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ABSTRACT 

The FFP machine directl11 e:tecutes programs written in a general purpose high level 
functional programming language. It is a small-grain reduction machine which dy
namicallJI creates independent submachines of varJ!ing size consisting of conglom
erations of processor. for each available subcomputation. Buau..e the machine per
forms problem decomposition and resource alloeation without e:tplicit programmer 
or software control, it is appropriate for d11namic and irregular computations. We 
descn"be an implementation that consists of a binarJI tree of onl11 two kinds of pro
cessors; this implementation iB u:tensible and well-suited to VLSI implementation. 

I. INTRODUCTION 

A highly parallel machine architecture has been developed and extensively studied at the 
University of North Carolina at Chapel Hill [Mago79,MagMi84). The project has as its 
goal the construction of a machine with the following characteristics: 

1. general purpose, 

2. well-suited to VLSI technology, 

3. extensible, 

4. high performance. 

The FFP machine holds promise for satisfying all these criteria. Detailed simulations 
have shown the design to be sound, and recent advances in microelectronic fabrication 
technology and asynchronous design make a successful implementation feasible. We discuss 
each of the above goals u it relates to the FFP machine. 

1. General purpoae. To achieve ease and generality of programming, the FFP machine 
will be programmed in {and will directly execute) the high-level general purpose FFP 
(Formal Functional Programming) language proposed by Backus [Backu78J. The ma
chine design reflects the requirements of an FFP language interpreter rather than the 
requirements of a claas of problems or a particular application area. FFP is a func
tional language, highly regular in its syntax, and with a simple fixed-point semantics. 
Its simplicity makes it well-suited to machine execution and it is an appropriate target 
language for translation from a variety of user languages. FFP, being a functional 
language, provides automatic synchronization among subcomputations; thus eliminat
ing one of the major sources of error in parallel programs written in languages which 
require programmer-controlled synchronization. 

* This was written while the first author was on leave at the Institute for Biomedical 
Computing, Washington University, St. Louis, Miasouri. He gratefully acknowledges their 
support. · · 
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2. Well-suited to VLSI technology. Because chip design is costly but chip manufac
ture is not, VLSI technology is ideal for the production of many instances of a few 
designs. An FFP machine consists of thousands of cells (processors) of only two types, 
used in approximately equal numbers. The cells are small enough to allow many to be 
implemented on a single chip. 

3. Extensible. A machine architecture is u:teruible (or •calable) if the design is insensi
tive to the size of the implementation. Ideally, a multiprocessor's computing capacity 
is directly proportional to the quantity of hardware; the FFP machine comes close to 
achieving this goal. 

4. High performance. The design aims at high performance through parallelism rather 
than hardware speed. (That high performance can be achieved is demonstrable only 
with a prototype, but all forms of parallelism that we describe below are clearly present 
in the design we describe.) The machine exhibits MIMD parallelism at three distinct 
levels: 
a. Multiprogramming. The machine simultaneously and independently runs as many 

distinct programs as will fit in its memory. 

b. Language-level paralleli•m. In FFP, as in any functional language, the program
mer does not specify parallelism explicitly; only data dependencies constrain paral
lelism, and the coordination of subcomputations is implicit in a program's syntactic 
structure. Because the FFP machine executes the language directly, init iation and 
termination of execution paths is automatic; there is no need for prior compila
tion or optimization for parallel execution. Because the machine initiates every 
computation for which all operands are available, parallelism within an FFP pro
gram is limited only by the size of the machine and by the data dependencies of 
the computation. (Operations cannot be performed until their operands are fully 
known.) . 

c. Paralleli•m within FFP primitive•. Considerable parallelism can occur in t he ex
ecution of a single primitive operation in the FFP machine. For example, the 
machine can add a constant to each element of a vector in time independent of 
the size of the vector, and can sum the entries of a vector by adding partial sums 
pairwise in parallel. 

