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ABSTRACT 

Pipelining is a widely used technique for implementing architectures which have inher­
ent temporal parallelism when there is an operational requirement for high throughput. 
Many variations on the basic theme have been proposed, with varying degrees of success. 
The aims of this paper are twofold. The first is to present a critical review of conventional 
pipelined architectures, and put some well known problems in sharp relief. It is argued 
that conventional pipelined architectures have underlying limitations which can only be 
dealt with by adopting a different view of pipelining. These limitations are explained in 
terms of discontinuities in the fiow of instructions and data, and representative machines 
are examined in support of this argument. The second aim is to introduce an alterna­
tive theory of pipelining, which we call Context Flow, and show how it can be used to 
construct efficient parallel systems. 

Keywords : computer architecture, pipelining, multiprocessing, micromultiprogram­
ming, context How. 
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1 Introduction: A Review of Pipelining Principles 

Pipelining generally refers to the exploitation of temporal parallelism as a means of achieving high 
performance. In its simplest form, it is the decomposition of a function into sub-functions, coupled 
with the provision of segmented hardware to process all sub-functions in parallel. A typical exam­
ple, instruction pipelining, is the processing of instructions in which the typical task constituents 
are the phases of instruction execution: Fetch Instruction, Decode, Generate Operand Addresses, 
Fetch Operands, Execute and Store Result. Similarly, in arithmetic pipelining, an arithmetic op­
eration such as floating point addition can be subdivided into the following subtasks: Subtract 
Exponents, Align Mantissae, Add Mantissae and Normalise Result. The corresponding pipelines 
are illustrated in Figure 1. Vector pipelines are an important class of pipelines designed to process 
vector instructions by attempting to stream the elements of a vector through pipelined arithmetic 
units. 

Instruction 
Generate Operand 
Addresses 

Figure 1: Typical Pipeline Structures 

The performance gained through the use of pipelining may be determined by considering the 
processing of N tasks in a pipeline of n stages with a beat time of tv. The total time required is 
given by: 

{1) 

The first term in this expression is the start-up time, that is, the time required for the first set of data 
to propagate through the pipeline. The second term is the time required to stream the remaining 
N- 1 sets of data through the pipeline. 

This can be compared with the time required to process the same data using non-pipelined logic 
(Tnp) by assuming the same end-to-end latency in both cases. Hence, Tnp = n N tp, and we can say 
that: 

T. -T. (n+N-1) 
P- np nN {2) 

the speedup over the non-pipelined operation is then 

nN 
(3) 

(n+N -1) 
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and 
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--n 
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( 4) 

As the speedup tends to n, for large N, the more stages there are in a pipeline, the better its 
peak performance will be, provided the end~to-end latency of the computation remains constant. 
In practice technology limits how far the beat time can be reduced, and other factors also con­
strain the number of stages that can be employed usefully within a range of possible beat times 
[Kunkel and Smith, 1986[. 

The equations above represent a simplification (for the purposes of demonstrating the general 
benefits of pipelining in a simple form); in practice Tv is largely determined by three factors: the 
time to get the first set of data to the first stage of the pipeline (this includes address generation 
time, store access time, etc.), the end-to-end latency, and the time to propagate the remaining data 
sets through the pipeline. Thus: 

(5) 

Where ta is the memory access time and the parameters a, j3 and J vary according to the nature of 
the pipeline and the characteristics of the application. 

Pipelines may be classified in a number of ways depending on their temporal and logical control 
characteristics. For example, the transfer of data between pipeline stages may be synchronous or 
asynchronous. Pipeline functionality may be fixed, or it may be either statically or dynamically 
reconfigurable. 

In any pipeline, all actions should be naturally sequential, all stages should take the same time 
to execute and there should be a continuous fiow of information between stages. This means that 
input should be available to a stage when it is required and output should be taken from a stage 
as soon as it is produced. The computation performed at each pipeline stage should be depen­
dent only upon the information passed to it by the proceeding stage. The equations of through­
put given above assume that these conditions are satisfied and whilst these conditions are nor· 
mally satisfied within arithmetic pipelines, instruction pipelines frequently suffer from their inabil­
ity to meet them. More thorough discussions of the fundamentals of pipelining may be found in 
[Hwang and Briggs, 1984,Ibbett, 1982,Rammamoorthy and Li, 1977]. 

1.1 Aims and Outline of the paper 

The aims of this paper are twofold. The first is to present a critical review of what has been 
accomplished in the design of pipelined computers, to put some well known problems of pipelining 
in sharp relief, and to argue that conventional implementations of pipelined architectures have 
underlying limitations that can only be dealt with by the adoption of a different view of pipelining. 
We discuss these problems within a uniform framework and examine representative machines in 
detaiL The second is to present a design alternative, Context Flow, and discuss the extension of this 
to larger systems of communicating processors. 

In section 2 the limitations of conventional pipelined machine design are discussed in the light of 
the inherent discontinuities in the fiow of instructions and data and their adverse effects on the perfor· 
mance and complexity of hardware. In the third section the background to micro· multiprogramming 
is discussed, together with its suitability as an alternative implementation technique. A more gen· 
eral implementation technique, called Context Flow, which regards computation as a set of logical 
transformations on process contexts, is then presented and the design of a simple parallel processing 
element is outlined. This concept is extended in section 4, which describes how an arbitrary number 
of these processing elements could be connected together using a multistage Context Flow network. 
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Section five summarises the main topics of the paper, and outlines the current state of the authors' 
research in this area. 
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2 Limitations of Conventional Pipeline Designs 

Although the perfect instruction pipeline will achieve a throughput of one instruction per pipeline 
beat, in practice this has proved difficult to achieve due to the dependencies which exist between 
instructions and data under a sequential model of computation. Previous attempts to solve this prob­
lem have produced complex hardware structures that fail to provide an effective cost/performance 
benefit. The first order of business, therefore, is to examine these issues and to appreciate the fact 
that a different view of pipelining is necessary. 

2.1 Discontinuities in the Flow of Instructions 

Data and instruction access times are normally much longer than the pipeline beat time. If the 
pipeline is halted when these accesses occur then its thoughput will be significantly reduced. Two 
partial solutions exist; 

1. Prefetch data and instructions, and hence ensure that access times will fall within the pipeline 
beat time. 

2. Allow "out of sequence" processing of instructions following a high-latency operation. 

The processing of "out of sequence" instructions may seem to be a sensible solution; however, it 
requires complex control mechanisms to enforce the inherent data dependence constraints. The 
inter~dependence of textually close instructions also limits amount of "out of sequence" processing 
to relatively small numbers of instructions. 

The prefetching of instructions relies upon being able to predict the future sequence of instruc­
tions, before they are issued and before it is known that they will be issued. Conditional control 
transfers create difficulties here, because of the unavailability of the decision variable at the moment 
when prediction occurs. Even with special prediction hardware there is a finite probability that an 
incorrect prediction will be made. When the false prediction is noticed, a number of cycles later, 
the start-up time of the pipeline will create gap in the flow of instructions with a corresponding 
degradation in performance. 

The extent to which control transfer instructions are detrimental depends on several factors, 
the most important being the position of the Control Point, the length of the pipeline, and the 
extent to which techniques for minimizing these problems are effective. The Control Point is the 
point at which the Program Counter is altered and it can be regarded as the point at which branch 
instructions are executed. 

The effect of control transfers on pipeline performance can be approximated by assuming that 
a. proportion m { 0 ~ m ~ 1} of all instructions a.re control transfers. Then, assuming that these 
instructions occur in sequence: 

T; = (mN + 1)ta + n(mN + 1)tp + [(1- m)N -l]t. (6) 

The main objective is therefore to mask out the effects of the terms in m so that T; approaches T p· 

This is the rationale behind the techniques described in the remainder of this section. 

2.1.1 The Pipeline Length 

According to Equation 4 the length of the pipeline determines the maximum throughput. However, 
a long pipeline also exhibits a long start-up time, resulting in a large number of instructions being 
discarded and a longer pipeline-refilling time when the flow of instructions becomes disrupted. 

It is precisely for this reason that the Reduced Instruction Set Computers such as the 
Berkley RISC [Sequin, 1983], Stanford MIPS [Hennessy, 1984], and the IBM 801 [Radin, 1983] 
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have opted for fairly short and simple pipelines. Similar reasoning underlies the design of MU6-
G [Edwards et al, 1980[, a successor to MUS. Nonetheless, performance degradations caused by 
control transfers have failed to disappear completely even in these machines. 

2.1.2 Position of the Control Point 

The Control Point is the stage in the pipeline containing the instruction addressed by the Program 
Counter. As each instruction passes the Control Point the Program Counter is updated, and the 
instruction is considered to have been executed. No irrecoverable action must be taken during partial 
execution of instructions before the Control Point. The Control Point is also the stage at which 
control transfers are executed, and since control transfers are normally followed down the pipeline 
by incorrect sequences of instructions, which must be discarded, the delay incurred while waiting for 
new instructions depends upon the distance between the store and the Control Point. This suggests 
placing the Control Point early in the pipeline. 

However, conditional control transfers depend on a value or condition evaluated in an arithmetic 
unit, normally at the end of the pipeline, and the delay incurred while waiting for the condition to 
be evaluated depends upon the distance between the Control Point and the arithmetic unit. This 
suggests placing the Control Point late in the pipeline. In fact, for conditional control transfers that 
branch, the total delay depends not on the position of the Control Point, but on the delays inherent 
in the number of stages between the store and the Control Point plus the number of stages between 
the Control Point and the arithmetic unit, ie. on the total pipeline length. Therefore techniques to 
minimise both these delays must be incorporated into a high-performance pipeline. A more detailed 
discussion of this issue may be found in [Ibbett, 1982]. 

2.1.3 Conventional Techniques used to Limit the Effect of Branches 

Various means have been employed to limit the effects of Branch instructions on performance. These 
can broadly be divided into two categories: those implemented in software and those implemented in 
hardware. The former generally involve the use of optimising compilers to generate more congenial 
code than would otherwise be dictated by the normal Jlow of events and are typified by delayed 
branching [Sequin, 1983] and other similar techniques [Goodman, 1985]; small systems have tended 
to rely solely on such techniques. Conversely, the larger machines have typically employed hardware 
mechanisms to minimize the gaps created, either by trapping loops or by attempting to predict 
branch destinations. The following subsections examine these techniques in some detail. 

Hardware Techniques To Limit the Effect of Branches 

The problems involved in supplying a constant stream of instructions from store to an instruction 
pipeline are ameliorated to a large extent by the fact that most instructions are obeyed sequentially 
and that the main store word size is normally such that one word fetched from main store can con· 
tain several instructions. Furthermore, with an interleaved store, successive accesses for sequential 
instructions reference each stack in turn and are not held up by cycle time effects. Store requests 
can therefore be made in advance of the corresponding instruction being required and the replies 
buffered until they are needed for execution. This pre-fetching technique is used in almost all high 
performance pipelined processors. A significant proportion of instructions result in the transfer of 
control, however, and each such transfer requires a request to be made to the store for a new se­
quence of instructions. So, although the accessing rate for instructions can normally be matched 
satisfactorily to the processing rate, the access time for the first instruction of a new sequence can 
result in a long delay to the processor. Techniques for overcoming this problem rely on the fact 
that the cause of many control transfers is a branch back from the end to the start of a loop of 
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Figure 2: The CDC 6600 Instruction Stack 

instructions, and loop catching buffers are incorporated into a number of processors. One of the 
earliest examples of such a system was that used in the CDC 6600 [Thornton, 1970]. 

The CDC 6600 Instruction Stack 

In the CDC 6600 instructions are fetched from store and placed in an Instruction Stack before 
being decoded and issued by the Scoreboard (control unit) to the appropriate function unit. The 
Instruction Stack itself consists of eight 60-bit registers (I0-17 in Figure 2) which operate as a stack 
and which can contain instruction loops. Programs are initiated in the 6600 by an Exchange Jump 
in which the contents of all addressable registers are interchanged with the contents of a designated 
store area. Following such an Exchange Jump the new contents of the program address register are 
used to access the first instruction word. This word is received from store into an Input Register 
and then loaded into the bottom register of the Instruction Stack. 

Instruction words are made up of four 15-bit parcels and as the first instruction word enters 
the bottom register of the stack (!0), the first two parcels within the word (to allow for 30-bit 
instructions) are transferred into a series of instruction registers within the Scoreboard. As further 
instructions are fetched the old instructions ripple upwards through the stack. 

