
An Efficient Runtime System for IDL

TR87- 029

October 1987

Vikram Biyani

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall. 083A
Chapel Hill. NC 27514

; '

AN EFFICIENT RUNTnv.fE SYSTEM FOR IDL

by

Vikram Biyani

A thesis submitted to the faculty of the University of North Carolina at
Chapel Hill in partial fulfillment of the requirements

for the degree of Master of Science in the
Department of Computer Science.

Chapel Hill

October 1987

Approved l;>y

Advisor ~h , 1/ ; :;.• ••

I
l \.

Reader~~~~~· -----~~~'~---
(j!\; ... d q~yv.~v.-vvv.v Reader
~ L .U

@1987
Yikram Biyani

ALL RIGHTS RESERVED

VIKRAM BIYANI. An Efficient Runtime System for IDL
(Under the direction of RICHARD SNODGRASS)

The Interface Description Language is a language to specify data structures
communicated between processes. This research deals with the des ign of an
efficient runtime system for IDL. This thesis discusses the functions such a
runtime system should support, and describes bow they are implemented in
our sys~em. The runtime system includes support for input and output of
IDL instances both in ASCIT and in relocatable binary format, support for
sets and sequences of objects, an object management system with garbage
collection and a memory display facility for debugging purposes. An exam
ple IDL specification is presented. Limitations of the system and directions
for future work in the area are discussed.

Acknowledgement

My special thanks to Rick Snodgrass for his help and encouragement through
the course of this research;
to Dean Brock and Bharat Jayaraman for taking the ~ime to serve on the
thesis committee and for their comments on this text;
and to Ralph Cook, Ed McKenzie, Ani! Nair, and Sundar Varadarajan who
helped at various stages of coding, debugging and text preparation.

Contents

1 Introduction

2 An Introduction to IDL
2.1 The Data Declarat ion
2.2 The Process Declaration
2.3 ASCTI External Representation
2.4 A Complete IDL Specification .

3 The Problem

4 Previous Work
4.1 Input a.nd Output of IDL instances .
4.2 Recovery Of Instances ~ot In Use .

5 Overview of the Runtime System Design
5.1 IDL Data Objects
5.2 Support for Sets and Sequences •
5.3 Creation of IDL Data Objects

5.3.1 Creation of an IDL Node Object
5.3.2 Creation of an IDL String Object .
5.3.3 Creation of Other Data Objects.

5.4 Reclamation of Storage
5.5 Reading and Writing of IDL Instances

5.5.1 Binary Writer .
5.5.2 Binary Reader
5.5.3 ASCII Writer .
5.5.4 ASCII Reader .

5.6 Marker Ports .
5.7 Private Types

6 Runtime Sy>~~ew lwplementat1on
6.1 Private Types
6.2 Self Identifying Data

6.2.1 The Node Object . .
6.2.2 The System O bject .

1

4

5
5
7
9
9

11

16
16
17

20
20
21
zz
23
24
24
24
25
25
27
29
29

• 29
30

32
32
33
33
34

6.2.3 The Free Page Object
6.2.4 IDL Memory Layout

6.3 Allocation and Initializa tion of Objects .
6.4 Garbage Collection . . .
6.5 Performance

6.5.1 Space Overhead .
6.5.2 Time Performance

7 Conclusion and Future W or k
7.1 Future Work

8 Bibliography

A The Runt ime Interface
A.l Aspects
A.2 The Invariant Table
A.3 The Port Table ...
A.4 ASCII Port Tables
A.5 Private Type Table .
A.6 IDL Runtime Routines .

B An Example

2

40
'11

42
44
46
46
47

50
51

52

54
54
55
56
57
58
59

62

List of Figures

1 Operations Supported on Sets and Sequences 22
2 Object Headers 34
3 The String, List Cell, and List Header 36
4 The String Hash Table . . . 37
5 The Label table 38
6 An Unresolved Label Entry 39
7 A Resolved Label Entry . . 40
8 IDL Memory Layout 41
9 The Free Page Pool. 43
10 Aspect 55

3

1 Intro duction

The Inter/ace Description Language {IDL) is a formal way to specify data
structures co=unicated between processes (5, 9, 11J. A process typically
reads some input data, manipulates it, and produces some output data
which is written out. IDL provides high level utilities for creation and
manipulation of these data structures and their input and output.

AP IDL specification consists of two parts, the data specification and
the algorithm specification. The IDL data specification facility is especially
suited for describ ing graph--structured data. The da ta s tructures are spec
ified in a declarative fashion that resembles attributed grammar notation.

The algorithm specification is a program written in one of the IDL target
languages, using the high-level utilities provided by IDL. IDL supports
abstract data structures such as sets and sequences and provides utili ties
for their manipulation, so that the user may express the algorithm more
naturally in terms of operations on abstract entities without worrying about
implementation details. The input and output of data is done through
tmidirectional ports. Each algorithm specification may have several input
ports and output ports. Associated with each port is a specification of the
data structure that is to be input or output through this port.

The IDL specification is run through the IDL translator, which compiles
it into a program in the appropriate target language. After this program
has been compiled and linked with the IDL runtime library, it is ready to
run.

This thesis describes a runtime system for lDL which is more efficient
than the current one, the IDL Runtime Library Version A. First, the ex
isting runtime system is briefly touched upon, along with the problems
associated with it. Then, other relevant. work in this area is reviewed, fol
lowed by a description of the design and implementation details of the new
system. Finally, recommendations are made for future work in this area.
The IDL runtime interface description appears an an appendix. Another
appendix pre:~ent:s ll.n exa.mple IDL ~peci llcaLion, along with files generated
from it by the IDL translator.

It is assumed that the reader is fairly familiar with IDL [111. The
next chapter presents and briefly explains a simple example of an lDL
specification.

4

2 An Introduction to IDL

This chapter contains a brief introduction to t he Interface Description Lan
guage with the aid of an example. Most of the material here is excerpted
or paraphrased from A Tutorial Tntroduction to Using IDL!lll by Jerry
Kickenson. This chapter may be skipped over by the reader familiar with
IDL.

To use the IDL system, the user writes a specification in IDL of the co
operating processes that compose the system being developed and of the
data structures these processes share.

2.1 The Data Declaration

The data structures are specified using named collections called structures.
A structure is built from units called nodes and classes.

A node is a named collection of zero or more named values called at

tributes that the user wishes to treat as a unit. Attributes actually hold
the data values; nodes are a grouping device.

The declaration for a node consists of the name of a node, followed by the
node production operator, " >, and a lis t of zero or more co=a separated
attribute-type pairs, terminated by a semicolon. All attributes in the same
node must have distinct names. T he order in which the attributes appear
in a declaration is not significant.

The following is an example node declaration:

B => X
R

Boolean,
Rational:

This declares B to be a node containg two attributes, X and R, of types
Boolean and Rational respectively. The standard attribute types sup
ported by IDL are Integer, Boolean, Rational, and String. A node may
have anothe.r node as its attribute. IDL also supports structured attribute
types like Sets and Sequences of objects of other types.

In addition to the above mentioned attribute types, lDL allows the
user to augment the standard IDL attribute types by defining and using
what are known as Private Types. The user is responsible for providing

5

data declarations and procedure definitions for his private types in the
Target Language. These declarations are made known to the IDL translator
through the IDL specification and are. linked with the user program at
compile time.

A class is a name for a variable that may hold a reference to one of a
set of nodes or other classes. A Class is analogous to a C union. The nodes
and classes that a class can refer to are called its members.

A class declaration consists of the name of the class, followed by the
class production operator, ::~,and a list of one or more node or other class
names separated by alternation signs, I, and terminated by a semicolon.
The ordering of node and class names on the right hand side of a class
declaration is not not significant.

All node and class declarations occur within structure declarations. A
declaration of a structure starts with the IDL keyword Structure followed
by the structure's name, then by the designation of a node or class as its
root introduced by the IDL keyword Root and then by a List of the one or
more node and class declarations that comprise the structure that begins
with the IDL keyword Is and ends with the IDL keyword End.

Below is an example structure declaration.

Structure Structin Root Anode Is
Anode •> List: Seq Of B.

Name: CharSet;

For CharSet Use Package CharSet;
For CharSet Use Type CharSet;
For CharSet Use External Representation String;

B :> X: Boolean,
R: Rational;

End

A structure called Structin is declared, consisting of two nodes, Anode
and B. The root of this structure is the node Anode. One of the attributes
of Anode, called Name, is of a private type called CharSet. By saying,

For CharSet Use Package CharSet;

6

the user informs the IDL translator t hat the declarations for this private
type are to be found in the file CharSet. hand its procedure defulitions are
in the file CharSet. c. By saying,

For CharSet Use type CharSet;

the user informs the IDL translator that the IDL private type CharSet
is implemented as the C type CharSet. The user also informs the IDL
translator that the external representation for Charset is the IDL type
String.

IDL allows the user to declare a new data structure in terms of one or
more previously declared structures. This is known as derivation of one
structure from other structures. Derivation allows the user to copy the
node and class declarations from several structures and then add or delete
attributes to node types, members to class types, whole node types, or
whole class types.

For instance,

Structure Structout Root Anode from Structin Is
Without B • > X;

Anode => Number: Integer:
End

The above declares a structure named Structout which is derived from
the previously declared structure Stru<:tin. The first node production is
preceded by the IDL keyword Without. It indicates the deletion of the
attribute X from the node type B. The second node production introduces
a new attribute Number into the nodetype Anode.

2.2 The Process Declaration

A process is the IDL model for a computation. An instance of a process
reads and writes instances od IDL-specified data structures to and from
external storage through a collection of ports.

A port is an association between an IDL-specified data structure and a
name for the IDL-supplied implementation of the routines for reading and

7

writing that structure. A Pre port is for input and a Post port is for output.
The routines that do the input and output of IDL data structures have to
translate between the internal (in main memory) representation and the ex
ternal (outside main memory) representation of thee data structures. IDL
supports two different formats for external representat ion, ASCII Extuna/
Representation Language (ASCII ERL), and Relocatab/e Binary.

A Mark port is for neither input nor output. It associates with a struc
ture a routine that sets bits indicating whether an object is reachable from
a given structure instance.

Below is an example process declaration:

Process InOut Is
Target Language C;
Target Runtime Version B;

Pre P: Structin;
For P Use Ascii External Representation;

Mark M: Structin;

Post Q: Structout;
For Q Use Binary;

Pre R: Structout;
For R Use Binary;

Post S: Structln;
For S Use Ascii External Representation;

End

The above declares a process named InOut with five ports, namely P, M, Q,

R and S. Associated with each port is a previously declared structure. For
each input or output port, the external representation is specified as Bi
nary or Ascii External Representation. There are also statements that
specify the target language and the runtime system used for this process.

8

2.3 ASCII External Representation

Of the two external representation formats used by IDL, the ASCll ERL
is the one that is human readable.

The syntax of the ASCll ERL is free form. A structure instance is
represented in terms of the objects that comprise it. The representation of
an object can be nested within the representation of the node that references
it or placed at the highest level to form a fiat list of objects. A representation
that uses any intermediate level of nesting is also acceptable.

The following is an example ASCII ERL representation of an instance
of the structure Structin described earlier:

Anode (List < firstS~ SecondS" ThirdS~ SecondS~>
Name •astz"

J
firstS: B(X TRUE; R - 11/30]
SecondB:B[R 11.3]
ThirdS: B[X FALSE]

The above is a fiat representation of the four nodes that comprise the
instance. The first node in the file is the root node. A node is repre
sented as an optionally labeled node name followed by an enumeration of
its attribut~value pairs, separated by semicolons and bounded by square
brackets. The ASCII ERL representation of an instance is terminated by a
#.

2.4 A Complete IDL Specification

Below an IDL specification is presented. It uses a private type named
CharSet. The algorithm specification and the user supplied private type
files for this example can be found in Appendiz B. The files generated by
the IDL translator for this example can also be found in Appendix B.

