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A Multiresolution Hierarchical Approach to Image 
Segmentation Based on Intensity Extrema 

LA \VRENCE ~1. LIFSHITZ. \1E:\!BER. IEEE. A:"D STEPHEN ~1. PIZER. \1E\1BER. IEEE 

.4.bstract-The aim of our res~;arch has been to create a computer 
al;:orithm to segment grayscale images into regions of interest (ob· 
ject;). These regions can prm·ide the basis for scene anal~ sis lincludin~ 
'hape parameter calculation) or surface-based shaded graphics dis­
play. The algorithm creates a tree structure for image description b~ 
defining a linking relationship between pixels in successh·el~ blurred 
1 Hsions of the initial image. The image description describes the image 
in terms of nested light and dark regions. This algorithm can theoret­
ically work in an~· number of dimensions; the implementation 11orks 
in one, two, or three dimensions. 

Starting from a mathematical model (denloped b~· Koenderink) de­
scribing the technique, our research has shown that 

• by explicitly addressing the problems peculiar to the discreteness 
of computer representations the segmentation described b~ the math­
l'matical model can be successfully approximated; 

• although the image segmentation performed sometimes contra­
dicts semantic and \'isual information about the image (e.g., part of 
the kidney is associated with the li\'er instead of the rest of the kidne) ), 
simple interactive postprocessing can often improve the segmentation 
results to an extent sufficient to segment the region desired; 

"" the theoretical nesting property of regions, originally thought to 
hold in all circumstances, does not necessarily apply to all pixels in a 
region. 

The interactive postprocessing dc,·eloped selects regions from the 
descriptive tree for display in several wa~·s: pointing to a branch of the 
image description tree (which is shown on a \'ector display). specif)ing 
by sliders the range of scale and/or intensity of all regions 11 hich should 
he displa)·ed, and pointing (on the original image) to an~· pixel in the 
desired region. 

The algorithm has been applied to approximately 15 CT images of 
the abdomen. While performance is frequentl)' good, 11ork needs to he 
done to impro\'e performance and to identif~· and extend the ran~e of 
ima~es the algorithm will segment successfully. 

l11dex Terms-Computer \'ision, hierarchical anal~·sis, ima~e seg­
mentation. interact in graphics display. :'>forse theor~·, multiresolution 
image prncessing, pattern recognition. 

l. INTRODUCTION 

A. Segmentation as a Step Toll'ards Interpretation 

A N image as it is stored by a computer is just a mul­
tidimensional array of pixel values. Although we as 

humans may look at the displayed image and recognize it 
as meaningful, the computer must algorithmically analyze 
the array of pixel values before it can reach any conclu­
sions about the content of the image. 
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A computer must deal with objects in an image. as ob­
jects and not just as unrelated pixels, for many reasons: 

I) computer vision (e.g .. robotics): 
2J computer analysis of quantitative properties of ob­

jects.: 
3) computer manipulation of objects for image display 

via man-machine interactions: 
4) object-based nonstationary image restoration. 
Before any of the above mentioned object-related ac­

tions can be taken. one or two conditions must be met: 
1) The object must be recognized as an entity distinct 

from other objects in the image (i.e .. pixels belonging to 
the object must be understood to be related in some way). 

2) The entity must be labeled. It must be understood 
that it is, in fact, the specific object that is being searched 
for. 

Most image processing techniques perfonn step 1 first 
and independently of step 2. Step 1 is commonly called 
the image segmentation step. 

B. The Stack 

There exists a large number of image segmentation 
techniques. Most techniques, however, fall into one of 
three broad categories: region growing. boundary detec­
tion, or multiresolution. Multiresolution techniques (e.g .. 
the Pyramid [I], the DOLP transfonn [2], complete trees 
[3], edge focusing [4]. [5]-[7]), attempt to gain a global 
view of an image by examining it at many different res­
olution levels. The lower resolution provides a global 
view of the image. and the higher resolution provides the 
detail. 

The stack approach initially proposed by Koenderink 
[8] is a multi resolution image description and segmenta­
tion technique. The stack calculates image segments and 
an image description tree by associating every pixel in an 
image with a local intensity extremum [9]. The approach 
focuses on decomposing the image into light and dark 
spots. each, except for the spot representing the whole 
image. contained in others. Thus a face might be de­
scribed as a light spot containing a light spot (a reflection 
from the forehead) and three dark spots (the mouth and 
the regi'ons of the two eyes). In tum the eye regions would 
be described as containing a dark spot (the eyebrow), a 
light spot (the eyelid), and a dark spot (the eye), with the 
latter containing a light spot (the eyeball) which itself 
contains a dark spot (the iris) which finally contains a yet 
darker spot (the pupil). We call these light and d~;~.rk spots, 
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at whatever scale, extremal regions, since they each in­
clude a local intensity maximum or minimum. 

The stack approach is promising for several reasons: 
1) It is based on considering the image simultaneously 

at multiple levels of resolution and can therefore use 
global information. 

2) It produces a natural tree structured extremal region 
description useful for matching purposes. 

3) It has a firm mathematical description based upon 
differential geometry and Morse theory, giving investi­
gation and extension firm footing. 

1) Hierarchical Descriptions from Multi resolution 
Processing: The image description in terms of extremal 
regions can be produced by following the paths of ex­
trema in a stack of images in which each higher image is 
a slightly blurred version of the previous one. Progres­
sively blurring an image causes each extremum to move 
continuously and eventually to annihilate as it blurs into 
its background. An extremum path is formed by following 
the locations of an extremum across the stack of images. 

Intensity change must be monotonic (increasing for dark 
spots and decreasing for light spots) as one moves along 
an extremum path from the original image towards images 
of increased blurring. As illustrated in Fig. 1, while fol­
lowing each extremum path one can associate each path 
point with the isointensity contour that is at that point's 
intensity and that surrounds that extremum in the original 
image [8]. The points (pixels) in the original image thus 
associated with each extremum path then form an extre­
mal region (see Fig. 2). Equivalently, each contour 
(nonextremum) point in the original image can be asso­
ciated with its extremum path by linking the point to the 
closest point with the same intensity at the next level in 
the stack and continuing this linking through the levels 
until the extremum path is reached (see Fig. 3). This pro­
cess defines an isointensity path. 