Information about the contents of the stack is contained in two registers, D and L. The D( epth) 
register measures the number of valid instruction words in the stack, and L( ocation) register specifies 
the location in the stack of the instruction word currently in use. During execution of a loop held 
entirely in the stack, the instructions remain in fixed locations and the program address register can 
point to any one of the stack registers within a distance D from the bottom. D is re-set to zero 
whenever a branch out of the stack is taken, and is incremented by one for every new instruction 
word brought in. When the stack is full, D remains equal to seven~ 

When a conditional branch is decoded a test for jump within stack is made. This involves 
subtracting the current program address from the branch address. If the absolute value of the result 
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is less than seven words, and if the values in D and L indicate that the branch is to a location within 
the stack, no further store accesses are made for instruction words until instruction parcels are again 
taken from IO. Thus a branch may jump forwards or backwards within the stack and loops may be 
held in the stack in various forms. 

A very similar Instruction Stack was used in the STAR-100 computer, CDC's first commercially 
produced vector processor. The STAR-100 had a much longer instruction format than the 6600 
so that its Instruction Stack was larger, being made up of sixteen 128-bit registers, but it used 
essentially the same mechanisms. Both these systems are relatively simple and make no attempt to 
deal with the delays caused by conditional control transfers. As we saw earlier, the delays incurred 
by conditional control transfers which branch depend on the number of stages both before and after 
the Control Point. However, if correct instruction sequences can be supplied to the pipeline behind 
control transfers, then the delay depends only on the number of stages beyond the Control Point. 
Furthermore, if recoverable instructions can be sent out beyond the Control Point, then in some 
cases the delays incurred beyond the Control Point can also be overcome. The instruction buffering 
system in the IBM System/360 Model 195 attempted to do this. 

The ffiM System/360 Model 195 Instruction Processor 

The IBM System/360 Model195 [Murphy and Wade, 1970J central processor consists of an Instruc­
tion Procesor and Fixed and Floating-point Execution Units. The Instruction Processor is concerned 
with fetching and buffering instructions from store, fetching the operands which those instructions 
specify, issuing instructions to the appropriate execution unit, handling interrupts, and executing 
all branching (control transfer), status switching and input/output instructions. 

Instructions fetched from store are buffered in an Instruction Stack (Figure 3) made up of eight 
64-bit registers. The instruction fetching mechanism is controlled by three registers, the Instruction 
Register (IR) which addresses the instruction currently being decoded, the Upper Bound Register 
(UB) which points to the most recent word brought into the stack, and the Lower Bound Register 
(LB) which points to the earliest word in the stack. During normal operation the stack contains 
the current instruction word, some words ahead of the current instruction and a copy of some 
instructions which have already been issued. 

Pre-fetching of instructions is controlled by the UB register. When instruction fetching is initiated 
following an interrupt, for example, the Instruction Stack is declared empty and the store address of 
the first instruction word is loaded into UB and LB. The instruction fetching mechanism associated 
with UB then accesses this word and loads it into the location in the Instruction Stack addressed 
by the three least significant word address bits in UB. Initially this location is also addressed by 
IR, which selects each instruction in sequence for decoding and processing. After an instruction 
has been decoded and passed to the next stage in the processor pipeline, IR is incremented by the 
number of half-words in that instruction and the next instruction selected. 

Once the first instruction access has been sent to store, the instruction fetching mechanism 
increments UB and continues to make sequential store accesses until prevented from doing so either 
because the address in UB is seven words higher than that in IR (and any further accesses would 
cause instructions not yet decoded to be overwritten), or because the Instruction Processor has 
detected a condition giving rise to a change in the instruction sequence (a branch instruction or an 
interrupt, for example). 

During normal operation the instruction fetching mechanism continually attempts to increment 
UB and fetch instruction words from store, while the instruction decoding mechanism continually 
increments IR as instructions are decoded and passed along the processor pipeline. Once IR has 
been incremented beyond the address in LB, instructions in the first word fetched into the stack 
can be overwritten with new information. LB and UB are then incremented together and at each 
instruction access the oldest word in the stack is replaced by the latest word fetched from store. 
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Use of this pre-fetching mechanism allows a continuous sequence of instructions to be supplied 
to the processor at a rate approaching one per machine clock cycle, and thus roughly matching the 
instruction execution rate. When a new sequence of instructions is required as a result of the branch 
being taken in a control transfer instruction, however, the start-up delay is of the order of six clock 
cycles, and in the absence of some additional technique the average performance of the processor 
would be seriously degraded. Conditional branches cause even further problems, of course, since 
the branch decision depends on the outcome of a previously issued, but not necessarily completed 
arithmetic instruction, and an additional delay may be incurred in awaiting this outcome. In the 
Model 195 two techniques are used to ameliorate the problems caused by branches, one involving a 
Conditional Mode of operation, and the other a Loop Mode. 

Conditional Mode 

Conditional branch instructions interrogate a 2-bit Condition Code at their point of execution in 
order to determine whether or not the branch is to be taken. The Condition Code is set by a variety 
of instructions, but only the last of these issued before a conditional branch must be allowed to affect 
its outcome. This is accomplished by tagging each instruction which will set the Condition Code as 
it leaves the Instruction Unit. At the same time a signal is forwarded through the pipeline to remove 
the tags from any previously issued but uncompleted instructions. Only a tagged instruction may 
set the Condition Code, at which point its tag is removed, and a conditional branch instruction can 
only execute when there are no outstanding tags in the processor. 

The Condition Code will normally be invalid when a conditional branch is decoded, and so the 
hardware always assumes this to be the case and establishes Conditional Mode. In Conditional Mode 
further sequential instruction accesses are inhibited, but rather than hold up further activity entirely, 
processing of the remaining instructions in the Instruction Stack beyond the branch proceeds as far 
as possible, with the instructions being marked as conditional. When conditional instructions are 
decoded, their operand fetches are initiated, and they are forwarded beyond the Control Point to 
the relevant execution units in the normal way. The conditional tag inhibits the execution units 
from actually completing them, however, and once the first such instruction reaches the point of 
execution, further processing is held up until the Condition Code is set and the branching action 
determined. If the branch is not taken, the conditional tags are re-set and the pipeline re-started. 

If the branch is taken, the conditional instructions must be abandoned and a fresh start made with 
a new sequence. The delay incurred in refilling the pipeline from the decoder onwards is unavoidable, 
but the delay in accessing the first instruction at the target address of the new sequence is minimised 
in the Model 195 because the hardware assumes at the start of Conditional Mode that either outcome 
is equally likely and fetches the first two instruction words at the branch target address immediately. 
These two words are loaded into the two Temporary Buffers shown in figure 3, in order that the 
Instruction Stack remain unaffected if the branch is not taken. If the branch is taken, the access 
time for the target instructions will have been overlapped with the wait for the Condition Code. 
In the case of an unconditional branch to an instruction not in the Instruction Stack, there is, of 
course, no need to wait for the Condition Code to become valid. As in the conditional case, the 
target instruction sequence is requested immediately, but unless the execution unit pipelines are also 
held up (as a result of divide operations, for example) the six clock start-up delay inevitably causes 
a gap to occur in the instruction processing sequence. 

Loop Mode 

Without the use of branch target instruction pre-fetching in Conditional Mode, the time lost when 
the branch is taken would be roughly equal to the sum of the time spent waiting for the Condition 
Code to be set and the store access time, i.e. equivalent to the full length of the pipeline. With pre-
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fetching the time lost becomes equal to only the greater of these two, but even so, where the branch 
is closing a short loop of instructions, this loss can severely limit overall processor perlormance. 
Thus for short loops a different philosophy is adopted whereby the entire loop is contained within 
the Instruction Stack and store accesses are avoided altogether until the program exits from the loop. 
Clearly, the longer the loop, the smaller the proportion of time lost as a result of the branch, and 
the choice of eight words as the capacity of the stack represented a compromise between hardware 
cost and performance in Loop Mode. 

Loop Mode is entered whenever a branch backwards is taken to a target address within eight 
words of the current instruction. The Instruction Stack is immediately re-initialised to contain the 
appropriate eight words, after which instruction fetching ceases and the address path to store is 
fully available for operand fetching throughout execution of the loop. Loop Mode is controlled by 
two additional registers, one containing the loop target address (SLT) and the other the value of IR 
corresponding to the loop closing instruction (SLCIR). Once in Loop Mode the address of any branch 
instruction being decoded is compared with that in SLCIR, and if it is the same the branch is made 
immediately to the target address held in the other. Thus the asumption built into Conditional 
Mode is reversed, since it is assumed that the branch will be taken, and instructions are therefore 
decoded from the target path rather than the straight through path. Furthermore, no fetches are 
made to the Temporary Buffers. Loop Mode is turned off when an exit is taken from the loop. 

The main drawback of both the IBM System/360 Model195 and the CDC 6600 instruction buffers 
is that where the total number of instructions being obeyed in a loop will fit into the stack, but the 
code is actually made up of a number of non-contiguous segments (as in figure 4, for example), the 
loop may not be caught in the stack. With machine code programming this situation can normally 
be avoided, but it is a common occurrence in compiler generated code and increasing emphasis on 
high-level language programming caused processor designers to seek alternative solutions. The CDC 
7600 [CDC, 1977Jand CYBER 205 [CDC, 1981], for example (successors, respectively, to the 6600 
and STAR-100 [Hintz and Tate, 1972]), both use associatively addressed buffers, with the CYBER 
205 Instruction Stack again being correspondingly larger than that in the 7600. 

The CDC 7600 Instruction Stack 

The CDC 7600 was designed to be machine code upward compatible with the 6600, but to provide 
a substantial increase in performance. The central processor is very similar to that of the 6600; it 
contains nine parallel function units, a scratch pad of eight X registers, eight A registers and eight 
B registers, and an Instruction Stack. The 7600 Instruction Word Stack is made up of twelve 60-bit 
registers, however, compared with the eight used in the 6600, and each register also has its own 
18-bit associative address register in an Instruction Address Stack (figure 5). 

The Instruction Stack is filled two words ahead of the instruction currently being executed, thus 
giving a greater degree of pre-fetching than in the 6600. Furthermore, instructions are obeyed from 
a Current Instruction Word (CIW) register, rather than from the bottom stack register, and a 
complete 60-bit word is transferred from the Instruction Stack into this register whenever the word 
address changes in the program address counter. This transfer can be made from any of the twelve 
registers in the Instruction Word Stack, allowing a considerable degree of flexibility in pre-fetching 
and loop catching. Whenever a new word is required in the CIW register, the address in the program 
address counter is compared with the entries in the Instruction Address Stack, and if a coincidence 
occurs for any of these entries, the content of the corresponding register in the Instruction Word 
Stack is transferred into the CIW register. 

When obeying sequential code the required word will normally be in one of the bottom two 
registers. When a branch instruction is executed and the branch is taken, the required word may 
already be in one of the top ten registers, obviating the need for a store access, and giving improved 
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performance. H the required word is not in the stack, the first two words at the target address 
are immediately requested from store and instruction execution continues when the first of these is 
received. Whenever an instruction word is received from store all the entries in the Instruction Word 
Stack and the Instruction Address Stack are simultaneously moved up one position, with the new 
address and instruction word being entered at the bottom of the stack and the oldest entry being 
lost. Entries in the stack are only invalidated by the execution of a subroutine call or Exchange 
Jump, and not by normal branch instructions, so that a program may branch back and forth between 
short sequences of non-contiguous code held in the stack. 

Although this stack is larger than that of the 6600, it is still relatively small, and considerable 
effort is frequently required to reduce the amount of code in program loops in order that they may 
fit into it. A different scheme from those previously considered is required if loops of unrestricted 
size are to be accommodated. One such scheme involves the use of a Branch Target Buffer, first 
introduced in the MUS computer. 

The MUS Instruction Buffer Unit 

In the MUS computer instructions are pre-fetched from a four-way interleaved Local Store and 
buffered in an Instruction Buffer Unit. This Instruction Buffer Unit (figure 6) contains three 128-
bit buffer registers through which instructions flow on their way to the Primary Operand Pipeline 
(PROP). The necessary store requests are made by the Store Request System, which issues store 
addresses formed by a counter at a rate matched to the maximum rate at which instructions can be 
taken from the buffers by PROP. 

This system operates satisfactorily until a branch occurs (as a result of either an unconditional 
control transfer instruction, or a. conditional control transfer instruction for which the condition is 
met). Then all the pre-fetched instructions have to be abandoned, and the branch target instruction 
cannot be executed until the store has been accessed, using the new control address, and the new 
instruction stream has passed through both the buffers and the PROP pipeline. As a result the 
total time between the execution of the control transfer and the first instruction of a new sequence 
is 13SO ns. 