Structure Structin Root Anode Is
Anode => List: Seq Of B.

llama: CharSet;

9

For CharSet Use Package CharSet;
For CharSet Use Type CharSet;
For CharSet Use External Representation String;

B => X: Boolean,
R: Rational;

Md

Structure Structout Root Anode From Structin Is
Without B •> X;

Anode => Humber: Integer:
~d

Process InOut I s
Target Language C;
Target Runtime Version B·

Pre P: Structin;
For P Use Ascii External Representation:

Mark M: Structin;

Post Q: Structout ;
For Q Use Binary;

Pre R: Structout;
For R Use Binary:

Post S: Structln:
For S Use Ascii ~xternal Representation;

End

10

3 The Problem

In this chapter, we describe the functions that need to be supported by the
IDL runtime library. Then we describe the pre-existing runtime system,
with some of the problems associated with it. Finally we describe our
approach to supporting these functions.

IDL data structures, termed instances, are directed, possibly cyclic,
graphs. The fundamental building block of a structure instance is a self
identifying, or tagged, chunk of memory termed a daw object. It has a
4-byte header word that contains its size, type, and similar information. A
data object may also be referred to simply as an object.

There are two types of data objects, namely, nodes and system objects.
A node is a user-defined data object implemented as a constant amount
of storage depending upon its nodetype, with slots for its attributes. An
IDL specification of a node is much like a C struct declaration and the
attributes of a node are a lot like the fields of a C struct. A nodetype is
analogous to a C type identifier.

A node may have an attribute either by value or by reference. The
distinction between the two is that of sharability. A value attribute is not
sharable among nodes. It is physically located within the node to which
it belongs. A reference attribute, as the name suggests, is a point er to a
data object in main memory. More than one node can share a reference
attribute by possessing a reference to it. Value attributes are those whose
sizes can be determined at compile time, typically scalar data types such
as booleans, integers and rational numbers. Reference attributes are either
other nodes or things like character strings and sets and sequences of other
objects, whose size cannot be determined at compile time.

System objects are system-defined and are invisible to the user. They
are used to implement sets, sequences and strings. Some system objects are
used by the runtime system to implement data structures used internally.
They do not form part of any structure instance.

A 11tructurt instance is a directetl ~raph with a distinguished vertex
termed its root, from which all of its other vertices are reachable. The
vertices of this graph are nodes and system objects. Its arcs are pointers
linking nodes to their reference attributes, and pointers linking objects to
form sets and sequences.

11

The IDL runtime library supports four classes of functions:

1. Operations on structured data such as sequences and sets;

2. Creation of new instances of IDL data structures, and their initial
ization, if necessary;

3. Reclamation of storage from instances that have outlived their use;

4. ~!ovement of IDL structure instan~..es between main memory and disk.

The current IDL runtime system uses the ASCIT External Representa
tion Language (ASCIT ERL) to represent IDL structure instances on disk.
The ASCII ERL representation of an IDL structure instance is a linear
enumeration of its sub-graphs. Each node, set or sequence, may have a
(unique) label through which it can be referred to.

Within a node, each attribute is listed as a (name, value) pair. A ref
erence attribute can be listed alternatively as a {name, label} pair. The
drawbacks of ASCII ERL are that it is bulky, and that a considerable
translation effort is required to convert between it and the IDL internal
representation. Its advantages are that it is machine and language inde
pendent and that it is in ASCIT, which make it, at least in theory, human
readable. In practice, though, an IDL structure may be complicated, and
if it is large enough, any linear representation of it, as in the ASCII ERL,
may be hard to read.

A new object is created by allocating storage for it and inserting into
it the information that makes it self-identifying. Each time space needs
to be allocated, a UNIX system call is made. The user may specify an
initialization procedure for objects of a particular type. If no initializa
tion procedure is specified, the newly created object undergoes a default
initialization before being returned to the user.

The IDL runtime library provides a facility to create sets and sequences
of objects, and associated operations like lnsertion and deletion of elements,
sorting of sequenee:s, and membership LesL~. There can be several ways to
represent sets and sequences. A sequence can be represented as a linked
list, or as an array of pointers to its members. A set of abstract entities
can be represented as a bit map. This representation leads to efficient set
operations, but is feasible only if the size of the average set is not too small

12

compared to the size of the universal set in the domain. A set of objects
can also be implemented as a special sequence, with no member occurring
more than once.

The current IDL runtime system only supports explicit deletion of ob
jects. The user has to keep track of objects that are not useful any more
and reclaim the space used by them.

Some of the problems with the existing system are as follows. The
ASCll ERL is extremely inefficient both in time and in space. Object
management routines are slowed down because they use UNIX system calls
for allocation and deletion of objects. The requirement of explicitly deletion
to reclaim space puts unnecessary burden on the user. In addition, it may
often be impossible to determine at programming time whether an object
will become useless and its space should be reclaimed. If all references to a
data object are destroyed, and it becomes inaccessible, it becomes garbage
and the space allocated to it can never be recovered. Another problem is
that of an object being deleted before all references to it are destroyed. Such
a reference is called a dangling reference. If a program attempts to modify
through a dangling reference, contents of a totally 1mrelated data object,
or even the yet unallocated memory are likely to be modified, leading to
errors in execution that may be very hard to detect.

We see that though all functions listed above are supported in some
form by the existing IDL runtime system, there is need for improvement in
efficiency, functionality, and usability.

For reasons given below, the representation of a data object on main
memory must be different from its representation when it is transferred to
disk. We call the main memory representation of data objects their internal
representation and the representation on disk their external representation.
Within an IDL process, there may be more than one structure declaration,
each associated with one or more ports. IDL provides the user with a data
derivation facility which makes it possible to define one data structure in
terms of other previously defined data structures. Derivation allows a user
to copy a p~cvioU3 node definition from on.: strucLure to another, retaining
its nodetype, and then to edit it by adding new attributes and deleting old
attributes. As a result of such derivations, a process may have the same
nodetype defined with different attributes within different structures.

Within a process, all node objects with the same nodetype have the

13

same representation in main memory. This representation is defined by the
process invariant structure which is derived by taking the union of all struc
tures defined in the process. Though this representation may be wasteful
in terms to space, it simplifies the routines and tables that have to be
maintained by the runtime system to aid in the creat ion and manipulation
of these data struct ures. Before a strudure instance associated with an
output port is to be WTitten out, the invariant representation for each node
object in that instance must be shrunk to just the node declaration in that
particular structure. Before writing to disk, each reference to an object in
main memory (generally a pointer) must be translated to a reference to the
same object on disk. Similarly, when an instance of a structure associated
with an input port is to be read in, each node object read in is mapped
to its invariant representation in main memory. Each relocatable reference
must be translated to an absolute memory reference.

An alternative to the requirement of having to free space by explicitly
deleting instances is to provide for garbage collection. As soon as an alloca
tion request fails owing to the lack of available space, the garbage collector
is activated.

In the runtime system described in this thesis, data objects are written
to disk in a rdocatable binary format. A relocatable binary representation is
a dump of all useful memory with all pointers made relocatable. Unlike the
ASCll ERL, this representation is both machine and language dependent.
Also unlike the ASCll ERL, this representation is compact, the translation
between this and the IDL internal repr esentation is quick, and the code
required for this translation is small.

This runtime system also provides an improved facility for input and
output in ASCII ERL. Both ASCII and relocatable binary 1/ 0 are table
driven. The tables are generated from the user's IDL data specification by
the IDL translator. Even though ASCII ERL continues to be supported for
input and output, the preferred format for input and output is relocatable
binary.

In contr...,;t to the o:x.i.:sLing runtime system, which uses UNIX system
calls for space allocation and de-allocation, this system does its own mem
ory management. It maintains a pool of free blocks of memory from which
allocation is done. Explicit de-allocation of IDL instances is not required.
Whenever the memory management system runs out of space, a garbage

collector is activated. This garbage collector de-allocates all instances t;hat
are not reachable through currently active user variables. This prevents
the creation of dangling references. Adjacent free blocks of memory are
coalesced into one block. This relieves the user of the burden of space man
agement. The overhead of explicit deletion of instances is eliminated, since
the garbage collector goes into operation only when the process has run out
of space.

15

4 Previous Work

This section reviews work by other researchers in fields relevant to the the
system under discussion.

4.1 Input and Output of IDL instances

The spectrum of IDL external representations is described by Newcomer
{6]:

1. ASCll

2. Tokenized ASCII

3. Absolute Binary

4. Relocatable Binary

We have already described the AS CIT ERL and the problems associated
with it.

The use of tokenized AS CIT eliminates the need for lexical analysis from
the reading phase. This makes it faster and smaller than ASCTI ERL,
though it is not human readable.

The absolute binary representation is essentially a memory dump. A
structure transferred from one process to another, using this representation,
must occupy the same memory locations in the virtual space of the receiving
process that it occupied in the source process. This requirement is much
too restrictive for this representation to be generally useful.

The relocatable binClry representation is an improvement on the absolute
binary representation in that aU references are relocatable. It is not human
readable, but it is compact. Newcomer reports that the input and output
of IDL structure instances is improved in speed by as much as two orders
of magnitude when the ASCII ERL is replaced by the relocatable binary
format.

As noted in the previous chapter, the existing IDL runtime system sup
ports only ASCH ERL format for input and output of IDL structure in
stances. The IDL translator analyzes the data specification and generates
routines for reading and writing of IDL structure instances. Jt creates a

16

different routine to read or write node objects of each individual node type,
and these routines are called during the input or output of an IDL structure
instance. The amount of code required for input and output is proportional
to the complexity of the IDL specification for that structure.

In contrast, the runtime system described here uses a general purpose
driver for reading and writing lDL structure instances. The lDL trans
lator generates a tables that contain the information specific to the IDL
st.ructure definitions in a p:-rticular process. The general purpose drivers
use information in t.hese tables t~ read in and write out particular types of
nodes and their attributes.

When an IDL structure is being traversed so that it can be written out,
all the pointers in each node have to be located and followed. Newcomer
uses a bit-map called a pointer dictionary for each type of node. Each bit
in the bit-map indicates whether the corresponding word in the node is a
pointer.

In addition to information about location of pointers within nodes, our
implementation also needs information about mapping of attributes in each
node in the process invariant to t he corresponding attributes in the corre
sponding nodes in the port structure. The latter is best represented in
tables. Rather than keeping a table and a pointer dictionary, we find it
more efficient to incorporate the information about pointers in the tables
and do away with the pointer dictionary.

4.2 Recovery Of Instances Not In Use

Data elements that are no longer in use should be recovered, and space
allocated to them should be freed so that it can be used elsewhere. There
are three principal approaches to recovery 11, 7J:

1. Explicit Return,

2. Reference Counting, and

3. Mark- Scan Garbage Collection.

The explicit return approach is the simplest to implement. The runtime
system provides a procedure which, when called with a data object as its

17

argument, destroys the object and frees the space associated with Lt. This
is the approach taken by the existing IDL runtime system. The problems
associated with it have been described in the previous chapter.

Reference counting is an approach to space recovery that prevents the
creation of dangling references [2]. Associated with each data object is a
number called its reference count. When an object is created, its reference
count is set to 1. Each time a new reference to an object is created, its ref
erence count is ;11cremented. Conversely, each time a reference is destroyed,
its reference count is decremented. When the reference count of an object
becomes zero, it indicates that no references to that object exist any more.
At this time, the object is deleted and the space occupied by it is reclaimed.

There are several problems with this approach. This technique may
fail to prevent the creation of garbage- if there are self referential data
structures. The requirement that each object have a reference count may
lead to a severe space overhead if the average size of objects is small. The
maintenance of reference counts causes a. substantial overhead in execution
time as well. For every assignment to a. pointer variable, one reference is
destroyed and another created, i.e., one reference count is decremented and
another incremented.

~ark~can garbage collection is an approach that makes no explicit
deletions, thus preventing the creation of dangling pointers. It lets garbage
be created until all space is exhausted, at which time, a special procedure
goes into operation that identifies all garbage and returns the storage to
the free pool. This approach requires each data object to have a 'mark' bit,
which is initially off.