As indicated above, extrema annihilate when the blur­
ring is sufficient to make the light or dark spot blur into 
an enclosing region. The amount of blurring necessary for 
an extremum to annihilate is a measure of the importance 
or scale of the extremal region, including the subregions 
that it contains. The intensity of the topmost point on an 
extremum path is the path's annihilation intensity. This is 
the intensity of the isointensity contour that forms the 
boundary of the associated extremal region. The annihi­
lation intensity bounds from below (above) the intensities 
in the extremal region if the associated extremum is a 
maximum (minimum) and if there are no extremal subre­
gions enclosed. 

2) A Tree of Extremal Regions for Image Descrip­
tion: As illustrated in Fig. 1, when an extremum annihi­
lates at some annihilation intensity, another region's 
isointensity contour at the intensity encloses the region 
associated with the annihilating extremum [8]. Thus, a 
containment relation among extremal regions is induced 
by the process. This set of extremal regions together with 
their containment relations can be represented by an ex­
tremal region tree in which nodes represent extremal re-

Fig. I. Extremum paths and associated isointensity contours. 
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Fig. 2. Extremum annihilation by blurring and the consequent extremal 
region. If the extremum at A 0 has moved to Aa at annihilation time. rA 

gives the extremal region and iA its minimum intensity. 
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Fig. 3. Extremum paths (solid lines) and isointensity paths (broken lines). 
Isointensity contours are indicated in the original image (level 0). The 
left extremal region is a subregion of the right extremal region. 

gions and a node is the child of another if the extremal 
region that it represents is immediately contained by the 
extremal region represented by the parent (see Fig. 4). 
The root of the description tree represents the entire im­
age. 

Each node in the extremal region tree can be labeled 
with its scale, i.e., the total amount of blurring necessary 
for its extremum to annihilate. Furthermore, each node 
can be labeled with the annihilation intensity of the as­
sociated extremum. Finally, the node can be labeled with 
its size, shape, orientation, location, or other spatial char­
acteristics. 
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Fig. 4. Left: Extremum paths with their regions and scales. The vertical 
direction represents blurring. Right: The associated extremal region 
tree. 

II. MATHEMATICAL PROPERTIES OF THE BASIC STACK 

Our interest is in detennining how maxima and minima 
behave when an image is blurred. Maxima and minima 
are of interest because these are the basic structures to 
which nonextremum points link and thereby define extre­
mal regions in the original image. Several properties of 
extrema stem from basic results in Morse theory. One such 
result is that the number of minima, maxima, and saddle 
points cannot change (at least in the "typical" case) ex­
cept through a bifurcation which causes both an extremum 
and a saddle point to appear (or annihilate). They both 
appear or annihilate at the same blurring level and same 
position (e.g., they must meet to annihilate). Similarly, 
the characteristic way in which the bifurcation occurs can 
be studied by examining simple "generic" cases. Morse 
theory precisely defines the meaning of the tenns ''typi­
cal'' and ''generic''. Some of the applicable results of 
Morse theory are presented below. Differences between 
the results for the canonical cases presented and our par­
ticular case (which has the additional restriction of having 
to satisfy the heat equation) have some important theoret­
ical implications which will be presented following the 
canonical exposition. 

A. Morse Theory Basics for the Generic Case 

Fig. 5 shows the intensity of the extrema for I ( x, t) 
x 3 + tx. The way the maximum and minimum (when t 
< 0) in this particular function move towards each other 
(as t increases) and annihilate (when t = 0) is "typical". 
I(x, y, t) = x 3 + tx ± y 2 is the "typical" or generic 
description in two dimensions (with a maximum or a min­
imum annihilating with a saddle). Although Morse theory 
considers this function to be equivalent to all other ge­
neric extrema annihilations, the theory's notion of equiv­
alence is too flexible for our purposes. It hides differences 
between functions that are of considerable importance to 
the extremal region definition. In the following section we 
describe the blurring scheme used to create the stack of 

~ maximum 

~ 1-----

~ 
v--

~ 
minimum 

-10 -y- 10 -20 -x- 0 

Fig. 5. Extremum intensities (ordinate) for x 3 + tx as a function of time 
(abscissa). The abscissa ranges from -20 to 0, the ordinate from -10 
to 10. The two paths meet at timet = 0. 

lower resolution images from an initial image. It is then 
shown that the generic annihilation presented above does 
not evolve over time in a manner consistent with this blur­
ring scheme. Modification of the generic annihilation to 
create a new function that does satisfy this constraint 
yields a function with important differences in the way 
extremal regions are allowed to fonn. 

B. Embedding an Image in a Family Based Upon 
Gaussian Blurring 

The most important property guiding the choice of a 
convolution kernel with which to create a stack of images 
is one of causality. We are concerned with extremal paths 
when creating the tree representation from a stack of im­
ages; ideally an extremum should not be allowed to be 
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created (i.e., an extremal path to start) at any resolution 
level except the original one. 

Another important property of the embedding is that it 
should be smooth. This means that intensity changes oc­
cur in a continuous manner as scale space is traversed. 
This implies that extremal paths and isointensity paths are 
smooth curves in position-scale space. 

Koenderink [8] examines the specific case of intensity 
creation. No intensity should exist at a low resolution level 
which cannot be traced (in a continuous manner) to an 
identical intensity at a higher resolution. Applying the 
constraints of causality, homogeneity, and isotropy, he 
derives the following necessary and sufficient relationship 
at the locations of the extrema: 

lxx(x, y, s) + l_.y(x, y, s) = a 2!5 (x, y, s), 

where l(x, y, s) is intensity, sis scale or resolution, a is 
a constant, and a subscript denotes a partial derivative. If 
this equation holds everywhere in an image the con­
straints are also maintained. This is the heat (or diffusion 
equation). 

