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1 INTRODUCTION 

The recognition of objects in medical images and the analysis of their properties 
in space and time requires a representation that reflects properties of shape. These 
representations are independent of position, orientation and size. They can be based 
on ad hoc features, object boundaries, object interiors (figures), or object deforma­
tions. 

Our work is based on exploiting an inherent relationship between boundary and 
figure based shape descriptions. In both of these categories, noise and small image de­
tails often confound shape analysis. Therefore, it is essential to generate descriptions 
that are hierarchical by scale using multiresolution techniques. In the following we 
develop techniques of this kind which are applicable to shape description of both grey­
scale images and binary objects. In the sequel we describe two applications which are 
based on these shape descriptions. 

2 GREY-SCALE IM:AGE DESCRIPTION VIA LEVEL CURVES 

Two dimensional ~rey-scale images can be viewed as a surface in three space 
defined by the graph lx, y, I(x,y)). One obvious way to describe the shape of such 
graphs is to use the tools of differential geometry to describe the surface. Another al-

'! ternative is to describe the two regions of space separated by the surface. 

Unfortunately, the intensity dimension is incommensurate with the spatial dimen­
sions. There is no natural choice as to what intensity change is equivalent to what 
spatial distance. Shape descriptions which vary with a particular choice of equiva­
lency must therefore be avoided. This can be accomplished by treating the intensity 
and spatial dimensions separately in our shape description. We do this by describing 
shape in terms of the level sets of the graph (see Figure 1). 

The level sets for a two dimensional grey-scale image are the planar curves defined 
by I(x,y) = C, for all intensities in the image. These level sets act like boun_daries . 
They partition each level into an in•i4e and an out.ide. Specifically, the image surface 
is the union of its level sets at their respective intensity levels. The the volume bdow 



the surface is the union of all regions which have I(x,y) ~ C. Similarly;the volume 
abo11e the image surface is the union of all regions where I(x,y) ~ C. 

Figure 1. A digital subtraction angiogram and corresponding level sets. 

Thus, it is possible to represent the image surface and the regions on either side of 
the surface in terms of the level curves or regions defined by level curves. To describe 
the shape of these level curves we use existing figure based and boundary based shape 
descriptions for binary images. 

3 BASIC SHAPE DESCRIPTIONS 

3.1 Axes of Symmetry 

We begin our analysis with figure based shape descriptions for two dimensional bi­
nary images. Object symmetry is a. key to understanding shape. Circles are perfectly 
symmetrical, so the axes of symmetry defined by circles capture this property best. 
When the set of circles tangent to the object's boundary is considered, we derive axes 
of symmetry which describe the branching and bending of the object. Several meth­
ods use this approach. 

Chords of tangent circles are used to define Smoothed Local Symmetries (Brady and 
Asada, 1984). Arcs of tangent circles are used to define Process Inferred Axes (Leyton, 
1986). Centers of tangent circles are used to define the Symmetric Axi" (Blum, 1974). 
The Internal Symmetric Axis is defined by centers of tangent circles which are entirely 
within the object while the External Symmetric Axis is defined by centers of tangent cir­
cles which are outside the object. The Global Symmetric Axis is defined by the centers 
of all tangent circles. When the radius of each of these circles is also considered, we 
have the Symmetric Axis Transform {SAT} (Blum and Nagel, 1978). 

The SAT has three attractive properties. First, the branching structure of the ob­
ject is reflected by the branching of the axis. This yields a natural correspondence 
between components of the object and components of the shape description. Second, 
the bending and flaring of the object is reflected by changes in the curvature of the 
axis and the radius of the tangent circles. This gives us a way to compare and con­
trast similar shapes. Finally, this shape description is unique for an object and can be 
used to re-create the object. 

One of the problems with the SAT is that it is very sensitive. Noise and small de­
tail in the object can cause "unimportant" branches to appear in the axis. These con­
found shape analysis by introducing large numbers of axis segments and by breaking 
up main branches into numerous small sections. One solution is to use multiple res­
olution analysis to determine the scale of the individual components of the shape de­
scription. This approach yields the Multiresolution Symmetric Axis described by (Pizer 
et al., 1986). · 

To compute this shape description requires that we measure the importance of 
each branch in the symmetric axis. As we lower the resolution the tendency is for an 
object to simplify, eventually becoming an ellipse. Because the symmetric axis varies 



smoothly with the figure it represents, the branching structure of the axis also sim­
plifies as we lower the resolution. Thus, we can follow axis branches to annihilation 
through a multiple resolution sequence of binary images. The importance of each 
branch is then determined by its annihilation resolution. This process also imposes 
a hierarchy on axis branches (see Figure 2). 

Figure 2. Branching hierarchy imposed on the symmetric axis by resolution 
reduction. When axis A annihilates it is labeled as a sub-branch of a new 
branch CB. Later, when axis E annihilates it is labeled as a sub-branch of the 
major axis CBD. 

The order of annihilation of axis branches decomposes the SAT into limbs and 
twigs. When branch A annihilates two things happen. The adjacent branches C and 
B combine to form a single branch CB. Then branch A is labeled as a sub-object of 
this branch; much like a twig on a limb. When we do this for all axis branches, we ob­
tain a description which reflects the shape of an object and also the hierarchy of sub­
objects which make up the object. This multiresolution shape description can then be 
used to focus on image structure as a function of scale. 

