replaced by a. compiler-generated variable t, and a. new equation t = e is added

to the existing set of equations. For example, consider the second definition of the

inefficient version of qsort in section IV.3.1. After Battening it would become:

qsort([pll)) => append(tl. [plt2))

where [a lb) = part(l. p);

tl = qsort (a) ;

t2 = qsort(b).

Here t1 and t2 are the compiler-generated temporary names. Note that the order

of equations in flattened code reBects the desired evaluation order. As another

e.xa.mple, the query

30

f(x) + g (h(x)) = 23.

after Oattening becomes

t1 = f(x) ;

x1 = h(x);

t2 = g(x1);

t1 + t2 = 23.

where t1 . t2 and x1 are compiler-generated variable names.

The reader might note that the flattened EqL code resembles the source code

for the comparable Prolog definition, in that the output variables of each Prolog

predicate correspond t.o our compiler generated names. These output variables in

Prolog pose an extra burden on the programmer, who has to manage them explicitly,

and also lead to less clear definitions. EqL does not bar the programmer from using

such output variables, but in most cases their use can be avoided.

V.1.2. Equation Re-ordering

Al though EqL does not specify the order of solving equations, the interpreter we

have implemented solves equations sequentially. There are, however, two exceptions

to this general rule, referred to as compile-time and run-time equation re-ordering.

We alluded to these re-orderings in sect ion II.2. We discuss compile-time re-ordering

in this section; run-time re-ordering is discussed in section V1.3.3.

In compile time re-ordering, an equation relating two terms is moved ahead of

other kinds of equations. This re-ordering usually makes operation applications less

non-deterministic, because unifying the two terms in such re-ordered equations usu

ally results in variables being bound, and operation applications with more bound

variables tend to be less non-deterministic.

Consider the query consisting of the equations

f(x) = exp;

X= (hit).

where f is defined by n rules and exp is some arbitrary expression. Solving the

second equation before the first binds x to [hIt). With this binding for x, unifying

31

f (x) against the various rules for f would very likely eliminate many of them

without evaluating their bodies.

V.l.3. Compiling if-then-else

The condition part of an if-then- else may reduce either to a boolean or to an

unbound variable (say x). In the former case, the then-part or the else-part is eval

uated depending upon the value of the boolean. In the latter case, the in terpreter

has two non-deterministic choices: (i) bind x to true and return the value of the

then-part as the first solution, and (ii) bind x to false and return the value of the

else-part as the second solution.

T he reader may note that implementing if-then-else using the rules shown

below is not correct:

if-then -else(true , T, £) => T.

if-then-else(false,T. £) => £ .

These rules arc not a correct implementation because they cause the if-then-else

to be strict in all arguments, instead of just the first argument.

In section VI.2.3 we describe the run-time support for executing an if-then

else expression. Below we illustrate the intermediate code generated for an if

then- else expression through an example. Consider the operation solve in the

N-queens program.

solve(col, safelist, n) •> if eq(col,n+ l) then safelist

else place ([col I row(n)], safelist, n).

This is transformed into:

solve(col, safelist. n) •> if bool then aafelist

else (place ([col I tl] , safelist, n).

where tl = row (n))

where t2 = n + 1 ;

bool = eq(col, t2).

where bool is the compiler-generated name for the condition part of the if- then-else,

and t1 and t2 are compiler-generated names for sub-expressions row(n) and n +

1 respectively. Note the placement o£ the flattened equations in the transformed

32

code.

V.l.4. Intermediate Code Strocture

The intermediate code is organized as a binary tree and is stored in the static-area

(implemented as an array of cells). Each node of the intermediate code ~ree uses

exactly one cell. A typical cell has the following information:

1. A tag which identifies the kind of node the cell stores, e. g. an atom, or a

primitive operator, or a ru le header, etc. The tag of a node determines the

operation to be performed.

u. A left pointer field which stores the pointer to the left subtree for an internal

node of the tree, or the actual value of the constant for a leaf node.

