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Rendering of Surfaces from Volumetric Data 

Marc Levoy 

June, 1987 
(revised November, 1987) 

Computer Science Department 
University of North Carolina 
Chapel Hill, NC 27514 

A new technique for rendering discrete volumetric data is presented. Surface shading calculations 
are performed at every voxe1 using local gradient vectors. as surface normals. In a separate step, 
feature classification operators are applied to obtain partial opacities for every voxel. Operators 
that detect isovalue surfaces and region boundary surfaces are presented. Non-binary decision func­
tions insure that small or poorly defined features are not lost Independence of shading and 
classification calculations insures that undistorted visualizations of 3-D shapes are obtained. The 
resulting colors and opacities are digitally composited from back to front along view rays to form 
an image. The technique is simple and fast, yet produces surfaces exhibiting smooth silhouettes 
and few aliasing artifacts. Examples from two application areas are given: protein crystallography 
and medical imaging. 

1. Introduction 

In classical image synthesis, surfaces are modeled using a variety of geometric primitives 
such as polygons or curved patches. Rendering consists of converting this database into an array of 
pixels for viewing on a raster display. There is, however, a growing list of applications in which 
data is represented as arrays of samples rather than as geometry. Typical sources include sensing 
devices and computer simulations. In this paper, we focus on samples of scalar functions of three 
spatial dimensions, henceforth referred to as volumetric data. 

The currently dominant technique for presenting this data involves fitting surface primitives 
to the sampled function, then rendering these primitives using classical image synthesis [Fuchs77, 
Purvis86]. Fitting surfaces to volumetric data is a hard problem. It is computationally expensive 
and prone to errors. Low-order geometric primitives are also mediocre reconstruction filters, giving 
rise to artifacts in the rendered image. The visual impact of these errors can be reduced by 
employing surface primitives equal in size to the spacing between data samples [Lorensen87] but 
rendering the hundreds of thousands of polygons produced using such a technique becomes a 
significant expense. 

To avoid these problems, researchers have introduced volumetric rendering wherein the inter­
mediate surface representation is omitted. Images are formed by directly shading each sample and 
projecting it onto the picture plane. In the graphics literature, volumetric rendering has been used 
to display clouds by [Csuri79, Blinn82, Kajiya84]. Its use to display surfaces has been developed 
primarily in the medical field, where it has a long history. 

Early work in this area was largely constrained by memory costs. The solution adopted was 
to threshold the data, reducing grayscale representations to binary representations [Herman79]. 
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Further reductions were obtained by tracking and storing only surfaces that bounded connected 
regions [Artzy81]. During rendering, voxels were treated as cubes having six polygonal faces. This 
approach has been termed the cuberille model [Chen85]. 

Spurred by cheaper memories and faster processors, researchers have begun investigating 
techniques for directly rendering grayscale data [Hohne86, Schlusselberg86, Goldwasser86, 
Trousset87, Hohne87]. The chief advantage of this approach is its superior shading, achieved by 
estimating surface normals from local gradient vectors in the grayscale data. In all of these papers, 
shading is applied only to voxels lying on the surface of interest. If binary decision functions are 
used to find these surfaces, distortions in perceived surface configuration can result. The use of 
non-binary decision functions reduces these artifacts. Strict independence of shading and 
classification calculations eliminates them entirely. Both techniques are used in this paper. 

Ray tracing has been used to produce geometrically transformed views in [Schlusselberg86, 
Goldwasser86, Hohne87]. Where sampling issues have been treated [Goldwasser86], rays are 
traced through original data prior to estimation of surface normals. If an inexpensive filter is used 
during resampling, errors in normals and hence surface shading can result. In this paper, geometric 
transformations are applied after shading, eliminating this source of artifacts. 

Aliasing of surface silhouettes remains an area of difficulty in volumetric rendering. Super­
sampling followed by averaging down has been suggested [Chen85] but the computational expense 
of this solution is high. Interpolation between acquired samples is used in [Goldwasser86] but only 
for geometrically transformed views. Researchers at or collaborating with PIXAR Inc. appear to 
have addressed this problem [Smith87] but no details of their approach have been published 

2. Rendering method 

The rendering method used in this study combines aspects of ray tracing [Whitted80] with 
volumetric compositing, a 3-D extension of image compositing [Wallace82, Rorter84, Duff85]. It 
differs from classical ray tracing in that the data is represented as an array of samples rather than 
as geometry. This obviates any need to find ray-object intersections. In addition, multiple 
reflections and refractions are not handled, eliminating any need to trace rays recursively. The 
differences between volumetric and image compositing are more subtle and will be discussed later 
in the paper. 