Now we return to the problem of obtaining a multiresolution sequence of binary 
images. The two alternatives we consider are boundary blurring and figure blurring. 
Both techniques yield acceptable results, but there can be problems. When bound­
ary blurring is used, object topology is maintained but figural similarity is frequently 
not preserved. A:!. a result, two shapes with different topologies may look similar at 
one scale yet look quite different at another scale (see Figure 3). This problem can be 
avoided by blurring the object figure. 

When the characteristic function representing the object figure is blurred with 
a Gaussian, it gives us a grey-scale image. To obtain a binary image agairi requires 
an arbitrary selection of a level curve. To us, the most natural choice is to select the 
level curve which preserves the object's area, but all choices we know of can result in 
topological changes in the boundary. Thus, two objects may look similar at different 
resolutions yet have quite different topologies (see Figure 3). ·The problem of selecting 
a single level curve leads us to an important observation. 

Binary images are a special case of grey-scale images; they are images which just 
have two values. As a consequence, binary images should be treated like grey-scale 
images. In particular, grey-scale shape descriptions should be applied to describe the 
figure. To preserve causality under resolution reduction, Gaussian blurring of the in­
tensities should be used to impose a resolution hierarchy (Koenderink, 1984). While 
this further motivates our investigation of grey-scale shape descriptions, we now re­
turn to level curve shape description. 
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Figure 3. Three stages of a) boundary blurring and b) figure blurring. Notice 
the changes in topology in the object for figure blurring. 

3.2 Boundary Curvature 

The second major approach to shape description is based on boundary properties. 
Several researchers have focused on boundary curvature because it reflects the bending 
of the object, an essential aspect of shape (Brady and Asada, 1984). Extreme points 
of curvature (local maxima and minima) on the boundary can be used to characterize 
shapes. 

H we decompose an object's boundary into sections bounded by two adjacent cur­
vature minima, we obtain curve segments which (Richards and Hoffman, 1985) call 
codon~~. Each codon contains a single curvature maxima and can be classified into five 
types, depending on the signs of these curvature extrema (see Figure 4). By consid­
ering sections bounded by two adjacent curvature maxima, we obtain the codon dual8 
described by (Leyton, 1986). These can be classified by simply changing the sign and 
type of each curvature extrema in our codon classification (see Figure 4). 

Mi- Mi- Mi- Mi-o. (\ ,f\ rv A M-
A) m+ m+ m:.. m+ m+ m- m- m-

~- ~-m+ 

~v- \]' Mi- Mi-

0 v 
B). - m- m- m- m-

Figure 4. Boundary segments representing a) five types of codons and b) the 
five corresponding codon duals. The curvature extrema are labeled: M+ posi­
tive maxima, M- negative maxima, m+ positive minima, m- negative minima. 

! 

Boundary curvature is also sensitive to image detail. As a result, two objects can 
appear quite similar yet have different codon decompositions. Conversely, objects can 
have the same codon decomposition yet appear quite different. To resolve this prob­
lem, we label each codon with a measure of its importance. At the same time, we im­
pose a hierarchy on the codons which can be used to distinguish object shapes. 

Under resolution reduction, the boundary will tend to simplify. This will cause 
two adjacent curvature extremum (a local maximum and a local minimum) to move 
together and annihilate into an inflection point. When this happens, the number of 



curvature extremum is decreased by two. Thus two adjacent codons become a single 
codon. The problem is to determine which codon annihilated into which. 

Recall that a codon is a boundary segment bounded by two curvature minima 
with a curvature maxima somewhere between these points. When we have two adja­
cent codons, we have a sequence of five curvature extrema of the form: (lmin, 2max, 
3min, 4max, 5min), where codon A consists of (lmin, 2max, 3min) and codon B con­
sists of (3min, 4max, 5min). We say that codon A annihilates into codon B if 2max 
and 3min are blurred into an inflection point. Here, two of the three curvature ex­
trema which comprise codon A have disappeared (see :figure 5). Similarly, we say 
that codon B annihilates into codon A when 3min and 4max are blurred together. 

8 

Figure 5. Codon annihilation under resolution reduction. Here codon A is de­
termined to be a sub-object of codon B. 

We record the level of resolution required to annihilate a codon as its scale. By 
also recording which codon blurred into which, we establish a codon hierarchy. This 
multiresolution shape description can then be used to focus on object curvature as a 
function of scale to compare and contrast objects. 

3.3 Relationship Between Symmetric Axis and Boundary Curvature 

Leyton has described an important relationship between these shape description 
methods. He has shown that each codon ha• u•ociated with it a unique am of •ymmetry 
and that this line terminates at or near the point of maximal curvature for the codon. 
Similarly, each codon dual has an symmetry line which terminates at a local curvature 
minima. 

The type of symmetric axis associated with these boundary segments depends on 
the type and sign of the curvature extrema. Internal symmetric axes terminate at 
positive maxima, external symmetric axes termin·ate at negative minima, and global . 
srmmetric axes are associated with negative maxima and positive minima (see Figure 
6). 

