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Abstract

A new approach for rendering discrete volumetric data is presented. Surface shading calculations
are performed at every voxel using local gradient vectors as surface normals. In a separate step,
feature classification operators are applied to obtain partial opacities for every voxel, Operators
that detect isovalue surfaces and region boundary surfaces are presented. Independence of shading
and classification calculations insures that undistorted visualizations of 3-D shapes are obtained.
Non-binary operators insure that small or poorly defined features are not lost. The resulting colors
and opacities are digitally composilted from back to front along view rays o form an image. The
technique exhibits smooth silhouettes and few other aliasing artifacts. Examples from two applica-
tion areas are given: protein crystallography and medical imaging,

1. Introduction

In classical image synthesis, surfaces are modeled using a variety of geometric primitives
such as polygons or curved patches. Rendering consists of converting this database into an array of
pixels for viewing on a raster display. There is, however, a growing list of applications for which
data is acquired empirically rather than generated synihetically, Typical sources include sensing
devices and computer simulations. Unlike synthetic data, acquired data is typically unstructured
upon receipt. In this paper, we focus on sampled scalar functions of three spatial dimensions, hen-
ceforth referred o as volumetric data. In order to use local gradients for shading and classification,
we further reswrict ourselves to samples drawn from continuous differentiable functions, While this

criteria excludes treatment of some phenomena, the class of acceptable functions is sufficiently
large to be both useful and interesting.

The currently dominant technique for presenting this data involves fitting surface primitives
to the sampled function, then rendering these primitives using classical image synthesis. There are
several drawbacks 10 this approach. Fitting surfaces to acquired data is a hard problem. It is com-
putationally expensive and often requires manual intervention. Low-order peometric primitives are
also mediocre reconstruction filters, giving rise to artifacts in the rendered image.

To avoid these problems, researchers have introduced volumetric rendering wherein the inter-
mediate surface representation is omitted. Images are formed by directly shading each sample
point and projecting it onto the picture plane. Since no data reduction is performed prior to render-
ing, the selection of appropriate shading parameters becomes critical to the perception of shapes
and spatial relationships in the image,

Volumetric rendering is not cheap. The memory required fo store a voxel database grows as
the cube of its resolution whereas the cost of storing texture maps or images grows only as the
square. The computational expense of voxel-by-voxel shading exhibits similar cube-law growth
and is not reduced by coherence present in either the data or the image. While rendering costs are
high, the technigque offers many advantages. The universality of volumetric representations make
them readily accessible to a vadety of scientfic, medical and engineering disciplines. The



unstructured nature of voxels facilitates editing, while the simplicity of volumetric rendering algo-
rithms makes them atractive for hardware implementation,

Early work in this area was largely constrained by memory costs. The solution adopted was
to threshold the data, reducing grayscale represemtations to binary representations. [1]. Further
reductions were obtained by macking and storing only surfaces that bounded connected regions [2].
During rendering, voxels were treated as cubes having six polygonal faces. This approach has been
termed the cuberille model [3].

Spurred by cheaper memories and faster processors, researchers have begun investigating
techniques for directly rendering grayscale data, The chief advantage of this approach is its supe-
rior shading, achieved by estimating surface normals from local gradient vectors in the grayscale
data [4], [5], [6]. In all of these papers, surface normal estimation is performed on classified data
rather than on original data. 1If the classification operators are non-linear, as most useful ones are,
this ordering of tasks can distort surface normals and hence shading. Ray tracing has been used 1o
produce geometrically transformed views in [5], [6]. In both cases, rays are traced through original
data rather than through derived shades. If an inexpensive filter is used during ray tracing, this ord-
ering can introduce further errors inwo surface normals and shading. In this paper, shading and
classification calculations are independent and both are performed prior 1o geometric transforma-
tions. This greatly reduces shading errors,

Aliasing of silhouette edges remains an area of difficulty in volumetric rendering. Tri-linear
interpolation between sample poinis can be applied o reduce these artifacts during rotation [4], [6],
but interpolation in unrotated views trades smoothness for resolution. Supersampling followed by
averaging down has also been suggested, but this trades smoothness for computational expense [3].
Assignment of partal opacities and rendering of multiple transparent surfaces is discussed in [5],
but shading is computed only at selected voxels along each ray and not used 1o smooth silhoueties.

