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VIKRAM BIYANI. An Efficient Runtime System for IDL 
(Under the direction of RICHARD SNODGRASS) 

The Interface Description Language is a language to specify data structures 
communicated between processes. This research deals with the des ign of an 
efficient runtime system for IDL. This thesis discusses the functions such a 
runtime system should support, and describes bow they are implemented in 
our sys~em. The runtime system includes support for input and output of 
IDL instances both in ASCIT and in relocatable binary format, support for 
sets and sequences of objects, an object management system with garbage 
collection and a memory display facility for debugging purposes. An exam
ple IDL specification is presented. Limitations of the system and directions 
for future work in the area are discussed. 
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1 Intro duction 

The Inter/ace Description Language {IDL) is a formal way to specify data 
structures co=unicated between processes (5, 9, 11J. A process typically 
reads some input data, manipulates it, and produces some output data 
which is written out. IDL provides high level utilities for creation and 
manipulation of these data structures and their input and output. 

AP IDL specification consists of two parts, the data specification and 
the algorithm specification. The IDL data specification facility is especially 
suited for describ ing graph--structured data. The da ta s tructures are spec
ified in a declarative fashion that resembles attributed grammar notation. 

The algorithm specification is a program written in one of the IDL target 
languages, using the high-level utilities provided by IDL. IDL supports 
abstract data structures such as sets and sequences and provides utili ties 
for their manipulation, so that the user may express the algorithm more 
naturally in terms of operations on abstract entities without worrying about 
implementation details. The input and output of data is done through 
tmidirectional ports. Each algorithm specification may have several input 
ports and output ports. Associated with each port is a specification of the 
data structure that is to be input or output through this port. 

The IDL specification is run through the IDL translator, which compiles 
it into a program in the appropriate target language. After this program 
has been compiled and linked with the IDL runtime library, it is ready to 
run. 

This thesis describes a runtime system for lDL which is more efficient 
than the current one, the IDL Runtime Library Version A. First, the ex
isting runtime system is briefly touched upon, along with the problems 
associated with it. Then, other relevant. work in this area is reviewed, fol
lowed by a description of the design and implementation details of the new 
system. Finally, recommendations are made for future work in this area. 
The IDL runtime interface description appears an an appendix. Another 
appendix pre:~ent:s ll.n exa.mple IDL ~peci llcaLion, along with files generated 
from it by the IDL translator. 

It is assumed that the reader is fairly familiar with IDL [111. The 
next chapter presents and briefly explains a simple example of an lDL 
specification. 
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2 An Introduction to IDL 

This chapter contains a brief introduction to t he Interface Description Lan
guage with the aid of an example. Most of the material here is excerpted 
or paraphrased from A Tutorial Tntroduction to Using IDL!lll by Jerry 
Kickenson. This chapter may be skipped over by the reader familiar with 
IDL. 

To use the IDL system, the user writes a specification in IDL of the co
operating processes that compose the system being developed and of the 
data structures these processes share. 

2.1 The Data Declaration 

The data structures are specified using named collections called structures. 
A structure is built from units called nodes and classes. 

A node is a named collection of zero or more named values called at

tributes that the user wishes to treat as a unit. Attributes actually hold 
the data values; nodes are a grouping device. 

The declaration for a node consists of the name of a node, followed by the 
node production operator, " >, and a lis t of zero or more co=a separated 
attribute-type pairs, terminated by a semicolon. All attributes in the same 
node must have distinct names. T he order in which the attributes appear 
in a declaration is not significant. 

The following is an example node declaration: 

B => X 
R 

Boolean, 
Rational: 

This declares B to be a node containg two attributes, X and R, of types 
Boolean and Rational respectively. The standard attribute types sup
ported by IDL are Integer, Boolean, Rational, and String. A node may 
have anothe.r node as its attribute. IDL also supports structured attribute 
types like Sets and Sequences of objects of other types. 

In addition to the above mentioned attribute types, lDL allows the 
user to augment the standard IDL attribute types by defining and using 
what are known as Private Types. The user is responsible for providing 
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data declarations and procedure definitions for his private types in the 
Target Language. These declarations are made known to the IDL translator 
through the IDL specification and are. linked with the user program at 
compile time. 

A class is a name for a variable that may hold a reference to one of a 
set of nodes or other classes. A Class is analogous to a C union. The nodes 
and classes that a class can refer to are called its members. 

A class declaration consists of the name of the class, followed by the 
class production operator, ::~,and a list of one or more node or other class 
names separated by alternation signs, I, and terminated by a semicolon. 
The ordering of node and class names on the right hand side of a class 
declaration is not not significant. 

All node and class declarations occur within structure declarations. A 
declaration of a structure starts with the IDL keyword Structure followed 
by the structure's name, then by the designation of a node or class as its 
root introduced by the IDL keyword Root and then by a List of the one or 
more node and class declarations that comprise the structure that begins 
with the IDL keyword Is and ends with the IDL keyword End. 

Below is an example structure declaration. 

Structure Structin Root Anode Is 
Anode •> List: Seq Of B. 

Name: CharSet; 

For CharSet Use Package CharSet; 
For CharSet Use Type CharSet; 
For CharSet Use External Representation String; 

B :> X: Boolean, 
R: Rational; 

End 

A structure called Structin is declared, consisting of two nodes, Anode 
and B. The root of this structure is the node Anode. One of the attributes 
of Anode, called Name, is of a private type called CharSet. By saying, 

For CharSet Use Package CharSet; 
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the user informs the IDL translator t hat the declarations for this private 
type are to be found in the file CharSet. hand its procedure defulitions are 
in the file CharSet. c. By saying, 

For CharSet Use type CharSet; 

the user informs the IDL translator that the IDL private type CharSet 
is implemented as the C type CharSet. The user also informs the IDL 
translator that the external representation for Charset is the IDL type 
String. 

IDL allows the user to declare a new data structure in terms of one or 
more previously declared structures. This is known as derivation of one 
structure from other structures. Derivation allows the user to copy the 
node and class declarations from several structures and then add or delete 
attributes to node types, members to class types, whole node types, or 
whole class types. 

For instance, 

Structure Structout Root Anode from Structin Is 
Without B • > X; 

Anode => Number: Integer: 
End 

The above declares a structure named Structout which is derived from 
the previously declared structure Stru<:tin. The first node production is 
preceded by the IDL keyword Without. It indicates the deletion of the 
attribute X from the node type B. The second node production introduces 
a new attribute Number into the nodetype Anode. 

2.2 The Process Declaration 

A process is the IDL model for a computation. An instance of a process 
reads and writes instances od IDL-specified data structures to and from 
external storage through a collection of ports. 

A port is an association between an IDL-specified data structure and a 
name for the IDL-supplied implementation of the routines for reading and 
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writing that structure. A Pre port is for input and a Post port is for output. 
The routines that do the input and output of IDL data structures have to 
translate between the internal (in main memory) representation and the ex
ternal ( outside main memory) representation of thee data structures. IDL 
supports two different formats for external representat ion, ASCII Extuna/ 
Representation Language (ASCII ERL), and Relocatab/e Binary. 

A Mark port is for neither input nor output. It associates with a struc
ture a routine that sets bits indicating whether an object is reachable from 
a given structure instance. 

Below is an example process declaration: 

Process InOut Is 
Target Language C; 
Target Runtime Version B; 

Pre P: Structin; 
For P Use Ascii External Representation; 

Mark M: Structin; 

Post Q: Structout; 
For Q Use Binary; 

Pre R: Structout; 
For R Use Binary; 

Post S: Structln; 
For S Use Ascii External Representation; 

End 

The above declares a process named InOut with five ports, namely P, M, Q, 

R and S. Associated with each port is a previously declared structure. For 
each input or output port, the external representation is specified as Bi
nary or Ascii External Representation. There are also statements that 
specify the target language and the runtime system used for this process. 
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2.3 ASCII External Representation 

Of the two external representation formats used by IDL, the ASCll ERL 
is the one that is human readable. 

The syntax of the ASCll ERL is free form. A structure instance is 
represented in terms of the objects that comprise it. The representation of 
an object can be nested within the representation of the node that references 
it or placed at the highest level to form a fiat list of objects. A representation 
that uses any intermediate level of nesting is also acceptable. 

The following is an example ASCII ERL representation of an instance 
of the structure Structin described earlier: 

Anode (List < firstS~ SecondS" ThirdS~ SecondS~> 
Name •astz" 

J 
firstS: B(X TRUE; R - 11/30] 
SecondB:B[R 11.3] 
ThirdS: B[X FALSE] 
# 

The above is a fiat representation of the four nodes that comprise the 
instance. The first node in the file is the root node. A node is repre
sented as an optionally labeled node name followed by an enumeration of 
its attribut~value pairs, separated by semicolons and bounded by square 
brackets. The ASCII ERL representation of an instance is terminated by a 
#. 

2.4 A Complete IDL Specification 

Below an IDL specification is presented. It uses a private type named 
CharSet. The algorithm specification and the user supplied private type 
files for this example can be found in Appendiz B. The files generated by 
the IDL translator for this example can also be found in Appendix B. 

Structure Structin Root Anode Is 
Anode => List: Seq Of B. 

llama: CharSet; 

9 



For CharSet Use Package CharSet; 
For CharSet Use Type CharSet; 
For CharSet Use External Representation String; 

B => X: Boolean, 
R: Rational; 

Md 

Structure Structout Root Anode From Structin Is 
Without B •> X; 

Anode => Humber: Integer: 
~d 

Process InOut I s 
Target Language C; 
Target Runtime Version B· 

Pre P: Structin; 
For P Use Ascii External Representation: 

Mark M: Structin; 

Post Q: Structout ; 
For Q Use Binary; 

Pre R: Structout; 
For R Use Binary: 

Post S: Structln: 
For S Use Ascii ~xternal Representation; 

End 
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3 The Problem 

In this chapter, we describe the functions that need to be supported by the 
IDL runtime library. Then we describe the pre-existing runtime system, 
with some of the problems associated with it. Finally we describe our 
approach to supporting these functions. 

IDL data structures, termed instances, are directed, possibly cyclic, 
graphs. The fundamental building block of a structure instance is a self
identifying, or tagged, chunk of memory termed a daw object. It has a 
4-byte header word that contains its size, type, and similar information. A 
data object may also be referred to simply as an object. 

There are two types of data objects, namely, nodes and system objects. 
A node is a user-defined data object implemented as a constant amount 
of storage depending upon its nodetype, with slots for its attributes. An 
IDL specification of a node is much like a C struct declaration and the 
attributes of a node are a lot like the fields of a C struct. A nodetype is 
analogous to a C type identifier. 

A node may have an attribute either by value or by reference. The 
distinction between the two is that of sharability. A value attribute is not 
sharable among nodes. It is physically located within the node to which 
it belongs. A reference attribute, as the name suggests, is a point er to a 
data object in main memory. More than one node can share a reference 
attribute by possessing a reference to it. Value attributes are those whose 
sizes can be determined at compile time, typically scalar data types such 
as booleans, integers and rational numbers. Reference attributes are either 
other nodes or things like character strings and sets and sequences of other 
objects, whose size cannot be determined at compile time. 

System objects are system-defined and are invisible to the user. They 
are used to implement sets, sequences and strings. Some system objects are 
used by the runtime system to implement data structures used internally. 
They do not form part of any structure instance. 

A 11tructurt instance is a directetl ~raph with a distinguished vertex 
termed its root, from which all of its other vertices are reachable. The 
vertices of this graph are nodes and system objects. Its arcs are pointers 
linking nodes to their reference attributes, and pointers linking objects to 
form sets and sequences. 
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The IDL runtime library supports four classes of functions: 

1. Operations on structured data such as sequences and sets; 

2. Creation of new instances of IDL data structures, and their initial
ization, if necessary; 

3. Reclamation of storage from instances that have outlived their use; 

4. ~!ovement of IDL structure instan~..es between main memory and disk. 