This gives us a tool for studying the symmetric axis. Once we have decomposed 
the object boundary into codons (or at least located the curvature extrema), we know 
how many branch endpoints there are and also their locations. This information could 
.be helpful for computing the SAT, but it is more important when we consider multi­
ple resolution techniques. 

We have seen that blurring imposes a scale based hierarchy on symmetric axis 
branches and on codons. If we recall the relationship between points of maximal cur­
vature and axis endpoints, it is clear that these hierarchies are also related. The scale 
which causes the annihilation of an axis branch is equal to to the annihilation scale 
for the associated codon and vice versa. 

- -----------------------------------------------------
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Figure 6. Relationship between the symmetric axis and a) five types of codons 
and b) the five types of codon duals. The axis is marked in bold. 

We can use this fact to our advantage when computing these shape descriptions. 
Our work to date indicates that codons are easier to compute and follow through 
scale space than the symmetric axis. Thus, to compute the axis hierarchy we follow 
codons through multiple resolutions and use the correspondence between branches 
and codons to determine the scale of the components of the symmetric axis. 

4. GREY-SCALE SHAPE DESCRIPTION 

Now we return to our main task, to describe the shape of grey-scale images. In 
the second section, we saw the need to treat the intensity and spatial dimensions sep­
arately when describing grey-scale images. This led us to an investigation of shape 
description methods for level curves in the third section. In the following section we 
bring these ideas together. This results in two methods to describe grey-scale shape in 
terms of the shape of individual level curves. 

4..1 Pile of Axes 

First, we consider the behavior of axes of symmetry for the collection of level 
curves which represent a grey-scale image. To visualize this description, we embed 
this collection of axes in three dimensions at their respective intensity levels. This 
yields a figure based shape description we call the Symmetric Aria Pile. When scale in­
formation is also recorded, we obtain the Multire•olution Symmetric Aria Pile. 

What does this pile of axes describe? Because the level curves of the graph (x, y, 
I(x,y)) partition each level into an inside and an outside, we can describe two things. 
The volume below the image surface can be described by the internal symmetric axis 
for each level. Similarly, the volume dove the image surface can be described by the 
external symmetric axis for each level. What do these volumes represent? Since im­
age intensity corresponds to the height of the image surface, the volume below the 
image surface can be used to describe the shape of light structures in the image. The 
volume above the image surface can be used to describe the shape of dark of regions in 
the image. 

One of the strengths of the symmetric axis is its ability to describe the shape of 
individual components of an object, and combine this information to describe the 
whole object. Naturally, we are interested in how our new shape description behaves 
in this respect. This requires us to focus on four aspects of our representation: 

1 the basic elements of the symmetric axis pile, . 
2 the bending and branching behavior of these structures, 
3 the behavior of the radius function for these structures, 
4 the annihilation of structures under multiple resolutions. 



To simplify our analysis, we assume that the intensity function I(x,y) is smooth 
and continuous and that the critical points on this surface are isolated and non­
degenerate. 

Axia Connection 

To determine the basic elements of the symmetric axis pile, we need to understand 
how axes are connected from one level to the next. We begin by examining the behav­
ior of level curves. We have assumed that I(x,y) is smooth and continuous, so curves 
defined by I(x,y) = C will vary smoothly with C, except at critical points. Because . 
the symmetric axis varies smoothly with the region it represents, the collection of axes 
for these level curves will form smooth branching surfaces in three dimensions (see -
Figure 7). We call these surfaces 1ymmetric am 1heeu. 

Figure 7. The level curves and corresponding symmetric axis pile for part of a 
synthetic grey-scale image. The shaded branching surfaces are called symmet­
ric axis sheets. 

At critical points, the topology of level curves changes abruptly. At local extrema, 
level curves reduce to a point and then disappear (depending on the direction from 
which the extremuni. is approached). At saddle points, level curves come together, 
cross and then come apart again. The symmetric axis pile near these regions also 
changes abruptly. The remainder of this section investigates sheet behavior near criti­
cal points and the early indications of shape this behavior provides. 

At a local maximum, the symmetric axis sheet for the region under the image sur­
face shrinks with the level curve until it disappears at the critical point. The axis 
sheet above the surface near a local minimum behaves similarly. These points are 
called 1heet termination• (see Figure 8). They are an indication of locally lightest or 
darkest spots in the image. The behavior of sheets on the opposite side of the image 
surface near these extremum is more complicated. 

Consider what happens to the symmetric axis for an object with a hole, as the 
hole gradually shrinks and then disappears. Initially, the axis for the object loops 
around the hole. This loop shrinks slightly as the hole shrinks, but suddenly dis­
appears when the hole disappears. At the same time, a new piece of axis down the 
center of the object appears. This is exactly the situation we observe near local ex­
tremum in an image. 

If we look at the symmetric axis just above a local minimum, we find that the 
symmetric axis sheet forms a loop around the indentation near the minimum, and 
that this loop disappears and another axis sheet appears as we move below the ex­
tremum. Similar axis behavior is also observed for the axis above the surface near a 
local maximum. These changes in symmetric axis sheets are called loop termination• 
(see Figure 8). They give us an indication of the nesting of dark regions within light 
regions and vice versa. 



