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Abstract. In this paper, we report our investigations into the effect of dynamic subgoal reordering on 

the performance of a natural deduction theorem prover, based on some simple syntactic characteristics of 

the subgoals such as size, number of variables, function symbols and predicate symbols. It is shown that 

these simple characteristics, when used as heuristics for reordering subgoals, have a considerable impact on 

the overall performance of the prover on a large group of examples. The merit of our approach seems to be 

that we are considering the syntactic aspect of theorem proving. This aspect is simple in form and imposes 

low overhead in its evaluation; and it often provides good heuristics to guide a theorem prover, in spite of 

its simplicity and apparent lack of intelligence. 
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1. Introduction 

Natural deduction is one of the main approaches in mechanical theorem proving. Natural deduction 

systems, sometimes known as goal oriented systems or Gentzen type systems, represent similar problem 

solving frameworks. On one hand, these systems all have the goal-subgoal structure. That is, goals are 

expressed in terms of subgoals. As a consequence, the solutions for a goal are composed of the solutions 

for the subgoals into which the origioal goal is decomposed. On the other hand, the order in which the 

subgoals for one goal are solved often does not affect the solvability of the goal in these systems; that is, 

this order does not affect the completeness of these systems. One of the advantages of natural deduction 

systems is that it is easy to incorporate heuristic considerations with these systems. One important kind of 

heuristic considerations, for example, is to detect unachievable subgoals by semantic test[8]. Another 

heuristic considerations is to choose the "best" subgoal to work on first if there are a set of subgoals belong

ing to one goal and the order in which these subgoals are solved does not affect the solvability of the goal. 

In this paper, we will describe and discuss our research and results on this aspect of heuristic considera

tions -- selecting the "best" subgoal among a set of sub goals. 

We will first introduce the theorem prover we use in section 2, emphasizing the formal underlying 

deduction system. In section 3, we will describe the search strategy the theorem prover exploits to imple

ment the deduction system and the manner in which we incorporate our heuristic considerations for select

ing the "best" subgoal into the search strategy. Section 4 will contain the discussion of our heuristics. 

Several evaluation functions will be introduced. Section 5 will give the results of our experiments. Some 

final comments will be given in section 6. 

2. Modified Problem Reduction Format 

The theorem prover we use is based on a natural deduction system in first order logic. This theorem 

prover, which will be referred to as sprfn, is an implementation of a modification of the theorem proving 

strategy described in [1]. Before we present the formal deduction system, we would like to provide some 

flavor of the structure of the Problem Reduction Format. The formal de~uction system is a refinement of 
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the problem reduction format. Both of them embody the same goal-subgoal structure, as can be seen from 

what follows. Notice that we omit a lot of subtle details. For a complete discussion of the problem reduc

tion format, see [4]. The following is a simplified description about problem reduction format adapted from 

[4]. 

The structure of the problem reduction format is as follows. One begins with a conclusion G to be 

established and a collection of assertions presumed to be true. Assertions are of the form 

C :-A 1,A 2, ... ,A, (implication) or P (premises) where A,, P and C are literals or negation of literals. The 

implication assertion is understood to mean A 1&A 2 • • • &A,~C. The A;'s are antecedent statements, or 

simply antecedents, and Cis the consequent of the implication. We call the conclusion G the top goal. The 

process of attempting to confirm the conclusion begins with a search of the premises to see if one premise 

matches (identical toG or can be made identical by unification) the goal G. If a premise P, matches G then 

the conclusion is confirmed by P,. Otherwise, the set of implications whose consequent matches G is 

found. If the antecedents of one implication can be confirmed then one has confirmed the consequent, and 

hence G which the consequent matches. Otherwise we consider the antecedents as new goals to be 

confirmed, one implication at a time. These goals are called subgoals because they are not the primary 

goal. Attempt will be made to confirm the subgoals one by one by repeating the method described above to 

confirm the top goal. 

The deduction system underlying sprfn -- the modified problem reduction format -- embodies the 

same structure, although some refinements are added for the sake of completeness of the deduction system. 

We do not have room to describe these refinements. The following description on the modified problem 

reduction format is given for the completeness of our presentation. For a complete discussion, see[6]. 

A clause is a disjunction of literals. A Horn-like clause, converted from a clause, is of the form 

L :- L 1o L 2, ••. , L, where L and L;'s are literals. L is called the head literal. L;'s constitute the clause 

body. A clause is converted to a Hom-like clause as follows. For each clause, one of the positive literals is 

chosen as the head literal and all other literals are negated and put in the clause body. For an all-negative 

clause, we use false as the head literal. Assume S is a set of Hom-like clauses. A set of inference rules 
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from S is obtained as follows. For each clause L :- L "L 2, ••• , L, inS, we have the following clause rule: 

Clause Rules 

1 0->L 1 ~> 1 1->L 1, 11->L 2 ~> 1 2->L 2, •.• , 1,_1->L, ~> 1,->L. 

10->L ~> 1,->L 

We also have assumption axioms and case analysis (splitting) rule. In the assumption axioms, Lis a posi-

tive literal. 

