
On the Design and Performance
of Pipelined Architectures

TR87-022

August, 1987

N.P. Topham*, A . Omondi, R.N. Ibbett*

T~h ,.-:::: -1. 11
1...1 'i: \'

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall . 083A
Chapel Hill. NC 27514

*Department of Computer Science, University of Edinburgh

...

I i
I

,I

'
t ~ I

I I

' I I

On the Design and Performance of
Pipelined Architectures

Nigel P. Topham
Department of Computer Science,

University of Edinburgh,
James Clerk Maxwell Building,

The Kings Buildings,
Mayfield Road,

Edinburgh EH9 3JZ,
Scotland, U.K.

Amos R. Omondi
Department of Computer Science,

University of North Carolina
Sitterson Hall 083,

Chapel Hill, NC 27514,
U.S.A.

Roland N. Ibbett
Department of Computer Science,

University of Edinburgh.

ABSTRACT

Pipelining is a widely used technique for implementing architectures which have inher­
ent temporal parallelism when there is an operational requirement for high throughput.
Many variations on the basic theme have been proposed, with varying degrees of success.
The aims of this paper are twofold. The first is to present a critical review of conventional
pipelined architectures, and put some well known problems in sharp relief. It is argued
that conventional pipelined architectures have underlying limitations which can only be
dealt with by adopting a different view of pipelining. These limitations are explained in
terms of discontinuities in the fiow of instructions and data, and representative machines
are examined in support of this argument. The second aim is to introduce an alterna­
tive theory of pipelining, which we call Context Flow, and show how it can be used to
construct efficient parallel systems.

Keywords : computer architecture, pipelining, multiprocessing, micromultiprogram­
ming, context How.

1 INTRODUCTION: A REVIEW OF PIPELINING PRINCIPLES 2

1 Introduction: A Review of Pipelining Principles

Pipelining generally refers to the exploitation of temporal parallelism as a means of achieving high
performance. In its simplest form, it is the decomposition of a function into sub-functions, coupled
with the provision of segmented hardware to process all sub-functions in parallel. A typical exam­
ple, instruction pipelining, is the processing of instructions in which the typical task constituents
are the phases of instruction execution: Fetch Instruction, Decode, Generate Operand Addresses,
Fetch Operands, Execute and Store Result. Similarly, in arithmetic pipelining, an arithmetic op­
eration such as floating point addition can be subdivided into the following subtasks: Subtract
Exponents, Align Mantissae, Add Mantissae and Normalise Result. The corresponding pipelines
are illustrated in Figure 1. Vector pipelines are an important class of pipelines designed to process
vector instructions by attempting to stream the elements of a vector through pipelined arithmetic
units.

Instruction
Generate Operand
Addresses

Figure 1: Typical Pipeline Structures

The performance gained through the use of pipelining may be determined by considering the
processing of N tasks in a pipeline of n stages with a beat time of tv. The total time required is
given by:

{1)

The first term in this expression is the start-up time, that is, the time required for the first set of data
to propagate through the pipeline. The second term is the time required to stream the remaining
N- 1 sets of data through the pipeline.

This can be compared with the time required to process the same data using non-pipelined logic
(Tnp) by assuming the same end-to-end latency in both cases. Hence, Tnp = n N tp, and we can say
that:

T. -T. (n+N-1)
P- np nN {2)

the speedup over the non-pipelined operation is then

nN
(3)

(n+N -1)

1 INTRODUCTION: A REVIEW OF PIPELINING PRINCIPLES

and

lim
Tnp _
--n

N-oo Tp

3

(4)

As the speedup tends to n, for large N, the more stages there are in a pipeline, the better its
peak performance will be, provided the end~to-end latency of the computation remains constant.
In practice technology limits how far the beat time can be reduced, and other factors also con­
strain the number of stages that can be employed usefully within a range of possible beat times
[Kunkel and Smith, 1986[.

The equations above represent a simplification (for the purposes of demonstrating the general
benefits of pipelining in a simple form); in practice Tv is largely determined by three factors: the
time to get the first set of data to the first stage of the pipeline (this includes address generation
time, store access time, etc.), the end-to-end latency, and the time to propagate the remaining data
sets through the pipeline. Thus:

(5)

Where ta is the memory access time and the parameters a, j3 and J vary according to the nature of
the pipeline and the characteristics of the application.

Pipelines may be classified in a number of ways depending on their temporal and logical control
characteristics. For example, the transfer of data between pipeline stages may be synchronous or
asynchronous. Pipeline functionality may be fixed, or it may be either statically or dynamically
reconfigurable.

In any pipeline, all actions should be naturally sequential, all stages should take the same time
to execute and there should be a continuous fiow of information between stages. This means that
input should be available to a stage when it is required and output should be taken from a stage
as soon as it is produced. The computation performed at each pipeline stage should be depen­
dent only upon the information passed to it by the proceeding stage. The equations of through­
put given above assume that these conditions are satisfied and whilst these conditions are nor·
mally satisfied within arithmetic pipelines, instruction pipelines frequently suffer from their inabil­
ity to meet them. More thorough discussions of the fundamentals of pipelining may be found in
[Hwang and Briggs, 1984,Ibbett, 1982,Rammamoorthy and Li, 1977].

1.1 Aims and Outline of the paper

The aims of this paper are twofold. The first is to present a critical review of what has been
accomplished in the design of pipelined computers, to put some well known problems of pipelining
in sharp relief, and to argue that conventional implementations of pipelined architectures have
underlying limitations that can only be dealt with by the adoption of a different view of pipelining.
We discuss these problems within a uniform framework and examine representative machines in
detaiL The second is to present a design alternative, Context Flow, and discuss the extension of this
to larger systems of communicating processors.

In section 2 the limitations of conventional pipelined machine design are discussed in the light of
the inherent discontinuities in the fiow of instructions and data and their adverse effects on the perfor·
mance and complexity of hardware. In the third section the background to micro· multiprogramming
is discussed, together with its suitability as an alternative implementation technique. A more gen·
eral implementation technique, called Context Flow, which regards computation as a set of logical
transformations on process contexts, is then presented and the design of a simple parallel processing
element is outlined. This concept is extended in section 4, which describes how an arbitrary number
of these processing elements could be connected together using a multistage Context Flow network.

1 INTRODUCTION: A REVIEW OF PIPELINING PRINCIPLES 4

Section five summarises the main topics of the paper, and outlines the current state of the authors'
research in this area.

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 5

2 Limitations of Conventional Pipeline Designs

Although the perfect instruction pipeline will achieve a throughput of one instruction per pipeline
beat, in practice this has proved difficult to achieve due to the dependencies which exist between
instructions and data under a sequential model of computation. Previous attempts to solve this prob­
lem have produced complex hardware structures that fail to provide an effective cost/performance
benefit. The first order of business, therefore, is to examine these issues and to appreciate the fact
that a different view of pipelining is necessary.

2.1 Discontinuities in the Flow of Instructions

Data and instruction access times are normally much longer than the pipeline beat time. If the
pipeline is halted when these accesses occur then its thoughput will be significantly reduced. Two
partial solutions exist;

1. Prefetch data and instructions, and hence ensure that access times will fall within the pipeline
beat time.

2. Allow "out of sequence" processing of instructions following a high-latency operation.

The processing of "out of sequence" instructions may seem to be a sensible solution; however, it
requires complex control mechanisms to enforce the inherent data dependence constraints. The
inter~dependence of textually close instructions also limits amount of "out of sequence" processing
to relatively small numbers of instructions.

The prefetching of instructions relies upon being able to predict the future sequence of instruc­
tions, before they are issued and before it is known that they will be issued. Conditional control
transfers create difficulties here, because of the unavailability of the decision variable at the moment
when prediction occurs. Even with special prediction hardware there is a finite probability that an
incorrect prediction will be made. When the false prediction is noticed, a number of cycles later,
the start-up time of the pipeline will create gap in the flow of instructions with a corresponding
degradation in performance.

The extent to which control transfer instructions are detrimental depends on several factors,
the most important being the position of the Control Point, the length of the pipeline, and the
extent to which techniques for minimizing these problems are effective. The Control Point is the
point at which the Program Counter is altered and it can be regarded as the point at which branch
instructions are executed.

The effect of control transfers on pipeline performance can be approximated by assuming that
a. proportion m { 0 ~ m ~ 1} of all instructions a.re control transfers. Then, assuming that these
instructions occur in sequence:

T; = (mN + 1)ta + n(mN + 1)tp + [(1- m)N -l]t. (6)

The main objective is therefore to mask out the effects of the terms in m so that T; approaches T p·

This is the rationale behind the techniques described in the remainder of this section.

2.1.1 The Pipeline Length

According to Equation 4 the length of the pipeline determines the maximum throughput. However,
a long pipeline also exhibits a long start-up time, resulting in a large number of instructions being
discarded and a longer pipeline-refilling time when the flow of instructions becomes disrupted.

It is precisely for this reason that the Reduced Instruction Set Computers such as the
Berkley RISC [Sequin, 1983], Stanford MIPS [Hennessy, 1984], and the IBM 801 [Radin, 1983]

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 6

have opted for fairly short and simple pipelines. Similar reasoning underlies the design of MU6-
G [Edwards et al, 1980[, a successor to MUS. Nonetheless, performance degradations caused by
control transfers have failed to disappear completely even in these machines.

2.1.2 Position of the Control Point

The Control Point is the stage in the pipeline containing the instruction addressed by the Program
Counter. As each instruction passes the Control Point the Program Counter is updated, and the
instruction is considered to have been executed. No irrecoverable action must be taken during partial
execution of instructions before the Control Point. The Control Point is also the stage at which
control transfers are executed, and since control transfers are normally followed down the pipeline
by incorrect sequences of instructions, which must be discarded, the delay incurred while waiting for
new instructions depends upon the distance between the store and the Control Point. This suggests
placing the Control Point early in the pipeline.

However, conditional control transfers depend on a value or condition evaluated in an arithmetic
unit, normally at the end of the pipeline, and the delay incurred while waiting for the condition to
be evaluated depends upon the distance between the Control Point and the arithmetic unit. This
suggests placing the Control Point late in the pipeline. In fact, for conditional control transfers that
branch, the total delay depends not on the position of the Control Point, but on the delays inherent
in the number of stages between the store and the Control Point plus the number of stages between
the Control Point and the arithmetic unit, ie. on the total pipeline length. Therefore techniques to
minimise both these delays must be incorporated into a high-performance pipeline. A more detailed
discussion of this issue may be found in [Ibbett, 1982].

2.1.3 Conventional Techniques used to Limit the Effect of Branches

Various means have been employed to limit the effects of Branch instructions on performance. These
can broadly be divided into two categories: those implemented in software and those implemented in
hardware. The former generally involve the use of optimising compilers to generate more congenial
code than would otherwise be dictated by the normal Jlow of events and are typified by delayed
branching [Sequin, 1983] and other similar techniques [Goodman, 1985]; small systems have tended
to rely solely on such techniques. Conversely, the larger machines have typically employed hardware
mechanisms to minimize the gaps created, either by trapping loops or by attempting to predict
branch destinations. The following subsections examine these techniques in some detail.

Hardware Techniques To Limit the Effect of Branches

The problems involved in supplying a constant stream of instructions from store to an instruction
pipeline are ameliorated to a large extent by the fact that most instructions are obeyed sequentially
and that the main store word size is normally such that one word fetched from main store can con·
tain several instructions. Furthermore, with an interleaved store, successive accesses for sequential
instructions reference each stack in turn and are not held up by cycle time effects. Store requests
can therefore be made in advance of the corresponding instruction being required and the replies
buffered until they are needed for execution. This pre-fetching technique is used in almost all high
performance pipelined processors. A significant proportion of instructions result in the transfer of
control, however, and each such transfer requires a request to be made to the store for a new se­
quence of instructions. So, although the accessing rate for instructions can normally be matched
satisfactorily to the processing rate, the access time for the first instruction of a new sequence can
result in a long delay to the processor. Techniques for overcoming this problem rely on the fact
that the cause of many control transfers is a branch back from the end to the start of a loop of

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 7

17
16

·~ IS
14
13 ., 12
11
10

D lJ t t t t
Input Register I

r
From Central Storage To Scoreboard

Figure 2: The CDC 6600 Instruction Stack

instructions, and loop catching buffers are incorporated into a number of processors. One of the
earliest examples of such a system was that used in the CDC 6600 [Thornton, 1970].

The CDC 6600 Instruction Stack

In the CDC 6600 instructions are fetched from store and placed in an Instruction Stack before
being decoded and issued by the Scoreboard (control unit) to the appropriate function unit. The
Instruction Stack itself consists of eight 60-bit registers (I0-17 in Figure 2) which operate as a stack
and which can contain instruction loops. Programs are initiated in the 6600 by an Exchange Jump
in which the contents of all addressable registers are interchanged with the contents of a designated
store area. Following such an Exchange Jump the new contents of the program address register are
used to access the first instruction word. This word is received from store into an Input Register
and then loaded into the bottom register of the Instruction Stack.

Instruction words are made up of four 15-bit parcels and as the first instruction word enters
the bottom register of the stack (!0), the first two parcels within the word (to allow for 30-bit
instructions) are transferred into a series of instruction registers within the Scoreboard. As further
instructions are fetched the old instructions ripple upwards through the stack.

Information about the contents of the stack is contained in two registers, D and L. The D(epth)
register measures the number of valid instruction words in the stack, and L(ocation) register specifies
the location in the stack of the instruction word currently in use. During execution of a loop held
entirely in the stack, the instructions remain in fixed locations and the program address register can
point to any one of the stack registers within a distance D from the bottom. D is re-set to zero
whenever a branch out of the stack is taken, and is incremented by one for every new instruction
word brought in. When the stack is full, D remains equal to seven~

When a conditional branch is decoded a test for jump within stack is made. This involves
subtracting the current program address from the branch address. If the absolute value of the result

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 8

is less than seven words, and if the values in D and L indicate that the branch is to a location within
the stack, no further store accesses are made for instruction words until instruction parcels are again
taken from IO. Thus a branch may jump forwards or backwards within the stack and loops may be
held in the stack in various forms.