The level curves near a saddle point cr088 each other. If we calculate the sym­
metric axis pile for the region under the image surface near such crossing points, we 
find that the axis sheet separates into two pieces at the saddle point as we move up . 
in intensity. These are called 4%U tear• (see Figure 8). The same behavior is observed 
for the axis pile above the image surface except that the sheets tear apart as we go 
down in intensity. Thus, we call saddle points tear poinu of the symmetric axis. These 
points are special for two other reasons. 

A) C) E) 

. Figure 8. Symmetric axis behavior near critical points. Sheet terminations 
a) above and b) below-'the image surface. Loop terminations c) above and d) 
below the image surface. Axis tears e) above and f) below the image surface. 

First, level curves through saddle points describe the nesting of hills and valleys in 
the image (Blicher, 1985). Thus, the axis sheets can be partitioned at these levels to 
obtain descriptions of local light and dark regions of the image. Second, saddle points 
are the only points in common to both axis piles, so they act as connection points be­
tween the axis pile below the surface and the axis pile above the surface. This adds 
coherence to our shape description which can be exploited to describe the relationship 
between local light and dark regions in the image. 

Axis Bending &nd Br&ncbing 

While critical point behavior yields a basic understanding of the relationships be­
tween light and dark regions in the image, additional information about the shape 
of these regions is conveyed by the branching and bending of symmetric axis sheets. 
How individual sheets bend gives us an indication of the shape of individual light 
and dark regions of the image. How these sheets combine to form branching surfaces 
captures the global branching structure of the image being described. By combining 
these shape properties, we can describe the general shape of the grey-scale image. 

The bending of axis sheets reflect two different image properties. When the bend­
ing is in the spatial dimensions, it captures how ridges (or valleys) in the image are 
bending (see Figure 7). This is similar to the bending of binary images described 
by the 2D symmetric axis, so a similar classification scheme can be used. When the 
bending is in the intensity dimension, it reflects the asymmetry of ridge (or valley) pro-



files (see Figure 9). Once we have a description of the shape of individual sheets, we 
need to consider how these sheets are connected. 

Figure 9. Asymmetry of ridge profiles reflected by axis bending. 

The branching structure of sheets above and below the image surface corresponds 
to the structure of dark and light regions in the image respectively. Each light ridge­
like structure in the grey-scale image is described by an axis sheet below the image 
surface. The connections between the axis sheets reflect the connections between 
these ridges. Similarly, the branching of each dark valley-like structure in the image 
is described by the symmetric axis pile above the surface. While axis piles capture the 
bending and branching of light and dark regions of the image in a natural way, we 
still need to consider the width of the regions. 

Axis Radius Function 

Recall that each point on the 2D symmetric axis has associated with it the ra­
dius of the maximal circle at that point. This function is used to describe the widen­
ing and narrowing of individual axis branches. When this notion is extended to our 
symmetric axis pile, we have a radius function defined for each point on our axis pile 
which describes the width of the image at that point. Changes in the radius function 
along axis sheets gives us two indications of the shape of the grey-scale image. 

Width changes in the spatial dimensions reflect .the widening and narrowing of 
ridges and valleys. This happens when the first derivative of the radius function is 
positive and negative respectively. The second derivative behavior describes the flaring 
and cupping of ridges and valleys. The seven combinations of these derivative proper­
ties correspond to those described by Blum and Nagel for the radius function of the 

. 2D symmetric axis. 

The •harpne•• and roundne•• of rid~es or valleys corresponds to width changes in 
the intensity dimension (see Figure 10). Consider the radius function as we go down 
the sheet for a ridge. Because the image surface is described by a function, the radius 
increases monotonically as we go down. Hence, the first derivative is always positive. 
When the second derivative is positive, the ridge appears sharp at the top, because 
it is flaring as we do down. Conversely, ridges which appear round have a negative 
second derivative; they are cupping as we go down. This analysis extends to valleys 
by considering the radius function as we go up the sheet corresponding to the valley. 

When the shape properties provided by the radius function are combined with the 
other properties we have described, we obtain an overall description of the shape of a 
two dimensional grey-scale image at a single resolution. Next, we discuss the means of 
imposing a hierarchy on the symmetric axis sheets by multiresolution analysis. 



Figure 10. Roundness properties determined by second derivative behavior in 
the intensity direction. Second derivative is a) positive and b) negative for the 
ridge shown. 

Axis Hierarchy 

The symmetric axis pile we have described captures many aspects of an image's 
shape. Unfortunately, as with the ordinary symmetric axis, it is too sensitive. Noise 
and small image details often produce "unimportant" axis sheets in our shape descrip­
tion. Our solution is to label each sheet with a measure of its importance and define a 
hierarchy on axis sheets. Then application programs can focus on image structure as 
a function of scale. 

Figure 11. Level curves and corresponding symmetric axis piles for a digital 
subtraction angiogram reflecting three levels of blurring. 

We determine the scale of a.xis sheets by continuously blurring the grey-scale im­
age with a Gaussian and detecting the level of blurring required to cause each sheet 
to annihilate. After a small amount of blurring, the image structures corresponding 



to noise a.nd small details will be annihilated. Because the symmetric axis pile varies 
smoothly with the region it represents, the axis sheets for these unimportant details 
will also disappear. Larger image structures persist and so do their corresponding axis 
sheets (see Figure 11). We continue this blurring until only one axis sheet remains 
(this occurs when the image becomes a.n elliptical blob). This process is also used to 
define a hierarchy on axis sheets. 