In order to reduce the number of occasions on which this delay is incurred, MU5 incorporates a 
Jump Trace (Branch Target Buffer) which attempts to predict the outcome of an impending control 
transfer. This is effective because a significant proportion of control transfers occur at the end of 
program loops, and under these circumstances the branches are normally taken. By predicting the 
outcome of a control transfer at pre-fetch time, rather than trying to contain loops in buffers, loop 
size is virtually unrestricted. (There would be a problem with very small loops, were it not for the 
fact that they can be caught in the very limited amount of assembly buffering in the IBU.) 

The Jump Trace is implemented using an eight-line associatively addressed store. Whenever a 
new instruction address is generated by the pre-fetching mechanism within the IBU it is presented 
to the associative fump-from address store before being sent to store. If an equivalence is found, this 
address is replaced by the corresponding jump-to address, so that pre-fetching of the new sequence 
takes place instead. 

When the control transfer instruction which gave equivalence in the Jump Trace is sent to PROP, 
it is accompanied by a bit indicating that the instructions following it are out of sequence. This bit 
is used in PROP to determine the action after execution of the control transfer. If the following 
instructions have been correctly predicted, execution of instructions continues uninterrupted. If 
the instructions are not out of sequence, but should have been, a store request is made for the 
instructions at the jump-to address, and at the same time a line in the Jump Trace is loaded with 
the jump-from and jump-to addresses. (The line used in the Jump Trace is selected according to 
a cyclic replacement algorithm and as each line is overwritten its use digit is set. The use digits 
are normally only re-set, and the Trace thereby cleared, at a process change.) When the jump·from 
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Instruction Normal Branch Delayed Branch Optimized Delayed 
Address Branch 

100 LOAD X, A LOAD X, A LOAD X, A 

101 ADD 1, A ADD 1, A JUMP 105 

102 JUMP 105 JUMP 106 ADD 1, A 
103 ADO A,B NO-OP ADO A, B 
104 SUB C,B ADO A,B SUB C,B 

105 STORE A,Z SUB c. B STORE A,Z 
106 STORE A,Z 

Figure 7: The Delayed Branch Technique 

address is subsequently generated by the pre-fetching mechanism within the IBU, the instructions 
at the jump-to address are automatically pre-fetched. 

Measurements made with the MU5 hardware performance monitor indicated that without the 
use of the Jump Trace, around 20% of control transfers were followed through the pipeline by the 
correct sequence of instructions during program execution. Using the Jump Trace, this figure rose 
to around 65% [Holgate and Ibbett, 1980J. 

The Branch Target Buffer technique has been evaluated consistently as the most effective branch 
prediction strategy [Lee and Smith, 1984J, [McFarling and Hennessy, 1986J; one observes that even 
in RISC machines, where the use of software techniques has been prevalent, the use of Branch 
Target Buffers has not been completely ruled out [Patterson, 1983J. It has become the preferred 
prediction strategy in more recent high performance machines such as the IBM 3090 [Tucker, 1986J 
and Fujitsu's VP Series machines [Miura, 1986J. 

Software Techniques to Limit the Effects of Branches 

Software techniques are increasingly being used as a means to deal with the branching problem in 
small machines where hardware is a particularly scarce resource; this is typical of single chip VLSI 
pipelines in which only so much can fit on the chip. The most popular by far is the delayed branch in 
which code is reorganized so that a control transfer takes effect in the second instruction slot after 
the one in which it is defined. This is illustrated in the example of Figure7. Essentially the code 
is rearranged so that the next instruction is always prefetched during the execution of the current 
one. This allows the hardware to execute one instruction in every beat although it may require 
the insertion of No-Operation (NOP) instructions in order to achieve this. Optimization by the 
compiler can be quite successful in removing a large proportion of these (Sequin, 1983J although this 
is only likely to be true for unconditional control transfers; conditional control transfers are generally 
difficult to handle and point to the weakness of such techniques. Thus, in R!SC I, the designers 
cite the proportion of removed NOPs as 90% for unconditional branches and 25% for conditional 
branches; for the IBM 801 [Radin, 1983J the figures are much lower, with only 60% removal for 
unconditional branches. 
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Another software technique that can be regarded as an extension of the delayed branch is the 
branch-preparation technique used in PIPE [Goodman, 1985]. The main difference between this and 
the delayed branching of the Berkley RISC is that whereas the latter always requires a fixed number 
of instructions to be executed before the branch takes effect, and hence in some cases will require 
the use of NOP instructions, in PIPE the number of instructions is variable. Thus the Prepare To 
Branch instruction used in PIPE, in addition to specifying a branch condition, also specifies the 
number of instructions which must be executed irrespective of the branch condition. 

The techniques described above are not new; they are essentially derived from similar techniques 
used in microprogramming and in the larger pipelined machines where they have been used to 
supplement hardware techniques. Their weakness is that not only do they require considerable 
ingenuity on the part of the compiler writer but also that in spite of this they are not always 
applicable; it is sometimes the case that compiler~generated code simply cannot be manipulated 
in the manner indicated by the above example. Indeed the designers of the Berkley RISCs have 
not found the use of hardware techniques, in the form of an instruction cache with some branch 
prediction, to be unreasonable [Patterson, 1983]. 

2.1.4 Co=entary 

Among the points that should be drawn from the above discussion is the observation that trying to 
deal with branches in the context of single instruction streams is unlikely to be entirely successful. A 
much better approach is to accept that such discontinuities are inevitable and to look for some means 
of masking them and hence avoiding the associated loss in performance. One such technique consists 
of concurrently maintaining several active instruction streams, switching to another stream whenever 
a control transfer is decoded in the current one, and returning to processing the (temporarily) 
abandoned stream only when it can be guaranteed that executable instructions are available; such 
an approach, as well as a practical refinement of the general idea, is described in sections 3 and 4. 

2.2 Discontinuities in the Flow of Data 

In the same way that a control transfer introduces increased entropy, or disordered arrangement 
of information, the necessity to fetch operands from outside the pipeline can also be regarded as a 
manifestation of high entropy, and various mechanisms have been developed to reduce its effects. 
These mechanisms may be explicit or implicit, but all depend on the locality of data phenomenon: 
at any one time during the execution of a program the majority of accesses which it makes are to a. 
relatively small and slowly changing subset of its total data-set. 

Explicit mechanisms usually involve the use of programmable registers in which the programmer 
or compiler may keep frequently used variables, while implicit mechanism involve the use of block 
organised cache stores such as that first introduced in the IBM System/360 Model 85 or selective 
word organised buffer stores such as the MUS Name Store. Discontinuities in the flow of data can 
also be caused by data dependencies, however, and the problems which these can create can rapidly 
lead to complex hardware structures or poor performance. 

The CDC 6600 and its successors (the CDC 7600 and the Cray-1) are interesting examples of 
machines with explicit mechanisms. All arithmetic and logical operations use source and desti­
nation operands held in computational registers, while transfers between these registers and store 
are effected by instructions which load corresponding address registers. Thus, by judicial coding, 
operands can be brought from store to the computational registers ahead of their being required, 
and the inherent latency of the store accesses can be programmed out. Of course, to be effective for 
high-level languages, this requires a considerable degree of compiler optimisation. 
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In the System/360 Model 85 a ll program-generated addresses are real addresses referring to main 
(core) store locations, and the semiconductor cache store which is invisible to the programmer is used 
to hold the contents of those portions of main storage currently in use by the program. The cache 
mechanism operates by dividing both cache and main storage into logical sectors, each consisting of 
1024 contiguous bytes starting on 1 Kbyte boundaries. During operation, cache sectors are assigned 
to main storage sectors in current use, and a sector address register associated with each cache 
sector contains the 14- bit address of the main storage sector to which it is assigned (figure 8). Since 
the number of cache sectors (16 or 32} is smaller than the number of main storage sectors (512 
or 4096), most main storage sectors do not have a cache sector assigned to them. However, the 
localised nature of store accessing exhibited by most programs means that most processor accesses 
are handled by the cache (which operates a t the 80 ns processor rate in the Model 85) rather than 
by the (1.04 microsec cycle time) main store. 

Each sector within the cache is made up of 16 blocks of 64 bytes and each block is marked with a 
validity bit. Whenever a cache sector is re-assigned to a different main storage sector, all its validity 
bits are re-set, and the block containing the required store word in the new sector is accessed from 
main storage. The validity bit for this block is then set and the sector address register updated. 
Further blocks are accessed and their validity bits set as required. 

The sector address registers constitute an associative store. W henever an address is generated 
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which requires an operand to be fetched from store, the sector bits within the address are presented 
for association. H a match occurs a 4-bit tag is produced indicating the cache sector address, and 
this is used in conjunction with the block bits to select the appropriate validity bit for examination. 
If a match occurs in the sector field, and the validity bit is set, the corresponding data is read out in 
the next machine cycle. Throughput is maintained at one access per cycle by overlapping association 
and reading for successive instructions. 

If a match occurs in the sector field, but the validity bit is not set, the required block is read 
from main storage. Reading one 64-byte block involves one access to each of the four interleaved 
storage modules making up the main store, since each is 16 bytes wide. The delay experienced by 
the processor as a result of these main storage accesses is minimised by always accessing the storage 
module containing the required data first in the cycle of four, and by sending this data directly to 
the processor at the same time as loading it into the cache. 

H a match does not occur, then a cache sector must be re-assigned to the main storage sector 
containing the failing address. The Model 85 cache implements a least recently used algorithm by 
maintaining an activity list with an entry for each cache sector. Whenever a sector is referenced it is 
moved to the top of the list by having its entry in the activity list set to the maximum value, while 
all intervening entries are decremented by one. The sector with the lowest activity list value is the 
one chosen for re-assignment. 

Re-assignment does not involve copying back to main storage values in the cache updated by the 
action of write orders. Whenever such an order is executed, both the value in the cache and that 
in main storage are updated, a technique known as store·through. Furthermore, if the word being 
updated is not held in the cache, the cache is not affected at all, since no sector re-assignment or 
block fectching takes place under these circumstances. While the store-through technique has the 
advantage of not requiring any copying back of cache values at a sector re-assignment, it also has 
the disadvantage of limiting the execution rate of a sequence of write orders to that imposed by the 
main storage cycle time. 

The MU5 Name Store 

A quite different approach to high-speed buffering was taken in the design of the MU5 computer 
[Ibbett, 1982[, [Morris and lbbett, 1979[. An examination of the operands used in high level lan­
guages, and studies of programs run on Atlas (the predecessor to MU5 at the University of Manch­
ester), had indicated that over a large range of programs, 80% of all operand accesses were to named 
scalar variables, of which only a small number was in use at any one time. In a register machine 
these variables would be kept in the fast programmable registers in order to achieve high perfor­
mance. However, this sort of hardware feature causes considerable compiler complexity, complexity 
which the designers of MU5 were seeking to avoid. The alternative scheme adopted in MUS was 
to use a small associatively addressed buffer store containing only named scalar variables. MU5 
instructions contain information about the operand type and accesses to non-scalar variables such 
as data structure elements are made via descriptors, which are themselves named variables, eligible 
to be stored in the Name Store. Because of this scalar variables and data structure elements can be 
buffered separately. 

Addresses presented to the Name Store are all virtual addresses and the Name Store forms part 
of a one-level store with the Local Store of the processor. Simulation studies indicated that a hit-rate 
of around 99% would be obtained with 32 words of store, a number which it was technologically 
and economically feasible to construct and operate at a 50 ns rate. The address and value fields 
of the Name Store (Figure 9) form two adjacent stages of the Primary Operand Unit (PROP) 
pipeline. A virtual address generated in the previous two stages of the pipeline is copied into the 
Interrogate Register (IN), and concatenated with the contents of the Process Number register (PN), 
for presentation to the address field of the N arne Store. A full virtual address in MU5 consists of a 
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4-bit Process Number, a 14-bit Segment and 16 bits which identify a 32-bit word within a segment, 
Only 15 of the word address bits are presented for association (thus referring to 64-bit words), a 
32-bit operand being selected from within a 64-bit word in a later stage of the pipeline. 

If the presented virtual address gives a match in the associative store, and the corresponding 
Line Used digit (equivalent to the validity bit in an IBM cache store) is set to 1, then an equivalence 
has occurred, and on the next pipeline beat a digit is set in the PROP Line Register, PLR. The digit 
in PLR then selects a register in the Value Field, and the 64-bit word is read out and copied into 
the Value Field Register (VF) by the next beat. At the same time, a check is made to determine 
whether an equivalence actually occurred. If no digit is set in PLR, this indicates non~equivalence, 
and the Name Store is updated by transferring a new word into it and discarding an old one. 