A very similar Instruction Stack was used in the STAR-100 computer, CDC's first commercially
produced vector processor. The STAR-100 had a much longer instruction format than the 6600
so that its Instruction Stack was larger, being made up of sixteen 128-bit registers, but it used
essentially the same mechanisms. Both these systems are relatively simple and make no attempt to
deal with the delays caused by conditional control transfers. As we saw earlier, the delays incurred
by conditional control transfers which branch depend on the number of stages both before and after
the Control Point. However, if correct instruction sequences can be supplied to the pipeline behind
control transfers, then the delay depends only on the number of stages beyond the Control Point.
Furthermore, if recoverable instructions can be sent out beyond the Control Point, then in some
cases the delays incurred beyond the Control Point can also be overcome. The instruction buffering
system in the IBM System/360 Model 195 attempted to do this.

The ffiM System/360 Model 195 Instruction Processor

The IBM System/360 Model195 [Murphy and Wade, 1970J central processor consists of an Instruc­
tion Procesor and Fixed and Floating-point Execution Units. The Instruction Processor is concerned
with fetching and buffering instructions from store, fetching the operands which those instructions
specify, issuing instructions to the appropriate execution unit, handling interrupts, and executing
all branching (control transfer), status switching and input/output instructions.

Instructions fetched from store are buffered in an Instruction Stack (Figure 3) made up of eight
64-bit registers. The instruction fetching mechanism is controlled by three registers, the Instruction
Register (IR) which addresses the instruction currently being decoded, the Upper Bound Register
(UB) which points to the most recent word brought into the stack, and the Lower Bound Register
(LB) which points to the earliest word in the stack. During normal operation the stack contains
the current instruction word, some words ahead of the current instruction and a copy of some
instructions which have already been issued.

Pre-fetching of instructions is controlled by the UB register. When instruction fetching is initiated
following an interrupt, for example, the Instruction Stack is declared empty and the store address of
the first instruction word is loaded into UB and LB. The instruction fetching mechanism associated
with UB then accesses this word and loads it into the location in the Instruction Stack addressed
by the three least significant word address bits in UB. Initially this location is also addressed by
IR, which selects each instruction in sequence for decoding and processing. After an instruction
has been decoded and passed to the next stage in the processor pipeline, IR is incremented by the
number of half-words in that instruction and the next instruction selected.

Once the first instruction access has been sent to store, the instruction fetching mechanism
increments UB and continues to make sequential store accesses until prevented from doing so either
because the address in UB is seven words higher than that in IR (and any further accesses would
cause instructions not yet decoded to be overwritten), or because the Instruction Processor has
detected a condition giving rise to a change in the instruction sequence (a branch instruction or an
interrupt, for example).

During normal operation the instruction fetching mechanism continually attempts to increment
UB and fetch instruction words from store, while the instruction decoding mechanism continually
increments IR as instructions are decoded and passed along the processor pipeline. Once IR has
been incremented beyond the address in LB, instructions in the first word fetched into the stack
can be overwritten with new information. LB and UB are then incremented together and at each
instruction access the oldest word in the stack is replaced by the latest word fetched from store.

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

.-------r---+----From Processor ! Storage

I Temporary Buffer 1 I
Temporary Buffer 2 I

Instruction

Stack

Decoder

LB IR L8

~------~

'
1-c-----------:

~---------------·

To Execution
Units

Figure 3: The IBM System/360 Modell95 Instruction Buffer

9

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 10

Use of this pre-fetching mechanism allows a continuous sequence of instructions to be supplied
to the processor at a rate approaching one per machine clock cycle, and thus roughly matching the
instruction execution rate. When a new sequence of instructions is required as a result of the branch
being taken in a control transfer instruction, however, the start-up delay is of the order of six clock
cycles, and in the absence of some additional technique the average performance of the processor
would be seriously degraded. Conditional branches cause even further problems, of course, since
the branch decision depends on the outcome of a previously issued, but not necessarily completed
arithmetic instruction, and an additional delay may be incurred in awaiting this outcome. In the
Model 195 two techniques are used to ameliorate the problems caused by branches, one involving a
Conditional Mode of operation, and the other a Loop Mode.

Conditional Mode

Conditional branch instructions interrogate a 2-bit Condition Code at their point of execution in
order to determine whether or not the branch is to be taken. The Condition Code is set by a variety
of instructions, but only the last of these issued before a conditional branch must be allowed to affect
its outcome. This is accomplished by tagging each instruction which will set the Condition Code as
it leaves the Instruction Unit. At the same time a signal is forwarded through the pipeline to remove
the tags from any previously issued but uncompleted instructions. Only a tagged instruction may
set the Condition Code, at which point its tag is removed, and a conditional branch instruction can
only execute when there are no outstanding tags in the processor.

The Condition Code will normally be invalid when a conditional branch is decoded, and so the
hardware always assumes this to be the case and establishes Conditional Mode. In Conditional Mode
further sequential instruction accesses are inhibited, but rather than hold up further activity entirely,
processing of the remaining instructions in the Instruction Stack beyond the branch proceeds as far
as possible, with the instructions being marked as conditional. When conditional instructions are
decoded, their operand fetches are initiated, and they are forwarded beyond the Control Point to
the relevant execution units in the normal way. The conditional tag inhibits the execution units
from actually completing them, however, and once the first such instruction reaches the point of
execution, further processing is held up until the Condition Code is set and the branching action
determined. If the branch is not taken, the conditional tags are re-set and the pipeline re-started.

If the branch is taken, the conditional instructions must be abandoned and a fresh start made with
a new sequence. The delay incurred in refilling the pipeline from the decoder onwards is unavoidable,
but the delay in accessing the first instruction at the target address of the new sequence is minimised
in the Model 195 because the hardware assumes at the start of Conditional Mode that either outcome
is equally likely and fetches the first two instruction words at the branch target address immediately.
These two words are loaded into the two Temporary Buffers shown in figure 3, in order that the
Instruction Stack remain unaffected if the branch is not taken. If the branch is taken, the access
time for the target instructions will have been overlapped with the wait for the Condition Code.
In the case of an unconditional branch to an instruction not in the Instruction Stack, there is, of
course, no need to wait for the Condition Code to become valid. As in the conditional case, the
target instruction sequence is requested immediately, but unless the execution unit pipelines are also
held up (as a result of divide operations, for example) the six clock start-up delay inevitably causes
a gap to occur in the instruction processing sequence.

Loop Mode

Without the use of branch target instruction pre-fetching in Conditional Mode, the time lost when
the branch is taken would be roughly equal to the sum of the time spent waiting for the Condition
Code to be set and the store access time, i.e. equivalent to the full length of the pipeline. With pre-

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 11

fetching the time lost becomes equal to only the greater of these two, but even so, where the branch
is closing a short loop of instructions, this loss can severely limit overall processor perlormance.
Thus for short loops a different philosophy is adopted whereby the entire loop is contained within
the Instruction Stack and store accesses are avoided altogether until the program exits from the loop.
Clearly, the longer the loop, the smaller the proportion of time lost as a result of the branch, and
the choice of eight words as the capacity of the stack represented a compromise between hardware
cost and performance in Loop Mode.

Loop Mode is entered whenever a branch backwards is taken to a target address within eight
words of the current instruction. The Instruction Stack is immediately re-initialised to contain the
appropriate eight words, after which instruction fetching ceases and the address path to store is
fully available for operand fetching throughout execution of the loop. Loop Mode is controlled by
two additional registers, one containing the loop target address (SLT) and the other the value of IR
corresponding to the loop closing instruction (SLCIR). Once in Loop Mode the address of any branch
instruction being decoded is compared with that in SLCIR, and if it is the same the branch is made
immediately to the target address held in the other. Thus the asumption built into Conditional
Mode is reversed, since it is assumed that the branch will be taken, and instructions are therefore
decoded from the target path rather than the straight through path. Furthermore, no fetches are
made to the Temporary Buffers. Loop Mode is turned off when an exit is taken from the loop.

The main drawback of both the IBM System/360 Model195 and the CDC 6600 instruction buffers
is that where the total number of instructions being obeyed in a loop will fit into the stack, but the
code is actually made up of a number of non-contiguous segments (as in figure 4, for example), the
loop may not be caught in the stack. With machine code programming this situation can normally
be avoided, but it is a common occurrence in compiler generated code and increasing emphasis on
high-level language programming caused processor designers to seek alternative solutions. The CDC
7600 [CDC, 1977Jand CYBER 205 [CDC, 1981], for example (successors, respectively, to the 6600
and STAR-100 [Hintz and Tate, 1972]), both use associatively addressed buffers, with the CYBER
205 Instruction Stack again being correspondingly larger than that in the 7600.

The CDC 7600 Instruction Stack

The CDC 7600 was designed to be machine code upward compatible with the 6600, but to provide
a substantial increase in performance. The central processor is very similar to that of the 6600; it
contains nine parallel function units, a scratch pad of eight X registers, eight A registers and eight
B registers, and an Instruction Stack. The 7600 Instruction Word Stack is made up of twelve 60-bit
registers, however, compared with the eight used in the 6600, and each register also has its own
18-bit associative address register in an Instruction Address Stack (figure 5).

The Instruction Stack is filled two words ahead of the instruction currently being executed, thus
giving a greater degree of pre-fetching than in the 6600. Furthermore, instructions are obeyed from
a Current Instruction Word (CIW) register, rather than from the bottom stack register, and a
complete 60-bit word is transferred from the Instruction Stack into this register whenever the word
address changes in the program address counter. This transfer can be made from any of the twelve
registers in the Instruction Word Stack, allowing a considerable degree of flexibility in pre-fetching
and loop catching. Whenever a new word is required in the CIW register, the address in the program
address counter is compared with the entries in the Instruction Address Stack, and if a coincidence
occurs for any of these entries, the content of the corresponding register in the Instruction Word
Stack is transferred into the CIW register.

When obeying sequential code the required word will normally be in one of the bottom two
registers. When a branch instruction is executed and the branch is taken, the required word may
already be in one of the top ten registers, obviating the need for a store access, and giving improved

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

Instructions
in Loop

Entry to Loop

'

' Exit from loop

n
times

Figure 4: A Non-contiguous Instruction Loop

Instruction Word Stack

12

Instruction
Address
Stack ~ JJJ}

jJ)J

I 60 bits ~;JJ
Associate

Program
Address
Counter

1

I

Figure 5: The CDC 7600 Instruction Stack

'1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1

Current Instruction Word J

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 13

performance. H the required word is not in the stack, the first two words at the target address
are immediately requested from store and instruction execution continues when the first of these is
received. Whenever an instruction word is received from store all the entries in the Instruction Word
Stack and the Instruction Address Stack are simultaneously moved up one position, with the new
address and instruction word being entered at the bottom of the stack and the oldest entry being
lost. Entries in the stack are only invalidated by the execution of a subroutine call or Exchange
Jump, and not by normal branch instructions, so that a program may branch back and forth between
short sequences of non-contiguous code held in the stack.

Although this stack is larger than that of the 6600, it is still relatively small, and considerable
effort is frequently required to reduce the amount of code in program loops in order that they may
fit into it. A different scheme from those previously considered is required if loops of unrestricted
size are to be accommodated. One such scheme involves the use of a Branch Target Buffer, first
introduced in the MUS computer.

The MUS Instruction Buffer Unit

In the MUS computer instructions are pre-fetched from a four-way interleaved Local Store and
buffered in an Instruction Buffer Unit. This Instruction Buffer Unit (figure 6) contains three 128-
bit buffer registers through which instructions flow on their way to the Primary Operand Pipeline
(PROP). The necessary store requests are made by the Store Request System, which issues store
addresses formed by a counter at a rate matched to the maximum rate at which instructions can be
taken from the buffers by PROP.

This system operates satisfactorily until a branch occurs (as a result of either an unconditional
control transfer instruction, or a. conditional control transfer instruction for which the condition is
met). Then all the pre-fetched instructions have to be abandoned, and the branch target instruction
cannot be executed until the store has been accessed, using the new control address, and the new
instruction stream has passed through both the buffers and the PROP pipeline. As a result the
total time between the execution of the control transfer and the first instruction of a new sequence
is 13SO ns.

In order to reduce the number of occasions on which this delay is incurred, MU5 incorporates a
Jump Trace (Branch Target Buffer) which attempts to predict the outcome of an impending control
transfer. This is effective because a significant proportion of control transfers occur at the end of
program loops, and under these circumstances the branches are normally taken. By predicting the
outcome of a control transfer at pre-fetch time, rather than trying to contain loops in buffers, loop
size is virtually unrestricted. (There would be a problem with very small loops, were it not for the
fact that they can be caught in the very limited amount of assembly buffering in the IBU.)

The Jump Trace is implemented using an eight-line associatively addressed store. Whenever a
new instruction address is generated by the pre-fetching mechanism within the IBU it is presented
to the associative fump-from address store before being sent to store. If an equivalence is found, this
address is replaced by the corresponding jump-to address, so that pre-fetching of the new sequence
takes place instead.

When the control transfer instruction which gave equivalence in the Jump Trace is sent to PROP,
it is accompanied by a bit indicating that the instructions following it are out of sequence. This bit
is used in PROP to determine the action after execution of the control transfer. If the following
instructions have been correctly predicted, execution of instructions continues uninterrupted. If
the instructions are not out of sequence, but should have been, a store request is made for the
instructions at the jump-to address, and at the same time a line in the Jump Trace is loaded with
the jump-from and jump-to addresses. (The line used in the Jump Trace is selected according to
a cyclic replacement algorithm and as each line is overwritten its use digit is set. The use digits
are normally only re-set, and the Trace thereby cleared, at a process change.) When the jump·from

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

Jump
Trace

Store
Request
System

Address to SAC

Control
T ransfer- --.o1.

Control Address

128-bit Words
From SAC

Fixed
Instructions

Instruction Parcels
to PROP

Figure 6: T he MUS Instruction Buffer Unit

14

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 15

Instruction Normal Branch Delayed Branch Optimized Delayed
Address Branch

100 LOAD X, A LOAD X, A LOAD X, A

101 ADD 1, A ADD 1, A JUMP 105

102 JUMP 105 JUMP 106 ADD 1, A
103 ADO A,B NO-OP ADO A, B
104 SUB C,B ADO A,B SUB C,B

105 STORE A,Z SUB c. B STORE A,Z
106 STORE A,Z

Figure 7: The Delayed Branch Technique

address is subsequently generated by the pre-fetching mechanism within the IBU, the instructions
at the jump-to address are automatically pre-fetched.