Small granularity is a critical factor in the ability of the FFP machine to utilize simul
taneously of all three kinds of parallelism listed above. Every data item involved in the 
computation is close to a processor (if only a simple one), and thus no scheduling problems 
arise. Small granularity also makes p088ible a solution to a persistent problem of parallel 
programming, the decomposition of a program into independently executable subprograms. 
(This 'program decomposition problem' is, in general , extremely difficult. We will describe 
later how it is solved in the FFP machine.) Decomposition is constrained in that a sub
machine (processor and memory) of adequate size must be assigned to each subproblem; 
if submachines are of fixed size, they must be sufficiently powerful to handle t he largest 
subproblems that will occur. A small grain system has the potential to form submachines 
of an appropriate size from a number of small processors; this is the mechanism used by 
the FFP machine. The processors of the FFP machine are too limited in power to solve 
problems by themselves, but they can cooperate with (any number of) neighboring pro
cessors. Thus program execution involves the formation of an arbitrarily large (up to the 
size of the machine) conglomeration of cooperating cells for each subproblem that arises 
in a computation. 
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ll. FFP LANGUAGES 

Because an FFP language is the machine language of the FFP machine, an understanding of 
the machine requires some knowledge of these languages. This section informally describes 
a specific FFP language only to the extent necessary to understand this chapter; the reader 
should consult the reference (Backu78) for a complete treatment. 

ll.l Language de&criptlon 

John Backus propoeed the FP and FFP programming languages in his Turing Award Lec
ture (Backu78). FP languages are designed for human use, and thus contain considerable 
"syntactic sugaring"; FFP languages, in contrast, have a highly regular syntax well suited 
to machine execution. 

An FFP language is a language of expressions that represent functions and values. A pro
gram is an expression that represents a function; it produces an output (the function value) 
when applied to an input (the function argument). Syntactically, a program expression f 
is combined with a data expression : to form an expression (/ : :) called an application; 
f is called the o~rator and : the operand of the application. The value of (/ : :) is the 
output of the program 1 run on the input :. 

Executing the program 1 on the input : consists of evaluating the expression (! : :). 
Program execution proceeds by rewriting (or reducing) the expression. This is done by 
selecting one or more disjoint subexpressions and replacing them with new subexpressions 
that have the same value, much as one would do in finding the value of an arithmetic 
expression involving opera:tors such as + and •. FFP restricts the rewriting process so that 
only innermost applications are rewritten (this corresponds to a call-by-value semantics). 
The reduction process terminates when there are no more subexpressions that can be 
rewritten; the resulting expression, which contains no applications, is called an object. 

The simplest FFP programs consist of an atom that represents a language primitive oper
ator; an example is the symbol+, which is an atom (as is the numeral6 and the boolean 
constant TRUE), but also, when it appears as an operator in an application, denotes a 
function that wtll sum the entries of a numeric sequence. The program + is run on the 
input sequence < 4,6,8 > by evaluating the expression(+ :< 4,6,8 >). This expression can 
be rewritten (according to the language definition, and in particular, the definition of+) as 
the sum of 4, 6 and 8; that is, the language definition states that the value of ( + :< 4, 6, 8 >) 
is the same as the value of 18. We show a single reduction with an arrow-, and a sequence 
of 0 or more reductions with ~; thus, 

( + : < •• 6, 8 >) - 18 

The operator +, like all functions in FFP, is monadic; every FFP function takes exactly 
one operand, which can be an atom (such as the integer 4, the real number 3.425, or the 
character string 'cat') or a finite sequence, such as the empty sequence (denoted by ~) or 
the sequence of two elements < 3, < 5,'cat'>>. Other primitive functions that will be used 
in this paper are described in Table 1. 

(We will often not distinguish between an atom such as + and the function associated with 
that atom, in this case, variadic addition. Thus we will speak of 'the function +' when no 
confusion will arise.) 

