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Abstract 

We discuss tenn rewriting in conjunction with sprfn, a Prolog-based theorem prover. 
Two techniques for theorem proving that utilize tenn rewriting are presented. We 
demonstrate their effectiveness by exhibiting the results of our experiments in proving 
some theorems of von Neumann-Bemays-Godel set theory. Some outstanding prob
lems associated with tenn rewriting are also addressed. 
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1 Introduction 

Term rewriting is one of the more powerful techniques that can be employed in 
mechanical theorem proving. Term rewriting allows us to prove fairly sophisti
cated theorems that are beyond the ability of most resolution-based theorem 
provers. Unlike resolution, term rewriting seems to duplicate a rule of inference 
that humans use in constructing proofs. In this paper, we will describe our 
research and results in proving theorems via term rewriting. The body of 
theorems we prove are set theoretic; the axiomatization of set theory employed 
is derived from the work of von Neumann, Bernays, and Godel. For a list of 
these axioms, see [2]. The advantage of the von Neumann-Bernays-Godel for
malization is that it allows us to express set theory in first-order logic. This in 
turn implies that a first-order theorem prover can be used to derive set theoretic 
theorems. On the other hand, this formalization has a significant disadvantage in 
that it is very clumsy for humans to use. Second order logic is a much cleaner 
means for expressing the axioms of set theory. 

* This research was supported in {lart by the National Science Foundation under grant DCR-8516243 
and by the Office of Naval Research under grant NOOO 14-86-K -0680. 
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We begin by introducing sprfn, the Prolog-based theorem prover we used in 
our research; we emphasize the formal deduction system underlying the prover. 
In the second section we describe the term rewriting mechanism built into sprfn. 
In the third and fourth sections we describe two theorem proving techniques util
izing term rewriting and the results of these approaches when employed in con
nection with sprfn. In each of these two sections we give examples of sample 
theorems that we were able to derive. We conclude by summarizing our results 
and addressing some problems that face term rewriting in general as well as 
some problems specific to term rewriting with sprfn. 

2 The Simplified Problem Reduction Format 

The theorem prover we used -- sprfn -- is based on a natural deduction system 
in first-order logic which is described in [1]. However, before we present this 
formal system, we would like to motivate it by describing the format on which it 
is based; namely, the problem reduction format. The formal deduction system 
implemented by sprfn is a refinement of the problem reduction format. Both of 
them embody the same goal-subgoal structure, as can be seen from what fol
lows. The following description omits many details. For a complete discussion 
of the problem reduction format, see [5]. 

The structure of the problem reduction format is as follows. One begins with 
a conclusion G to be established and a collection of assertions presumed to be 
true. Assertions are of the form C:-A 1,A 2, •.. ,An (implication) or P (premises) 
where A;, P and c are literals or negations of literals. The implication assertion 
is understood to mean A 1&A 2 • • · &An~c. The Ai 's are antecedent statements, or 
simply antecedents, and Cis the consequent of the implication. We call the con
clusion G the top-goal. The process of attempting to confirm the conclusion 
begins with a search of the premises to see if one premise matches (is identical 
with or can be made identical by unification with) the goal G. If a premise Pg 

matches G then the conclusion is confirmed by Pg. Otherwise, the set of implica
tions whose consequents match G is found. If the antecedent of one implication 
can be confirmed then one has confirmed the consequent, and hence G, which 
the consequent matches. Otherwise we consider the antecedents as new subgoals 
to be confirmed, one implication at a time. These goals are called subgoals 
because none of them is the primary goal. The process of confirming these 
subgoals involves repeating the method just described in connection with the 
top-goal. 

The natural deduction system underlying sprfn -- the modified problem 
reduction format -- is based on the problem reduction format just described, 
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although refinements are added for the sake of completeness of the deduction 
system. We do not have room to describe these refinements. The following 
description of the modified problem reduction format omits many details. For a 
complete discussion, see[4]. 

A clause is a disjunction of literals. A Horn-like clause, converted from a 
clause, is of the form L :- L I> L 2, ... , Ln where L and the Li 's are literals. L is called 
the head literal. The L;'s constitu-te the clause body. A clause is converted to a 
Hom-like clause as follows. For a given clause containing at least one positive 
literal, one of its positive literals is chosen as the head literal and all other literals 
are put in the clause body negated. For an all-negative clause, we use false as the 
head literal and form the body from positive literals corresponding to the origi
nal literals. 