Assumption Axioms 

- - -
1 ->L ~> 1 .L->L 

Case Analysis (splitting) Rule 

10->L ~> 1"M ->L, 1 1,M->L ~> 1"M ->L 

10->L ~> 1 1->L 

The goal-subgoal structure of this deduction system is evident. The input clause L :-L 1o L 2, •.. , L. 

merely states that L 1 ,L 2, ... , L. have to be confirmed in order to confirm L . The corresponding clause 

rule for L :- L 1,L 2, ... , L, states that, if the initial subgoal is 1 ->L, then make L 1, ..• • L. subgoals in sue-

cession; add to 1 successively the literals that are needed to make each subgoal provable; finally, return 

1.->L where 1, contains all the literals needed to makeL 1, ..• ,L, provable. The assumption lists r's just 

represent the refinement of the modified problem reduction format to the problem reduction format. None 

of the listing of subgoals in the input clause and the clause rule implies any particular order in which the 

subgoals should be attempted. Because no order is implied, when 10->L is attempted and the inference rule 

corresponding to the input clause L :-L 1,L 2, ••• , L. is invoked, we can exercise our intelligence to choose 

a L 1' among the n literals L 1.L 2, ..• , L, so that 10->L 1' would be the first subgoal to be attempted. After 

10->L 1' returns 1 1->L 1', L; could be chosen among the remaining n-1 literals so that 1 1->L 2' would be 

the second subgoal, and so forth. Thus, each time the inference rule for the same input clause 

L :-L 1,L 2, ..• • L. is invoked, a possibly different sequence of the literals L 1, L 2, .•• , L. would be used. 
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This natural observation above leads us to ask how do we choose the "best" subgoal at any moment, i.e., 

what heuristics should we use to perform the selection. 

We will discuss our experiments motivated by the above observation. Before we do this, however, 

we need to discuss the search strategy sprfn exploits. We will also discuss the manner in which the heuris

tics for selecting the best subgoal are applied. The implication of applying the heuristics on the search stra

tegy is also discussed. 

3. Search Strategy and Sub goal Reordering 

Sprfn exploits the Prolog-style depth-first iterative deepening search. This search strategy involves 

repeatedly performing exhaustive depth-first search with increasing depth bounds. This complete search 

strategy can be efficiently implemented in Prolog, taking advantage of the Prolog built-in depth-first search 

with backtracking. This search strategy also requires much less memory in comparison with the other two 

search strategies -- breadth-first search and A • search. A detailed analysis of the depth-first iterative 

deepening search strategy can be found in [2]. 

To apply the heuristics to select the best subgoal among a set of subgoals for one goal, sprfn will 

work as follows. An evaluation function will be defined. This function embodies our heuristics for measur

ing the "quality" of an each subgoal from a set of subgoals and selecting the best one from the set Sprfn 

starts with the top-level goal. For any goal r 0_.L, whenever an inference rule corresponding to the input 

clause L:-L 1.L 2 , •.•• L. is invoked, sprfn uses the evaluation function to select L 1' among then literals 

L 1.Lz, .... L. and attempts ro_.L,·. After r 0..,.L 1' returns with r,_.L,·, the evaluation function is used 

again to selectL 2' among the remaining n-lliterals, etc. This process will dynamically order the subgoals 

for one goal during the search process. We call this process subgoal reordering. We emphasize that the 

above is a recursive process and involves every invocation of a clause rule. We also emphasize that the 

selection is made only among the remaining subgoals belonging to one common goal, i.e., the choice is 

only the locally best according to the evaluation function. 

s 



It is appropriate to note now that the process of subgoal reordering outlined above preserves the 

completeness and the soundness of the modified problem reduction format. 

We would like to point out that our depth-first iterative deepening search strategy with subgoal 

reordering as described above is different from iterative-deepening A' search in [3]. In our strategy, the 

selection is made among a limited set of subgoals which belong to one common goal. In iterative deepen

ing A ' , search, a queue containing all the subgoals awaiting to be attempted is maintained and the best is 

selected from this global queue. Another difference comes from the nature of the heuristics. As a conse

quence, the design of the evaluation functions are very different. In iterative-deepening A' search, the 

evaluation function has to take into account the cost in reaching a particular subgoal from the top-level goal 

and the estimates of the cost for solving that subgoal. Thus the heuristics are global heuristics. In our stra

tegy, the selection is made locally, the cost in reaching every subgoal in question would be the same, so it 

is not considered by the evaluation function. Since we are interested in the effect of syntactic properties of 

subgoals, the evaluation functions are designed to consider this aspect more than anything else. Of course, 

the evaluation functions could be designed based on some other heuristics. 

A similar process called level subgoal reordering is implemented in [7]. This process is incorporated 

in a goal-oriented theorem prover based on a deduction procedure called hierarchical deduction procedure. 

The idea is to select the first literal to resolve upon in a goal clause. In [7], the evaluation function for 

selecting the first literal is based on the concepts of twin symbols and mass of function and predicate sym

bols. This evaluation function, by the way, also considers the syntactic aspect of literals, although probably 

takes a more global measurement than our evaluation functions. In [7], level subgoal reordering is applied 

locally, within a goal clause. This is also similar to our method. 