Researchers at or collaborating with PIXAR Inc. appear to have addressed this problem but their
approach has not been published.

2. Rendering method

The problems associated with rendering volumetric data can be illustrated using 2 simple
example. We define a 3-D binary scene as a continuous function of 3-space consisting solely of
zero-regions and one-regions where region boundaries are defined by polygons. Let zero-regions be
transparent and one-regions be opaque and of some fixed color. A fully opaque background
polygon of a different color is draped behind the scene. If we apply a polygon-clipping hidden-
surface algorithm, we produce a continuous 2-D function consisting of visible polygon fragments,
This constitutes an exact solution to the visibility of regions in that scene for a single observer
posiion. By filtering this function and sampling it equally finely in two dimensions, we generate a
discrete image.

Suppose instead that we filter the original continuous scene and sample it equally finely in
three dimensions, producing a discrete volumetmc database. Let us assume that samples are drawn
on an orthogonal prid having equal spacing in all three directions and that filtering is performed
using a box filter of width equal to the sample spacing. In this case, acquisition consists of dicing
the scene into abutting cubes or vexels. Voxels lying entirely within zero-regions or one-regions
are assigned values of zero or one respectively. Voxels lying athwart region boundaries assume
intermediate values depending on the boundary’s relationship to the voxel. This is called the par-
tial volume effect (PVE) [6]. Our goal is to develop a rendering method that, when applied to this

sampled function, will match as closely as possible the image obtained by applying hidden-surface
remaval to the original continuous scene and then sampling,

If we look at a single voael, its value tells us what percentage of its volume is opague. It
does not, however, tell us what percentage of its profile relative to the view direction is opague.



Without this information, we cannot guaraniee a proper blend of the voxel with its background.
When two or more voxels contribute to a single image pixel, interplay between the profiles of the
two voxels relative to the view direction determines the outcome. Since we know none of this
geometry, we are forced to make reasonable assumptions. The approach taken in this paper is the
same one used in 2-D digital compositing [7], [8]; the opaque portion of a voxel is assumed to
obscure the transparent and opaque portions of the voxel behind it in equal shares. We effectively
treat each voxel as a semi-transparent object containing no sub-voxel geometry but an opacity equal

to the known coverage percentage. This technique insures smooth silhouettes and minimizes alias-
ing artifacts in general.

Figures 1 and 2 summarize the method. We begin with a left-handed 3-axis coordinate sys-
tem. Some non-zero portion of the all-positive octant is filled with discrete samples of a contnu-
ous scalar function. Samples are evenly spaced in all three directions to form a 3-D orthogonal
grid, Since both of the example datasets considered in this paper contain physical density as a
function of position, we refer to the value of a voxel as its density. Using a shading model
described in section 4, the density d(x;) of each voxel x; = (x,¥,2) is used 1o compute a color
cx), A =rgb. Using one of the feature classification procedures described in section 3, each
density is also used to compute an opacity a(x;). Assume that all values range between 0 and |
with & =0 being tansparent and @ = 1 being opague. By projecting all voxels perpendicularly
toward the z = 0 plane, we form an orthographic image. Assuming that x and y spacing of 2-D
pixels and 3-D voxels match and that the grids are aligned, a pixel in the image corresponds to a
row of voxels in the dataset. A fully opaque background of color ¢y, and opacity oy, =1 is
draped behind the dataset at z; = zmax + 1. We compute the color Cy(u;) of each pixel u; = (g,v))
by digitally compositing in back-to-front order using the well-known transparency algorithm:

for i = xmin, . . . xmax,
for j = ymin, ..., ymax, a
fork=zmax, ..., omtin,

Caluv)) = . YpZea M1 = Qlxpya20) + 60,y 20000 ¥, 2.

