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ABSTRACT 

The results presented here refer to the determination of the thickness of a 
graph; that is, the minimum number of planar subgraphs into which the graph can be 
decomposed. A useful general, preliminary result obtained is Theorem 8: that a 
planar graph always has a planar representation in which the nodes are placed in 
arbitrary given positions. It is then proved that, if we have positive integers 
D and T, such that any graph of degree at most D has thickness at most T: 

Theorem 9: any graph of degree d has thickness at most T roof{ ( d + 1) I D}; 

Theorem 10: any graph of degree dean always be embedded in a regular graph 
G0 of any degree f ;. d; 

Corollary 5: any graph of degree dhas thickness at most roof(d/2); 

Theorem 12: with D and T defined as above, we have D.;; 4 T- 2; 

Corollary 6: if T = 2, then D .;; 6. 

We further conjecture that, indeed, the thickness of any graph of degree not 
exceeding 6 is never more than 2. 

Since the design and fabrication of VLSI c0111puter chips is essentially a 
concrete representation of the planar decomposition of a graph, all these results 
are of direct practical interest. 
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DEFINITIONS 

Let N = { V1, V2, • o o, vn} be a finite set of nodes (or vertices) and write 

L(N) = { {x, y}: x E N A y e N A x # y} 

for the set of all possible edges (i.e., pairs of nodes). If E c; L(N), we call 

G= (N, E)= (N(G), E(G)) 

a graph (more precisely, an undirected graph), with n = I Nl nodes specified by 
N(G) =Nand e = lEI edges specified by E(G) =E. If 

P' N and F c; En L(P) 

(l) 

(2) 

(3) 

then we call the graph H = ( P, F) a subgraph of G and write H < G; moreover, if P = 
Nand F c; E, we call H a spanning subgraph of G and write H « G. 

To any node x E N will correspond a set 

Cx = {y E N: {x, y} E E} (4) 

of neighbors of x in G, and the number 6 x = I Cx I of nodes in Cx is called the 
valency of the node x; while 

d = d(G) =max{ fix: x EN} (5) 

is called the degree of the graph G. By counting edges at each node, we see that 
(since each edge is counted at both ends) 

2 e = Ix 6 x <: nd. 

We call a node x maximal if fix = d. Write 

M = M( G) = {x e N: fix = d} 

for the set of maximal nodes of G. If M = N (that is, if every node of a is 
maximal), we call the graph G a regular graph. 

The graph 

GC = (N, L(N) (1 £C), 

with the same nodes as (land precisely those edges which are possible but absent 
from G, is called the cOJJJplement of G. 

Given a graph G = (N, E), if we can find a sequence 

X= Zo, Zl, Z2, ... o, Zt = y, 

all different; such that every pair 

{zs-1, zs} E E (s = 1, 2, ... , t), 

(6) 

(7) 

(8) 

(9) 

(lO) 

we call the sequence (10) of edges of G a path in G, connecting the nodes x and y, 
and passing through the nodes z1 , Z2 , ••• , z t - 1 ; and we say that the nodes x and y 
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are connected in G. A graph in which every pair of nodes is connected is called a 
connected graph. 

Let G = (N, E) be any· graph. If w is a divalent node (of valency 6,. = 2), such 
that {w, x} and {w, y} are the edges at w, and there is no edge {x, y}, then we 
may eliminate the node wand its two edges, and insert the edge {x, y} instead, 
performing what is called a homeomorphic contraction. Conversely, if Ghas an edge 
{x, y}, we may remove this edge, and create a new divalent node wand edges {w, x} 
and { w, y}, performing a homeomorphic expansion. If two graphs G and Hare such 
that we can transform one into the other by a (finite) sequence of homeomorphic 
contractions and expansions, then we say that G and Hare homeomorphic. It is 
easily verified that homeomorphism is an equivalence relation. 