111. A right pointer field which stores the pointer to the right subtree for an

internal node of the tree, or null for a leaf node.

iv. An info field which stores miscellaneous information, depending on the kind

of node, e.g., the hash value of a rule name for a rule header cell.

As an illustration, the intermediate code for the body of the second rule of the

append function {program ffi.l) is shown in figure V. l (page 34).

The intermediate code of a rule is stored in the rule store, which is analogous

to the fact database of Prolog. It is implemented as a hash table, where the hash

value of a rule is the sum of the ASCII value of the characters in its name modulo

100. This value is computed and stored in the info field of the rule header cell at

compile time. Rule definitions falling in the same bucket are stored as linear list,

preserving the order they appear in the source program. Besides storing a pointer

to the body of the rule, the following information is also stored:

1. rule name

ii . rule arity

ii i. number of variables in the body of the rule

iv. list of formal arguments.

33

"append"

figure V.1.: Intermediate Code for append

34

Chapter VI. The Interpretation Phase

[n this chapter we discuss the various operations involved in equation solution.

We also discuss the optimizations incorporated in the interpreter for more efficient

execution and quantify the improvements resulting from them.

VI.l. Overview

The top leve.l of an EqL query has the fol.lowing general form:

where eil and eir are expressions. The execution process consists of solving equations

from the input query sequentially. The interpreter does case analysis to determine

the appropriate action for solving an equation. In Chapter II we saw that equations

are of 6 kinds:

1. term1 = term 2

2. term = /{e~o·· .,en)

3. term = it p then e1 else e2

4. term = primitive

5. ter m = rec.d{filespec}

6. term = write(filespec, e~o ... , en}

The EqL interpreter solves the equations using a seven-stack execution model.

The seven stacks are:

1. control stack The control stack records the locus of control during operation

applications, and is s imilar to the activation record stack in conventional lan

guage implementations. Each operation application or if-then-else evalua

tion results in a frame being pushed on the control stack.

35

2. variable stack: Space for variables in a rule and the top level query is allocated

on the variable stack.

3. trail stack: The trail stack is used for recording the addresses of the variables

whose binding is to be undone upon bachracking, as in Prolog implementations

[WPP77J.

4. equation-delay stack: The equation-delay stack is needed to implement equa

tion delaying. An equation is delayed (or its evaluation postponed) when the

operands of the primitive operator in it are unbound. The delayed equation is

solved later when operands get bound.

5. equation-trail stack: The equation-trail stack is used for recording those (de

layed) equations which have been solved, but need to be re-solved on back

tracking.

6. read stack: The read stack is needed for implementing backtrackable read, i.e.

the operation readb(' tty') . It stores EqL data objects read from standard

input.

7. write staclc: The write stack is needed for implementing backtrackable wri te,

i.e. the operation wri teb(' tty'). It contains EqL data objects to be written

out on the standard output upon completion of a query.

Apart from these seven run-time stacks the interpreter also accesses: (i) the

static area, where the intermediate code is stored, (ii) the I/0 buffer area, and (i ii)

the molecule heap where molecules are allocated space.

Note that control and data have been separated in the execution model by

having separate stacks for them. This enables: (i) reclaiming the control stack frame

upon completion of an operation application (success exit) , and (ii) last-equation

optimization, analogous to last-call optimization in Prolog implement ations [EI84J.

Vl.2. Equation Solution

We now describe how each kind of equation is solved.

Vl.2.1. Solution of term1 = term2

This kind of equation is solved by unifying term1 and term2• If the unification

36

succeeds, the equation is solved; otherwise backtracking is initiated. The variables

in term1 and term2 are allocated space on the variable stack. The unification

algorithm uses a small local stack to traverse structures. The algorithm does not

do an occurs check, so a cyclic structure may be produced during runtime. It is

the programmer's responsibility to make sure that programs do not generate cyclic

structures during execution.

A term is either a constant, a variable, a structure, or a string. Representation

of constants and variables is discussed later. A structure is either a primitive cons

or a user defined constructor. In the next subsection we describe the representation

of structures, using structure sharing [BM72j.