Measurements made with the MU5 hardware performance monitor indicated that without the
use of the Jump Trace, around 20% of control transfers were followed through the pipeline by the
correct sequence of instructions during program execution. Using the Jump Trace, this figure rose
to around 65% [Holgate and Ibbett, 1980J.

The Branch Target Buffer technique has been evaluated consistently as the most effective branch
prediction strategy [Lee and Smith, 1984J, [McFarling and Hennessy, 1986J; one observes that even
in RISC machines, where the use of software techniques has been prevalent, the use of Branch
Target Buffers has not been completely ruled out [Patterson, 1983J. It has become the preferred
prediction strategy in more recent high performance machines such as the IBM 3090 [Tucker, 1986J
and Fujitsu's VP Series machines [Miura, 1986J.

Software Techniques to Limit the Effects of Branches

Software techniques are increasingly being used as a means to deal with the branching problem in
small machines where hardware is a particularly scarce resource; this is typical of single chip VLSI
pipelines in which only so much can fit on the chip. The most popular by far is the delayed branch in
which code is reorganized so that a control transfer takes effect in the second instruction slot after
the one in which it is defined. This is illustrated in the example of Figure7. Essentially the code
is rearranged so that the next instruction is always prefetched during the execution of the current
one. This allows the hardware to execute one instruction in every beat although it may require
the insertion of No-Operation (NOP) instructions in order to achieve this. Optimization by the
compiler can be quite successful in removing a large proportion of these (Sequin, 1983J although this
is only likely to be true for unconditional control transfers; conditional control transfers are generally
difficult to handle and point to the weakness of such techniques. Thus, in R!SC I, the designers
cite the proportion of removed NOPs as 90% for unconditional branches and 25% for conditional
branches; for the IBM 801 [Radin, 1983J the figures are much lower, with only 60% removal for
unconditional branches.

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 16

Another software technique that can be regarded as an extension of the delayed branch is the
branch-preparation technique used in PIPE [Goodman, 1985]. The main difference between this and
the delayed branching of the Berkley RISC is that whereas the latter always requires a fixed number
of instructions to be executed before the branch takes effect, and hence in some cases will require
the use of NOP instructions, in PIPE the number of instructions is variable. Thus the Prepare To
Branch instruction used in PIPE, in addition to specifying a branch condition, also specifies the
number of instructions which must be executed irrespective of the branch condition.

The techniques described above are not new; they are essentially derived from similar techniques
used in microprogramming and in the larger pipelined machines where they have been used to
supplement hardware techniques. Their weakness is that not only do they require considerable
ingenuity on the part of the compiler writer but also that in spite of this they are not always
applicable; it is sometimes the case that compiler~generated code simply cannot be manipulated
in the manner indicated by the above example. Indeed the designers of the Berkley RISCs have
not found the use of hardware techniques, in the form of an instruction cache with some branch
prediction, to be unreasonable [Patterson, 1983].

2.1.4 Co=entary

Among the points that should be drawn from the above discussion is the observation that trying to
deal with branches in the context of single instruction streams is unlikely to be entirely successful. A
much better approach is to accept that such discontinuities are inevitable and to look for some means
of masking them and hence avoiding the associated loss in performance. One such technique consists
of concurrently maintaining several active instruction streams, switching to another stream whenever
a control transfer is decoded in the current one, and returning to processing the (temporarily)
abandoned stream only when it can be guaranteed that executable instructions are available; such
an approach, as well as a practical refinement of the general idea, is described in sections 3 and 4.

2.2 Discontinuities in the Flow of Data

In the same way that a control transfer introduces increased entropy, or disordered arrangement
of information, the necessity to fetch operands from outside the pipeline can also be regarded as a
manifestation of high entropy, and various mechanisms have been developed to reduce its effects.
These mechanisms may be explicit or implicit, but all depend on the locality of data phenomenon:
at any one time during the execution of a program the majority of accesses which it makes are to a.
relatively small and slowly changing subset of its total data-set.

Explicit mechanisms usually involve the use of programmable registers in which the programmer
or compiler may keep frequently used variables, while implicit mechanism involve the use of block
organised cache stores such as that first introduced in the IBM System/360 Model 85 or selective
word organised buffer stores such as the MUS Name Store. Discontinuities in the flow of data can
also be caused by data dependencies, however, and the problems which these can create can rapidly
lead to complex hardware structures or poor performance.

The CDC 6600 and its successors (the CDC 7600 and the Cray-1) are interesting examples of
machines with explicit mechanisms. All arithmetic and logical operations use source and desti­
nation operands held in computational registers, while transfers between these registers and store
are effected by instructions which load corresponding address registers. Thus, by judicial coding,
operands can be brought from store to the computational registers ahead of their being required,
and the inherent latency of the store accesses can be programmed out. Of course, to be effective for
high-level languages, this requires a considerable degree of compiler optimisation.

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

l

Address To

Main Storage

t
~ Validity

Bit Check

Cache
Yes

~ector I"
Sector Number
Address

7 Registers I'

Sector Block Word

Address From Processor

Block From

Main Storage

Cache
Data
Store

16 Bytes to
Processor

Figure 8: Cache Organisation in the IBM System/360 Model 85

Cache stores

17

In the System/360 Model 85 a ll program-generated addresses are real addresses referring to main
(core) store locations, and the semiconductor cache store which is invisible to the programmer is used
to hold the contents of those portions of main storage currently in use by the program. The cache
mechanism operates by dividing both cache and main storage into logical sectors, each consisting of
1024 contiguous bytes starting on 1 Kbyte boundaries. During operation, cache sectors are assigned
to main storage sectors in current use, and a sector address register associated with each cache
sector contains the 14- bit address of the main storage sector to which it is assigned (figure 8). Since
the number of cache sectors (16 or 32} is smaller than the number of main storage sectors (512
or 4096), most main storage sectors do not have a cache sector assigned to them. However, the
localised nature of store accessing exhibited by most programs means that most processor accesses
are handled by the cache (which operates a t the 80 ns processor rate in the Model 85) rather than
by the (1.04 microsec cycle time) main store.

Each sector within the cache is made up of 16 blocks of 64 bytes and each block is marked with a
validity bit. Whenever a cache sector is re-assigned to a different main storage sector, all its validity
bits are re-set, and the block containing the required store word in the new sector is accessed from
main storage. The validity bit for this block is then set and the sector address register updated.
Further blocks are accessed and their validity bits set as required.

The sector address registers constitute an associative store. W henever an address is generated

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 18

which requires an operand to be fetched from store, the sector bits within the address are presented
for association. H a match occurs a 4-bit tag is produced indicating the cache sector address, and
this is used in conjunction with the block bits to select the appropriate validity bit for examination.
If a match occurs in the sector field, and the validity bit is set, the corresponding data is read out in
the next machine cycle. Throughput is maintained at one access per cycle by overlapping association
and reading for successive instructions.

If a match occurs in the sector field, but the validity bit is not set, the required block is read
from main storage. Reading one 64-byte block involves one access to each of the four interleaved
storage modules making up the main store, since each is 16 bytes wide. The delay experienced by
the processor as a result of these main storage accesses is minimised by always accessing the storage
module containing the required data first in the cycle of four, and by sending this data directly to
the processor at the same time as loading it into the cache.

H a match does not occur, then a cache sector must be re-assigned to the main storage sector
containing the failing address. The Model 85 cache implements a least recently used algorithm by
maintaining an activity list with an entry for each cache sector. Whenever a sector is referenced it is
moved to the top of the list by having its entry in the activity list set to the maximum value, while
all intervening entries are decremented by one. The sector with the lowest activity list value is the
one chosen for re-assignment.

Re-assignment does not involve copying back to main storage values in the cache updated by the
action of write orders. Whenever such an order is executed, both the value in the cache and that
in main storage are updated, a technique known as store·through. Furthermore, if the word being
updated is not held in the cache, the cache is not affected at all, since no sector re-assignment or
block fectching takes place under these circumstances. While the store-through technique has the
advantage of not requiring any copying back of cache values at a sector re-assignment, it also has
the disadvantage of limiting the execution rate of a sequence of write orders to that imposed by the
main storage cycle time.

The MU5 Name Store

A quite different approach to high-speed buffering was taken in the design of the MU5 computer
[Ibbett, 1982[, [Morris and lbbett, 1979[. An examination of the operands used in high level lan­
guages, and studies of programs run on Atlas (the predecessor to MU5 at the University of Manch­
ester), had indicated that over a large range of programs, 80% of all operand accesses were to named
scalar variables, of which only a small number was in use at any one time. In a register machine
these variables would be kept in the fast programmable registers in order to achieve high perfor­
mance. However, this sort of hardware feature causes considerable compiler complexity, complexity
which the designers of MU5 were seeking to avoid. The alternative scheme adopted in MUS was
to use a small associatively addressed buffer store containing only named scalar variables. MU5
instructions contain information about the operand type and accesses to non-scalar variables such
as data structure elements are made via descriptors, which are themselves named variables, eligible
to be stored in the Name Store. Because of this scalar variables and data structure elements can be
buffered separately.

Addresses presented to the Name Store are all virtual addresses and the Name Store forms part
of a one-level store with the Local Store of the processor. Simulation studies indicated that a hit-rate
of around 99% would be obtained with 32 words of store, a number which it was technologically
and economically feasible to construct and operate at a 50 ns rate. The address and value fields
of the Name Store (Figure 9) form two adjacent stages of the Primary Operand Unit (PROP)
pipeline. A virtual address generated in the previous two stages of the pipeline is copied into the
Interrogate Register (IN), and concatenated with the contents of the Process Number register (PN),
for presentation to the address field of the N arne Store. A full virtual address in MU5 consists of a

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

Virtual
Address

Address
Field

To SAC

L
u

Value
Field

From SAC or OBS

Figure 9: The MUS PROP Name Store

v
F

To
Next

f--..-.. PROP
Stage

To SAC

To
Next

f-L--PROP
Stage

19

4-bit Process Number, a 14-bit Segment and 16 bits which identify a 32-bit word within a segment,
Only 15 of the word address bits are presented for association (thus referring to 64-bit words), a
32-bit operand being selected from within a 64-bit word in a later stage of the pipeline.

If the presented virtual address gives a match in the associative store, and the corresponding
Line Used digit (equivalent to the validity bit in an IBM cache store) is set to 1, then an equivalence
has occurred, and on the next pipeline beat a digit is set in the PROP Line Register, PLR. The digit
in PLR then selects a register in the Value Field, and the 64-bit word is read out and copied into
the Value Field Register (VF) by the next beat. At the same time, a check is made to determine
whether an equivalence actually occurred. If no digit is set in PLR, this indicates non~equivalence,
and the Name Store is updated by transferring a new word into it and discarding an old one.

When a Name Store entry is replaced the hardware must take into account the effect of store
orders. To maintain the speed advantage of the Name Store, store orders only update the value of an
operand in a Name Store, rather than operating on the store-through principle used in IBM cache
stores. (more recent IBM machines, e.g. the 3090 !Tucker, 1986J, have abandoned the store-through
principle). Thus the content of a word may have to be read out and copied back to the Local Store
before it is overwritten. The choice of which line to replace is made on the basis of a simple cyclic
replacement algorithm, which requires a minimum of additional hardware for its implementation.

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 20

Performance

The performance of a buffer store may be characterized by two parameters: hit rate and effectiveness.
The hit rate h is equal to the proportion of accesses which find their operand in the buffer store. If
the access time to the buffer is tb and the access time to main store is t~, then the average access
time ta is given by

and the effectiveness e is given by

Ia = htb + (1- h) t,

t,
e=-

Ia

Simulation studies of the Model 85 cache carried out before it was built showed an average hit rate
over 19 different programs of 0.986. With a main store access time of around 660 ns, this gave
an effectiveness of 81%. There do not appear to have been any subsequent measurements on real
Model 85 systems to confirm or deny these predictions, but certainly a different arrangement was
introduced in the System/360 Model 195 [Murphy and Wade, 1970[and carried through into the
System/370 Models 165 and 168. In these machines the cache is organised as a large number of small
blocks, and a more complex, set associative, addressing mechanism is used. Measurements made on
the Model195 showed an average hit rate of 99.6% over a range of 17 job segments covering a wide
variety of processing activities.

Performance measurements of the MU5 Name Store performance were made for a set of 95
programs containing both Fortran and Algol jobs ranging in complexity from simple student exercises
to large scientific programs. For most programs it was found that around 80% of operand accesses
were to named variables, that no more than 120 names were used in any one program, and that in
all programs 95 per cent of name accesses were to fewer than 35 per cent of the names used. These
figures confirmed the Atlas results which inspired the idea of using a Name Store, but the figures for
hit-rates were not as good as had been anticipated. The hit rate measurements are complicated by
the fact that a second N arne Store was sited near the floating-point arithmetic unit. The hardware
attempted to keep operands being used as floating-point variables in this second Name Store, while
keeping operands involved in address calculations in the first Name Store. Thus although 96.1% of
name accesses found their operands in one or other N arne Store, only 86% of name accesses found
their operands in the correct Name Store.

2.3 Function Execution

Having dealt with the problems of instruction and operand fetching, the next set of problems arise
from function execution. It is convenient to consider an instruction pipeline as being that section of
the processor which prepares functions and operands for execution in the function execution section.
However, functions generally fall into two categories; computational functions and organisational
functions. Computational functions, typified by floating-point operations, can be carried out in­
dependently of the instruction pipeline. Organisational functions, on the other hand, are typified
by control transfers and addressing register manipulation functions which affect the pipeline itself.
Thus, before considering the problems involved in achieving high floating-point performance, we
examine problems internal to the instruction pipeline.

2.3.1 Organisational Functions

The effects of control transfers have already been dealt with in Section 2.1.3. Here we examine the
problems associated with functions which operate on addressing registers and problems associated
with multilength and multicycle instructions.

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 21

Addressing Register Problems

Operations on addressing registers may occur explicitly, as a result of the execution of functions
which operate on base address registers, or implicitly, as a result of stacking or unstacking operations.
The MUS computer shows clear examples of both types. In both cases the registers concerned are
located in the first stage of the Primary Operand Unit (PROP) pipeline (Figure 9). A function
which operates on one of these registers must be completed before the next instruction in sequence
attempts to make use of the register, but the instruction must itself proceed to the end of the PROP
pipeline in order to pick up its operand. A hold-up is therefore required on the next instruction.
This hold-up is could, in principle, be selective on the particular base register, but in practice in
MU5 there is a general hold-up on all orders, because the name + base adder is also used to execute
the function. Such orders therefore incur a delay equivalent to the length of the pipeline.