The method is summarized in figure 1. We begin with an array of acquired values f 0(xiJ at 
voxel locations x1 = (:x;,yi,zJ. The first step is data preparation which may include correction for 
non-orthogonal sampling grids in protein crystallography, correction for patient motion artifacts in 
medical imaging, histogram modification and interpolation of additional samples. The output of this 
step is an array of prepared values / 1 (x1). This array is used as input to the shading model described 
in section 4, yielding an array of colors c~(x1), A.= r ,g,b. In a separate step, the array of prepared 
values is used as input to one of the classification procedures described in section 3, yielding an an 
array of opacities a(xiJ. Rays are then cast into these two arrays according to the current viewing 
parameters. For each ray, a vector of colors c~(x1) and opacities a(x1) is computed by sampling the 
voxel database at K evenly spaced locations x1 = (x;.Y;.Z~ along the ray and tri-linearly interpolating 
from the colors and opacities in the eight voxels closest to each sample location as shown in figure 
2. Finally, a fully opaque background of color cbl:g.~ is draped behind the dataset and the interpo­
lated colors and opacities are merged with each other and with the background by compositing in 
back-to-front order to yield a single color C~(Uj) for the ray and, since only one ray is cast per 
image pixel, for the pixel location ur = (u;,v;) as well. 

The compositing calculations referred to above are simply linear interpolations. Specifically, 
the color COUI.A.(DJ) of the ray as it leaves each sample location is related to the color Cu.,A.(U[) of the 
ray as it enters and the color c~(x1) and opacity a(x1) at that sample location by the well-known 
transparency formula 



3 

Co..,,A.(Uj) = C;,.,A.(Uj)(l - a(xj)) + CA,(Xj)a(xj) 

Solving for pixel color CA.(Uj) in terms of the vector of sample colors cA.(x1) and opacities a(x1) 
gives 

CA.(Uj) = CA.(u;,v;) = f [cA.(x1,y;.z~a(x;.Y;.z~ IT (1 - a(x;.Y;.z,J)l 
&.o m=£+1 

(1) 

where cA.(x;.Y;.zo) = cblcg).. and a(x;,Y;.zo) = 1. 

3. Feature classification 

Using the rendering method presented above, the mapping from acquired data to opacity per­
forms the essential task of classification, enhancing selected features while suppressing others. 
Although color can also be used to classify data, as exemplified by pseudo-coloring, a hardwired 
shading model has been used here. This artificially limits the capabilities of our rendering method 
but enables us to focus attention on a single classification parameter - voxel opacity. We further 
limit ourselves to one family of classification functions -,those that detect and render surfaces in 
the data. 

3.1. Rendering of isovalue surfaces 

We will first consider the detection of surfaces defined by points of equal value in grayscale 
scenes. The driving problem for this study was protein crystallography but the method has wider 
application. 

Determining the structure of large molecules is a difficult problem. The method most com­
monly used is ab initio interpretation of electron density maps, which represent the averaged den­
sity of a molecule's electrons as a function of position in 3-space. These maps are obtained from 
X-ray diffraction studies of crystallized samples of the molecule. Current methods for presenting 
this data include stacks of isodensity contours, ridge lines arranged in 3-space so as to connect 
local density maxima [Williams82], and basket meshes representing selected isodensity surfaces 
[Purvis86]. 

One obvious way to generate raster visualizations of isovalue surfaces is to opaquely render 
all voxels having values greater than some threshold. This produces 3-D regions of opaque voxels 
the outermost layer of which is the desired isovalue surface. Unfortunately, this solution prevents 
display of multiple concentric semi-transparent surfaces, a very useful capability. Using a window 
in place of a threshold does not solve the problem. If the window is too narrow, holes appear. If it 
too wide, display of mulLiplc surfaces is consLraincd. 