There are two stages in this procedure. In the first stage, all objects
that are accessible by the process running are marked. In the second stage,
the entire memory space is scanned and all objects that are not marked are
recovered. All objects that were marked in the first phase have their marks
turned off.

There are other more specialized and more sophisticated approaches to
garbage collection. For instance, Deutsch and Bobrow describe an incre
mental garbage collector whose performance is based on the observation
that most allocated storage is either referenced only by one unchanging
pointer throughout its lifetime or is used for temporary results, i.e., isaban
doned quickly after creation j3]. While this observation may be true ror

18

execution of LISP programs, it probably does not hold for IDL instances in
memory, therefore the efficiency of this garbage collection strategy in the
context of IDL processes is doubtful.

Wegbreit describes a compactifying garbage collector whose main virtue
is that it works even when pointers point in the middle of objects, and the
algorithm goes to great lengths to ensure correctness in such situations [12].
Each pointer in an IDL instance refers to the starting location of an object,
never to the middle of it, therefore the problem that this garbage collector
is attempting to solve does not exist in this context.

19

5 Overview of the Runtime System Design

Chapter 2 briefly described the functions that should be supported by an
IDL runtime system. This chapter contains a high-level description of the
approach taken in this runtime system to support each of these functions.
The next chapter provides the next level of implementation detail.

5.1 IDL Data Objects

There are three types of IDL data objects:

1. ~ode,

2. System Object, and

3. Free Page.

Each data object is a contiguous piece of memory. The first word of the
data object, also known as its header, identifies the object. The interpreta
tion of the rest of the data object depends on its header. The node is the
only user defined object. Other objects are system-<lefined.

The header of a node contains a field called its nodetype. All node
objects with the same node type have the same size and the same attributes.
The IDL translator generates a. table called the process invariant table which
has entries describing the memory layout of instances of each nodetype.
For each IDL port, it also generates a table called port table, describing the
nodes in the corresponding port structure.

System objects are further classified into eight types. Below, the three
that may appear in IDL st ructure instances are listed.

1. String,

2. List Cell , and

J. List Header.

The other five types of system objects, used internally by the runtime sys
tem, are discussed in the next chapter.

A string is a variable sized object that s tores a character string.

20

List cells are used to construct linked lists, representing sets and se
quences of other objects.

A sequence (or a set) can be shared between many nodes, through a
pointer to the first list cell in the sequence. As changes are made to a
sequence during the lifetime of a process, the first cell in the sequence
must remain the same, so t hat dangling pointers are not created. This
requirement cannot always be met. For instance, a null sequence has no
first list cell, therefore, when a shared non-null sequence is made null, it
will always create dangling references. A way to get around this problem
is to always have a dummy list cell as the first element of a sequence. This
is a special type of system object known as a list header. A Jist header is
merely a place-holder for a sequence. It provides a stable address for a
sequence whose composition might keep changing.

The IDL object management system maintains a pool of free memory
from which it periodically allocates storage for the creation of nodes and
system objects. This pool consists of variable sized chunks of memory
known as free pages.

5.2 Support for Sets and Sequences

Sets and sequences are two structured data types supported by IDL. A set
or a sequence is a. collection of instances of one of the predefined types,
namely, Boolean, Integer, String, and Rational , a. nodetype, or a. user
defined type known as a private type. Figure 1 lists operations possible on
sets and sequences.

The representation of sets and sequences uses list cells. A sequence of
instances of a scalar type like Boolean, Integer, Rational , or a private type,
is represented by link.ed list of list cell objects, the data field in each list
cell containing a member of the sequence. A sequence of node objects or of
string objects, is also represented by a similar linked list, the data field in
each list cell containing a pointer to a member of the sequence.

A set is implemented o.s a. apccial case of a. 3e'luence, with uo member
occurring more than once.

21

operation II sets I sequences

1. Addition of an element To the front
..; To the rear

In order
2. Making a copy ..; ..;
3. Test for emptiness ..; .j
4. Iteration over elements ..; .j
5. Initialization to empty ..; .j
6. Membership Test ..; .j
7. Return the size ..; ..;
8. Removal of an element Of the first occurrence

of a given element
..; Of the first member

Of the last member
Of the i'~ member

9. Retrieval Of the first member
X Of the last member

Of the i 1h member
Of the tail

10. Sorting X .j

Figure 1: Operations Supported on Sets and Sequences

5.3 Creation of IDL Data Objects

As mentioned earlier, this runtime system does its own memory manage
ment. Throughout execution, a pool of free memory is maintained by the
memory management system. This pool consists of data objects Jrno,vn as
f ree pages. A free page is identified by its header. The data cont ained in a
free page includes its sizo and pointers linking it into the pool of free pag.::s.

At the start of execution, the free pool consists of a rather large free
page which constitutes the entire IDL data memory available to the u.ser
process. As execution proceeds, this free page keeps getting smaller with
each allocat ion. At some point t here may be an allocation request that

22

cannot be met by this free page. This failure causes the garbage collection
procedure to go into operation. When garbage collection is over, the free
pool is likely to contain several free pages, one of which will likely be of
adequate size. If this is not the case, the allocation request fails and the
user is notified.

5.3.1 Creation of an IDL Node Object

The runtime system receives a request for the creation of a new node in
stance with a specified nodetype. The size of memory to be allocated is
obtained from the corresponding entry in the process invariant table. A
chunk of memory of t his specified size is carved out of one of the free pages
in the free pool. The first word of this piece of memory is set up as the
node header, with information identifying it as an instance of a particular
node type.

The life of a node object may extend beyond the lifetime of the process
by which it is created. A process may create a node and write it out
to disk as a part of a structure instance. At some time in the future,
this node object may be read in by another process, possibly r-unning on
a different mac.hlne. It is desirable to associate with each node object a
process identifier unique over space and time, which identifies the process by
which this node was originally created. This process ID is derived from the
time of process creation, the address of the machine on which the process
is running, and its UNIX process..id. The runtime system maintains a
process ID table and each node object in main memory has a processiD
field in its header that contains an offset into this table, identifying the
process by which it was created.

When a node object is created, its process ID field is given the appro
priate value.

All attributes of this node are initialized using a user provided initial
ization routine for instances of that particular nodetype. Ir there is no
initialization routine, the attributes are given system llefined default val
ues. Finally a pointer to the newly crea.ted node instance is returned.

23

5.3.2 Creation of an IDL String Object

A request for the creation of a new string object is accompanied by a pointer
to a C string.

The runtime system maintains a hash table to store addresses of all
string objects in use. When it receives a request for the creation of a new
string object, it tries to find an al ready existing string object that matches
the given C string. If such an object e.xists, a pointer to it is returned to
the caller. Otherwise, a piece of memory is allocated from the free pool,
its header is set up to reflect that it is an IDL string object of a particular
size, and the characters in the C String are copied to it. A pointer to the
newly created string object is returned to the caller, and also stored in the
hash table. This procedure ensures that a process never has more than one
string object with the same contents. This results in the test for equality of
strings being reduced to the much simpler test for equality of pointers. It
also requires that once a string objecL has been created, its contents cannot
be modified. Of course, a reference to a string object can be replaced by a
reference to another string object, conta ining different characters.

5.3,3 Creation of Other Data Object s

Creation of any other object is much like the creation of a node object. It in
volves allocation, setting up the header, initializing the data, and returning
to t he caller a pointer to the newly creat ed object.

5.4 R eclamation of S torage

As soon as an a!Jocation request is made which cannot be met because of
a lack of free space in the IDL data memory, a special procedu.re known a.s
garbage collection goes into operation.

The marking phase of the garbage collector scans each location that
could possibly be a pointer in the runtime stack and the global variable
area of the process in execution [lOj. It t reat• each such wuru IUj a potential
pointer to an IDL data object. If such a word is found to contain the
address of the header of an ID L data object, that object is classified as
active. Occasionally, a word which is not really a pointer is treated as one,

24

and as a result , a piece of garbage may be marked active. This does not
cause any error; it merely results in some garbage not being collec ted.

All IDL data objects reachable from an active object are also classified
as active. During the marking phase, the garbage collection flag in each
active object is turned on.

After the marking phase is over, t he scan phase begins. During this
phase, a linear scan of the IDL data memory is made. Each data object
encountered with its garbage collection flag off is reclaimed and added to
the pool of free pages. Physically adjacent free pages are coalesced into
one page. The garbage collection flags of active objects are turned off
during this phase. At the end of this pnase, all active objects are as before,
all garbage has been collected and returned to the free pool, and garbage
collection fl.ags are off on all objects.

In contrast wit h the method of reference counts described in chapter 3,
this scheme can garbage collect circular structures.

5.5 Reading and Writing of IDL Instances

This section first describes the relocatable binary writer and reader algo
rithms. Then it describes the minor changes and enhancements needed to
support ASCII reading and writing.

5.5.1 Binary Writer

The IDL writer is called to write IDL structure instances exist ing in main
memory to secondary storage. Its tasks include the following:

1. Identify all data objects reachable from the root of the structure in
stance to be written to disk. All these are parts of the structure to
be written out.

2. Locate all pointers within each of t hese data objects and convert them
to relocatable referenr.P-~.

3. Ensure that data objects shared within the structure instance are
wr itten out only once.

25

4. Ensure that each node object is written out in conformity with the
structure specification associated with t hat particular output port.
This means that in particular, the invariant representation of a node
in main memory should be translated to its representation in the port
structure before being written out.

5. Ensure that all private type objects and attributes are written out in
their external representations.

The IDL writer requires the following data structures to be supplied.
Some of them are previously initialized global variables, others are passed
to it as procedure parameters.

1. A pointer to the root of t he structure instance to be written out. This
is supplied as a parameter by the user.

2. An open file to write to, also supplied as a parameter.

3. The process invariant table, a table describing the invariant represen
tation of each type of node in main memory. This table is generated
by the IDL translator and is available to the runtime system.

4. The port table, a table describing the port structure. There is one
such table for each TDL port, generated by the TDL translator and
available to the runtime system.

5. The private type table, a table containing specifications for private
types, pointers to initialization routines, and to routines for conver
sion between their external and internal representations. This table
is also generated by the IDL translator and is available to the runtime
system.

Starting with the root, with information from the port table and the
process invariant table, all pointers in the given structure instance are fol
lowed. These include the pointers to reference attributes in nodes and the
set and sequence links. Each data object encountered is marked. The mark
ing operation consists of associating with each data object a unique positive
even integer known as its relocation index and setting up a Bag in the data
object that says that it has been visited during the marking p l1ase of the

26

writer. The relocation index of the object is stored in place of the object
header. The header of this object and a. pointer to it are saved in an entry
of a table called the relocation table.

If there are n data objects in the structure to be written out, their re
location indices range from 2 to 2n. Index 2 is assigned always to the root
data object. Index 0 represents a null pointer. Odd integers are used to rep
resent nodes without attributes and are therefore not usable as relocation
indices. Since a data object is uniquely identified by its relocation index,
each absolute pointer to that object can be made relocatable by replacing
it with the relocation index of that object.

Once a data object has been marked, it is ready to be written to disk.
Below, the procedure of writing out a node is described. List cells and
string objects can be written out in a similar manner.

First the header of the node is written out. Then each of its attributes
have to be written out in some form. The port table contains entries indexed
by node type that describe an instance of that nodetype and its attributes.

As noted earlier, a node may have two kinds of attributes. A reference
attribute is represented within a node as a pointer to an IDL data object.
Before this attribute can be written out, the data object it points to must
be marked. The relocation index of this data object is written out in place
of the pointer.

A value attribute can be either of a scalar or of a private type. The
external representation of a scalar is the same as its internal rep resentation.
It can be written out as is. An attribute of a private type has to be trans
lated to its external representation. A pointer to the conversion routine
can be obtained from the private type table. The external representation of
a private type may turn out to be yet another private type, in which case
another conversion step is required. The chain of conversions stops as soon
as it gets to an external representation that is not a private type. Now it
can be dealt with like a reference attribu te or a scalar value attribute.