One of the addressing registers in MUS is the Stack Front (SF) register, which may not only be
operated on explicitly, but may also be implicitly incremented by a function which stacks an operand,
or implicity decremented by an operand specification which unstacks an operand. These orders use
the name + base adder to operate on SF, but unlike the explicit base register manipulation orders,
do not need to traverse the PROP pipeline in order to obtain an operand. They can therefore alter
SF on the fly. This updating of SF occurs before the order passes the Control Point, however, and
so no irrevocable change to SF can be made. The problem could be solved by invoking a hold-up,
as in the case of explicit operations, but this option was rejected by the designers on performance
grounds. Some mechanism was therefore required to restore SF to its correct value should a control
transfer occur before an order which implicitly altered it passed the Control Point. The technique
used in MUS is to build extra registers into the pipeline to carry any new value of SF through to the
Control Point, and to preserve the new value with the Program Counter when the latter is updated
for the order. After a control transfer this preserved value is used to restore SF to its proper value.

Multilength and Multicycle Instructions

Multilength and multicycle instructions degrade performance by requiring more than a single pipeline
beat (the clock period in a synchronous machine) to go throngh any pipeline segment. The two cat­
egories may be distinguished as follows: in the first, technological/ cost considerations have affected
the design in such a fashion that it is not possible to transfer an instruction from one stage to the
next within a single beat; the adverse effect on performance then arises from the fact that several
beats are required to build the instruction at the succeeding stage and a gap inevitably appears
within the pipeline. In the second, it may be possible that, due to the nature of the instruction
being processed, a particular stage simply cannot complete its phase of the processing within a short
beat time; once again, several beats are necessary to complete the instruction and a gap is inevitable
in the instruction flow.

It is important to consider both of these types of instructions since they appear to be just as
crucial, it not more so, with the newer technologies such as VLSI. Discussions of these must also
be related to the issue of order codes; the case of multilength instructions in effect states that one
should strive for short instruction lengths while the case of multicycle instructions implies that there
are operations that are, ideally, not suited for implementation as single instructions.

MU5 again provides examples; the basic instruction parcel is 16 bits and the interface between
the IBU and PROP was implemented for this width only. As a consequence, whenever 2, 3 or S parcel
instructions are being processed there are instances where the first stage of PROP cannot complete
its action in one beat. In these cases dummy orders are propagated forwards until a sufficient
number of instruction parcels are available and, as would be expected, this is accompanied by a
drop in performance. The obvious solution to this sort of problem is to increase, at added hardware
costs, the width of the interface; this indeed was considered, but rejected by the designers of MU5,

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 22

who felt that the frequency of such instructions would not make it worthwhile. With hindsight this
was probably the wrong decision; any solution that relies on there being a low frequency of long
instructions is bound not to meet the goal of one completed instruction per clock and may suffer
from poor performance when programming practices change.

The other solution is to strive for an order code in which all instructions have the same, short,
width. The implications are that register-register instructions are to be preferred, with 2-register
instructions considered better than 3-register instructions, and that instructions that reference store
should, ideally, be limited to one store reference per instruction. Thus a complex order code such as
that of the IBM System/360, which was not designed with pipelining in mind, cannot be considered
as being conducive to pipelining, as witnessed by some of the complexity in machines such as the
Model195.

The situation is somewhat less straightforward in considering multicycle operations. Clearly a
pipeline is only a.s fast as its slowest stage and one should therefore strive for single cycle instructions,
as far as possible. On the other hand, the need to reduce the gap between high-level languages
and machine-level instructions points to the need for relatively complex instructions1 . Since some
fundamental instructions (e.g. subroutine calling instructions) are intrinsically multicycle, what
needs to be considered is not just the particular instructions that are to be included in the order
code, but also the ease and effectiveness of simulating basic multicycle instructions within the chosen
order code.

2.3.2 Computational Functions

The activities carried out in any instruction pipeline normally include fixed-point address arithmetic
calculations, and the pipeline clock period is therefore of the same order as the time required for
such an operation. Floating-point arithmetic operations take longer, however, so that in order to
consume operands at the same rate as that at which the instruction pipeline can produce them, some
means must be found to speed up these operations. Pipelining of the arithmetic unit is one answer
to this problem, but one of the problems facing the designers of high-speed computer systems is the
difficulty of achieving the fastest possible execution times for a particular technology in universal
execution units. Circuitry designed to carry out both multiplication and addition, for example, will
do neither as fast as two units each limited to one kind of operation.

Thus in some systems separate function units are used for different types of arithmetic/logical
operation, and these units are then operated in parallel. The CDC 6600 and the IBM System/360
Model 91 were among the first computers to adopt this arrangement. The arithmetic units may
themselves be pipelined, of course. (They were not in the CDC 6600, although pipelining was
used subsequently in the CDC 7600 as a means of providing greater performance in an upwardly
compatible system.) Pipelined or not, the time taken to complete different operations may be
different, and this immediately leads to problems. Some instructions may require as inputs the results
of previous instructions which have not yet completed, while others may produce outputs which will
overwrite values required by instructions which have not yet started. Such dependencies between
instructions are examples of the general problem of data dependencies in instruction pipelines.

2.3.3 Data Dependencies among Computational Functions

In processing instructions from a single stream, it is inevitable that data dependencies will occur
between different instructions. Maintaining data consistency in the face of such dependencies results
in performance degradations and/ or complexities in the hardware, most frequently both. Hardware
complexity is moreover aggravated if it is possible to execute instructions out of their initiation
order, as happens with parallel function units.

1This point of view is argued at length by Myers in [Myers, 1982].

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 23

Essentially three types of data dependencies (hazards) are possible: Read-after- Write in which
an instruction needs data that is to be produced by an instruction that precedes it in the stream;
Write-after-Read in which an instruction attempts to overwrite data that has yet to be consumed
by an instruction that appears earlier in the stream; and Write-after- Write in which an instruction
attempts to overwrite data that has yet to be overwritten by an earlier instruction. The occurrence
of a Write-after- Write to the same variable normally implies, of course, that there has not been an
intervening Read of that variable, so that the first Write is in fact unnecessary. Where a Wrz'te­
after- Wn'te could in principle occur in hardware, however, the designers have generally displayed
less than complete faith in software writers and have ensured that the hardware appears to maintain
proper sequentiallity.

In any of these situations maintaining consistency clearly requires that the second instruction
in question be prevented from completing before the first one. Solutions tend to fall into two cat­
egories: in machines which issue and execute instructions in strict order of initiation, issue of the
second instruction is simply held up until the first instruction completes with a resulting degradation
in perfonnance in most instances. In machines where instructions may be completed out of their
initiation order it is possible to alleviate performance loss by continuing to issue independent instruc­
tions whilst constructing an internal (hardware) data flow graph for instructions with dependencies.
The latter case typically reverts to the former, when the quantity of low-level parallelism reaches a
hardware limit determined by physical space available to hold the internal data flow graph. In the
remainder of this section we describe the solutions adopted in the CDC 6600, the IBM System/360
Model 91 and MU5, discuss their weaknesses, and compare them.

The CDC 6600 Scoreboard

In the CDC 6600 instructions are taken in sequence from the Instruction Stack and issued by the
Scoreboard to the appropriate execution unit (Figure 10). Each unit takes its input operands from
among the 24 scratch-pad registers (eight 60-bit X (operand) registers, eight 18-bit A (address)
registers, and eight 18-bit B (index) registers) and returns its result to one of these registers. The
maximum rate of issue is one instruction per minor clock cycle {100 ns), while the units take
typically 300 or 400 ns to complete their operations. In order to take advantage of the multiple
function units, instructions may be executed out of issue order, and may be issued before obtaining
their operands if a function unit is available. The Scoreboard is responsible for maintaining the
dataflow graph necessary to ensure sequential consistency. Detection and resolution of hazards is
performed via reservations which are placed on registers at the time of instruction issue. To permit
out-of-sequence-execution, various flags and funct~·on desz·gnators are also used for each function,
identified by a unique number. An example is illustrated in Figure 11.

The F registers identify the sink and source registers, the Q registers identify the function units
producing the two inputs, and the Read Flags indicate the availability of the inputs. Each register
also has reservation bits identifying the function unit that has reserved it as a sink. Assuming that
there is a function unit available, instruction issue is preceded by the setting of the F registers
(from the instruction), the Q registers (from the reservation bits of the appropriate computational
registers), and the reservation bits of the sink register. Once an instruction has been issued it may
proceed to execute only if the Read Flags for its function unit are set and it may store its result only
if its sink register is not reserved. On completion, the function unit releases the reservation it has on
the sink register and broadcasts to other function units which in turn set their Read Flags if they
had been waiting for the output of the former function unit; additional details on the Scoreboard
operation may be found in [Thornton, 1970]. In effect, the Scoreboard issues instructions as fast as
it can and constructs a data flow graph (with function units as nodes and registers as edges} for
instructions with data dependencies.

The Read~ after-Write in the 6600 occurs when an instruction requires the result of a previously

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 24

Peripheral
Channels Peripheral

Processors Add
Multiply

! Multiply
- Divide

Scratch
Central Pad Fixed Add
Storage Registers Increment

Increment
Boolean

Shift

Branch

Instruction cl Scoreboard I Stack

Figure 10: The CDC 6600 Central Processor

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

Read Operands

Qj Fj

Fk

X-8-A

Operating
Registers

operands result

Issue
Instructions

Go Read

Go Store

Go Read/
Go Star

Request
elease

Fi

Figure 11: CDC 6600- Functional Unit Reservation Designators

25

Reservations

Scoreboard
Control

Set Flags

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 26

issued, but as yet uncompleted instruction, as input. In this case the function is issued but its
Read is held up in the function unit until the Write completes and releases the reservation it has on
the register in question. Because there are several function units, a number of instructions may be
issued following the Write and hence the removal of the reservation may permit the register to be
read from several function units.

The Write~after-Read occurs when an instruction needs .to store its result in a register that is to
be used as input by a previously issued, but as yet unstarted instruction. In the case of an unstarted
instruction both instructions are issued but the Write is held up until the reservation placed on
behalf of the Read has been removed.

The Write-after-Write occurs when an instruction requires the use of the same result register as
a previously issued but as yet uncompleted instruction. In such a case, the reservation placed on
behalf of the first instruction is detected in time for the issuing of the second instruction to be held
up. This is a more severe form of hold-up than that used for a Write-after-Read, but as the result
of the first Write is clearly not used, it is an unlikely event, so the length of the delay is irrelevant.

The ffiM 360/91 Co=on Data Bus and Reservation Stations

Because all computational instructions in the 6600 involve register-register operations, all depen­
dencies occur between registers and function units, rather than memory locations. Hence the task of
resolving these dependencies remains tractable. In the IBM System/360 Model 91, computational
instructions can also be store-register, but because operands from store are temporarily buffered in
a special set of registers, all instructions can, in fact, be regarded as two-address register-register,
and again the problem of resolving dependencies remains tractable. The sink specifies both an input
and output register while the source specifies an output register, and it therefore suffices for our
purposes to consider only register-register operations.

The organisation of the Model 91 Hoating-point unit [Tomsulo, 1967[is shown in Figure 12.
Instructions are prepared for this unit by the Instruction Unit pipeline and entered in sequence, at
a maximum rate of one per clock cycle, into the Floating-point Operand Stack (FLOS). Instructions
are taken from the FLOS in the same sequence, decoded, and routed to the appropriate execution
unit. The Instruction Unit maps both storage-to-register and register~to-register instructions into a
pseudo-register-to-register format, in which the equivalent of the Rl field always refers to one of the
four Floating-point Registers (FLR), while R2 can be a Floating-point Register, a Floating-point
Buffer (into which operands are received from store), or a Store Data Buffer (from which operands
are written to store). In the first two cases R2 defines the source of an operand; in the last case it
defines a sink.

The most significant feature of this Hoating-point system is the Common Data Bus (CDB). The
CDB is fed by all units which can alter a register, and itself feeds the Hoating-point registers, the
store data buffers and all units which can have a register as an input operand. The latter connections
allow data produced a.a the result of any operation to be forwarded directly to the next execution
unit without first going through a Hoating-point register, thus reducing the effective pipeline length
for Read-after- Write dependencies, as found, for example, in the scalar product loop. The running
total in this loop would not actually appear in a Hoating-point register in the Model 91 until the
last execution of the loop.

The operation of the CDB is controlled by the use of tags. A tag is a 4-bit number generated
by the CDB control logic to identify separately each of the eleven sources which can feed the
CD B. Thus there are six Hoating-point buffers, three parallel reservation stations (containing input
buffer registers) associated with the adder, and two parallel reservation stations associated with the
multiplier/divider. Tag registers are associated with each of the four floating-point registers, with
the source and sink inpUt registers of each of the five reservation stations, and with each of the three
store data buffers. There is also a busy bit associated with each of the fioating-point registers. This

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 27

Storage Bus Instruction Unit

1

• 1 I
6 ~ln:atinn

Floating 5 Point 8

-p-Oint 4 Control Operand Busy Floating Point
Buffers Stack Tags

4

3 Bits

(FLB) 2 (FLOS) Registers 2

1 (FLRS) 0

• •
t

Decoder l-
Store 1

Control Tags
Data Buffers 2

(SOB) 3

l FLB Bus I rtorage

FLR Bus
II

Bus

Tag Sink Tag Source CTRL l Tag T Sink I Tag Tsource ICTAL l
Tag Sink

a::e
Tag Source CTRL Tag T Sink I Tag TSource ICTAL I

Tag Sink

"" Reservatio?

Tag Source CTRL ~"ltiply/OI,id/
"'Adder/

Stations

I I Result I Result l • Common Data Bus (CBO) •

Figure 12: Organisation of the IBM S/ 360 Model 91 Common Data Bus

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 28

bit is set whenever the FLOS issues an instruction designating the corresponding register as a sink,
and is re-set when a result is returned to the register.