Vl.2.1.1. Structure Sharing : Constructors and Strings

As far as the implementation is concerned, there is only one built-in basic construc

tor - cons. All other constructors defined by the user are represented in terms of

this basic constructor. For example, the term tree (left, right) would be rep

resented as cons ('tree' , cons (left, r ight)) where 'tree • is an atom. Even

the data type string is implemented in terms of cons.

A cons-object is allocated using a molecule. A molecule is a pair of pointers:

one to the sluleton code (called the code pointer) and the other to the environment

of the skeleton (called the environment pointer). The skeleton code consists of the

intermediate code residing on the static area. Thus, if we were to solve the equation

x ~ cons (h, t), where x is unbound, the variable cell for x on the variable stack

would be bound to a molecule as shown in figure VI.l. (page 38).

A string is implemented as list of characLers, e.g., the string "abc" would be

represented as ('a' , 'b' , 'c '); the null string " " by the null list [). A marker

bit is set in each cell indicating whether it is a string cell or a list cell.

Vl .. 2.2. Solut ion of term= t(e 1, ••• , e,)

Solving this equation involves evaluating the operation application f(e 1 , ... , en)

and then unifying the value returned with tum. The first step in evaluation of

t(e,, ... , e.,) is to obtain the definition off from the rule store. In general, there

might be more than one potential candidate, i.e. rules for f having the same arity.

37

X

t
h

variable stack

molecule
heap

figure Vl.1 .: Binding a variable to a molecule

38

These candidates are tried one by one in teztual order. Let us call these candidates

Cl, C2, ... , Cn, in order. The one to be tried first, Cl, will have the general form:

CI: f(s 1 , .•. ,s,.) => exp1 where G

where G is a set of equa~ions, and actual parameters of f unify with the terms

The invocation of Cl by f leads to the following equations:

!;

term= exp1.

II the attempt to solve these equations succeeds, the original equation has

been solved, and a success exit is said to have been taken from Cl. If, however,

the attempt to solve them fails, a failure exit is said to have been taken, and the

original equation is retried with the next candidate C2 for f. Note that these

equations might result in more operation applications. Of course, the attempt to

solve them might also be non-wrminating.

In the next two subsections, we first describe the two major data. structures

needed in supporting operation applications: the control stack and the variable

stack. We then briefly describe the control algorithm.

VI.2.2.J.. Control Stack

As the interpreter solves equations, it has to remember a variety of facts about the

operations applications that have taken place so far. In other words, the interpreter

should have some means of recording its locus of control. This control information

is stored in a frame in the control stack. A typical frame contains fields which have

the following information (name of ~he fields given in parentheses):

1. A pointer to the code to be executed by this frame (cp). This code is a list of

equations.

u. A pointer to the previous backtrack point (pb).

1u. A pointer to the trail stack (tp).

iv. ~ext candidate to be tried on failure (nc).

v. A pointer to the base of the area allocated to it on the variable stack, or the

environment pointer(ep).

39

vi. A return point (rpt).

vii. A pointer to the parent frame, i.e. the frame which created this frame (pt).

IX. A pointer to the equation-delay stack(dsp).

x. A pointer to the read-stack (rp).

xi. A pointer to the write-stack (wp).

A frame corresponding to an operation with multiple definitions is called a

choice point. The tp, nc and pb fields of a frame which is not a choice point are nil.

Figure Vl.2 shows how the control stack would look when the frame for the

candidate Cl, from the example in the previous section, is pushed. In the figure the

current call register (cc) points to the frame currently executing. The last three

fields (dsp, rp and wp) have been omitted in the figure.

VI.2.2.2. The Variable Stack

The local variables of an operation application are allocated space on the variable

stack. A pointer to the base of this area is stored in the ep field of the operation's

frame. Each cell of the variable stack has two fields: one, to store the type of the

datum, and the other, to store its actual value. For atoms, numbers and booleans

the datum field contains the actual value of the constant. A variable-to-variable

assignment, e.g., in the equation x " w, is recorded by storing a pointer to w's cell

in x's cell. Constructors (including strings) are stored using the method of structure

sharing, as discussed earlier.