When a Name Store entry is replaced the hardware must take into account the effect of store 
orders. To maintain the speed advantage of the Name Store, store orders only update the value of an 
operand in a Name Store, rather than operating on the store-through principle used in IBM cache 
stores. (more recent IBM machines, e.g. the 3090 !Tucker, 1986J, have abandoned the store-through 
principle). Thus the content of a word may have to be read out and copied back to the Local Store 
before it is overwritten. The choice of which line to replace is made on the basis of a simple cyclic 
replacement algorithm, which requires a minimum of additional hardware for its implementation. 
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Performance 

The performance of a buffer store may be characterized by two parameters: hit rate and effectiveness. 
The hit rate h is equal to the proportion of accesses which find their operand in the buffer store. If 
the access time to the buffer is tb and the access time to main store is t~, then the average access 
time ta is given by 

and the effectiveness e is given by 

Ia = htb + (1- h) t, 

t, 
e=-

Ia 

Simulation studies of the Model 85 cache carried out before it was built showed an average hit rate 
over 19 different programs of 0.986. With a main store access time of around 660 ns, this gave 
an effectiveness of 81%. There do not appear to have been any subsequent measurements on real 
Model 85 systems to confirm or deny these predictions, but certainly a different arrangement was 
introduced in the System/360 Model 195 [Murphy and Wade, 1970[ and carried through into the 
System/370 Models 165 and 168. In these machines the cache is organised as a large number of small 
blocks, and a more complex, set associative, addressing mechanism is used. Measurements made on 
the Model195 showed an average hit rate of 99.6% over a range of 17 job segments covering a wide 
variety of processing activities. 

Performance measurements of the MU5 Name Store performance were made for a set of 95 
programs containing both Fortran and Algol jobs ranging in complexity from simple student exercises 
to large scientific programs. For most programs it was found that around 80% of operand accesses 
were to named variables, that no more than 120 names were used in any one program, and that in 
all programs 95 per cent of name accesses were to fewer than 35 per cent of the names used. These 
figures confirmed the Atlas results which inspired the idea of using a Name Store, but the figures for 
hit-rates were not as good as had been anticipated. The hit rate measurements are complicated by 
the fact that a second N arne Store was sited near the floating-point arithmetic unit. The hardware 
attempted to keep operands being used as floating-point variables in this second Name Store, while 
keeping operands involved in address calculations in the first Name Store. Thus although 96.1% of 
name accesses found their operands in one or other N arne Store, only 86% of name accesses found 
their operands in the correct Name Store. 

2.3 Function Execution 

Having dealt with the problems of instruction and operand fetching, the next set of problems arise 
from function execution. It is convenient to consider an instruction pipeline as being that section of 
the processor which prepares functions and operands for execution in the function execution section. 
However, functions generally fall into two categories; computational functions and organisational 
functions. Computational functions, typified by floating-point operations, can be carried out in­
dependently of the instruction pipeline. Organisational functions, on the other hand, are typified 
by control transfers and addressing register manipulation functions which affect the pipeline itself. 
Thus, before considering the problems involved in achieving high floating-point performance, we 
examine problems internal to the instruction pipeline. 

2.3.1 Organisational Functions 

The effects of control transfers have already been dealt with in Section 2.1.3. Here we examine the 
problems associated with functions which operate on addressing registers and problems associated 
with multilength and multicycle instructions. 
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Addressing Register Problems 

Operations on addressing registers may occur explicitly, as a result of the execution of functions 
which operate on base address registers, or implicitly, as a result of stacking or unstacking operations. 
The MUS computer shows clear examples of both types. In both cases the registers concerned are 
located in the first stage of the Primary Operand Unit (PROP) pipeline (Figure 9). A function 
which operates on one of these registers must be completed before the next instruction in sequence 
attempts to make use of the register, but the instruction must itself proceed to the end of the PROP 
pipeline in order to pick up its operand. A hold-up is therefore required on the next instruction. 
This hold-up is could, in principle, be selective on the particular base register, but in practice in 
MU5 there is a general hold-up on all orders, because the name + base adder is also used to execute 
the function. Such orders therefore incur a delay equivalent to the length of the pipeline. 

One of the addressing registers in MUS is the Stack Front (SF) register, which may not only be 
operated on explicitly, but may also be implicitly incremented by a function which stacks an operand, 
or implicity decremented by an operand specification which unstacks an operand. These orders use 
the name + base adder to operate on SF, but unlike the explicit base register manipulation orders, 
do not need to traverse the PROP pipeline in order to obtain an operand. They can therefore alter 
SF on the fly. This updating of SF occurs before the order passes the Control Point, however, and 
so no irrevocable change to SF can be made. The problem could be solved by invoking a hold-up, 
as in the case of explicit operations, but this option was rejected by the designers on performance 
grounds. Some mechanism was therefore required to restore SF to its correct value should a control 
transfer occur before an order which implicitly altered it passed the Control Point. The technique 
used in MUS is to build extra registers into the pipeline to carry any new value of SF through to the 
Control Point, and to preserve the new value with the Program Counter when the latter is updated 
for the order. After a control transfer this preserved value is used to restore SF to its proper value. 

Multilength and Multicycle Instructions 

Multilength and multicycle instructions degrade performance by requiring more than a single pipeline 
beat (the clock period in a synchronous machine) to go throngh any pipeline segment. The two cat­
egories may be distinguished as follows: in the first, technological/ cost considerations have affected 
the design in such a fashion that it is not possible to transfer an instruction from one stage to the 
next within a single beat; the adverse effect on performance then arises from the fact that several 
beats are required to build the instruction at the succeeding stage and a gap inevitably appears 
within the pipeline. In the second, it may be possible that, due to the nature of the instruction 
being processed, a particular stage simply cannot complete its phase of the processing within a short 
beat time; once again, several beats are necessary to complete the instruction and a gap is inevitable 
in the instruction flow. 

It is important to consider both of these types of instructions since they appear to be just as 
crucial, it not more so, with the newer technologies such as VLSI. Discussions of these must also 
be related to the issue of order codes; the case of multilength instructions in effect states that one 
should strive for short instruction lengths while the case of multicycle instructions implies that there 
are operations that are, ideally, not suited for implementation as single instructions. 

MU5 again provides examples; the basic instruction parcel is 16 bits and the interface between 
the IBU and PROP was implemented for this width only. As a consequence, whenever 2, 3 or S parcel 
instructions are being processed there are instances where the first stage of PROP cannot complete 
its action in one beat. In these cases dummy orders are propagated forwards until a sufficient 
number of instruction parcels are available and, as would be expected, this is accompanied by a 
drop in performance. The obvious solution to this sort of problem is to increase, at added hardware 
costs, the width of the interface; this indeed was considered, but rejected by the designers of MU5, 
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who felt that the frequency of such instructions would not make it worthwhile. With hindsight this 
was probably the wrong decision; any solution that relies on there being a low frequency of long 
instructions is bound not to meet the goal of one completed instruction per clock and may suffer 
from poor performance when programming practices change. 

The other solution is to strive for an order code in which all instructions have the same, short, 
width. The implications are that register-register instructions are to be preferred, with 2-register 
instructions considered better than 3-register instructions, and that instructions that reference store 
should, ideally, be limited to one store reference per instruction. Thus a complex order code such as 
that of the IBM System/360, which was not designed with pipelining in mind, cannot be considered 
as being conducive to pipelining, as witnessed by some of the complexity in machines such as the 
Model195. 

The situation is somewhat less straightforward in considering multicycle operations. Clearly a 
pipeline is only a.s fast as its slowest stage and one should therefore strive for single cycle instructions, 
as far as possible. On the other hand, the need to reduce the gap between high-level languages 
and machine-level instructions points to the need for relatively complex instructions1 . Since some 
fundamental instructions (e.g. subroutine calling instructions) are intrinsically multicycle, what 
needs to be considered is not just the particular instructions that are to be included in the order 
code, but also the ease and effectiveness of simulating basic multicycle instructions within the chosen 
order code. 

2.3.2 Computational Functions 

The activities carried out in any instruction pipeline normally include fixed-point address arithmetic 
calculations, and the pipeline clock period is therefore of the same order as the time required for 
such an operation. Floating-point arithmetic operations take longer, however, so that in order to 
consume operands at the same rate as that at which the instruction pipeline can produce them, some 
means must be found to speed up these operations. Pipelining of the arithmetic unit is one answer 
to this problem, but one of the problems facing the designers of high-speed computer systems is the 
difficulty of achieving the fastest possible execution times for a particular technology in universal 
execution units. Circuitry designed to carry out both multiplication and addition, for example, will 
do neither as fast as two units each limited to one kind of operation. 

Thus in some systems separate function units are used for different types of arithmetic/logical 
operation, and these units are then operated in parallel. The CDC 6600 and the IBM System/360 
Model 91 were among the first computers to adopt this arrangement. The arithmetic units may 
themselves be pipelined, of course. (They were not in the CDC 6600, although pipelining was 
used subsequently in the CDC 7600 as a means of providing greater performance in an upwardly 
compatible system.) Pipelined or not, the time taken to complete different operations may be 
different, and this immediately leads to problems. Some instructions may require as inputs the results 
of previous instructions which have not yet completed, while others may produce outputs which will 
overwrite values required by instructions which have not yet started. Such dependencies between 
instructions are examples of the general problem of data dependencies in instruction pipelines. 

2.3.3 Data Dependencies among Computational Functions 

In processing instructions from a single stream, it is inevitable that data dependencies will occur 
between different instructions. Maintaining data consistency in the face of such dependencies results 
in performance degradations and/ or complexities in the hardware, most frequently both. Hardware 
complexity is moreover aggravated if it is possible to execute instructions out of their initiation 
order, as happens with parallel function units. 

1This point of view is argued at length by Myers in [Myers, 1982]. 
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Essentially three types of data dependencies (hazards) are possible: Read-after- Write in which 
an instruction needs data that is to be produced by an instruction that precedes it in the stream; 
Write-after-Read in which an instruction attempts to overwrite data that has yet to be consumed 
by an instruction that appears earlier in the stream; and Write-after- Write in which an instruction 
attempts to overwrite data that has yet to be overwritten by an earlier instruction. The occurrence 
of a Write-after- Write to the same variable normally implies, of course, that there has not been an 
intervening Read of that variable, so that the first Write is in fact unnecessary. Where a Wrz'te­
after- Wn'te could in principle occur in hardware, however, the designers have generally displayed 
less than complete faith in software writers and have ensured that the hardware appears to maintain 
proper sequentiallity. 

In any of these situations maintaining consistency clearly requires that the second instruction 
in question be prevented from completing before the first one. Solutions tend to fall into two cat­
egories: in machines which issue and execute instructions in strict order of initiation, issue of the 
second instruction is simply held up until the first instruction completes with a resulting degradation 
in perfonnance in most instances. In machines where instructions may be completed out of their 
initiation order it is possible to alleviate performance loss by continuing to issue independent instruc­
tions whilst constructing an internal (hardware) data flow graph for instructions with dependencies. 
The latter case typically reverts to the former, when the quantity of low-level parallelism reaches a 
hardware limit determined by physical space available to hold the internal data flow graph. In the 
remainder of this section we describe the solutions adopted in the CDC 6600, the IBM System/360 
Model 91 and MU5, discuss their weaknesses, and compare them. 

The CDC 6600 Scoreboard 

In the CDC 6600 instructions are taken in sequence from the Instruction Stack and issued by the 
Scoreboard to the appropriate execution unit (Figure 10). Each unit takes its input operands from 
among the 24 scratch-pad registers (eight 60-bit X (operand) registers, eight 18-bit A (address) 
registers, and eight 18-bit B (index) registers) and returns its result to one of these registers. The 
maximum rate of issue is one instruction per minor clock cycle {100 ns), while the units take 
typically 300 or 400 ns to complete their operations. In order to take advantage of the multiple 
function units, instructions may be executed out of issue order, and may be issued before obtaining 
their operands if a function unit is available. The Scoreboard is responsible for maintaining the 
dataflow graph necessary to ensure sequential consistency. Detection and resolution of hazards is 
performed via reservations which are placed on registers at the time of instruction issue. To permit 
out-of-sequence-execution, various flags and funct~·on desz·gnators are also used for each function, 
identified by a unique number. An example is illustrated in Figure 11. 