Whenever the FLOS decodes an instruction it checks the busy bit of each of the specified floating­
point registers. If the bit is zero, the content of the register is sent to the selected reservation station
via, the Floating-point Register (FLR) Bus. On issuing the instruction the FLOS sets the busy
bit of the designated sink register, and enters into its tag register the tag number of the selected
execution unit. If the FLOS finds a busy bit set, however, it does not transmit the register contents
to the selected reservation station, but instead transmits the current value of the corresponding tag
register, and enters into that tag register the appropriate new tag number. Thus the tag register of a
busy floating-point register identifies the last unit (in proper program sequence) which will produce
a result destined for that register.

Whenever a result appears on the CDB, the tag corresponding to its source is broadcast to all
destinations. Each active reservation station (selected but awaiting a register operand) compares its
sink and source tags with the CDB tag. If a match occurs (a sink is also a source in the System/360
two-address instruction format), the reservation station takes the data from the CDB. In a similar
manner, the CDB tag is compared with the content of the tag register associated with each busy
floating-point register. All busy registers with tags matching that on the CDB are set to the value
on the CDB and their busy bits are re-set.

H a source register is awaiting the result of a previously issued, but as yet uncompleted instruction,
or if a fl.oa.ting~point buffer register is awaiting an operand from store, the tag associated with that
register is transmitted instead to the reservation station, which then waits for that tag to appear
at its input. Thus it is the reservation stations which do the waiting for operands, rather than the
execution circuitry, which is free to be engaged by whichever reservation station fills first. Execution
of an instruction starts when a reservation station has received both operands.

The sequencing of instructions in the IBM 360/91, essentially involves the construction of a
dataflow graph from instructions with data dependencies, as in the CDC 6600. The detection and
resolution of hazards is fairly straightforward with this arrangement. Issuing an instruction only
requires that a reservation station be available for whichever execution unit is required. In the case
of a Read~after-Write conflict, the second instruction will not execute since its reservation station will
not receive a matching tag until the Write completes and broadcasts its result tag on the CD B. For a
Write-after-Write, it is clear that the first Write will not alter the contents of the register in question
since the tag on its result will not match the tag on the register (if the second Write has been
issued); the result is, however, available, (via the CDB) to instructions (specifically, Reservation
Stations) that depend on it. The register contents will therefore reflect the result of the second
Write which has the matching tag. Similar reasoning shows that correct sequencing takes place for
Write-after-Read.

The use of the CDB and the associated tagging rnechanisffi has been shown to reduce the exe­
cution times of the inner loops of programs used to solve partial differential equations, for example,
by about one-third.

The MUS Name Store

In MUS, write operations to scalar variables have direct effect only on the Name Store, with main
store being updated only when a word in the Na.me Store is to be overwritten, thus all dependen­
cies must be resolved at the Name Store. A Read-after- Write dependency occurs in the following
circumstances. When an order which writes to store the content of the B (index) register, for ex­
ample, arrives at the Name Store, the value in B will not be correct because other orders which
can alter the value may not yet have been executed. In order not to cause an immediate hold-up,
a copy of the Line Register is preserved (in a register designated BW), a B* OUTSTANDING digit
is set, and the order proceeds to the B~unit. A Read~after~ Write dependency occurs if a subsequent

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 29

instruction attempts to read from the word addressed by BW, before the required value of B has
been returned to the N arne Store. This occurs when the order is executed in the B-unit. The B
value is sent to PROP, the PROP pipeline is held up and the value is written in to the line addressed
by BW. The B~ OUTSTANDING digit is then reset and the pipeline is restarted. A Write-after­
Write dependency occurs if a second Write instruction to the line indicated by BW arrives at the
Name Store stage while the B~ OUTSTANDING digit is set. Write-after-Read cannot occur since
the Read instruction arrives at the name store (and hence reads the line to be overwritten by the
Write) in advance of the Write; writing is therefore guaranteed to be safe. In the first two cases the
following instructions simply cause a hold-up of the preceding pipeline stages; in MU5 there is in
fact a slight overkill since any Write entering the pipeline while there is an outstanding Write will
cause a pipeline hold. up; we will refer to this situation, where there is no direct conflict on one line,
as a pseudo Write-after- Write.

2.3.4 Commentary

Complexity of the three mechanisms discussed above clearly place the MU5 approach as the simplest,
the IBM 360/91 as the most complex, and the CDC 6600 as in between. Beyond this there are several
other bases for comparison.

• Code-Generation by Compilers
From a compiler-writer's viewpoint, the MUS arrangement is clearly the best since the absence
of addressable general purpose registers relieves one of the burden of having to manage these.

• Order of instruction issuing
In the MU5 instructions are issued only after they have obtained their operands and are
executed in strict sequence; clearly with only two, essentially unrelated function units, there
would little advantage in being able to execute instructions out.of·order. Instruction execution
in the CDC 6600 on the other hand necessarily has to be out of order if full advantage is to
be taken of the multiple function units. However, in the case of the IBM 360/91 it is doubtful
that the ability to issue instructions out of order confers any worthwhile advantages with only
two function units employed; the architecture, however, is easily extensible to accommodate
more units.

• Hazard Detection and Resolution
In terms of how the three machines detect and resolve hazards the following can be observed.
Write--After· Read does not occur in the MU5 since instructions are only issued after they have
obtained there operands; it appears in the CDC 6600 and in the IBM 360/91 because these
issue instructions prior to operand fetch.ing. For Read-after-Write, MU5 has a pipeline hold-up
on the Write since operands must be read before instructions are issued whereas in the CDC
6600 and IBM 360/91 the Read (in fact several Reads) may be issued prior to the completion
of the Write; however, once again MU5 is not necessarily at a disadvantage since it does not
have multiple function units to make effective use of such a capability; thus the complexity
is of limited value in the IBM 360/91 but finds more justification in the CDC 6600. Write­
after-Write is handled in essentially the same manner in both MU5 and the CDC 6600; that
is, the second Write is not issued and causes a pipeline hold-up. In the IBM 360/91 there is
no hold-up and in fact any number of subsequent Writes may be issued as long as there are
reservation stations available.

While there is no doubt that tlie designers of all three machines attempted to achieve the best
design possible at that time and for the particular machine and no doubt considered many alter­
natives and impro-vements, a useful point of comparison is to speculate on the ease with which the

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 30

various mechanism could be extended in redesigned machines and whether such extensions would
be worthwhile. Such speculations must also take into account the fact that there is more scope for
change in the simplest systems and very little in the more complex ones.

The only straightforward addition that could be made to the IBM Common Data Bus would be
an extention of the maximum size of the internal dataflow graph. This could be done by adding

-reservation stations and function units. Although, in principle, this seems quite straightforward,
there is the added cost of storing and comparing larger tags. If such a system were extended to its
logical extreme the result would be a dynamic Dataflow architecture.

Modifying the MU5 Name Store in order to handle Read-after-Write conflicts along the same
lines as in the IBM 360/91 would clearly be a far from straightforward task; although avoiding a
hold-up in the case of pseudo Write-after-Write conflicts seems relatively straightforward. It ought
to be possible to do away with the BW register and instead add another status bit to be set whenever
the line is to be reserved for writing and examined whenever the line is addressed; this would permit
several B-Writes to progress through the pipeline as long as their targeted lines were distinct. Some
other alternative must now be found to serve the BW register's role of line identification; one
straightforward possibility would be for each Write instruction to carry along the address of its
target line. Allowing more then one Write to be issued in the case of genuine Write-after-Write
conflicts would require something along the lines of several BW bits per line. With such a scheme
each Write would set one of the BW bits of its target line as it left the stage and a hold-up would
be necessary only if all the BW bits for a line were set. Such a scheme, however, is not likely to be
great value unless more than one function unit is employed; with multiple function units sequencing
becomes a bigger issue.

In certain RISC processors a technique known as delayed loading is used to overcome the Read­
after-Write problem. It is a direct analog of the delayed branch technique, used to overcome the
control transfer discontinuity in RISC machines. In a normal sequence of instructions we might
expect to find a LOAD instruction, followed by an instruction which uses the data just read from
memory. In a pipelined implementation, the dependent instruction must be held up until the data
has arrived. If this delay is predictable, then a totally independent instruction could overtake the
dependent instruction and hence inprove throughput.

Clearly, this can only occur if a suitable instruction can be found for the otherwise "dead"
cycle following a LOAD instruction. This is another example of how it is possible to migrate the
responsibility, for ensuring integrity, from the hardware into the software. As with the delayed branch
technique, the probalility of filling the pipeline after a LOAD instruction, with totally independent
instructions, decreases as the pipeline length increases. Effectively, the ability to exploit the hardware
parallelism decreases as the degree of parallelism increases. We conclude that this technique has
little to offer in the long term, although it may provide short term performance improvements for
architectures with relatively short pipelines.

2.3.5 Data Flow in Vector Pipelines

Dealing with speed disparities between processor and store speed in vector pipelines simply requires
the extension of the mechanisms used in instruction pipelines to handle vectors instead of simple
scalars; thus the use of scalar registers easily extends to vector registers (e.g. in the CRAY systems)
and the use of the caches easily extends to vector caches (e.g. in the vector processing system
proposed in [Lin, 1986]). It is worth noting, however, that vector operations in the top-end CDC
machines, such as the CYBER 205, are store-to-store operations; the implications of this are dis­
cussed below. Beyo~d this there are two main issues that have to be considered in the design of
vector pipelines; these are the start-up time and the granularity of synchronization. For the former,
the main problem is simply one of trying to mask unavoidable gaps (in the How of results) that
are inherent in pipelining; for the latter, the problem is one of trying to minimise overall processor

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 31

idle-times. If synchronization is performaed on entire vectors then idle-time is a function of the
average vector length; if it is performed on individual vector elements then it is determined only by
algorithmic considerations [Topham, 1986[. Machines such as the CRA Y Series provide fine-grain
instruction interlock through the provision of a chaining mechanism, and in the case of the CDC
Series, through the provision of a short-stopping mechanism and programmer-controlled linking.

The main consideration when incorporating fine-grain synchronization into a vector machine
is the hardware cost incurred. Simple schemes which synchronize on whole vectors are relatively
inexpensive, but more complex schemes which synchronize a number of processors on an element by
element baJ!is can be costly.

In the following subsections, we consider the design alternatives that have been taken in three
machines, the CRAY-1, the CDC CYBER 205, and MU6-V. These are fairly representative; in­
deed some of the recent Japanese supercomputers, for example the Fujitsu [Miura, 1986], NEC
[Watanabe et a!, 1986[and Hitachi machines [Odaka et a!, 1986[, have architectures that are some­
what reminiscent of the CRA Y-1.

The effect on performance of the architectural techniques used in each of these machine classes
can be approximated by considering Equation 5 again. Let us first consider machines with register­
to-register vector operations, typified by the CRA Y Series. If the length of each vector register is l
(elements) then a vector operation of length N must be partitioned into f !f-l sequential instructions,
so:

(7)

So, to lower the threshold value (No) of N beyond which the last term dominates and Equation 4
holds, we must either reduce ta (which largely corresponds to a faster store) or increase l.

Let us now consider machines with store-to-store vector instructions, typified by the CDC Cyber
205. Tp1 is now given by given by:

(8)

Thus, to get the last term to dominate, for as low a value of No as possible, ta and/or n tp must be
kept low.

The CRAY-1 Vector System

The organization of the CRA Y-1 is illustrated in Figure 13. The newer CRA Y systems
[Thompson, 1986] have essentially the same_ basic organisation, with replication in the multipro­
cessor systems. The vector operation subsystem consists of four vector functional units (integer
add, shift, logical; and population count) and eight 64-element (each of 64 bits) vector registers; the
floating point units are also heavily pipelined and are used in vector mode operation as well as in
scalar mode. In the normal mode of vector operation, operands are taken from two vector registers
(or a scalar register and a vector register) and the result is returned to vector register, while in
chained mode intermediate results can be transmitted directly between functional units. Conse­
quently data dependencies are resolved at the registers. The latter relies on the use of a reservation
system, that is similar to, but simpler than, that of the CDC 6600. At the point of instruction
issue reservations are placed on the input operand registers, the output register, and the selected
functional unit.

The CRA Y-1, and all machines with explicit vector registers, suffer from performance penalties
when operating on vectors longer than a single vector register (in the case of the CRAY-1 longer
than 64 elements) since interactions with the store are not always overlapped with arithmetic opera­
tions. In fact, it has been pointed out [Hockney and Jesshope, 1981[that the CRAY-1 has only one
sixth of the store-processor bandwidth that is required to match the processing rate of the vector

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

~
Vector

Registers

Memory

T I
Registers Scalar

Registers

~ J Reg~ters Address

I ~
Registers

Figure 13: Organisation of the Cray-1

~

Vector

Functional
Units

Population
Count

Shift
Logical

Add

Aoating Poin
Functional Unit

-t Reciprocal
Multiply

~ Add

Scalar
Functional Unit

Population
Count

Shift
Logical

Add

Address
Functional

Units

Multiply

Add

32

s

s

=

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 33

processing unit. As a consequence of this compilation is made harder by the need to minimize store
traffic. Although the use of chaining mitigates the (relatively) poor performance from using a large
synchronization granularity, it is a technique that is generally not applicable. An example of such
an instance is the case where a vector operation operates on two vectors, one of which is the result of
producing the element of a matrix in a column-wise fashion and the other is the result of producing
the element of a matrix in a row-wise fashion; in general, the problem is one where the order of
production does not match the order of consumption. For such a computation, even though the
source operands may be produced at the rate of one element per clock, it is clear that the output
cannot be produced at an equivalent rate. This sort of problem is easily overcome by the use of
micromultiprogramming [Ornondi and Brock, 1987J which would permit other vector operations to
be executed on the same functional unit during what would otherwise be long gaps in the produc­
tion of results. This also applies to the problems that occur with the use of vector registers. Also
from Equation 7, it can be seen that vector register length plays an important role; therefore for
a machine in which l is fixed it may be necessary for the programmer/compiler to either mask out
the first term in that equation (by attempting to preload registers ahead of their use) or to supply
vectors of appropriately large N (vectorization) since N is a program dependent parameter; both
require considerable compiler sophistication. Although I is usually fixed by the hardware, it is worth
noting that at least one class of machines (the Fujitsu VP series) permits I to vary although only
within a small range.