If only primitive functions were allowed, FFP languages would be very weak; one also needs 
a way to combine small programs into larger ones. In FP, program-forming operations 
are given u functional forms; in FFP, they are given as sequences whose meaning is 
defined by metacompo1ition. When the operator of an application is a no·nempty sequence 
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object (a sequence that contains no applications), the expression is rewritten using the 
metacomposition rule as follows: 

The metacomposition rule rewrites an application as a new application. The operator of 
the new application is the first element of the original operator sequence; the operand of the 
new application is the pair consisting of the original operator and the original operand. 
Metacomposition makes possible powerful program-combining operations including the 
functional forms that Backus described for FP. Examples of the use of metacomposition 
are given in Table 2. 

A subroutine facility is provided in FFP by user-supplied definitions. A programmer can 
assign to any atom a definition, which must be an object. When a defined atom appears 
in the operator position of an innermost expression, it is replaced by its definition. An 
example of a defined atom is IP (for 'inner product'): 

IP =< CMP,+,< ATA,• >,TR > 

The following is an example of the application of IP: 
(IP :<< 1,2, 3 >, < 3, 4, 5 >>)- (< CMP,+, < ATA, • >,TR >:<< 1, 2,3 >, < 3,4, 5 >>) 

by definition of I P 
.!.(+ : (< ATA, • >: (TR :<< 1, 2,3 >, < 3,4, 5 >>))) by definition of CM P (Table 2) 
- (+: (< ATA,• >:<< 1, 3 >, < 2, 4 >, < 3, 5 >>)) by definition of TR (Table 1) 
..!.(+ :< (• :< 1,3 >),(• :< 2,4 >),(• :< 3,5 >)>)by definition of ATA (Table 2) 
- (+ :< 3,8, 15 >) by definition of • (Table 1) 
- 26 by definition of + (Table 1) 

Because innermost applications are the only ones rewritten by the reduction process, they 
are called reducible applications (RAs). Note that 

i. distinct RAs are disjoint, 

ii. each RA contains all its operands, and 

iii. rewriting an RA has no side effects. 

It follows that all RAs of an expression can be rewritten concurrently and independently. 
Nesting of applications reflects data dependencies; an application can be rewritten if and 
only if none of its subexpressions is an application. Consequently, the number of RAs 
in an expression is equal to the level of parallelism at the FFP level that can be used in 
rewriting the expression. 

Giving a careful description of an operational semantics (how FFP expressions are evalu
ated on the FFP machine) requires that we add a few details to the foregoing. A particular 
FFP language is completely characterized by specifying a set of atoms and a set of primi
tive functions, each of which is associated with a unique 'primitive' atom. Each primitive 
function is a map from the set of objects to the set of FFP expressions. 

There are four kinds of FFP expressions: atoms, sequences, applications and bottom (1.). 
The expression 1. represents a value that is undefined, or it represents a nonterminating 
computation. It is an object but not an atom, sequence, or application. Any sequence 
expression in which 1. occurs as an element is defined to be equal to 1.; such a sequence is 
considered to be simply an alternative notation for .l. 

If %1 , ••• ,%,. are expressions other than 1., then < z 1 ••• z ,. > is a sequence; the length of the 
sequence is n, and %i is the i'" element of the sequence. The empty sequence (of length 0) 
is denoted by ;; ; is both an atom and a sequence. · 



The txJlue, or meaning, of any object is itaelf. The value of a sequence< %1 1 %2 1 ••• ,%,. >is 
the sequence of values of ita elements, unless the value of some of ita entries is 1., in which 
case the value of the expression is 1.. 

The preceding specifies the value of all expressions except applications. The value of (! : %) 
can be given denotationally with a fixed-point semantics [Backu78J, but we will describe 
an operational semantics. 

Operationally, evaluation of an expression e proceeds by successively reducing (rewriting) 
the expression e as another expression e' which has the same value. Each step of the 
rewriting process replaces one or more RAe by expressions with the same meaning. H this 
proce88 terminates, then the final expression is an object o, and the value of e is defined to 
be o. H the process does not terminate, then the value of the expression is defined to be 1.. 

The way in which an RA (! : %) is rewritten can be described by cases. Since an RA does 
not contain any proper subexpressions that are applications, f and % are both objects; 
hence f is either an atom, or a sequence, or 1.. An RA is rewritten by applying the first 
applicable clause of the following sequence. 