4. Evaluation Functions 

The evaluation functions are designed to measure the "quality" of subgoals based on certain heuris

tics. As can be seen from the above discussion, it is going to be a frequent activity for sprfn to apply the 

evaluation functions to a set of subgoals to select the best subgoal if subgoal reordering is incorporated in 

6 



it. This requires that the application of evaluation functions impose low overhead. However, evaluation 

functions must be designed to improve the efficiency of sprfn. The low cost of evaluation function applica

tion requires that the quality of sub goals be measured based on some simple characteristics about subgoals. 

A positive contribution to the performance of sprfn by subgoal reordering can be achieved if the evaluation 

functions can make sprfn concentrate on the important subgoals or reduce the branching factors of the 

search space. Based on these considerations, we investigated the following evaluation functions by experi

menting on a large number of examples. 

[I] The size of subgoals. The size of subgoals is the number of occurrences of predicate symbols, func

tion symbols and variables. Larger subgoals can be regarded as more important since they may con

tain more useful variable bindings. Also, the larger size imposes more constraints on unifications so 

the branching factors for larger subgoals tend to be smaller. 

[2] The number of distinct variables in subgoals. Since variables contribute to the size of subgoals, 

the same reasoning applied to the size of subgoals can be applied here. However, the number of dis· 

tinct variables may contribute more to the branching factors of the search space since more can be 

unified with variables. 

[3] The ground size of subgoals. The ground size of subgoals is the number of occurrences of predicate 

symbols and function symbols. Note that the occurrences of variables are not counted. It is easy to 

see that the ground size of subgoals affects the search process in the similar way as the size of 

subgoals does. 

[4] The number of solutions with the same predicate symbols as the subgoal does. The evaluation 

function based on this takes a more global measurement of the quality of subgoals. If the number of 

solutions in question is small, the branching factor will probably be small also. 

[5] The number of solutions unifiable with the subgoal. This measurement is a refinement of the 

measurement above, as can be easily seen. 
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Accordingly, we use the following evaluation functions to select the best subgoal. These functions 

will be referred to as function 1, function 2, function 3, function 4 and function 5 respectively. 

[1] Select the subgoal with the largest size. In case of a tie, the order in the input is preserved. 

[2] Select the subgoal with the largest number of distinct variables. In case of a tie, the sub goal with the 

largest ground size is chosen. If there is still a tie, the order in the input is preserved. 

[3] Select the subgoal with the largest ground size. The subgoal with the largest size is selected. In case 

of a tie, the order in the input is preserved. 

[4] Select the subgoal with the least number of solutions with the same predicate symbol as the subgoal. 

If several subgoals have the same predicate or the numbers of solutions for each several subgoals are 

the same, the subgoal with the largest ground size is selected. If there is still a tie, the order in the 

input is preserved. 

[5] Select the subgoal with the least number of solutions which are unifiable with this subgoal. If several 

subgoals have the same number of solutions unifiable with them, again, the subgoal with the largest 

ground size is selected. If there is still a tie, the order in the input is preserved. We use Prolog built-in 

unification to save time. 

In the next section, we will give the results of our experiments using the above five evaluation func-

tions. 

5. Implementation and Results 

A nice and convenient Prolog interface in sprfn provides an easy vehicle to carry out our experiment. 

In the input to sprfn, a sub goal of the form prolog(L) represents a call to the Prolog procedure L. We write 

a Prolog subroutine, called best_subgoa/, to select the best subgoal among a list of subgoals. Another Pro

Jog subroutine is written to translate the standard input format into the format which includes the calls to 

the Prolog subroutine best _sub goal. For example, the input clause 
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is translated into 

L :- pro/og(best_subgoal ([L 1,L 2,L 3],[X 1 1 Y])), X" 

pro log (best_subgoa/ (Y ,[X 2,X 3])), X 2, X 3· 

This is further translated into the internal representation of input clauses used by sprfn. 

We performed tests on 56 examples from different sources, using the five evaluation functions in the 

last section. Performance statistics of sprfn are given in the appendix. We would like to point out that none 

of the five evaluation functions makes sprfn perform better on all the examples when used for subgoal 

reordering. Nevertheless, some good heuristics are suggested by these data. 

Larger subgoals should be preferred. This heuristic is suggested by the data for function 1 and 

function 3• Using these two functions, we achieve overall improvements both in speed and in terms of infer

ences. One reason for the improvements is that the search space for a larger subgoal has potentially smaller 

branching factors since the larger number of symbols impose more constraints on unification. Another rea

son seems to be that the size of a subgoal is a good indicator of the "importance" and "relevance" of the 

subgoal. If a subgoal is larger, it contains more information about the current problem, thus more impor

tant. Yet another reason for the improvements seems to have something to do with the implementation of 

this particular prover. In sprfn, the size of the old solutions used constitutes part of the effort to derive a 

subgoal. The reason for doing this is to avoid the possible uncontrolled expansion of the search space due 

to a large number of big sub goals. If a goal is not solvable because its subgoals are too large, selecting the 

larger sub goals over smaller ones makes sprfn stop the search along the branch for this unsolvable subgoal 

earlier, thus reducing the fruitless search effort along this dead-end branch. However, we will not have 

room here to explain this further. 