Figure 3 outlines the classification procedure employed in this study. It consists of five steps 
represented by the five numbered rows in the figure. The operator for each step is listed first and 
the resulting function is listed second. Graphs of each function for a typical data sample are shown 
on the right In order to simplify the diagrams, functions of one dimension are used. Extension to 
three dimensions is straightforward and will be discussed later. 

Beginning from the top of the figure and working downward, data acquisition consists of 
filtering a continuous scalar function f(x), which we call our input function, to yield j(x), then sam­
pling to obtain discrete values f(x;). Ignoring data preparation for the moment, we can take this 
database to be the starting point for our classification procedure. For each discrete value, we form 
a reconstruction j(x) defined over a small interval surrounding the sample location x;. A mapping 
D = D(/) from ineut value to p~hysical density is then applied, resulting in the continuous density 
function D(x) =if o D)(x) = D(j(x)). We may call this intermediate result our surface definition 
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function. Since the rendering method presented in section 2 operates on discrete opacities, we filter 
D(x) to yield D(x), sample to obtain discrete densities D(xi) and finally convert density to opacity 
using a mapping a. = a.(D), resulting in discrete opacities a.(xi) = (D o a.)(xJ = a.(D(xJ). 

The physical model underlying our surface definition function is opaque particles suspended 
in a transparent medium where D(x) gives the number of particles per unit volume. Using this 
model, the mapping from discrete density to discrete opacity is given by the exponential attenuation 
relation [Johns83] 

a.(D(xi)) = 1 - e-tl't 

where the linear attenuation coefficient J.1 is set to density D(xi) and the optical depth 1: is set to the 
interval s between samples. 

Within this general framework, we have considerable latitude in the selection of operators. 
The choices shown here are based on empirical trials and represent only one possible implementa­
tion. Specifically, the reconstruction in step 1 is implemented using the first-degree Taylor polyno­
mial of fl..x) near xi: 

A !!!&))_ 
f(x) = f(xi) + dx (xi)(x - xi) 

for x,-r :s;; x :s;; x,+r where the derivative is approximated using the operator 

~(xi)= ~ ~xi+1)- f(xi-1)] 

This method was selected because it is inexpensive and localized, requiring only three samples to 
form each linear approximation. The radius r is some small integer multiple of the sampling inter­
val s. Appropriate values for r are discussed later. The mapping in step 2 is implemented using 
the delta function 

D(j) = Dvolf- fv) 

such that input value fv is mapped to density Dv while all other values are mapped to a density of 
0. This effectively detects each time the reconstructed functionj(x) crossesfv, producing a spike of 
density Dv at that x. The filter in step 3 is implemented by spatially convolving the resulting den­
sity function with a Bartlett window of radius r, which is given by 

() { 1-~ iflxl:s;;r 
gx = r 

0 otherwise. 

This filter is also inexpensive and localized. Since its non-zero extent exactly matches the interval 
over which each Taylor approximation is defined, the sampling in step 4 produces discrete densities 
D(x;) each of which depend only on input valuesfl..x,_1),f(xJ andj(x,+1). 

We extend this method to three dimensions by using j(x/A in place of j(xJ and the magnitude 

of the gradient vector 1Vfl..x1)1 in place of the derivative d C:)) (xi). We also replace the 1-D 

Bartlett window with a 3-D spherically symmetric linear ramp. The replacement of a signed 
derivative by an unsigned vector magnitude works because the filter kernel is isotropic. Making 
the appropriate substitutions in each of the above expressions and solving for a.(x~ gives 

a.(x1) = 1 - e -D(xt).r (2) 

where 
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1 if IVftx.)l = 0 and ftx.) = fv 

s 1Jv- ftxl) I 
1-- I I if 1Vftx1)1 > 0 andftx.)- .!:.IVftx.)l ~fv ~ftx1) + .!:.IVftx.)l (3) 

r 1 IVftx.)l 1 s s 

0 otherwise 

and the gradient vector is approximated using the operator 

Vftx1) = Vftx;,Yj.ZJ 

= [ ~ ~H-hYJ~,) - J\xi-t .Y;~.J ), ~ ~i.Y.I>! ~,) - J\x;.Yj-1 ~,) ), ~ ~;,YJ>'.,.I) - J\X;,Yj~H)) l ( 4) 

A graph of D(x1) as a function of ftx1) and 1Vftx1)1 for typical values of/ •• D •• s and r is shown in 
figure 5. 