The current IDL runtime system uses the ASCIT External Representa
tion Language (ASCIT ERL) to represent IDL structure instances on disk. 
The ASCII ERL representation of an IDL structure instance is a linear 
enumeration of its sub-graphs. Each node, set or sequence, may have a 
(unique) label through which it can be referred to. 

Within a node, each attribute is listed as a (name, value) pair. A ref
erence attribute can be listed alternatively as a {name, label} pair. The 
drawbacks of ASCII ERL are that it is bulky, and that a considerable 
translation effort is required to convert between it and the IDL internal 
representation. Its advantages are that it is machine and language inde
pendent and that it is in ASCIT, which make it, at least in theory, human 
readable. In practice, though, an IDL structure may be complicated, and 
if it is large enough, any linear representation of it, as in the ASCII ERL, 
may be hard to read. 

A new object is created by allocating storage for it and inserting into 
it the information that makes it self-identifying. Each time space needs 
to be allocated, a UNIX system call is made. The user may specify an 
initialization procedure for objects of a particular type. If no initializa
tion procedure is specified, the newly created object undergoes a default 
initialization before being returned to the user. 

The IDL runtime library provides a facility to create sets and sequences 
of objects, and associated operations like lnsertion and deletion of elements, 
sorting of sequenee:s, and membership LesL~. There can be several ways to 
represent sets and sequences. A sequence can be represented as a linked 
list, or as an array of pointers to its members. A set of abstract entities 
can be represented as a bit map. This representation leads to efficient set 
operations, but is feasible only if the size of the average set is not too small 
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compared to the size of the universal set in the domain. A set of objects 
can also be implemented as a special sequence, with no member occurring 
more than once. 

The current IDL runtime system only supports explicit deletion of ob
jects. The user has to keep track of objects that are not useful any more 
and reclaim the space used by them. 

Some of the problems with the existing system are as follows. The 
ASCll ERL is extremely inefficient both in time and in space. Object 
management routines are slowed down because they use UNIX system calls 
for allocation and deletion of objects. The requirement of explicitly deletion 
to reclaim space puts unnecessary burden on the user. In addition, it may 
often be impossible to determine at programming time whether an object 
will become useless and its space should be reclaimed. If all references to a 
data object are destroyed, and it becomes inaccessible, it becomes garbage 
and the space allocated to it can never be recovered. Another problem is 
that of an object being deleted before all references to it are destroyed. Such 
a reference is called a dangling reference. If a program attempts to modify 
through a dangling reference, contents of a totally 1mrelated data object, 
or even the yet unallocated memory are likely to be modified, leading to 
errors in execution that may be very hard to detect. 

We see that though all functions listed above are supported in some 
form by the existing IDL runtime system, there is need for improvement in 
efficiency, functionality, and usability. 

For reasons given below, the representation of a data object on main 
memory must be different from its representation when it is transferred to 
disk. We call the main memory representation of data objects their internal 
representation and the representation on disk their external representation. 
Within an IDL process, there may be more than one structure declaration, 
each associated with one or more ports. IDL provides the user with a data 
derivation facility which makes it possible to define one data structure in 
terms of other previously defined data structures. Derivation allows a user 
to copy a p~cvioU3 node definition from on.: strucLure to another, retaining 
its nodetype, and then to edit it by adding new attributes and deleting old 
attributes. As a result of such derivations, a process may have the same 
nodetype defined with different attributes within different structures. 

Within a process, all node objects with the same nodetype have the 
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same representation in main memory. This representation is defined by the 
process invariant structure which is derived by taking the union of all struc
tures defined in the process. Though this representation may be wasteful 
in terms to space, it simplifies the routines and tables that have to be 
maintained by the runtime system to aid in the creat ion and manipulation 
of these data struct ures. Before a strudure instance associated with an 
output port is to be WTitten out, the invariant representation for each node 
object in that instance must be shrunk to just the node declaration in that 
particular structure. Before writing to disk, each reference to an object in 
main memory (generally a pointer) must be translated to a reference to the 
same object on disk. Similarly, when an instance of a structure associated 
with an input port is to be read in, each node object read in is mapped 
to its invariant representation in main memory. Each relocatable reference 
must be translated to an absolute memory reference. 

An alternative to the requirement of having to free space by explicitly 
deleting instances is to provide for garbage collection. As soon as an alloca
tion request fails owing to the lack of available space, the garbage collector 
is activated. 

In the runtime system described in this thesis, data objects are written 
to disk in a rdocatable binary format. A relocatable binary representation is 
a dump of all useful memory with all pointers made relocatable. Unlike the 
ASCll ERL, this representation is both machine and language dependent. 
Also unlike the ASCll ERL, this representation is compact, the translation 
between this and the IDL internal repr esentation is quick, and the code 
required for this translation is small. 

This runtime system also provides an improved facility for input and 
output in ASCII ERL. Both ASCII and relocatable binary 1/ 0 are table 
driven. The tables are generated from the user's IDL data specification by 
the IDL translator. Even though ASCII ERL continues to be supported for 
input and output, the preferred format for input and output is relocatable 
binary. 

In contr...,;t to the o:x.i.:sLing runtime system, which uses UNIX system 
calls for space allocation and de-allocation, this system does its own mem
ory management. It maintains a pool of free blocks of memory from which 
allocation is done. Explicit de-allocation of IDL instances is not required. 
Whenever the memory management system runs out of space, a garbage 



collector is activated. This garbage collector de-allocates all instances t;hat 
are not reachable through currently active user variables. This prevents 
the creation of dangling references. Adjacent free blocks of memory are 
coalesced into one block. This relieves the user of the burden of space man
agement. The overhead of explicit deletion of instances is eliminated, since 
the garbage collector goes into operation only when the process has run out 
of space. 
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4 Previous Work 

This section reviews work by other researchers in fields relevant to the the 
system under discussion. 

4.1 Input and Output of IDL instances 

The spectrum of IDL external representations is described by Newcomer 
{6]: 

1. ASCll 

2. Tokenized ASCII 

3. Absolute Binary 

4. Relocatable Binary 

We have already described the AS CIT ERL and the problems associated 
with it. 

The use of tokenized AS CIT eliminates the need for lexical analysis from 
the reading phase. This makes it faster and smaller than ASCTI ERL, 
though it is not human readable. 

The absolute binary representation is essentially a memory dump. A 
structure transferred from one process to another, using this representation, 
must occupy the same memory locations in the virtual space of the receiving 
process that it occupied in the source process. This requirement is much 
too restrictive for this representation to be generally useful. 

The relocatable binClry representation is an improvement on the absolute 
binary representation in that aU references are relocatable. It is not human 
readable, but it is compact. Newcomer reports that the input and output 
of IDL structure instances is improved in speed by as much as two orders 
of magnitude when the ASCII ERL is replaced by the relocatable binary 
format. 

As noted in the previous chapter, the existing IDL runtime system sup
ports only ASCH ERL format for input and output of IDL structure in
stances. The IDL translator analyzes the data specification and generates 
routines for reading and writing of IDL structure instances. Jt creates a 
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different routine to read or write node objects of each individual node type, 
and these routines are called during the input or output of an IDL structure 
instance. The amount of code required for input and output is proportional 
to the complexity of the IDL specification for that structure. 

In contrast, the runtime system described here uses a general purpose 
driver for reading and writing lDL structure instances. The lDL trans
lator generates a tables that contain the information specific to the IDL 
st.ructure definitions in a p:-rticular process. The general purpose drivers 
use information in t.hese tables t~ read in and write out particular types of 
nodes and their attributes. 

When an IDL structure is being traversed so that it can be written out, 
all the pointers in each node have to be located and followed. Newcomer 
uses a bit-map called a pointer dictionary for each type of node. Each bit 
in the bit-map indicates whether the corresponding word in the node is a 
pointer. 

In addition to information about location of pointers within nodes, our 
implementation also needs information about mapping of attributes in each 
node in the process invariant to t he corresponding attributes in the corre
sponding nodes in the port structure. The latter is best represented in 
tables. Rather than keeping a table and a pointer dictionary, we find it 
more efficient to incorporate the information about pointers in the tables 
and do away with the pointer dictionary. 

4.2 Recovery Of Instances Not In Use 

Data elements that are no longer in use should be recovered, and space 
allocated to them should be freed so that it can be used elsewhere. There 
are three principal approaches to recovery 11, 7J: 

1. Explicit Return, 

2. Reference Counting, and 

3. Mark- Scan Garbage Collection. 

The explicit return approach is the simplest to implement. The runtime 
system provides a procedure which, when called with a data object as its 
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argument, destroys the object and frees the space associated with Lt. This 
is the approach taken by the existing IDL runtime system. The problems 
associated with it have been described in the previous chapter. 

Reference counting is an approach to space recovery that prevents the 
creation of dangling references [2]. Associated with each data object is a 
number called its reference count. When an object is created, its reference 
count is set to 1. Each time a new reference to an object is created, its ref
erence count is ;11cremented. Conversely, each time a reference is destroyed, 
its reference count is decremented. When the reference count of an object 
becomes zero, it indicates that no references to that object exist any more. 
At this time, the object is deleted and the space occupied by it is reclaimed. 

There are several problems with this approach. This technique may 
fail to prevent the creation of garbage- if there are self referential data 
structures. The requirement that each object have a reference count may 
lead to a severe space overhead if the average size of objects is small. The 
maintenance of reference counts causes a. substantial overhead in execution 
time as well. For every assignment to a. pointer variable, one reference is 
destroyed and another created, i.e., one reference count is decremented and 
another incremented. 

~ark~can garbage collection is an approach that makes no explicit 
deletions, thus preventing the creation of dangling pointers. It lets garbage 
be created until all space is exhausted, at which time, a special procedure 
goes into operation that identifies all garbage and returns the storage to 
the free pool. This approach requires each data object to have a 'mark' bit, 
which is initially off. 

There are two stages in this procedure. In the first stage, all objects 
that are accessible by the process running are marked. In the second stage, 
the entire memory space is scanned and all objects that are not marked are 
recovered. All objects that were marked in the first phase have their marks 
turned off. 

There are other more specialized and more sophisticated approaches to 
garbage collection. For instance, Deutsch and Bobrow describe an incre
mental garbage collector whose performance is based on the observation 
that most allocated storage is either referenced only by one unchanging 
pointer throughout its lifetime or is used for temporary results, i.e., isaban
doned quickly after creation j3]. While this observation may be true ror 
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execution of LISP programs, it probably does not hold for IDL instances in 
memory, therefore the efficiency of this garbage collection strategy in the 
context of IDL processes is doubtful. 

Wegbreit describes a compactifying garbage collector whose main virtue 
is that it works even when pointers point in the middle of objects, and the 
algorithm goes to great lengths to ensure correctness in such situations [12]. 
Each pointer in an IDL instance refers to the starting location of an object, 
never to the middle of it, therefore the problem that this garbage collector 
is attempting to solve does not exist in this context. 
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5 Overview of the Runtime System Design 

Chapter 2 briefly described the functions that should be supported by an 
IDL runtime system. This chapter contains a high-level description of the 
approach taken in this runtime system to support each of these functions. 
The next chapter provides the next level of implementation detail. 

5.1 IDL Data Objects 

There are three types of IDL data objects: 

1. ~ode, 

2. System Object, and 

3. Free Page. 

Each data object is a contiguous piece of memory. The first word of the 
data object, also known as its header, identifies the object. The interpreta
tion of the rest of the data object depends on its header. The node is the 
only user defined object. Other objects are system-<lefined. 