Branches with smaller branching factors should be preferred. This is similar to the general 

heuristics that one should do the easier things first. This heuristics is suggested by the data for function 4 

and function 5• These two evaluation functions are designed to direct the prover to prefer the branches with 

the smaller branching factors, using the number of solutions as the indicator of the potential branching fac-

9 



tors. It improves sprfn' s performance on a large number of examples in terms of inferences, to use these 

two evaluation functions for subgoal reordering. It is very interesting to note that sprfn performs roughly 

the same using function 4 and function 5• But it imposes much more overhead to evaluate function 5 than to 

evaluate function 4• We would like to mention that this is very representative of our experience so far with 

the research on sprfn. It is often the case that simple things provide the most dramatic improvements. 

One interesting observation deserves mentioning. We note that, although the performance of sprfn 

changes considerably on some examples when subgoal reordering is performed, the default prover always 

perform better or as well in the average ratios. This can be seen from the data in Table 0 in the appendix. 

The reason seems to be that we have been careful in ordering the input clauses when we enter them by 

hand. The order thus obtained is probably "optimal" since we have a reasonably good idea about what these 

problems are. The best we can hope for subgoal reordering to accomplish is to approximate the "goodness" 

of hand ordering of the input clauses. We think our heuristics for subgoal reordering have achieved this 

nicely. 

6. Conclusion 

The heuristics suggested by our experiments are by no means new. But there are two things which 

are interesting about our investigations. First, the method of incorpcrating subgoal reordering into the 

depth-first iterative deepening search strategy is very simple. One of the advantages of the depth-first itera

tive deepening search strategy is its minimal requirements for memory. Our subgoal reordering scheme 

preserves this advantage. Second, the evaluation functions used for subgoal reordering are all very simple. 

They are almost purely syntactic in nature. However, their impact on the performance of this prover is con

siderable. The merit of using the evaluation functions like these seems to lie in the fact we are considering 

the syntactic aspect of the problems. This aspect is simple in form and imposes low overhead in its evalua

tion; and it often provides good heuristics. In general, we think that the importance of the syntactic aspect 

in mechanical theorem proving is not to be ignored, although it may not play a decisive role in the success 

of this field. 

10 



References 

[I] Plaisted, D.A. <<A simplified Problem Reduction Fonnat>> Artificial Intelligence 18 (1982) 227-261 

[2] Stickel, M.E & Tyson, W.M. «An Analysis of Consecutively Bounded Depth-First Search with Appli

cations in Automated Deduction>> UCAI 1983, 1073-1075 

[3] Korf, R.E. «Iterative-Deepening-A*: An Optimal Admissible Tree Search» UCAI 1985, !034-1036 

[4] Loveland, D.W. <<Automated Theorem Proving: A Logical Base>> Chapter 6. North-Holland Pub

lishing Company, 1978 

[5] Plaisted, D.A <<Another Extension of Horn Clause Logic Programming to Non-horn ClauseS>> lecture 

notes, 1987 

[6] Plaisted, D.A <<Non-Horn Clause Logic Programming Without Contrapositives» unpublished 

manuscript, 1987 

[7] Wang, T.C, <<Hierarchical Deduction>>, 1987 

[8] Reiter, R <<A Semantically Guided Deductive System for Automatic Theorem Proving>> IEEE Trans. 

Elec. Comput 25 (1976) 328-334. 

11 



Appendix-- Performance Statistics of Sprfn for Subgoal Reordering 

This section contains the statistics of sprfn' s performance using the different evaluation functions for 

subgoal reordering. Table 0 contains some summary and comparative data. Table 1-5 contain the statistics 

of sprfn's performance on each individual problem . Each of these five tables is for one of the five evalua-

tion functions defined in section 4. In table 1-5, sprfn's performance data without subgoal reordering are 

listed on the left for easy comparison. Note that in each of these five tables, two sets of data are listed. The 

set on the left is obtained using each of the evaluation functions given in section 4. The set on the right is 

obtained using the same function, but the value is negated. Thus the ordering used would be reversed. For 

instance, there are two sets of data in table 3 which is for function 3• The data set on the left is obtained by 

selecting the subgoal with the largest ground size. The data set on the right is obtained by selecting the 

subgoal with the smallest ground size. Data in table 0 are calculated from the statistics in table 1-5. There 

are two parts in table 0. Each part has two rows for each evaluation function. The upper row contains the 

data for the original evaluation function; the lower row contains the data for the negated evaluation func-

tion. Note that the statistics for wosl and wos!O are not used when calculating the data for table 0. 