5.:i.2 Binary Reader

The actions of a the binary reader are an exact reverse of those of the
binary writer. The binary reader is called by a process to read in from
disk to main memory, an IDL structure instance which was written out by

27

a binary writer called possibly by some other process. The tasks of the
reader include the following:

1. Allocate space in main memory and read in the data objects compris
ing the IDL structure being read.

2. Translate the external representation of each node object, as specified
by the structure declaration associated with the input port, into the
invariant representation fo r that node.

3. Convert all relocatable references to absolute memory references.

4. Convert external representations of private type objects and attributes
to their internal representations.

The data structures required by a binary reader are similar to those needed
by the binary writer. It needs an open file to read from, the process invari
ant table, the port table for the particular input port, and the private type
table.

The file contains a list of data objects that make up the structure being
read in. For each data object, first its header is read in. Since the header of
a data object identifies its size and type, space can be allocated for it in the
data memory. Once space has been alloeated, the rest of the data object
can be read in. The size of a node in the input structure may be different
from the size of the corresponding node in the process invariant structure.
In addition, the number of attributes and their physical locations within
the node may vary between the two. The reader must read in nodes of
the first kind and create in memory matching nodes of the second kind. In
order to do this, it needs the information contained in the process invariant
table and the port table. All string objects read in are entered in the string
hash table. All private type attributes and objects are converted from their
external to their internal representations with the help of the private type
table. After all the data objects have been read in, the relocatable pointers
are translated to absolute memory addresses and the reading operation is
over.

28

5.5.3 ASCII Writer

The ASCll writer outputs an IDL structure instance in human readable
form. Each structure instance is written out in fully nested format, with a
label on each object so it can be referred to from other objects in case it is
shared. The ASCII writer needs an additional data structure to carry out
its task. The Nodetype Table maps from integers to the names of nodes they
represent, and also from indices of attribute within nodes to the names of
the attributes they represent. This table is generated by the IDL translator
for ports that have ASCll writers.

5.5.4 ASCII Reader

The ASCII Reader parses the structure instance represented in ASCII Ex
ternal Representation Language, and reads it into main memory. It needs
an additional data structure, the NodeName Table generated by the IDL
translator. This table maps node names into integer nodetypes and from
attribute names to attribute indices.

5.6 Marker Ports

In addition to the ports that are used for input and out put of structure
instances, there are ports that are used to do a reachability test on given
structure instance. These ports are known as marker ports; in spite of their
name, they have nothing to do with input or output. However, like in the
case of an input or output port, a structure specification is associated with
each marker port, describing the structure instances it operates on.

An IDL structure declaration is associated with each marker port. When
given a pointer to a structure instance, the marker port traverses the entire
instance according to its structure declaration and marks all data objects
that comprise this instance. T he marking algorithm is very similar to the
writing algorithm except that nothing gets written. There a.re two bits in
the hcc.dcr of each data object, namely ~ouched and shared, that are used
by marker ports. Initially, both these bits are reset. After marking is over,
each object reachable from the root ha.s either its 1;ouched or its shared
bit, but not both, set to 1. The shared bit indicates that the object is

29

reachable from the root through more than one path. The touched bit
indicates that it is reachable through only one path.

The marking algorithm, staring with the root of the instance, is as
follows:

1. If both bits are reset, set the t ouched bit, and mark all objects reach
able from this object, following the pointers and private type values.

2. If the touched bit is set, turn it off and set the shared bit.

3. If the shared bit is on, do noth ing.

4 . To mark a private type value, call the user provided marking routine
for this private type with the marker port routine as its argument.

5. 7 Private Types

The standard set of attribute types provided by IDL is limited to the scalar
types, Boolean. Integer, Rational and String, the structured types,
Set Of and Seq Of, and the user defined Node type. This set can be
augmented by the user ~hrough the use of the private type facility.

To use thls facility, the user must first declare a named private type.
Then he must declare the internal and external representa tions for this
private type. The data definition for t he internal representation of t his
private type is specified in the target language by the user. The size of
the internal representation can be determined from this data definition.
Its external representation must be an IDL standard type or a previously
defined IDL node or class.

As an example, the IDL specification in Chapter 2 uses a private type
named CharSet. Its external type is String.

The user must provide certain procedures to the runtime system for
manipulation of this private type. The names of these procedures supplied
by the user must follow the scheme described below.

(TypeN ame}To(Externa/) should be the name of the routine that trans
lates from the internal representation of a private type value to its external
representation. The correspondiitg routine in the example is CharSet
ToString.

30

Similarly, the routine that translates from the external representation
of a private type value to its internal representation should be named
(Ezternal)To(TypeName). The corresponding routine in the example is
StringToCharSet.

Either routine takes two parameters, both of type * char. The first
parameter, source, points to the the value to be translated. The second
points to a buffer where the t ranslated value is to be returned.

The user is responsible for providing an initialization routine for each
private type. This routine should be named (TypeName) Initialize. The
conesponding routine in the example is CharSetinitialize. This routine
takes one parameter, of type, • char, which points at the starting location
of the private type value to be initialized.

A marking routine must also be provided with each private type. This
routine should be named (TypeName)Mark. The corresponding routine
in the example is CharSetMark. This routine takes three parameters, the
first of which is of type * char, a pointer to the private type value to be
marked, the second is a pointer to a routine, and the third is a pointer
to the port table for that marker port. the task of the marking routine
is to call the passed routine for each IDL data object that is reachable
from the private type value which is being marked. The passed routine has
two arguments, the first is of type * int and is the address of the data
object to be marked, and the second is the above mentioned pointer to the
port table. This routine returns void. If it is a non-null pointer, the This
marking routine is used during lhe garbage collection and during marking
by a Marker Port.

The size of a private type value is known at compile time, therefore, in
a node, a private type attribute is a value attribute.

The support for sets and sequences of private types is rather scant.
Only creation of new list cells to store private cype values is supported.
The other set and sequence operations are not supported.

31

6 Runtime System Implem entation

After the high level overview of the runtime system in chapter 4, thls chap
ter describes the lower level details of the system.

This runtime system makes several assumptions about the target archi
tecture. It assumes that the target machine has a byte addressable memory,
that each address is 32 bits long, floats are 32 bits long, doubles are 64
bits long, and that standard types that are 32 bits or lone:er are allocated
at (4 byte) word boundaries ..

6.1 Private Types

IDL assigns a unique number PvtTypeCode to each private type and con
structs a table called PvtTypeTable, indexed by PvtTypeCode. Each entry
in this table pertains to a particular private type and contains six elements:

1. E:xtToint: a pointer to the routine that converts the external repre
sentation to the internal representation.

2. IntToExt: a pointer to the routine that does the inverse conversion.

3. Initialize: a pointer to the initialization routine for a value of this
type.

4. ~lark: a pointer to the marking routine for this private type.

5. ExtType: a one byte fie ld specifying the type of the external repre
sentation.

6. IntSize: an integer specifying the size, in bytes, of the internal rep
resentation.

Another data structure used in the input and output of private types is
a table known as the EA1:RepTable. References to external representations
of private type attributes are stored in this table.

32

6.2 Self Identifying Data

As mentioned in the previous chapt.er, all IDL data is self identifying. The
header of each data object identifies it completely. An object is identified
as belonging to a particular object type by the pattern of the two least
significant bits in its header. Since there are only three data object types
and four possible two bit patterns, the remaining pattern can be used to
identify a special type of header known as the indire<!t header (Figure 2).

During the mark phase of the binary writer, the header of each objec~
to be written out is replaced by an indirect header. This is done only
for nodes and the system objects that occur in structure instances. In
an indirect header, the remaining 30 bits form the relocation index of the
object to be written out.

6.2.1 T he Node Object

There can be two types of nodes. A node with no attributes is represented
by an odd integer. A node with one or more attributes is represented by a
pointer to a. node object allocated in the IDL data memory. Since a node
object is always allocated at (4-byte) word boundaries, a pointer to it is an
integer which is always a multip le of four, and can be distinguished from
a node with no attributes. The header of a node object consists of the
following fields , as in Figure 2:

1. Process ID: this is an index into a process table maintained by the
runtime system. The Process ID identifies the process by which the
node was originally created.

2. ~ode Type: this is a non-negative integer, uniquely identifying t he
entries in the invariant table and the respective port tables that char
acterize this node. Node type i is associated with the 2i1h entry in
the port tab les and ~he i 1 h entry in the invariant table. In the port
tables, the odd numbered entries are for nodes without attributes. In
the invariant table, there are no entries for nodes without attributes.

3. Garbage Collection bit: This bit is used to mark objects in the scan
phase of garbage collection.

33

processiD ~ nodctype

31 2~ 16 5<132 0

3 l

J]

_o 0 ~

size datatype '<.:!. ~ ~ .,. ""p? ~!! 2.
16 s .

te1oc~tion index.

(pointer to next free page } div 4

Figure 2: Object Headers

00 -
~ 0

" r
g -<
,~ .,

n

2
If I

0

If I
2 0

object
hcodcr

mditect
l1c:xU

free ~gc
hc:l(k:r

4 . Touched bit: This is used by marker ports to mark all objects which
are r eachable from a certain given object. It is also used by the ASCII
writer to mark objects t hat have already been written out.

5. Shared bi t: T his is also used by marker ports to mark objects that
are shared within a struct ure.

The body of the node, as that of any other object, consists of an integral
number of words containing the values of its attributes.

6.2.2 The System Object

T he system object header has the following fields, as in Figure 2:

1. Size: size of the object in words.

34

2. System Object Type: type of the system object.

3. Data Type: this field identifies the type of data contained. It is
relevant only in the header of a list cell object.

4. Garbage Collection bit.

5. Touched bit.

6. Shared bit.

There are eight types of system objects:

1. String,

2. List Cell ,

3. List Header,

4. String Hash Table,

5. Label Table,

6. Relocation Table,

7. External Representation Table, and

8. Marking Buffer.

A string object consists of an object header, a pointer field, and a vari
able length data field, as in Figure 3. T he data field contains a null ter
minated string of characters padded on the right so it occupies an integral
number of (4 byte) memory words. All strings are stored in a hash table to
be described in the next chapter. The pointer field is used to link all string
objects that hash to the same location in the string hash table.

A list cell consists of a header, a nex:t field containing a pointer to the
next list cell in sequence, e.nd a variable lt:ll~S~h data field that comains a
value. The datatype field in the header of a list cell describes the type of
data it contains.

A list header object consists of a header and a nex:t field containing a
pointer to the first list cell in the set or sequencer. This object is three words

35

• object header

r • -,
• ...- L____j

•

£
,..._

•
•

~ ..
~

I

~ '
I ::;;

I •

....____

Figure 4: The S~ring Hash Table

eventually contain the resolved reference. The address field contains the
address of the first fixup location, which, in tum contains the address of
the second fix up location, and so on. The last fixup location in the linked
list contains the null pointer. ln Figure 6, three references to an object
labeled "11234" have been read in before the object itself. Two of these
references are within nodes, and one is in a list cell. In the label table entry
for this label, ~he 0 in the resolved field indicates that the references have
not been resolved yet, the address field contains the first link in the chain
of fixup locations, and the label field contains a reference to the string
object representing the label "11234". While reading is in progress, if a
reference to an unresolved label is encountered, its location is added to this
linked list. After the object to which an unresolved label refers is read, the
address of the object is stored in the address field of t he corresponding label
entry and its resolved field is set to 1. T hen the linked list of locations
is traver.;ed and the object address is stored in each location encountered
(Figure 7}. In this figure, the references have been resolved to point to the
newly read in node object.

37

label table

header
nexr header

count • label coum

address -fR label
label address IR

address IR label

II II address IR
[, II

Figure S: The Label table

The label table objed is also used by the binary reader. While the ASCII
reader uses it to resolve references to symbolic labels, the binary reader uses
it to resolve references to relocation indices. Each entry now has only two
fields, reaol ved, and address. The counterpart to the symbolic label field
is the relocation index, which is an implied field, equal to the offset of
the entry in the label table. The storage of unresolved references and the
resolution of references is identical to the corresponding functions in the
ASCII reader.