VI.2.2.3. Control Algorithm: Overvi ew

To conclude our description of an operation application, we briefly summarize the

control algorithm. The algorithm has four phases:

1. operation invocation: The dellnition of the operation is retrieved from the rule

store. T he definition of the next candidate of that operation is also retrieved,

if there is one. A frame is created for this definition, with all the required

information put in the various fields, and pushed on the control stack. The

current call register (cc) is updated to point to thls new frame. Space is

40

control stack

figure V1.2.: The Control Stack

41

T

stack

ode

T T

variable stack

allocated for the variables of this operation application on the variable stack,

and execution is initiated.

ii. operation execution: The first step in the execution of the operation is the

unification of its actual parameters with its formals. U the unification fails,

backtracking takes place. If it succeeds, the equations in the body of the

operation are solved sequentially. If any of these equations turn out to be

unsatisfiable, backtracking takes place. These equations m.ight lead to more

operation applications.

1u. operation exit: Once all equations in the body of the operation have been

solved, a success exit is taken from its frame. This is done by making the cc

point to the parent of the current frame and restarting the execution from the

equation pointed to by the return point (rpt field) of the current frame. Tf

there are no choice points above the frame pointed to by cc, all frames above

it are popped, since they are no longer needed. The variable bindings made by

the deleted frames are preserved on the variable stack. This is one reason for

separating data and control in the interpreter.

iv. backtracking: When an equation turns out to be unsatisfiable, the interpreter

has to backtrack and retry the most recent call with an untried rule. A pointer

to the most recent choice point is stored in a register called the most recent

backtrack point register or the mrb register. When mrb needs to be updated, its

previous value is stored in the previous backtrack point (pb) field of the current

frame. Thus the pb field in the different choice points form an ordered chain

of backtrack points with the first one being in crb.

When failure occurs, control is transferred to the frame, say/, pointed to by the

mrb. All the frames above fare discarded. The mrb is updated with the value

of the previous backtrack point field of the frame f. The bindings of the variable

recorded on the trail stack between the trail-stack top and the tp field off are

undone, and the trail-stack top is set to value of the tp field of f. The next.

candidate to be tried is retrieved using the nc field of f. Frame f is modified to

store the information for the new definition and the computation is restarted.

42

VI.Z.3. Solution of term = if- then-else

The interpreter executes the if-then- else like a user defined operation application,

except that only the first argument, corresponding to the predicate condition, is

evaluated in a call-by-value fashion. As we saw earlier, if the predicate condition is

an expression it gets flattened out and replaced by a variable. We will refer to this

variable introduced as the predicate variable. At the time of evaluation of the if

then-else, the predicate variable can be in one of the three valid states: unbound,

bound to the constant true, or bound to the constant false. If the predicate variable

is bound to something else, the if- then-else fails.

The cases when the predicate variable is bound to true or false are simllar. We

therefore explain just the true case: When the predicate variable is bound to true,

the value of the then-part is returned. The interpreter treats the then-part as an

anonymous operation application. Both the then-part and the else-part have the

general form:

exp where equations

resembling the body of a operation. T hus, a frame gets pushed on the control stack

after the various fields have been set up. This frame is not a choice point, and

hence no backtrack information is required to be stored in it. It also does not get

allocated any space on the variable stack, because the if- then-else shares all its

variables with the operation it appears in. Thus the environment pointer of the

frame for the then-part is the same as the environment pointer of its parent. Once

the frame has been set up a.nd pushed, execution continues normally.

When the predicate variable is unbound the if- then-else evaluates to more

than one values. Thus, an equation:

z = if x then 10 else if y then 20 else 30.

would yield the following 3 solutions.

x = true

y =
z = 10;

x = f alse

y = true

43

2: • 20 i

x = false

y = false

2: " 30 i

no solution

Implementing the if-then-else with unbound predicate variable is more in

volved. Although the frame for then-part shares the variable space with its parent

frame , it has a separate pointer pointing into the trail-stack because only those vari

able which got bound as a result of the execution of the t hen-part need be unbound

upon failure. Note that, in an if-then-else with an unbound predicate variable,

the frame for the then-part can always be overwritten with that of the else-part.