Now assumeS is a set of Hom-like clauses. A set of inference rules, derived 
from S, is obtained as follows. For each clause L :- L 1, L 2, .•.• Ln in S, we have 
the following clause rule: 

Clause Rules 

r0~L 1 => r1~L 1,r1~Lz=> r2~L 2, ... , rn_1~Ln => rn~Ln 

r0~L => rn~L 

We also have assumption axioms and a case analysis (splitting) rule. Let L 
be a positive literal. Then the assumption axioms and case analysis rule can be 
stated as follows: 

Assumption Axioms 

r ~L => r ~L if L e r 

r~L =>rL~L 

Case Analysis (splitting) Rule 

r0~L => r1,M~L. rl>M~L => rl>M~L 
r0~L => r1~L 

The goal-subgoal structure of this deduction system is evident. The input 
clause L:-L 1,L 2, ...• Ln merely states that L 1L 2• · • • Ln have to be confirmed in 
order to confirm L. The corresponding clause rule for L :-L 1,L 2, ... ,Ln states that, 
if the initial subgoal is r~L, then make L 1, ... ,Ln subgoals in succession; add to 
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r successively the literals that are needed to make each one provable; and 
finally, return r,.~L where r,. contains all the literals needed to make L 1, .•. ,L,. 

provable. 

Sprfn implements the natural deduction system just described. Sprfn 
exploits Prolog style depth-first iterative-deepening search. This search strategy 
involves repeatedly performing exhaustive depth-first search with increasing 
depth bounds. For a description of the strategy, see [6]. This search strategy is 
complete and can be efficiently implemented in Prolog, taking advantage of 
Prolog's built-in depth-first search with backtracking. 

3 SPRFN and Term Rewriting 

3.1 Input Format 

The input to sprfn is formatted in Hom-like clauses. Given a set S of clauses, 
we convert them into Hom-like clauses as follows. For a clause containing at 
least one positive literal, we select one such literal to be the head, negate the 
remaining literals, and move them to the body of the clause. For an all-negative 
clause, we use false as the head of the clause and form the body from the posi
tive literals corresponding to the original literals. The following example shows 
how to translate from clause form into the format accepted by sprfn. Notice the 
similarity of the input format syntax to Prolog program syntax. 

Clause Form 

P(x) v Q (x) 

-P(x) v R (x) 

-Q(x) v R(x) 

-R(a) 

Input Format for sprfn 

p(X) :-not(q(X)) 

r(X) :- p(X) 

r(X) :- q(X) 

false :- r(a) 

For input to sprfn, the convention is that a name starting with a capital letter 
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is a variable name; all other names are predicate names, function names or con
stants. Not and false are reserved for negation and for the head of the top-level 
goal, respectively. 

3.2 The Method of Proof 

The prover attempts to prove that false is derivable from the input clauses. For 
example, given the following set of clauses: 

p(X) :-not(q(X)) 

r(X) :-p(X) 

r(X) :- q(X) 

false :- r (a) 

sprfn will derive the following proof: 

false :- cases( 
(not q(a): 

(r(a) :- (p(a) :- not q(a)))), 
(q(a): 

(r(a) :- q(a))) 
) 

Thus, false can be proven from the input clauses. For there are two cases to 
consider: (1) Suppose not q(a) is true; then we can derive false as follows. Since 
we are given that false :- r(a), we make r(a) our subgoal. Now we can derive 
r(a) if we can prove p(a), since we are given r(X) :- p(X). Meanwhile, we can 
derive p(a) if we can prove not q(a), since we are given p(X) :-not q(X). How
ever, we are assuming not q(a), so this subgoal can be proven. (2) Suppose q(a) 
is true; then we can derive false as follows. Once again, we make r(a) our 
subgoal, since we are given that false :- r(a). Now we can derive r(a) if we can 
prove q(a), since we are given r(X) :- q(X). But we are assuming q(a), so this 
subgoal can be proven. 

3.3 The Term Rewriting Mechanism in SPRFN 

Replace. An assertion of the form replace(<exprl>, <expr2>) in the input 
signifies that all subgoals of form <exprl> should be replaced by subgoals of 
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the form <expr2> before attempting to solve them. This is like a rewrite applied 
at the 'top level'. This is sound if <exprl> :- <expr2> is valid. 

Rewrite. An assertion of the form rewrite( <exprl>, <expr2>) in the input 
signifies that all subexpressions of form <exprl> should be replaced by subex
pressions of the form <expr2>. This is like a rewrite applied anywhere, not just 
at the top level. This is sound if the logical equivalence <exprl> <-> <expr2> 
is valid, or, in case when the expressions are terms, if the equation <exprl> = 
<expr2> is valid. 

In our experiments, we translated the axioms of von Neumann-Bemays
Godel set theory into a list of rewrite rules and then attempted to derive various 
theorems based on these rules. For example, consider the axiom for Subset 
below: 

(llx,y)[x~y ~ (llu)[(uEx ~ uEy)]] 

This would be translated into the following two rewrite rules, which would be 
given as input to the prover: 

rewrite(sub(X,Y), or(not(el(f17(X,Y),X)), el(fl7(X,Y),Y))). 
rewrite(not(sub(X,Y)), and(el(U,X), not(el(U,Y)))). 

Several points deserve mention. First of all, note that the single axiom gives 
rise to two rewrite rules -- a "positive" as well as a "negative" rule. This is to 
preserve soundness, since sprfn performs outermost term rewriting. The pres
ence of the negative rewrite rule insures that whenever sprfn rewrites a term of 
the form sub(X,Y) with or(not(el(fl7(X,Y),X)), el(fl7(X,Y),Y))) (which implies 
that sprnf is using the positive rule) we know that this term does not appear in a 
negative context; for if it did, the prover would already have rewritten it using 
the negative rule. 