The relocation table object is used by the binary writer. Stored in each
entry are the header of the object to be written out, and a pointer to the ac
tual object. Before an object is written out, its header is stored away in this
entry o.nd a. relocation index is put i11 it~ place. This index un iquely identi
fies the entry in the relocation table whi.ch contains the header. When the
entire structure has been written out, the relocation indices are discarded
and the headers restored.

38

~
String header

"Ll234"

label table
• • •

• • •

node header

•

10 node header

_.

li~t cell header

lf
I._.;

Figure 6: An Unresolved Label Entry

T he ASCII Writer uses the relocation table to store addresses of objects
that have been marked and written out. After the v.rriting operation is
over, this table is used to locate the objects that were written out so their
'marks' can be removed.

The ezternal repre$entation table is used by the reader to store external
representations of private type objects, before their conversion to internal
representa t ions.

The label table, relocation table, and external representation table object
are implemented as arrays of entries. Each table has its own object header,
a count field indicating how many valid entries it contains, and a next
field through which another table object of the same kind can be linked in
case of overfiow(Figure 5). These tables are allocated from the IDL data
memory as and when they are needed. This is done while input or output
is going on. No tables are allocated during garbage collection. Pointers to
them are s tored in variables global to the entire runtime system. They are
garbage collected when they are not in use.

39

node header

"' / ._

label aable •
• I t node he<Jdct

(
•

suing header • \..

•
"Ll234"

node hc:ldcr list cell hc:ldcr

_/

\

F igure 7: A Resolved Label Entry

The marking buffer is used during the mark phase of the garba.ge col
lector. All potential pointers to data. objects found on the runtime stack
are stored in this buffer and sorted. Then they are compared with the ad
dresses of actual data object headers. The ones that match are recursively
marked and others are discarded. If there is not enough room in the buffer
to take all possible pointers from the runtime stack, this process is repeated
until the sta.ck is exhausted.

6.2.3 The Free Page Object

The pool of free pages is a circular doubly linked list of free page objects.
The 30 more significant bits of the free page header form the size of the

40

free page in (4 byte) words.
The two words following the header ·contain the forward and backwards

links into the free pool. Since each free page needs three words to store its
two pointers and its size, it has to be at least three words long.

6.2.4 IDL Memory Layout

Figure 8 illustrates the memory layout of an IDL process runing under
UNIX on a Sun workstation or a VAX. The low end of the memory is

0
program text

~ &environ

statics <Uld globals

I
cache I

&end
heap

I IDLMemory I

stack

HaH Memory
Figure 8: IDL Memory Layout

occupied by the program text . Above that is the initialized static and
global da ta. Following this area is the storage for urunitialized stat ic and

41

global data. The remaining storage is used by the heap and the runtime
stack. The heap grows starting at the low end of the remaining space and
the stack starts at the high end. The IDL data memory is part of the
heap. The UNIX runtime system supplies two pseudo-variables that mark
the boundaries around the data area. e nviron and end are allocated at
the start and end of the data area, respectively. The uninitialized global
variable area contains a cache of global variables with the help of which all
IDL data objects can be located.

1. The variable IDLMemory of type * i nt points to the first location of
the IDL data memory. The size of this memory in words is given by
the variable IDLMemorySize of type *int.

2. The pool of free pages is pointed to by the global variable IDLFreeL
ist of type * int.

3. The variable InvTable points to the invariant table, with the help of
which all nodes can be described.

4. The label table is pointed to by the variable IDLLabel Table.

5. The external representation table is pointed to by the variable IDLEx
tRepTable.

6. T he relocation table used by the reader is pointed to by the variable
IDLRead.Rel Table.

7. The relocation table used by the writer is pointed to by the variable
lDLWriteRelTable.

6.3 Allocation and Initialization of Objects

Initially, the free pool contains only one free page object of a certain con
stant size, but after garbage collection, it is likely to contain several free
pages of different sizes (Figure 9). T he first-fit algorithm is used for space
allocation. All data objects allocated are at least three (4-byte) words long.
The smallest allocated object cannot be smaller than the smallest possible

42

free list

'
• r t ('

~

/
I T -- .(

6 5
\..

6

)
\..

4

Figure 9: The Free Page Pool

free page, because if it is garbag~ollected, it may have to be transformed
into a free page by itself.

For each nodetype defined, the \ISer may provide a node initialization
routine. At the time of creation, each node is a chunk of memory with an
appropriate header. Before it is returned to the user, it is initialized, \ISing
the initialization routine provided by the user. In case such a routine is
not provided, all attributes of the node are initialized to system defined
defaults which are as follows:

1. Boolean: FALSE,

2. String: NULL,

3. Integer: Zero,

4. Rational: Zero,

5. Set: NULL,

43

'

6. Sequence: NULL.

The user must provide an initialization rout ine for each private type. When
ever a list cell is created, it is also ini tialized according to its data type.

An Integer attribute may be one, two or four bytes long. A Boolean
is a stored in a byte. The bit pattern consisting of all zeroes represents the
value FALSE and anything else represents the value TRUE.

6.4 Garbage Collection

In order to collect garbage, all global variables in the program, as well as
local variables of the currently active procedures, have to be accessed. For
purposes of garbage collection, all memory locations in the runtime stack
and the global and static variable area of the currently executing process
are assumed to contain pointers to IDL data objects. As explained in the
previous chapter, this assumption, though incorrect, leads to a conservative,
but valid method of garbage collection.

Whether or not any input or output is in progress is indicated by the
global variables IDLbinwriting, IDLbinreading, IDLasciiwriting, and
IDLasc;iireading. Clearly, at any given time, at most one of these variables
can be true. When lhe garbage collector is invoked, it tests these variables
to find out if at all any input or output is in progress, and if so, what type.
The garbage collector is aware of the kind of tables mentioned above that
each type of input or output uses.

If the garbage collector is called during input or output, it starts with
marking objects accessible from the relocation tables currently in use. It
also marks the tables themselves. If the external representation table is
also in use, it marks object accessible from that, too.

The global and static variable area is between the addresses of the vari
ables environ and end provided by the C runtime system on UNIX. All
local variables are on the runtime stack. The address of the first automatic
variable declared in the main procedure mar ks the bottom of the runtime
stack ;mrl one of the local variables in ~he garbage collection routine can be
considered to be at the top of t he stack. The user is required to make a call
to the procedure IDLini t provided by the runtime system. This call must
be made only once and must precede any call to any other proc~dure pro
vided by the runtime system. IDLini t takes one parameter, which should

44

be the address of the first automatic variable declared in the main proce
dure. IDLini t initializes the runtime system and establishes the bottom of
the runtime stack.

The following conditions are tested for on each (4- byte) word in the
variable and stack areas.

1. It points into the data memory area.

2. It points at a word boundary.

3. It points to a word that looks like a valid unmarked node header or a
valid unmarked header of a string, list cell or lis t header object.

If it tests true on all of the above three conditions, it is considered to be
a potential pointer to a data object. All potential pointers are stored in the
marking buffu object and sorted. Then the data memory is scanned from
top to bottom along with the marking buffer to determine which of these
pointers actually point to objects. All pointers in the buffer that point to
an unmarked node or object are recursively marked.

The recursive marking process is carried out as follows.

1. A node is marked by setting the garbage collection bit in its header,
and marking all of its non-null reference attributes and private type
attributes.

2. A list header object is marked by setting the garbage collection bit in
its header and marking the list ceJJ pointed to by its next field.

3. A list cell is marked by setting the garbage collection bit, marking the
list cell pointed to by its next field, and marking its data if its data
is a node or a string or a private type.

4. A string object is marked by setting the garbage collection bit.

5. A privnte type object i~ marked uy calling the Mark routine provided
for that private type by the user. This routine takes as its argument
a pointer to &he garbage collection marking routine.

45

After the marking process is over, the headers of the marking buffer
and the string hash table are marked. These objects are not to be garbage
collected. Then all the string objects are scanned. Those that are found
to be unmarked are de-linked from the string hash table so they can be
garbage collected. This step is necessary to eliminate dangling pointers to
garbage-collec ted string objects.

At this time all garbage is unmarked and ready to be collected. The
pool offree pages is now initialized to null. A top to bottom scan of the data
memory is carried out. All free pages and unmarked nodes and objects are
garbage. They are linked into the free pool. Since this is a linear scan, it is
easy to detect adjoining objects to be garbage collected. They are coalesced
into one large free page and linked into the free list. During this scan, all
marked objects are made unmarked again. At the end of this scan, garbage
has been collected, and all useful data objects are as before. Hopefully,
more space is available for allocation and the process can proceed with its
task.

6.5 Performance

In this section we analyze the performance of the runtime system, in terms
of both space and time.

8.5.1 Space Overhead

The following is the overhead on data objects:

1. Each node object has an overhead of 4 bytes that comprise its header.

2. Each string has an overhead of ~ bytes on its header, 4 bytes on its
next pointer, and on average 1.5 bytes due t o the requirement that
the size of each object be a multiple of (4 byte) words.

3. Each set or sequence has an overhead of 12 bvt•s n•t?.tl by the list
header.

4. Each element of a set or a sequence has an overhead of 8 bytes used
by its header and its next pointer.

46

5. There is a constant overhead due to the Marking Buffer.

The following is the overhead during input or output:

1. There is an overhead of one relocation entry per object read during a
binary read. The relocation ent ry size is 4 bytes.

2. There is an overhead of one relocation entry per object written out
c·rring a binary write. The relocation entry size is 8 bytes.

3. There is an overhead of one label entry per label read during an ASCII
read. The size of a label entry is 8 bytes.

4. There is an overhead of one external representation entry for each
private type value read in, during the ASCII or the binary read op
eration. The size of the external representation entry is lf! bytes.

There is no overhead during garbage collection.

6.5.2 Time Performance

The following is the analysis of the performance of input and output oper
ations, assuming that no garbage collect ion occurs during the operation.

1. Writing: This involves a pass over the entire structure to be written
out, and the traversal of all pointers within the structure instance.
Since the size of the instance is larger than the number of pointers in
the instance, The ASCII write operation is 0(size(instance)), where
size(instance) is the total size of all objects that comprise this struc
ture instance.

2. Reading: This involves reading in the entire structure and doing
fix- ups on the forward references as they are read in. Once the entire
structure instance is read in, all private type values are translated
from their external types to their internal types. Thi::t uv.,ra~ion is
also 0(size(instance)).

T he following is an analysis of the performance of operations relating to
object management:

47

1. Allocation and Initialization of objects: Object allocation in
volves traversing the list of free pages, until one at least as large as
the object to be allocated is found. This takes, on average, time pro
portional to the length of the list of free pages. Then this object is
initialized, which takes time proportional to the size of the object.

2. Garbage Collection: The 'mark' phase involves scanning the global
variable and the stack areas, piclring out potential pointers to data
objects, and following them. We compute the probability that one
of the words scanned is a potential pointer, assuming that all bit
patterns are equally likely. The probabili ty that a given word is a
valid unmarked node header is:

1 1 27

p(nh) = 4 X z X zn
In the above formula, the first factor denotes the probability that
the word has the two bit pattern that classifies it as a node header.
The second factor is the probability that its garbage collection bit is
off. The third factor is the probability that it is a valid nodetype.
The assumption here is that of the 11 bits available to represent a
nodetype, not more than 7 will actually be used in a typical program.

Similarly, the probability that a given word is a valid unmarked
header of a string, list header, or a. list cell is:

1 1 3
p(oh) = 4 X Z X g

The first factor denotes the probability that the word has the two bit
pattern that classifies it as an object header. The second factor is the
probability that its garbage collection bit is off. The third factor is
the probability that it is a header of either a string, list header, or a.
list cell, of the possible 8 object types.

The probability that a word is a pointer to a word in the IDL data
memory is:

1 z2o
p(p) = - X-

4 232

The first factor is the probability that it points at a word boundary.
The second factor is Lhe probability that it points into the IDL data

48

memory, which is assumed to be one megabyte in size for a typical
program.