Thus, the execution of an if-then-else never requires more than a single frame.

The advantages of treating the if-then-el se evaluation as a pseudo operation

application are:

i. the control mechanism remains simple and uniform;

ii. it is possible to provide full backtracking on the unbound predicate variable

with no extra cost, and

iii. because the if-then-else is often deterministic the corresponding frame is not

a choice-point. Thls aids last equation optimization (LEO), discussed later.

The mechanism described above can handle arbitrarily nested if-then-else.

VI.2.1. Solution of term= primitive

To solve an equation with a primitive strict operator, the arguments of the operator

are first evaluated, the operation is then applied to arguments, and the result is

then unified with term. If unification fails backtracking takes place. If one of the

operands is not bound, the equation is delayed. lf term is a number, or a variable

bound to a number, and the operator is arithmetic (• . -, *, /), with only one

operand unbound, then the interpreter computes the value of its other operand and

binds it. Equation delaying and solution of ari thmetic equations is discussed below.

44

VI.2.4.1. Equation Delaying

To implement equation delaying the interpreter maintains a stack called the equation

delay stack. When an equation is found to have a primitive operator with unbound

operands, a pointer to its code is stored in the equation delay stack. The dsp field

in the control frame stores the top of the delay stack whenever a choice point is

pushed. On backtracking to this choice point, the top of the delay stack is restored

to the value in this field.

Every time a success exit is taken, the interpreter tries to solve all equations on

the delay stack. If a delayed equation is solved and belongs to a frame lying below

the mrb, a pointer to this equation is also recorded on the equation trail stack. This

information is recorded so that upon backtracking this equation can be marked as

still unsolved, and re-solved later with correct bindings.

VI.2.4.2. Solving Arithmetic Equations

Because of flattening, all arithmetic operations occur in equations of the form:

a "' b op c, or

bop c = a

where op is + • - • • I etc.

When an arithmetic expression with an unbound operand is found, the term on

the other side of that equation is examined. If it is a number, or a variable bound

to a number, then the value of the unbound operand is computed and stored in the

variable cell of that operand on the variable stack.

Note that equations which have only one occuience of an unbound variable

can be solved immediately. Equations of the kind x + y = 20, where x and y are

unbound, would be delayed using the mechanism described in the previous section.

It can be solved as soon as one of the variable gets bound. Solving such equations,

rather than delaying them, makes the interpreter more efficient.

VI.2.5. Solution of term E e:r;pression

Implementing the E assertion requires actions ~o be taken at compile time as well as

runtime. T he intermediate code generated for theE assertion is essentially identical

45

to that of an ordinary equation. Note that equations generated from flattening of

the E assert ion are treated as ordinary equations and not as E assertions. Thus the

equation

vEf(g(x)).

becomes

t = g(x) ;

vEf(t).

The term E expression assertion behaves like an ordinary equation if expression

yields a single value. If expression yields more than one value, then at runtime a bit

is set in the frame corresponding to this expression, indicating that the rest of the

solutions arising out of this frame are to be discarded upon success exit. Pruning

the remaining solutions amounts to deleting all backtrack points above this frame

at the time of success exit. T his is done by making ~he I!U'b point to the most recent

choice point below the expression's frame.

VI.2.6. Solution of term = read(filespec)

The non-backtrackable read is simple to implement. The interpreter keeps a list of

files which have been opened as a result of the top level query. These files are dosed

once the query evaluation is over. If the file filespec is in the list of open files, the

next EqL data object is read from that file and unified with term. If it is not, it is

opened and added to the list of open fi les, and then the read is performed.

Implementing the backtrackable read (readb) requires a read-stack to be main

tained. The rp field, in the <;entrol stack, s tores the top of the read-stack when a

choice point is pushed. A read-pointer records the position in the read-stack from

where the next call to rea db would get the data-object. During backtracking the

read-pointer is updated with the value in t he rp field. Actual I/0 with the standard

input occurs only when the read-pointer coincides with the top of the read-stack -

in which case the data object read is also stored in the read-stack, in addition to

being returned as the value of the readb expression.