We should also point out what may seem at first to be a counter-intuitive 
feature of these rewrite rules. Note the presence of the skolem functionfl7(X,Y) 
in the positive rewrite rule and the unbound variable U in the negative rule. One 
might think that the situation should be reversed. However, the correctness of 
this procedure can be seen by reflecting upon the following. Recall that sprfn 
performs subgoaling in attempting to prove false. Thus if the prover is attempt
ing to prove A, let's say, and it tries to do this by trying to prove the subgoal B, 
this procedure will only be sound if it is the case that B ~A. Our rewrite rules 
must observe this fact. Hence, if we are trying to prove A and we attempt to do 
so by rewriting A with B and then trying to prove the subgoal B, it must be the 
case that B ~A. Or, to put the matter in Prolog symbolism, it must be the case 
that A :- B. When we skolemize the original axiom, we see that the following 
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are logical consequences of the skolemized input clauses: 

sub(X,Y) :- or(not(el(f17(X,Y),X)), el(f17(X,Y),Y)) 
not(sub(X,Y)) :- and(el(U,X), not(el(U,Y))) 

Thus, we must express our two rewrite rules as given above. 

4 Term Rewriting with a Tautology Checker 

In our first experiment, we modified sprfn to make use of a tautology checker. 
Suppose that we wish to prove the set theoretic theorem T, which, in accordance 
with the procedure outline above, has been converted into the top-level goal: 
"false :- X". 

If the flag t_test is set, then the prover will call the tautology checker 
tautology3(X,Y), where X is the input theorem (derived from the top-level goal 
"false :- X") andY is the output consisting of the non-tautologous part (if any) 
of X. If X is a tautology, then the prover will halt; else, the original goal: "false 
:- X" is retracted and replaced in the database with the new goal: "false :- Y". 
The prover then proceeds to attempt to prove false by means of the subgoaling 
method described above. This method seems to work quite well. For one thing, 
if X is a tautology, the tautology checker allows the prover to spot this fact much 
sooner than if it had attempted to achieve its top-level goal by means of its 
subgoaling mechanism alone. For another, we have found that when X is not a 
tautology, by removing the tautologous portion of X and returning Y as the 
subgoal to be proved, we save the prover considerable time and avoid needlessly 
duplicated effort. 

Because tautology3(X,Y) does not unify variables (it only eliminates a dis
junction as a tautology if some literal L appears both negated and un-negated in 
the clause), as a standard practice we have included the axiom: "or(X,Y) :
prolog(tautology(or(X,Y)))" to handle cases where unifying is necessary to elim
inate tautologous clauses. This allows us to invoke Prolog from within sprfn, 
and to call the Prolog predicate tautology/1 which succeeds if its input can be 
converted into a tautology via unification. 

Thus backtracking over the elimination of a tautologous clause is still possi
ble, but it only occurs with respect to the "or" rewrite rule. This seems more 
efficient than permitting backtracking into the tautology3 routine itself (which 
would be required if we allowed unification within tautology3). 

We now exhibit two examples of the prover at work, uti1izing the tautology 
checker. 
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4.1 Example 1 

In this first example, we show how the tautology checker returns the non
tautologous portion of its input theorem, which is then proven by sprfn' s 
subgoaling mechanism. 

Proof of Difference and Join Theorem 

Our top-level goal is: 
false:-eq(diff(a,b),join(a,comp(b))) 

After reading in the input clauses, which contain our set theoretic rewrite 
rules as well as a few axioms, the prover begins by calling our tautology 
checker: 

t_test is asserted 
b_only is asserted 
solution_size_mult(O.l) is asserted 
proof_size_mult(0.4) is asserted 

calling( tautology3( eq ( diff( a, b ),join( a,com p(b))) ,_9812)) 

After removing the tautologous portion of the theorem, tautology3 returns the 
following: 

conjunct: 
m(f17(diff(a,b),comp(b))) 
not el(f17(diff(a,b),comp(b)),a) 
el(f17(diff(a,b),comp(b)),b) 

Continue?: yes. 

At this point, the tautology checker informs the user that it has a conjunction 
of disjunctions (in this case there is only one such disjunction) left, which it 
could not eliminate via tautology checking alone. It asks the user if he wishes to 
proceed, and in this case, we answer in the affirmative. The prover's subgoaling 
procedure is now invoked, and in a short time sprfn returns with the following: 
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(not el(f17( diff(a,b ),comp(b )),a): 
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( or(m(f17(diff(a,b ),comp(b) )),or(not el(f17( diff(a,b),comp(b )),a), 
el(fl7( diff(a,b ),comp(b )),b))):-( or( not el(f17( diff( a,b ),comp(b )),a), 
el(f17(diff(a,b),comp(b)),b)):-not el(f17(diff(a,b ),comp(b)),a)))), 

(el(f17(diff(a,b),comp(b)),a): 
(or(m(f17(diff(a,b),comp(b))),or(notel(f17(diff(a,b),comp(b)),a), 
el(f17(diff(a,b),comp(b)),b))):-(m(fl7(diff(a,b),comp(b))):
el(fl7( diff(a,b ),comp(b )),a))))) 

size of proof 7 

8.73 cpu seconds used 
5 inferences done 

It is worth pointing out that by using the term rewriting facility without 
invoking the tautology checker, the prover was able to derive the theorem in 
128.43 cpu seconds with 34 inferences. We attempted to prove the theorem 
using neither the tautology checker nor rewrite rules; but after letting the prover 
run for over two hours without finding the proof, we put it out of its misery. 