1. H f is a defined atom, then there is a (programmer-specified) definition in the form 
of an FFP object associated with f. (Recall that such definitions are analogous to 
subroutines and are not part of the language definition.) H f is defined by the expression 
e, then (! : %) is rewritten as (e : %). 

2 . .H f is a primitive atom, then there is a primitive (built-in) function denoted by f . (A 
primitive function is part of the language definition; examples of such functions include 
the arithmetic and boolean functions as well as some that manipulate sequences.) In 
this case, (I : :r:) is rewritten as the value of the function denoted by f applied to :r:. 

3. H f is an atom that is neither defined nor primitive, or if f is 1., then the expression 
(! : %) is rewrit~en as 1.. 

4. H f =< 11 ... f,. >, where n ~ 1 (and no fo =1.), then the RA is rewritten according to 
the metacomposition rule: 

(< 11 .. . / .. >: :z:)- (11 :<< It ... f,. >,:z: >). 

With an appropriate set of primitive functions, an FFP language can specify any com
putable function. It follows that the program expression may expand as well as contract 
during execution, and may\ in fact, grow without bound. The existence of the applJI prim
itive function (see Table lJ means that data can be made executable; thus higher-order 
functions can be defined. 

11.2 FFP on the FFP machine 

In the sequel we will use the FFP language described above in Tables 1 and 2; it is nearly 
identical to that described by Backus 1Backu78] except some of our primitive functions 
permit more efficient computations than would be possible otherwise. 

We will sometimes distinguish between language primitive operators (which can be any
thing that can be effectively defined) and machine primitive operators (which must be 
implementable on the FFP machine) . We will refer to these as language primitives and 
machine primitives respectively. 

Section 111.5 describes how F FP operat ions are implemented on the FFP machine. 
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Selector function• 
For any positive integer ., 
(• : s) E 2: ""'< %t 1 s,, ... ,s" > k 1 ~ • ~ n ~ s,; l. 

Tall 
(TL : s) E 2: = < %1 >~ ~j% z:::< 2:t 1 S2t ·• ., %" >~< %2 1 •• . , %" >; 1. 

Identity 
(ID : s) E s 

Atom 
(.ATOM : s) =sis an atom~ TRUE; s 7".1~ FALSE; .1 

Equals 
(EQ : s) E s = < y,• > kSf = • ~TRUE; s = < Sf1 Z > kSf 7" • ~ FALSE; .l 

Null 
(NULL : s) E s =~~TRUE; s 7".lz:> FALSE; .l 

Length 
(LENGTH : s) E 2: = ~ ~ O;s = < s1,~, ••• ,s" >~ n;.l 

Reverse 
(REV : s) E s = ~ ~ ~; s = < 2:t 1 s,, . . . , 2:" >~< s"' . . . , S2, 2:1 >; .l 

Rota te-left, rotate-right 
(ROT L : s) E s = ~ ~ ~i 2: =< 2:t 1 s,, . . . , 2:" >~< s,, ... , s"-1' s"' Zt > ; .l 
(ROTR : s) E s = ~ ~ ~;s =< Zt 1 S2 1 • • • ,s" >~< Z"1 St 1 .. . ,S,.-1 >; .1 

Distribute-from-left, distribute-from-right 
(DISTL: s} E s =< 11. ~ >~ ~; s=< Sf,< •11 Z2 1 . .. , z,. >>~<< Sf1 Zt >,< 111 •2 >, ... , < Sf1 Z.. >>;.1 
(DISTR : s) E s =< -~· 11 >~ ~;s =<< •1, z,, ... ,z,. >,Sf >~<< •t,Sf >, < z, , Sf >, . . . , < z..,11 >>; .l 

Append-to-the-left, append-to-the-right 
(.AP N DL : s) E s = < Sf,~ >~< Sf > ; s = < y, < •1, ar, , ... , z.. >>~< Sf,• t, ~ . .. . , z.. >; .l 
(.APNDR : s} E s =< ~.Sf>~< 11 >; s =<< zt,z,, ... ,z,. >,Sf>~< Zt 1 Z21 • .. , z,., Sf >; .l 

Transpose 
(TR : s) E% =< ~. ~ . ... . ~ >= ~j % =< St . ~ . ... ,%" >~< Sfl t sn, ... , JIM >;1. 
where 
•• =< %0,1 , %0,2, ... , %0,"' > and Sf; =< s1,;, :,,,-, .. . , s".i >, 1 ~ i ~ n and 1 ~ j ~ m. 