In practice, shading need not be computed for voxels whose opacity is 0, but many voxels along
each view ray will have non-zero opacities.

3. Feature classification

In addition to insuring smooth silhouettes, the mapping from acquired data to opacity per-
forms classification, enchancing selected features while suppressing others. While the mapping
from data to color can also serve this function, as exemplified by pseudo-coloring, a hardwired
shading model has been used, This artificially limits the capabilites of our rendering method but
enables us to focus attention on a single classification parameter - voxel opacity,

We further limit ourselves to one family of classification functions - those that detect and
render surfaces in the data, Surfaces have several characteristics that make them useful for visualiz-
ing volumetric data:



(13 Our world is dominated by opaque surfaces. We are thus better trained to evaluate
the shapes and spatial relationships of objects from shading on their bounding sur-
faces than from scattering of light through their interiors.

(2) The directional shading used to render surfaces accentuates even slight changes in
their orientation. Surface shading can therefore convey subtle detail.

(3) The human visual system can usually distinguish directionally-variant shading from
albedo-vanant shading, allowing us 0 use surface color, shininess and texture to car-
ry addidonal informaton [9].

3.1. Rendering of isovalue surfaces

We will first consider the detection and rendering of surfaces defined by points of equal value

in grayscale scenes. The driving problem for this study was protein crystallography but the method
has wider application.

Determining the structure of large molecules is a difficult problem. The method most com-
monly used is ab initio interpretation of electron density maps, which represent the averaged den-
sity of a molecule’s electrons as a function of position in 3-space, These maps are obtained from
K-ray diffraction swdies of crystallized samples of the molecule. Figure 9 shows four slices from a
discretized electron density map., Each whitish cloud represents a single atom. The figure is
described in greater detail in section 6.

Current methods for presenting this 3-D data include stacks of isodensity contours, ridge lines
ammanged in 3-space so as to connect local density maxima [10], and basket meshes representing

selected isodensity surfaces [11]. Ideally, raster visualizations of isovalue surfaces should meet the
following criteria;

(1) Surface interiors should be smoothly shaded.

(2) Surface silhouettes should be free from faceting or aliasing.
(3) Semi-ransparent surfaces should be allowed

{4) Muliiple concentric surfaces should be allowed.

Criteria (4) is a hard one. One obvious classification procedure is 10 make voxels having
densities preater than some threshold opaque. This produces 3-D regions of opague voxels the
outermost layer of which is the desired isodensity surface. Unfortunately, this solution prevents
display of multiple concentric surfaces. Using a density window in place of a threshold does not

solve the problem. If the window is too narrow, holes appear, If it too wide, display of muldple
surfaces is constrained.

The classification procedure employed in this study consists of reconstructing, mapping and
resampling the volumetric database, The procedure will be outlined first in one dimension, then
extended to higher dimensions, We start with a continuous differentable density function d(x) as
shown in figure 3, Data acquisition consists of pre-filtering this function and sampling it to obtain
discrete densities d{x,). We begin classification by post-filtering the samples to form a reconstructed
density function d(x). A mapping i = B(d) from density to opacity is then applied, resulting in 2
continuous opacity function afx) = (d » B){x) = P(d(x)). This function is pre-filtered and resampled
to yield discrete opaciues cx,), These opacities are passed to the digital compositing algorithm
described in section 2,

Within this general framework, we have considerable latitude in the selection of filters and
mappings. The choices shown here are based on empirical trials and represent only one possible

implementation, Specifically, reconstruction is implemented using the first-degree Taylor polyno-
mial



diz) = d(x) + im {x)x - x,)

where the first derivative is approximaled using the operator

“’“‘"” 2D (1) = dixr) - dix),

This method was selected because it is mexpemive and localized, requiring only two neighboring
density samples to form each approximation. Mapping is implemented using the delta function
Bld) = a,b(d - 4,)
such that selected density d, is mapped to selected opacity @, while all other densities are mapped
to an opacity of 0. The continuous opacity function is then given by
a(x) = o,B(d(x) - d,).