Implementing write and wri teb is very similar to read and rea db hence we

omit its description in this thesis.

46

•

VI.3. Optimizations

So far we have described the core of our interpreter. Now we will discuss some op

timizations incorporated in our interpreter. These optimizations are rule-indexing,

last-equation optimization, and run-time equation re-ordering. These optimizations

lead to considerable efficiency in execution space and time as demonstrated by our

experiments.

VI.3.1. Last Equation Optimization

It is not necessary to delay the reclamation of a frame on the control stack until a

success e:zit is taken. It is possible to reclaim a frame, subject to certain conditions,

at the time its last equation is being solved. The last equation optimization (LEO)

is similar to the last call optimization (LCO) in Prolog implementations [H84, W83 j

and the tail recursive optimization (TRO) in Lisp implementations.

Functional language implementation have fewer opportunities to do TRO due

to their expression nesting. Consider the second rule in the functional definition of

append:

append([], y) => y.

append([hltl, y) => [hi append(t, y)].

Since cons is at the outermost level, it is not possible to apply TRO to the recursive

call on append. On the other hand LCO can be applied to the recursive call to

append in the Prolog definition for append given below:

append([], Y. Y).

append([H)T]. Y. (H)Z) :- append(T, Y, Z).

This is an advantage of the relational style of programming over the functional style

- more opportunities for LCO exist.

LEO in EqL is as powerful as LCO in Prolog. That is, LEO would be performed

during the execution of EqL code where ever LCO would be performed in the

execution of the equivalent Prolog code. This is achieved through compile-time as

well as run-time equation reordering. We illustrate this point by considering the

above rules £or append, and the goal

47

append([l , 2], [3, 4)) = ans.

During execution, after the second rule has been matched, this goal would be trans

formed into:

append (tl. yl) = zl;

cons(hl, zl) = ans.

Note that zl appears due to compile time flattening of append. Due to equation

re-ordering, the second equation would be moved before the first which then triggers

a LEO.

The conditions for an equation to qualify for LEO are:

i. the equation should be the last to be solved in that operation code, and

11 . the called operation should not be a choice point.

Both these conditions are fairly easy to determine at runtime. In principle, the

condition above can be further relaxed, and it is possible to do a LEO when ~he

caller is not a choice point and the callee is. However, this requires extra information

to be maintained on the control stack and hence we did not incorporate it in our

interpreter. Note that it is the separation of control and data. which enables the

callee frame (which is not a choice point) to overwrite the calling frame even when

the former is a backtrack point.

LEO not only saves space but also time. Space is reduced because frames get

deleted from the control stack as soon as they are no longer needed. Programs run

faster because when the called frame overwrites the calling frame only 50% of the

fields need updating; others (such as the parent frame pointer, return pointer, etc.)

remain the same and do not require modification. Thus, overwriting a frame is a

much cheaper operation tha.n pushing a new one. Later, we give some statistics

showing the improvement in speed due to LEO.

VI.3.2. Rule-indexing

In order to preserve variable bindings during an operation application, a frame

needs to be set up on the control stack before unifying the actuals and the formals.

Very frequently, this unification fails and the time spent in setting up this frame

goes wasted.

48

Rule-indexing avoids this wasted effort. The first actual argument of the opera

tion application is unified with the first formal argument of the operation definition

before the execution stacks are set up. The unification algori thm used here is only

an approximation to the actual unification algorithm. If rule-indexing succeeds, the

execution stacks are set up and true unification is performed. If rule-indexing fails,

the next definition is considered in a similar fashion. Even though rule-indexing

performs only an approximate unification, our experiments show that it cuts down

considerably on the number of potential candidates for an operation application.

Since it is performed before the frame for the operation is pushed, it leads to LEO

being applied more often, thus multiplying the savings in time and space.

The approximate unification algorithm used for rule-indexing is as follows:

i. A constant term uni fies with a. constant term if they are identical.

ii. A formal argument which is a variable unifies with anything.

m. Two structures unify only if their first components unify (in the approximate

sense).

iv. An empty Jist does not unify with a cons struct ure.

v. An unbound variable in the actual argument unifies with anything.