The CYBER 205 Vector System

The organisation of the CYBER 205 Vector Processor is illustrated in Figure 14. A typical vector
operation starts with the receipt, at the Vector Control Unit (which initiates and controls the
execution of all vector instructions), of some vector function from the scalar processor. The relevant
addressing information is then forwarded to the Stream Addressing Unit which thereafter generates
the addresses of the required vector elements as well as the addresses of the results; this unit,
therefore, interacts quite closely with the Input and Output Stream Units. The Input Stream
Unit receives data from central store and performs any required alignment of the operands prior to
forwarding these to the Floating Point Pipeline or String Unit. The Floating Point Pipeline consists
of individual pipelined units to perform addition/ subtraction, multiplication, and logical operations;
logic is also provided for division and square root operations.

These units are capable of operating concurrently, and some vector operations may be chained
(linked triadic operations in CDC terminology) as in the CRA Y-1 but with some restrictions. A
useful feature of this pipeline is the provision of a direct data path, a shortstop, from the outputs to
the inputs of the individual units; this removes the need to store and ref etch intermediate results and
hence eliminates some conflicts that would otherwise occur. Another useful facility is the ability of an
arithmetic pipeline to operate as either one 64-bit pipeline or two independent 32-bit pipelines. The
String Unit processes strings of bits and characters (bytes); such processing includes the execution
of editing instructions as well as arithmetic and logical instructions. Lastly, the Output Stream Unit
buffers and realigns results, from the Floating Point Pipeline and String Unit, prior to writing this
to the store.

Almost all criticism of the CYBER 205 has centered around its long start up time, about 1
pf3. This is a problem that has plagued CDC machines for a long time and in fact the CYBER
205 itself is the result of re-engineering the STAR 100 [Hintz and Tate, 1972], which had a startup
time of some 3-7 f.J.S. This relatively long startup time is a consequence of operating directly on
memory-based vector operands and, although it finds justification in avoiding some of the problems
observed with the use of vector registers, the use of memory-based operands requires extremely high
store bandwidths in order to minimize the first term in Equation 8. There seems to have been
little difficulty in providing this although it necessitated some restrictions on permissible vector

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS

Central
Memory

1
Million ..,~ ~.c
Words

Central Processor
Unit

Vector
Processor

Pipeline!

: fipetinel : . : 1
Million
Words t+--------+---•1..' J.jpn'ipelinel : . .

... --,
: 2 •
• Million,.· ._-+!
: Words : ·--------·
··- · -·-·-;
• 4 •
: Million :.____..
: Words : ··-·-- ---·

: -• .- c,; a·-:
: Mill ion :........_.
: Words :
'-. -.......

Memory
Interface

Maintenance Control Unit .-----..J

. .
: !Pipeline! : . .
: . (OPTION) : '-------- -·

Scalar
Processor

8
lnp/Out

Ports

8
: l np/Out :
: Ports •

:_ ~<?~!~~~~- :

Figure 14: Org.anisation of the CYBER 205

34

..

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 35

strides. Whilst the store bandwidth on the CYBER 205 exceeds what is nominally required by
the computational units, it clearly represents a potential bottlneck in trying to design even faster
machines. Also, in examining Equation 8 it may be observed that reducing both ta and tp (as CDC
did in going from the Star-100 to the Cyber 205) may fail to yield significant improvements (in
terms of lowering N0), particularly if n is not reduced (but such reduction would be contrary to
Equation 4). A vector cache such as that suggested by Lin [Lin, 1986] might have been useful for
this machine.

Yet another source of problems has been the use of virtual storage, an unusual feature for a
supercomputer. Although this decision has been justified to some extent [Lincoln, 1982], the fact of
the matter is that, all other things being equal, a machine with virtual storage will be slower than one
without. We believe that many of performance problems in the machine can be overcome through
the use of micromultiprogramming; one can in fact observe that one of the techniques that improves
the performance of the CYBER 205 (over that of the STAR 100), that of overlapping the start of
one vector operation with the finish of another, is a small step towards micromultiprogramming.
Essentially the effect of full microprogramming would be to mask out the effect of the first two terms
in Equation 5.

The MU6-V System

A major objective in the design of MU6-V [Ibbett et a!, 1985] was to have a vector processing system
in which performance could be increased arbitrarily by the addition of more vector units. The two
factors that would limit this in a machine like the CRAY-1 or the CYBER 205 are the processing
power of the scalar unit and the required bandwidth of a centralized store [Ibbett, 1981]. In MU6-V,
therefore, scalar processing capabilities are provided as part of each vector processor and all store is
distributed among the processors; this gives the structure illustrated in figure 15. The bandwidth
required of the shared highway is, in general, substantially less than would be required of the store is
a conventional shared~ store multiple vector processor. Virtual addressing is achieved by a mechanism
in which the vector name is analogous to a segment number. This makes translation by direct table
look-up feasible, resulting in highly efficient memory management.

Another objective was to avoid the performance problems that arise when the techniques for
communication and sychronization between processors rely on shared variables. The solution in
MU6V involves a data-driven global-update protocol, with the granularity of communication under
program control. To communicate a value, a processor broadcasts it on the common highway
and any processors that need the value pick it up; processors, however, always wait for values to
be broadcast, rather than attempting to read them. This results in a data driven system whose
advantages (over a system in which processors make explicit requests for data) are that less time is
required to communicate a value (one highway cycle instead of two) and store latency is eliminated;
also several processors can receive a common value at the same time rather than making individual
requests and contending for the bus. The synchronization required to ensure the correct ordering of
events is fairly straightforward and may be inhibited whenever it is not required. Every element has
a synchronization bit associated with it; this bit is set on writing and optionally reset on reading but
the element cannot be overwritten by globally communicated data if the bit is set. Once a processor
has consumed its local copy of value any attempt to access the {new) value causes the process to
suspend until the new value has been broadcast and the synchronization bit set. In the event that
some processor has computed a new value but not all processors holding copies are ready to update
them, the producer processor postpones its broadcast and retries at a later time.

Although both results from a small prototype and analytical measurements [Topham, 1987] have
shown that this system is capable of linear speedup, some rewriting of algorithms may be necessary
in order to avoid frequent halting of the processoi's; in the absence of this, linear speedup may be
limited mostly to compute·bound problems that perform a large number of operations before halting.

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 36

.:.

COMMON COMMLNCATION MEDIUM ~

I '
Input Local Slave Output
Logic Memory Processor Logic

0

Input Local Slave Oulput
Logic Memory Processor Logic

1

, , , , , , . , , , , , ,

Input Local Master Output
Logic Memory Processor Logic

Input Local 1-0 Output
Logic Memory Processor Logic

.__ ! L.-

Network

Figure 15: The MU6-V Vector Processor

2 LIMITATIONS OF CONVENTIONAL PIPELINE DESIGNS 37

Once again, such problems might be avoided completely if it were possible to micromultiprogram
the vector processor.

3 MICROMULTIPROGRAMMING 38

3 Micromultiprogramming

For many years multiprogramming has been used as a technique for optimising the utilization of a
shared CPU, and for providing an interactive multi-user capability. To get reasonable utilization
each time-slice allocated to each process must be large in comparison with the time taken to change
context. Therefore, multiprogramming at the operating system level is only useful for reducing
inefficiencies caused by relatively infrequent discontinuities, typically 1/0 and memory management.

However, as we have seen, there are discontinuities with much finer levels of granularity than this.
For example, when an instruction within a pipeline needs an operand from main store a pipeline
discontinuity normally occurs. The latency associated with this discontinuity is normally of the
order of several clock periods, and frequent operand accesses result in poor performance. It is often
impossible to continue processing instructions from the same instruction stream when this happens
and so an alternative strategy must be adopted.

One strategy that has been suggested, and used in at least one commercial machine, is micro­
multiprogramming. This is based on a recognition of the fact that a high-latency memory cycle
and a high-latency I/0 operation are simply two examples of discontinuities within a sequential
instruction stream, and suggests the use of a common strategy to deal with both. The micro­
multiprogramming strategy addresses these two problems by initiating a context switch whenever a
high-latency operation is encountered.

3.1 Previous Work

The term micro-multiprogramming {JL-multiprogramming) was, to the authors' knowledge, first
introduced by T.C. Chen [Chen, 1971[, to describe a mechanism for sharing the hardware resources
of a parallel or pipelined system in a self-optimising way. Chen described how the throughput
of an n-way interleaved store could be improved by a factor of ,fn by micro-multiprogramming
the memory requests using memory request queues. A novel form of micro-multiprogramming was
suggested by Flynn in 1970 [Flynn, 1970[, in which highly pipelined function execution units were
shared between 32 "skeleton" processors. Flynn's idealised system is shown in figure 16. The system
was never constructed, although extensive simulation results are available.

This technique was also used, to a limited degree, in the Xerox Alto [Thacker et el, 1982) and
Dorado [Pier, 1983] machines and the Symbolics 3600 [Moon, 1985]. These machines used multiple
microcode contexts to implement the sharing of CPU resources by different I/0 device adapters.
As Arvind and Iannuci [Arvind, 1983) point out, such a limited use of multiprogramming will not
solve the problems of memory latency and process synchronization in a multiprocessor system.
However, they go on to further hypothesise that these problems cannot be solved in a von Neumann
style of architecture. They maintain that the number of low-level contexts required to sustain
perlormance must grow, as the system is scaled, in order to match the increased memory latency.
When describing their dataflow model they omit to mention that dataflow machines exhibit similar
behaviour. This arises because the level of instantaneous parallelism within a piece of dataflow code
must match the level of parallelism within the hardware. Naturally the node-to-node latency will
grow as the dataflow machine is scaled, resulting in a requirement for greater 3pplication parallelism
if performance is to be maintained. This problem appears to be universal, arising from fundamental
register-transfer-level constraints, rather than being specific to certain types of architecture.

3.1.1 The Denelcor HEP

One of the best examples of ,u-multiprogramming to date is the Denelcor Heterogeneous Element
Processor {HEP) [Smith, 1985]. The architecture of this machine is illustrated in figure 17. The

3 MICROMULTIPROGRAMMING

Instruction
Buffer or

Cache

Data
Buffer

Instruction Counter I

Instruction Regsilerl

Index Registers

Accumulator

SKELETON
~

Shared
Memory

R1 Rm

II II II H•••n • •u•u.. II I I I I
Pipelined Execution Units

Figure 16: Flynn's 1970 Proposal

39

HEP system comprises up to 16 Process Execution Modules (PE Ms) and up to 128 Data Memory
Modules (DMMs), connected via a. novel high-speed multi-stage packet switch.

As far as this paper is concerned, the most important feature of the HEP is the way in which a
number of distinct. processes are J.t-multiprogram.med within each PEM. This is achieved by issuing
instructions from a d ifferent process, on each clock cycle, which generates an implied context switch
between every pipeline stage.

3 MICROMULTIPROGRAMMING

Processor

Data
Memory

Processor

Data
Memory

1/0 Channels

Mass storage dev•ces

Processor

Data
Memory

110
Control

Figure 17: The HEP Computer System

Processor

Data
Memory

devices

40

Whereas previous instruction pipelines, such a.s the Primary Operand Pipeline m MUS
[Morris and Ibbett, 1979j, had pipeline stages which eva luated a function f , such that :-

f : /nstruchon .-. Partial Result

The HEP pipeline stages evaluate a fu nction g, such that :-

g : Instruction X Process Tag.-. Partial Result X Proceu Tag

3 MICROMULTIPROGRAMMING 41

In order that the domain of each process can be kept separate the HEP has a large partitioned
register file; effectively a virtual register space. Each PEM also contains a number of parallel function
units, some program memory, some constant memory, a set of control units and an interface to the
interconnection network.

Within the HEP, work is divided into independent tasks each of which may contain up to 64
processes. A Task Status Word (TSW), associated with each task, identifies the relocation and pro­
tection domain, and the degree of privilege for processes within that task. The p-multiprogramming
feature requires a hardware scheduling mechanism, and the basic design criteria of this mechanism
are:-

• It must be fair to all tasks.

• It must be fair to all processes within a task.

• It must be able to schedule (and de-schedule) processes at the pipeline clock rate.

The mechanism used in the HEP is shown in figure 18. The operation of this mechanism is described
in detail in [Hwang and Briggs, 1984], the main points to note are that this mechanism ensures each
process has at most one instruction in a state of partial execution at a time, and that th~ results in
the optimal utilization of the instruction pipeline.

If an instruction needs to reference a data memory module (DMM) the process tag and an
operation descriptor are sent to the Storage Function Unit (SFU). The SFU queues incoming requests
in a secondary set of task queues. These requests are scheduled in the same way as instruction issue
requests, and for each request the SFU sends a packaged memory request into the HEP Switch.
Memory acknowledgements returning from the Switch are routed back to the operand fetch section,
in the case of successful memory operations, or routed back into the SFU Queue in the case of
unsuccessful memory operations that need to be repeated.

Unsuccessful memory operations occur when an attempt is made to operate on a "locked" mem­
ory location. This locking mechanism is used to ensure data integrity, and hence communication, in
the HEP's shared-memory environment.

The processing of memory operations does not require any intervention from the execution section
of the PEM, and this means that the processing of high-latency (non-local) memory requests does
not degrade the throughput of each PEM, assuming that sufficient process-parallelism exists. The
major flaw in the design of the HEP is the low level IPC mechanism, which is based on data sharing.
In consequence the possibility of a "busy-waiting" condition exists, wherein blocked memory requests
are re-issued at intervals which depend upon the loading of the SFU queue.

This places a certain pressure on the user of such a mechanism to ensure that the wait-times are
always relatively short. In section 4.1 we present an alternative mechanism which corrects this flaw,
and opens up some exciting possibilities for highly efficient interprocessor communication protocols.
We believe that in order to achieve efficient parallel processing a process must not consume any
computation or communication resources under the following conditions.