This effectively detects each time the reconstructed density function d(x) crosses selected density
d,, producing a spike of opacity @, at that x. The pre-filter preceding resampling is implemented by

spatially convolving the continuous opacity function with a Bartlett window of radius r, which is
given by

l-=— WHfld=<r
glz) = r
0 otherwise.

This filter is also inexpensive and localized. If we assume a resampling interval s equal to the filter
radius r, each opacity a(x;) depends only on density values d(z;) and d(x;,;). This can be verified
by combining the above expressions, applying the convolution and solving for oz},

We extend this method to three dimensions by using d(x)) in place of d(x,) and the magnituds
of the gradient vector |Vd(x;)| in place of the derivative d{iﬂl{ x). We also replace the 1-D

Bartlett window with a 3-D spherically isotropic linear ramp. By ignoring the orientation of the
gradient vector, we introduce additional error into the reconstruction, but its effect was empirically
determined to be negligible, at least for the spatially invariant mapping and spatially isotropic pre-
filter used here. The entire procedure is summarized by the expression

1 if [Vd(x)| = 0 and d(x;) = d,

ld, |
X)) = o = % {Tﬁ} if |Vd(x))| > 0 and dix;) = |Vd(x)| < d, £ dix) + [Vd(x)| (2)
Xi

0 otherwise.

where the gradient vector is approximated using the operator
Vd(x)) = Vd(x;3;2) 3)

= [rf{xm.r,-t;} = dixpypze), dxYr12) = dx,Yeze), dixYazing) — dixye2) ]

A graph of o(x,) as a function of d(x;) and [Vd(x;)| for a typical value of 4, is shown in figure 4.

If more than one isodensity surface is to be displayed in a single image, they can be
classified separately and their opacities combined using equation (1). Alternatively, given density
values d,‘. b= 2 n, =1 and opacities a,, we can use equagon (2) W compute u,_{x.]. then
apply



eedx) =1 =TT (1 = o, (x). (4)
=1

Since reconstruction is based on a first-degree polynomial, high second derivatives in the ori-
ginal density function result in poor reconstructions and aliasing in the image. Moving to a
higher-order polynomial considerably increases computational expense. Fortunately, the time and
ensemble averaging inherent in X-ray diffraction tends to mitigate these artifacts. They can be
reduced still fusther, at the expense of some resolution, by loading a 2-D lookup table with samples
of a(x;) and blurring the table slightly. A sample image is shown in figure 10, Although no tran-
sparency was used here, two concentric isodensity surfaces are visible where clipped by the dataset
boundaries.

3.2. Rendering of region boundary surlaces

We will next consider the detection and rendering of surfaces bounding regions of constant
density in grayscale scenes. The driving problem for this study was medical imaging, specifically,
display of computed tomography (CT) data,

From a densitometric point of view, the human body is a complex arrangement of biological
tissues each of which is fairly homogeneous and of predictable density. Clinicians are mostly
interested in the boundaries between tissues, from which the sizes and spatial relationships of
features can be inferred. A second argument for rendering surfaces is that physicians know what
the surface of an organ looks like - they see it during surgery. While interior surfaces are obvi-
ously invisible when viewed from outside the body, not to mention lacking any illumination, it
doesn’t require much imagination w0 accept visualizations in which surfaces are rendered tran-
sparently and with hypothetical illumination.

The currently dominant method for presenting these surfaces involves forming a mesh of
polygons from contours drawn or computed (usually with some manual intervention) on each slice
[12]. Approaches based on volumetric rendering were surveyed in the introduction. Ideally, raster
visualizations of region boundary surfaces should meet criteria (1) through (4) from section 3.1. In
addiuon, the occurrence of false negatives - missed surfaces, and false positives - anifactual sur-
faces, should be minimized.