4.2 Example 2 

In this second example, we show the prover's term rewriting facility in action. 
In this particular case, the tautology checker is able to establish that the entire 
input theorem is a tautology; hence it is unnecessary to invoke sprfn's subgoal
ing mechanism, since the theorem is already proven. 

Proof of Power Set Theorem 

Our top-level goal is: 
false:-eq(pset(join(a,b)),join(pset(a),pset(b))) 

After reading in the input clauses, which contain our set theoretic rewrite 
rules as well as a few axioms, the prover begins by calling our tautology 
checker: 

t_test is asserted 
b_only is asserted 
solution_size_mult(O.l) is asserted 
proof_size_mult(0.4) is asserted 

calling(tautology3(eq(pset(join(a,b)),join(pset(a),pset(b))),_9818)) 
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The rewriting mechanism displays the results of its outermost term rewriting 
operation: 

rewrite(eq(pset(join(a,b)),join(pset(a),pset(b))),and(sub(pset(join(a,b)), 
join(pset( a),pset(b)) ),sub(join(pset(a),pset(b) ),pset(join(a,b )) ) ) ) 

rcwrite(sub(pset(join(a,b)),join(pset(a),pset(b))),and(sub(pset(join(a,b)), 
pset( a)),sub(pset(join(a,b)),pset(b)))) 

rcwrite(sub(pset(join(a,b)),pset(a)),or(not el(f17(pset(join(a,b)),pset(a)), 
pset(join( a,b)) ),el ( fl7 (pset(join( a,b) ),psct( a)) ,pset( a)))) 

rewrite( not el(f17(pset(join(a,b)),psct(a)),pset(join(a,b ))),not sub(f17(pset( 
join(a,b)),psct(a)),join(a,b))) 

rewrite( not sub(fl 7(pset(join(a,b)),pset(a)),join(a,b )),or(not sub(fl7(pset( 
join(a,b) ),pset(a) ),a),not sub(f17(pset(join(a,b) ),pset(a) ),b))) 

rewrite( el(f17(pset(join(a,b) ),psct(a) ),pset(a)),sub(f17(pset(join( a,b) ), 
pset(a)),a)) 

rewrite(sub(pset(join(a,b)),pset(b)),or(not el(f17(pset(join(a,b)),pset(b)), 
psct(join( a,b)) ),cl(f17 (pset(join( a,b )),pset(b )),pset(b)))) 

rewrite(not el(f17(pset(join(a,b)),pset(b)),pset(join(a,b))),not sub(f17(pset( 
join(a,b )),psct(b )),join( a,b) )) 

rewrite( not sub(f17(pset(join(a,b)),pset(b)),join(a,b)),or(not sub(f17(pset( 
join(a,b )),pset(b) ),a),not sub(f17(pset(join(a,b )),pset(b )),b))) 

rewrite( el(f17(pset(join(a,b) ),pset(b )),pset(b )),sub(f17(pset(join(a,b) ), 
pset(b)),b)) 

rewrite(sub(join(pset(a),pset(b) ),pset(join(a,b) )),or(not el(f17 (join(pset(a), 
pset(b)),pset(join(a,b))),join(pset(a),pset(b))),el(f17(join(pset(a),pset(b)), 
pset(join(a,b))),pset(join(a,b))))) 

rewrite( not el(f17 (join(pset(a),pset(b )),pset(join(a,b) )),join(pset( a),pset(b )) ), 
or( not el(f17(join(pset(a),pset(b)),pset(join(a,b))),pset(a)),not el(f17( 
join(pset(a),pset(b)),pset(join(a,b))),pset(b)))) 

rewrite( not el(f17(join(pset(a),pset(b)),pset(join(a,b ))),pset(a)),not sub(fl7( 
join(pset(a),pset(b )),pset(join(a,b )) ),a)) 

rewrite( not el(f17(join(pset(a),pset(b)),pset(join(a,b))),pset(b )),not sub(f17( 
join(pset( a),pset(b) ),pset(join( a,b)) ),b)) 

rewrite( el(f17(join(pset(a),pset(b )) ,pset(join(a,b)) ),pset(join( a,b)) ),sub(f17( 
join(pset(a),pset(b)),pset(join(a,b))),join(a,b))) 

rewrite(sub(fl7 (join(pset( a),psct(b )),pset(join(a,b)) ),join(a, b) ),and(sub(f17( 
join(pset( a),pset(b )),psct(join(a,b )) ),a),sub(fl7 (join(pset(a),pset(b) ), 
pset(join(a,b))),b))) 
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At this point, rewriting has been completed; the procedure cnf _expand is 
now invoked to expand the rewritten theorem into conjunctive normal form and 
to then eliminate all tautologous conjuncts. 