The F registers identify the sink and source registers, the Q registers identify the function units 
producing the two inputs, and the Read Flags indicate the availability of the inputs. Each register 
also has reservation bits identifying the function unit that has reserved it as a sink. Assuming that 
there is a function unit available, instruction issue is preceded by the setting of the F registers 
(from the instruction), the Q registers (from the reservation bits of the appropriate computational 
registers), and the reservation bits of the sink register. Once an instruction has been issued it may 
proceed to execute only if the Read Flags for its function unit are set and it may store its result only 
if its sink register is not reserved. On completion, the function unit releases the reservation it has on 
the sink register and broadcasts to other function units which in turn set their Read Flags if they 
had been waiting for the output of the former function unit; additional details on the Scoreboard 
operation may be found in [Thornton, 1970]. In effect, the Scoreboard issues instructions as fast as 
it can and constructs a data flow graph (with function units as nodes and registers as edges} for 
instructions with data dependencies. 

The Read~ after-Write in the 6600 occurs when an instruction requires the result of a previously 
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issued, but as yet uncompleted instruction, as input. In this case the function is issued but its 
Read is held up in the function unit until the Write completes and releases the reservation it has on 
the register in question. Because there are several function units, a number of instructions may be 
issued following the Write and hence the removal of the reservation may permit the register to be 
read from several function units. 

The Write~after-Read occurs when an instruction needs .to store its result in a register that is to 
be used as input by a previously issued, but as yet unstarted instruction. In the case of an unstarted 
instruction both instructions are issued but the Write is held up until the reservation placed on 
behalf of the Read has been removed. 

The Write-after-Write occurs when an instruction requires the use of the same result register as 
a previously issued but as yet uncompleted instruction. In such a case, the reservation placed on 
behalf of the first instruction is detected in time for the issuing of the second instruction to be held 
up. This is a more severe form of hold-up than that used for a Write-after-Read, but as the result 
of the first Write is clearly not used, it is an unlikely event, so the length of the delay is irrelevant. 

The ffiM 360/91 Co=on Data Bus and Reservation Stations 

Because all computational instructions in the 6600 involve register-register operations, all depen­
dencies occur between registers and function units, rather than memory locations. Hence the task of 
resolving these dependencies remains tractable. In the IBM System/360 Model 91, computational 
instructions can also be store-register, but because operands from store are temporarily buffered in 
a special set of registers, all instructions can, in fact, be regarded as two-address register-register, 
and again the problem of resolving dependencies remains tractable. The sink specifies both an input 
and output register while the source specifies an output register, and it therefore suffices for our 
purposes to consider only register-register operations. 

The organisation of the Model 91 Hoating-point unit [Tomsulo, 1967[ is shown in Figure 12. 
Instructions are prepared for this unit by the Instruction Unit pipeline and entered in sequence, at 
a maximum rate of one per clock cycle, into the Floating-point Operand Stack (FLOS). Instructions 
are taken from the FLOS in the same sequence, decoded, and routed to the appropriate execution 
unit. The Instruction Unit maps both storage-to-register and register~to-register instructions into a 
pseudo-register-to-register format, in which the equivalent of the Rl field always refers to one of the 
four Floating-point Registers (FLR), while R2 can be a Floating-point Register, a Floating-point 
Buffer (into which operands are received from store), or a Store Data Buffer (from which operands 
are written to store). In the first two cases R2 defines the source of an operand; in the last case it 
defines a sink. 

The most significant feature of this Hoating-point system is the Common Data Bus (CDB). The 
CDB is fed by all units which can alter a register, and itself feeds the Hoating-point registers, the 
store data buffers and all units which can have a register as an input operand. The latter connections 
allow data produced a.a the result of any operation to be forwarded directly to the next execution 
unit without first going through a Hoating-point register, thus reducing the effective pipeline length 
for Read-after- Write dependencies, as found, for example, in the scalar product loop. The running 
total in this loop would not actually appear in a Hoating-point register in the Model 91 until the 
last execution of the loop. 

The operation of the CDB is controlled by the use of tags. A tag is a 4-bit number generated 
by the CDB control logic to identify separately each of the eleven sources which can feed the 
CD B. Thus there are six Hoating-point buffers, three parallel reservation stations (containing input 
buffer registers) associated with the adder, and two parallel reservation stations associated with the 
multiplier/divider. Tag registers are associated with each of the four floating-point registers, with 
the source and sink inpUt registers of each of the five reservation stations, and with each of the three 
store data buffers. There is also a busy bit associated with each of the fioating-point registers. This 
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bit is set whenever the FLOS issues an instruction designating the corresponding register as a sink, 
and is re-set when a result is returned to the register. 

Whenever the FLOS decodes an instruction it checks the busy bit of each of the specified floating­
point registers. If the bit is zero, the content of the register is sent to the selected reservation station 
via, the Floating-point Register (FLR) Bus. On issuing the instruction the FLOS sets the busy 
bit of the designated sink register, and enters into its tag register the tag number of the selected 
execution unit. If the FLOS finds a busy bit set, however, it does not transmit the register contents 
to the selected reservation station, but instead transmits the current value of the corresponding tag 
register, and enters into that tag register the appropriate new tag number. Thus the tag register of a 
busy floating-point register identifies the last unit (in proper program sequence) which will produce 
a result destined for that register. 

Whenever a result appears on the CDB, the tag corresponding to its source is broadcast to all 
destinations. Each active reservation station (selected but awaiting a register operand) compares its 
sink and source tags with the CDB tag. If a match occurs (a sink is also a source in the System/360 
two-address instruction format), the reservation station takes the data from the CDB. In a similar 
manner, the CDB tag is compared with the content of the tag register associated with each busy 
floating-point register. All busy registers with tags matching that on the CDB are set to the value 
on the CDB and their busy bits are re-set. 

H a source register is awaiting the result of a previously issued, but as yet uncompleted instruction, 
or if a fl.oa.ting~point buffer register is awaiting an operand from store, the tag associated with that 
register is transmitted instead to the reservation station, which then waits for that tag to appear 
at its input. Thus it is the reservation stations which do the waiting for operands, rather than the 
execution circuitry, which is free to be engaged by whichever reservation station fills first. Execution 
of an instruction starts when a reservation station has received both operands. 

The sequencing of instructions in the IBM 360/91, essentially involves the construction of a 
dataflow graph from instructions with data dependencies, as in the CDC 6600. The detection and 
resolution of hazards is fairly straightforward with this arrangement. Issuing an instruction only 
requires that a reservation station be available for whichever execution unit is required. In the case 
of a Read~after-Write conflict, the second instruction will not execute since its reservation station will 
not receive a matching tag until the Write completes and broadcasts its result tag on the CD B. For a 
Write-after-Write, it is clear that the first Write will not alter the contents of the register in question 
since the tag on its result will not match the tag on the register (if the second Write has been 
issued); the result is, however, available, (via the CDB) to instructions (specifically, Reservation 
Stations) that depend on it. The register contents will therefore reflect the result of the second 
Write which has the matching tag. Similar reasoning shows that correct sequencing takes place for 
Write-after-Read. 

The use of the CDB and the associated tagging rnechanisffi has been shown to reduce the exe­
cution times of the inner loops of programs used to solve partial differential equations, for example, 
by about one-third. 

The MUS Name Store 

In MUS, write operations to scalar variables have direct effect only on the Name Store, with main 
store being updated only when a word in the Na.me Store is to be overwritten, thus all dependen­
cies must be resolved at the Name Store. A Read-after- Write dependency occurs in the following 
circumstances. When an order which writes to store the content of the B (index) register, for ex­
ample, arrives at the Name Store, the value in B will not be correct because other orders which 
can alter the value may not yet have been executed. In order not to cause an immediate hold-up, 
a copy of the Line Register is preserved (in a register designated BW), a B* OUTSTANDING digit 
is set, and the order proceeds to the B~unit. A Read~after~ Write dependency occurs if a subsequent 
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instruction attempts to read from the word addressed by BW, before the required value of B has 
been returned to the N arne Store. This occurs when the order is executed in the B-unit. The B 
value is sent to PROP, the PROP pipeline is held up and the value is written in to the line addressed 
by BW. The B~ OUTSTANDING digit is then reset and the pipeline is restarted. A Write-after­
Write dependency occurs if a second Write instruction to the line indicated by BW arrives at the 
Name Store stage while the B~ OUTSTANDING digit is set. Write-after-Read cannot occur since 
the Read instruction arrives at the name store (and hence reads the line to be overwritten by the 
Write) in advance of the Write; writing is therefore guaranteed to be safe. In the first two cases the 
following instructions simply cause a hold-up of the preceding pipeline stages; in MU5 there is in 
fact a slight overkill since any Write entering the pipeline while there is an outstanding Write will 
cause a pipeline hold. up; we will refer to this situation, where there is no direct conflict on one line, 
as a pseudo Write-after- Write. 

2.3.4 Commentary 

Complexity of the three mechanisms discussed above clearly place the MU5 approach as the simplest, 
the IBM 360/91 as the most complex, and the CDC 6600 as in between. Beyond this there are several 
other bases for comparison. 

• Code-Generation by Compilers 
From a compiler-writer's viewpoint, the MUS arrangement is clearly the best since the absence 
of addressable general purpose registers relieves one of the burden of having to manage these. 

• Order of instruction issuing 
In the MU5 instructions are issued only after they have obtained their operands and are 
executed in strict sequence; clearly with only two, essentially unrelated function units, there 
would little advantage in being able to execute instructions out.of·order. Instruction execution 
in the CDC 6600 on the other hand necessarily has to be out of order if full advantage is to 
be taken of the multiple function units. However, in the case of the IBM 360/91 it is doubtful 
that the ability to issue instructions out of order confers any worthwhile advantages with only 
two function units employed; the architecture, however, is easily extensible to accommodate 
more units. 

• Hazard Detection and Resolution 
In terms of how the three machines detect and resolve hazards the following can be observed. 
Write--After· Read does not occur in the MU5 since instructions are only issued after they have 
obtained there operands; it appears in the CDC 6600 and in the IBM 360/91 because these 
issue instructions prior to operand fetch.ing. For Read-after-Write, MU5 has a pipeline hold-up 
on the Write since operands must be read before instructions are issued whereas in the CDC 
6600 and IBM 360/91 the Read (in fact several Reads) may be issued prior to the completion 
of the Write; however, once again MU5 is not necessarily at a disadvantage since it does not 
have multiple function units to make effective use of such a capability; thus the complexity 
is of limited value in the IBM 360/91 but finds more justification in the CDC 6600. Write­
after-Write is handled in essentially the same manner in both MU5 and the CDC 6600; that 
is, the second Write is not issued and causes a pipeline hold-up. In the IBM 360/91 there is 
no hold-up and in fact any number of subsequent Writes may be issued as long as there are 
reservation stations available. 

While there is no doubt that tlie designers of all three machines attempted to achieve the best 
design possible at that time and for the particular machine and no doubt considered many alter­
natives and impro-vements, a useful point of comparison is to speculate on the ease with which the 
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various mechanism could be extended in redesigned machines and whether such extensions would 
be worthwhile. Such speculations must also take into account the fact that there is more scope for 
change in the simplest systems and very little in the more complex ones. 

The only straightforward addition that could be made to the IBM Common Data Bus would be 
an extention of the maximum size of the internal dataflow graph. This could be done by adding 

-reservation stations and function units. Although, in principle, this seems quite straightforward, 
there is the added cost of storing and comparing larger tags. If such a system were extended to its 
logical extreme the result would be a dynamic Dataflow architecture. 

Modifying the MU5 Name Store in order to handle Read-after-Write conflicts along the same 
lines as in the IBM 360/91 would clearly be a far from straightforward task; although avoiding a 
hold-up in the case of pseudo Write-after-Write conflicts seems relatively straightforward. It ought 
to be possible to do away with the BW register and instead add another status bit to be set whenever 
the line is to be reserved for writing and examined whenever the line is addressed; this would permit 
several B-Writes to progress through the pipeline as long as their targeted lines were distinct. Some 
other alternative must now be found to serve the BW register's role of line identification; one 
straightforward possibility would be for each Write instruction to carry along the address of its 
target line. Allowing more then one Write to be issued in the case of genuine Write-after-Write 
conflicts would require something along the lines of several BW bits per line. With such a scheme 
each Write would set one of the BW bits of its target line as it left the stage and a hold-up would 
be necessary only if all the BW bits for a line were set. Such a scheme, however, is not likely to be 
great value unless more than one function unit is employed; with multiple function units sequencing 
becomes a bigger issue. 