As before, criteria (4} is a hard one, To render region boundaries opaquely without also
making enclosed regions opague, we must isolate voxels lying on boundaries from voxels lying
wholely within regions. Specifically, we wish to detect voxels lying on transitions between some
fixed tssue type A having known density d, and an arbitrary number of other tissues fypes
B, i=1.....n n21 having unknown densities dg. For all such voxels, we must first deduce i,
then compute a parameter f, 0 < ¢ < 1 indicating where this voxel lies along the rransition from d,
to dg. Given 1, we may construct a mapping in which opacity rises linearly from 0 to some user-
selected value o, as 7 rises from 0 to .5, then falls again to 0 as ¢ continues from .5 to 1. This

yields an ant-aliased rendering of the boundary between regions of tissue types A and B, Proper
presentation of these boundaries require that ransitions betwéen tissue type A and tissue types B,
appear identical for all i, Since the dp's differ, the mapping from density dj to parameter / is
different for each i, Unfortunately, determination of i and hence ¢ based on density alone is not
possible. This problem is discussed in the context of 2-D area filling in {13]. In particular, it
comresponds to the case of trying to fill an image containing three or more colors that are co-linear
in rgh-space,

These considerations suggest that the classification procedure developed for isovalue surfaces
will not be applicable here. The technique actually employed in this study is based on the princi-
ple of matched detectors [14]. In particular, we empirically develop an operator that classifies vox-
els based on both density and gradient vector magnitude. We start by defining for each pair of



tissue types a mapping in which ¢ rises linearly from 0 to 1 as density d(x)) transits from d to dj.
We then map ¢ 1o &, as described above. We finally define a composite function o(x;) equal to the
convex hull of these n opacity functions as shown in the top graph of figure 5. In most cases, vOx-
els having densities that fall between d, and djy, but low gradient vector magnitudes do not belong
to transitions we are detecting but to interiors of unrelated regions, Voxels having gradient vector
magnitudes greater than the difference between densities d, and dp almost certainly do not belong
to transitions we are detecting and may be similarly discarded We encode these criteria by
defining, for each pair of tissue types, a separate mapping in which opacity rises gradually from 0
to 1 as gradient veclor magnitude |Vd(x;)| rises from 0 to the maximum possible difference
|dy = dg, then falls sharply o O for greater magnitudes. Ramps were used in accordance with the
principle followed throughout this paper of avoiding binary mappings. Linear ramps were used for
simplicity in this implementation and slopes were determined by mial. We then define a second
composite function o;(x;) equal o the convex hull of these n funcions as shown in the bottom
graph of figure 5. Finally, we multiply the two composite opacity functions together. For a single
pair of tissue types of density d, and dg, d, # dj, the procedure is summarized by the expression

o

|y -lll] [ Vx| ] if (dp S dix) < d, of dy < d(x)) < dy)
2

| | da—dg | lda = dl and [Vd(x))| S [dg ~ dy
; . (5)
X)) = o, 4 o : dy — dix;) - ll s k| V(x| if (dy < dix)) <d, or dy < d{x)) S dj)
L | dy—dg 21| -4y and |dp — d| < [Vd(x)] < (1 + 1K) |ds
L0 otherwise.
where the gradient vector is approximated using the operator
Vd(x) = Vd(x,y.2) (6)

1 1
= E_d{xﬂj Wpze) = dxe g Ypze); %d{x;,}'ﬁl,?ﬂ = d{xu Y120 —:,.‘d{-xu}’p?hl} = d{xy¥pa-y)

As in section 3.1, this implementation is inexpensive and localized, each opacity ofx;) depending
only on density values d{x), j=i-1, ... +1. A graph of a(x;) as a function of d(x;) and |Vd(x;)|
for typical values of dy, dg and the constant k is shown in figure 6,

If surfaces bounding more than one region type A are 10 be displayed in a single image, they
can be classified separately and their opacities comnbined using equation (4). A set of sample
images is shown in figure 11. All four images were computed from the same dataset. The top and
bottom pairs differ only in parameters of the classificaton procedure. The left and right pairs
represent views taken at right angles to each other. The horizontal bands through the patient’s
teeth are artifacts due to scattering of X-rays from dental fillings and are present in the acquired
data. The bands across her forehead and under her chin are gauze bandages used w immobilize her
head during scanning. Her skin and nose cartilage are rendered transparently over the bone surface
in the two lower views but are only faintly visible in the figure due to the dynamic range limita-
tions of photographic printing.