Denote the Euclidean plane by H2 and the set of all Jordan arcs in H 2 by J. 
Suppose that we can find one-to-one mappings 

and g; E-> J, 

such that, if {x, y} e E, 

then f(x) * f(y), 

and g(x, y) = g({x, y}) has end-points f(x) and f(y) 

(11) 

(12) 

(13) 

(14) 

and contains no other points of f(N), and. finally, no two Jordan pres in g(E) 
have any points other than perhaps one or both of their end-points in common (i.e., 
they do not cross). If this is the case, we refer to 

G = (f(N), g(E)) (15) 

as a planar representation of G, and if a graph G possesses any such planar 
representation, it is said to be a planar graph. Of course, a planar graph will 
have (infinitely) many planar representations. For example, Wagner, Fary, and Stein 
have independently shown that every planar graph always has planar representations 
in which all the Jordan arcs representing edges of the graph are straight line 
segments [e.g., see Ore (1967), p. 6, or Harary (1969), p. 106). 

For i = 1, 2, ... , t, let Hi = (N, Fi) be spanning subgraphs of G, such that 

t 
Fi n FJ = (<I whenever i * j, and U Fi = E; 

i=l 
(16) 

then we call the set of graphs Hi a t-1'old decomposition (or factorization) of G, 
and write 

t 
G = I H;. 

i = 1 
(17) 

A graph Gmay have many decompositions of the form defined in (16) and (17). 
Imposing the further condition that all the subgraphs H; be planar, we have a 
planar decomposition of G; and we shall refer to its planar subgraphs Hi as laminae 
of this decomposition. The smallest number t of laminae for which a t-1'old planar 
decomposition of G exists is called the thickness of G and is denoted by fJ (G). 
Evidently, if a graph G has m maximal connected component subgraphs G_; (j = l, 2, 
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... , m), then 

e(G) = maxj {e(Gj)}; (18) 

so that it is sufficient to restrict our consideration of thickness to connected 
graphs. Indeed, we observe that a connected graph may further be divided into 
2-connectedcomponents, any two of which have only one same such 2-component are 
connected by at least two paths with only the end-points in common (this is MENGER'S 
THEOREM). It is clear that (18) holds when the Gj are so-defined 2-components; and 
therefore, it is sufficient to restrict our consideration of thickness to 
2-connected graphs. 

Four special families of graphs will be needed here. First, we define the graph 
Cn to be connected and to have n nodes, all divalent, the edges thus forming a 
simple closed ring: this is a cycle of n nodes. In particular, any graph G is 
2-connected if and only if each two of its nodes lie on some cycle which is 
contained in (i.e., is a subgraph of) G. We sometimes refer to a regular divalent 
spanning subgraph (consisting entirely, therefore, of disjoint cycles) as a 
"2- factor". 

By contrast, any graph which is connected and contains no cycles (this is 
referred to as being acyclic) is called a (free) tree. It is easily verified that a 
tree with n nodes has exactly n- 1 edges, that the removal of any edge disconnects 
it, and that the addition of any edge creates a cycle. There will be at least two 
univalent nodes (with valency 1), and imy such node is called a leaf. 

We define the graph Kn to have n nodes and 

E(Kn) = L(N); (19) 

so that all possible edges, n(n- 1)/2 in number, occur: this is the complete graph 
of n nodes. We may observe that K n can always be decomposed into any graph G with n 
nodes and its complement ac: 

Kn = I{G, GC} = G+ ac. (20) 

The graph Kn,n has 2n nodes, partitioned into two sets of n: 

N1 n N2 = ~, ( 21) 

I N1 I = I N2 I = n; 

and every node in N1 is connected by an edge to every node in N2 : 

E(Kn,n) = {{x, y}: x E N1 II y E N2}. (22) 

This is the complete symmetric bipartite graph of 2n nodes. 
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KNOWN RESULTS 

Theorem 1 (KURATOWSKI). A graph is planar if and only if it has no subgraph 
hODJeODJorphic to Ks or to Ko, o . 

[See Kuratowski (1930); as well as Baylis (1985), Berge (1962), Bondy and 
Murthy (1976), Harary (1969), Ore (1967), and Tutte (1963), who all give proofs.) 
We do not give a proof here, but point out the essential character of this result. 
A graph is prevented from being planar if and only if it contains: 

(i) a cycle; 

(ii) two ''bridges" formed across this cycle (i.e., trees whose leaves lie 
on the cycle), such that, in a plane representation such as is defined in (ll) -
(15), in which the cycle is mapped into a simple closed contour, they would have to 
cross if they were placed both inside or both outside the cycle; 

and (iii) a path connecting a node in one (interior) bridge with a node in the 
other (exterior) bridge. 