In certain RISC processors a technique known as delayed loading is used to overcome the Read­
after-Write problem. It is a direct analog of the delayed branch technique, used to overcome the 
control transfer discontinuity in RISC machines. In a normal sequence of instructions we might 
expect to find a LOAD instruction, followed by an instruction which uses the data just read from 
memory. In a pipelined implementation, the dependent instruction must be held up until the data 
has arrived. If this delay is predictable, then a totally independent instruction could overtake the 
dependent instruction and hence inprove throughput. 

Clearly, this can only occur if a suitable instruction can be found for the otherwise "dead" 
cycle following a LOAD instruction. This is another example of how it is possible to migrate the 
responsibility, for ensuring integrity, from the hardware into the software. As with the delayed branch 
technique, the probalility of filling the pipeline after a LOAD instruction, with totally independent 
instructions, decreases as the pipeline length increases. Effectively, the ability to exploit the hardware 
parallelism decreases as the degree of parallelism increases. We conclude that this technique has 
little to offer in the long term, although it may provide short term performance improvements for 
architectures with relatively short pipelines. 

2.3.5 Data Flow in Vector Pipelines 

Dealing with speed disparities between processor and store speed in vector pipelines simply requires 
the extension of the mechanisms used in instruction pipelines to handle vectors instead of simple 
scalars; thus the use of scalar registers easily extends to vector registers (e.g. in the CRAY systems) 
and the use of the caches easily extends to vector caches (e.g. in the vector processing system 
proposed in [Lin, 1986]). It is worth noting, however, that vector operations in the top-end CDC 
machines, such as the CYBER 205, are store-to-store operations; the implications of this are dis­
cussed below. Beyo~d this there are two main issues that have to be considered in the design of 
vector pipelines; these are the start-up time and the granularity of synchronization. For the former, 
the main problem is simply one of trying to mask unavoidable gaps (in the How of results) that 
are inherent in pipelining; for the latter, the problem is one of trying to minimise overall processor 
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idle-times. If synchronization is performaed on entire vectors then idle-time is a function of the 
average vector length; if it is performed on individual vector elements then it is determined only by 
algorithmic considerations [Topham, 1986[. Machines such as the CRA Y Series provide fine-grain 
instruction interlock through the provision of a chaining mechanism, and in the case of the CDC 
Series, through the provision of a short-stopping mechanism and programmer-controlled linking. 

The main consideration when incorporating fine-grain synchronization into a vector machine 
is the hardware cost incurred. Simple schemes which synchronize on whole vectors are relatively 
inexpensive, but more complex schemes which synchronize a number of processors on an element by 
element baJ!is can be costly. 

In the following subsections, we consider the design alternatives that have been taken in three 
machines, the CRAY-1, the CDC CYBER 205, and MU6-V. These are fairly representative; in­
deed some of the recent Japanese supercomputers, for example the Fujitsu [Miura, 1986], NEC 
[Watanabe et a!, 1986[ and Hitachi machines [Odaka et a!, 1986[, have architectures that are some­
what reminiscent of the CRA Y-1. 

The effect on performance of the architectural techniques used in each of these machine classes 
can be approximated by considering Equation 5 again. Let us first consider machines with register­
to-register vector operations, typified by the CRA Y Series. If the length of each vector register is l 
(elements) then a vector operation of length N must be partitioned into f !f-l sequential instructions, 
so: 

(7) 

So, to lower the threshold value (No) of N beyond which the last term dominates and Equation 4 
holds, we must either reduce ta (which largely corresponds to a faster store) or increase l. 

Let us now consider machines with store-to-store vector instructions, typified by the CDC Cyber 
205. Tp1 is now given by given by: 

(8) 

Thus, to get the last term to dominate, for as low a value of No as possible, ta and/or n tp must be 
kept low. 

The CRAY-1 Vector System 

The organization of the CRA Y-1 is illustrated in Figure 13. The newer CRA Y systems 
[Thompson, 1986] have essentially the same_ basic organisation, with replication in the multipro­
cessor systems. The vector operation subsystem consists of four vector functional units (integer 
add, shift, logical; and population count) and eight 64-element (each of 64 bits) vector registers; the 
floating point units are also heavily pipelined and are used in vector mode operation as well as in 
scalar mode. In the normal mode of vector operation, operands are taken from two vector registers 
(or a scalar register and a vector register) and the result is returned to vector register, while in 
chained mode intermediate results can be transmitted directly between functional units. Conse­
quently data dependencies are resolved at the registers. The latter relies on the use of a reservation 
system, that is similar to, but simpler than, that of the CDC 6600. At the point of instruction 
issue reservations are placed on the input operand registers, the output register, and the selected 
functional unit. 

The CRA Y-1, and all machines with explicit vector registers, suffer from performance penalties 
when operating on vectors longer than a single vector register (in the case of the CRAY-1 longer 
than 64 elements) since interactions with the store are not always overlapped with arithmetic opera­
tions. In fact, it has been pointed out [Hockney and Jesshope, 1981[ that the CRAY-1 has only one 
sixth of the store-processor bandwidth that is required to match the processing rate of the vector 
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processing unit. As a consequence of this compilation is made harder by the need to minimize store 
traffic. Although the use of chaining mitigates the (relatively) poor performance from using a large 
synchronization granularity, it is a technique that is generally not applicable. An example of such 
an instance is the case where a vector operation operates on two vectors, one of which is the result of 
producing the element of a matrix in a column-wise fashion and the other is the result of producing 
the element of a matrix in a row-wise fashion; in general, the problem is one where the order of 
production does not match the order of consumption. For such a computation, even though the 
source operands may be produced at the rate of one element per clock, it is clear that the output 
cannot be produced at an equivalent rate. This sort of problem is easily overcome by the use of 
micromultiprogramming [Ornondi and Brock, 1987J which would permit other vector operations to 
be executed on the same functional unit during what would otherwise be long gaps in the produc­
tion of results. This also applies to the problems that occur with the use of vector registers. Also 
from Equation 7, it can be seen that vector register length plays an important role; therefore for 
a machine in which l is fixed it may be necessary for the programmer/compiler to either mask out 
the first term in that equation (by attempting to preload registers ahead of their use) or to supply 
vectors of appropriately large N ( vectorization) since N is a program dependent parameter; both 
require considerable compiler sophistication. Although I is usually fixed by the hardware, it is worth 
noting that at least one class of machines (the Fujitsu VP series) permits I to vary although only 
within a small range. 

The CYBER 205 Vector System 

The organisation of the CYBER 205 Vector Processor is illustrated in Figure 14. A typical vector 
operation starts with the receipt, at the Vector Control Unit (which initiates and controls the 
execution of all vector instructions), of some vector function from the scalar processor. The relevant 
addressing information is then forwarded to the Stream Addressing Unit which thereafter generates 
the addresses of the required vector elements as well as the addresses of the results; this unit, 
therefore, interacts quite closely with the Input and Output Stream Units. The Input Stream 
Unit receives data from central store and performs any required alignment of the operands prior to 
forwarding these to the Floating Point Pipeline or String Unit. The Floating Point Pipeline consists 
of individual pipelined units to perform addition/ subtraction, multiplication, and logical operations; 
logic is also provided for division and square root operations. 

These units are capable of operating concurrently, and some vector operations may be chained 
(linked triadic operations in CDC terminology) as in the CRA Y-1 but with some restrictions. A 
useful feature of this pipeline is the provision of a direct data path, a shortstop, from the outputs to 
the inputs of the individual units; this removes the need to store and ref etch intermediate results and 
hence eliminates some conflicts that would otherwise occur. Another useful facility is the ability of an 
arithmetic pipeline to operate as either one 64-bit pipeline or two independent 32-bit pipelines. The 
String Unit processes strings of bits and characters (bytes); such processing includes the execution 
of editing instructions as well as arithmetic and logical instructions. Lastly, the Output Stream Unit 
buffers and realigns results, from the Floating Point Pipeline and String Unit, prior to writing this 
to the store. 

Almost all criticism of the CYBER 205 has centered around its long start up time, about 1 
pf3. This is a problem that has plagued CDC machines for a long time and in fact the CYBER 
205 itself is the result of re-engineering the STAR 100 [Hintz and Tate, 1972], which had a startup 
time of some 3-7 f.J.S. This relatively long startup time is a consequence of operating directly on 
memory-based vector operands and, although it finds justification in avoiding some of the problems 
observed with the use of vector registers, the use of memory-based operands requires extremely high 
store bandwidths in order to minimize the first term in Equation 8. There seems to have been 
little difficulty in providing this although it necessitated some restrictions on permissible vector 
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strides. Whilst the store bandwidth on the CYBER 205 exceeds what is nominally required by 
the computational units, it clearly represents a potential bottlneck in trying to design even faster 
machines. Also, in examining Equation 8 it may be observed that reducing both ta and tp (as CDC 
did in going from the Star-100 to the Cyber 205) may fail to yield significant improvements (in 
terms of lowering N0 ), particularly if n is not reduced (but such reduction would be contrary to 
Equation 4). A vector cache such as that suggested by Lin [Lin, 1986] might have been useful for 
this machine. 

Yet another source of problems has been the use of virtual storage, an unusual feature for a 
supercomputer. Although this decision has been justified to some extent [Lincoln, 1982], the fact of 
the matter is that, all other things being equal, a machine with virtual storage will be slower than one 
without. We believe that many of performance problems in the machine can be overcome through 
the use of micromultiprogramming; one can in fact observe that one of the techniques that improves 
the performance of the CYBER 205 (over that of the STAR 100), that of overlapping the start of 
one vector operation with the finish of another, is a small step towards micromultiprogramming. 
Essentially the effect of full microprogramming would be to mask out the effect of the first two terms 
in Equation 5. 

The MU6-V System 

A major objective in the design of MU6-V [Ibbett et a!, 1985] was to have a vector processing system 
in which performance could be increased arbitrarily by the addition of more vector units. The two 
factors that would limit this in a machine like the CRAY-1 or the CYBER 205 are the processing 
power of the scalar unit and the required bandwidth of a centralized store [Ibbett, 1981]. In MU6-V, 
therefore, scalar processing capabilities are provided as part of each vector processor and all store is 
distributed among the processors; this gives the structure illustrated in figure 15. The bandwidth 
required of the shared highway is, in general, substantially less than would be required of the store is 
a conventional shared~ store multiple vector processor. Virtual addressing is achieved by a mechanism 
in which the vector name is analogous to a segment number. This makes translation by direct table 
look-up feasible, resulting in highly efficient memory management. 

Another objective was to avoid the performance problems that arise when the techniques for 
communication and sychronization between processors rely on shared variables. The solution in 
MU6V involves a data-driven global-update protocol, with the granularity of communication under 
program control. To communicate a value, a processor broadcasts it on the common highway 
and any processors that need the value pick it up; processors, however, always wait for values to 
be broadcast, rather than attempting to read them. This results in a data driven system whose 
advantages (over a system in which processors make explicit requests for data) are that less time is 
required to communicate a value (one highway cycle instead of two) and store latency is eliminated; 
also several processors can receive a common value at the same time rather than making individual 
requests and contending for the bus. The synchronization required to ensure the correct ordering of 
events is fairly straightforward and may be inhibited whenever it is not required. Every element has 
a synchronization bit associated with it; this bit is set on writing and optionally reset on reading but 
the element cannot be overwritten by globally communicated data if the bit is set. Once a processor 
has consumed its local copy of value any attempt to access the {new) value causes the process to 
suspend until the new value has been broadcast and the synchronization bit set. In the event that 
some processor has computed a new value but not all processors holding copies are ready to update 
them, the producer processor postpones its broadcast and retries at a later time. 

Although both results from a small prototype and analytical measurements [Topham, 1987] have 
shown that this system is capable of linear speedup, some rewriting of algorithms may be necessary 
in order to avoid frequent halting of the processoi's; in the absence of this, linear speedup may be 
limited mostly to compute·bound problems that perform a large number of operations before halting. 
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Once again, such problems might be avoided completely if it were possible to micromultiprogram 
the vector processor. 
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3 Micromultiprogramming 

For many years multiprogramming has been used as a technique for optimising the utilization of a 
shared CPU, and for providing an interactive multi-user capability. To get reasonable utilization 
each time-slice allocated to each process must be large in comparison with the time taken to change 
context. Therefore, multiprogramming at the operating system level is only useful for reducing 
inefficiencies caused by relatively infrequent discontinuities, typically 1/0 and memory management. 

However, as we have seen, there are discontinuities with much finer levels of granularity than this. 
For example, when an instruction within a pipeline needs an operand from main store a pipeline 
discontinuity normally occurs. The latency associated with this discontinuity is normally of the 
order of several clock periods, and frequent operand accesses result in poor performance. It is often 
impossible to continue processing instructions from the same instruction stream when this happens 
and so an alternative strategy must be adopted. 