Apply 
(.AP : s) E s = < 11,z >~ (11 : z); .l 

Arithmetic operators 
( + : s) = s = 4> ~ 0; s =< s1 1 2:21 . .. 1 s,. > &t every •• is a number ~ s 1 + 2:2 + .. . + s"; .l 
(• : s) = s = 4> ~ 1; s =< s 11 2:21 . .. , s ,. > &t every •• is a. number~ s1 • s2 • . .. • s"; .l 

Table 1: Definitions of selected primit ive FFP functions. The definitions are given a.s 
a case statment on the argument s . In each definition, first condition that holds for the 
argument s specifies (with a ~) the applicable clause of the definition; the last clause 
(usually 1.) specifies the value if none of the conditions holds. All the functions listed are 
implementable as machine primitives. 
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Composition: 
(<CMP>:z)-z 
(< CMP,/1 1 /2, ... ,/,. >: z)- (It : (/2: ( . . . (/,.: z) . . . ))) 

Construction: 
(<CON>: z)- ~ 
(< CON, /1,/2•····'" > : z) -< (11 : z),(/2: z), . .. ,(l,.: z) > 

Apply-to-all 
(< ATA,/ >: ~)- ~ 
(< ATA,/ >:< Z1, Z2t· · ··Z.. >)-<(I : Z1),(/ : z,), ... ,(l: z..) > 

Conditional 
(< COND,p,/,g >: z)- (< CN,(p: z).J, g >: z) 
(< CN,TRUE,/,g >: z)- (I : z) 
(< CN, FALSE, /,g >: z)- (g : z) 

Insert (Operand must be a nonempty sequence.) 
(<INSERT,/>:< z1 >)- zt 
(<INSERT,/>:< %1, Z2, . .. 'z,. >)-(I:< z., (I:< Z2t . . . ' (I :< Zrt-lt z,. >) .. . >) >) 

Constant 
(< CONST,c >: z)- c 

Binary-to-unary 
(< BU,/,z > : 11)- (/ :< z,y >) 

Apply-to-the-right (Operand must be a nonempty sequence.) 
(< AR,/ >:< Z1 1 Z21 • •• , z,. >) -< z1, z2, .. . , (I: z,.) > 

Table 2: Rewriting of selected functional forms using composite functions. Although the 
metacomposition notation is used, expressions will be rewritten in a single step as shown 
above (rather than using the metacomposition rewriting rule) if the composite function 
operator has been implemented as a machine primitive. Not explicit in the above is that 
any application which does not match one of the templates or in which the argument z is 
.1 will be re-written as .1. 
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ill. THE MACHINE DESIGN 

The FFP machine is designed for the direct, reduction-style execution of programs written 
in the FFP language. Reduction is a simple and straightforward process when viewed in the 
abstract, but it raises many problema when it is to be implemented on a multiprocessor. For 
example, the number of reducible applications (RAs) can vary rapidly, creating problems 
of control (e.g., which RAs are to be evaluated first) and resource allocation (e.g., how 
to allocate newly created RAs to processors) . The expression can also shrink and expand 
unpredictably, creating problems of storage management. 

If one defines the parts of the expression within RAs as active, and those parts outside RAs 
as irw.ctive, then the ratio of the sizes of the active and inactive parts of the expression can 
also change rapidly during execution. Since each RA must be rewritten, the active parts of 
the expression require processing. In the extreme case, nearly all of the expression can be 
active, which suggests a multiprocessor organization in which processing capabilities are 
distributed over memory rather than being separated from it, as with collections of von 
Neumann computers. Klaus Berkling may well have been the first to recognize this when 
he observed in 1975: "The reduction concept seems particularly suited for a 'processing 
in memory.' But for the time being, appropriate hardware concepts are not available" 
[Berkl75]. 
The FFP machine project seeks to demonstrate that reduction style execution can be done 
efficiently via processing in memory. A system capable of processing in memory is usually 
called a logic-in-memory system, a •mart memory or a •mall-grain multiprocu•or. We 
shall use the last term for the FFP machine . 