If more than one isovalue surface is to be rendered in a single image, they can be classified 
separately and their densities added. Specifically, given input values fv, n = 1, ... ,N, N ~ 1, den-

ft 

sities D. and filter radii r,., we can use equation (3) to compute D,.(xiJ, then apply 
" ' 

N 

D101(xiJ = L D,.(xl) 
10=! 

(Sa) 

to obtain a single density value for use in equation (2). Alternatively, we can use equations (2) and 
(3) to compute opacities a,.(x1) and combine them using the relation 

N 

<lrorCXJ) = 1 - II (1 - a,.(xiJ). (Sb) 
II=! 

3.2. Rendering or region boundary surfaces 

We will next consider the detection of surfaces bounding regions of constant value in grays­
cale scenes. The driving problem for this study was medical imaging, specifically, display of com­
puted tomography (C1) data. 

From a densitometric point of view, the human body is a complex arrangement of biological 
tissues each of which is fairly homogeneous and of predictable density. Clinicians are mostly 
interested in the boundaries between tissues, from which the sizes and spatial relationships of ana­
tomical features can be inferred. The currently dominant method for presenting these surfaces 
involves forming a mesh of polygons that either connects contours drawn on each slice [Fuchs77] 
or follows a selected isovalue surface [Lorensen87]. Approaches based on volumetric rendering 
were surveyed in the introduction. 

It is not clear that isovalue surfaces are well suited to the display of medical data. The rea­
son can be explained briefly as follows. Given an input function containing two tissue types A and 
B having values /.A and fv8 where fv A < /.8, data acquisition will produce voxels having values ftx.) 
such thatfvA ~ftx1) ~/.8 . Thin features of tissue type B may be represented by regions in which all 
voxels bear values less than f. . Indeed, there is no threshold value greater than f. guaranteed to 

8 A 

detect arbitrarily thin regions of type B and use of thresholds close to fvA are as likely to detect 
noise as signal. 

Figure 4 outlines the procedure employed in this study. It is similar to the method described 
in section 3.1, having one additional operation between steps 4 and 5 and differing in the choice of 
operators for the other steps. Working again in one dimension, the reconstruction in step 1 is 
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implemented using the step function 

flx) == 

fv
8 

otherwise. 

for x,- ~ s x s x,+ ~. Taken in isolation, this function is correct only if the derivative d~)) (xiJ 

is positive but it produces correct results for derivatives of either sign when used in conjunction 
with the isotropic filter in step 3. The effect of this reconstruction is to estimate the x-location of 
the region boundary that gave rise to discrete value f(x;). The mapping in step 2 is implemented 
using the linear expression 

D(/) == Dvff- fv) 

such that input value fvA is mapped to a density of 0 and fv
8 

is mapped to density Dv, thus display­

ing tissues of type A transparently and tissues of type B opaquely or semi-opaquely. The filter in 
step 3 is implemented by spatially convolving the resulting density function with a box filter of 

radius ~ , which is given by 

{

1 iflxiS~ 
g(x) == 2 

0 otherwise. 

Since the non-zero extent of this filter is equal to the sampling interval s, the sampling in step 4 
produces discrete densities D(xiJ each of which depend only on input value f(x;). 

In order to allow multiple concentric semi-transparent surfaces, we must render region boun­
daries opaquely without also making enclosed regions opaque. This necessitates an additional 
classification operation. To avoid. artifacts when confronted with small or poorly defined regions, 
we should use a continuous decision function. This additional step, numbered 4.5 in the figure, is 
implemented using the edge enhancement operator 

I dfiTx" I 
D 2(xi) == D(xiJ l~(xiJI 

I dx I 

where the derivative is approximated as described in section 3.1. Since resolution is an important 
consideration in mediCal imaging, the narrower asymmetric approximation 

rlfff y\) 

T(xiJ = f(x;+1) - f(xiJ, 

may be substituted if the data is relatively noise-free or has been pre-smoothed. 