Despite the fact that no new intensity levels are created, 
extrema can be created in images of dimension greater 
than one. An easy example to help in the visualization of 
how this can occur in two dimensions is as follows. Imag­
ine two broad, high mountains with a deep wide valley 
between them. One mountain is higher than the other. 
Connect these two mountains with a thin ramp bridge be­
tween their tops. The heights of the mountains, the val­
ley, and the bridge represent intensity levels. The shorter 
mountain is not a local maximum because the ramp con­
nects it with the higher mountain. But as diffusion occurs 
on the intensity distribution represented by this geog­
raphy, the intensities of points represented by the bridge 
will decrease, since the deep valley is on both sides of it. 
It will quickly tum into a bridge with a deep dip in the 
middle. This will turn the smaller mountain into a local 
maximum. 

The diffusion (heat) equation seems to be the best al­
ternative available to guide blurring, since it does not cre­
ate new intensity levels. The ability to create extrema is 
undesirable; features exist at low resolution levels which 
do not exist at higher ones. Nevertheless, this method of 
extrema creation is preferable to others which may also 
create new intensity levels. There are several additional 
reasons for desiring that the embedding satisfy the heat 
equation everywhere. First, if the image satisfies the heat 
equation, the solution of the equation will depend contin­
uously on the data, i.e., the original image and boundary 
conditions [10]. Second, if the image satisfies the heat 
equation, l(x, y, t > 0) is infinitely differentiable (in x 
andy) even if l(x, y, 0) is not. 

To blur an image, one should convolve it with the filter 
kernel that is the Green's function for the diffusion differ­
ential equation. The solution to a differential equation de­
pends upon its initial conditions and boundary conditions. 
The initial condition is l(x, y, 0) = H(x, y), where H(x, 
y) is the original image. If the original image has no 

boundaries (i.e., takes up all of R2
), the solution yields 

a Gaussian filter kernel. 
Unfortunately, if the image is not infinite in extent, the 

simple result of a Gaussian filter kernel is not necessarily 
correct. There are several ways the original image might 
be modified to eliminate its boundaries, and thereby 
maintain a Gaussian kernel solution to the diffusion equa­
tion. Mirroring of the image at its boundaries essentially 
creates an infinite image. An alternative approach to elim­
inating boundaries is to wrap-around an image at the 
boundary. This means that points outside a boundary are 
interpreted as being inside the boundary on the opposite 
side of the image. Both of these approaches create unde­
sirable artifacts (11] and are therefore not used. 

A third method of handling the boundary conditions is 
to solve the diffusion differential equation explicitly for 
the finite plane with the given initial conditions (the initial 
image). The general solution to the finite domain heat 
equation is [12] 

I(~. T) = L K(x, ~. T) I(x, 0) dx 

+ rT dt r I K(x, ~. T- t) dl(dx, t) 
Jo JxEan L n 

- I(x, t) dK(x, 5~ T- t)J dSx- (1) 

Here /( ~. T) is the image at time T. K(x, ~. T) is a 
Gaussian of width T. Q is the region the image is defined 
on, and an is its boundary. dSx is just the length element 
along the boundary, and d / dn is the derivative in the di­
rection normal to the boundary. This solution reduces to 
a convolution of the image with a Gaussian kernel if only 
the first term is nonzero. The conditions under which this 
is so will now be discussed. 

The second term in the second integral will be equal to 
zero if the intensity of the image is zero along the bound­
ary. An image which obeys the diffusion equation and has 
boundary values of zero can be created from the initial 
image (assuming the boundary conditions of the initial 
image are time independent). This is done by subtracting 
off an image which is invariant under blurring and has the 
identical boundary conditions. 

The first term in the second integral will be nonzero 
unless an additional constraint is added, that the image be 
insulated, i.e., have dl(x, t)/dn = 0 at the boundary. 
This is not an unreasonable constraint to impose. The im­
age is already discretely sampled in space. We can there­
fore always assume that the unknown intensity distribu­
tion between a boundary pixel and its neighbor in the 
interior is such that the constraint is satisfied without con­
tradicting any known data or forcing the interpixel inten­
sity distribution to be unnatural. 

We can conclude that convolution of a bounded image 
with a Gaussian kernel (whose contribution is set equal to 
zero if outside the image boundary) can indeed be consid­
ered to be an appropriate solution to the diffusion equation 
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for an insulated bounded image with zero intensity along 
its boundary. Since this approach is valid, it is the method 
used in this research. Toet [13] also uses this technique 
but did not show that it was in fact valid. 

C. Containment for Extremal Region Paths in the 
Generic Case 

Deciding on an embedding (blurring) scheme for the 
original image in a family of lower resolution images is 
not enough. Points in the image at one resolution level 
must also be associated with points in the image at another 
resolution level. This will define a path through resolution 
space for each point in the original image. The way that 
these paths (links) join up with each other will induce a 
decomposition of the original image into nested regions. 
All those paths which link to the same extremal path de­
fine the extremal region associated with that extremal 
path. Criteria for linking both nonextremum points and 
extremum points at one level to the appropriate pixels at 
the next level are needed to guide the creation of this path 
structure. 

There are two criteria the path of a nonextremum point 
should satisfy. First, the intensity should stay constant 
along the path; the path of a nonextremum is therefore 
also called an isointensity path. Second, the point should 
move along the isointensity surface (in x, y, s space) in a 
path of steepest ascent (where s, the resolution dimen­
sion, is up). Let the direction in which a path should move 
be defined as v = ( v 1, v2 , v3 ), where the three compo­
nents are in the x, y, and s directions respectively. These 
constraints then imply [8] v = ( -l, ln - l5 l" ( l, )2 + 
( l, )2

). This is the direction the path of a nonextremum 
point should take. At an extremum l, and l, are both equal 
to zero, so v is a null vector. In other words, once a non­
extremum path meets an extremum, v no longer specifies 
the direction in which to proceed. Criteria for the path 
direction of an extremum hold from then on. The extremal 
region associated with an extremum path is just all those 
points whose paths eventually join with the extremal path. 