Table 0. Summarv and Comoarative Data foart I) 
Average Time Per Theorem( sec.) Average Inferences Per Theorem 

absolute 
Average Ratio 

absolute 
Average Ratio 

with default with default 
285.78 1.10 654.9 1.03 

function! 
511.81 2.62 1020.1 2.03 
376.09 1.96 787.1 1.43 

function2 
572.73 7.87 988.5 2.58 
295.28 1.16 666.9 1.07 

function3 
615.14 9.67 1245.5 3.18 
348.19 1.15 633.3 0.99 

function4 
460.39 3.21 1144.4 2.90 
366.89 1.21 638.3 1.00 

functionS 
486.46 3.51 1183.8 2.86 

default 329.77 1.00 696.8 1.00 
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In this part, two items under Average Time Per Theorem are calculated using the following two 

formulae: 

absolute =--
N 

average ratio with default = 

i=NT·· 

L---"-
i=l Trll 

N 

where Ti, is the cputime taken by sprfn to prove the i"' theorem using evaluation function functioni. T di is 

the cputime taken by sprfn to prove the i" theorem without subgoal reordering. N is the number of 

theorems we tested. The two items under Average Inferences Per Theorem are calculated using the simi-

Jar formulae. But the number of inferences for each theorem is used instead. 

Table 0. Sum man and Coml!arative Data U:!11rt TI). 

functions 
Better Example Worse Example Even Example 

number percent(%) number percent(%) number 
15 12.0 16 21.9 25 

function! 
14 35.8 18 348.0 24 
8 16.0 30 84.3 18 

function2 
25 25.2 14 678.8 17 
24 12.2 12 57.5 20 

function3 
10 32.3 27 464.0 19 
27 20.9 10 51.0 19 

function4 
7 19.6 36 299.8 13 

31 18.7 12 46.9 13 
function5 

10 23.3 32 332.9 14 
default 0 0 0 0 56 

The data in this part concern solely with the number of inferences. There are two items under better 

example. The item under number is the number of theorems on which sprfn performs better using the 

corresponding evaluation function for subgoal reordering. The item under percent is the average speedup 

of sprfn with subgoal reordering using this evaluation function relative to the default prover for these prob-

!ems. For example, two numbers under better example for function 1 are 15 and 12.0. They mean that 

sprfn performs better on 15 theorems using function 1 for subgoal reordering; the a~erage speed up for 
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these 15 theorems is 12.0% relative to the default prover. There are also two items under worse example. 

Similarly, the item under number is the number of theorems on which sprfn performs worse using the 

corresponding evaluation function for subgoal reordering. The item under percent is the average slow

down of sprfn with subgoal reordering using this evaluation function relative to the default prover. The 

item under even example is the number of theorems on which the default prover and the prover with 

subgoal reordering using the evaluation function perform equally well. 
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Table 1. data when usi;,-.; size to renrder sub oals 
data for default data for function! 

largest first smallest first 
theorem cputime inference 

coutime inference coutime inference 
ancesl !2.38 27 !5.38 27 13.13 27 
bu<Stall 6.90 63 8.12 63 7.47 63 
dbabhp 26.40 190 26.75 192 83.53 545 
dm 1.15 6 0.95 5 1.63 8 
ewl 1.93 6 2.12 6 2.08 6 
ew2 1.27 5 1.45 5 1.47 5 
ew3 4.62 IS 5.15 IS 5.45 IS 
ex! 1.13 6 1.00 5 1.63 8 
ex2 19.32 259 21.00 259 20.60 259 
ex3 3.30 29 3.70 28 3.77 29 
ex4 3.45 30 3.72 29 3.87 30 
exS 0.55 4 0.60 4 0.58 4 
ex6 14.18 !57 15.20 !56 14.98 !57 
ex? 2.55 16 2.77 16 3.20 18 
ex8 9.62 64 10.45 64 9.05 so 
ex9 12.87 40 13.55 40 10.07 25 
example 45.78 236 47.68 236 47.57 236 
fex4t2 850.03 !002 855.45 1002 340.98 337 
groupl 1.13 6 1.07 5 1.70 8 
group2 19.27 259 21.58 259 20.68 259 
haspansl 4.85 28 5.13 19 5.52 29 
haspans2 9.37 54 9.45 37 10.73 54 
ls!OO 0.68 4 0.75 4 0.75 4 
lsl03 30.60 131 54.86 239 34.63 135 
Is105 1.10 5 1.10 6 1.27 5 
ls106 1.12 5 1.03 6 1.27 5 
lslll 1.10 5 !.IS 7 1.25 5 
ls115 53.50 207 63.00 201 3251.63 9736 
lsi? 16.53 76 17.83 80 17.57 76 
!s23 41.47 236 48.25 255 69.86 413 
Is26 34.60 199 34.33 198 36.22 203 
Is28 714.80 !117 74!.15 1117 414.68 768 
ls29 577.75 941 585.50 941 348.32 664 
ls35 41.82 336 42.92 320 53.80 368 
!s41 12.98 80 14.37 86 10.95 49 
IsS 1.93 5 2.07 5 2.03 5 
ls55 50.60 369 57.42 406 37.00 147 
ls68 47.87 291 55.88 322 25.05 95 
mqw 2.13 5 2.35 5 2.33 5 
numl 2.50 17 3.05 17 3.20 18 
prim 5.12 32 8.75 46 6.05 31 
qw 3.25 II 3.62 11 3.58 11 
rob! !.08 3 1.37 3 1.38 3 
rob2 19.58 259 21.20 259 20.92 259 
schubert.abst 202.98 953 320.27 1374 281.34 1228 
shortburst 3.50 24 4.02 24 3.90 25 
wosll 1502.30 4901 !416.43 4526 2620.66 6166 
wos12 3.23 36 3.48 36 1.78 11 
wos13 1671.12 3969 1672.12 3971 2281.80 3763 
wos14 4440.81 7208 !700.60 4107 2181.30 3631 
wos2 72.64 443 72.87 446 264.05 1487 
wos3 1.22 9 1.32 9 1.32 9 
wos6 5542.98 7896 5542.88 7889 7409.25 6939 
wos7 229.12 951 343.58 !493 3816.08 6078 
wos8 1694.97 4120 !693.85 4109 2228.57 3758 
wos9 388.03 !676 397.48 1684 2618.!4 8855 