It then remains to demonstrate that this can only occur in the situations shown in 
Figures 1 and 2, which are homeomorphic to Ko,o and Ks, respectively. 

C oro 11 a.ry 1. Any graph of degree 2 or less is planar (i.e., has 
thickness l ) • 

Ks has degree 4; Ko,o has degree 3. Thus, any graph of degree less than 3 
cannot have a subgraph homeomorphic to either of the "Kuratowski graphs" necessary 
for non-planarity. 

Theore:rn 2 (VIZING). If a graph G has degree d, and if we seek to 
color its edges in such a way that no two edges incident on any given node are of 
the same color, then the minimum number of colors required to achieve this, the 
"edge chromatic number" c = c(G) of G satisfies the inequality, 

d<c<d+l. (23) 

[See Vizing (1964); as well as Harary (1969), p. 133, and Ore (1967), p. 245, 
where a proof in English is given.] 

Theore:rn 3 (PETERSEN). A connected l{raph G can be dec0111posed into 
edge-disjoint subgraphs Hi, each of which is entirely c0111posed of disjoint cycles 
with all nodes divalent, if and only if G is rel{Ular and of even degree, say 
d = 2g. 

In other words, a connected graph is decomposable, as in (16) and (17), into 
"2- factors" (this is also expressed by saying that the graph is "2- factorable"), if 
and only if it is regular and of even degree. If G is not connected, it can be 



Kuratowski graph K3,3 

Figure 1. 

Kuratowski graph K5 

Figure 2. 

cycles 
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2- factored if every connected component is regular and of even degree , but now 
different components may be of different even degrees. [See Petersen ( 1891) and 
Harary (1969) , p . 90. ] 

TheoreiD 4 (BATTLE, HARARY, KODAMA, TUTTE). When Kn is decOJJJposed as 
in (20), with n > 9, then G and ac cannot both be planar; but if n <: 8, i t is 
possible for both G and ac to be planar. 

[See Battle, Harary, and Kodama ( 1962) , and Tutte ( 1963a) ; as well as Beineke 
and Harary (1965) , and Harary ( 1969) , p. 120.] We have rephrased the theorem in our 
own terms. 

Corollary 2. Kg has thickness3, but anysubgraph ofKg has 
thickness on~y 2 or less: 

(a) 9(Kg ) = 3, (b) 9 (Kg -edge) = 2. 

[See Harary (1969), p. 120, where these results are stated without proof. ] 
Here, "Kg- edge" denotes the graph obtained from Kg by removing any one .edge. 

(24) 

: The assertion (a ) follows immediately from Theorem 4 ; but the proof of (b) is no t so 
evident. However, the latter fact can be· established by any example, and Figure 3 
provides just such an example (we note that all nodes and all edges of Kn are 
topologically equivalent, for any n ). This corollary implies that the graph Kg is 
(locally) •ini.al for triplanarity ( i.e., to have thickness 3). 

TheoreiD 5 (BEINEKE, HARARY). The thickness of the cOJJJplete graphs is 
known in JI/Os t cases: 

(a) for n ~ 9 and n ~ 4 (mod 6), 

9 (Kn ) = floor[(n + 7)/ 6] = floor[ (n + l )/6] + l = roof{ (n + 2)/6}; (25) 

(b ) 9 ( Kg) = 3; 

(c) 9(K4 ) = l, 
9 ( K2e) = 5, 

8(K1o ) = 3, 

9(K:a 4 ) = 6, 

8 (K2 2) = 4, 

9(K4o ) = 7 . 

[See Beineke and Harary (1965), and other references in Harary (1969) , p. 120] 
It is conjectured in Ha~ary (1969) that 8(K1s) = 4, and that (25) holds for all 
n > 16. Note that (b) is just a repetition of Corollary 2 (a ). 

Theorem 6 (BEINEKE, HARARY, MOON). The thickness of the colllplete 
SYJIIIlletric bipartite graphs is known: 

8(Kn ,n) = floor (( n + 5)/4] = floor ((n + l)/4] + 1 = roof{(n + 2)/4}. (26) 

[See Beineke, Harary, and Moon ( 1964); as well as Harary ( 1969) , p. 121; they 
actual give a more gener al result, covering most cases of Klll,n.] 