call(O,cnf_expand(and(and( or( or( not sub(f17(pset(join(a,b )),pset( a)),a),not sub( 
f17(pset(join(a,b)),pset(a)),b)),sub(f17(pset(join(a,b)),pset(a)),a)),or(or(not 
sub(f17(pset(join(a,b )),pset(b )),a),not sub(fl7(pset(join(a,b )),pset(b )),b )),sub( 
f17(pset(join( a,b) ),pset(b) ),b)) ),or( or( not sub(fl7(join(pset(a),pset(b) ),pset( 
join(a,b))),a),not sub(f17(join(pset(a),pset(b)),pset(join(a,b))),b)),and(sub(fl7 
(join(pset( a),pset(b) ), pset(join( a,b)) ),a ),sub( f17 (join(pset( a ),pset(b) ),pset( 
join(a,b))),b)))),_l5815)) 

Initially, when cnf_expand is called, its output argument is the uninstantiated 
Prolog variable _15815. But when it returns, this output argument has been 
instantiated to the empty list, signifying that no non-tautologous portion of the 
theorem remains: 

result(O,cnf_expand(and(and( or( or( not sub(f17(pset(join(a,b )),pset( a) ),a),not sub( 
f17(pset(join(a,b)),pset(a)),b)),sub(f17(pset(join(a,b)),pset(a)),a)),or(or(not 
sub(f17(pset(join(a,b) ),pset(b) ),a),not sub(f17(pset(join(a,b )),pset(b )),b )),sub( 
f17(pset(join( a,b) ),pset(b) ),b)) ),or(or(not sub(f17(join(pset(a),pset(b) ),pset( 
join(a,b ))),a),not sub(f17(join(pset(a),pset(b )),pset(join(a,b) )),b )),and(sub(f17 
(join(pset( a), pset(b) ), pset(join( a,b))) ,a ),sub(f17 (join(pset( a ),pset(b)) ,pset( 
join(a,b)) ),b)))),[])) 

tautology3 returns: is_tautology 

theorem_is_a_tautology 

4.28 cpu seconds used 
0 inferences done 

We observed two very important things while running these tests. First of 
all, we found that including explicit rewrite rules to distribute "or" over "and" 
significantly slowed down the tautology checker. (Fortunately, the cnf_expand 
routine is able to test for tautologies without requiring that its input argument be 
in conjunctive normal form; hence employing the distribution rules is not 
needed.) We ran tests in which these distribution rules were used and tests in 
which they were not. The results are contained in the Appendix. 

Secondly, we discovered that the depth to which term rewriting is allowed to 
take place greatly affects overall performance. For example, in the case of the 
Power Set theorem exhibited above, we did not include in eur input the rewrite 
rules for the Subset axiom. By omitting those two rules (see the earlier section: 
"The Term Rewriting Mechanism in SPRFN") we cause the prover to regard 
terms of the form "sub(X,Y)" as atomic and thus it does not rewrite them. In 
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this way, it is able to discover that the entire theorem is a tautology. On the 
other hand, we found that if we included the rewrite rules for the Subset axiom, 
then our tautology checker was no longer able to eliminate the entire theorem as 
a tautology; indeed, it returned a significantly long conjunction, which the 
subgoaling mechanism then had to prove. This took a much greater amount of 
time. (Cf. Table 2 of the Appendix.) For a complete summary of our test results 
using the tautology checker, the reader should consult the Appendix. 

5 Preprocessing Input via Term Rewriting 

In our second experiment, we used our term rewriting facility as a preprocessor. 
We discovered in our earlier experiments that, as a general rule, the more com
plex the theorem, the greater the number of terms that ultimately result from 
rewriting the theorem. In fact, we found that for certain theorems, such as the 
Composition of Homomorphisms theorem (see below) it was physically impos
sible to use the tautology checker. This was due to the fact that one term was 
being rewritten to a conjunction (or disjunction) of several other terms, each of 
which was itself subject to being rewritten into a complex of several terms and 
so on. Thus, nearly exponential growth of the Prolog structure occurred during 
the operation of the rewriting facility. This eventually caused Prolog to run out 
of stack long before the cnf _expand subroutine had a chance to eliminate any 
tautologous portion of the theorem. 

We decided, therefore, to preprocess the theorem by reducing the size of the 
term that appeared as the body in the top-level goal. In general, our approach 
involved skolemizing the negated theorem and then using the rewriting facility 
to produce the initial set of input clauses. As an illustration of this technique, we 
present the following proof of the Composition of Homomorphisms theorem. 
We should point out that it was necessary to add three simple axioms in order to 
derive the proof; also, it was necessary once again to restrain the depth to which 
rewriting took place. 