Therefore, the probability that a pointer is a potential pointer to an
object that should be marked for garbage collection is:

p(pp) = p(p) x (p(nh) + p(oh))

p(pp) ~TIS

From the above analysis, if we provide a marking buffer of size 1000
words, it is highly unlikely that it will overflow. This marking buffer
is to be sorted, which is 0(n2

), where n is t he number of potential
pointers. After this, all accessible objects are marked, which is 0 (d)
where d is the number of objects in the data memory. After marking
is over, a linear scan of the data memory is made and garbage is
collected, which is again 0(d). Since the number of objects in the
data memory is likely to be much larger than the number of potential
pointers, the entire garbage collection operation is 0 (d).

49

1 C onclusion and Future Work

As currently implemented, the runtime system consists of

1. Reader and Writer routines, both ASCIT and relocatable binary.

2. Object Management including a mark-and-scan garbage collector
and a memory display facility.

3. Support for sets and sequences of objects.

This runtime system does not support ful ly general IDL. The restrictions
are as follows:

1. The ASCIT ERL representation of a structure instance is, in general,
a list of subgraphs with references from one subgraph to another
through labels. Each subgraph has a root, i.e., the object enumerated
first. This runtime system supports only node objects as roots. This
restriction occurs only in the ASCI] reader.

2. In the ASCII ERL representation of a structure instance, only nodes,
sets and sequences may be labeled.

3. Only the linked-list implementation of sets and sequences is sup
ported. Other possible implementations include arrays and bit vec
tors.

4. Sets and sequences cannot be elements of other sets and sequences.

5. A node object cannot be of size less than 3 words, or 12 bytes.

6. The String, Rational, Set, and Sequence attributes are allocated
at word boundaries.

7. An Integer attr ibute is allocated at a word boundary if its represen
tation is four bytes long.

8. Sets and sequences of private types are not adequately supported.

50

7.1 Future Work

The ASCII reader could be modified to support fully general ASCII ERL.
The object management system allocates space for the IDL data mem

ory just once. If there is no available space even after garbage collection,
the user is notified. The system could be modified so that in such a situ
ation it attempts to enhance the IDL data memory so that the allocation
request can be met.

The garbage collection mechanism, in its mark phase, uses a recursive
routine that does a depth-first search. This operation, being recursive,
can potentially use up a lot of stack space, which may cause problems,
because the reason garbage collection is initiated is that there is not very
much space available, anyway. The marking phase can be modified to
run in accordance with the Schorr-Waite marking algorithm which, though
relatively complicated, uses very little stack space in comparison [8!.

In this system, the reference to a data object is through its header,
i.e., the header is at word offset 0 and all useful space in the object starts
at word offset 1. Usually user code assumes that useful space in a newly
allocated object begins at offset 0, as returned by malloc. Thus, for the
sake of uniformity, it is advisable to refer to an object through the word
that occurs after the header [4j. In other words, the header should be at
word offset -1. In the string and list cell objects, however, the header is
followed by a pointer, after whlch the useful space begins. To ensure that in
aU objects the user space begin i=ediately after the header, this pointer
would have to be moved so it occupies the last word of the object.

It is desirable to provide private touched and shared bits for each
marker port. If objects with only one touched and one shared bit have
been marked by more than one marker port, it is impossible to determine
which port has marked which object.

51

8 Bibliography

1. Cohen, J. Garbage Collection of Linked Data Structures. A CM Com
puting Surveys 19, 3 (1981), 341-368.

2. Collins, G. A met hod for overlapping and erasure of lists. Commtmi
cations of the ACM 9, 12 (December 1960), 655-657.

3. Deutsch, L. P., and Bobrow, D. G. An Efficient, Incremental, Auto
matic Garbage Collector. Communications of the ACM, (July 1976),
522-526.

4. Lamb, D. A. Private Communication.

5. Nestor, J . R., Wulf, W. A., and Lamb, D. A. IDL Formal De
scription, Draft R evision 2.0. 3, Computer Science Department,
Carnegie-Mellon university, (June 1982).

6. Newcomer, J. M. TDL: The Language and Its Implementation. un
published, (1986) .

7. Pratt, T. W. Programming Languages, Design and [mplementat,'on.
Prentice-Hall, Inc., Englewood Cliff, :"{J 07632, (1984).

8. Schorr, H., and Waite, W. An efficient machine-independent proce
dure for garbage collection in various list structures. Communications
of the ACM 10,8 (August 1967), 501-506.

9. Snodgrass, R. The lnterface Desc·ription Language: Definition and
Use (forthcoming). Computer Science Press, Rockville, MD, {1988).

10. Teitelman, W. The Cedar Programming Environment: A Mid
term Report and Examination. CSL-83-11, Xerox Corporation,
Palo Alto Research Center, (J une 1984).

11. Warren, W. B., Kicke.nson, J., and Snodgrass, R. T A Tutorial
Introduction to Using IDL. 1, (Softlab Document), Computer
Science Department, University of North Carolina at Chapel Hill,
(November 1985).

52

12. Wegbreit, B. A Generalized Compactifying Garbage Collector. The
Computer Journal, (1972), 204-208.

53

A The Runtime Interfa ce

This appendix describes the interface between an IDL process a.nd the IDL
runtime system. The IDL translator, lDLC, processes the IDL specification
and produces a . c and a . h file. In the next appendix, a complete example
IDL specification is presented, along with the . c and the . h files generated
by the IDL translator. The . c file must include the . h file. The following
include statement should go at the top of the . h file:

#inc lude "idlruntime .h"

If the process uses any private types, the user- supplied . h files for the
private types must also be included here.

The file idlrunti me. h contains extern declarations of all the functions
available from the runtime system. It also contains definitions of all tables
generated by IDLC.

The . h file contains atruct definitions for all nodenamea in the IDL
specification, so that the attributes of node objects may be accessible to the
user as fields of a structure. It contains #define statements that associate
with each node name its integer nodetype.

The remainder of the . c file contains the initialization of the invariant
table for the IDL process, the binary port tables for each port in the process,
the ASCII port tables for each ASCII port, the Private Type Table, and
the code for the port routines.

A.l Aspects

The attribute type of each attribute in each node is represented by an
8- bit number known as the aspect (Figure 10) in the invariam table, the
port table, and the private type table. The aspect contains information
about the representation of the attribute, whether it is a private type, and
whether it is a set or a sequence of some type. The least significant 5 bits
r"presem the type, which ranges from 0 to 91. The next two bits indicate
whether this is a 'simple' type, a set, or a sequence. H it is not a simple
type, the most significant bit indicates whether it is represented as a linked
list or an array.

54

rep SII'UCt type

7 6 5 4

Figure 10: Aspect

I* aspect fields •I

#define Node 0

#define String 1
#define Boolean 2
#define Oneint 3

#define Twolnt 4

#define Fourint 5
#define Float 6

#define Double 7

#define ATTTYPE Ox1F
#define BASICTYPECOUUT 8
I• 8 and above are private types •I

#define Simple 0
•define SetOf Ox20
#define SeqOf Ox40
#define ATTSTRUCTURED Ox60

#define Linked
#define Array
#define ATTREP

0

Ox80
Ox80

A.2 The Invariant Table

0

The following is the definition of the invariant _table_entry data type.

typedef struct invariant_table_entry
{

55

};

void {*initialize) {);
short size:
short att_count:
{

char aspect;
short offset:

} •attributes

The invariant table is an array of type invariant_table_entry. It has an
entry for each nodatype. Each entry contains the size of the node in (4
byte) words, the number of attributes it has, and an array of its attribute
characteristics. The invariant table is in·dexed by nodetype. An attribute
is identified by its starting location relative to the node header. The entries
for attributes of nodes do not have to be in any particular order. Once an
order has been established, it is used by each port to identify attributes
within a node.

A.3 The Port Table

The following is the definition of the port_tabla_entry data type.

typedef struct port_table_entry
{

short type:
short att_count;
{

char aspect;
char index:

} •attributes
}:

There is one port table for each IDL port . This tab le consists of an entry for
each nodetype. An input port table is indexed by the port table nodetype,
while an output port table is indexed by the invariant nodetype. Each entry
in the table contains the size of the node, the corresponding nodetype in
the invariant or at the port, depending on whether this table is for reading

56

or writing, and an array which contains an entry for each attribute and for
each stretch of unused space in the node. If this node has no attributes, the
array mentioned above is null. Each non-negative index in this array points
to an attribute in the corresponding node in the invariant table and the
modulus of each negative index indicates so many bytes of unused space.
The entries for attributes have to be in increasing order of distance of the
attribute from the node header.

A.4 ASCII Port Tables

There is one ASCIT port table for each ASCII port. Below is ~he definition
of an ascii port table.

typedef struct ascii_port_table
{

};

short tablelength;
{

char *name;
short nodetype;
short tablelength;
{

char •name;
char index;

} •attribute_table:
} *node_table

A port table hM an array of entries, one for each nodetype in the struc
ture. Each node entry contains the nodetype, the ASCII node name and an
array of attribute entries. An attribute entry contains the ASCII name of
the attribute and its index in the corresponding node entry in the invariant
table.

In a table for an input port, the liot of nodes is sorted in .. Ivlnt.uetical
order of node names, and the list of attributes is sorted in alphabetical
order of attribute names.

In a table for an output port, the list of nodes is sorted in ascending
order of node types, and the list of attributes is sorted in ascending order

57

of indices.

A.5 Private Type Table

This table is generated by the IDL translator. It has as many entries as
there are private type definitions in the IDL data specification. T he Private
Type Table is an array of the following type.

typedef struct pvt_type_entr y
{

};

void (* ExtTolnt)();
void(* IntToExt)():
void (* Initialize) () :
void (* Mark) 0
short IntSize;
char Ext Type;

ExtToint is a procedure that converts from an external representa tion
to an internal representation. lis first parameter is a pointer to a buffer. If
the external representation is a set, sequence, node or a string, this buffer
contains a pointer to it. U the external representation is a scalar, then it
is contained in the buffer. The second parameter is a pointer to a buffer in
which the corresponding internal representation is to be returned.

IntToExt is an exact inverse of ExtTolnt.
Initialize is a procedure that initializes a private type value. Its only

argument is a pointer to the first storage byte or the value.
~lark is a procedure that recursively marks all objects reachable through

a private type value. It takes as its arguments a pointer to the first storage
byt·e of the value and a. pointer to the garbage collection mark routine.

IntSize is the size in bytes of the internal representation of an instance.
ExtType is the aspect of the external representation.
There are eight basic types of IDL o.ttributcs represented by numbers 0

through 7. Numbers 8 through 31 can be used to represent private types,
i.e., the number of private type definitions in a process is limited to 24. The
i'" entry in the Private Type Table contains specifications for the private
type represented by the number i + 8.

58

A.6 IDL R untime Routines

The routine to in itialize the runtime system is

void IDLinit(stkbott om)
char •stkbottom;

In the above, stkbottom is the address of the fl,rst automatic variable de
clared in the user's main procedure.

The following routines invoke the binary reader and the binary writer,
respectively.

pnodaheader IDLReadin(table, instream)
struct port_tabla_antry •table;
FILE *instream;

int IDLWriteOut(rootstruct, table , outstream)
pnodeheader rootstruct;
struct port_table_entry •table;
FILE •outstream;

The argument table refers to the por t table used for reading or writing.
The arguments instream and outstream refer to the streams to be used
for reading and writing, respectively. If successfu l, IDLReadin returns a
pointer to the root of the structure read in; otherwise it returns the NULL
pointer. The argument rootstruct points to the root of the structure to
be written out. If successful, IOLWriteOut returns 1, otherwise it returns
0.

The following routines invoke the ASCII reader and writer, respectively.

pnodeheader IDLAsciiReadin(table, instraam, nodenamatable)
struct port_table_entry •table;
FILE •instream;
struct oscii_port_tabl~ •nodename~able;

int IDLAsciiWritaOut(rootstruct, table, outstr eam, nodenametable)
pnodeheader rootstruct;
struct port_tabla_entry •table;

59

FILE -~<instreac;
struct ascii_port_table *nodenametable;

The ASCII reader and write r take an extra argument, nodenametable
is the address of the ASCII port table. Their return values and other
arguments are similar to their binary counterparts.