The path criterion for extrema is very simple. Each ex­
tremum is isolated (in the x-y plane) in the typical case. 
That is, there are no other extrema in some neighborhood 
around each extremum. In addition, their positions move 
continuously through scale space. It is therefore always 
immediately evident what path each extremum should 
take. Contrary to isointensity path criteria, intensity along 
an extremal path changes. Intensity along the path of a 
maximum will decrease with decreasing resolution, while 
intensity of a minimum will increase. When an extremum 
annihilates, its path continues on as an isointensity path 
(see Fig. 3). The path criteria for nonextremum and ex­
tremum points determine which regions in the original 
image become associated with each extremal path. 

Let us now examine the generic case of extremum an­
nihilation in an attempt to understand the rules guiding 
extremal region formation. The generic description of a 
saddle and a minimum annihilating was stated at the be­
ginning of this section to be l(x, y, t) = x 3 + tx + y 2

. 

y axis 

/annihilation intensity 
J( (zero) isointensity 

contour 

x axis 

Time increases (more blurring) as we move 
downwards from one plot to the next. 

Fig. 6. Saddle and zero intensity contours at various times until annihila­
tion. Nonditfusion case. 

The simplest way to visualize this (see Fig. 6) is to imag­
ine a second minimum (which will not annihilate) existing 
on the other side of the saddle point. The saddle exists 
between the two minima so that the isointensity curve 
through the saddle point surrounds the two minima. An­
nihilation of the saddle with one minimum takes place at 
x = 0, y = 0, t = 0. The annihilation intensity is zero. 
At some initial time t0 < 0 the zero intensity contours 
surrounding the minima lie inside the isointensity contour 
of the saddle. As time progresses, the minimum that will 
annihilate and the saddle point move towards each other. 
The lobe of the saddle isointensity contour which sur­
rounds this minimum gets smaller, as does the zero inten­
sity contour which surrounds the minimum. The zero in­
tensity contour remains inside the saddle intensity contour 
the entire time. The zero intensity contour surrounding 
the annihilating minimum and the lobe of the saddle con­
tour surrounding the annihilating minimum become iden­
tical for the brief instant as annihilation occurs. To deter­
mine the nature of the extremal region such a scenario will 
produce, one must examine which nonextremum paths 
link to the annihilating extremum. Nonextremum paths 
are isointensity paths. Those starting out inside the zero 
intensity contour surrounding the extremum have inten­
sities less than zero. They cannot cross the zero intensity 
surface represented by the zero contour in scale space. 
Yet the zero intensity contour eventually collapses into 
the extremum point, enclosing no area at annihilation 
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time. The only place for the nonextremum paths to go is 
to link up with the extremum path. This means that all 
isointensity paths through resolution space that start off 
inside the zero intensity contour must eventually link up 
to the annihilating minimum. This region represents the 
extremal region associated with the annihilating extre­
mum. 

D. Noncontainment for Extremal Region Paths in the 
Gaussian Case 

Imposing the constraint of satisfying the heat equation 
(i.e., convolution with a Gaussian) modifies the conclu­
sions reached above about the manner in which extrema 
annihilate. Once we restrict the embedding to a particular 
class of smooth embeddings, namely those satisfying the 
heat equation, it becomes very difficult to know which 
descriptions are typical in this restricted subclass. Never­
theless, specific cases can be examined which must fit into 
the diffusion framework. 

Blurring x 3 I 6 + t x with a Gaussian produces the pro­
totypical diffusion annihilation. In the one-dimensional 
case nothing changes significantly from the canonical 
(nondiffusion) description given above. The time param­
eter in the formalism gets replaced by <J

2 12, where (J is 
the total standard deviation of the Gaussian blurring done 
so far. The x 3 term gets a factor of 1 I 6 in front of it so 
that the prototype equation satisfies the one-dimensional 
heat equation. 

The two-dimensional annihilation via a diffusion pro­
cess changes from the generic annihilation in a subtle but 
very important way. The annihilation equation represent­
ing the diffusion case is l(x, y, t) = x 3 16 + tx + t + 
y 2 12. We have been forced to add a term solely in t to 
preserve the diffusion characteristic! This has many im­
portant consequences. We will now examine this equa­
tion, which is for a saddle and a minimum annihilating, 
in detail; identical conclusions can be drawn from looking 
at the -y 2 12 case which is for a saddle and a maximum. 

The intensities of these critical points differ from the 
nondiffusion case (compare Fig. 5 to Fig. 7). l(i, 0, t) 

= ±( -2t)312 16 ± t ( -2t)I/Z + t, wherei is the position 
of a critical point, + used fori > 0 (I ( i) < 0), whereas 
for i < (I ( i > 0), - is used; the square root is inter­
preted as being the positive root. This equation is valid 
fort :5 0. Now examine l(i, 0, i) = 0, i.e., those times 
when the critical point intensity equals zero. We find that, 
as before, both the saddle and the minimum intensities 
equal zero at t = 0, the annihilation intensity and time. 
But we also now have zero intensity at t = -9 /8 for the 
saddle intensity! The saddle intensity, which starts out 
greater than zero (for time < -9 /8), gradually decreases 
becoming less than the annihilation intensity when t > 
-9/8. This is confirmed by setting aJ(i, 0, t)lat = 0 
and noting that the saddle (but not the minimum) has a 
turning point in intensity at t = -1/2. From t = -112 
to t = 0 the saddle intensity is increasing, as is the min­
imum intensity. 

Fig. 7. Saddle (upper curve) and minimum (lower curve) intensities (or­
dinate) with respect to time (abscissa). The time axis ranges from -10 
to 0, and the intensity axis ranges from -8 to 2. Diffusion case. 