Applying the final conversion to opacity and extending the method to three dimensions as 
described in section 3.1, then combining expressions and solving for a.(x1) gives 

where 

-D-Ir.)s 
a.(x0 == 1 - e 1.'• (6) 



1 if /(xi) > /v
8 

D2(x() = IV'fi:x,)l Dv 
fi:xiJ- fv,.. 

if /v A $. /(xi) $. /v
8 fv

8
- fv,.. 

0 otherwise 

and the gradient vector is approximated using equation (4) or the operator 

V'fi:xiJ = V'j{xi,Jj.ZJ 

:: [fi:xi+r.Yj.ZV- f(xi,Ji,zt),j(xi,yi+l.ZV- f(xi,yi,zt),j(xi,yi.zt.+r)- f(xi,Yj.ZV]. 
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(7) 

(8) 

A graph of D2(x() as a function of.f{x() and IV'j(x1)1 for typical values offv,.../v
8 

andDv is shown in 
figure 6. 

If the acquired data contains more than two types of tissues, it can still be rendered correctly 
providing that certain adjacency criteria are met Specifically, given an input function.f{x1) contain­
ing N tissue types having values fv, n = 1, ... ,N, N ~ 1 such that fv </v , m = 1, ... .N-1, no 

" Ill m+l 
tissue of value fv may touch any tissue of value fv , ln1-n21 > 1. If these criteria are met, the N-1 

~ ~ 

types of region boundaries each consisting of the pair of tissue values fv and fv can be classified 
"' -1 

separately and their densities added or opacities combined as described in section 3.1. Violation of 
these rules leads to voxels that cannot be unambiguously classified as belonging to one type of 
region boundary or another and hence cannot be rendered correctly. 

4. Shading calculations 

Using the rendering method presented in section 2, the mapping of acquired data to color 
does not participate in the classification operation. Accordingly, a shading model was selected that 
provides satisfactory rendering of smooth surfaces at a reasonable cost It is not the main point of 
the paper and is presented mainly for completeness. The model chosen is due to [Phong75]: 

Cp). r "] cA.(x,) = Cp).ka). + kr + k'}fi(x,) lkd).(N(xiJ·L) + ks).(N(x1)-H) (9) 

where 

cA.(x1) = A.'th component of color at voxellocation x~o A.= r,g,b, 

Cp). = A.'th component of color of parallel light source, 

ka). = ambient reflection coefficient for A.'th color component, 

kd). =diffuse reflection coefficient for A.'th color component, 

ks,A. =specular reflection coefficient for A.'th color component, 

n = exponent used to approximate highlight, 

k1, k2 =constants used in linear approximation of depth-cueing, 

d(x1) = perpendicular distance from picture plane to voxel location x1, 



N(x.) =surface nonnal at voxellocation Xf, 

L = nonnalized vector in direction of light source, 

H = nonnalized vector in direction of maximum highlight. 

Since a parallel light source is used, L is a constant. Furthennore, 

where 

V+L 
H =IV+ Ll 

V = nonnalized vector in direction of observer. 
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Since an orthographic projection is used, V and hence H arc also constants. Finally, the surface 
nonnal is given by 

There are many ways to estimate the gradient vector Vf(x.). The selection of an operator 
depends on the frequency spectra of the data being rendered and the features being sought. Since 
the gradient vector is used in both the shading and opacity calculations, efficiency considerations 
prompted the use of the same operator for both tasks. Different operators were used, however, for 
the two different data types, as seen by comparing equations (4) and (8). It is worth noting that 
these operators are always applied to unclassified function values j(x1). By separating estimation of 
surface nonnals from classification, we insure an undistorted visualization of shapes. 

S. Discussion 

5.1. Computational complexity 

One of the strengths of the rendering method presented in this paper is its low computational 
expense. Since intcnncdiatc results are stored at various stages along the rendering pipeline, the 
cost of producing a new image depends on which parameters are changed. Let us consider some 
typical cases. 

Given input value f(x1) and gradient magnitude 1Vf(x1)1, application of feature classification to 
yield opacity a(x1) can be implemented with one lookup table reference. This implies that if we 
store gradient magnitudes for all voxels, computation of new opacities following a change in 
classification parameters entails only generation of a new lookup table followed by one table refer­
ence per voxel. 