For example, [x . y), if present as the first formal argument would unify with [1 •

2. 3] in the appro:cimate sense, though it wouldn't in the true sense.

VI.3.3. Runtime Equation Re-ordering

Consider a typical operation

f (. ..) => e:<p where S

where S is a set of equations, and an equation:

f(...) ~ rhs.

At run time this equation reduces to:

S:
exp • rhs.

Since the equation exp = rhs is generated at run-time, re-ordering is necessary

if both exp and rhs are terms. The effect of this runtime equation reordering

49

is twofold: (i) it leads to a greater number of LEOs, and (ii) it helps avoid non

termination in some cases. To illustrate this point, consider the definition of append,

in the section VI.3.1., and the query

append(x, y) = [1. 2].

This goal would yield three solutions. Without run-time equation re-ordering,

however, non-termination occurs after the last solution is reported. This non

terminating computation is caused due to the generation of the equations:

append(_, ..) = -·
[] =cons(.. . , ...)

where _denotes an unbound variable.

As a result of runtime re-ordering, the equation [] = cons(. .. , ...) is solved

first, thus causing termination with failure. The interpreter then reports to the user

that no more solutions exist.

The reordering also forces the recursive call to append in the second ru1e to be

in the last equation, enabling LEO. As a result of LEO, the entire query gets solved

in a single frame.

Vl.3.4. Performance analysis

The two optimizations we consider for demonstrating the performance improvement

are LEO and rule-indexing. The table below shows the Tun times for some standard

programs - append (program lll.l) , naive reverse (program ill.2) and, searching 30

elements in an association list. These programs were run on a Sun-3 work station.

The last two digits after the name, in the first column of the table, tell the length

of the list on which that program was run. The column labeled BASIC lists the

timings for the version of the interpreter with no optimizations, the one !a bled RI for

the version with rule indexing, and the last for the final version with rule-indexing

and LEO. All the timings are in SUN-3 cpu seconds.

50

Program BASIC RI Rl+LEO
app30 0.045 0.030 0.010
app60 0.100 0.070 0.030
rev30 0.700 0.550 0.410
rev60 2.840 2.300 1.610
assoc30 0.070 0.065 0.060

The improvements from the optimizations should are obvious from the table.

Note that the time taken to traverse a 30 element association list is consider

ably more than the time taken to append a 30 element lis~ to another list. This

corroborates the observation that structme sharing favors data construction !M80].

51

Chapter VII. Conclusion

Although EqL supports functional programming more directly than logic program

ming (because of its functional syntax), we hope it is clear from the examples that

many logic programming paradigms are also readily supported. In fact any pure

Prolog program can be directly converted into an EqL program IJSG86]. EqL pro

grams are often clearer than equivalent Prolog programs because function composi

tion supplants the need for "output variables" in Prolog programs (see definition of

naive reverse, for example). EqL's if-then-else and E correspond to well-structured

uses of Prolog's cut, and their use also leads to simpler formulations in many cases.

EqL also supports arithmetic, relational and boolean primitives, and delays

any equation with these pri.mjtives until sufficient information becomes available.

Other useful features in the language are strings, user-defined constructors, and

higher-order operations.

The EqL interpreter divides into two phases: compilation and interpretation.

Compilation involves generation of binary-tTee intermediate code, accompanied by

flattening and equation re-ordering transformations. T he intermediate code is

stored in the static area. The interpretation phase employs seven stacks, each

with fixed size entries. The novel aspects of this execution model are: (i) the sep

aration of the conventional recursion stack into a control stack and uariable stack

(this separation is crucial for supporting LEO), (ii) the use of equation delay and

equation trail stacks for delayed evaluation of primitives, and (iii) the use of read

and write stacks for backtrackable read and write. The other stack is the trail stack,

used for recording the addresses of the variables to be unbound on backtracking.

The interpreter also performs rule-indexing, an optimization thai reduces execution

time by eliminating unnecessary choice points.