wosl 169.17 683 170.14 702 fa ure 
woslO 821.992 2878 865.61 2921 failure 
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Table 2. data when usin~-number of distinct variables to reorder sub-~Oats 
data for default data for function2 

largest first smallest first 
theorem cpu time inference 

cpu time inference coutime inference 

ancesl 12.38 27 13.33 27 13.68 27 
burnall 6.90 63 7.33 63 7.40 63 
dbabhp 26.40 190 173.82 894 8401.27 8750 
dm 1.15 6 1.03 5 1.77 8 

ewl 1.93 6 1.97 6 1.93 6 
ew2 1.27 5 1.35 5 1.37 5 
ew3 4.62 15 5.05 15 5.03 15 
ex! !.13 6 1.05 5 !.78 8 

ex2 19.32 259 25.95 343 19.32 231 
ex3 3.30 29 3.90 28 3.75 25 

ex4 3.45 30 6.05 45 3.98 27 
ex5 0.55 4 0.60 4 0.57 4 

ex6 14.18 !57 17.03 181 14.42 145 
ex7 2.55 16 2.75 16 3.03 18 
ex8 9.62 64 12.32 84 9.10 50 
ex9 12.87 40 13.42 40 10.03 25 
example 45.78 236 49.20 253 62.95 286 
fex4a 850.03 1002 855.45 1002 341.86 337 
groupl 1.13 6 1.07 5 1.80 8 
group2 19.27 259 26.00 343 19.30 231 
haspartsl 4.85 28 5.07 19 5.70 28 
hasparts2 937 54 9.10 37 10.85 54 
ls!OO 0.68 4 0.70 4 0.72 4 
!s\03 30.60 131 52.35 217 35.98 126 
Is!05 1.10 5 0.97 5 1.27 5 
!s\06 1.12 5 1.02 5 1.32 5 

!sill 1.10 5 0.95 5 1.40 6 
Is liS 53.50 207 2174.02 3244 3205.47 9294 
lsl7 16.53 76 18.12 80 17.65 76 
ls23 41.47 236 60.84 344 22.42 123 

!s26 34.60 199 36.37 219 35.86 197 
ls28 714.80 1117 719.00 1124 389.67 739 

ls29 577.75 941 582.35 948 324.80 634 
!s35 41.82 336 53.27 354 46.75 331 
ls41 12.98 80 13.70 86 10.48 53 
IsS 1.93 5 2.03 5 2.03 5 
!s55 50.60 369 56.95 406 35.06 147 
Is68 47.87 291 54.32 322 24.22 99 
mqw 2.13 5 3.22 9 2.32 5 
num1 2.50 17 2.78 16 3.07 18 

prim 5.12 32 7.83 46 6.10 31 
qw 3.25 11 5.45 24 3.73 11 
rob! 1.08 3 1.65 3 1.65 3 
rob2 19.58 259 26.45 343 19.50 231 
schubert.abst 202.98 953 330.16 1392 187.44 847 
shortburst 3.50 24 3.70 24 3.87 25 
wosll 1502.30 4901 1447.41 4654 2602.84 6108 
wos12 3.23 36 3.43 36 1.82 11 
wos13 1671.12 3969 1674.47 4002 2166.65 3614 
wosl4 4440.81 7208 4435.95 7236 2342.43 3829 
wos2 72.64 443 106.29 544 184.50 1076 
wos3 1.22 9 1.30 9 1.30 9 
wos6 5542.98 7896 5543.88 7936 7380.16 6915 
wos? 229.12 951 234.94 977 686.41 1710 
wos8 1694.97 4120 1695.31 4150 2214.87 3743 
wos9 388.03 1676 476.98 1891 !168.36 4974 

wos1 169.17 683 179.84 703 fa' ure 
woslO 821.992 2878 1218.89 3740 failure 
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Table 3. data when usln uround size tn reorder snbPoals 
data for default data for function3 