When one sheet blurs into another, the former sheet is defined to be a sub-object 
of the latter. When this is applied to every sheet in the pile, we obtain a hierarchical 
representation of the branching of axis sheets. While this hierarchical shape descrip­
tion yields a useful tool for studying an object's shape· as a function of scale, it is diffi­
cult to compute because of the high dimensionality of the symmetric axis pile followed 
through scale space. To simplify this computational problem, we can exploit the rela­
tionship between axes of symmetry and boundary curvature. 

4.2 Vertex Curves 

We need to extend our analysis of boundary curvature to handle grey-scale im­
ages. To study curvature properties of the image surface, we extend our analysis of 
boundary curvature to all the level curves which represent the image. Again, we use 
the extreme points of boundary curvature (vertices) to characterize the image surface. 
By following the movement of vertices from one level curve to the next, we obtain 
curves on the image surface we call Verte: Curt~e•. Since curvature extrema are the 
endpoints of codons, these curves define the boundaries of an image decomposition 
we call Codon DUtricu. Multiresolution analysis then yields an image representation 
which describes the spatial curvature properties of the image as a function of scale. 

To understand the structure of vertex curves and the shape information they con-
vey, we must examine the following: 

1) the connection of curvature extrema from one intensity level to the next, 
2) the branching of vertex curves, 
3) the surface partition defined by vertex curves, 
4) the behavior of vertex curves under multiple resolutions. 

Again, we simplify our analysis by assuming that the intensity function is smooth 
and that critical points are isolated and non-degenerate. 

Connection of Curvature Extrema 

First, we investigate the behavior of curvature extrema. When the surface (x, 
y, I{x,y)) is smooth and continuous, the level curves defined by I(x,y) = C also vary 
smoothly, except at critical points. It follows that the curvature for these level curves 
will vary smoothly and that the points of local maximum and minimum curvature are 
connected. and form curves on the image surface. 

Since vertex curves are based on level curve behavior, they reflect the spatial cur­
vature properties of the image. They tell us where the bending of level curves is most 
extreme. Vertex curves consisting of points which have positive maximal curvature 
correspond to tops of ridges in the image. Similarly, the bottoms of valleys in the im­
age are marked by vertex curves consisting of negative curvature minima. The rela­
tionships among ridges and valleys are reflected in the branching structure of the ver­
tex curves. 

Branching of Vertex Curves 

We begin our analysis of branching by considering vertex curve behavior near crit­
ical points {see Figure 12). At local intensity extrema, the topology of level curves 
changes. Slightly below a local intensity maxima, the level curve is generally ellipticaL 
Thus, it contains four curvature extrema, two maxima and two minima. As we move 
up in intensity, the level curves shrink and these four vertices approach each other. 
At the local maximum, the level curve becomes a point and the four vertex curves 
defined by these points meet. Similarly, four vertex curves meet at each intensity min­
ima in the image. 



At saddle points, the topology of level curves also changes abruptly. The level 
curves at the saddle point cross while the level curves slightly above and below each 
saddle point are genera.lly hyperbolic. ThU8, we have two points of locally maximal 
curvature on the level curves above the critical point and two points of locally mini­
mal curvature on the level curves below. As a result, four vertex curves meet at each 
saddle point in the image. Two curves of local curvature maxima. go uphill and two 
curves of local curvature minima go downhill. 

A) B) C) 

Figure 12. Vertex curve behavior near a) intensity maxima, b) intensity min­
ima., and c) saddle points in an image. 

Finally, we consider curvature infiection points on level curves. H we consider the 
level curves slightly above and below a. level curve which has an infiection point, we 
find that one curve has two curvature extrema. (one maxima. and one minima.) near 
the infiection point while the other has none. Thus, two vertex curves originate a.t 
each infiection point on the image surface (see Figure 13). Since one vertex curve con­
sists of local curvature maxima. and the other local minima., these curves mark the 
tops of ridges and the bottoms of valleys respectively. 

Figure 13. Vertex curve behavior near curvature infiection points. Here we 
have a small valley on the side of a hill whose extent is marked by two vertex 
curves. 

Surface Partition 

Marking ridge tops and valley bottoms vertex curves partition the image into re­
gions which are similar to the Slope DUtricu described by (Nackman, 1984). Maxima 
vertex curves mark ridge tops much like the ridge linea which define watersheds. Sim­
ilarly, minima vertex curves behave like coune linea. Thus, vertex curves through the 
critical points in the image partition the image into hills and valleys. Vertex curves 
through infiection points refiect a different type of nesting of ridges and valleys. 



Consider a small valley on a ridge side. In this case, a new maxima vertex curve 
marks the sul>ridge while the sul>va,lley is marked by a new minima vertex curve. 
The vertex curves defining this sul>region emer~e at one curvature inflection point 
and disappear at another on the image surface see Figure 13). Because these vertex 
curves do not pass through intensity extrema, t is type of image structure would not 
be captured by slope districts. This is one of the advantages of our shape description. 