The cost of computing new colors cA.(x1) following a change in observer direction V, light 
source direction L or other shading parameter is more substantial. Effective rotation sequences can 
be produced, however, using a single set of colors. The visual manifestation of fixing the shading 
is that light sources appear to travel around with the data as it rotates and highlights are incorrect 
Since most visualizations produced using volumetric rendering are of imaginary or invisible 
phenomena anyway, observers are seldom troubled by this effect If the specular component of the 
shading model is reduced, a convincing simulation of walking around an immobile dataset 
illuminated by an unchanging light source is obtained. 
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The most efficient way to produce a rotation sequence is to hold both colors and opacities 
constant and alter only the direction in which rays are casL If we assume a square image n pixels 
wide and use orthographic projection, in which case sample coordinates can be efficiently calcu­
lated using differencing, the combined cost of ray tracing, tri-linear interpolation and compositing 
to compute n2 pixel colors CA.(lt[) is only 3Kn2 additions and 4Kn2 linear interpolations where K is 
the number of samples computed along each ray. This modest expense can be reduced further by 
suppressing tri-linear interpolation of colors and compositing for samples whose opacity is deter­
mined to be zero. 

5.2. Image quality 

Although the notation used in equation (1) has been borrowed from image compositing, the 
analogy is not exact and the differences are fundamental. The alpha values used in [Wallace82, 
Porter84, Duff85] are a function of viewpoint-dependent coverage, which in turn tells us what per­
centage of a pixel's area is covered when an opaque 3-D geometry is projected in a given viewing 
direction onto the picture plane. The alpha values used in equation (1) are a function of 
viewpoint-independent coverage, which tells us what percentage of a voxel's volume is covered by 
an opaque 3-D geometry but not what percentage of its profile relative to the view direction is 
covered. In other words, by using compositing to render a volumetric database, we implicitly 
assume that voxels contain no geometric detail; the covered portion of a voxel is assumed to 
obscure the covered and uncovered portions of the voxel behind it in equal shares regardless of 
viewing direction. We are essentially rendering voxel-sized cubes of semi-transparent gel having 
homogeneous color and having opacity derived from the known coverage percentage. 

Since our method does not consider sub-voxel geometry, image quality is limited by the 
number of viewing rays. In the current implementation, we cast one ray per pixel. Improvements 
can be obtained by super-sampling and averaging down but cost rises as the cube of the number of 
samples in each direction. The solution used in this paper is to blur the opacities prior to composit­
ing. Shading, which carries most of the 3-D shape information, is left untouched. 

Although filtering 3-D geometry is a valid method of anti-aliasing, it is not equivalent to 
filtering its 2-D projection. Specifically, both occur prior to image sampling but the former occurs 
prior to visibility calculations while the latter occurs after. To illustrate the distinction, let us con­
sider the simple case of two spheres of identical size but different colors placed one behind the 
other relative to our eye. If an analytic hidden-surface removal algorithm is applied, then the 
resulting 2-D projection is filtered, the closer sphere will entirely obscure the farther one. If the 3-D 
object geometry is filtered first, producing blurry spheres, then the same analytic hidden-surface 
algorithm is applied, the color of the farther sphere will leak through and appear as a halo around 
the closer sphere. For the datasets studied in this paper, these halo effects are either not seen 
because suitable alignments seldom occur or they occur but are not visually objectionable. 

The decision to reduce aliasing at the expense of of resolution arises from two conflicting 
goals: producing artifact-free images and keeping rendering costs low. In practice, the slight loss in 
image sharpness might not be disadvantageous. Given the approximate nature of surface recon­
struction operators, it is not clear that the accuracy afforded by more expensive visibility calcula­
tions is useful. Indeed, the sharpness of surface silhouettes in [Fuchs77, Lorensen87] can be 
misleading. Blurry silhouettes have less visual impact, but they reflect the true imprecision of the 
surface reconstruction process. 

The implementation of opacity blurring depends on the feature classification procedure 
employed. For isovalue surfaces, some blurring of opacities can be obtained by selecting filter radii 
r,. that exceed the sampling interval s. A value of 2s was used to produce figure 8. Since each 
opacity value depends only on input values in a small neighborhood surrounding the sample loca­
tion, this method only works if the data is already fairly smooth. Fortunately, the time and 
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ensemble averaging inherent in X-ray crystallography generates suitable data. Application of global 
filtering during data preparation can be used to obtain further smoothing if necessary but the 
blwred database should only be used as input to the classification procedure so as not to adversely 
affect shading. For region boundary surfaces, some blurring of opacities is inherent in the filtering 
applied in step 3 but, since each opacity value depends only on a single input value, the results are 
satisfactory only if the data is already smooth. Application of global filtering during data prepara­
tion can be used if necessary. 