largest first smallest first 
theorem cputime inference 

l'TIUtime inference cpu time inference 

ancesl 12.38 27 13.02 27 13.48 27 
burstall 6.90 63 7.60 63 7.12 63 
dbabhp 26.40 190 175.45 881 10350.90 10115 
dm 1.15 6 0.97 5 1.73 8 
ewl 1.93 6 2.02 6 1.95 6 
ew2 1.27 5 1.38 5 1.37 5 
ew3 4.62 15 5.12 15 5.03 15 
ex! 1.13 6 0.98 5 1.72 8 
ex2 19.32 259 19.00 231 25.58 343 
ex3 3.30 29 3.40 24 3.80 29 
ex4 3.45 30 3.58 26 6.67 52 
ex3 0.55 4 0.60 4 0.53 4 
ex6 14.18 !57 14.18 144 16.73 181 
ex7 255 16 2.75 16 2.72 16 
ex8 9.62 64 11.02 64 9.00 50 
ex9 12.87 40 14.05 40 10.03 25 
example 45.78 236 62.88 286 48.83 253 
fex4t2 850.03 1002 853.98 1002 340.60 337 
groupl 1.13 6 1.05 5 1.70 8 
group2 19.27 259 19.08 231 25.47 343 
haspartsl 4.85 28 4.73 19 5.37 28 
hasparts2 9.37 54 8.60 37 10.52 54 
is!OO 0.68 4 0.77 4 0.72 4 
isi03 30.60 131 54.70 238 34.18 131 
is !OS 1.10 5 1.00 6 1.22 5 
Isl06 1.12 5 1.05 6 1.32 5 
Islll 1.10 5 1.13 7 1.22 5 
lsl15 53.50 207 66.82 200 4202.68 12276 
ls17 16.53 76 17.73 80 17.32 76 
is23 41.47 236 22.00 121 75.77 465 
Is26 34.60 199 33.68 192 37.47 222 
!s28 714.80 !117 723.37 1117 416.48 768 
Is29 577.75 941 578.53 941 350.23 664 
Is35 41.82 336 40.90 318 55.90 376 
ls41 12.98 80 13.72 86 13.65 82 
IsS 1.93 5 2.03 5 2.00 5 
ls55 50.60 369 50.28 370 59.37 401 
Is68 47.87 291 48.23 291 56.67 319 
mqw 2.13 5 2.32 5 3.20 9 
numl 2.50 17 2.80 16 2.77 16 
prim 5.12 32 9.13 64 5.77 31 
qw 3.25 II 3.62 11 5.30 24 
rob! 1.08 3 !53 3 1.47 3 
rob2 19.58 259 19.43 231 26.05 343 
schubert.abst 202.98 953 299.09 1216 165.62 714 
shonburst 3.50 24 3.97 24 3.72 25 
wosll 1502.30 4901 !401.87 4473 2856.!7 6902 
wos12 3.23 36 3.52 37 1.63 9 
wos13 1671.12 3969 !668.75 3959 1701.37 3998 
wosl4 4440.81 7208 2323.42 5203 2610.83 5226 
wos2 72.64 443 71.79 442 263.20 1529 
wos3 1.22 9 1.30 9 1.28 9 
wos6 5542.98 7896 5537.02 7855 5550.34 7936 
wos7 229.12 951 222.43 927 700.48 1985 
wos8 1694.97 4120 1692.88 4097 1697.56 4130 
wos9 388.03 1676 389.16 1659 2633.88 9084 

wosl 169.17 683 136.03 539 failure 
woslO 821.992 2878 830.!6 2924 failure 
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Table 4. data when usinu solution with same nredicate to reorder subuoals 
data for default data forfunction4 

smallest first largest first 

theorem cputime inference 
cnutime inference cputime inference 

ancesl 12.38 27 !0.70 13 14.25 27 
burstall 6.90 63 7.58 63 7.65 63 
dbabhp 26.40 190 142.27 742 98.23 625 

dm 1.15 6 0.98 5 1.72 8 

ewl 1.93 6 2.03 6 2.03 6 
ew2 1.27 5 1.43 5 1.35 5 
ew3 4.62 !5 5.68 24 5.22 15 
ex! 1.13 6 1.00 5 1.72 8 

ex2 19.32 259 18.78 231 25.50 343 

ex3 3.30 29 3.47 24 3.83 29 
ex4 3.45 30 3.72 26 6.62 52 
ex5 0.55 4 0.58 4 0.62 4 

ex6 14.18 !57 !4.05 143 17.62 184 
ex7 2.55 !6 2.80 16 3.10 19 

ex8 9.62 64 8.67 49 12.33 84 
ex9 12.87 40 !0.10 25 13.48 40 

example 45.78 236 63.15 286 49.28 253 
fex4t2 850.03 1002 639.47 580 331.36 313 

groupl 1.13 6 0.98 5 1.77 8 
group2 19.27 259 18.98 231 25.60 343 

haspartsl 4.85 28 4.83 19 5.57 29 
hasparu2 9.37 54 8.63 37 10.67 54 
ls!OO 0.68 4 0.73 4 0.77 4 
ls!03 30.60 131 33.27 127 52.88 213 

ls!05 1.10 5 1.25 5 1.22 7 
ls106 1.12 5 1.30 5 1.22 7 
ls!ll 1.10 5 1.27 5 1.18 7 
Js!l5 53.50 207 67.13 205 5725.48 18932 
ls!7 16.53 76 17.80 76 17.63 78 
ls23 41.47 236 22.29 121 76.45 465 
ls26 34.60 199 34.54 194 38.42 224 
ls28 714.80 1117 7!9.58 1117 418.35 768 