The marker is invoked by the following routines.

void IDLMark(rootstruct, table)
pnodeheader r ootstruct;
struct port_table_entry •table;

void IDLUnMark(rootstruct, table)
pnodeheader rootstruct;
struct port_table_entry *table ;

IDU-lark marks the structure instance. IDLUnMark restores it to its
original unmarked state.

The allocation rout ines for nodes and system objects are the following.

pnodeheader IDLllewNode (type)
short type ;

piDLstring IDLNewString(str)
char •str ;

The size of a node is implicit in its type. The argument str is a pointer
to a null terminated sequence of characters. Allocation of strings requires
special treatment because each string must b e en tered in the global I DL
StringHashTable to facilitate comparison among strings and to avoid du
plication of strings.

The following routines are provided mainly as debugging aids:

void IDLScanJ.Iemory (f)

void (*f) 0:

void IDLPrintMemory{)

60

The function denoted by * f is applied to the header of each node, system
object or free page in memory. It takes one parameter, of type • int, a
pointer to the header of the object in question. IDL?rint is a special case
of IDLScanMemory in which •f is a function which prints out the headers
of objects on a global called IDL?rintStream of type *fiLE.

Al though the garbage collector is invoked by the runtime system when
ever necessary, the garbage collection routine is also made available to the
IDL process.

int IDLCarbageCollect()

IDLCarbageCollect returns the size of the largest chunk of free memory
in words.

61

B An Example

A sample IDL specification is presented, along wit h the generated . c and
. h files.

The IDL specification is in the file e:x: . idl. T he a lgori thm is in algo
rithm. c. The declarations and procedures for the priva te type are in the
files CharSet. hand CharSet. c. The files generated by the IDL translator
are !nOut. h and InOut. c. The ASCII ERL input file is ascinput and the
ASCII ERL output file is ascoutput. The program writes into statusfile.

T his example, a long with a README file and a Makefile, can be found
in /usr/soft l ab/doc/examples/biyanithesis on the Suns.

62

Oct 2 09:55 1987 ex.idl ~age 1

-- ex.idl
Structure Structin Root Anode Is

Anode •> List : Seq Of S,
Name: CharSet;

For CharSet Use Package CharSet;
For CharSet Use Type CharSet ;
For Char Set Use External Representation String;

B •>

End

X: Boolean,
R: Rational;

Structure Structout Root Anode From Structin Is

Without B •> X;

Anode=> Number : :nteger:
End

Process Inout Is

End

Target Language C:
Target Runtime Version B :

Pre P: Structin:
For P Use Ascii External Represen~ation:

Mark M: Structin;

Post Q: Structout:
For Q Use Binary;

Pre R: Structout;
For R use Binary;

Post S: Structin ;
For S Use Ascii External Representation;

63

Oct 2 09:55 19S7 algorithm . c Page 1

! • algor ithm.c */
tinclude '' InOuc.h''

Anode thisAnode;
9 newB;
SEOB seqBptr;

main()
{

FILE • inascii , *outbinary , *inbinary, *outascii;

/ * initialize idl */
IDLinic(&inascii);
IDLPrintStream- fopen(' 'statusfile'', ''w'');

!• inpuc the initial structure in binary */
inascii = fopen("ascinput'', ''r'') ;
thisAnode = P(inascii);
(void) fclose(inascii);

fpr intf(IDLPrincStream,
" \n\nAscii inpuc :"las been read in\n\n ");

fprintf(IDLPrintStream,
" \n\nGarbage Collected, l argest free page size: ~d '"'ords\n\n",
IDLGarbageCollect());

roLPrintMemory();
removefirstSEQB(thisAnode->L~stl;
fprintf(IDLPrintStream,

" \ n\nOne node has been removed from t he sequence of B nodes\n \n"
l ;

fprintf(IDLPrintStream,
" \n\nGarbage Collect ed, largest free paqe size: 'lid words\n\n",
: OLGarbageCollect()l ;

IOLPrintMemory();
I* get a new B node object */
newB • NB ();

1~ give its attributes some values */
! • and append ic co thisAnode->List ~1
newB->X • TRUE;
newB->R - 3 .1 4;
appendfrontSEQS (thisAnode->List, newS);

thisAnode->Number = 10;
/ • output in binary */
outbinary - fopen('' binfile '' , ''w'');
Q(thisAnode, outbi nary);
(void) fcloce(outbinory);

fprintf(IDLPrintStream,
"\n\nBinary Output has been done\n\n") ;

fp rintf(IDLPrintStream,

64

Oct 2 09 : 55 1987 a l gorithm.c Page 2

" \n\nGarbage Collec::ed, largest: free page size: ~d words\n\n" ,
: OLGarbageCollect());

IDLPrintMemory();

;w input: in binary~;
inbinar y = fopen ("binfile ", "r "):
thisAnode - R(inbinary);
(void} f c l ose (inbinary) :

fprintf (IDLPrintStream,
" \n\n'Binary Input ha s been done\n\n ");

fprintf(IDLPrintStream,
" \n\nGarbage Collected, largest fre e page size: \d words \n\n" ,
IDLGarbageCollect()) ;

IDLPrin~~emory();

foreachi nSEQB(thisAnode->List, seqBptr, newB}
newB- >X • TRUE ;

I * output in Ascii */
out asc ii = fopen ("ascoutput", " w");
S(thisAnode , outbinary):
(void) fclose(outascii);
fprintf(IDLPrintStream,

" \ n\nAscii Output has been done\n\n");

I *)1ark */
M(thisAnode , TRUE);
fprintf(IDLPr intStream,

" \ n \ nThe instance r ead i n has been marked\n\n ");
IDLPr int Me mo r y (};
fprint f(I DLPrintStream, "\n\n") ;
f w UnMa rk */
M(thisAnode, FALSE);
fprintf(: OLPrintStream,

"\n\nThe ins~:ance r ead in has been u!k-narked\n\n"l;
IDLPrintMemory();

! • ma ke a ll variables null , so everything may be garbage collec~:ed */
thisAnode • NULL;
newS = NULL;
seqBptr = NULL;
fprintf(I DLPrintStream,

"\n\nAll variables have been made null; \n ");
!printf(IDLPrintStream,

" everyl:hing is garbage collected\n\n");

fprintf(IDLPrintS~ream ,

" \n\nGarbage Collec ted , largest free page size: %d woras\n\n",
I DLGarbageCollect()} ;

IDLPr i n t Memory() ;
fclose(IDLPrintStream);

&5

Oct 2 09:55 1987 algorithm.c Page 3

66

Oct 2 09 :53 1987 CharSet . h Page l

Jw CharSet . h */
typedef int Char Set;

67

Oct 2 09:52 1987 CharSet.c Page 1

I • CharSet.c * I
Jlinclude " lusr I softlabl srclbiyanilibrary I src/ idlruntime. h"

void StringToCharSet(from, to)
char *from, *to;
{

char c, *str;
int i , l{p;
p - (int *)co;
str- ((piDLstring) (*(int •)from)) - >data;
*p = 0;
i = 0;
for (c • ' a ' ;c <= ' z ' ; c•+) {

if (str (i) •• ' \0 ')
return;

else if (str(i] == c) (
•p I• (1 << (c- 'a'));
i+-+;

void CharSetToString(from, to)
char *from, *to ;
(

int •p, i, j ;
char c, ch(27);
i ~ *(int ~)from;

j - 0 ;
for (c - ' a ' ;c <= ' z ': c++) (

if (i & 1)
ch[j++) a c:

i >>- 1.·
l
ch(j]• ' \0 ';
*(i nt *}to • (int) IDLNewString(ch) ;

}

void InitCharSet(from)
char *from;
(

*(int *)from= 0:

void MarkCharSet(from, f, table}
char *from;
void ("f) () :
int *tab.le,·
()

68

oct 2 10:09 1987 InOu~ .n Pagel

/ " InOut.h */
~include '' /usr/softlab/src/biyanilibrary/src/!dlruntime.h"
tinclude ''CharSe t . h ''
ldefine KAnode 0
tdefine KB l

typedef plistcell SEQB;
typedef SEQB SETS;
typedef plistcell SEQAnode ;
typedef SEQAnode SETAnode;

typedef struct RB I
nodeheader header;
Bool X;
char unused (3 J ;
floa~ R;

} •s, RB;
#define NB () (B) IDLNewNode (KB)
typedef struct RAnode(

nodeheader header;
SEQB List;
CharSet Name;
int Number;

} *Anode, RAnode ;
#define NAnode() (Anode) IDLNewNode(KAnode)

ex~ern Anode P(l;
ex~ern void M();
extern void Q();
extern Anode R () ;
extern voidS();

I * macros for set and sequences " '
#define appendfrontSEQB (nseq, nval) \

appendfrontseq(nseq, (char ") (&nval) , Node)
~define appendrearSEQS(nseq, nval) \

appendrearseq (nseq, (char *} (&nvall , Node)
~define copySEQB(nseq) (SEQB) copyseq(nseq, Node)
#define emptySEQB(nseq) (nseq->next - -NULL)
#define foreachinSEQB(nseq, nptr, nvalue) \

for(nptr = nseq- >next: \
(nptr != NUL~) && \
((nvalue • ~ (3 KJ (np~:::->data)) II TRUE); \
nptr = nptr->next)

Wdefine initializeSEQB (nseq} nseq = IOLNe• ... ListHeader ()
ide fine inSEQB (nseq, nval) inseq(nseq, (char ") (&nval), Node)
! define i~hinSEQB(nocq, index) • ca •)lLI•~~q(~seq, index)
fdefine sizeSEQB(nseq) sizeseq(nseq)
!define orderedinsertSEQB(nseq, nval, ncomp!n) \

orderedinsertseq(nseq, (char *) (&nvalJ , ncompfn, Node)
#define r emoveSEQB (nseq, nval) removeseq(nseq, (char *) (&nval), Node)

69

Oct 2 10:09 1987 InOut.h Page 2

!define removefirstSEQB(nseq) removefirstseq(nseq)
tdefine removelastSEQB(nseq) removelastseq(nseq)
lldefine retrievefirstSEQB(nseq) ~ca *)retrievefirstseq(nseq)
#define retrievelastSEQB(nseq) * (B *)retrievelastseq(nseq)
idefine sortSEQB(nseq, ncompfn) sortseq(nseq, ncompfn, Node)
ldefine tailSEQB(nseq) tailseq (nseq)

~define addSETB(nset , nval) \
if (!inSEQB(nset , nval)l appendfrontSEQB(nset , nval)

*define copySETB(nset) copySEQB(nset)
Hdefine emptySETB(nset) emptySEQB(nsetl
#define foreachinSETB(nset, npcr, nvalue) \

foreachinSEQB(nset, nptr, nvalue)
~define initializeSETB(nsetl initializeSEQB(nset)
~define inSETB(nset , nval) inSEQB(nset , nval)
fdefine removeSETB(nset, nval) removeSEQB (nset, nval)
#define sizeSETB(nset) sizeSEQB (nset)

idefine appendfrontSEQAnode(nseq, nval) \
appendfrontseq (nseq, (char x) (&nval) , Node)

tdefine appendrearSEQAnode(nseq, nval) \
appendrearseq(nseq, (char *l (&nval), Node)