• when it is £die

• during suspension and cont·inuation

3.1.2 The Cyclic Parallel Computer

The Cyclic Parallel Computer proposal from the University of Tokyo [Goto et al, 1986[is another
example of how .u-multiprogramming could provide very high performance. This machine proposal

3 MICROMULTIPROGRAMMING

Pipelined
Switch

110
System

Data
Memory

Data
Memory

Data
Memory

Figure 18: The HEP Scheduling Mechanism

42

combines a cyclic MIMD pipeline with Josephson technology to produce a quoted potential perfor­
mance of 10 GFLOPS2

Josephson technology has the advantage that each logic device may act as a latch, enabling
shatlow-logic pipelining to be practised without the penalty of the extra cost and time delay that
are required when placing pipeline registers in Si logic. Consequently all logic, both processor and

2 The CPC's high clock rate of 10 GHz requires a physically small design. The CPC would fit inside a large coffee
mug!

3 MICROMULTIPROGRAMMING 43

memory, can be naturally pipelined. The CPC proposal suggests the use of a pipelined memory
in which successive read/write operations can be carrried out at intervals of the pipeline pitch
time without causing conflicts. The CPO can be regarded as a scalar multiMprocess system with
a common shared memory, in which interprocess synchronization is implemented by conventional
mutual exclusion primitives. Waiting processes remain idle, which again assumes that wait times
will always be relatively short.

The CPC architecture shown in figure 19 assumes a single J.t-multiprogrammed processor, with
the degree of parallelism fixed at around 40 processes. The CPC proposal is therefore of great
interest in respect of its novel logic and packaging technology, but of less significance in respect of the
extensibility of the architecture and the generality and efficiency of its interprocess communication
mechanisms.

Execute
Instruction

Fetch
Operand

Fetch
Instruction

l

Decode
Instruction

~ Pipelined Memory D Pipelined Processor

Figure 19: The Tokyo Cyclic Parallel Computer

3.1.3 The Circulating Context Multiprocessor

A machine, very similar in design to the HEP, has been proposed by Staley and Butner at the Uni­
versity of California, Santa Barbara [Stanley and Butner, 1986]. This system, shown in figure 20,
embodies a conventional von Neumann programming model, but is implemented as packets of exe­
cutable context in a tightly-coupled shared memory environment.

3 MICROMULTIPROGRAMMING 44

In common with the HEP, the CCMP uses FIFO queues to smooth the How of instructions
between pipeline stages, and consequently is capable of sustaining comparable throughput.

Home
Modules

D
D

'
'
'
' ' '

D

....

,..

...

Memory
Modules

D
D

:
:

D

.. ,...

..

Execution
Modules

D
D

' '
'
'

D

Figure 20: The Circulating Context Multiprocessor

3.2 The Rationale for J.L-rnultiprogramming

The primary motivation behind the design of micromultiprogrammed machines has been efficiencyj
in such machines the relative independence of instructions in different instruction streams is exploited
in order to use up the otherwise wasted processor cycles that occur during:

• operand accessing,

• control transfers, and

• inter~instruction data dependencies.

A rule is enforced, in all of these machines, that each process may have one, and only one,
instruction in a partial state of execution at any instant. This contrasts sharply with conventional
instruction pipelines, where as many instructions as possible are kept active for a single process.

The ability to change context at the pipeline beat frequency relies on having a minimum of
volatile context associated with each process, and hence a minimal context·change overhead. In the
case of the HEP, this volatile context consists of a single Process Status Word (PSW).

Although !'-multiprogramming is capable of reducing the overhead caused by general context
switch requirements, this technique is particularly useful for eliminating instruction and data dis­
continuities in pipelined machines. As pipeline beat frequencies increase the discontinuity problems
become more acute. It therefore seems inevitable that the use of this technique will become more

3 MICROMULTIPROGRAMMING 45

widespread. The commercial trend in advanced microprocessor architecture is currently retracing
the evolution of the present-day mainframe, through the introduction of integrated virtual mem­
ory, instruction prefetch and buffering, and data caching mechanisms The combination of these
techniques will provide a partial solution to the data-latency problem, however, they will also intro­
duce the possibility of additional data-oriented discontinuities•. It is the authors' belief that these
techniques merely address the symptoms of the problem, rather than the disease itself.

It is clear that there are now a significant number of machine designs and proposals which use
the ~-£-multiprogramming technique, although each machine appears to incorporate the technique for
a different reason. Furthermore, experience so far suggests that this technique could be exploited in
the search for general-purpose parallel VLSI architectures.

The goal of this paper is to address the problem of producing a generic architectural form in
which discontinuities, from whatever source, do not affect the overall throughput of the system
unless the degree of multiprogramming falls below a fixed level.

If this were achievable then all problems associated with discontinuities would be replaced by the
problem of partitioning an application code into concurrent processes. At this point the interprocess
communication (IPC) mechanism becomes a possible source of discontinuities. In section 4.1 we
explain how IPC can be implemented without interrupting the smooth flow of computation and
without introducing any computing overhead.

3.3 Context Flow - A canonical form of JL-multiprogramming

In this section we attempt to formalize the notion of .u-multiprogramming as this will provide
us with a tool for implementing a range of parallel architectures as well as a means for identi­
fying architectures that cannot be implemented efficiently. Central to this theme is the concept
of a sequential process [Hoare, 1985] with a referentially transparent context [Burstall et a!, 1980],
[Keller and Sleep, 1981].

We define a context to be the unique locus of control for a sequential process and all its volatile
information. At the hardware level each context may be further subdivided into a dynamic context
and a static context, the relevance of which will be discussed later.

We represent a hardware structure for evaluating a machine instruction set as a graph in which
each node represents an atomic transformation applied to the context of a sequential process. We
call this a Context Flow Graph. In effect, the nodes in a Context Flow Graph (CFG) are directly
equivalent to the pipeline stages in a conventional (ad hoc) machine implementation. The arcs in
a CFG represent the highways connecting the pipeline stages, and during each graph cycle period a
context flows from the source node to the destination node. In cases where the producing node does
not produce a valid context a null context flows instead.

A CFG is almost certain to contain cycles, in the same way that circular control pathways exist
in all practical computers.

In general a context Cis a tuple (!, s), where f identifies the next function to be applied to the
process state variables. At each node in a CFG the aggregate of the information stored at the node
and the context C will be sufficient to evaluate f.

The volume of information in s will generally be large. For example, a conventional process may
have several Megabytes worth of context information. This naturally precludes the movement of
a complete process context between every node (and hence between every pipeline stage). This is
where the concept of a dynamic and a static context become useful. We define the dynamic context
of a process, Cd, to be(!, sd), and the static context of a process to be (i, s,) where i E {0 ... N} for
anN-node CFG. We thus divide the context into a small partition containing frequently referenced

3 A data-oriented discontinuity may involve a cache-miss, a TLB non-equivalence or consistency synchronization
delay

3 MICROMULTIPROGRAMMING 46

information (sd) and a large partition containing less frequently used information (sill). The static
state is then held in a memory associated with node i of the graph, and for any exchange of
information between cd and CH cd must be within node i.

Thus, a CFG is a directed cyclic graph representation of an abstract machine evaluation algo­
rithm. A CFG provides a method of representing, and hence exploiting, any parallelism which may
exist within the evaluation algorithm. This is analogous to the way in which a Dataflow graph
(DFG) is able to identify and extract parallelism within an application algorithm. However, in
contrast to dataflow machines, application parallelism is not implicitly identified. Consequently
no asynchronous matching of function parameters is required, a common source of implementation
problems for dataflow machines.

3.4 Context Flow Principles

A Context Flow graph for an arbitrary evaluation algorithm can be constructed from three primitive
node types. These are:

• The Transformation Node

• The Branch Node

• The Merge Node

3.4..1 The Transformation Node

A Transformation node consists of a single registered input path, some evaluation logic and a single
output path, as shown in figure 21. The functions evaluated by each transformation node would
normally be distinct, and each node may even implement several variants of a class of functions.
For example, a single node may evaluate a group of arithmetic functions, one of which would be
selected by a field within the context at that node .

. It is easy to imagine how a group of Transformation nodes might implement a conventional
instruction pipeline.

Figure 21: The Transformation Node

Node 1 : Fetch Instruction This node transforms the incoming context by appending the in­
struction at the location identified by the program counter within the context.

Node 2 : Access Operands This node transforms the incoming context by replacing the operand
specification(s) with the corresponding data.

3 MICROMULTIPROGRAMMING 47

Node 3 : Evaluate Instruction The transformation applied here involves replacing the operands
"'' ... Xn with the result, J(x,, ... , xn)·

Node 4 : Store Result At this node the result data is removed, and left within the node for
subsequent retrieval. Normally an explicit address would identify its location.

Node 5 : Increment PC Here the address of the next instruction is computed. Conditional con­
trol transfers could also be implemented at this stage.

In a very simple architecture these nodes could be connected in a ring, <;ts shown in figure 22.
The throughput of such a simple architecture would be proportional to the number of concurrent
contexts, up to a maximum of five. A Transformation node may contain static data, in the form of

fetch
instruction

instruction

fetch
operand

execute
instruction

update PC

Figure 22: A Ring-Structured Context Flow Graph

an associated block of memory. Functional transformations for reading and writing to the memory
can be defined very simply. The read transformation would use an address field in the input context
and append the data at that address in memory to the output context. The write transformation
would write a piece of data from the input context to a memory location identified by an address
in the input context. In both cases the resultant context may contain a status bit to indicate
that the transformation took place successfully. If a virtual memory scheme were adopted, a TLB
non-equivalence could be signalled in the same way.

The data for each context may be distinct or shared. Thus, implementations of global mem­
ory architectures and referentially-transparent parallel combinator reduction architectures are both
possible.

3.4.2 The Branch Node

In order to introduce spatial, as well as temporal, parallelism a means of composing parallel sequences
of Transformation nodes is required. This is achieved through the use of Branch and Merge nodes.
The informal specification of a Branch node is shown in figure 23, from which it can be seen that
a Branch node has one incoming arc and two outgoing arcs. It operates by examining a decision
variable within the incoming context. If is is true the context is passed to the left output arc, and
if false it is passed to the right output arc. The output arc not receiving the incoming context
receives a null context. This provides a choice mechanism, enabling more elaborate algorithms to be
implemented. It is also possible to define a fork node which dynamically creates a parallel context,

3 MICROMULTIPROGRAMMING 48

1\
Figure 23: The Branch Node

one context being output on each arc. The dynamic deletetion of a context is trivial to implement;
the context is simply routed to a node with no output connection.

3.4.3 The Merge Node

A Context Flow graph may be open or closed. An open graph is one which contains at least one node
with an unconnected output arc. Any context flowing along this arc is effectively terminated. In a
closed graph all output arcs are connected, and consequently some mechanism for merging parallel
streams of contexts is required. The informal specification for the Merge node is shown in figure 24,

\I

Figure 24: The Merge Node

from which it can be seen that the Merge node has two input arcs and a single output arc. The two
preceeding nodes will both output a context on every graph cycle, and therefore the Merge node
must be capable of accepting two contexts every graph cycle. As the Merge node can only output
a single context per graph cycle it must be capable of buffering the incoming contexts until they
can be output. Several buffering disciplines are possible, but the only sensible scheme is to forward
incoming contexts on a First-In-First-Out (FIFO) basis. This implies the existence of a linear queue
of contexts within each Merge node.

The simple example can now be extended to include a realistic memory interface, by defining
appropriate Branch and Merge nodes. This is shown in figure 25.

3 MICROMULTIPROGRAMMING 49

to memory from memory

Figure 25: Context Flow Processor with Memory Interface

3.5 Graph Evaluation Rules

The rules for evaluating a Context Flow graph are relatively simple, and are independent of the
abstract machine that is being implemented.

• Each "process" has a single unique context.

• A single context flows along every arc in the graph during each system clock period. Contexts
may be null.

• Each T and B node may hold a single context, but M nodes may queue contexts for the
purpose of matching the average input and output flow rates of non-null contexts.

• Cycles are permitted.

• Any node operations which are not free from side-effect may produce indeterminate results,
and are discouraged. Both referentially-transparent and opaque abstract machines can be
implemented.

• The B node decides on which arc to output its context, based solely on state information
within that context.

• The M node merges two streams of contexts, with the output order based on a "first-come­
first-served" priority.

4 CONTEXT FLOW MULTIPROCESSORS 50

These rules make no mention of how a context is created, or how a graph is initialised. These are
relatively minor issues, and would normally be implementation specific.

4 Context Flow Multiprocessors

Conventional multiprocessor systems, typified by systems such as the Sequent Balance
[Fielland and Rogers, 1984), the BB &: N Butterfly [Rettberg and Thomas, 1986), the iNTEL iPSC
jlntelJ and many others, all suffer to varying degrees from performance problems associated with
interprocessor communication. These problems limit such machines to tasks involving relatively
coarse~grained parallelism, and are caused by the fixed computational overhead imposed on the sys­
tem by each communication event. The effect of this can be seen from the graphs in figures 26 and 27.
The curve in figure 26 shows how the actual performance of a multiprocessor system increases as par­
allelism is introduced, when the total amount of work is constant and the amount of communication
per process is constant. Figure 27 shows the catastrophic performance curve for a multiprocessor
system in which the total amount of work is constant and the amount of communication per process
is proportional to the number of cooperating processes.

Throughput

.· .·

Granularity

I
Figure 26: Processor throughput vs. Granularity : non-global communications

If the physical implementation of any communication protocol, in a multiprocessor system, re­
quires the exchange of information with a group of processes then an optimum degree of parallelism
will exist- beyond which performance will decrease. If the communication protocol requires a non­
zero quantity of CPU time, on the sending and receiving processors, for the purpose of switching
c.ontext {in order to multiprogram the waiting processor) then the system performance will not scale
linearly for a fixed problem size.

If it were possible to devise a communication mechanism in which the communication between
processes consumed no more time than communication between processors and memories, then the
communication overhead could be said to be zero. This is one of the primary goals of Context Flow
Architecture, and one which can apparently be attained relatively easily.

4 CONTEXT FLOW MULTIPROCESSORS

Throughput

.·
.· .·
. ·· ...

.· .· .·
.·

Granularity

Figure 27: Processor Througput vs. Granularity : global communications

4.1 Context Flow Communication

51

There are two possible ways in which process communication links can be defined; via a com­
munication channel or by explicitly naming the source and destination processes. Each has its
ad vantages and disadvantages. For example, explicit process naming removes the need for declaring
channels but requires the passing of parent process names to sub-processes when they are created
[Hoare, 1985, page 239J. There is also a potential implementation problem when communicating
non-detenninistically between groups of explicitly named processes, where the cyclic polling of pro­
cesses becomes necessary. This can be avoided by using communication channels. We now propose a
mechanism for interprocessor communication in a Context Flow environment, capable of supporting
non-determinsism efficiently. .