The header of a node contains a field called its nodetype. All node 
objects with the same node type have the same size and the same attributes. 
The IDL translator generates a. table called the process invariant table which 
has entries describing the memory layout of instances of each nodetype. 
For each IDL port, it also generates a table called port table, describing the 
nodes in the corresponding port structure. 

System objects are further classified into eight types. Below, the three 
that may appear in IDL st ructure instances are listed. 

1. String, 

2. List Cell , and 

J. List Header. 

The other five types of system objects, used internally by the runtime sys
tem, are discussed in the next chapter. 

A string is a variable sized object that s tores a character string. 
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List cells are used to construct linked lists, representing sets and se
quences of other objects. 

A sequence (or a set) can be shared between many nodes, through a 
pointer to the first list cell in the sequence. As changes are made to a 
sequence during the lifetime of a process, the first cell in the sequence 
must remain the same, so t hat dangling pointers are not created. This 
requirement cannot always be met. For instance, a null sequence has no 
first list cell, therefore, when a shared non-null sequence is made null, it 
will always create dangling references. A way to get around this problem 
is to always have a dummy list cell as the first element of a sequence. This 
is a special type of system object known as a list header. A Jist header is 
merely a place-holder for a sequence. It provides a stable address for a 
sequence whose composition might keep changing. 

The IDL object management system maintains a pool of free memory 
from which it periodically allocates storage for the creation of nodes and 
system objects. This pool consists of variable sized chunks of memory 
known as free pages. 

5.2 Support for Sets and Sequences 

Sets and sequences are two structured data types supported by IDL. A set 
or a sequence is a. collection of instances of one of the predefined types, 
namely, Boolean, Integer, String, and Rational , a. nodetype, or a. user 
defined type known as a private type. Figure 1 lists operations possible on 
sets and sequences. 

The representation of sets and sequences uses list cells. A sequence of 
instances of a scalar type like Boolean, Integer, Rational , or a private type, 
is represented by link.ed list of list cell objects, the data field in each list 
cell containing a member of the sequence. A sequence of node objects or of 
string objects, is also represented by a similar linked list, the data field in 
each list cell containing a pointer to a member of the sequence. 

A set is implemented o.s a. apccial case of a. 3e'luence, with uo member 
occurring more than once. 
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operation II sets I sequences 

1. Addition of an element To the front 
..; To the rear 

In order 
2. Making a copy ..; ..; 
3. Test for emptiness ..; .j 
4. Iteration over elements ..; .j 
5. Initialization to empty ..; .j 
6. Membership Test ..; .j 
7. Return the size ..; ..; 
8. Removal of an element Of the first occurrence 

of a given element 
..; Of the first member 

Of the last member 
Of the i'~ member 

9. Retrieval Of the first member 
X Of the last member 

Of the i 1h member 
Of the tail 

10. Sorting X .j 

Figure 1: Operations Supported on Sets and Sequences 

5.3 Creation of IDL Data Objects 

As mentioned earlier, this runtime system does its own memory manage
ment. Throughout execution, a pool of free memory is maintained by the 
memory management system. This pool consists of data objects Jrno,vn as 
f ree pages. A free page is identified by its header. The data cont ained in a 
free page includes its sizo and pointers linking it into the pool of free pag.::s. 

At the start of execution, the free pool consists of a rather large free 
page which constitutes the entire IDL data memory available to the u.ser 
process. As execution proceeds, this free page keeps getting smaller with 
each allocat ion. At some point t here may be an allocation request that 

22 



cannot be met by this free page. This failure causes the garbage collection 
procedure to go into operation. When garbage collection is over, the free 
pool is likely to contain several free pages, one of which will likely be of 
adequate size. If this is not the case, the allocation request fails and the 
user is notified. 

5.3.1 Creation of an IDL Node Object 

The runtime system receives a request for the creation of a new node in
stance with a specified nodetype. The size of memory to be allocated is 
obtained from the corresponding entry in the process invariant table. A 
chunk of memory of t his specified size is carved out of one of the free pages 
in the free pool. The first word of this piece of memory is set up as the 
node header, with information identifying it as an instance of a particular 
node type. 

The life of a node object may extend beyond the lifetime of the process 
by which it is created. A process may create a node and write it out 
to disk as a part of a structure instance. At some time in the future, 
this node object may be read in by another process, possibly r-unning on 
a different mac.hlne. It is desirable to associate with each node object a 
process identifier unique over space and time, which identifies the process by 
which this node was originally created. This process ID is derived from the 
time of process creation, the address of the machine on which the process 
is running, and its UNIX process..id. The runtime system maintains a 
process ID table and each node object in main memory has a processiD 
field in its header that contains an offset into this table, identifying the 
process by which it was created. 

When a node object is created, its process ID field is given the appro
priate value. 

All attributes of this node are initialized using a user provided initial
ization routine for instances of that particular nodetype. Ir there is no 
initialization routine, the attributes are given system llefined default val
ues. Finally a pointer to the newly crea.ted node instance is returned. 
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5.3.2 Creation of an IDL String Object 

A request for the creation of a new string object is accompanied by a pointer 
to a C string. 

The runtime system maintains a hash table to store addresses of all 
string objects in use. When it receives a request for the creation of a new 
string object, it tries to find an al ready existing string object that matches 
the given C string. If such an object e.xists, a pointer to it is returned to 
the caller. Otherwise, a piece of memory is allocated from the free pool, 
its header is set up to reflect that it is an IDL string object of a particular 
size, and the characters in the C String are copied to it. A pointer to the 
newly created string object is returned to the caller, and also stored in the 
hash table. This procedure ensures that a process never has more than one 
string object with the same contents. This results in the test for equality of 
strings being reduced to the much simpler test for equality of pointers. It 
also requires that once a string objecL has been created, its contents cannot 
be modified. Of course, a reference to a string object can be replaced by a 
reference to another string object, conta ining different characters. 

5.3,3 Creation of Other Data Object s 

Creation of any other object is much like the creation of a node object. It in
volves allocation, setting up the header, initializing the data, and returning 
to t he caller a pointer to the newly creat ed object. 

5.4 R eclamation of S torage 

As soon as an a!Jocation request is made which cannot be met because of 
a lack of free space in the IDL data memory, a special procedu.re known a.s 
garbage collection goes into operation. 

The marking phase of the garbage collector scans each location that 
could possibly be a pointer in the runtime stack and the global variable 
area of the process in execution [lOj. It t reat• each such wuru IUj a potential 
pointer to an IDL data object. If such a word is found to contain the 
address of the header of an ID L data object, that object is classified as 
active. Occasionally, a word which is not really a pointer is treated as one, 
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and as a result , a piece of garbage may be marked active. This does not 
cause any error; it merely results in some garbage not being collec ted. 

All IDL data objects reachable from an active object are also classified 
as active. During the marking phase, the garbage collection flag in each 
active object is turned on. 

After the marking phase is over, t he scan phase begins. During this 
phase, a linear scan of the IDL data memory is made. Each data object 
encountered with its garbage collection flag off is reclaimed and added to 
the pool of free pages. Physically adjacent free pages are coalesced into 
one page. The garbage collection flags of active objects are turned off 
during this phase. At the end of this pnase, all active objects are as before, 
all garbage has been collected and returned to the free pool, and garbage 
collection fl.ags are off on all objects. 

In contrast wit h the method of reference counts described in chapter 3, 
this scheme can garbage collect circular structures. 

5.5 Reading and Writing of IDL Instances 

This section first describes the relocatable binary writer and reader algo
rithms. Then it describes the minor changes and enhancements needed to 
support ASCII reading and writing. 

5.5.1 Binary Writer 

The IDL writer is called to write IDL structure instances exist ing in main 
memory to secondary storage. Its tasks include the following: 

1. Identify all data objects reachable from the root of the structure in
stance to be written to disk. All these are parts of the structure to 
be written out. 

2. Locate all pointers within each of t hese data objects and convert them 
to relocatable referenr.P-~. 

3. Ensure that data objects shared within the structure instance are 
wr itten out only once. 
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4. Ensure that each node object is written out in conformity with the 
structure specification associated with t hat particular output port. 
This means that in particular, the invariant representation of a node 
in main memory should be translated to its representation in the port 
structure before being written out. 

5. Ensure that all private type objects and attributes are written out in 
their external representations. 

The IDL writer requires the following data structures to be supplied. 
Some of them are previously initialized global variables, others are passed 
to it as procedure parameters. 

1. A pointer to the root of t he structure instance to be written out. This 
is supplied as a parameter by the user. 

2. An open file to write to, also supplied as a parameter. 

3. The process invariant table, a table describing the invariant represen
tation of each type of node in main memory. This table is generated 
by the IDL translator and is available to the runtime system. 

4. The port table, a table describing the port structure. There is one 
such table for each TDL port, generated by the TDL translator and 
available to the runtime system. 

5. The private type table, a table containing specifications for private 
types, pointers to initialization routines, and to routines for conver
sion between their external and internal representations. This table 
is also generated by the IDL translator and is available to the runtime 
system. 

Starting with the root, with information from the port table and the 
process invariant table, all pointers in the given structure instance are fol
lowed. These include the pointers to reference attributes in nodes and the 
set and sequence links. Each data object encountered is marked. The mark
ing operation consists of associating with each data object a unique positive 
even integer known as its relocation index and setting up a Bag in the data 
object that says that it has been visited during the marking p l1ase of the 
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writer. The relocation index of the object is stored in place of the object 
header. The header of this object and a. pointer to it are saved in an entry 
of a table called the relocation table. 

If there are n data objects in the structure to be written out, their re
location indices range from 2 to 2n. Index 2 is assigned always to the root 
data object. Index 0 represents a null pointer. Odd integers are used to rep
resent nodes without attributes and are therefore not usable as relocation 
indices. Since a data object is uniquely identified by its relocation index, 
each absolute pointer to that object can be made relocatable by replacing 
it with the relocation index of that object. 

Once a data object has been marked, it is ready to be written to disk. 
Below, the procedure of writing out a node is described. List cells and 
string objects can be written out in a similar manner. 

First the header of the node is written out. Then each of its attributes 
have to be written out in some form. The port table contains entries indexed 
by node type that describe an instance of that nodetype and its attributes. 

As noted earlier, a node may have two kinds of attributes. A reference 
attribute is represented within a node as a pointer to an IDL data object. 
Before this attribute can be written out, the data object it points to must 
be marked. The relocation index of this data object is written out in place 
of the pointer. 

A value attribute can be either of a scalar or of a private type. The 
external representation of a scalar is the same as its internal rep resentation. 
It can be written out as is. An attribute of a private type has to be trans
lated to its external representation. A pointer to the conversion routine 
can be obtained from the private type table. The external representation of 
a private type may turn out to be yet another private type, in which case 
another conversion step is required. The chain of conversions stops as soon 
as it gets to an external representation that is not a private type. Now it 
can be dealt with like a reference attribu te or a scalar value attribute. 

5.:i.2 Binary Reader 

The actions of a the binary reader are an exact reverse of those of the 
binary writer. The binary reader is called by a process to read in from 
disk to main memory, an IDL structure instance which was written out by 
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a binary writer called possibly by some other process. The tasks of the 
reader include the following: 

1. Allocate space in main memory and read in the data objects compris
ing the IDL structure being read. 

2. Translate the external representation of each node object, as specified 
by the structure declaration associated with the input port, into the 
invariant representation fo r that node. 

3. Convert all relocatable references to absolute memory references. 

4. Convert external representations of private type objects and attributes 
to their internal representations. 

The data structures required by a binary reader are similar to those needed 
by the binary writer. It needs an open file to read from, the process invari
ant table, the port table for the particular input port, and the private type 
table. 