There are significant consequences of the saddle inten­
sity dipping below the annihilation intensity and then ris­
ing back up to it. In the canonical case analyzed previ­
ously, when a saddle existed between two minima, the 
isointensity curve through the saddle point surrounded the 
two minima (see Fig. 6). The saddle intensity contour re­
mained outside the zero intensity contour until annihila­
tion time. This is not true for the diffusion case (see Fig. 
8). The zero intensity contour, which starts out inside the 
saddle intensity contour, ends up outside the saddle inten­
sity contour! The saddle intensity contour and the zero 
intensity contour become identical at the instant the zero 
intensity contour surrounding the annihilating minimum 
joins the zero intensity contour surrounding the other min­
imum. After this time the zero intensity contour surrounds 
the saddle intensity contour and both of the minima. The 
"lobe" of the zero intensity contour that surrounds the 
minimum that will annihilate gradually contracts and 
"pinches off" at x = 0, t = 0 (see Fig. 8). 

The fixed point of l(x, 0, t), which does not change 
intensity with time, is now at x = -1 (see Fig. 9). Inten­
sities for all x < - 1 continuously decrease, while those 
for points x > - 1 continuously increase. Hence, if an 
isointensity path is at a particular x > -1 at some t, then 
at time t + ot it will have to move towards the minimum, 
to compensate for the fact that all the intensities around it 
are rising. There are points with x < -1 that have neg­
ative intensities. These points will move away from the 
minimum even though their intensities are less than the 
annihilation (zero) intensity! The annihilation isointensity 
surface in (x, y, t) space is still a concave cap, but now 
it has a hole in its side where it joins up with the other 
zero intensity surface; isointensity paths can escape from 
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Fig. 8. Saddle and zero intensity contours at various times until annihila­
tion. Diffusion case. 

under the cap by sneaking out through this hole, so they 
are not forced to join the annihilating minimum's path! 

It is difficult to describe mathematically the nonextre­
mum paths which escape through this hole. The isoin­
tensity paths are integral curves of the vector field v = 
( -Ixlr, -IJ1, 1; +!~).What needs to be done is to sub­
stitute into. this the formula for I(x, y, t) and solve ana­
lytically for the isointensity paths. Unfortunately, an an­
alytical solution of these differential equations is 
intractable. Nevertheless, qualitative examination of the 
vector field directions can yield a simple proof that some 
nonextremum paths do escape. The proof is as follows. 
For the prototypical diffusion case we have v = (- (x 2 /2 
+ t)(x + 1 ), -y(x + 1 ), (x 2 /2 + t) 2 + y 2

). This 
means that any point with x < - 1 and positive y coor­
dinate will have a positive y component in v, and such 
points will move away from the x axis, which is where 
the saddle and minimum are. Furthermore, if such a point 
should happen to try to move towards an x coordinate 
greater than - 1, it will not get there. This is because at 
x = - 1 both the x and y components of v are zero and 
the point will stay fixed at x = -1 for all future time. By 
showing that all points with x coordinates less than - 1 
move away from the x axis (if not on it to begin with) and 
that these points can never move to an x value greater than 

t= 0 0 

-6 -y- 6 -6 -x- 6 

Fig. 9. The prototypical annihilation satisfying the diffusion equation. I= 
x 3 /6 + t x + t is graphed for various values of t. The abscissa ( x axis) 
and the ordinate (intensity axis) both range from -6 to 6. 

minus one, we have shown that these points (paths) can 
never meet either the saddle or the minimum path. Yet 
many of these points have intensity between that of the 
minimum and the annihilation intensity (zero). Therefore, 
some points inside the annihilation intensity contour do 
not link to the minimum path. 

By simulating the blurring and linking process, we have 
been able to display isointensity paths which start out in­
side an annihilation intensity contour, and yet do not link 
up to the extremum path of the annihilating minimum. In 
order to make the simulation as accurate as possible, an 
analytic model of the blurring process was used. 

Despite the surprising theoretical result that nonextre­
mum paths can escape from the extremal region they orig­
inate in, we have yet to observe any clear examples of 
escaping paths when working with actual images. This is 
most likely due to the fact that extremal regions are not 
sufficiently isolated from other regions to display the type 
of behavior shown in the "prototypical diffusion" anni­
hilation case. The behavior of that case stemmed primar­
ily from the fact that all points with x coordinate less than 
- 1 continually decreased in intensity. In an actual image 
this would not occur since there would be another mini­
mum at some x less than - 1 and this would tend to cause 
intensities in the region to increase under blurring. In ad­
dition, our sampling resolution may be coarse enough to 
miss some small regions. 

III. THEORETICAL IssuEs DuE TO DISCRETENESS 

The entire theory upon which the stack algorithm is 
based applies to continuous Morse images embedded con­
tinuously in resolution space. Unfortunately, images of 
this form cannot be handled by a digital computer. The 
continuous image must be approximated by one which is 
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spatially discrete (i.e., made up of pixels). The smooth 
embedding of the image in resolution space is approxi­
mated by a stack of images each derived from the pre­
vious one by convolution with a blurring kernel of non­
infinitesimal width and finite extent. Nonextremum and 
extremum paths, which theoretically are continuous paths, 
become represented by a chain of links from a pixel in 
one image to a pixel in the next image to a pixel in the 
next image and so on. The best manner in which to create 
these approximations and the complications such approx­
imations create have been investigated. See [11] for more 
details. 

IV. EXTENSIONS TO THE STACK-EMBEDDING SCHEMES 

The basic stack algorithm does not always segment an 
image in the most preferred manner. It can take pixels 
that, visually, all belong to one region and link them to 
different extremum paths (and hence different regions). It 
may also join pixels together in one region that visually 
are very similar but semantically should not be joined 
(i.e., they are in different organs which happen to abut 
each other). The algorithm works well, but not always 
well enough. It therefore seems reasonable to try to adjust 
it in a way which would improve its performance. The 
aforementioned problem is one of accuracy in segmenta­
tion. An accurate tree description implies the existence of 
subtree structure whose leaves represent completely an 
area of the image which we subjectively determine to be 
meaningful, and only that region (e.g., it would include 
all pixels in the liver, and none not in the liver). 