From our experiments, we found that last equation optimization and rule index

ing improve runtime performance considerably. LEO is actually more powerful than

52

tail recursive optimization (TRO) in functional language implementations, because

it (LEO) is applicable to certain non-tail-recursive definitions such as LISP's a~

pend, which have a recursive call embedded inside a constructor at the outermost

level. :\'ote that because of the complete separation of the control and variable

stacks, the variable stack shrinks only during backtracking. Garbage collection

therefore is needed when no more space is left on it. Our current implementation

does not support garbage collection yet.

The EqL interpreter runs at about half the speed of the C-P rolog interpreter for

standard benchmark programs such as naive reverse. By compiling EqL programs

to WAM-like code [W83j, comparable performance with Prolog can be expected.

We nevertheless hope we have demonstrated that the elegance of functional notation

and the expressiveness of logic may be combined (via equation solving) to yield a

practical declara~ive language.

53

(BM72]

[CM81]

[DP85[

(F84J

[GM84j

Referen ces

R. S. Boyer and J. S. Moore, "The sharing of structure in theorem prov

ing programs," In Machine Intelligence 7, B. Meltzer and D. Michie

(eds.), 1972, pp. 101-116.

W. F. Clocksin and C. S. MeUish, Programming in Prolog, Springer

Verlag, New York, 1981.

N. Dershowitz and D. A. Plaisted, "Applicative Programming cum

Logic Programming," ln 1985 Symp. on Logic Programming, Boston,

pp. 54-66.

L. Fribourg, "Oriented Equational Clauses as a Programming Lan

guage." J. Logic Prog. Z (1984) pp. 165-177.

J. A. Goguen and J. Meseguer, "Equali ty, Types, Modules, and (Why

Not?) Generics for Logic Programming,D J. Logic Prog. 2 (1984)

pp. 179-210.

(H84] C. J. Hogger, Introduction to Logic Programming, Academic Press,

1984.

[J88] D. Jayaraman, "Semantics of EqL," To appear in IEEE Trans. on

Softwa re Engg., March 1988.

IJG87J

[JG86J

IJS86J

B. Jayararnan and G. Gupta, "EqL User's Guide," TR 87-010, Dept.

of Comp. Science, UNC- Chapel Hill, May 1987, 30 pages.

B. Jayaraman and G. Gupta, "Parallel Execution of an Equational

Language" In Proceedings of the Work8hop on Graph Reduction, Santa

Fe, 1986, Lecture Notes in Computer Science, Vol 279, pp 370-381.

B. Jayaraman and F.S.K. Silbermann, "Equations, Sets, and Reduc

tion Semantics for Functional and Logic Programming," In 1986 ACM

54

IJSG86j

[MSO[

[RS82[

[W83[

[WPP77j

[YS86j

Symposium on LISP and Functional Programming, pp. 320-331, Boston,

1986.

B. Jayaraman, F.S.K. Silbermann, and G. Gupta "Equational Pro

gramming : A unifying approach to functional and logic program

ming", In Proceedings of the International Conference on Computer

Languages, Miami Beach, 1986.

C . S. Mellish, "An Alternative to Structure Sharing in the Implementa

tion of a Prolog Interpreter", ln Proceedings of the Logic Programming

Workshop, Hungary, 1980.

J. A. Robinson and E. E. Sibert, "LOGLISP: Motivation, Design, and

Implementation," In Logic Programming, Ed. K. L. Cla.rk and S.

A. Tarnlund, Academic Press, 1982, pp. 299-313.

D. H. D. Warren, "Optimizing Tail Recursion in Prolog", ln Logic

Programming and its Applications, ed. l'vfichel Van Caneghem and

D. H. D. Warren, 1983.

D. H. D. Warren, F. Pereira, and L. M. Pereira, "Prolog: the Language

and Its Implementation Compared with LISP," SIGPLAN Notices 12,

No. 8 (1977) pp. 109-115.

P. A. Subrahmanyam and J-H. You, "Equational Logic Programming:

an Extension to Equational Programming," In 19th ACM POPL, St.

Petersburg, 1986, pp. 209-218.

55