The file contains a list of data objects that make up the structure being 
read in. For each data object, first its header is read in. Since the header of 
a data object identifies its size and type, space can be allocated for it in the 
data memory. Once space has been alloeated, the rest of the data object 
can be read in. The size of a node in the input structure may be different 
from the size of the corresponding node in the process invariant structure. 
In addition, the number of attributes and their physical locations within 
the node may vary between the two. The reader must read in nodes of 
the first kind and create in memory matching nodes of the second kind. In 
order to do this, it needs the information contained in the process invariant 
table and the port table. All string objects read in are entered in the string 
hash table. All private type attributes and objects are converted from their 
external to their internal representations with the help of the private type 
table. After all the data objects have been read in, the relocatable pointers 
are translated to absolute memory addresses and the reading operation is 
over. 
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5.5.3 ASCII Writer 

The ASCll writer outputs an IDL structure instance in human readable 
form. Each structure instance is written out in fully nested format, with a 
label on each object so it can be referred to from other objects in case it is 
shared. The ASCII writer needs an additional data structure to carry out 
its task. The Nodetype Table maps from integers to the names of nodes they 
represent, and also from indices of attribute within nodes to the names of 
the attributes they represent. This table is generated by the IDL translator 
for ports that have ASCll writers. 

5.5.4 ASCII Reader 

The ASCII Reader parses the structure instance represented in ASCII Ex
ternal Representation Language, and reads it into main memory. It needs 
an additional data structure, the NodeName Table generated by the IDL 
translator. This table maps node names into integer nodetypes and from 
attribute names to attribute indices. 

5.6 Marker Ports 

In addition to the ports that are used for input and out put of structure 
instances, there are ports that are used to do a reachability test on given 
structure instance. These ports are known as marker ports; in spite of their 
name, they have nothing to do with input or output. However, like in the 
case of an input or output port, a structure specification is associated with 
each marker port, describing the structure instances it operates on. 

An IDL structure declaration is associated with each marker port. When 
given a pointer to a structure instance, the marker port traverses the entire 
instance according to its structure declaration and marks all data objects 
that comprise this instance. T he marking algorithm is very similar to the 
writing algorithm except that nothing gets written. There a.re two bits in 
the hcc.dcr of each data object, namely ~ouched and shared, that are used 
by marker ports. Initially, both these bits are reset. After marking is over, 
each object reachable from the root ha.s either its 1;ouched or its shared 
bit, but not both, set to 1. The shared bit indicates that the object is 
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reachable from the root through more than one path. The touched bit 
indicates that it is reachable through only one path. 

The marking algorithm, staring with the root of the instance, is as 
follows: 

1. If both bits are reset, set the t ouched bit, and mark all objects reach
able from this object, following the pointers and private type values. 

2. If the touched bit is set, turn it off and set the shared bit. 

3. If the shared bit is on, do noth ing. 

4 . To mark a private type value, call the user provided marking routine 
for this private type with the marker port routine as its argument. 

5. 7 Private Types 

The standard set of attribute types provided by IDL is limited to the scalar 
types, Boolean. Integer, Rational and String, the structured types, 
Set Of and Seq Of, and the user defined Node type. This set can be 
augmented by the user ~hrough the use of the private type facility. 

To use thls facility, the user must first declare a named private type. 
Then he must declare the internal and external representa tions for this 
private type. The data definition for t he internal representation of t his 
private type is specified in the target language by the user. The size of 
the internal representation can be determined from this data definition. 
Its external representation must be an IDL standard type or a previously 
defined IDL node or class. 

As an example, the IDL specification in Chapter 2 uses a private type 
named CharSet. Its external type is String. 

The user must provide certain procedures to the runtime system for 
manipulation of this private type. The names of these procedures supplied 
by the user must follow the scheme described below. 

(TypeN ame}To(Externa/) should be the name of the routine that trans
lates from the internal representation of a private type value to its external 
representation. The correspondiitg routine in the example is CharSet
ToString. 
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Similarly, the routine that translates from the external representation 
of a private type value to its internal representation should be named 
(Ezternal)To(TypeName). The corresponding routine in the example is 
StringToCharSet. 

Either routine takes two parameters, both of type * char. The first 
parameter, source, points to the the value to be translated. The second 
points to a buffer where the t ranslated value is to be returned. 

The user is responsible for providing an initialization routine for each 
private type. This routine should be named (TypeName) Initialize. The 
conesponding routine in the example is CharSetinitialize. This routine 
takes one parameter, of type, • char, which points at the starting location 
of the private type value to be initialized. 

A marking routine must also be provided with each private type. This 
routine should be named (TypeName)Mark. The corresponding routine 
in the example is CharSetMark. This routine takes three parameters, the 
first of which is of type * char, a pointer to the private type value to be 
marked, the second is a pointer to a routine, and the third is a pointer 
to the port table for that marker port. the task of the marking routine 
is to call the passed routine for each IDL data object that is reachable 
from the private type value which is being marked. The passed routine has 
two arguments, the first is of type * int and is the address of the data 
object to be marked, and the second is the above mentioned pointer to the 
port table. This routine returns void. If it is a non-null pointer, the This 
marking routine is used during lhe garbage collection and during marking 
by a Marker Port. 

The size of a private type value is known at compile time, therefore, in 
a node, a private type attribute is a value attribute. 

The support for sets and sequences of private types is rather scant. 
Only creation of new list cells to store private cype values is supported. 
The other set and sequence operations are not supported. 
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6 Runtime System Implem entation 

After the high level overview of the runtime system in chapter 4, thls chap
ter describes the lower level details of the system. 

This runtime system makes several assumptions about the target archi
tecture. It assumes that the target machine has a byte addressable memory, 
that each address is 32 bits long, floats are 32 bits long, doubles are 64 
bits long, and that standard types that are 32 bits or lone:er are allocated 
at ( 4 byte) word boundaries .. 

6.1 Private Types 

IDL assigns a unique number PvtTypeCode to each private type and con
structs a table called PvtTypeTable, indexed by PvtTypeCode. Each entry 
in this table pertains to a particular private type and contains six elements: 

1. E:xtToint: a pointer to the routine that converts the external repre
sentation to the internal representation. 

2. IntToExt: a pointer to the routine that does the inverse conversion. 

3. Initialize: a pointer to the initialization routine for a value of this 
type. 

4. ~lark: a pointer to the marking routine for this private type. 

5. ExtType: a one byte fie ld specifying the type of the external repre
sentation. 

6. IntSize: an integer specifying the size, in bytes, of the internal rep
resentation. 

Another data structure used in the input and output of private types is 
a table known as the EA1:RepTable. References to external representations 
of private type attributes are stored in this table. 
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6.2 Self Identifying Data 

As mentioned in the previous chapt.er, all IDL data is self identifying. The 
header of each data object identifies it completely. An object is identified 
as belonging to a particular object type by the pattern of the two least 
significant bits in its header. Since there are only three data object types 
and four possible two bit patterns, the remaining pattern can be used to 
identify a special type of header known as the indire<!t header (Figure 2). 

During the mark phase of the binary writer, the header of each objec~ 
to be written out is replaced by an indirect header. This is done only 
for nodes and the system objects that occur in structure instances. In 
an indirect header, the remaining 30 bits form the relocation index of the 
object to be written out. 

6.2.1 T he Node Object 

There can be two types of nodes. A node with no attributes is represented 
by an odd integer. A node with one or more attributes is represented by a 
pointer to a. node object allocated in the IDL data memory. Since a node 
object is always allocated at ( 4-byte) word boundaries, a pointer to it is an 
integer which is always a multip le of four, and can be distinguished from 
a node with no attributes. The header of a node object consists of the 
following fields , as in Figure 2: 

1. Process ID: this is an index into a process table maintained by the 
runtime system. The Process ID identifies the process by which the 
node was originally created. 

2. ~ode Type: this is a non-negative integer, uniquely identifying t he 
entries in the invariant table and the respective port tables that char
acterize this node. Node type i is associated with the 2i1h entry in 
the port tab les and ~he i 1 h entry in the invariant table. In the port 
tables, the odd numbered entries are for nodes without attributes. In 
the invariant table, there are no entries for nodes without attributes. 

3. Garbage Collection bit: This bit is used to mark objects in the scan 
phase of garbage collection. 
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4 . Touched bit: This is used by marker ports to mark all objects which 
are r eachable from a certain given object. It is also used by the ASCII 
writer to mark objects t hat have already been written out. 

5. Shared bi t: T his is also used by marker ports to mark objects that 
are shared within a struct ure. 

The body of the node, as that of any other object, consists of an integral 
number of words containing the values of its attributes. 

6.2.2 The System Object 

T he system object header has the following fields, as in Figure 2: 

1. Size: size of the object in words. 
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2. System Object Type: type of the system object. 

3. Data Type: this field identifies the type of data contained. It is 
relevant only in the header of a list cell object. 

4. Garbage Collection bit. 

5. Touched bit. 

6. Shared bit. 

There are eight types of system objects: 

1. String, 

2. List Cell , 

3. List Header, 

4. String Hash Table, 

5. Label Table, 

6. Relocation Table, 

7. External Representation Table, and 

8. Marking Buffer. 

A string object consists of an object header, a pointer field, and a vari
able length data field, as in Figure 3. T he data field contains a null ter
minated string of characters padded on the right so it occupies an integral 
number of ( 4 byte) memory words. All strings are stored in a hash table to 
be described in the next chapter. The pointer field is used to link all string 
objects that hash to the same location in the string hash table. 

A list cell consists of a header, a nex:t field containing a pointer to the 
next list cell in sequence, e.nd a variable lt:ll~S~h data field that comains a 
value. The datatype field in the header of a list cell describes the type of 
data it contains. 

A list header object consists of a header and a nex:t field containing a 
pointer to the first list cell in the set or sequencer. This object is three words 
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Figure 4: The S~ring Hash Table 

eventually contain the resolved reference. The address field contains the 
address of the first fixup location, which, in tum contains the address of 
the second fix up location, and so on. The last fixup location in the linked 
list contains the null pointer. ln Figure 6, three references to an object 
labeled "11234" have been read in before the object itself. Two of these 
references are within nodes, and one is in a list cell. In the label table entry 
for this label, ~he 0 in the resolved field indicates that the references have 
not been resolved yet, the address field contains the first link in the chain 
of fixup locations, and the label field contains a reference to the string 
object representing the label "11234". While reading is in progress, if a 
reference to an unresolved label is encountered, its location is added to this 
linked list. After the object to which an unresolved label refers is read, the 
address of the object is stored in the address field of t he corresponding label 
entry and its resolved field is set to 1. T hen the linked list of locations 
is traver.;ed and the object address is stored in each location encountered 
(Figure 7}. In this figure, the references have been resolved to point to the 
newly read in node object. 
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Figure S: The Label table 

The label table objed is also used by the binary reader. While the ASCII 
reader uses it to resolve references to symbolic labels, the binary reader uses 
it to resolve references to relocation indices. Each entry now has only two 
fields, reaol ved, and address. The counterpart to the symbolic label field 
is the relocation index, which is an implied field, equal to the offset of 
the entry in the label table. The storage of unresolved references and the 
resolution of references is identical to the corresponding functions in the 
ASCII reader. 

The relocation table object is used by the binary writer. Stored in each 
entry are the header of the object to be written out, and a pointer to the ac
tual object. Before an object is written out, its header is stored away in this 
entry o.nd a. relocation index is put i11 it~ place. This index un iquely identi
fies the entry in the relocation table whi.ch contains the header. When the 
entire structure has been written out, the relocation indices are discarded 
and the headers restored. 
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Figure 6: An Unresolved Label Entry 

T he ASCII Writer uses the relocation table to store addresses of objects 
that have been marked and written out. After the v.rriting operation is 
over, this table is used to locate the objects that were written out so their 
'marks' can be removed. 

The ezternal repre$entation table is used by the reader to store external 
representations of private type objects, before their conversion to internal 
representa t ions. 