More natural subdivision in terms of ridge areas and valley areas rather than sides 
of them is given in terms of the codon structure centered on vertex curves. These 
codon dutriet• are each bounded by two vertex curves of the same type (either maxima 
or minima) and contain one vertex curve of the opposite type. This decomposition 
captures the extent of ridges and valleys in the image. Fundamental changes in the 
codon structure for level curves occur as we pass through saddle points. In particular, 
four minima vertex curves above the saddle point terminate at the level curve through 
the saddle point. Two new minima vertex curves start at the saddle point (see Figure 
12). Hence, the topology change in the level curves at this point is reflected by the 
reduction of the number of level curve codons by two. 

Multiresolution Analysis of Vertex Curves 

The complexity of this new shape description and its sensitivity to small struc­
tures or noise can again be avoided by imposing a scale based hierarchy on the vertex 
curves and codon districts. Applications can then focus on the curvature properties of 
an image as a function of scale. 

Figure 14. Images and corresponding vertex curves under blurring. 

When we use Gaussian blurring to obtain a multiresolution sequence of grey-scale 
images, two things happen to simplify the image structure. First, the critical points 
of the image move together and annihilate in pairs (one saddle and one extremum). 
Second, the "curvature" of the surface is smoothed. Hence, the branching structure of 
vertex curves simplifies with blurring (see Figure 14). 

While much work remains to categorize vertex curve behavior under blurring, 
it appears that the annihilation of vertex curves corresponds to the annihilation of 
branching structures in the image. This observation is explained by the relationship 
between our two grey-scale shape descriptions. 

4..3 Relationship Between Axis PUes and Vertex Curves 

Both the symmetric axis pile and codon districts reflect the shape of grey-scale 
images on a level by level basis. For this reason, these methods retain the fundamen­
tal relationships between codons and a.xes of symmetry. In particular, each codon dis-



tnct l&tU tU•ocictetl wit!& it can IUU .l&eet wl&icl& termincate• cat or near tlae interior verte: curve. 
Thus, positive ma.xima vertex curves mark the ends of the branches of the symmetric 
axis pile under the image surface. Similarly, negative minima vertex curves mark the 
ends of branches above the image surface. The other vertex curves mark the extent of 
image surface associated with each axis branch. 

As a result, this correspondence gives us a way to impose a scale based hierar­
chy on one description given the other. We have found that following the symmetric 
axis pile through scale space is a difficult task compared to computing surface curva­
ture properties. It is our hope to calculate the annihilation scale of each axis branch 
by following the annihilation of the corresponding vertex curves. Then, the one to 
one correspondence between the original vertex curve segments and axis sheets can be 
used to derive the scale of axis sheets~ Thus, we can compute the axis hierarchy. 

Finally, this correspondence gives us two ways to look at the shape of an object. 
We can focus on the symmetric axis to get an understanding of the branching and 
bending of image components, or we can focus on the codon districts to partition 
the image surface into nested ridges and valleys. Both methods allow us to study the 
branching structure of ridge tops and valley bottoms. 

5 APPLICATIONS OF SHAPE DESCRIPTION METHODS 

The two shape descriptions described in section four capture many aspects of 
grey-scale shape which can be exploited by computer vision applications. In this sec­
tion we describe how these shape descriptions can be used to segment images and 
study the deformation of binary objects. 

5.1 Segmentation 

Segmentction is the process of partitioning an image into "natural" regions. Lif­
shitz (Lifshitz, 1987) and others have shown that multiresolution analysis can be ap­
plied to obtain more successful segmentations than conventional techniques based on 
local pixel properties or measures of edge strength (Ballard and Brown, 1982). 

Following Crowley (Crowley and Parker, 1984), we suggest that yet better seg­
mentations can be obtained by taking image shape into account. Therefore, we pro­
pose to use our multiresolution shape descriptions as a tool for segmenting two dimen­
sional images. These segmentation techniques hinge on our association of pixels to 
components of the shape description for these images. We begin with techniques to 
segment binary images and then extend these techniques to grey-scale images. 

Binary Image Segmentation 

To segment a binary image, we use the multiresolution symmetric axis. The asso­
ciation between pixels and segments is of prime importance. Consider a point on the 
symmetric axis. If we draw the maximal circle centered at that point, w~ define the 
region .of the figure associated with that point of the axis. Extending this notion to a 
branch of the two dimensional symmetric axis, we find that the union of all maximal 
circles centered on the axis defines the region of the object associated with that axis 
segment. 

A problem with this technique is that axis regions can overlap. Pixels near branch 
points in the axis can be covered by several maximal circles. One solution is to use 
the scale of each symmetric axis component to determine which axis the point is 
associated with. There are several options here. We can associate pixels with the 
largest scale axis or the smallest scale axis of which it is a part. These result in quite 
different image segmentations (see Figure 15). When pixels are included as part of 
the largest scale axis to which they belong, the object is naturally decomposed into 
branches and sub-branches. When the pixels are associated with the smallest scale 
axis, we obtain a less natural decomposition beca·use sub-branches subsume part of 
larger scale branches. 



Figure 15. Symmetric axis for a binary object and three segmentations based 
on pixel associations to axis segments: a) pixels displayed as part of smallest 
scale axis, b) pixels displayed as largest scale axis, and c) small scale regions 
displayed as part of larger scale regions. 