One strategy that has been suggested, and used in at least one commercial machine, is micro­
multiprogramming. This is based on a recognition of the fact that a high-latency memory cycle 
and a high-latency I/0 operation are simply two examples of discontinuities within a sequential 
instruction stream, and suggests the use of a common strategy to deal with both. The micro­
multiprogramming strategy addresses these two problems by initiating a context switch whenever a 
high-latency operation is encountered. 

3.1 Previous Work 

The term micro-multiprogramming {JL-multiprogramming) was, to the authors' knowledge, first 
introduced by T.C. Chen [Chen, 1971[, to describe a mechanism for sharing the hardware resources 
of a parallel or pipelined system in a self-optimising way. Chen described how the throughput 
of an n-way interleaved store could be improved by a factor of ,fn by micro-multiprogramming 
the memory requests using memory request queues. A novel form of micro-multiprogramming was 
suggested by Flynn in 1970 [Flynn, 1970[, in which highly pipelined function execution units were 
shared between 32 "skeleton" processors. Flynn's idealised system is shown in figure 16. The system 
was never constructed, although extensive simulation results are available. 

This technique was also used, to a limited degree, in the Xerox Alto [Thacker et el, 1982) and 
Dorado [Pier, 1983] machines and the Symbolics 3600 [Moon, 1985]. These machines used multiple 
microcode contexts to implement the sharing of CPU resources by different I/0 device adapters. 
As Arvind and Iannuci [Arvind, 1983) point out, such a limited use of multiprogramming will not 
solve the problems of memory latency and process synchronization in a multiprocessor system. 
However, they go on to further hypothesise that these problems cannot be solved in a von Neumann 
style of architecture. They maintain that the number of low-level contexts required to sustain 
perlormance must grow, as the system is scaled, in order to match the increased memory latency. 
When describing their dataflow model they omit to mention that dataflow machines exhibit similar 
behaviour. This arises because the level of instantaneous parallelism within a piece of dataflow code 
must match the level of parallelism within the hardware. Naturally the node-to-node latency will 
grow as the dataflow machine is scaled, resulting in a requirement for greater 3pplication parallelism 
if performance is to be maintained. This problem appears to be universal, arising from fundamental 
register-transfer-level constraints, rather than being specific to certain types of architecture. 

3.1.1 The Denelcor HEP 

One of the best examples of ,u-multiprogramming to date is the Denelcor Heterogeneous Element 
Processor {HEP) [Smith, 1985]. The architecture of this machine is illustrated in figure 17. The 



3 MICROMULTIPROGRAMMING 

Instruction 
Buffer or 

Cache 

Data 
Buffer 

Instruction Counter I 

Instruction Regsilerl 

Index Registers 

Accumulator 

SKELETON 
~ 

Shared 
Memory 

R1 Rm 

II II II H•••n • •u•u.. II I I I I 
Pipelined Execution Units 

Figure 16: Flynn's 1970 Proposal 

39 

HEP system comprises up to 16 Process Execution Modules (PE Ms) and up to 128 Data Memory 
Modules (DMMs), connected via a. novel high-speed multi-stage packet switch. 

As far as this paper is concerned, the most important feature of the HEP is the way in which a 
number of distinct. processes are J.t-multiprogram.med within each PEM. This is achieved by issuing 
instructions from a d ifferent process, on each clock cycle, which generates an implied context switch 
between every pipeline stage. 
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Whereas previous instruction pipelines, such a.s the Primary Operand Pipeline m MUS 
[Morris and Ibbett, 1979j, had pipeline stages which eva luated a function f , such that :-

f : /nstruchon .-. Partial Result 

The HEP pipeline stages evaluate a fu nction g, such that :-

g : Instruction X Process Tag.-. Partial Result X Proceu Tag 
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In order that the domain of each process can be kept separate the HEP has a large partitioned 
register file; effectively a virtual register space. Each PEM also contains a number of parallel function 
units, some program memory, some constant memory, a set of control units and an interface to the 
interconnection network. 

Within the HEP, work is divided into independent tasks each of which may contain up to 64 
processes. A Task Status Word (TSW), associated with each task, identifies the relocation and pro­
tection domain, and the degree of privilege for processes within that task. The p-multiprogramming 
feature requires a hardware scheduling mechanism, and the basic design criteria of this mechanism 
are:-

• It must be fair to all tasks. 

• It must be fair to all processes within a task. 

• It must be able to schedule (and de-schedule) processes at the pipeline clock rate. 

The mechanism used in the HEP is shown in figure 18. The operation of this mechanism is described 
in detail in [Hwang and Briggs, 1984], the main points to note are that this mechanism ensures each 
process has at most one instruction in a state of partial execution at a time, and that th~ results in 
the optimal utilization of the instruction pipeline. 

If an instruction needs to reference a data memory module (DMM) the process tag and an 
operation descriptor are sent to the Storage Function Unit (SFU). The SFU queues incoming requests 
in a secondary set of task queues. These requests are scheduled in the same way as instruction issue 
requests, and for each request the SFU sends a packaged memory request into the HEP Switch. 
Memory acknowledgements returning from the Switch are routed back to the operand fetch section, 
in the case of successful memory operations, or routed back into the SFU Queue in the case of 
unsuccessful memory operations that need to be repeated. 

Unsuccessful memory operations occur when an attempt is made to operate on a "locked" mem­
ory location. This locking mechanism is used to ensure data integrity, and hence communication, in 
the HEP's shared-memory environment. 

The processing of memory operations does not require any intervention from the execution section 
of the PEM, and this means that the processing of high-latency (non-local) memory requests does 
not degrade the throughput of each PEM, assuming that sufficient process-parallelism exists. The 
major flaw in the design of the HEP is the low level IPC mechanism, which is based on data sharing. 
In consequence the possibility of a "busy-waiting" condition exists, wherein blocked memory requests 
are re-issued at intervals which depend upon the loading of the SFU queue. 

This places a certain pressure on the user of such a mechanism to ensure that the wait-times are 
always relatively short. In section 4.1 we present an alternative mechanism which corrects this flaw, 
and opens up some exciting possibilities for highly efficient interprocessor communication protocols. 
We believe that in order to achieve efficient parallel processing a process must not consume any 
computation or communication resources under the following conditions. 

• when it is £die 

• during suspension and cont·inuation 

3.1.2 The Cyclic Parallel Computer 

The Cyclic Parallel Computer proposal from the University of Tokyo [Goto et al, 1986[ is another 
example of how .u-multiprogramming could provide very high performance. This machine proposal 
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combines a cyclic MIMD pipeline with Josephson technology to produce a quoted potential perfor­
mance of 10 GFLOPS2 

Josephson technology has the advantage that each logic device may act as a latch, enabling 
shatlow-logic pipelining to be practised without the penalty of the extra cost and time delay that 
are required when placing pipeline registers in Si logic. Consequently all logic, both processor and 

2 The CPC's high clock rate of 10 GHz requires a physically small design. The CPC would fit inside a large coffee 
mug! 
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memory, can be naturally pipelined. The CPC proposal suggests the use of a pipelined memory 
in which successive read/write operations can be carrried out at intervals of the pipeline pitch 
time without causing conflicts. The CPO can be regarded as a scalar multiMprocess system with 
a common shared memory, in which interprocess synchronization is implemented by conventional 
mutual exclusion primitives. Waiting processes remain idle, which again assumes that wait times 
will always be relatively short. 

The CPC architecture shown in figure 19 assumes a single J.t-multiprogrammed processor, with 
the degree of parallelism fixed at around 40 processes. The CPC proposal is therefore of great 
interest in respect of its novel logic and packaging technology, but of less significance in respect of the 
extensibility of the architecture and the generality and efficiency of its interprocess communication 
mechanisms. 
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Figure 19: The Tokyo Cyclic Parallel Computer 

3.1.3 The Circulating Context Multiprocessor 

A machine, very similar in design to the HEP, has been proposed by Staley and Butner at the Uni­
versity of California, Santa Barbara [Stanley and Butner, 1986]. This system, shown in figure 20, 
embodies a conventional von Neumann programming model, but is implemented as packets of exe­
cutable context in a tightly-coupled shared memory environment. 
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In common with the HEP, the CCMP uses FIFO queues to smooth the How of instructions 
between pipeline stages, and consequently is capable of sustaining comparable throughput. 
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Figure 20: The Circulating Context Multiprocessor 

3.2 The Rationale for J.L-rnultiprogramming 

The primary motivation behind the design of micromultiprogrammed machines has been efficiencyj 
in such machines the relative independence of instructions in different instruction streams is exploited 
in order to use up the otherwise wasted processor cycles that occur during: 

• operand accessing, 

• control transfers, and 

• inter~instruction data dependencies. 

A rule is enforced, in all of these machines, that each process may have one, and only one, 
instruction in a partial state of execution at any instant. This contrasts sharply with conventional 
instruction pipelines, where as many instructions as possible are kept active for a single process. 

The ability to change context at the pipeline beat frequency relies on having a minimum of 
volatile context associated with each process, and hence a minimal context·change overhead. In the 
case of the HEP, this volatile context consists of a single Process Status Word (PSW). 

Although !'-multiprogramming is capable of reducing the overhead caused by general context 
switch requirements, this technique is particularly useful for eliminating instruction and data dis­
continuities in pipelined machines. As pipeline beat frequencies increase the discontinuity problems 
become more acute. It therefore seems inevitable that the use of this technique will become more 
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widespread. The commercial trend in advanced microprocessor architecture is currently retracing 
the evolution of the present-day mainframe, through the introduction of integrated virtual mem­
ory, instruction prefetch and buffering, and data caching mechanisms The combination of these 
techniques will provide a partial solution to the data-latency problem, however, they will also intro­
duce the possibility of additional data-oriented discontinuities•. It is the authors' belief that these 
techniques merely address the symptoms of the problem, rather than the disease itself. 

It is clear that there are now a significant number of machine designs and proposals which use 
the ~-£-multiprogramming technique, although each machine appears to incorporate the technique for 
a different reason. Furthermore, experience so far suggests that this technique could be exploited in 
the search for general-purpose parallel VLSI architectures. 

The goal of this paper is to address the problem of producing a generic architectural form in 
which discontinuities, from whatever source, do not affect the overall throughput of the system 
unless the degree of multiprogramming falls below a fixed level. 

If this were achievable then all problems associated with discontinuities would be replaced by the 
problem of partitioning an application code into concurrent processes. At this point the interprocess 
communication (IPC) mechanism becomes a possible source of discontinuities. In section 4.1 we 
explain how IPC can be implemented without interrupting the smooth flow of computation and 
without introducing any computing overhead. 

3.3 Context Flow - A canonical form of JL-multiprogramming 

In this section we attempt to formalize the notion of .u-multiprogramming as this will provide 
us with a tool for implementing a range of parallel architectures as well as a means for identi­
fying architectures that cannot be implemented efficiently. Central to this theme is the concept 
of a sequential process [Hoare, 1985] with a referentially transparent context [Burstall et a!, 1980], 
[Keller and Sleep, 1981]. 

We define a context to be the unique locus of control for a sequential process and all its volatile 
information. At the hardware level each context may be further subdivided into a dynamic context 
and a static context, the relevance of which will be discussed later. 

We represent a hardware structure for evaluating a machine instruction set as a graph in which 
each node represents an atomic transformation applied to the context of a sequential process. We 
call this a Context Flow Graph. In effect, the nodes in a Context Flow Graph (CFG) are directly 
equivalent to the pipeline stages in a conventional (ad hoc) machine implementation. The arcs in 
a CFG represent the highways connecting the pipeline stages, and during each graph cycle period a 
context flows from the source node to the destination node. In cases where the producing node does 
not produce a valid context a null context flows instead. 

A CFG is almost certain to contain cycles, in the same way that circular control pathways exist 
in all practical computers. 

In general a context Cis a tuple (!, s), where f identifies the next function to be applied to the 
process state variables. At each node in a CFG the aggregate of the information stored at the node 
and the context C will be sufficient to evaluate f. 

The volume of information in s will generally be large. For example, a conventional process may 
have several Megabytes worth of context information. This naturally precludes the movement of 
a complete process context between every node (and hence between every pipeline stage). This is 
where the concept of a dynamic and a static context become useful. We define the dynamic context 
of a process, Cd, to be(!, sd), and the static context of a process to be (i, s,) where i E {0 ... N} for 
anN-node CFG. We thus divide the context into a small partition containing frequently referenced 

3 A data-oriented discontinuity may involve a cache-miss, a TLB non-equivalence or consistency synchronization 
delay 
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information (sd) and a large partition containing less frequently used information (sill). The static 
state is then held in a memory associated with node i of the graph, and for any exchange of 
information between cd and CH cd must be within node i. 