ls29 577.75 941 581.43 941 351.40 664 
ls35 41.82 336 41.02 318 56.30 376 
ls41 12.98 80 !3.77 86 14.03 82 
ls5 1.93 5 2.07 5 2.75 13 
ls55 50.60 369 50.68 370 59.82 401 
ls68 47.87 291 47.80 291 56.93 319 
mqw 2.13 5 2.33 5 3.23 9 
numl 2.50 17 2.80 16 3.10 19 

prim 5.12 32 5.65 32 7.93 46 
qw 3.25 11 3.72 11 5.38 24 
rob! 1.08 3 1.50 3 1.40 3 
rob2 !9.58 259 !9.03 231 25.60 343 
schubert.abst 202.98 953 !81.33 802 389.07 1656 
shortburst 3.50 24 3.87 25 3.78 24 
w<>S11 1502.30 4901 1942.86 5095 1748.50 5344 
wosl2 3.23 36 1.78 11 3.55 37 
wos13 1671.12 3969 2059.90 3676 1765.50 3941 
wos14 4440.81 7208 2239.72 3908 4590.96 7229 
wos2 72.64 443 85.96 475 114.02 565 
wos3 1.22 9 1.30 9 1.33 9 
wos6 5542.98 7896 7007.35 7019 5863.30 7832 
wos7 229.12 951 624.22 1765 253.57 899 
wos8 1694.97 4120 2!14.05 3807 1783.10 4076 
wos9 388.03 1676 595.56 2167 1704.34 6958 

wosl 169.17 683 209.23 863 fa ure 

woslO 821.992 2878 14!1.15 3837 failure 
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Table 5. dat!'l when usin number of unifiable solut"ons to reorder subaoals 
data for default data for functionS 

smallest first largest first 
theorem cpu time inference 

coutime inference coutime inference 

ancesl 12.38 27 14.02 26 14.38 27 

burstall 6.90 63 8.32 64 7.53 64 

dbabhp 26.40 190 144.n 742 10022 625 

dm 1.15 6 1.05 5 1.80 8 

ewl 1.93 6 2.02 6 1.95 6 

ew2 1.27 5 1.42 5 1.48 5 

ew3 4.62 15 5.12 15 5.62 15 

ex! 1.13 6 1.08 5 1.78 8 

ex2 19.32 259 20.80 226 29.53 358 

ex3 3.30 29 3.83 24 5.70 39 

ex4 3.45 30 3.98 25 7.42 54 

exS 0.55 4 0.65 4 0.65 4 

ex6 14.18 !57 15.32 141 18.87 185 

ex7 2.55 16 2.93 16 3.27 18 

ex8 9.62 64 9.12 49 12.73 84 

ex9 12.87 40 13.00 33 11.17 32 

example 45.78 236 67.45 283 50.25 253 
fex4t2 850.03 1002 650.09 580 335.72 3!3 

group I 1.13 6 1.10 5 1.82 8 
group2 19.27 259 20.90 226 29.70 358 

haspartsl 4.85 28 4.80 19 5.50 28 
hasparts2 9.37 54 8.77 37 11.00 54 

ls!OO 0.68 4 0.75 4 0.63 4 

ls103 30.60 131 50.43 206 39.38 !54 

Is lOS 1.10 5 1.07 6 1.25 5 
ls106 1.12 5 1.08 6 1.27 5 
lslll 1.10 5 1.05 6 1.27 5 
Is!lS 53.50 207 69.54 191 6213.39 18365 

lsl7 16.53 76 18.33 78 18.52 76 

1s23 41.47 236 24.60 117 93.05 527 

1s26 34.60 199 36.68 !89 40.92 226 

ls28 714.80 1117 719.42 1049 454.85 830 

ls29 577.75 941 585.93 903 353.n 679 

ls35 41.82 336 50.65 328 58.52 367 

ls41 12.98 80 9.55 50 14.02 82 
IsS 1.93 5 2.10 5 2.07 5 
lsSS 50.60 369 35.52 217 65.08 416 

ls68 47.87 291 32.35 185 74.27 407 
mqw 2.13 5 2.33 5 3.20 9 
numl 2.50 17 2.93 16 3.40 18 

prim 5.12 32 5.93 32 8.10 46 

qw 3.25 11 3.78 10 5.63 24 
rob! 1.08 3 1.48 3 1.77 3 
rob2 19.58 259 21.03 226 29.77 357 
schubert.abst 202.98 953 301.12 1125 666.70 2183 
shortburst 3.50 24 3.83 24 3.83 25 
wosll 1502.30 4901 2433.96 5516 1802.22 5373 
wosl2 3.23 36 3.47 36 2.48 13 
wosl3 1671.12 3969 2069.22 3674 1757.17 3936 
wos14 4440.81 7208 2316.22 4029 4537.41 7088 

woo2 72.64 443 n.5o 355 294.80 1592 
wos3 1.22 9 1.40 9 1.05 7 
wos6 5542.98 7896 7139.03 7027 58!6.50 7828 
woo? 229.12 951 737.52 1657 269.07 1003 
wooS 1694.97 4!20 2124.58 3815 1772.95 4068 
wos9 388.03 1676 660.78 2107 2175.48 8020 

wool 169.17 683 146.38 491 fa· ure 
woslO 821.992 2878 1113.63 2886 failure 
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