#define copySEQAnode(nseq) (SEQAnode)copyseq(nseq, ~ode)
#define emptySEQAnode(nseq) (nseq->next - NUL:.)
•define foreachinSEQAnode (nseq, nptr, nvaluel \

for(nptr- nseq->next; \
(nptr !• NULL) && \

((nvalue • (Anode)(* (int •) (nptr->data))) II 'rRUE); \
nptr • nptr->next)

tdefine initializeSEQAnode(nseq) nseq - ID~Ne~ListHeade~()
*define inSEQAnode (nseq, nval) in seq (nseq, (char •) (&nval) , Node)
~define ithinSEQAnode(nseq, index) *(Anode *)ithseq(nseq, index)
~define sizeSEQAnode(nseq) sizeseq<nseq)
#define orderedinsertSEQAnode(nseq, nval , ncompfn) \

orderedinsertseq (nseq, (char * 1 (&nval) , ncomp£n, Node)
~define removeSEQAnode(nseq, nval) removeseq (nseq, (char*) (&oval), Node)
tdefine removefirstSEQAnode(nseq) removefirs"seq(nseq)
tdefine removelastSEQAnode(nseq) removelastseq(nseq)
#define retrievefirstSEQAnode(nseq) w(Anode •)retrievefirstseq(nseq)
fdefine retrievelastSEQAnode(nseq} ~(Anode *)retrievelastseq(nseq)
Hdefine sortSEQAnode(nseq, ncompfn) sortseq(nseq, ncompfn , Node)
idefine tailSEQAnode(nseq) tailseq (nseq)

~define addSETAnode(nset, nval) \
if (!inSEQAnode(nset, nvall) appendfrontSEQAnode(nset, nval)

idefine copySETAnode(nset) copySEQAnnrl~(nset)
idefine emptySETAnode(nset) emptySEQAnode(nset)
#define foreachinSETAnode(nset, nptr, nvalue) \

foreachinSEQAnode(nsec , nptr, nvalue)
~define initializeSETAnode(nset) ini"ializeSEQAnode(nsetl
idefine inSE7Anode(nset, nval) inSEQAnode(nset, nval)

70

Oct 2 10 : 09 1987 InOut.h Page 3

tdefine removeSETAnode(nset, ~val) removeSEQAnode(nse~, nval)
#define sizeSETAnode(nset) sizeSEQAnode(nset)

71

Oct 2 10:31 1987 !nOut.c Page 1

; ~ InOut.c */
a:.nclude "InOut .h "

extern void ScringToCharSet(), CharSetToString();
excern void InitCharSet(), MarkCharSet();
static struct pvt_type_entry SPvtTypeTable[l] •
{

J ;

StringToCharSet ,
CharSetToString,
InitCharSet,
MarkCharSet,
4,
String

I* External to Internal */
/* Internal to External */
/* Initialization of Internal Rep */
;~ Marking Routine ~ ;

jw Size of Internal Rep in oytes •/
f w Type of External Rep ~;

struct pvt_type_ entry *PvtTypeTable = SPvtTypeTable ;

static struct por t _attribute_descriptor StructinTablel(2] -
{

I ;

{Ox40, 0),
I 8, 1 I

scatic struct port_attribute_descriptor StructinTable2r3J -
{

I ;

{2, 0),
{0 , -31,
{ 6 ' 1)

st:atic struct port_table_entry Structii'ITable (3] a

{

I ;

(0 , 2, Struc~!nTablel},
(0 , 0, 0},
(1 , 3, StructlnTable2 1

static struct port_ attribute_descriptor Struct0utTablel (3] -

I :

{0x40, 0),
{8, 11,
{ 5' 2)

s~atic struct port_attribute_descr:.ptor StructOut~able2(l] -
{

(6, 1)
) ;

static struct port_table_entry Struct0utTablei3)
(

72

Oct 2 10 :31 1987 lnOut.c Page 2

l ;

{0, 3, StructOutTablel } ,
{0, 0 , 0) ,
{1 , l, StructOutTable2} ,

static struct invariant_attribute_descr i ptor InvTablel [3] •
(

} ;

{0x40, 4),
(8, 8},
{5, 12}

static struc t invariant_at~ribute_descriptor InvTable2 (2] -
(

l ;

{2 , 4},
{ 6. 8)

static str~ct invariant_taole_entry SinvTable l 21 =
{

l ;

{0, 4, 3 , InvTable:),
{0 , 3 , 2 , InvTable2 }

struct invariant_table_entry *InvTable = Sinv'!able;

stati c struct ascii attribute descriptor StructOutAnode (3) •
(("List", OJ, {"Name", 1}, ("Number", 2) } ;
static struct asci i attribute descriotor StructOutB[l J •
(("R", 1)); - - -
static struct ascii node descriptor StructOutNode(2] =
{ - -

} ;

("Anode ", 0, 3 , StructOutl'.nodeJ ,
("B'', 1 , 1, StrucLOutB}

static st=~ct ascii_port_ table AsciiStr uctOut • {2, St=~ctOutNode j ;

static struct ascii_attribute_descriptor StructinAnode (2] -
(("List" , OJ, ("Name ", 1) };
static struct ascii_attribute_descriptor StructinB(2]
((" R" , 1), ("X" , 0});
static struct ascii_node_descriptor StructlnNode(2)
I

I "Anode" , 0 , 2, S truct I nAnode),
("B 11

, :, 2, StructinB }
) ;
static struct ascii_port_tab1e AsciiStructin • (2 , Structi nNode);

extern int * IDLAsciiRead!n();
extern void *IDLAzeiiWriteOuL();
extern int *IDLBinReadin();
extern void *IDLBinWriteOut ();
extern void IDLMark();
extern void IDLOnMark();

73

Oct 2 10: 31 1987 InOut. c ~age 3

Anode !?(F)
FILE *F;
{
return((Anode)IDLAsciiReadin(Struct i nTable, F, &AsciiStructin));
I

void M(r, ifmark)
{
if (ifmark)

IDLMark((int *) r, Struct!nTable);
else

IDLUnMark ({int *)r, Structi nTable);

void Q(r, F)
n.1ode :r;
FILE *F;
{
IDLBinWriteOut((int *)r, StructOutTable, F) ;
}

Anode R(F)
FILE ~F;
{
return((Anode)IDLBinRead!n (StructOutTable, F));
l

void S(r, F)
Anode r;
FILE *F;
{
IOLAsciiWr iteOut((int •)r , StructinTable, F, &AsciiStructin);
)

Oct 7 11 : 46 1987 statusfile Page 3

system object, address Ox62df4, type 4, size 3 words Touched
free, address Ox62e00 size 1003 words
node, address Ox63dac , type 0, s1ze 4 words Touched
free, address Ox63dbc size 605 words
node, address Ox64730, type 1, size 3 words
free, address Ox6473c size 1952 words
system object, address Ox665bc , type 7, size 1002 words

The instance read in has been unmarked

free, address Ox27564 size 60832 words
system object , address Ox62be4 , type 2, size
system object , address Ox62bf4 , type 0, size
node, address Ox62d90, type 1 , size 3 w~rds
system object , address Ox62d9c, type 3, size
node, address Ox62da8, type 1 , size 3 words
system object , address Ox62db4, type 3, size
node, address Ox62dc0 , type 1, size 3 words
system object , address Ox62dcc , type 3, size
system object, address Ox62dd8, type 3, size
free, address Ox62de4 size 4 words
system object, address Ox62df4, type 4, size
free, address Ox62e00 size 1003 words
node, address Ox63dac , type 0 , size 4 words
free, address Ox63dbc size 605 words
node, address Ox64730, type 1 , size 3 words
free, address Ox6473c size 1952 words

4 words
103 words

3 '"ords

3 words

3 words
3 words

3 words

system object, address Ox665bc, type 7, size 1002 words

All variables have been made null;
everything is garbage collected

Garbage Collected, largest free page size: 64534 words

free, address Ox27564 size 64534 words
system object , address Ox665bc, type 7, size 1002 words

Oct 7 11:46 1987 ascinput Page 1

Anode [List < FirstBh SecondBh Thi rdB' SecondB'>
Name 11 astz"

l
ThirdB : E[X FALSE]
First B : B[X TROE; R -11/30]
SecondB : B[R 1 1.3]
II

U<:t I 11: 4b HB'I ascoutput Page 1

L409004 : Anode [
List 1404980 : <L404928 B l
X TRUE ;
R 3 .14 }
L404904 B
X TRUE;
R 11.3}
L404880 B (
X TRUE;
R 0]
L404904A
>:
Name "ascz"]
~

Oct 7 11:46 1987 statusfile Page 1

Ascii input has been read in

Garbage Collected, largest free page s ize : 62582 words

free , address Ox27564 size 62582 words
node, address Ox6 473c, type 1, size 3 words
node, address Ox64748 , type l , size 3 words
node, address Ox64754 , type 1 , size 3 words
free, address Ox64 760 size 1007 words
system object, address Ox657lc, type 3, s~ze
free, address Ox65728 size 4 words
system object , address Ox65738, type 3 , s~ze
free , address Ox65744 size 4 words
system object, address Ox65754 , type 3, s~ze
free , address Ox65760 size 909 words
system object, address Ox66594 , t ype 3, size
system object , address Ox66Sa0, type 4, size
node , address Ox66Sac, type 0, size 4 words
system object, address Ox665bc, type 7 , size

3 words

3 words

3 words

3 '"ords
3 words

1002 words

One node has been removed from the sequence of B nodes

Garbage Coll ected, largest free page size: 62582 words

free, address Ox27564 size 62582 words
node, address Ox6473c, type 1, size 3 words
free, address Ox64748 size 3 words
~ode , address Ox64754, type 1 , size 3 words
free, address Ox64760 size 1007 words
system object, address Ox6571c , type 3, size 3 words
free, address Ox65728 size 4 words
system object, address Ox65738 , type 3 , size 3 words
free, address Ox65744 size 4 words
system object , address Ox65754, type 3, size 3 words
free, address Ox65760 size 912 words
system object , address Ox665a0, type 4, size 3 words
node, address Ox665ac, type 0 , size 4 words
system object , address Ox66Sbc, type 7, size 1002 words

Hinary Output has been done

Garbage Collected, largest free page size: 62576 words

free, address Ox27564 size 62576 words
system objec~. address Ox64724, type 3, size 3 words
node, address Ox64730 , type 1, size 3 words

Oct 7 11:46 1987 statusfi1e Page 2

node, address Ox6473c , type 1, size 3 words
free , address Ox64748 size 3 words
node , address Ox64754, type 1, size 3 words
free, address Ox64760 size 1007 words
system object, address Ox6571c, ~ype 3, size 3 words
free , address Ox65728 size 4 words
system object, address Ox65738, type 3, size 3 words
free, address Ox65744 size 1 words
system object, address Ox65754, type 3, size 3 words
free, address Ox65760 size 912 words
system object, address Ox665a0, ~ype 4, size 3 words
node, address Ox665ac , type 0, size 4 words
system object , address Ox665bc, type 7 , size 1002 words

Binary :nput has been done

Garbage Collected, largest free page size : 60939 wor ds

free, address Ox27564 size 60939 words
node, address Ox62d90, type 1 , size 3 words
system object , address Ox62d9c, type 3, size 3 words
node, address Ox62da8, cype 1, size 3 words
system object, address Ox62db4, type 3, size 3 words
node, address Ox62dc0, cype 1, size 3 words
system ob ject , address Ox62dcc, ~ype 3, size 3 words
system object , address Ox£2dd8, ~ype 3, size 3 words
free, address Ox62de4 size 4 words
system object, address Ox62df4, type 4, size 3 words
free , address Ox62e00 size 1003 words
node, address Ox63dac, type 0, size 4 '-'Ords
free , address Ox63dbc size 605 word s
node , address Ox64730, type 1, size 3 words
free, address Ox6473c size 1952 words
system object, address Ox665bc, type 7, size 1002 words

Ascii Output has been done

The instance read in has been marked

free, address Ox27564 size 60832 words
system object. address Ox6?b~4, type 2, size 4 wordo
system object, address Ox62bf4, type 0, size 103 words
node , address Ox62d90 , type 1, size 3 words Touched
system object, address Ox62d9c, type 3, size 3 words Touched
node, address Ox62daS, type 1, size 3 words Shared
system object, address Ox62db4, type 3, size 3 words Touched
node, address Ox62dc0, type 1, size 3 words Touched
system object , address Ox62dcc, type 3, size 3 '"ords Touched
system object, address Ox62dd8, type 3, size 3 words Touched
free , address Ox62de4 size 4 words