Plane 1: 18 edges Plane 2: 17 edges 

Biplanar decomposition of K9 - { 8, 9} . 

Figure 3. 
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The authors of Theorems 5 and 6 use the notation 

[x] = floor(x), for the integer infilltwl of x, 

{x} = roof(x), for the integer supreJ/Iu. of x; 

(27) 

(28) 

we prefer the floor/ roof notation as more intuitive; our use of[ ... ] and { ... } in 
(25) and (26) is not specific, but the choice was made in conformity with Beineke, 
Harary, and Moon's notation, so as not to confuse the reader further!] These authors 
state their result in the first forms of (25) and (26); their equivalence to the 
second forms is obvious; the last forms result from the easily- verified general 
result, that, if a and b are positive integers, then 

floor(a/b ) + l = roof{(a + 1)/b}. (29) 

Coro11a.ry 3. K7 ,7 has thickness 3; but Ks,s has thickness only 2: 

(a ) 8 (K7 ,7) = 3, (b ) e (Ks, s ) = 2. 

Theore::rn 7. K7 , 7 has thickness 3, but any subgraph ofK7,7 has 
thickness not" greater than 2:· 

(a) e (K7 ,7) = 3, (b) 8(K7 ,7 - edge) = 2. 

( 30) 

(31) 

Proof. Part (a) is a recapitulation of Corollary 3 (a). Since Corollary 3 (b) 
t e lls us that e(Ks ,s) = 2, and since 

Ks,s < K7,7 - edge, ( 32) 

i.e., Ks ,s is a subgraph of any graph obtained by removing one edge from K7,7 , we 
see that 8 (K7,7 -edge) ~ 2. Therefore, Part (b ) can be proved simply by exhibiting 
a biplanar decomposition of K7,7 - edge. This is provided by Figure 4, thus 
completing the theorem. ~~27 

After completing this work, I informed Professor Lowell W. Beineke of some of 
my results, and he pointed out that the minimality of Kg (see Corollary 2) and of 
K7,7 (see Theorem 7), as well as that of Ks,13 , were already demonstrated in the 
unpublis hed part of his 1965 doctoral thesis . 



Plane 1: 18 edges 

Biplanar decomposition of K7,7 - {7, G}. 

Plane 2: 18 edges 

Figure 4. 
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NEW RESULTS 

Theorem 8. If a graph G = (N, E) is planar, and if S is any given set of 
IS I = n = I Nl points of R2 with a one-to-one mapping p: N-> S; then we can 
define a planar representation 

G* = (p(N), q(E)) (33) 

of G (as in (11) - (15)) with the given mapping p for which 

p(N) = s. 

Proof. Since G is planar, there exists a planar representation of the form 
(15). Let 

N= {v1, V2, ••• , vn} 

and :f"( Vi) = U.i and p( Vi) = '-"Ji E S. 

(34) 

(35) 

(36) 

We now proceed inductively, by continuously deforming the planar representation G 
of (15), node by node, until we arrive at a planar representation G* of the form 
(33). For j = 1, 2, •.. , n, we suppose that nodes u.; with 0 < i <}have already 
been successfully moved to the respective required positions: 

for 0 < i < j. (37) 

Thus, we have a planar representation of Gwith nodes at 

'W'l, ••• , 'f!Vj-1, ~J, ... , Un, (38) 

and now seek to move 

U.j ... 'f/<Jj (39) 

in a continuous manner, keeping the representation of the graph planar. We use the 
facts that we may alter a Jordan arc (which may be thought of as the set of points 
in the complex plane R2, 

{Z ( t) = X( t) + i Y( t): 0 .;; t .;; 1}, ( 40) 

where X and Yare continuous functions) by: 

(i) parallel translation of the entire arc: 

Z(t)-> Z(t) + C, (41) 

for some complex C = A + i B; 

(ii) rigid rotation of the entire arc about any point in the plane; or of 
the segment parametrized by either 

[0, p] = {t: 0 .;; t .;; p< 1} (42) 

or [p, 1] = { t: 0 < p.;; t .;; 1}, (43) 
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Figure 5 illustrates the construction used in demonstrating 
Theorem 8. The white nodes represent the points u1 (j = 1, 2, 
3, 4, 5) of the initial planar representation, and the shaded 
nodes represent the points w1 (j = l, 2, 3, 4, 5) of the given 
target set S. The dotted arrows indicate the successive 
translations w1 = p(u} of nodes from initial to target positions, 