Thus, a CFG is a directed cyclic graph representation of an abstract machine evaluation algo­
rithm. A CFG provides a method of representing, and hence exploiting, any parallelism which may 
exist within the evaluation algorithm. This is analogous to the way in which a Dataflow graph 
(DFG) is able to identify and extract parallelism within an application algorithm. However, in 
contrast to dataflow machines, application parallelism is not implicitly identified. Consequently 
no asynchronous matching of function parameters is required, a common source of implementation 
problems for dataflow machines. 

3.4 Context Flow Principles 

A Context Flow graph for an arbitrary evaluation algorithm can be constructed from three primitive 
node types. These are: 

• The Transformation Node 

• The Branch Node 

• The Merge Node 

3.4..1 The Transformation Node 

A Transformation node consists of a single registered input path, some evaluation logic and a single 
output path, as shown in figure 21. The functions evaluated by each transformation node would 
normally be distinct, and each node may even implement several variants of a class of functions. 
For example, a single node may evaluate a group of arithmetic functions, one of which would be 
selected by a field within the context at that node . 

. It is easy to imagine how a group of Transformation nodes might implement a conventional 
instruction pipeline. 

Figure 21: The Transformation Node 

Node 1 : Fetch Instruction This node transforms the incoming context by appending the in­
struction at the location identified by the program counter within the context. 

Node 2 : Access Operands This node transforms the incoming context by replacing the operand 
specification(s) with the corresponding data. 
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Node 3 : Evaluate Instruction The transformation applied here involves replacing the operands 
"'' ... Xn with the result, J(x,, ... , xn)· 

Node 4 : Store Result At this node the result data is removed, and left within the node for 
subsequent retrieval. Normally an explicit address would identify its location. 

Node 5 : Increment PC Here the address of the next instruction is computed. Conditional con­
trol transfers could also be implemented at this stage. 

In a very simple architecture these nodes could be connected in a ring, <;ts shown in figure 22. 
The throughput of such a simple architecture would be proportional to the number of concurrent 
contexts, up to a maximum of five. A Transformation node may contain static data, in the form of 
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Figure 22: A Ring-Structured Context Flow Graph 

an associated block of memory. Functional transformations for reading and writing to the memory 
can be defined very simply. The read transformation would use an address field in the input context 
and append the data at that address in memory to the output context. The write transformation 
would write a piece of data from the input context to a memory location identified by an address 
in the input context. In both cases the resultant context may contain a status bit to indicate 
that the transformation took place successfully. If a virtual memory scheme were adopted, a TLB 
non-equivalence could be signalled in the same way. 

The data for each context may be distinct or shared. Thus, implementations of global mem­
ory architectures and referentially-transparent parallel combinator reduction architectures are both 
possible. 

3.4.2 The Branch Node 

In order to introduce spatial, as well as temporal, parallelism a means of composing parallel sequences 
of Transformation nodes is required. This is achieved through the use of Branch and Merge nodes. 
The informal specification of a Branch node is shown in figure 23, from which it can be seen that 
a Branch node has one incoming arc and two outgoing arcs. It operates by examining a decision 
variable within the incoming context. If is is true the context is passed to the left output arc, and 
if false it is passed to the right output arc. The output arc not receiving the incoming context 
receives a null context. This provides a choice mechanism, enabling more elaborate algorithms to be 
implemented. It is also possible to define a fork node which dynamically creates a parallel context, 
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1\ 
Figure 23: The Branch Node 

one context being output on each arc. The dynamic deletetion of a context is trivial to implement; 
the context is simply routed to a node with no output connection. 

3.4.3 The Merge Node 

A Context Flow graph may be open or closed. An open graph is one which contains at least one node 
with an unconnected output arc. Any context flowing along this arc is effectively terminated. In a 
closed graph all output arcs are connected, and consequently some mechanism for merging parallel 
streams of contexts is required. The informal specification for the Merge node is shown in figure 24, 

\I 

Figure 24: The Merge Node 

from which it can be seen that the Merge node has two input arcs and a single output arc. The two 
preceeding nodes will both output a context on every graph cycle, and therefore the Merge node 
must be capable of accepting two contexts every graph cycle. As the Merge node can only output 
a single context per graph cycle it must be capable of buffering the incoming contexts until they 
can be output. Several buffering disciplines are possible, but the only sensible scheme is to forward 
incoming contexts on a First-In-First-Out (FIFO) basis. This implies the existence of a linear queue 
of contexts within each Merge node. 

The simple example can now be extended to include a realistic memory interface, by defining 
appropriate Branch and Merge nodes. This is shown in figure 25. 



3 MICROMULTIPROGRAMMING 49 

to memory from memory 

Figure 25: Context Flow Processor with Memory Interface 

3.5 Graph Evaluation Rules 

The rules for evaluating a Context Flow graph are relatively simple, and are independent of the 
abstract machine that is being implemented. 

• Each "process" has a single unique context. 

• A single context flows along every arc in the graph during each system clock period. Contexts 
may be null. 

• Each T and B node may hold a single context, but M nodes may queue contexts for the 
purpose of matching the average input and output flow rates of non-null contexts. 

• Cycles are permitted. 

• Any node operations which are not free from side-effect may produce indeterminate results, 
and are discouraged. Both referentially-transparent and opaque abstract machines can be 
implemented. 

• The B node decides on which arc to output its context, based solely on state information 
within that context. 

• The M node merges two streams of contexts, with the output order based on a "first-come­
first-served" priority. 
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These rules make no mention of how a context is created, or how a graph is initialised. These are 
relatively minor issues, and would normally be implementation specific. 

4 Context Flow Multiprocessors 

Conventional multiprocessor systems, typified by systems such as the Sequent Balance 
[Fielland and Rogers, 1984), the BB &: N Butterfly [Rettberg and Thomas, 1986), the iNTEL iPSC 
jlntelJ and many others, all suffer to varying degrees from performance problems associated with 
interprocessor communication. These problems limit such machines to tasks involving relatively 
coarse~grained parallelism, and are caused by the fixed computational overhead imposed on the sys­
tem by each communication event. The effect of this can be seen from the graphs in figures 26 and 27. 
The curve in figure 26 shows how the actual performance of a multiprocessor system increases as par­
allelism is introduced, when the total amount of work is constant and the amount of communication 
per process is constant. Figure 27 shows the catastrophic performance curve for a multiprocessor 
system in which the total amount of work is constant and the amount of communication per process 
is proportional to the number of cooperating processes. 

Throughput 

.· .· 

Granularity 

I 
Figure 26: Processor throughput vs. Granularity : non-global communications 

If the physical implementation of any communication protocol, in a multiprocessor system, re­
quires the exchange of information with a group of processes then an optimum degree of parallelism 
will exist- beyond which performance will decrease. If the communication protocol requires a non­
zero quantity of CPU time, on the sending and receiving processors, for the purpose of switching 
c.ontext {in order to multiprogram the waiting processor) then the system performance will not scale 
linearly for a fixed problem size. 

If it were possible to devise a communication mechanism in which the communication between 
processes consumed no more time than communication between processors and memories, then the 
communication overhead could be said to be zero. This is one of the primary goals of Context Flow 
Architecture, and one which can apparently be attained relatively easily. 
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4.1 Context Flow Communication 
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There are two possible ways in which process communication links can be defined; via a com­
munication channel or by explicitly naming the source and destination processes. Each has its 
ad vantages and disadvantages. For example, explicit process naming removes the need for declaring 
channels but requires the passing of parent process names to sub-processes when they are created 
[Hoare, 1985, page 239J. There is also a potential implementation problem when communicating 
non-detenninistically between groups of explicitly named processes, where the cyclic polling of pro­
cesses becomes necessary. This can be avoided by using communication channels. We now propose a 
mechanism for interprocessor communication in a Context Flow environment, capable of supporting 
non-determinsism efficiently. . 

For two processes to communicate their contexts must somehow meet. According to the graph­
evaluation rules, outlined above, the contexts must be in the same node at the same time. Thus, we 
define a communication channel as the queue of contexts belonging to those processes waiting to 
communicate through that channel. Such a queue has several useful properties. Firstly, the queue 
can be stored in ordinary memory- attached to a Transformation node somewhere in the machine. 
Therefore, to communicate, a context must contain the address of the channel through which it 
wishes to communicate as it :Bows through the node containing the queue. 

Two simple transformations, send (S) and receive (R) can be defined in much the same way 
that write and read are defined. Both S and R operate in. similar ways, the only difference 
between them being in the direction of dat:l transfer. When a context (/, stl) is encountered, and 
f = X{ch, var) such that X E {S, R} then some communication event is required. If the channel 
queue is empty then the current context is queued, and the node outputs a null context. If the 
channel is not empty it will contain one or more contexts of the form (Y(ch, var), sd). If X = Y 
then the current context is added to the end of the queue and a null context is output. If X --1 Y 
then one X event and at least one Y event are in the same node, and a communication event can 
occur. This is achieved simply by removing the element at the front of the queue, exchanging any 
information required by the communication protocol and outputing both contexts. The production 
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Figure 28: A 2 X 2 Router for CF Multiprocessors 
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can say that the abstract machine is relatively efficient. The actual efficiency of any abstract ma­
chine depends upon the power--of the abstract machine instruction set, and so to produce an efficient 
computing engine we must consider the implications of high-level languages, abstract machines and 
hardware implementation efficiency as one problem. 

5 Summary 

High performance computers require special implementation techniques, and the most widely used 
of these techniques is pipelining. Pipelining promises performance gains in two respects. Firstly, 



5 SUMMARY 54 

it promises increased instruction processing throughput; secondly, it promises a more effective use 
of the hardware resources available. A wealth of experience exists in the design and evaluation of 
pipelined machines, and for the most part the results are particularly disappointing. Consider a 
pipeline with a maximum parallelism of n. Now in most machines the value of n will be somewhere 
between five and twenty, so the extent of parallelism is hardly massive. If the limited extent of 
parallelism is further reduced by a poor utilization factor, caused by the program discontinuities 
discussed earlier in this report, then the positive advantages of pipelining could be marginal. 

Early machines, such as the CDC 6600 and MUS, incorporated complex control mechanims in 
an attempt to maximize the pipeline throughput. Studies of MUS revealed that average instruction 
times were between 0.2 and 0.4/LS, compared with a pipeline beat time of 50 nS. Whilst the mecha­
nisms designed to maximize throughput are interesting, their cost-effectiveness must be questioned. 

This report has surveyed a number of proposals for radically different styles of pipeline. Most 
notable amongst these are the HEP, the CPC and the CCMP. These machines all use a technique 
known as p-multiprogramming which, in effect, implements a trade-off between high-latency opera­
tions and multiprogramming. 

The disparate theoretical bases for these architectures are brought together in the form of a 
graphical implementation technique called Context Flow. We have shown how a pipelined processor 
can be contructed using this technique, and how it can then be extended to a multiprocessor system. 
One of the primary aims of Context Flow architecture is to express both the logical and the spatial 
manipulations required to produce a solution, in a form which explicitly identifies the logical and 
spatial complexity of the problem. 

A mechanism for synchronously transfering information between the contexts of two processes 
has been outlined. The communication protocol can support guarded input or output constructs for 
non-deterministic processing, and has a constant time-complexity. In addition, the communication 
protocol is implemented as two special memory functions, rather than as a sequence of processing 
element instructions, and consequently consumes zero CPU time. 

It is expected that this technique will become more widely exploited, as the use of VLSI in 
high-performance systems increases, for it is only through the use of integrated processing elements 
that this technique can achieve its full potential 

The authors' active work in this area can be divided into three areas. Firstly, we are investi­
gating the possibilities for the design of VLSI microprocessors which are revealed by this technique. 
Secondly, we are investigating the implementation of an abstract machine for functional languages 
using Context Flow ideas. Thirdly, the referential transparency of Context Flow building blocks, 
and the relative ease with which they can describe real systems, leads us to believe that Context 
Flow could represent a very useful tool for describing parallel hardware at a high level. One possible 
use for this could be as a description language for a Silicon Compiler. It might then be possible to 
translate from a formal description of an abstract machine, in the form of an annotated Context 
Flow graph, to a correct implementation in silicon. The graphical description would also contain 
enough information to drive a behavioural simulation, firstly to verify the specification and secondly 
to gauge the efficiency of parallel processing within the system as a whole. 
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