The label table, relocation table, and external representation table object 
are implemented as arrays of entries. Each table has its own object header, 
a count field indicating how many valid entries it contains, and a next 
field through which another table object of the same kind can be linked in 
case of overfiow(Figure 5). These tables are allocated from the IDL data 
memory as and when they are needed. This is done while input or output 
is going on. No tables are allocated during garbage collection. Pointers to 
them are s tored in variables global to the entire runtime system. They are 
garbage collected when they are not in use. 
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F igure 7: A Resolved Label Entry 

The marking buffer is used during the mark phase of the garba.ge col
lector. All potential pointers to data. objects found on the runtime stack 
are stored in this buffer and sorted. Then they are compared with the ad
dresses of actual data object headers. The ones that match are recursively 
marked and others are discarded. If there is not enough room in the buffer 
to take all possible pointers from the runtime stack, this process is repeated 
until the sta.ck is exhausted. 

6.2.3 The Free Page Object 

The pool of free pages is a circular doubly linked list of free page objects. 
The 30 more significant bits of the free page header form the size of the 
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free page in ( 4 byte) words. 
The two words following the header ·contain the forward and backwards 

links into the free pool. Since each free page needs three words to store its 
two pointers and its size, it has to be at least three words long. 

6.2.4 IDL Memory Layout 

Figure 8 illustrates the memory layout of an IDL process runing under 
UNIX on a Sun workstation or a VAX. The low end of the memory is 

0 
program text 

~ &environ 

statics <Uld globals 

I 
cache I 

&end 
heap 

I IDLMemory I 

stack 

HaH Memory 
Figure 8: IDL Memory Layout 

occupied by the program text . Above that is the initialized static and 
global da ta. Following this area is the storage for urunitialized stat ic and 
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global data. The remaining storage is used by the heap and the runtime 
stack. The heap grows starting at the low end of the remaining space and 
the stack starts at the high end. The IDL data memory is part of the 
heap. The UNIX runtime system supplies two pseudo-variables that mark 
the boundaries around the data area. e nviron and end are allocated at 
the start and end of the data area, respectively. The uninitialized global 
variable area contains a cache of global variables with the help of which all 
IDL data objects can be located. 

1. The variable IDLMemory of type * i nt points to the first location of 
the IDL data memory. The size of this memory in words is given by 
the variable IDLMemorySize of type *int. 

2. The pool of free pages is pointed to by the global variable IDLFreeL
ist of type * int. 

3. The variable InvTable points to the invariant table, with the help of 
which all nodes can be described. 

4. The label table is pointed to by the variable IDLLabel Table. 

5. The external representation table is pointed to by the variable IDLEx
tRepTable. 

6. T he relocation table used by the reader is pointed to by the variable 
IDLRead.Rel Table. 

7. The relocation table used by the writer is pointed to by the variable 
lDLWriteRelTable. 

6.3 Allocation and Initialization of Objects 

Initially, the free pool contains only one free page object of a certain con
stant size, but after garbage collection, it is likely to contain several free 
pages of different sizes (Figure 9). T he first-fit algorithm is used for space 
allocation. All data objects allocated are at least three (4-byte) words long. 
The smallest allocated object cannot be smaller than the smallest possible 
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Figure 9: The Free Page Pool 

free page, because if it is garbag~ollected, it may have to be transformed 
into a free page by itself. 

For each nodetype defined, the \ISer may provide a node initialization 
routine. At the time of creation, each node is a chunk of memory with an 
appropriate header. Before it is returned to the user, it is initialized, \ISing 
the initialization routine provided by the user. In case such a routine is 
not provided, all attributes of the node are initialized to system defined 
defaults which are as follows: 

1. Boolean: FALSE, 

2. String: NULL, 

3. Integer: Zero, 

4. Rational: Zero, 

5. Set: NULL, 
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6. Sequence: NULL. 

The user must provide an initialization rout ine for each private type. When
ever a list cell is created, it is also ini tialized according to its data type. 

An Integer attribute may be one, two or four bytes long. A Boolean 
is a stored in a byte. The bit pattern consisting of all zeroes represents the 
value FALSE and anything else represents the value TRUE. 

6.4 Garbage Collection 

In order to collect garbage, all global variables in the program, as well as 
local variables of the currently active procedures, have to be accessed. For 
purposes of garbage collection, all memory locations in the runtime stack 
and the global and static variable area of the currently executing process 
are assumed to contain pointers to IDL data objects. As explained in the 
previous chapter, this assumption, though incorrect, leads to a conservative, 
but valid method of garbage collection. 

Whether or not any input or output is in progress is indicated by the 
global variables IDLbinwriting, IDLbinreading, IDLasciiwriting, and 
IDLasc;iireading. Clearly, at any given time, at most one of these variables 
can be true. When lhe garbage collector is invoked, it tests these variables 
to find out if at all any input or output is in progress, and if so, what type. 
The garbage collector is aware of the kind of tables mentioned above that 
each type of input or output uses. 

If the garbage collector is called during input or output, it starts with 
marking objects accessible from the relocation tables currently in use. It 
also marks the tables themselves. If the external representation table is 
also in use, it marks object accessible from that, too. 

The global and static variable area is between the addresses of the vari
ables environ and end provided by the C runtime system on UNIX. All 
local variables are on the runtime stack. The address of the first automatic 
variable declared in the main procedure mar ks the bottom of the runtime 
stack ;mrl one of the local variables in ~he garbage collection routine can be 
considered to be at the top of t he stack. The user is required to make a call 
to the procedure IDLini t provided by the runtime system. This call must 
be made only once and must precede any call to any other proc~dure pro
vided by the runtime system. IDLini t takes one parameter, which should 
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be the address of the first automatic variable declared in the main proce
dure. IDLini t initializes the runtime system and establishes the bottom of 
the runtime stack. 

The following conditions are tested for on each ( 4- byte) word in the 
variable and stack areas. 

1. It points into the data memory area. 

2. It points at a word boundary. 

3. It points to a word that looks like a valid unmarked node header or a 
valid unmarked header of a string, list cell or lis t header object. 

If it tests true on all of the above three conditions, it is considered to be 
a potential pointer to a data object. All potential pointers are stored in the 
marking buffu object and sorted. Then the data memory is scanned from 
top to bottom along with the marking buffer to determine which of these 
pointers actually point to objects. All pointers in the buffer that point to 
an unmarked node or object are recursively marked. 

The recursive marking process is carried out as follows. 

1. A node is marked by setting the garbage collection bit in its header, 
and marking all of its non-null reference attributes and private type 
attributes. 

2. A list header object is marked by setting the garbage collection bit in 
its header and marking the list ceJJ pointed to by its next field. 

3. A list cell is marked by setting the garbage collection bit, marking the 
list cell pointed to by its next field, and marking its data if its data 
is a node or a string or a private type. 

4. A string object is marked by setting the garbage collection bit. 

5. A privnte type object i~ marked uy calling the Mark routine provided 
for that private type by the user. This routine takes as its argument 
a pointer to &he garbage collection marking routine. 
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After the marking process is over, the headers of the marking buffer 
and the string hash table are marked. These objects are not to be garbage 
collected. Then all the string objects are scanned. Those that are found 
to be unmarked are de-linked from the string hash table so they can be 
garbage collected. This step is necessary to eliminate dangling pointers to 
garbage-collec ted string objects. 

At this time all garbage is unmarked and ready to be collected. The 
pool offree pages is now initialized to null. A top to bottom scan of the data 
memory is carried out. All free pages and unmarked nodes and objects are 
garbage. They are linked into the free pool. Since this is a linear scan, it is 
easy to detect adjoining objects to be garbage collected. They are coalesced 
into one large free page and linked into the free list. During this scan, all 
marked objects are made unmarked again. At the end of this scan, garbage 
has been collected, and all useful data objects are as before. Hopefully, 
more space is available for allocation and the process can proceed with its 
task. 

6.5 Performance 

In this section we analyze the performance of the runtime system, in terms 
of both space and time. 

8.5.1 Space Overhead 

The following is the overhead on data objects: 

1. Each node object has an overhead of 4 bytes that comprise its header. 

2. Each string has an overhead of ~ bytes on its header, 4 bytes on its 
next pointer, and on average 1.5 bytes due t o the requirement that 
the size of each object be a multiple of (4 byte) words. 

3. Each set or sequence has an overhead of 12 bvt•s n•t?.tl by the list 
header. 

4. Each element of a set or a sequence has an overhead of 8 bytes used 
by its header and its next pointer. 
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5. There is a constant overhead due to the Marking Buffer. 

The following is the overhead during input or output: 

1. There is an overhead of one relocation entry per object read during a 
binary read. The relocation ent ry size is 4 bytes. 

2. There is an overhead of one relocation entry per object written out 
c·rring a binary write. The relocation entry size is 8 bytes. 

3. There is an overhead of one label entry per label read during an ASCII 
read. The size of a label entry is 8 bytes. 

4. There is an overhead of one external representation entry for each 
private type value read in, during the ASCII or the binary read op
eration. The size of the external representation entry is lf! bytes. 

There is no overhead during garbage collection. 

6.5.2 Time Performance 

The following is the analysis of the performance of input and output oper
ations, assuming that no garbage collect ion occurs during the operation. 

1. Writing: This involves a pass over the entire structure to be written 
out, and the traversal of all pointers within the structure instance. 
Since the size of the instance is larger than the number of pointers in 
the instance, The ASCII write operation is 0(size(instance)), where 
size( instance) is the total size of all objects that comprise this struc
ture instance. 

2. Reading: This involves reading in the entire structure and doing 
fix- ups on the forward references as they are read in. Once the entire 
structure instance is read in, all private type values are translated 
from their external types to their internal types. Thi::t uv.,ra~ion is 
also 0(size(instance)). 

T he following is an analysis of the performance of operations relating to 
object management: 
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1. Allocation and Initialization of objects: Object allocation in
volves traversing the list of free pages, until one at least as large as 
the object to be allocated is found. This takes, on average, time pro
portional to the length of the list of free pages. Then this object is 
initialized, which takes time proportional to the size of the object. 

2. Garbage Collection: The 'mark' phase involves scanning the global 
variable and the stack areas, piclring out potential pointers to data 
objects, and following them. We compute the probability that one 
of the words scanned is a potential pointer, assuming that all bit 
patterns are equally likely. The probabili ty that a given word is a 
valid unmarked node header is: 

1 1 27 

p(nh) = 4 X z X zn 
In the above formula, the first factor denotes the probability that 
the word has the two bit pattern that classifies it as a node header. 
The second factor is the probability that its garbage collection bit is 
off. The third factor is the probability that it is a valid nodetype. 
The assumption here is that of the 11 bits available to represent a 
nodetype, not more than 7 will actually be used in a typical program. 

Similarly, the probability that a given word is a valid unmarked 
header of a string, list header, or a. list cell is: 

1 1 3 
p(oh) = 4 X Z X g 

The first factor denotes the probability that the word has the two bit 
pattern that classifies it as an object header. The second factor is the 
probability that its garbage collection bit is off. The third factor is 
the probability that it is a header of either a string, list header, or a. 
list cell, of the possible 8 object types. 

The probability that a word is a pointer to a word in the IDL data 
memory is: 

1 z2o 
p(p) = - X-

4 232 

The first factor is the probability that it points at a word boundary. 
The second factor is Lhe probability that it points into the IDL data 
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memory, which is assumed to be one megabyte in size for a typical 
program. 