The question is how the stack algorithm should be mod­
ified to produce a more accurate image segmentation. 
There are two modifications to the algorithm which come 
immediately to mind. One is to alter the way the original 
image is embedded in the multiresolution stack. A differ­
ent embedding should cause different extremal regions to 
form. The second approach is to alter the linking criteria. 
Modification of the linking criteria has not been investi­
gated but would be an area for promising research in the 
future. Of course, both of these modifications could be 
applied concurrently. 

Intuitively one would expect that modifying the shape 
of the blurring kernel to reflect the shapes of the regions 
of interest would yield better segmentation results than 
always performing stationary, isotropic Gaussian blur­
ring. Any blurring scheme adopted should still be re­
quired not to create any new intensity levels as blurring 
proceeds. Koenderink's main criterion for this is that lu 
+ lvv = u 2 

( x, y, t) at the extrema. Of course, the embed­
ding. should also remain smooth. This allows for consid­
erable flexibility in choosing a blurring strategy. We have 
examined the effects on extremal region formation and 
nesting of both stationary anisotropic blurring, and of 
nonstationary blurring. 

A. Anisotropic Stationary Blurring 

Theoretical calculations, simulations, and application 
to actual images all clearly show that isointensity paths 

are able to move more quickly in the direction in which 
blurring is faster. In addition, some paths which before 
headed away from an extremum may now head towards 
it, thus the extremal region associated with an extremum 
is clearly different in the anisotropic case from the iso­
tropic blurring case [ 11]. 

B. Nonstationary Blurring 

Spatially variant blurring based upon local image con­
tent should improve the correspondence between the ex­
tremal regions and the semantically meaningful regions in 
the image. This statement is motivated by the human vi­
sual model of Cohen and Grossberg [14], which indicates 
that object perception is performed via an intensity dif­
fusion process (i.e., blurring) which is moderated by edge 
strength measures in the image (i.e., it is nonstationary). 
Many nonstationary blurring schemes can satisfy the 
causality and smooth embedding constraints. There is no 
simple coordinate transformation between embedding 
produced by nonstationary blurring schemes and station­
ary blurring schemes. We have investigated several tech­
niques, most of them based upon the premise that there 
should be minimal blurring across a region which is be­
lieved to contain an edge [ 11]. Region information can be 
supplied via a model tree (similar in format to that pro­
duced by the stack algorithm). Similarly, the stack algo­
rithm can be applied iteratively, using its previous results 
(trees) to guide future iterations. No completely satisfac­
tory method of using this information has been found yet. 

V. UsE oF THE STACK PROGRAM 

A. Implementation Performance 

The implementation of the stack and display algorithms 
has not been optimized for speed of execution or mini­
mization of space requirements. The current version is an 
experimental one designed for flexibility and ease of mod­
ification and extension. Some indications of the speed and 
size of the implementation are nevertheless in order. The 
stack program has been applied to about 15 two-dimen­
sional CT images of the upper abdomen. Approximately 
five one-dimensional and three-dimensional images have 
been analyzed also. To provide faster results for testing 
purposes, most of the CT images have been reduced from 
an initial size of 512 by 512 pixels to 64 by 64 pixels. 
Running on a moderately loaded VAX 780, it takes ap­
proximately 30 to 45 seconds to create each level in the 
stack, together with all of its associated data structures. 
The 64 by 64 images tend to need about 30 levels of blur­
ring before only one extremum remains. Thus the pro­
gram runs about 20 minutes. The image description tree 
created is approximately 250 kilobytes. All of the above 
numbers scale approximately linearly with image area. Of 
course, an image with a lot of noise or very many objects 
will tend to take longer and create a larger data structure. 
If it is known in advance that the structures of interest in 
an image are of small scale, the processing may be ter­
minated before only one extremum remains, saving time. 
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It should be emphasized that all of the aforementioned 
processing is completely automatic; nobody's time is re­
quired. 

Currently roughly half of the execution time is spent 
blurring. The blurring is so time consuming since it is 
written to handle several different nonstationary, noniso­
tropic methods. We believe that the stack program exe­
cution time can be decreased by at least a third to a half 
without the use of any special hardware if some of the 
experimental flexibility is removed. 

B. Interactive Display Based on the Image Description 
Tree 

We have investigated several different interaction meth­
ods with the data structure produced by the stack algo­
rithm. The display techniques developed permit easy 
specification of the region of interest to be examined and 
also yield insight into why certain subregions nest the way 
they do. The display program initially reads in the image 
description tree from a file produced by the stack algo­
rithm. A user can then interactively control which regions 
in the image (subtrees in the data structure) are displayed. 
Several methods for specifying these regions are pro­
vided. These methods are discussed at length below. 

The image is displayed on an Adage 3000 raster graph­
ics system. A vector representation of the tree of extre­
mum paths (along with the nonextremum paths they turn 
into) can be displayed simultaneously with the raster im­
age. The vector image is displayed in three dimensions 
(x. y, t) on an Evans and Sutherland Picture System 300. 
This is a color vector graphics system. Paths of minima 
and maxima are displayed in different colors (see Fig. 10). 
This tree can be interactively rotated using knobs to spec­
ify the rotation about each axis. This display gives the 
user a very good feel for the way the extrema in the image 
have moved and merged together during the blurring pro­
cess. This tree can be interrogated by picking any branch 
using a light pen. The extremal region associated with this 
branch will then be displayed on the raster display device. 
This has turned out to be a very powerful tool for visu­
alizing the relationship between the tree structure pro­
duced and the original image. Frequently a major organ 
can be displayed quickly by using a light pen to choose 
the major tree branch (i.e .. a branch that exists until very 
low resolution levels) in the location of interest. A visual 
examination of the tree structure sometimes focuses atten­
tion on high interest areas. For instance, noting that the 
extremum path representing the stomach region has a 
smaller branch (subregion) associated with it can focus 
attention on that subregion, which may be a tumorous 
mass. 