Uj-7Wj. 
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about the end-point Z(p) = (X(p), Y(p)); that is to say, if the center of 
rotation is <J, and the angle is s radians, then, for the appropriate range of the 
parameter t, 

that is, 

Z ( t) -> c; + ei s [ Z ( t) - c;] ; (44) 

(iii) "straightening" of any segment of the arc (parametrized by [p, q]), 

Z(t)-> [(q- t)Z(p) + (t- p)Z(q)]/(q- p) 

= Z(p) + (t -p)[Z(q)- Z(p)]/(q -p), 

for 0 .;; p .;; t .; q .;; 1; (45) 

(iv) "stretching" of any (straight) segment of the arc by a factor k > 0: 
given that, for t e (p, q], Z(t) takes the form on the right of (45), 

Z(t)-> Z(p) + k(t- p) [Z(q)- Z(p)]/(q- p), 

for 0 .;; p .;; t .;; q .; 1, 

Z(t)-> Z(t) + Z(p) + k[Z(q)- Z(p)]; 

for q ..- t .;; 1, (46) 

(v) "bending" of any segment of the arc around a circular arc: 

Z( t) 4 c; + ei s< t-P>I< q-p> [Z(p) - c;], 

for 0 .;; p .;; t .;; q.;; l, 

Z(t)-> Z(t)- Z(q) + c; + eis[Z(p)- <J], 

for q < t .; 1, (47) 

(vi) any combination of the above. 

All these transformations are continuous (i.e., homeomorphic) and map Jordan arcs 
into Jordan arcs; so that their application retains the required properties of the 
planar representation, so long as the resulting arcs do not cross. 

The nodes may be thought of as represented by rigid round pegs on an 
arbitrarily large flat board, and the edges by flexible, longitudinally elastic 
strings of fixed thickness, each attached at both ends to pegs. This may be 
formalized as follows. Let the minimum distance between any non-coincident pair of 
points u; or ~i and UJ or ~J be p, and choose any 0 < A < p. The "pegs" are now 
taken to be circles of radius A, centered at the representative points u; or ~i 
of the corresponding nodes, and the "strings" are taken to be the envelopes of 
families of circles of the same radius, centered at every point (or, equivalently, 
at all points of rational parametric identification, if countability is relevant) of 
the representative Jordan arcs of the corresponding edges. It is clear that. we may 
first use transformations (ii) - (v), without moving any pegs, to make all arcs 
representing edges consist only of concatenated straight segments and circular arcs. 
As the center of the peg (or circle) representing the j-th node moves across the 
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board, from position U.J to position ....,J, in a "simple" Jordan arc (without loops; 
preferably a straight segment, or straight segments alternating with circular arcs), 
chosen so that this peg does not collide with any of the n - 1 stationary pegs 
representing all the other nodes of G, it "drags" all the strings representing its 
edges with it (by a combination of the transformations (i) - (v) above), clearly 
retaining the planarity of the representation, until some kind of a "collision" 
occurs. These collisions can only be of three kinds: 

(a) the moving peg hits a stationary string, 

(b) a moving string hits a stationary peg, 

or (c) a moving string hits a stationary string. 

We now deal with (a) by letting the moving peg "push" the string(s) in front of 
it (several strings may eventually "pile up" side-by-side in front of the moving 
peg, without crossing one-another). We deal with (b) by letting the moving string(s) 
"bend" (and stretch) around the stationary peg as they continue to be "pushed" by 
the moving peg. We deal with (c) by letting the moving string first bend so as to 
"lie parallel" to the stationary string, so long as this is possible, and then by 
letting it "push" the latter. Finally, it is possible that the positions of ....,J and 
some· u.; should coincide. If so, either 

(d) i < j, 
(e) i = j, 

or (f) i > j. 