Proof of Composition of Homomorphisms Theorem 

Our theorem is the following: 
(Vxh l,xh2,x:s l,x:s2,xs3,.if l,.if 2,.if 3)[(hom (xh l,xs l,.if l,xs 2,.if 2) 1\ 

hom (xh 2,x:s 2,.if 2,x:s 3,.if 3)) ~hom (compose (xh 2,xh l),x:s I ,.if l,x:s 3,.if 3)] 

After skolemizing the negation of the theorem we have three clauses to be 
rewritten: hom(ahl,asl,afl,as2,af2), hom(ah2,as2,af2,as3,af3), and 
not(hom(compose(ah2,ahl),asl,afl,as3,af3)). Based on these clauses, the 
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prover's term rewriting facility produced the following set of input clauses: 

Clauses derived from hom(ahl,asl,afl,as2,af2): 
eq(apply(ah1,app1y(afl,ord_pair(O 1,02))), 

apply(af2,ord_pair(apply(ahl,O l),apply(ah 1,02)))) :-
el(01,as1), el(02,as1). 

maps(ah1,as 1,as2). 
closed(as2,af2). 
closed(asl,afl). 

Clauses derived from hom(ah2,as2,af2,as3,af3): 
eq(apply(ah2,apply(at2,ord_pair(03,04))), 

apply(af3,ord_pair(apply(ah2,03),apply(ah2,04)))) :-
e1(03,as2), e1(04,as2). 

maps(ah2,as2,as3). 
closed(as3,af3). 
closed(as2,af2). 

Clauses derived from not(hom( compose( ah2,ah 1 ),as 1 ,afl ,as3,af3) ): 
el(g5,asl). 
el(g6,as 1 ). 
false:-

eq(apply(ah2,apply(ah 1,apply(afl,ord_pair(g5 ,g6)) )), 
apply(af3,ord_pair(apply(ah2,apply(ah1,g5)),apply(ah2,apply(ahl,g6))))), 

maps(compose(ah2,ahl),asl,as3), 
closed(as3,af3), 
closed( as 1,afl ). 

Note that our top-level goal has become: 
false:

eq(apply(ah2,apply(ah1,apply(afl,ord_pair(g5,g6)))), 
apply( af3 ,ord_pair( apply( ah2,appl y( ah l,g5) ),apply( ah2,appl y( ah l,g6)))) ), 

maps(compose(ah2,ah1),as1,as3), 
closed(as3,af3), 
closed( as 1,afl ). 

In addition to these input clauses, we added three axioms. The first two of 
these are trivial while the third, although non-trivial, can be derived by the 
prover in 24.63 cpu seconds after 15 inferences. 
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Axioms for proof of homomorphism theorem: 
eq(apply(XF1 ,S 1),apply(XF2,S2)) :-

eq(S 1 ,S3), eq(apply(XF1 ,S3),apply(XF2,S2)). 

el(apply(XF,X),S2) :- maps(XF,Sl,S2), el(X,Sl). 

maps(compose(X,Y),S l,S3) :- maps(Y,S l,S2),maps(X,S2,S3). 

Finally, we added some extra rewrite rules which serve only to cut down on 
the size of data structures that result from term rewriting. 

Rewrite Rules to handle large terms: 
rewrite(f32(ah 1 ,as 1 ,afl ,as2,af2),g 1 ). 
rewrite(f33(ah1 ,as 1 ,afl ,as2,af2),g2). 
rewrite(f32(ah2,as2,af2,as3,af3),g3). 
rewrite(f33(ah2,as2,af2,as3,af3),g4). 
rewrite(f32( compose(ah2,ah 1 ),as 1 ,afl ,as3,af3),g5). 
rewrite(f33(compose(ah2,ah1 ),as 1 ,afl ,as3,af3),g6). 
rewrite(apply(compose(XFl,XF2),S),apply(XFl,apply(XF2,S))). 

Given this preprocessed input, sprfn is able to derive the following proof of 
the theorem: 

proof found 
false:-1emma((eq(apply(ah2,apply(ahl,apply(afl,ord_pair(g5,g6)))), 

apply(af3,ord_pair(apply( ah2,apply(ah l,g5)), 
apply( ah2,apply(ah 1 ,g6) )) ) ):-[])), 

(maps(compose(ah2,ahl ),as1 ,as3):
maps(ah 1 ,as 1 ,as2), 
maps(ah2,as2,as3)), 

closed(as3,af3), 
closed( as l,afl). 

size of proof 18 

30.2333 cpu seconds used 
14 inferences done 

Note that the proof involves a lemma, which sprfn derived in the course of 
its operation. If we so desire, we can ask the prover to show us how it came up 
with this lemma. When we do so, it responds with the following derivation: 
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proof oflemma: 
false:-( eq(apply(ah2,apply(ahl ,apply(afl ,ord_pair(g5,g6))) ), 

apply(af3,ord_pair(apply(ah2,apply(ahl,g5)), 
apply(ah2,apply(ahl,g6))))):-

lemma((eq(apply(ahl,apply(afl,ord_pair(g5,g6))), 
apply(af2,ord_pair(apply( ah 1 ,g5),apply(ah 1 ,g6) )) ):-[])), 