The tree data structure can be examined more globally 
via various AID devices. Two sliders are used to specify 
a scale range of objects which should be displayed. The 
two sliders specify the low and high scale limits of the 
range of interest. The scale of a region is defined to be 
the blurring level at which its associated extremum path 
annihilates. All extremum paths which annihilate within 

Fig. 10. Paths of maxima and minima. Roughly half of these paths are 
minima and half maxima. The actual display is in color: this clear!) 
differentiates between the two types. 

the scale range specified by the sliders have their associ­
ated extremal regions displayed on the raster display. This 
method of choosing regions has been very useful. Organs 
in the CT images can frequently all be chosen simulta­
neously simply by setting the sliders to display only re­
gions of large scale. The length of time it takes to display 
the specified regions depends upon the number of regions 
specified. Typical display times range from about two to 
five seconds. 

Similarly. two other sliders specify the intensity range 
of objects to be displayed. Even if the annihilation level 
of an extremum path lies within the specified scale range. 
it is only displayed if the average intensity of its associ­
ated region lies within the intensity window selected by 
the intensity sliders. Intensity windowing is useful when 
the regions of interest (or regions of disinterest) are most 
easily distinguished based upon their intensity. This would 
be used. for example. to select bright objects like the 
spinal column in the abdominal CT images or eliminate 
dark regions such as bowel gas. The display of extremal 
regions can also be constrained based upon the ( x. y) po­
sition of the annihilation point of the associated extremum 
path. Four knobs are used to specify the range of spatial 
locations (maximum and minimum x and y coordinates) 
within which extremum paths must annihilate in order to 
be candidates for display. The chosen extremum paths can 
also be highlighted on the Picture System 300 display for 
better visualization. Intensity and spatial windowing have 
not been used extensively. It is not yet clear how useful 
they will be in a production (e.g .. clinical) setting. 

There is a difficulty in displaying some of the lowest 
resolution (largest scale) structures in an image. This is 
easiest to explain by use of an example. The spinal col­
umn and its associated musculature are oftentimes the 
largest object in an abdominal CT scan. In this case an 
intensity maximum in the spinal column will become the 
extremum path in the image which lasts the longest under 
blurring. If this extremum path is picked with the light 
pen and its associated extremal region is displayed, the 
entire image appears. This is so because all pixels in the 
image eventually link up to the last remaining extremum 



538 IEEE TRAt'-iSACTIONS 01'-i PATTERN At'\ALYSIS AND MACHINE INTELLIGEl\iCE. VOL. 12. 1'<0 6. JUNE 1990 

path. There is no subtree which explicitly represents just 
the spinal column region. We have attempted to deal with 
this problem by providing more flexibility in the display 
mechanism. Entire regions associated with an extremum 
path do not have to be displayed. Subsections can be spec­
ified. Instead of following down all links from an extre­
mum path, the user can specify that only links which join 
up before a certain blurring level be traversed. By picking 
this level low enough (high enough resolution), much of 
the image can be eliminated from the display. This often 
allows the isolation of the region of interest (e.g., the 
spinal column). The spinal region shown in Fig. 11 was 
specified in this manner (Fig. 16 is a schematic of organ 
positions in an abdominal CT scan). This method works 
since the true object of interest is usually spatially the 
closest to the extremum which forms the longest extre­
mum path. As such, pixels in this region usually join the 
extremum path sooner than the other pixels in the image. 
Alternatively, if a resolution level is specified which is 
not as high as one used for the spinal region, the entire 
body in the CT image may be displayed without any of 
the surrounding image (e.g., the table the person is rest­
ing on). 

Instead of displaying regions, the user has the option of 
displaying edges of regions superimposed over the origi­
nal image. This is often useful since the interpretation of 
an isolated region displayed out of context can be diffi­
cult. Superimposing the edge of a region over the original 
image takes slightly more time than simply calculating the 
region itself. The time taken is highly variable depending 
upon the number of objects in the image, the number of 
objects specified to be displayed, and system load. The 
slower update rate does not significantly hamper interac­
tion unless a large number of regions is specified. 

Perhaps the most natural region specification method is 
via a cursor on the raster graphics console. By moving the 
puck on a data tablet, the user can position the cursor over 
a pixel in a region of interest (perhaps a pixel in the kid­
ney). When a button on the puck is depressed, the small­
est extremal region this pixel is in is displayed. Upon dis­
play, information about the region is shown on the user's 
terminal. This includes region size in pixels and average 
intensity of pixels in the region. The next larger extremal 
region is displayed when another button is pressed. Each 
successively larger region can be displayed until the root 
node of the entire tree is reached. This display method is 
the easiest to use, and will probably dovetail well with 
the future postprocessing techniques. 

C. Future Postprocessing Techniques 

The difficulties with the algorithm as it stands now are: 
I) A region of interest might not be precisely repre­

sented by an extremal region. 
2) A region of interest does not always show up as one 

explicit subtree in the tree structure. It may be two sub­
trees with no common root except the last extremum. 

An example of the first case might be an extremal re­
gion which includes the liver. but also includes part of the 

Fig. II. Left: Original image. Rixht: Spinal region. A 128 by 128 pixel 
noisy image created by adding Gaussian white noise with a mean of 0 
and a standard deviation of 30 to aCT image (which ranged in intensity 
from 0 to 1023). 

Fig. 12. Leji: Original image. Right: Segmented image. The liver and part 
of the chest wall are on the left side of the segmented image. The kid­
neys. intestine. pancreas, and a few blood vessels are also shown. A 128 
by 128 pixel image. 

chest wall near the liver (see Fig. 12). An example of the 
second type might be the kidney. Due to its shape, the 
two halves of the kidney may be represented as separate 
extremal regions. If the kidney is far enough from other 
organs, these two regions will join together (with one ex­
tremum path remaining) and be represented as one sub­
tree. But proximity to the liver may cause each subtree to 
separately link to the liver extremum path instead of to 
each other (see Fig. 13). If this is the case, there is no 
single subtree which will display just the kidney. 