The axis hierarchy our shape description imposes can be used to segment the im­
age into regions according to scale. Once a scale is specified, objects with smaller 
scales can be ignored or associated with the segment they "belong to". We use the 
axis hierarchy to determine this relationship. In this way, pixels which reflect small 
image detail can be omitted or displayed as part of larger scale segments in a natural 
way (see Figure 15). This technique can be generalized to handle grey-scale images. 

Grey-Scale Image Segmentation 

The figure of a grey-scale object (the region above or below the image surface) can 
be segmented using the multiresolution symmetric axis pile. The key to this process is 
associating voxels in these regions with sheets of the symmetric axis pile. Extending 
the ideas from binary images, we define the region associated with an axis sheet to be 
the union of all maximal circles for all points on the sheet. To associate this volume 
with the original grey-scale image requires that we project this region in the intensity 
dimension onto the x-y plane and integrate its volume. This technique will give us a 
grey-scale image R(x,y) which represents the region. 

Just as the regions associated with branches in the two dimensional symmetric 
axis can overlap, we find that the volumes associated with axis sheets can also over­
lap. Again, we solve this problem by using the scale of axis sheets to associate voxels 
in the figure with only one axis sheet. Now, the sum of all volumes in our segmenta­
tion defines the figure of the grey-scale object. As a consequence, the sum of all region 
images R(x,y) equals our original image l(x,y). This is an important result. It gives 
us two novel ways to segment grey-scale images. 

When voxels are associated with the largest scale axis sheet to which they belong, 
we obtain image segments which factor out small image details. When voxels are as­
sociated with the smallest scale· axis sheet, the image decomposition looks less natural 
because small scale objects subsume larger scale objects. When the hierarchy on sym­
metric axis sheets is exploited, we can derive two segmentations based on scale. Ob­
jects below a specified scale can either be ignored or displayed as part of their parent 
objects. This approach is compelling because noise and small detail can be filtered ot 
or displayed a.s part of the larger scale objects. 

5.2 Deformation Analysis of Binary Images 

A singularly interesting avenue of investigation in medical imaging is the question 
of shape deformation. While the diagnostic applicability of the extraction of shape 
data a.s vectors for structural or statistical pattern recognition and shape comparison 
are obvious, in many instances it would be illuminating to have tools to describe how 
one eh:.pp is tr:.nsfnpnPd into :.nothpr thp rhangp from rar.;:ino'c!!m~:.~!!-!" --'Q~i_.,_h<!c' _LO""f_tL!. P-!_ • ~------



skin to invasive cancer, for instance, or the examination of developmental processes 
and abnormalities. 

Examination of shape change as deformation was proposed in the biologic liter­
ature as early as the beginning of this century by Sir D 'Axcy Thompson. Bookstein 
has described this deformation in terms of tensors, the "biorthogonal grid" (Book­
stein, 1984, 1985, 1986). The applications of the statistical evaluation of shape change 
described in this manner have been elegantly demonstrated in such diverse systems as 
craniofacial growth and post-ischemic cardiac kinetics. Such applications are limited, 
however, in that the objects being evaluated must have recognizable landmarks, either 
inherent in the object itself (such as the anatomic landmarks of the skull) or imposed 
(as by surgical implantation of radiodense pellets onto the surface of the heart). 

This is a severe limitation in areas of medical diagnosis which examine morpho­
logic changes in soft tissues, such as anatomic pathology, because true or at least rec­
ognizable landmarks do not exist- there are no fins on a neoplastic gland. The ap­
plication of the multiresolution symmetric axis transform may provide a method of 
allowing the investigator to use tools such as biorthogonal grid deformation analysis, 
however, by allowing the imposition of pseudo-landmarks based on the SAT. 

As described previously, progressive blurring of any image allows the establish­
ment of a hierarchy of SA limbs and twigs and in turn a hierarchy of vertex curves. In 
binary images, each vertex curve collapses into a point, the vertex, in the original un­
blurred image. Similarly each pile of SA branch points collapses into a single branch 
point. As a result, the hierarchy imposed can be taken to apply to the vertices and 
branch points. These landmarks may then provide shape-based, if not truly biologic 
landmarks that can serve as the requisite data for biorthogonal grid evaluation. 

Inherent in the concept of a hierarchical object description is that the higher 
level descriptions contain both more important and more global information about 
the shape than the lower limbs and twigs of the hierarchy. Similarly, changes in the 
higher level landmarks provide relatively more information for deformation analysis. 
Of course, using only the highest levels of the SA provides an incomplete description 
of the shape deformation. 

Transforming one symmetric axis into the other does not provide the true defor­
mation, because the SA of the figure after deformation is not equal to the deformed 
SA. An iterative method of approximating the true shape deformation was recently 
suggested to us by Bookstein. This approach has the following steps: 

1) Establish pseudo-landmarks in the original and deformed shapes by utilization of 
the hierarchical SAT. 

2) Utilize the Bookstein method of geometric construction for the establishment of 
shape deformation tensors. 

3) Perform the inverse of that deformation on the deformed shape to achieve a first 
approximation of the original shape. A deformation measure for boundary points 
which are not SAT derived landmarks is interpolated from the existing landmarks. 

4) Calculate another SAT for the approximation of the original shape calculated in 
step 3. The difference between this SAT and the original SAT is used to measure 
object similarity. 