( eq(apply(ah2,apply(af2,ord_pair(apply(ah 1 ,g5),apply(ahl ,g6) )) ), 
apply(af3,ord_pair(apply(ah2,apply( ah 1 ,g5) ), 
apply(ah2,apply(ah1,g6))))):-

lemma( (el(apply(ah 1 ,g5),as2):-[])), 
(el(apply(ahl,g6),as2):-

maps(ahl ,as 1 ,as2),el(g6,as 1 )) ) ). 

size of proof 11 

26.9166 cpu seconds used 
13 inferences done 

6 Summary of Results 

The techniques we employed allowed us to prove moderately sophisticated set 
theoretic theorems in rapid time with few inferences. These theorems would 
have been much more difficult to derive without the rewrite rules; indeed, sprfn 
was unable to derive some of them when run without the rewrite rules. 
Undoubtedly it would have been beyond the power of a typical resolution 
theorem prover to derive most of the theorems in question. 

We have found that removing the tautologous portion of a theorem by means 
of some filter such as our tautology checker seems to speed up the derivation 
time, by allowing the prover to focus its attention on the non-tautologous aspects 
of the theorem. Furthermore, we discovered that the depth to which term rewrit
ing is allowed greatly affects the prover's ability to arrive at a proof. Clearly, 
more work needs to be done in this area. At the present time, human interven
tion is required to adjust term rewriting depth; hopefully this can be automated 
to some extent in the future. 

Our research leads us to conclude that preprocessing input clauses by means 
of rewrite rules is also highly effective in directing a theorem prover's attention 
towards a fast, relatively short proof. Although this kind of preprocessing is 
presently being done by hand, we are confident that it can be fully automated. 
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Finally, among the practical results that we obtained, it bears mentioning that 
it pays to avoid distributing "or" over "and" by means of rewrite rules. 

At the same time, we discovered that there are limits to the power of term 
rewriting in connection with proving theorems from set theory. For one thing, 
we found that a clause's size grows almost exponentially when terms are rewrit
ten by terms which are themselves subject to being rewritten, and so forth. 
Although this problem has no effect on soundness, the physical limitations of the 
computer itself come into play at this point, causing the prover to run out of 
stack before it can complete its rewriting phase. 

We also realize that our procedure is not complete, if rewriting takes place at 
the wrong time. For example, suppose we have the rewrite rule: B -» P (x) and 
we wish to demonstrate that the following theorem is a tautology: 

B V (-P(a) 1\-P(b)) 

If we rewrite B before we distribute "or" over "and", we have: 
P (x) v (-P (a) 1\-P (b)) 

from which we can only derive: 
(P (x) v -P (a)) 1\ (P (x) v -P (b)) 

and this is not tautologous no matter how we instantiate the variable x. Yet if we 
distribute "or" over "and" before rewriting B, we have: 

(B V-P(a))/\(B V-P(b)) 

from which we can derive the tautology: 
(P (x) v -P (a)) 1\ (P (y) v -P (b)) 

since Prolog will provide a different variable each time it replaces B with P(x). 

This raises the following questions: Is term replacement more complete than 
term rewriting? How complete is term replacement for existentially quantified 
variables? Is replacement equivalent to delayed term rewriting? More work 
needs to be done before we are in a position to answer these questions. 

Finally, the approaches to term rewriting that we explored are not sufficient 
when trying to prove theorems that require creative insight. For example, in one 
of our experiments we tried to deduce Cantor's Theorem using our rewrite rules. 
However, we discovered that sprfn was unable to find the proof without being 
given quite a bit of non-trivial information. Specifically, we had to provide it 
with axioms implying (1) that any function induces its own diagonal set and (2) 
that the relation which pairs a unit set with its single element is a one-one func
tion. Once these axioms were supplied, by making use of our rewrite rules the 
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prover was able to derive Cantor's Theorem in 33.65 cpu seconds with 12 infer
ences. Nevertheless, one would like the prover to be able to realize on its own that 
such sets and functions exist. Yet recognizing that there is such a thing as the 
diagonal of a function and that such a set might be useful in this case requires a 
kind of insight that goes far beyond syntactic manipulations. Unfortunately, term 
rewriting alone does not provide the necessary machinery for the prover to possess 
this kind of creative insight. 
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Appendix 
Test Results Using a Tautology Checker 

Table 1 

Theorems 
(!) false:- eq(unioo(a,b),union(b,a)). 
(2) false:- eq(join(a,b)join(b,a)). 
(3) false :- eq(unioo(a,a),a). 
(4) false:- eq(join(a,a),a). 
(5) false :- eg(union(a,comp(a)), universe). 
(6) false :- eq(join(a,compfa)), 0}. 
(7) false :- eq(comp(universe),O). 
(8) false:- eq(comp(O),universe). 