Therefore, the probability that a pointer is a potential pointer to an 
object that should be marked for garbage collection is: 

p(pp) = p(p) x (p(nh) + p(oh)) 

p(pp) ~TIS 

From the above analysis, if we provide a marking buffer of size 1000 
words, it is highly unlikely that it will overflow. This marking buffer 
is to be sorted, which is 0(n2

), where n is t he number of potential 
pointers. After this, all accessible objects are marked, which is 0 (d) 
where d is the number of objects in the data memory. After marking 
is over, a linear scan of the data memory is made and garbage is 
collected, which is again 0(d). Since the number of objects in the 
data memory is likely to be much larger than the number of potential 
pointers, the entire garbage collection operation is 0 (d). 
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1 C onclusion and Future Work 

As currently implemented, the runtime system consists of 

1. Reader and Writer routines, both ASCIT and relocatable binary. 

2. Object Management including a mark-and-scan garbage collector 
and a memory display facility. 

3. Support for sets and sequences of objects. 

This runtime system does not support ful ly general IDL. The restrictions 
are as follows: 

1. The ASCIT ERL representation of a structure instance is, in general, 
a list of subgraphs with references from one subgraph to another 
through labels. Each subgraph has a root, i.e., the object enumerated 
first. This runtime system supports only node objects as roots. This 
restriction occurs only in the ASCI] reader. 

2. In the ASCII ERL representation of a structure instance, only nodes, 
sets and sequences may be labeled. 

3. Only the linked-list implementation of sets and sequences is sup
ported. Other possible implementations include arrays and bit vec
tors. 

4. Sets and sequences cannot be elements of other sets and sequences. 

5. A node object cannot be of size less than 3 words, or 12 bytes. 

6. The String, Rational, Set, and Sequence attributes are allocated 
at word boundaries. 

7. An Integer attr ibute is allocated at a word boundary if its represen
tation is four bytes long. 

8. Sets and sequences of private types are not adequately supported. 
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7.1 Future Work 

The ASCII reader could be modified to support fully general ASCII ERL. 
The object management system allocates space for the IDL data mem

ory just once. If there is no available space even after garbage collection, 
the user is notified. The system could be modified so that in such a situ
ation it attempts to enhance the IDL data memory so that the allocation 
request can be met. 

The garbage collection mechanism, in its mark phase, uses a recursive 
routine that does a depth-first search. This operation, being recursive, 
can potentially use up a lot of stack space, which may cause problems, 
because the reason garbage collection is initiated is that there is not very 
much space available, anyway. The marking phase can be modified to 
run in accordance with the Schorr-Waite marking algorithm which, though 
relatively complicated, uses very little stack space in comparison [8!. 

In this system, the reference to a data object is through its header, 
i.e., the header is at word offset 0 and all useful space in the object starts 
at word offset 1. Usually user code assumes that useful space in a newly 
allocated object begins at offset 0, as returned by malloc. Thus, for the 
sake of uniformity, it is advisable to refer to an object through the word 
that occurs after the header [4j. In other words, the header should be at 
word offset -1. In the string and list cell objects, however, the header is 
followed by a pointer, after whlch the useful space begins. To ensure that in 
aU objects the user space begin i=ediately after the header, this pointer 
would have to be moved so it occupies the last word of the object. 

It is desirable to provide private touched and shared bits for each 
marker port. If objects with only one touched and one shared bit have 
been marked by more than one marker port, it is impossible to determine 
which port has marked which object. 
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A The Runtime Interfa ce 

This appendix describes the interface between an IDL process a.nd the IDL 
runtime system. The IDL translator, lDLC, processes the IDL specification 
and produces a . c and a . h file. In the next appendix, a complete example 
IDL specification is presented, along with the . c and the . h files generated 
by the IDL translator. The . c file must include the . h file. The following 
include statement should go at the top of the . h file: 

#inc lude "idlruntime .h" 

If the process uses any private types, the user- supplied . h files for the 
private types must also be included here. 

The file idlrunti me. h contains extern declarations of all the functions 
available from the runtime system. It also contains definitions of all tables 
generated by IDLC. 

The . h file contains atruct definitions for all nodenamea in the IDL 
specification, so that the attributes of node objects may be accessible to the 
user as fields of a structure. It contains #define statements that associate 
with each node name its integer nodetype. 

The remainder of the . c file contains the initialization of the invariant 
table for the IDL process, the binary port tables for each port in the process, 
the ASCII port tables for each ASCII port, the Private Type Table, and 
the code for the port routines. 

A.l Aspects 

The attribute type of each attribute in each node is represented by an 
8- bit number known as the aspect (Figure 10) in the invariam table, the 
port table, and the private type table. The aspect contains information 
about the representation of the attribute, whether it is a private type, and 
whether it is a set or a sequence of some type. The least significant 5 bits 
r"presem the type, which ranges from 0 to 91. The next two bits indicate 
whether this is a 'simple' type, a set, or a sequence. H it is not a simple 
type, the most significant bit indicates whether it is represented as a linked 
list or an array. 
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rep SII'UCt type 

7 6 5 4 

Figure 10: Aspect 

I* aspect fields •I 

#define Node 0 

#define String 1 
#define Boolean 2 
#define Oneint 3 

#define Twolnt 4 

#define Fourint 5 
#define Float 6 

#define Double 7 

#define ATTTYPE Ox1F 
#define BASICTYPECOUUT 8 
I• 8 and above are private types •I 

#define Simple 0 
•define SetOf Ox20 
#define SeqOf Ox40 
#define ATTSTRUCTURED Ox60 

#define Linked 
#define Array 
#define ATTREP 

0 

Ox80 
Ox80 

A.2 The Invariant Table 

0 

The following is the definition of the invariant _table_entry data type. 

typedef struct invariant_table_entry 
{ 
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}; 

void {*initialize) {); 
short size: 
short att_count: 
{ 

char aspect; 
short offset: 

} •attributes 

The invariant table is an array of type invariant_table_entry. It has an 
entry for each nodatype. Each entry contains the size of the node in (4 
byte) words, the number of attributes it has, and an array of its attribute 
characteristics. The invariant table is in·dexed by nodetype. An attribute 
is identified by its starting location relative to the node header. The entries 
for attributes of nodes do not have to be in any particular order. Once an 
order has been established, it is used by each port to identify attributes 
within a node. 

A.3 The Port Table 

The following is the definition of the port_tabla_entry data type. 

typedef struct port_table_entry 
{ 

short type: 
short att_count; 
{ 

char aspect; 
char index: 

} •attributes 
}: 

There is one port table for each IDL port . This tab le consists of an entry for 
each nodetype. An input port table is indexed by the port table nodetype, 
while an output port table is indexed by the invariant nodetype. Each entry 
in the table contains the size of the node, the corresponding nodetype in 
the invariant or at the port, depending on whether this table is for reading 
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or writing, and an array which contains an entry for each attribute and for 
each stretch of unused space in the node. If this node has no attributes, the 
array mentioned above is null. Each non-negative index in this array points 
to an attribute in the corresponding node in the invariant table and the 
modulus of each negative index indicates so many bytes of unused space. 
The entries for attributes have to be in increasing order of distance of the 
attribute from the node header. 

A.4 ASCII Port Tables 

There is one ASCIT port table for each ASCII port. Below is ~he definition 
of an ascii port table. 

typedef struct ascii_port_table 
{ 

}; 

short tablelength; 
{ 

char *name; 
short nodetype; 
short tablelength; 
{ 

char •name; 
char index; 

} •attribute_table: 
} *node_table 

A port table hM an array of entries, one for each nodetype in the struc
ture. Each node entry contains the nodetype, the ASCII node name and an 
array of attribute entries. An attribute entry contains the ASCII name of 
the attribute and its index in the corresponding node entry in the invariant 
table. 

In a table for an input port, the liot of nodes is sorted in .. Ivlnt.uetical 
order of node names, and the list of attributes is sorted in alphabetical 
order of attribute names. 

In a table for an output port, the list of nodes is sorted in ascending 
order of node types, and the list of attributes is sorted in ascending order 
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of indices. 

A.5 Private Type Table 

This table is generated by the IDL translator. It has as many entries as 
there are private type definitions in the IDL data specification. T he Private 
Type Table is an array of the following type. 

typedef struct pvt_type_entr y 
{ 

}; 

void (* ExtTolnt )(); 
void(* IntToExt)(): 
void (* Initialize) () : 
void ( * Mark) 0 
short IntSize; 
char Ext Type; 

ExtToint is a procedure that converts from an external representa tion 
to an internal representation. lis first parameter is a pointer to a buffer. If 
the external representation is a set, sequence, node or a string, this buffer 
contains a pointer to it. U the external representation is a scalar, then it 
is contained in the buffer. The second parameter is a pointer to a buffer in 
which the corresponding internal representation is to be returned. 

IntToExt is an exact inverse of ExtTolnt. 
Initialize is a procedure that initializes a private type value. Its only 

argument is a pointer to the first storage byte or the value. 
~lark is a procedure that recursively marks all objects reachable through 

a private type value. It takes as its arguments a pointer to the first storage 
byt·e of the value and a. pointer to the garbage collection mark routine. 

IntSize is the size in bytes of the internal representation of an instance. 
ExtType is the aspect of the external representation. 
There are eight basic types of IDL o.ttributcs represented by numbers 0 

through 7. Numbers 8 through 31 can be used to represent private types, 
i.e., the number of private type definitions in a process is limited to 24. The 
i'" entry in the Private Type Table contains specifications for the private 
type represented by the number i + 8. 
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A.6 IDL R untime Routines 

The routine to in itialize the runtime system is 

void IDLinit(stkbott om) 
char •stkbottom; 

In the above, stkbottom is the address of the fl,rst automatic variable de
clared in the user's main procedure. 

The following routines invoke the binary reader and the binary writer, 
respectively. 

pnodaheader IDLReadin(table, instream) 
struct port_tabla_antry •table; 
FILE *instream; 

int IDLWriteOut(rootstruct, table , outstream) 
pnodeheader rootstruct; 
struct port_table_entry •table; 
FILE •outstream; 

The argument table refers to the por t table used for reading or writing. 
The arguments instream and outstream refer to the streams to be used 
for reading and writing, respectively. If successfu l, IDLReadin returns a 
pointer to the root of the structure read in; otherwise it returns the NULL 
pointer. The argument rootstruct points to the root of the structure to 
be written out. If successful, IOLWriteOut returns 1, otherwise it returns 
0. 

The following routines invoke the ASCII reader and writer, respectively. 

pnodeheader IDLAsciiReadin(table, instraam, nodenamatable) 
struct port_table_entry •table; 
FILE •instream; 
struct oscii_port_tabl~ •nodename~able; 

int IDLAsciiWritaOut(rootstruct, table, outstr eam, nodenametable) 
pnodeheader rootstruct; 
struct port_tabla_entry •table; 
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FILE -~<instreac; 
struct ascii_port_table *nodenametable; 

The ASCII reader and write r take an extra argument, nodenametable 
is the address of the ASCII port table. Their return values and other 
arguments are similar to their binary counterparts. 

The marker is invoked by the following routines. 

void IDLMark(rootstruct, table) 
pnodeheader r ootstruct; 
struct port_table_entry •table; 

void IDLUnMark(rootstruct, table) 
pnodeheader rootstruct; 
struct port_table_entry *table ; 

IDU-lark marks the structure instance. IDLUnMark restores it to its 
original unmarked state. 

The allocation rout ines for nodes and system objects are the following. 

pnodeheader IDLllewNode (type) 
short type ; 

piDLstring IDLNewString(str) 
char •str ; 

The size of a node is implicit in its type. The argument str is a pointer 
to a null terminated sequence of characters. Allocation of strings requires 
special treatment because each string must b e en tered in the global I DL
StringHashTable to facilitate comparison among strings and to avoid du
plication of strings. 

The following routines are provided mainly as debugging aids: 

void IDLScanJ.Iemory ( f) 

void (*f) 0: 

void IDLPrintMemory{) 
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The function denoted by * f is applied to the header of each node, system 
object or free page in memory. It takes one parameter, of type • int, a 
pointer to the header of the object in question. IDL?rint is a special case 
of IDLScanMemory in which •f is a function which prints out the headers 
of objects on a global called IDL?rintStream of type *fiLE. 