In Cases (d) and (e), there is no problem: in (d), the i-th peg has already moved 
elsewhere; in (e), the j-th peg never moves at all. In Case (f), we allow the j-th 
peg to "push" the i-th peg (with its strings) sufficiently for the former to take 
its rightful place. Thus, we see that, in every case, the movement (39) may be 
completed in a smooth manner without relinquishing the planarity of the 
representation. This completes the inductive step; induction now proves the theorem. 
Q.E..D 

The importance of this theorem is in the application of the 
planar-decomposition theorems to practical problems, such as the design of VLSI 
"chips" for computer components. A chip consists of several superimposed flat 
layers, insulated from one-another, in which "nodes", consisting of electronic gates 
and other processing elements, are connected by conducting "edges". The construction 
is such that each edge lies entirely in one layer, no two edges may cross in a 
single layer, and each node may be thought of as lying in all layers at the same 
point (like a peg perpendicular to all layers and accessible to all of them). Now 
suppose that a chip design is given as a graph, and that this graph has a t-fold 
planar decomposition, which is to be used as the basis for physical fabrication of 
the chip. Each lamina of the decomposition is a planar graph, and so has a planar 
representation; but it is essential to the practical application that all the planar 
representations should have the nodes in the same positions. Theorem 8 tells us that 
the choice of planar representation for each lamina can indeed be made after the 
nodes are arbitrarily positioned (in the present situation, in the same way in all 
laminae). 
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Note, too, that this theorem has been used implicitly to enable the 
almost-planar representations of K3,3 and of Ks in Figures 1 and 2, respectively, 
to be made simple and evident, and to permit the biplanar representations of 
Kg - edge and K7,7 - edge in Figures 3 and 4, respectively, to be shown in a clear 
and highly symmetric form. 

The:ore::rn 9. Suppose that we are given positive integers JJ and T, such 
that any graph G of degree at most 0 has thickness at most T; that is, such that, 

if d = d(G) " JJ, then 6(G) .; T. (48) 

Then, for any graph G of arbitrary degree d, 

6(G).; Troof{(d+ l)IJJ}. (49) 

We note that, when d < JJ, roof{(d + l) I JJ} = 1, and so (48) and (49) agree; while, 
for d = JJ, roof{(d + 1) I JJ} = roof{(JJ + 1) I JJ} = 2, so that (48) is stronger than 
(49). 

Proof. We appeal to Theorem 2, which tells us that, using at most d+ 1 colors, 
'we can certainly color the edges of Gso .that no two edges incident on any given 

node have the same color. This means that we can arbitrarily partition these colors 
into m = roof{ ( d + 1) 1 JJ} sets, each of at most JJ colors. Now decompose a into m 
sub graphs Hi, in such a way that Hi has all its edges colored from the i-th set of 
at most JJ colors; then each of these subgraphs has degree no greater than the number 
of edge-colors used in the subgraph, and so, by our hypothesis, not greater than JJ ; 
whence its thickness is at most T, by (48). The thickness of G (the minimum total 
number of laminae required) is then no greater than the total number, mT, of planar 
laminae generated by our construction; and result (49) now follows at once, 
completing the theorem. Q.EP 

Corollary 4 (PLAISTED). If a graph (l has degree d, then 

e (a) .; roof { ( d + 1) /2} . (50) 

Proof. By Corollary 1, the relation (48) holds for JJ = 2 and T = l. Therefore, 
by (49), the corollary follows. Q.EP 

[Private communication; see Acknowledgements.] 

The:ore::rn 10. (liven a graph G of degree d and any integer f > d, we 
can always construct a regular graph G0 of degree f, containing Gas a subgraph. 

Proof. We seek to bring the valency of every node x of G up to a value f, not 
less than 6x. For each node x, therefore, there is a number 

Ex=f-6x;.O (51) 

of "free valencies" to be combined. First, if Ex > 0, Ey > 0, and {x, y} is not an 
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edge of G, we add the edge {x, y} to G and reduce Ex and Ey appropriately by one; 
and this can be repeated until no more such edges are possible. Call the resulting 
augmented graph G+ (clearly, G < < <J+ , since no nodes have been added or removed and 
edges have only been added). We may now be left with no free valencies (i.e., all 
Ex= 0), in which case we take 6° = G+ and the construction is complete; or there 
may remain some free valencies, in which case we proceed as follows. 