4. Shading calculations

Using the rendering method presented in section 2, the mapping of acquired data o color
does not participate in the classification operation. Accordingly, a shading model was selected that
provides satisfactory rendering of smooth surfaces at a reasonable cost. It is not the main paint of
the paper and is presented mainly for completeness. The model chosen is due to Phong, but
extended (o include linear depth-cueing. This formulation is adopted from [15]:

exlxy) = €aakan + % [kum{lﬂ‘l-} + k..a{foJHr] (7)

whemre
ca(x;) = A’th component of color of voxel x;, & = r,g.b,
g = A'th component of color of ambient illumination,
€, = A'th component of color of parallel light source,
k,s = ambient reflection coefficient for A'th color component,
kg = diffuse reflection coefficient for A’th color component,
k, 5 = specular reflection coefiicient for A'th color component,
n = exponent used to approximate highlight,
r, k = terms used in linear approximation of depth-cueing,
N(x;} = surface normal of voxel x;,
L = normalized vector in direction of lipht source,
H = normalized vector in direction of maximum highlight.

Since a parallel light source is used, L is a constant. Furthermore,

V+<L
2

where

Y = normalized vector in direction of viewer,

Since an orthographic projection is used, V and hence H are also constants. Finally, the surface
normal N is given by

- “J’d(xﬂ
V()

There are numerous methods for estimating the gradient vector Vd(x;). A peneral discussion
of gradient operators can be found in any image processing textbook [14]. The selection of an
operator depends on the frequency spectra of the data being rendered and the features being sought.
Since the gradient vector is used in both the shading and opacity calculations, efficiency considera-
tons prompied the wse of the same operator for both tasks. Different operators were used,



however, for the two different data types, as seen by comparing equations (3) and (6). These
operators were selected empirically and reflect the frequency characteristics of each type of data. 1t
is worth noting that these operators are always applied to unclassified densities d(x;). By separating
estimation of surface normals from classification, we insure an undistorted visualization of shapes.

5. Geometric transformations

There are two principle reasons for applying geometric transformations; data preparaton and
animation, Data preparation consists of correcting for undesirable auributes of the acquisition pro-
cess - peometric attributes in this case. For example, sampling grids may be non-orthogonal, spac-
ing between samples may vary as a function of position in 3-space, or voxel aspect ratios may not
be cubic. In this paper, we limit data preparation 1o aspect ratio correction, which we implement
by interpolating additional samples in one or more directions, Real-time or pre<computed motion
sequences are an invaluable aid w comprehension of volumetric data. We implement this capabil-
ity using 3-axis rotation followed by orthographic projection. We note that data preparation is per-
formed only once while animation requires labor 1o produce each frame,

Numerous methods for applying geometric transformations to 2-D textures may be found in
the literature. An excellent survey is contained in [16]. Incorporaton of these techniques into
rendering pipelines that include visibility and shading calculations has also been addressed [17).
These same issues apply to ransformation of volumetric data, Even restricting ourselves to the
rendering method presented in this paper, there are many choices o be made:

{1) Transformatons can be applied either before or after shading and classificadon, ie.
10 acquired data or 1o derived shades and opacities.

(2) Transformed values can be accumulated in new datasets or composited immediately
o form images,

(3) Transformations can be applied in object-order - looping through input samples, or
in image-order - looping through ocutput samples.

(4) Transformations can be applied separately in each of three orthogonal directions or
simultaneously.

Let us consider the problem of interpolation. The rendering method presented in section 2
assumes that sample spacing is even in all three directions and matches image sample spacing In
the two directions parallel to the picture plane, at least for the unrotated case. If acquired data does
not meel these requirements, interpolation must be performed. Phong has demonstrated that beuter
surface shading is obtained by interpolating normals than by interpolating intensities, as noted in
[15]). Even better shading is obtained by interpolating the geometry from which normals are com-
puted. This implies that we should interpolate densities rather than gradients or colors. The same
principle applies 10 any non-linear operator including the feature classification procedures of section
3. This suppors our decision to interpolate densities. The disadvantage of this approach is that the
gradient detectors we use to estimate normals are sensitive to discontinuities in the first derivative
of interpolated data. We can mitigate this problem by employing a filter that is second-order or
higher.