Al though the garbage collector is invoked by the runtime system when
ever necessary, the garbage collection routine is also made available to the 
IDL process. 

int IDLCarbageCollect() 

IDLCarbageCollect returns the size of the largest chunk of free memory 
in words. 
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B An Example 

A sample IDL specification is presented, along wit h the generated . c and 
. h files. 

The IDL specification is in the file e:x: . idl. T he a lgori thm is in algo
rithm. c. The declarations and procedures for the priva te type are in the 
files CharSet. hand CharSet. c. The files generated by the IDL translator 
are !nOut. h and InOut. c. The ASCII ERL input file is ascinput and the 
ASCII ERL output file is ascoutput. The program writes into statusfile. 

T his example, a long with a README file and a Makefile, can be found 
in /usr/soft l ab/doc/examples/biyanithesis on the Suns. 
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-- ex.idl 
Structure Structin Root Anode Is 

Anode •> List : Seq Of S, 
Name: CharSet; 

For CharSet Use Package CharSet; 
For CharSet Use Type CharSet ; 
For Char Set Use External Representation String; 

B •> 

End 

X: Boolean, 
R: Rational; 

Structure Structout Root Anode From Structin Is 

Without B •> X; 

Anode=> Number : :nteger: 
End 

Process Inout Is 

End 

Target Language C: 
Target Runtime Version B : 

Pre P: Structin: 
For P Use Ascii External Represen~ation: 

Mark M: Structin; 

Post Q: Structout: 
For Q Use Binary; 

Pre R: Structout; 
For R use Binary; 

Post S: Structin ; 
For S Use Ascii External Representation; 
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! • algor ithm.c */ 
tinclude '' InOuc.h'' 

Anode thisAnode; 
9 newB; 
SEOB seqBptr; 

main() 
{ 

FILE • inascii , *outbinary , *inbinary, *outascii; 

/ * initialize idl */ 
IDLinic(&inascii); 
IDLPrintStream- fopen(' 'statusfile'', ''w'' ); 

!• inpuc the initial structure in binary */ 
inascii = fopen( "ascinput'', ''r'' ) ; 
thisAnode = P(inascii); 
(void) fclose(inascii); 

fpr intf( IDLPrincStream, 
" \n\nAscii inpuc :"las been read in\n\n " ); 

fprintf(IDLPrintStream, 
" \n\nGarbage Collected, l argest free page size: ~d '"'ords\n\n", 
IDLGarbageCollect()); 

roLPrintMemory(); 
removefirstSEQB(thisAnode->L~stl; 
fprintf(IDLPrintStream, 

" \ n\nOne node has been removed from t he sequence of B nodes\n \n" 
l ; 

fprintf(IDLPrintStream, 
" \n\nGarbage Collect ed, largest free paqe size: 'lid words\n\n", 
: OLGarbageCollect()l ; 

IOLPrintMemory(); 
I* get a new B node object */ 
newB • NB (); 

1~ give its attributes some values */ 
! • and append ic co thisAnode->List ~1 
newB->X • TRUE; 
newB->R - 3 .1 4; 
appendfrontSEQS (thisAnode->List, newS); 

thisAnode->Number = 10; 
/ • output in binary */ 
outbinary - fopen( '' binfile '' , ''w''); 
Q(thisAnode, outbi nary); 
(void) fcloce(outbinory); 

fprintf( IDLPrintStream, 
"\n\nBinary Output has been done\n\n") ; 

fp rintf(IDLPrintStream, 
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" \n\nGarbage Collec::ed, largest: free page size: ~d words\n\n" , 
: OLGarbageCollect()); 

IDLPrintMemory(); 

;w input: in binary~; 
inbinar y = fopen ("binfile ", "r " ): 
thisAnode - R(inbinary); 
(void} f c l ose (inbinary) : 

fprintf (IDLPrintStream, 
" \n\n'Binary Input ha s been done\n\n " ); 

fprintf(IDLPrintStream, 
" \n\nGarbage Collected, largest fre e page size: \d words \n\n" , 
IDLGarbageCollect() ) ; 

IDLPrin~~emory(); 

foreachi nSEQB(thisAnode->List, seqBptr, newB} 
newB- >X • TRUE ; 

I * output in Ascii */ 
out asc ii = fopen ( "ascoutput", " w" ); 
S(thisAnode , outbinary): 
(void) fclose(outascii); 
fprintf(IDLPrintStream, 

" \ n\nAscii Output has been done\n\n"); 

I * )1ark */ 
M(thisAnode , TRUE); 
fprintf(IDLPr intStream, 

" \ n \ nThe instance r ead i n has been marked\n\n " ); 
IDLPr int Me mo r y (}; 
fprint f( I DLPrintStream, "\n\n") ; 
f w UnMa rk */ 
M(thisAnode, FALSE); 
fprintf( : OLPrintStream, 

"\n\nThe ins~:ance r ead in has been u!k-narked\n\n"l; 
IDLPrintMemory(); 

! • ma ke a ll variables null , so everything may be garbage collec~:ed */ 
thisAnode • NULL; 
newS = NULL; 
seqBptr = NULL; 
fprintf( I DLPrintStream, 

"\n\nAll variables have been made null; \n " ); 
!printf(IDLPrintStream, 

" everyl:hing is garbage collected\n\n"); 

fprintf(IDLPrintS~ream , 

" \n\nGarbage Collec ted , largest free page size: %d woras\n\n", 
I DLGarbageCollect()} ; 

IDLPr i n t Memory( ) ; 
fclose(IDLPrintStream); 
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Jw CharSet . h */ 
typedef int Char Set; 
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I • CharSet.c * I 
Jlinclude " lusr I softlabl srclbiyanilibrary I src/ idlruntime. h" 

void StringToCharSet(from, to ) 
char *from, *to; 
{ 

char c, *str; 
int i , l{p; 
p - (int *)co; 
str- ((piDLstring) (*(int •)from)) - >data; 
*p = 0; 
i = 0; 
for (c • ' a ' ;c <= ' z ' ; c•+) { 

if (str (i) •• ' \0 ' ) 
return; 

else if (str(i] == c) ( 
•p I• (1 << (c- 'a')); 
i+-+; 

void CharSetToString(from, to) 
char *from, *to ; 
( 

int •p, i, j ; 
char c, ch(27); 
i ~ *(int ~ )from; 

j - 0 ; 
for (c - ' a ' ;c <= ' z ': c++) ( 

if ( i & 1) 
ch[ j++) a c: 

i >>- 1.· 
l 
ch(j]• ' \0 '; 
*( i nt *}to • (int) IDLNewString(ch) ; 

} 

void InitCharSet(from) 
char *from; 
( 

*(int *)from= 0: 

void MarkCharSet(from, f, table} 
char *from; 
void ("f) () : 
int *tab.le,· 
( ) 
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/ " InOut.h */ 
~include '' /usr/softlab/src/biyanilibrary/src/!dlruntime.h" 
tinclude ''CharSe t . h '' 
ldefine KAnode 0 
tdefine KB l 

typedef plistcell SEQB; 
typedef SEQB SETS; 
typedef plistcell SEQAnode ; 
typedef SEQAnode SETAnode; 

typedef struct RB I 
nodeheader header; 
Bool X; 
char unused ( 3 J ; 
floa~ R; 

} •s, RB; 
#define NB () (B) IDLNewNode (KB) 
typedef struct RAnode( 

nodeheader header; 
SEQB List; 
CharSet Name; 
int Number; 

} *Anode, RAnode ; 
#define NAnode() (Anode) IDLNewNode(KAnode) 

ex~ern Anode P(l; 
ex~ern void M(); 
extern void Q(); 
extern Anode R () ; 
extern voidS(); 

I * macros for set and sequences " ' 
#define appendfrontSEQB (nseq, nval) \ 

appendfrontseq(nseq, (char " ) (&nval) , Node) 
~define appendrearSEQS(nseq, nval) \ 

appendrearseq (nseq, (char *} (&nvall , Node) 
~define copySEQB(nseq) (SEQB) copyseq(nseq, Node) 
#define emptySEQB(nseq) (nseq->next - -NULL) 
#define foreachinSEQB(nseq, nptr, nvalue) \ 

for(nptr = nseq- >next: \ 
(nptr != NUL~) && \ 
( (nvalue • ~ (3 KJ (np~:::->data)) II TRUE); \ 
nptr = nptr->next) 

Wdefine initializeSEQB ( nseq} nseq = IOLNe• ... ListHeader () 
ide fine inSEQB (nseq, nval) inseq(nseq, (char ") (&nval), Node) 
! define i~hinSEQB(nocq, index) • ca •)lLI•~~q(~seq, index) 
fdefine sizeSEQB(nseq) sizeseq(nseq) 
!define orderedinsertSEQB(nseq, nval, ncomp!n) \ 

orderedinsertseq( nseq, (char * ) (&nvalJ , ncompfn, Node) 
#define r emoveSEQB (nseq, nval) removeseq(nseq, (char *) (&nval), Node) 
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!define removefirstSEQB(nseq) removefirstseq(nseq) 
tdefine removelastSEQB(nseq) removelastseq(nseq) 
lldefine retrievefirstSEQB(nseq) ~ca *)retrievefirstseq(nseq) 
#define retrievelastSEQB(nseq) * (B *)retrievelastseq(nseq) 
idefine sortSEQB(nseq, ncompfn) sortseq(nseq, ncompfn, Node) 
ldefine tailSEQB(nseq) tailseq (nseq) 

~define addSETB(nset , nval) \ 
if (!inSEQB(nset , nval)l appendfrontSEQB(nset , nval) 

*define copySETB(nset) copySEQB(nset) 
Hdefine emptySETB(nset) emptySEQB(nsetl 
#define foreachinSETB(nset, npcr, nvalue) \ 

foreachinSEQB(nset, nptr, nvalue) 
~define initializeSETB(nsetl initializeSEQB(nset) 
~define inSETB(nset , nval) inSEQB(nset , nval) 
fdefine removeSETB(nset, nval) removeSEQB (nset, nval) 
#define sizeSETB(nset) sizeSEQB (nset) 

idefine appendfrontSEQAnode(nseq, nval) \ 
appendfrontseq (nseq, (char x) (&nval) , Node) 

tdefine appendrearSEQAnode(nseq, nval) \ 
appendrearseq(nseq, (char *l (&nval), Node) 

#define copySEQAnode(nseq) (SEQAnode)copyseq(nseq, ~ode) 
#define emptySEQAnode(nseq) (nseq->next - NUL:.) 
•define foreachinSEQAnode (nseq, nptr, nvaluel \ 

for(nptr- nseq->next; \ 
(nptr !• NULL) && \ 

( (nvalue • (Anode)(* (int •) (nptr->data))) II 'rRUE); \ 
nptr • nptr->next) 

tdefine initializeSEQAnode(nseq) nseq - ID~Ne~ListHeade~() 
*define inSEQAnode ( nseq, nval) in seq (nseq, (char •) (&nval) , Node) 
~define ithinSEQAnode(nseq, index) *(Anode *)ithseq(nseq, index) 
~define sizeSEQAnode(nseq) sizeseq<nseq) 
#define orderedinsertSEQAnode(nseq, nval , ncompfn) \ 

orderedinsertseq ( nseq, (char * 1 ( &nval) , ncomp£n, Node) 
~define removeSEQAnode(nseq, nval) removeseq (nseq, (char*) (&oval), Node) 
tdefine removefirstSEQAnode(nseq) removefirs"seq(nseq) 
tdefine removelastSEQAnode(nseq) removelastseq(nseq) 
#define retrievefirstSEQAnode(nseq) w(Anode •)retrievefirstseq(nseq) 
fdefine retrievelastSEQAnode(nseq} ~(Anode *)retrievelastseq(nseq) 
Hdefine sortSEQAnode(nseq, ncompfn) sortseq(nseq, ncompfn , Node) 
idefine tailSEQAnode(nseq) tailseq (nseq) 