Let z E G+. If the adjusted value of Ez .;; 1, do nothing. If Ez > 2, construct 
a copy the Kuratowski complete graph KF (which has fnodes, all of valency f- l) 
and give each of its nodes an additional valency (for a total valency of fat each 
of these fnew nodes). Now add this new graph toG+, and add Ez edges, connecting 
the node z to E z nodes of this KF , and leaving f- E z nodes, each with a single 
free valency. Repeat this procedure with every such z of degree 2 or more. We call 
this further-augmented graph a>. Now construct a second copy of the augmented graph 
<J>, say G', and pair-off corresponding ">" and "<" free valencies (necessarily 
equal in number) of the two identical graphs into additional edges. The "K-graph" 
construction ensures that no two such new edges connect the same pair of nodes, 
since all nodes with free valencies are now univalent. The final result is a regular 
graph (;0 of degree f, containing the original graph G as a subgraph. Q.EP 

Corollary 5. If a graph G has degree d, then 

Proof. Let 

8{G) .;; roof(d/2). 

f = 2 roof(d/2); 

(52) 

(53) 

then f is even, and equals either d or d + l. By Theorem 10, we can always 
construct a regular graph (;0 of degree f, which has Gas a subgraph. By Theorem 3, 
we can then decompose G0 into (by Corollary l, planar) 2-factors, and clearly there 
will be just f/2 = roof(d/2) such 2-factors. This is a planar decomposition of 
6°, and, ipso facto, a planar decomposition of the subgraph G. Thus, the thickness 
of G cannot exceed that of GO , which cannot itself exceed roof ( d /2) . Q.EP 

Theorem ll. If Td denotes the supre.mum of the thicknesses of all 
graphs of degree d, then 

Td;;. roof{(d+ 2)/4}. 

Proof. By Theorem 6, equation (26), since d(Kd, d) = d, 

8(Kd,d) = roof{(d+ 2)/4}; 

so that the supremum Td must be greater than or equal to this value, and the 
theorem is proved. Q.EP 

(54) 

(55) 

Theorem 12. Let 0 and T be defined, as in Theorem 9, by the relation 
(48); then we have that 

D .;; 4T- 2. (56) 
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Proof. By (48), if d.; II, then ll .; T; so Td .; T. Thus, by Theorem 11, 

(Vd.; II) T;. Td;. roof{(d+ 2)/4}. 

Therefore, T;. roof{(II + 2) /4}; 

(57) 

(58) 

and it is easily verified that II = 4T- 2 gives the right-hand side of (58) the 
value roof(T) = T, which satisfies (58) (as does, of course, any smaller value of 
D); while II= 4T-l gives the same term the value roof{(4T+ 1)/4} = T+ 1, which 
does not satisfy (58) (nor does, of course, any larger value of D). The theorem 
follows immediately. QE.O 

Corollary 6. 

If T = 2, the.n II .; 6. (59) 

Proof. The result is immediate, by direct substitution in (56). QE.O 
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CONCLUDING REMARKS 

The most fundamental results presented here are Theorems 8, 9, 10, and 12. 
Theorem 8 is a formalization of what everyone must have been doing for years; but I 
have not found it in the published literature. The practical importance of Theorem 8 
in facilitating VLSI chip design is indicated in the text. Of greatest practical 
importance are the results of Corollaries 5 and 6. 

Important problems remain; notably, the tightening of the degree-thickness 
relation. Examination of many examples very strongly suggests the following 
conjectures: 

Conjecture l. Any graph of degree not exceeding 6 has thickness 
not exceeding 2; that is, the bound of Corollary 6 is attained. 

Conjecture 2. 
not exceeding roof{(D + 2)/4}; 
attained. 

Any graph of degree not exceeding D has thiclmess 
that is, the bounds of Theorems 11 and 12 are 

Of great practical interest is the question of designing efficient algorithms 
to create planar decompositions of graphs, of minimal or,-failing this, near-minimal 
thickness. (See Booth and Lueker (1976), Even and Tarjan (1976), Hopcroft and Tarjan 
(1974), Lempel, Even, and Cederbaum (1967), and the comprehensive review in Even 
(1979).] It appears that some of the linear-time techniques developed for 
planarity-testing could be effectively adapted to create the required algorithm. 

Beyond this, there arises the knotty problem of generalizing Kuratowski's 
theorem to multi-planar graphs. Some progress has been made here, but not to a 
publishable point. 
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