(9) false :- eE.(comj){comp(a)),a). 
(10) false:- eg(union(a,O),a). 
(11) false:- eq(join(a,universe),a). 
(12) false:- eq(unioo(a,universe),universe). 
(13) false :- eq(join(a,O),O). 
(14) false:- eq(unioo(union{a,b),c),union{a,union(b,c))). 
(15) false:- eq(join(join(a,b),c),join(a,join(b,c))). 
(16) false:- if( sub( a b), then(eq(join(a,b),a))). 
(17) false:- eq(comp(union(a,b))join(comp(a),comp(bj)). 
(18) false:- eq(comp(join(a,b)),union(comp(a),comp(b))). 
(19) false:- eq(join(union(a b),union(a,comp(b))),a). 
(20) false:- eg(dlif(a,b).ioin(a,comp(b))). 
(21) false:- eq(union(a,universe),universe). 
(22) false :- eq(join(a,unioo(b,c)), union(join(a b), join(a,c))). 
(23) false:- egJunion(aJoin(b,c)), join(union(a,b), union(a,c))). 
(24) false :- sub(O,a). 
(25) false:-- if(and(sub(a,b),sub(b,c)),then(sub(a c))). 
(26) false:- if(sub(a,b),then(el(a,pset(b)))). 
(27) false:- if(disoint(a,b),then(eq(ioin(a b),O))). 
(28) false:- sub(a union(a,b)). 
(29) false:- sub(diff(a,b),a). 
(30) false:- if(sub(a,join(b,c)), then(and(sub(a b),sub(a c)))). 
(31) false:- eq(pset(ioin(a,b)),ioin(pset(a),pset(b))). 
(32) false:- eq(pset(join(a,b))join(pset(a),pset(b))). 
(33) false:- sub(prod(a,join(b,c))join(prod(a b),prod(a c))). 
(34) false:- if(and(sub(a,b),sub(c d)),then(sub(prod(a c),prod(b,d)))). 
(35) false :- if( and(meq( a,b ),meq( c,d) ),then( eq ( ord _pair( a,c ),otd _pair(b,d))}). 
(36) false:- if(eq(a,ord_pair(b,c)),then(opp(a))). 
(37) false :- if(and(m(a),m(b )),then(sub(set(a),set(a,b) ))). 
(38) false:- if(and(m(a),m(b)), then(eq(set(a,b),set(b,a)))). 

Note that theorems (31) and (32) are the same. However, (31) was proven using a rewrite rule for the sub
set axiom, while (32) was proven using a replace rule for the subset axiom. Using a replace rather than a 
rewrite rule prevented terms containing the "subset" predicate from being rewritten before tautology check
ing was performed. This allowed the prover to find the proof much faster in the case of this particular 
theorem. 
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Table 2 

Summarv of Results 
With "or-over-and" Without "or-over-and" 
Distribution Rules Distribution Rules 

Theorem Time Inferences Time Inferences 
(!) 3.23 0 2.5 0 
(2) 4.18 0 4.14 0 
(3) 1.66 0 1.61 0 
(4) 1.68 0 1.76 0 
(5) 5.93 4 5.31 4 
(6) 5.96 6 5.85 6 
m 3.66 4 3.5 4 
(8) 2.7 2 2.68 2 
(9) 5.73 4 4.86 4 

(10) 2.91 2 2.53 2 
(11) 4.53 4 4.46 4 
(!2) 4.73 4 4.33 4 
(13) 2.76 2 2.73 2 
(14) 9.68 0 5.51 0 
(15) 10.88 0 10.88 0 
(16) 7.48 4 4.91 4 
(17) 10.86 0 6.64 0 
(18) 18.1 0 5.94 0 
(19) 9.34 0 5.33 0 
(20) !0.11 5 8.73 5 
(21) 4.66 4 4.53 4 
(22) 20.55 0 8.44 0 
(23) 19.88 0 7.73 0 
{24}_ 1.26 2 1.18 2 
(25) 12.26 8 9.63 8 
(26) 3.76 4 3.21 4 
(27) 18.36 14 15.85 14 
(28) 0.81 0 0.78 0 
(29) 0.78 0 0.84 0 
(30) 40.76 16 24.04 16 
(31) 217.% 32 189.38 32 
(32) 4.83 0 4.28 0 
(33) 3.38 0 3.11 0 
(34) 63.55 32 34.63 16 
(35) 15.96 0 4.93 0 
(36) 69.11 23 37.78 16 
(37) 67.21 0 4.25 0 
(38) 109.00 0 8.84 0 

These results were derived by using a tautology-checker in conjunction with rewrite/replace rules. 

SUMMARY: In each case, the number of inferences required is virtually the same whether or not the "or
over-and" distribution rules are used. However, in almost every instance there is a speed-up when these 
rules are not used. Furthermore, as a general rule it seems that as the amount of time required to prove the 
theorem increases, the greater the speed-up when the "or-over-and" rules are not used. 