~define addSETAnode(nset, nval) \ 
if (!inSEQAnode(nset, nvall) appendfrontSEQAnode(nset, nval) 

idefine copySETAnode(nset) copySEQAnnrl~(nset ) 
idefine emptySETAnode(nset) emptySEQAnode(nset ) 
#define foreachinSETAnode(nset, nptr, nvalue) \ 

foreachinSEQAnode(nsec , nptr, nvalue) 
~define initializeSETAnode(nset) ini"ializeSEQAnode(nsetl 
idefine inSE7Anode(nset, nval) inSEQAnode(nset, nval ) 
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tdefine removeSETAnode(nset, ~val ) removeSEQAnode(nse~, nval) 
#define sizeSETAnode(nset) sizeSEQAnode(nset) 
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; ~ InOut.c */ 
a:.nclude "InOut .h " 

extern void ScringToCharSet(), CharSetToString(); 
excern void InitCharSet(), MarkCharSet(); 
static struct pvt_type_entry SPvtTypeTable[l] • 
{ 

J ; 

StringToCharSet , 
CharSetToString, 
InitCharSet, 
MarkCharSet, 
4, 
String 

I* External to Internal */ 
/* Internal to External */ 
/* Initialization of Internal Rep */ 
;~ Marking Routine ~ ; 

jw Size of Internal Rep in oytes •/ 
f w Type of External Rep ~; 

struct pvt_type_ entry *PvtTypeTable = SPvtTypeTable ; 

static struct por t _attribute_descriptor StructinTablel(2] -
{ 

I ; 

{Ox40, 0), 
I 8, 1 I 

scatic struct port_attribute_descriptor StructinTable2r3J -
{ 

I ; 

{2, 0), 
{0 , -31, 
{ 6 ' 1) 

st:atic struct port_table_entry Structii'ITable (3] a 

{ 

I ; 

(0 , 2, Struc~!nTablel}, 
(0 , 0, 0}, 
(1 , 3, StructlnTable2 1 

static struct port_ attribute_descriptor Struct0utTablel (3] -

I : 

{0x40, 0), 
{8, 11, 
{ 5' 2) 

s~atic struct port_attribute_descr:.ptor StructOut~able2(l] -
{ 

( 6, 1 ) 
) ; 

static struct port_table_entry Struct0utTablei3) 
( 
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l ; 

{0, 3, StructOutTablel } , 
{0, 0 , 0 ) , 
{1 , l, StructOutTable2} , 

static struct invariant_attribute_descr i ptor InvTablel [3] • 
( 

} ; 

{0x40, 4), 
(8, 8}, 
{5, 12} 

static struc t invariant_at~ribute_descriptor InvTable2 (2] -
( 

l ; 

{2 , 4}, 
{ 6. 8) 

static str~ct invariant_taole_entry SinvTable l 21 = 
{ 

l ; 

{0, 4, 3 , InvTable: ), 
{0 , 3 , 2 , InvTable2 } 

struct invariant_table_entry *InvTable = Sinv'!able; 

stati c struct ascii attribute descriptor StructOutAnode ( 3 ) • 
( ( "List", OJ, {"Name", 1}, ( "Number", 2) } ; 
static struct asci i attribute descriotor StructOutB[l J • 
( ( "R", 1) ); - - -
static struct ascii node descriptor StructOutNode(2] = 
{ - -

} ; 

( "Anode ", 0, 3 , StructOutl'.nodeJ , 
( "B'', 1 , 1, StrucLOutB} 

static st=~ct ascii_port_ table AsciiStr uctOut • {2, St=~ctOutNode j ; 

static struct ascii_attribute_descriptor StructinAnode ( 2] -
( ( "List" , OJ, ( "Name ", 1) }; 
static struct ascii_attribute_descriptor StructinB(2 ] 
( ( " R" , 1), ("X" , 0} ); 
static struct ascii_node_descriptor StructlnNode(2) 
I 

I "Anode" , 0 , 2, S truct I nAnode ), 
( "B 11

, :, 2, StructinB } 
) ; 
static struct ascii_port_tab1e AsciiStructin • ( 2 , Structi nNode); 

extern int * IDLAsciiRead!n(); 
extern void *IDLAzeiiWriteOuL(); 
extern int *IDLBinReadin(); 
extern void *IDLBinWriteOut ( ); 
extern void IDLMark(); 
extern void IDLOnMark(); 
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Anode !?(F) 
FILE *F; 
{ 
return((Anode)IDLAsciiReadin(Struct i nTable, F, &AsciiStructin)); 
I 

void M(r, ifmark) 
{ 
if (ifmark) 

IDLMark((int * ) r, Struct!nTable); 
else 

IDLUnMark ({int *)r, Structi nTable); 

void Q(r, F) 
n.1ode :r; 
FILE *F; 
{ 
IDLBinWriteOut((int * )r, StructOutTable, F) ; 
} 

Anode R(F) 
FILE ~F; 
{ 
return((Anode)IDLBinRead!n (StructOutTable, F)); 
l 

void S( r, F) 
Anode r; 
FILE *F; 
{ 
IOLAsciiWr iteOut((int • )r , StructinTable, F, &AsciiStructin); 
) 
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system object, address Ox62df4, type 4, size 3 words Touched 
free, address Ox62e00 size 1003 words 
node, address Ox63dac , type 0, s1ze 4 words Touched 
free, address Ox63dbc size 605 words 
node, address Ox64730, type 1, size 3 words 
free, address Ox6473c size 1952 words 
system object, address Ox665bc , type 7, size 1002 words 

The instance read in has been unmarked 

free, address Ox27564 size 60832 words 
system object , address Ox62be4 , type 2, size 
system object , address Ox62bf4 , type 0, size 
node, address Ox62d90, type 1 , size 3 w~rds 
system object , address Ox62d9c, type 3, size 
node, address Ox62da8, type 1 , size 3 words 
system object , address Ox62db4, type 3, size 
node, address Ox62dc0 , type 1, size 3 words 
system object , address Ox62dcc , type 3, size 
system object, address Ox62dd8, type 3, size 
free, address Ox62de4 size 4 words 
system object, address Ox62df4, type 4, size 
free, address Ox62e00 size 1003 words 
node, address Ox63dac , type 0 , size 4 words 
free, address Ox63dbc size 605 words 
node, address Ox64730, type 1 , size 3 words 
free, address Ox6473c size 1952 words 

4 words 
103 words 

3 '"ords 

3 words 

3 words 
3 words 

3 words 

system object, address Ox665bc, type 7, size 1002 words 

All variables have been made null; 
everything is garbage collected 

Garbage Collected, largest free page size: 64534 words 

free, address Ox27564 size 64534 words 
system object , address Ox665bc, type 7, size 1002 words 
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Anode [List < FirstBh SecondBh Thi rdB' SecondB'> 
Name 11 astz" 

l 
ThirdB : E[X FALSE] 
First B : B[X TROE; R -11/30 ] 
SecondB : B[R 1 1.3] 
II 
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L409004 : Anode [ 
List 1404980 : <L404928 B l 
X TRUE ; 
R 3 .14 } 
L404904 B 
X TRUE; 
R 11.3} 
L404880 B ( 
X TRUE; 
R 0] 
L404904A 
>: 
Name "ascz"] 
~ 
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Ascii input has been read in 

Garbage Collected, largest free page s ize : 62582 words 

free , address Ox27564 size 62582 words 
node, address Ox6 473c, type 1, size 3 words 
node, address Ox64748 , type l , size 3 words 
node, address Ox64754 , type 1 , size 3 words 
free, address Ox64 760 size 1007 words 
system object, address Ox657lc, type 3, s~ze 
free, address Ox65728 size 4 words 
system object , address Ox65738, type 3 , s~ze 
free , address Ox65744 size 4 words 
system object, address Ox65754 , type 3, s~ze 
free , address Ox65760 size 909 words 
system object, address Ox66594 , t ype 3, size 
system object , address Ox66Sa0, type 4, size 
node , address Ox66Sac, type 0, size 4 words 
system object, address Ox665bc, type 7 , size 

3 words 

3 words 

3 words 

3 '"ords 
3 words 

1002 words 

One node has been removed from the sequence of B nodes 

Garbage Coll ected, largest free page size: 62582 words 

free, address Ox27564 size 62582 words 
node, address Ox6473c, type 1, size 3 words 
free, address Ox64748 size 3 words 
~ode , address Ox64754, type 1 , size 3 words 
free, address Ox64760 size 1007 words 
system object, address Ox6571c , type 3, size 3 words 
free, address Ox65728 size 4 words 
system object, address Ox65738 , type 3 , size 3 words 
free, address Ox65744 size 4 words 
system object , address Ox65754, type 3, size 3 words 
free, address Ox65760 size 912 words 
system object , address Ox665a0, type 4, size 3 words 
node, address Ox665ac, type 0 , size 4 words 
system object , address Ox66Sbc, type 7, size 1002 words 

Hinary Output has been done 

Garbage Collected, largest free page size: 62576 words 

free, address Ox27564 size 62576 words 
system objec~. address Ox64724, type 3, size 3 words 
node, address Ox64730 , type 1, size 3 words 
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node, address Ox6473c , type 1, size 3 words 
free , address Ox64748 size 3 words 
node , address Ox64754, type 1, size 3 words 
free, address Ox64760 size 1007 words 
system object, address Ox6571c, ~ype 3, size 3 words 
free , address Ox65728 size 4 words 
system object, address Ox65738, type 3, size 3 words 
free, address Ox65744 size 1 words 
system object, address Ox65754, type 3, size 3 words 
free, address Ox65760 size 912 words 
system object, address Ox665a0, ~ype 4, size 3 words 
node, address Ox665ac , type 0, size 4 words 
system object , address Ox665bc, type 7 , size 1002 words 

Binary :nput has been done 

Garbage Collected, largest free page size : 60939 wor ds 

free, address Ox27564 size 60939 words 
node, address Ox62d90, type 1 , size 3 words 
system object , address Ox62d9c, type 3, size 3 words 
node, address Ox62da8, cype 1, size 3 words 
system object, address Ox62db4, type 3, size 3 words 
node, address Ox62dc0, cype 1, size 3 words 
system ob ject , address Ox62dcc, ~ype 3, size 3 words 
system object , address Ox£2dd8, ~ype 3, size 3 words 
free, address Ox62de4 size 4 words 
system object, address Ox62df4, type 4, size 3 words 
free , address Ox62e00 size 1003 words 
node, address Ox63dac, type 0, size 4 '-'Ords 
free , address Ox63dbc size 605 word s 
node , address Ox64730, type 1, size 3 words 
free, address Ox6473c size 1952 words 
system object, address Ox665bc, type 7, size 1002 words 

Ascii Output has been done 

The instance read in has been marked 

free, address Ox27564 size 60832 words 
system object. address Ox6?b~4, type 2, size 4 wordo 
system object, address Ox62bf4, type 0, size 103 words 
node , address Ox62d90 , type 1, size 3 words Touched 
system object, address Ox62d9c, type 3, size 3 words Touched 
node, address Ox62daS, type 1, size 3 words Shared 
system object, address Ox62db4, type 3, size 3 words Touched 
node, address Ox62dc0, type 1, size 3 words Touched 
system object , address Ox62dcc, type 3, size 3 '"ords Touched 
system object, address Ox62dd8, type 3, size 3 words Touched 
free , address Ox62de4 size 4 words 