5) Take as a new deformed shape the result of applying the approximate inverse de­
formation to the previous deformed shape. Repeat steps 1 - 4, and continue the 
process until the approximation converges. 

· The overall deformation is obtained by concatenating the series of SA-based deforma­
tions from the successive repetitions. An example of the application of this method is 
given in Figure 16. 
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A) 

B) 

C) 

Figure 16. Deformation analysis based on pseudo-landmarks, a) original and 
deformed objects with corresponding symmetric axes , b) result after one itera­
tion , result after convergence. 
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Our continued work in this area will involve the following considerations: 

1) Utilization of the first one or two levels of the hierarchy ignores the contribution 
of the lesser limbs of the SA to the deformation. While the lowest level twigs of 
the hierarchy may indeed be only noise, a way must be developed to integrate sec­
ondary information into the deformation analysis. 

2) The current method of interpolation of deformation ignores that part of shape 
information carried by the width properties of the SA. For instance, shapes 1 and 
2 in Figure 16 contain the same landmark data. A way must be found to integrate 
SA width properties into the iterative deformation algorithm. 

3) Another possible complication with the hierarchical shape description method of 
imposing landmarks in a time series is a discontinuous change of hierarchy in- -
duced by a large shape change, e.g. when a previously dominant axis segment 
which would survive as part of a surviving limb decreased in importance, while 
a previously less important limb becomes dominant. Two answers immediately 
present themselves. The first is that in dealing with some processes, such as time 
series, the changes which occur between frames may be small enough to: make the 
point moot. The second possibility is that in a given biologic system such as cell 
shape change, the change in the shape hierarchy may in fact reflect a concomitant 
change in the biologic importance of that portion of the cell, and that the change 
in hierarchical dominance is biologically appropriate. 

We have curren~ly investigated the iterative reverse deformation on only a few 
selected shapes, and need to pursuefurther experience to investigate whether the pro­
gressive approximation of shape features does, in fact, converge for an arbitrary fig­
ure. 

In addition to providing a method of evaluating shape change, the SA also pro­
vides a convenient coordinate system for shape space. In a manner similar to that 
described for SA hierarchy-based segmentation, one may describe a location within 
the shape in terms of distance along the most dominant limb and distance along that 
radius of the tangent circle associated with the limb position which intersects the 
boundary. By use of the iterative inverse transformations, it is possible to describe 
the location of a subobject within a deformed shape in terms of the SA of the original 
shape. The description of subobject location in terms of the original SA provides a 
description of subobject movement which is invariant over shape change. 

An application of this deformation analysis to a biologic process is the tracking 
of subobjects that move within the primary object while the primary object itself is 
undergoing a deformation. For instance, consider the subclass of white blood cells, 
the polymorphonuclear leukocyte, or neutrophil. The neutrophil is that cell which is 
concerned with finding and destroying various types of contaminants (bacteria, for­
eign bodies, senescent and dead somatic cells) within the body. As such, it is one of a 
small number of classes of cells which is capable of independent amoeboid movement 
within the body, and the ability of this cell to move in an appropriate manner is es­
sential to its function in fighting disease. An organelle called the centriole is the origin 
of much of the cytoskeleton of the cell, and is thought to interact intimately, if not 
control, the dynamics of both cell movement and movement of organelles within the 
cell. As the cell moves or is otherwise activated, the centrioles themselves move within 
the cell. An understanding of the movement of the centrioles within the cells while 
the cell in. turn is undergoing shape deformation may increase our understanding of 
cell motility. We plan to attempt to use the methods described above to examine the 
movement of the centrioles within the cell. 

6 CLOSING REMARKS 

In summary, we have extended two shape description methods for binary images 
to describe grey-scale images hierarchically by scale. Since binary images are a spe­
cial case of grey-scale images, these descriptions also describe binary images hierarchi­
cally by scale. One shape description, the symmetric axis pile, allows us to focus on 
the branching and bending of image structures. The other description, vertex curves, 
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gives us insight into the curvature of the image surface. We have also demonstrated 
that the relationship between these methods can be exploited to obtain a powerful 
shape description tool. 

We still need to analyze the behavior of vertex curves under multiple resolutions. 
We also need to complete our implementation of the symmetric axis pile, incorporat­
ing the hierarchy information provided by multiresolution vertex curves. Following 
the completion of this work for 2D images, we could extend these shape descriptions 
to 3D grey-scale images by studying the behavior of the higher dimension level sur­
faces which represent the 3D image. 

We have prototyped two applications of the symmetric axis pile. Image segmenta­
tion is accomplished by associating pixels in the image with components of the shape 
description. Then the hierarchical nature of the representation is exploited to produce 
image segments based on shape and scale. We have also suggested how landmarks 
based on axis endpoints can be used to determine deformation maps. These can then 
be used to define a coordinate system for studying aspects of shape change. 

Our future work will also address new applications of our shape descriptions. For 
example, object a.na.ly8u applications could make use of the descriptive features of the 
symmetric axis pile to compare and contrast the structures of grey-scale objects. Ob­
ject recognition could be facilitated by defining a metric on shape space (to measure 
the difference between two shapes) and using the scale based hierarchy defined by our 
shape descriptions to implement top down matching of object models. 
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