One way of dealing with these problems is to modify 
the basic stack algorithm. Various blurring strategies 
based upon a priori and edge information seem promis­
ing. An interactive postprocessing step may be a simpler 
way to handle these difficulties. Various postprocessing 
capabilities might be provided. A few of the most prom­
ising ones are discussed below. 

Difficulties presented by the first case listed above could 
be mitigated by use of a simple pixel editor. This editor 
would allow use of the cursor to delete or add pixels to a 
region displayed on the console. If the region displayed 
is accurate except for a few pixels, it would be a simple 
matter to delete or add those pixels to the display. If de­
sired, it would also be simple to actually change the cor­
responding links in the data structure so that the data 
structure remains in accord with the display. 

Problems arising from the second case (multiple dis­
connected subtrees) could be minimized by building a 
simple graphical editor for the tree data structure which 
is displayed on the Picture System 300. Using the light 
pen as a dragging device, the branch representing one of 
the kidney subtrees could be picked and dragged over to 
the other subtree and graphically joined to it. This graph­
ical operation could then be used to guide a similar change 
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Fig. 13. Left: Original image. Right: The liver and a piece of the kidney. 
The other piece of the kidney links to the liver at a higher level and is 
not shown. A 64 by 64 pixel image. 

in the actual data structure. Alternatively, disconnected 
subtrees can be dealt with by finding connected regions in 
the displayed image (as opposed to in the data structure). 
Even if the kidney is represented as two subregions which 
do not link to each other in any way, the capability cur­
rently exists to display both subregions simultaneously. 
This is done by picking each subregion separately while 
specifying that the previously picked region remain on the 
display. Once the entire kidney is displayed, it would be 
a simple matter to automatically find all the pixels which 
are in the connected region representing the kidney. As 
long as the pixels in the region of interest can be displayed 
on the console as a connected, isolated region, that region 
could be easily be defined to be one object and informa­
tion about it calculated. 

D. Results 

The results obtained so far have been encouraging. 
Many correct image segmentations have been produced. 
Figs. 14 and 15 are two typical segmentation examples; 
the images on the left side of each photograph are the 
originals. CT scans are oriented so that the view presented 
is as if the viewer is standing at the foot of a table that the 
patient is lying on (face up), looking toward the patient's 
head. Thus the left side of the image is the right side of 
the person and the spinal column is towards the bottom of 
the image. High density objects (such as bone) show up 
as higher intensity (whiter) regions in the image. Asche­
matic of the organ locations is shown in Fig. 16. Which 
organs are actually present in a particular CT slice, and 
their size, depends upon the axial position of the slice and 
whether disease is present. 

Fig. 17 shows the result of applying a pyramid based 
segmentation algorithm [ 16] to the original image in Fig. 
12, for comparison purposes. The segmentation was pro­
duced using a weighted linking scheme applied to a 128 
by 128 version of the image and setting the desired num­
ber of segments to 16. For presentation purposes we have 
manually shaded the two segments which correspond to 
the major organs to make visualization easier; all the other 
segments are represented by their boundaries. Several 
points are worth noting in the pyramid segmentation. 
First, many different structures are in the same segment 
(e.g., the kidneys, spinal region, and part of the intestine 
are all part of the same segment). This happened despite 
the fact that 16 segments were specified. many more than 

Fig. 14. The kidneys. liver. and some blood vessels (the aorta and inferior 
vena cava, running perpendicular to the image plane ncar the center of 
the image). The dark region near the kidney and the liver is a part of the 
intestine. as is the region near the left kidney (right side of image). The 
region extending out from the top of the left kidney is a large tumor. m. 
is the very small region extending out from the bottom right part of the 
right kidney. A 128 by 128 pixel image. 

Fig. !5. The kidneys. liver. aorta. and inferior vena cava. This image is 
the image in Fig. 14 with Gaussian white noise of mean 0 and standard 
deviation 30 added to it. The original image ranged in intensity from 0 
to 1023. 

Fig. 16. An anatomical model. RK-right kidney. LK-Iett kidney. L­
liver. ST -stomach. P-pancrcas. DJ-duodenojejunal tlexure (part of 
the intestine). The white object in lower center is the spinal column. The 
cross-hatched region above it is the aorta. This figure is from 115]. 

Fig. 17. The results of applying a pyramid based segmentation algorithm 
to the image in Fig. 12. Sixteen segments were specified. The intensities 
in the display were chosen to maximize contrast between the two seg­
ments of major interest. for easier visualization. Other segments arc rep­
resented by their boundaries 
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the number of anatomically distinct regions of interest. 
Second, several structures are part of two segments (e.g. , 
the right kidney has sections in both of the shaded seg­
ments). Third, the pyramid algorithm has more trouble 
separating the liver from the chest wall than does the stack 
algorithm. It should also be emphasized that the pyramid 
approach either requires an a priori specification of the 
number of regions in an image or the setting of ad hoc 
and image dependent parameters which specify when a 
region is significantly different from another to prevent 
them from merging. The stack approach has a natural def­
inition of a subtree based upon the annihilation of an ex­
tremum, there is no such natural definition in the pyramid 
algorithm. 

VI. CONCLUSIONS 

Stack-based image segmentation correctly isolates an­
atomical structures in abdominal CT images. Both small 
vessels running perpendicular to the image plane and large 
organs are successfully identified in many instances. The 
inaccurate segmentations are frequently close enough to 
the desired result so that a simple interactive postprocess­
ing step might produce a correct segmentation. Postpro­
cessing is necessary because sometimes two nearby ob­
jects are represented as one extremal region, or a few 
pixels are missing from (or added to) a desired object. It 
remains to be seen whether a system with simple postpro­
cessing abilities will be accurate enough, often enough, 
to be employed on a routine basis. 

The main problem remaining is the incorporation of ad­
ditional, probably imprecise, knowledge about the image 
into the stack segmentation algorithm. The knowledge 
might be edge strengths from the image itself, or perhaps 
model-based information. The challenge is to use this in­
formation in a manner which produces a more accurate 
segmentation without forcing the result to mimic the input 
knowledge. 
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