An interesting byproduct of this approach is that the level of blurring can be selected on an 
object-by-object basis. This capability allows us to take advantage of the fact that the human visual 
system is strongly distracted by coherent aliasing but readily overlooks an equivalent amount of 
noise. Specifically, for large surfaces of gradual curvature where aliasing caused by point sampling 
would be coherent and hence visually objectionable, strong blurring can be applied. For small 
features where aliasing would be incoherent and minimally distracting, less blurring is required. A 
judicious application of adaptive filtering has the potential to squeeze more useful information out 
of a given dataset than global blurring. 

Another issue that affects image quality is the order of operations within the rendering pipe­
line. For example, since many data preparation tasks are geometric in nature, the opportunity exists 
to incorporate them into the ray tracing step. There are s~ng arguments, however, for applying 
them beforehand. Phong has observed that better specular highlights are obtained by interpolating 
normals than by interpolating intensities [Phong75]. The underlying reason is that specular 
reflection is a non-linear function of surface orientation. The same principle applies to the non­
linear relationship between input function value and opacity. This suggests that we interpolate the 
acquired data prior to both shading and classification. A disadvantage of this approach is that the 
gradient detectors we use to estimate normals are sensitive to discontinuities in the first derivative 
of interpolated data. We can mitigate this problem by employing a filter that is second-order or 
higher. Since data preparation is performed only once, the additional expense is amortized over all 
images produced using that dataset Rotations, unlike interpolation, are best applied near the end of 
the rendering pipeline. Since gradient vectors have already been estimated, we can rotate the data 
using an inexpensive first-order filter without introducing objectionable errors into the shading or 
classification. 

6. Implementation and results 

The techniques presented in this paper were implemented in the C language under UNIX bsd 
4.2. The timings given below are for a VAX 11nso having sufficient physical memory to prevent 
paging. 

The dataset used in the crystallography study is from the protein Cytochrome B5. It was ini­
tially acquired as a 49 x 31 x 66 sample grid representing a 46 x 29 x 62 angstrom cube. A 20 x 
20 x 20 sample portion of this map was extracted and interpolated to fill a 113 x 113 x 113 voxel 
dataset in 6 hours using a 3-D separable cubic B-spline. Figure 7 shows four slices spaced 10 vox­
els apart in this expanded dataset. Each whitish cloud represents a single atom. Classification and 
shading were applied as described in sections 3.1 and 4 and required 30 minutes total. Ray tracing 
and compositing were performed as described in section 2 and took 4 hours, yielding the image in 
figure 8. Some scaling was also included in the projection operation, producing a 400 x 400 pixel 
image. Although this is not in accordance with the principle discussed earlier of interpolating dur­
ing data preparation rather than after shading and classification, it was used here as an expedient. 
Without scaling, the image would have been 200 x 200 pixels and would have required 30 minutes 
to render. The presence of the dataset boundaries within the field of view gives rise to artifacts in 
some parts of the image, but the clipping of isovalue surfaces that occurs along these boundaries 
has been found to provide a useful shape cue. 
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The dataset used in the medical imaging study is of a cadaver and was acquired as a 256 x 
256 x 113 sample grid. This was expanded to fill a 256 x 256 x 226 voxel dataset by interpolating 
in one direction only, which took 90 minutes. Each of the images in figure 9 represents a different 
set of classification and shading parameters. For each image, colors and opacities were computed 
as described in sections 3.2 and 4. This step required 4 hours per image. Ray tracing and campo­
siting were then performed as described in section 2, taking 2 hours per image. The horizontal 
bands through the patient's teeth are artifacts due to scattering of X-rays from dental fillings and 
are present in the acquired data. The bands across her forehead and under her chin are gauze band­
ages used to immobilize her head during scanning. Her skin and nose cartilage are rendered semi­
transparently over the bone surface in the lower-right image. Figure 10 was produced from the 
colors and opacities already computed for the lower-left image in figure 9. Some scaling was 
included in this projection, producing a 512 x 512 pixel image in 8 hours. Without scaling, the 
image would have been 400 x 400 pixels and would have required 4 hours to render. 