For two processes to communicate their contexts must somehow meet. According to the graph­
evaluation rules, outlined above, the contexts must be in the same node at the same time. Thus, we
define a communication channel as the queue of contexts belonging to those processes waiting to
communicate through that channel. Such a queue has several useful properties. Firstly, the queue
can be stored in ordinary memory- attached to a Transformation node somewhere in the machine.
Therefore, to communicate, a context must contain the address of the channel through which it
wishes to communicate as it :Bows through the node containing the queue.

Two simple transformations, send (S) and receive (R) can be defined in much the same way
that write and read are defined. Both S and R operate in. similar ways, the only difference
between them being in the direction of dat:l transfer. When a context (/, stl) is encountered, and
f = X{ch, var) such that X E {S, R} then some communication event is required. If the channel
queue is empty then the current context is queued, and the node outputs a null context. If the
channel is not empty it will contain one or more contexts of the form (Y(ch, var), sd). If X = Y
then the current context is added to the end of the queue and a null context is output. If X --1 Y
then one X event and at least one Y event are in the same node, and a communication event can
occur. This is achieved simply by removing the element at the front of the queue, exchanging any
information required by the communication protocol and outputing both contexts. The production

5 SUMMARY

Figure 28: A 2 X 2 Router for CF Multiprocessors

PE
+

Mem

B

PE
+

Mem

PE
+

Mem

\~---

Figure 29: A 4-Processor Configuration

PE
+

Mem

53

can say that the abstract machine is relatively efficient. The actual efficiency of any abstract ma­
chine depends upon the power--of the abstract machine instruction set, and so to produce an efficient
computing engine we must consider the implications of high-level languages, abstract machines and
hardware implementation efficiency as one problem.

5 Summary

High performance computers require special implementation techniques, and the most widely used
of these techniques is pipelining. Pipelining promises performance gains in two respects. Firstly,

5 SUMMARY 54

it promises increased instruction processing throughput; secondly, it promises a more effective use
of the hardware resources available. A wealth of experience exists in the design and evaluation of
pipelined machines, and for the most part the results are particularly disappointing. Consider a
pipeline with a maximum parallelism of n. Now in most machines the value of n will be somewhere
between five and twenty, so the extent of parallelism is hardly massive. If the limited extent of
parallelism is further reduced by a poor utilization factor, caused by the program discontinuities
discussed earlier in this report, then the positive advantages of pipelining could be marginal.

Early machines, such as the CDC 6600 and MUS, incorporated complex control mechanims in
an attempt to maximize the pipeline throughput. Studies of MUS revealed that average instruction
times were between 0.2 and 0.4/LS, compared with a pipeline beat time of 50 nS. Whilst the mecha­
nisms designed to maximize throughput are interesting, their cost-effectiveness must be questioned.

This report has surveyed a number of proposals for radically different styles of pipeline. Most
notable amongst these are the HEP, the CPC and the CCMP. These machines all use a technique
known as p-multiprogramming which, in effect, implements a trade-off between high-latency opera­
tions and multiprogramming.

The disparate theoretical bases for these architectures are brought together in the form of a
graphical implementation technique called Context Flow. We have shown how a pipelined processor
can be contructed using this technique, and how it can then be extended to a multiprocessor system.
One of the primary aims of Context Flow architecture is to express both the logical and the spatial
manipulations required to produce a solution, in a form which explicitly identifies the logical and
spatial complexity of the problem.

A mechanism for synchronously transfering information between the contexts of two processes
has been outlined. The communication protocol can support guarded input or output constructs for
non-deterministic processing, and has a constant time-complexity. In addition, the communication
protocol is implemented as two special memory functions, rather than as a sequence of processing
element instructions, and consequently consumes zero CPU time.

It is expected that this technique will become more widely exploited, as the use of VLSI in
high-performance systems increases, for it is only through the use of integrated processing elements
that this technique can achieve its full potential

The authors' active work in this area can be divided into three areas. Firstly, we are investi­
gating the possibilities for the design of VLSI microprocessors which are revealed by this technique.
Secondly, we are investigating the implementation of an abstract machine for functional languages
using Context Flow ideas. Thirdly, the referential transparency of Context Flow building blocks,
and the relative ease with which they can describe real systems, leads us to believe that Context
Flow could represent a very useful tool for describing parallel hardware at a high level. One possible
use for this could be as a description language for a Silicon Compiler. It might then be possible to
translate from a formal description of an abstract machine, in the form of an annotated Context
Flow graph, to a correct implementation in silicon. The graphical description would also contain
enough information to drive a behavioural simulation, firstly to verify the specification and secondly
to gauge the efficiency of parallel processing within the system as a whole.

ACKNOWLEDGEMENTS
This work was partially supported by the National Science Foundation under grant number DCR.

8603609.

REFERENCES 55

References

[Arvind, 1983) Arvind and R A Iannuci A Critique of Multiprocessing von Neumann Style. In
Proceedings, 10th Annual Internat£onal Symposium on Computer Architecture, pages 426-
436, 1983.

[CDC, 1977] Control Data 7600/ Cyber 70 Model 76 Computer Systems: Hardware Reference Man­
ual. Control Data Corporation, 1977.

[CDC, 1981] Control Data Cyber 200 Model 205: Hardware Reference Manual. Control Data Cor­
poration, 1981.

[Chen, 1971] T C Chen. Parallelism, Pipelining, and Computer Efficiency. Computer Design, Jan­
uary 1971, pp 69-74.

[Edwards eta~ 1980] D B G Edwards A E Knowles and J V Woods. MU6-G: A New Design to
Achieve Mainframe Performance from a Mini-Sized Computer. In Proceedings, 7th Annual
International Sympos'ittm on Computer Architecture, pages 161-167, 1980.

[Feng, 1981] T Y Feng. A Survey of Interconnection Networks. IEEE Computer, 12-27, Dec. 1981.

[Flynn, 1970] M J Flynn. A Multiple Instruction Stream Computer with Shared Resources. In
L C Hobbs et al, editor, Parallel Processor Systems, Technologies, and Applications,
pages 251-286, Spartan Books, Washington, D.C., 1970.

[Fielland and Rogers, 1984] G Fielland and D Rogers. 32-bit computer systems shares load equally
among up to 12 processors. Electronic Design, September 1984.

[Goodman, 1985] J R Goodman et aL PIPE: a VLSI decoupled architecture. In Proceedings, 12th
Annual International Symposium on Computer Architecture, pages 20-27, 1985.

[Goto et al, 1986] E Goto K Shimizu and S Ichikawa. CPC {Cyclic Pipelined Computer}- An Archi­
tecture Suited for Josephson and Pipelined Machines. Technical Report 86-19, University
of Tokyo, Department of Information Science, November 1986.

[Hwang and Briggs, 1984] K Hwang and FA Briggs. Computer Architecture and Parallel Processing.
McGraw-Hill, New York, NY, 1984.

[Hennessy, 1984] J L Hennessy. VLSI Processor Architecture. IEEE Transactions on Computers,
C-29(4):1221-1246, 1984.

[Holgate and Ibbett, 1980] R W Holgate and R N Ibbett. An Analysis of Instruction-Fetching
Strategies in Pipelined Computers. IEEE Transactions on Computers, C-29(4):325-329,
1980.

[Hockney and Jesshope, 1981] R W Hockney and C R Jesshope. Parallel Computers. Adam Hilger
Ltd., Bristol, U.K., 1981.

[Hoare, 1985] C A R Hoare. Communicating Sequential Processes. Prentice-Hall International,
U.K., 1985.

[Hintz and Tate, 1972] R G Hintz and D P Tate. Control Data STAR-100 Processor Design. In
FALL COMPCON, pages 1-4, 1972.

[Ibbett, 1981] R N Ibbett. Vector Processing. In Proceedings, International Computing Symposium,
pages 337-341, 1981.

REFERENCES 56

[Ibbett, 1982J R N Ibbett. The Architecture of High Performance Computers. Springer-Verlag, New
York, NY, 1982.

[Ibbett eta!, 1985J R N Ibbett PC Capon and N P Topham. MU6-V: A Parallel Vector Processing
System. In 12th Annual International Symposium on Computer Architecture, pages 136--
144, 1985.

[Inte!J iPSC Product Summary. intel, Pubn. no. 280101-002.

[Keller and Sleep, 1981J R M Keller and M R Sleep. Applicative Caching. In ACM Conference on
Functional Programming Languages and Computer Architecture, pages 131-140, 1981.

[Kunkel and Smith, 1986J S R Kunkel and A J Smith. Optimal Pipelining in Supercomputers. In
Proceedings, 19th Annual International Symposium on Computer Architecture, pages 404-
411, 1986.

[Lee and Smith, 1984J J F K Lee and A J Smith. Branch prediction strategies and branch target
buffer design. IEEE Computer, 17(1):6-22, 1984.

[Lincoln, 1982J N R Lincoln. Technology and design tradeoffs in the creation of a modern super­
computer. IEEE Transactions on Computers, C-31(5):349-362, 1982.

[Lin, 1986J Q Lin. Design of a Vector Processor. Journal of Computer Science and Technology,
1(1):26--34, 1986.

[Mead and Conway, 1980J C Mead and L Conway. Introduction to VLSI Systems. Addison Wesley,
1980.

[McFarling and Hennessy, 1986J S McFarling and J Hennessy. Reducing the cost of branches. In
Proceedings, 13th Annual International Symposium on Computer Architecture, pages 396-
403, 1986.

[Morris and Ibbett, 1979J D Morris and R N Ibbett. The MUS Computer System. Springer-Verlag,
New York, NY, 1979.

[Miura, 1986J K Miura. Fujitsu's Supercomputer: Facom Vector Processor System. InS Fernbach,
editor, Supercomputers: Class VI Systems, Hardware and Software, pages 137-152, North­
Holland, Amsterdam, The Netherlands, 1986.

[Moon, 1985J D A Moon. Architecture of the Symbolics 3600. In Proceedings, 12th Annual Inter·
national Symposium on Computer Architecture, pages 76-83, 1985.

[Burstall et a!, 1980J R M Burstall D B MacQueen and D T Sanella. HOPE: an experimental
applicative language. In LISP Conference Record, pages 187-194, 1980.

[Murphy and Wade, 1970J J 0 Murphy and R M Wade. The IBM 360/195. Datamation, 72-79,
April1970.

[Myers, 1982J G J Myers. Advances in Computer Architecture. John Wiley and Sons, New York,
NY, 1982.

[Odaka et al, 1986J T Odaka S Nagashima and S Kawabe. Hitachi Supercomputer S-810 Array
Processor System. In S Fernbach, editor, Supercomputers: Class VI Systems, Hardware
and Software, pages 113-136, North-Holland, Amsterdam, The Netherlands, 1986.

REFERENCES 57

[Omondi and Brock, 1987] A R Omondi and J D Brock. Micromu/tiprogramming a Vector Pipeline.
Techical Report (In Preparation), Department of Computer Science, University of North
Carolina - Chapel Hill, 1987.

[Patterson, 1983] D A Patterson et al. Architecture of a VLSI instruction cache for a RISC. In Pro­
ceedings, 10th International Symposium on Computer Architecture, pages 108-118, 1983.

[Pier, 1983] K A Pier. A retrospective on the dorado : a high performance personal computer.
In Proceedings, 10th International Symposium on Computer Architecture, pages 252-269,
1983.

[Radin, 1983] G Radin. The IBM 801 Minicomputer. IBM Journal of Research and Developmen~
27(3):237-246, 1983.

[Rammamoorthy and Li, 1977] C V Rammamoorthy and H F Li. Pipeline Architecture. ACM
Computing Surveys, 9(1):61-102, March 1977.

[Rettberg and Thomas, 1986] R Rettberg and R Thomas. Contention is no obstacle to shared­
memory multiprocessing. Comm. ACM, 29:1202-1212, Dec. 1986.

[Sequin, 1983] C A Sequin. Design and Implementation of RISC I. In VLSI Architecture, pages 276-
298, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[Siege~ 1979a] H J Siegel. A Model of SIMD Machines and a Comparison of Various Interconnection
Networks. IEEE Trans. Comput., C-28(12):907-917, Dec. 1979.

[Siegel, 1979bj H J Siegel. Interconnection Networks for SIMD Machines. IEEE Computer,
12(6):57--BS, 1979.

[Smith, 1985] B Smith. The Architecture of HEP. In Parallel MIMD Computation: HEP Super­
computer and Its Applications, pages 41-55, MIT Press, Cambridge, MA, 1985.

[Stanley and Butner, 1986] C A Stanley and S F Butner. A feasibility study and simulation of the
circulating context multiprocessor. In Proc. IEEE Con[. Parallel Processing, pages 455-
462, 1986.

[Thacker et el, 1982] C P Thacker et al Alto: A Personal Computer. In D P Siewiorek C G Bell
and A Newell, editors, Computer Structures: Principles and Examples, pages 549-572,
McGraw-Hill, New York, NY, 1982.

[Thornton, 1970] J E Thornton. Design of a Computer: The Control Data 6600. Scott, Foresman
and Co, Glenview, IL, 1970.

[Thompson, 1986] J R Thompson. The CRAY-1, the CRAY-XMP, the CRAY-2 and Beyond: the su­
percomputers of Cray Research. InS Fern bach, editor, Supercomputers: Class VI Systems,
Hardware and Software, pages 169-82, North-Holland, Amsterdam, The Netherlands, 1986.

[Tomsulo, 1967] R M Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units.
IBM Journal of Research and Development, 11(1):25-33, 1967.

[Topham, 1986] N P Topham. A Parallel Machine Description. Internal Report, Department of
Computer Science, University of Edinburgh, 1986.

[Topham, 1987] N P Topham. Performance Analysis of a Data-Driven Multiple Vector Processing
System. In G L Reijns and M H Barton, editors, Highly Parallel Computers, pages 111-125,
North-Holland, Amsterdam, The Netherlands, 1987.

REFERENCES 58

[Tucker, 1986[S G Tucker. The IBM 3090: an overview. IBM Systems Journal, 25(1):4-19, 1986.

[Watanabe et a!, 1986[T Watanabe H Katayama and A Iwaya. Introduction of the NEC Supercom­
puter SX System. In S Fernbach, editor, Supercomputers: Class VI Systems, Hardware
and Software, pages 153-168, North-Holland, Amsterdam, The Netherlands, 1986.