Rotation, unlike interpolation, is best applied mear the end of the rendering pipeline, By pre-
computing colors and opacities, most of the hard work need only be done once; expensive shading
models and classification procedures can be employed without incurring per-frame costs. Further-
more, since gradient vectors have already been estimated, we can rotate the data using an inexpen-
sive first-order filter without introducing errors into the shading or classification. The disadvantage
of this method is that shading becomes fixed, light sources appear to travel around with the data as
it rotates and highlights are incorrect. Since most visualizations produced using volumetric render-
ing are of imaginary or invisible phenomena anyway, observers are seldom troubled by this effect,
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If the specular component of the shading model is reduced, a convincing simulation of walking
around an immobile dataset iluminated by fixed Light sources is obtained.

Figure 7 shows how each geometric transformation fits into the rendering pipeline. Interpola-
tion is performed by spatially convolving the acquired data dg(x)) with a 3-D separable cubic B-
spline filter kernel. The results are stored in a second dataset d(x;). Shading and classification are
performed using equations (2) through (7), resulting in a color ¢;(x;) and opacity a(x;) at each
voxel. These are stored in two additional datasets. Rotation and orthographic projection are incor-
porated into the digital compositing algorithm by casting parallel rays into the data at an angle as
shown in figure B. Samples are taken at evenly spaced intervals along each ray working from the
background plane towards the eye. Since an orthographic projection is used, sample coordinates can
be efficiently calculated using differencing. At each sample, a color and opacity are computed using

tri-linear interpolation from the nearest eight neighbors. The results are composited into the color
Cy(uy) of the current ray using equation (1).

Interpolation was used in the production of all images in this paper while only figures 10 and
12 include rotation. Note that although the inexpensive filter results in some blurring in figure 12,
classification and shading are comparable to that of the orthogonal views in figure 11 since they are
computed prior to transformation. The ray tracing method described here also suppons translation
and scaling. Although this is not in accordance with the principle of interpolating densities rather
than colors, images larger than the stored dataset can be produced simply by casting more rays
through the pre-computed colors and opacites. This expedient was used, in addition w interpola-
tion during data preparation, for figures 10 through 12.

6. lmplementation and resulis

The techniques presented in this paper were implemented in the C language under UNIX bsd
4.2. The tmings given below are for a VAX 11/785 having sufficient physical memory to prevent
paging,

The dataset used in the crystallography study is from the protein Cytochrome B5. The
lenpthy process of acquiring an electron density map is beyond the scope of this paper and readers
are referred to [18]. Our map was obtained from the crystallographers as a 49 x 31 x 66 sample
grid representing a 46 x 29 x 62 angstrom cube. A 20 x 20 x 20 sample portion of this map was
extracted and expanded to fill 2 113 x 113 » 113 voxel dataset. Interpolation was performed using
the 3-D separable cubic B-spline described in section 5 and took 6 hours. Figure 9 shows four
slices spaced 10 voxels apart in this expanded dataset. Classification and shading were applied as
described in sections 3.1 and 4 and required 30 minutes total. The resulting shades and opacities
were stored in an intermediate dataset as shown in figure 10. Rotaton, projection and compositing
were performed as described in section 5 and ook 4 hours, yielding the image in figure 10. Some
scaling was also included in the projection operation, producing a 400 x 400 pizel image. Without
scaling, the image would have been 200 x 200 pixels and would have required 30 minutes to
render,