Worst-case storage requirements for this implementation occur after shading and classification 
have been applied but before ray tracing. 28 megabytes were required to store the 256 x 256 x 226 
8-bit colors and opacities computed during the medical imaging study. 

7. Conclusions 

Since volumetric rendering techniques work from sampled data rather than geometric primi­
tives, they are necessarily approximate. Errors in classification and visibility do occur, as does 
aliasing. The use of compositing introduces further approximations, hence more errors. The visual 
impact of these errors can be reduced by following several guidelines. Firstly, all voxels partici­
pate in the rendering of any image. Secondly, any decision functions used during feature 
classification are continuous rather than binary. Thirdly, shading and classification calculations are 
independent, particularly with regard to estimation of surface normals. 

A number of improvements can be made to the current implementation. For isovalue sur­
faces, more work is needed on reconstruction methods, especially with respect to resolving closely 
spaced multiple concentric surfaces. By pre-computing and storing second or higher derivatives, 
very accurate approximations can be made at only modest increases in cosL Derivative operators 
that are more resistant to noise should also be investigated. 

For region boundary surfaces, successful reconstruction depends on the accuracy of our 
model of the input function and the acquisition process. Specifically, the use of a linear mapping 
from f{xi) to x in step 1 is based on the assumption that tissues are homogeneous, their transitions 
are step functions and bandlimiting was performed prior to acquisition using a box filter of radius 

; . Excessively gradual transitions in voxel value, whether due to fluctuations in tissue density, gra-

dual transitions between tissues or the use of wide filter kernels during bandlimiting will result in 
incorrect estimation of region boundary locations and excessively blurry renditions. For typical cr 
data, our model of tissues and tissue transitions is generally correcL For typical medical scanners, 
our model of the aquisition process is nearly correct in the z-direction (between slices) but only 
approximate in the x and y directions (within a slice). The characteristics of specific scanners 
should be measured and incorporated into the classification procedure. 

Another issue related to region boundary surfaces is the rendering of tissues not meeting the 
adjacency criteria described in section 3.2. This includes most internal soft tissue organs. One pos­
sible approach would be to employ user interaction and/or automatic scene analysis to isolate sets 
of voxels that meet the adjacency criteria. Since the user or algorithm is not called upon to define 
surface geometry but merely to isolate regions of interest, this approach promises to be easier and 
to produce better images than techniques involving surface fitting. 
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Although this paper focuses on rendering of surfaces, the method extends readily to rendering 
of semi-transparent interstitial volumes. Color and texture can be added to represent such variables 
as gradient magnitude. Visualizing discrete vector functions of 3-space is still largely unexplored. 
Visualizations combining acquired and geometric data also hold much promise. For example, it 
might be useful to superimpose ball-and-stick molecular models onto electron density maps or med­
ical prosthesis devices onto CT scans. To obtain correct visibility, a true 3-D merge of the 
acquired and synthetic data must be performed. One possible solution is the rgba.z buffer presented 
in [Duff85]. Another is to scan-convert the geometry directly into the acquired database and render 
the ensemble. A third is to incorporate classical rendering of the geometry directly into the 
volumetric rendering algorithm. 

The prospects for real-time or near real-time rotation of volumetric data are encouraging. By 
pre-computing shades and opacities and storing them in intermediate 3-D datasets, we simplify the 
volumetric rendering problem to one of geometrically transforming two values per voxel and com­
positing the results. One promising technique for speeding up these transformations is to apply a 
3-pass version of the 2-pass texture mapping technique presented in [Catmull80]. By filtering 
separately in each of three orthogonal directions, computational expense and algorithmic complex­
ity are reduced. This further suggests that hardware implementations might be feasible. A recent 
survey of architectures for rendering voxel data is given in [Kaufman86]. One imagines a general­
purpose scene animation machine that can rotate synthetic Scenes of arbitrary geometric complexity 
in real-time with anti-aliasing, although with fixed shading, provided that the scene can be scan­
converted into a volumetric database of colors and opacities. By coupling pre-computed surface 
normals with shading hardware, movable light sources could also be supported. 
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