. 
Ill.l A small-grain multiprocessor 

The FFP machine as shown on Figure 1 consists of a linear array of cells and an intercon
nection network, which also performs a variety of processing functions. The cells are called 
L cells (for linear or leaf cells). Each L cell corresponds to a location in a conventional 
memory (its capacity may be several bytes) except that it also contains some processing 
capability, e.g., a simple ALU and several registers. Therefore, a useful machine must 
contain at least thousands of L cells. 

Interconnection and p rocessing network 

L L L L L ... -
Cell Cell Cell Cell Cell 

Figure 1: Block diagram of the FFP machine. The L cells are both stor
age and processing elements; the interconnection network provides both 
communication and processing. 

III.2 Representation of program and data in the FFP machine 
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a: Linear representation of an FFP expression 

( TR : < < 2 , 4 , 6 > , < 3 , 5 , 7 > > ) 

b: A principal representation in the FFP machine 

Figure 2: The linear representation of an FFP expression and a typical 
principal representation of the expression in the FFP machine. 

The representation of FFP expressions in the FFP machine consists of a principal represen
tation and an auziliar~ representation. The principal representation exists continuously, 
and changes only when the expression changes. The auxiliary representation is transient: 
it is constructed for a subexpression only when it becomes an RA, and is erased when the 
reduction of that RA is complete. 

III.e_.1 Principal representation 

The principal representation of an FFP expression is essentially the linear, parenthesized 
representation of t}le FFP expression normally used to write it on paper. (Other linear 
representations could also be used, such as those obtained by traversing the t ree form of 
the expression in various orders.) 
This linear representation contains information about the structure of the expression both 
in the syntactic markers (i.e., brackets and parentheses) and in the left-to-right order of the 
symbols. For example, a two-dimensional array in this representation is most commonly 
laid out in row-major order with brackets around the rows and the whole array. Figure 
2.a shows an FFP expression consisting of an application of the transpose operator to a 
two-by-three array of integers given in row-major order. 

The principal representation is obtained by mapping the linear representation of the FFP 
expression onto the L array, maintaining the left-to-right ordering of the symbols. A variety 
of principal representations are p068ible, but they all share the following characteristics: 

a. The left-to-right ordering of the symbols in the FFP expression is preserved. 

b. Commas and colons, used as separators between FFP symbols when the expression 
is written on paper, are omitted since the cell boundaries act as separators bet ween 
symbols. 

c. Blank L cells may appear outside or within the image of an FFP expression; thus the 
image of an expression may be located anywhere in the L array, and it need not occupy 
contiguous cells. 

It follows from (c) that the principal representation of an expression is not unique. 

Principal representations differ in what sequences of FFP symbols can be held by a single 
L cell. Moet of our discussion of the machine will be based on the particularly simple 
representation that allows only one FFP symbol in each L cell, as shown in Figure 2.b. 
Some alternative principal representations will be discussed in Section 111.2.3. 



Note that the left-t~right ordering of the L cells is essential for the principal representation, 
because the left-~right ordering of the FFP symbols in the expression is inferred from the 
ordering of the L cells in which the symbols appear. For example, in Figure 2.b, we know 
that the symbol 7 is to the right of symbol 5, because the L cell holding 7 is to the right of 
the L cell holding 5. (This ordering of the L cells may be imposed by the interconnection 
network, or the cella may actually be wired into a linear array.) 