The dataset used in the medical imaging study is from a cadaver and was obtained as a 256 x
256 x 113 sample gnd. Care was taken during scanning to insure that all slices were parallel,
evenly spaced, and completely covered the anatomy being scanned. For a general discussion of CT
scanning and reconstruction techniques, the reader is referred to [19]). The acquired grid was
expanded to fill a 256 x 256 x 226 voxel dataset by interpolating in one direction only, which ok
90 minutes. The four images in figure 11 were produced by classifying, shading and immeadiately
compositing in either the x or y direction as shown in figure 1 and required 5 hours per image. In
a separate trial, shading and classification were performed without compositing, resulting in an
intermediate dataset as shown in figure 10, This took 4 hours. Rolation, projection and composit-
ing were performed as described in section 5 and took B hours, yielding the image in fgure 12,
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Some scaling was included in this projection, producing a 512 x 512 pixel image. Without scaling,
the image would have been 400 x 400 pixels and would have required 4 hours to render.

Worst-case storage requirements for this implementation occur after shading and classification
have been applied but before geomewric transformation. Densities, colors and opacities are
represented as 8-bit values throughout Therefore, 28 megabytes were required (o store the 256 x
256 x 226 colors and opacities computed during the medical imaging study.

7. Conclusions

Since volumetric rendening techniques work from sampled data rather than geometric primi-
tives, they are necessarily approximate, Errors in visibility and classification do occur, as does
aliasing. This paper has presented a lechnique for reducing these amdfacts by following several
guidelines. Firstly, all voxels participate in the rendering of any image. Secondly, feature
classification operators are continuous rather than binary, Thirdly, shading and classification calcu-
lations are independent, pamicularly with regard to estimation of surface normals.

A number of improvements to the current implementation can be proposed. More wark 15
needed on reconstruction methods for isovalue surfaces, especially with respect to resolving closely
spaced multiple concentric surfaces, By pre-computing and storing second or higher darivatives,
very accurate approximations can be made at only modest increases in cost. Derivative operators
that are more resistant to noise should also be mvestgated. For region boundary surfaces, more
work is needed on design of matched filters. Detection of boundaries between soft tissues is harder
than air-tissue or bone-tissue boundaries due to the imhomogeneity of these features and the narrow
range of densities they occupy in CT scans. Swdies using magnetic resonance imaging (MRI) data,
which exhibits better distinctions between soft tissue features, should be conducted, On a general
note, a unified approach to classification of surfaces - one that includes both isovalue and region
boundary surfaces, would be desirable.

Surface shading is only one approach to the visualization of volumetric data Shading
models based on scauering of light from semi-transparent media are also possible. Color and tex-
ture can be added 10 represent such variables as gradient magnitude. Visualizing discrete vector
functions of 3-space is still largely unexplored. Visualizations combining acquired and synthetic
data also hold much promise. For example, it might be useful to superimpose ball-and-stick molec-
ular models onto electron density maps or medical prosthesis devices onto CT scans. In order to
obtain correct visibility, a true 3-D merge of the acquired and synthetic data must be performed.
One possible solution is the rgboe buffer presented in [20]. Another is to scan-convert the syn-
thetic geometry directly into the acquired density map and render the ensemble.

The prospects for real-time or near real-time rotation of volumetric data are encouraging. By
pre-computing shades and opacities and storing them in intermediate 3-D datasets, we simplify the
volumetric rendering problem to one of wansforming two values per sample poimt and digitally
compositing the results. One promising technique for speeding up these transformations is to apply
a 3-pass version of the 2-pass texture mapping technique presented in [21]. By filtering separately
in each of three orthogonal directions, computatonal expense and algorithmic complexity are
reduced. This further sugpests that hardware implementations might be feasible. A recent survey
of architectures for rendering voxel data is given in [22). One imagines a general-purposs scene
animation machine that can rotate synthetic scenes of arbitrary peometric complexity in real-time
with anti-aliasing, although with fixed shading, provided that the scene can be scan-converted into a
volumetric database of colors and opacities. By coupling pre-computed surface normals with shad-
ing hardware, movable light sources could also be supported.
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Figure 9 — Slice:

from electron density map




Figure 1l = Boundary surfaces from CT data

Figure 12 - Geometric transformation of surfaces from CT data