1/I.t.t Atuiliar~ repre•entation 

The auxiliary representation does not exist continuously in the machine: the machine 
constructs it dynamically as execution proceeds, but only within L cells that hold part of 
an RA. The auxiliary representation consists of several •elector&, a relative level number 
and an indez. 
Selectors are explained with the help of Figure 3, which shows the expression of Figure 2.a 
represented as an ordered tree. Each node represents a unique well-formed subexpression; 
the root represents the entire expression, and leaves represent atoms. The children of each 
internal node are ordered; the,._,. child of a node represents the .~" maximal well-formed 
proper subexpression of the expreasion represented by that node. Internal nodes of the 
tree are labelled with the (pair of) syntactic markers that enclose the expression; leaves 
are labelled with the atomic expression they represent . In our diagrams the branches 
from internal nodes are labelled with integers; t he branch from a node to its ,~,. child 
is labelled i . Each subexpression is uniquely specified by the sequence of labels of t he 
edges of the path from the root to the node that represents the subexpression. Thus, for 
example, the operator TR corresponds to the path labelled (1), the sequence subexpression 
< 3, 5, 7 > corresponds to the path labelled (2,2) and the atom 4 corresponds to the path 
labelled (2,1,2) . These branch labels, called selectors, form the first part of the auxiliary 
representation. 

1st selector: 

2nd selector: 

1~2 
/ ~ 

TR 

1~ 
array entries: I -1-\ 
3rd selector: 

Figure 3: The FFP expression of Figure 2 in tree form. Edges of t he tree 
are labelled with selectors values. 

Figure 4 shows a principal and auxiliary representation in the FFP machine of the RA 
expression in Figure 3. Note that every symbol of the RA is associated with a se lector 
sequence of length three specifying the first steps along the path from the root of t he RA 
expression to the FFP symbol held by the L cell. The occurrence of 0 in a selec tor sequence 
denotes the end of the path; thus, the selector sequence (2,0,0) denotes the path (2) of 
length one. · · 
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I 

PRINCIPAL: ( TR < < 2 4 6 > < 3 5 7 > > ) I 

A 1 st selector: u 
i 

0 1 2 2 2 2 2 2 2 2 2 2 2 2 0 
X 2nd selector: 
I 

0 0 0 1 1 1 1 1 2 2 2 2 2 0 0 

L 3rd selector: 0 0 0 0 1 2 3 0 0 1 2 3 0 0 0 
I 

rln: A 0 1 1 2 3 3 3 2 2 3 3 3 2 1 0 I 

A index: 
y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 4: Principal and auxiliary representation of the FFP expression 
given in Figure 2. The representation shown uses three selectors. 

Storing only k selectors in each L cell (k = 3 in Figure 4) means that the machine can use 
selectors to identify unique subexpressions only on the top k + tlevels of the RA expression 
tree, but none of the subexpressions further below. For example, if in Figure 4 the FFP 
atom 7 was replaced with a sequence of FFP symbols, then each symbol of that sequence 
would have the same selector sequence. Since it is not feasible to store an unbounded 
number of selectors in an L cell, it follows that selectors alone can not distinguish and 
manipulate the individual elements of deeply nested expressions. This deficiency (resulting 
from having only a limited number of selectors) is largely overcome by the other two parts 
of tlie auxiliary representation. These two fields, shown in Figure 4, are called the relative 
level number and the index. 

The index provides a left-t<rright numbering (starting at the left end of the RA) of all 
the symbols of the RA. The relative level number (RLN) of a symbol is its nesting level 
assuming the application parentheses have zero as their nesting level. 
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III.t.S Compre11ed repruentatioru 

The representation of FFP expressions used in Figures 2.b and 4 is not the only posaible 
principal representation. One alternative, shown in Figure 5, permits more than one FFP 
symbol in an L cell, and is called a compre&&d representation. 

PRINCIPAL: 

A 
U 1st selector: 
X 
1 2nd selector: 
L 3rd selector: 
I 
A 
R 
y 

rln: 
index: 

: 

(fA <<2 

1 2 
0 1 
0 1 
1 3 
1 2 

4 6> <3 5 7>>} 

2 2 2 2 2 
1 1 2 2 2 
2 3 1 2 3 
3 3 3 3 3 
3 4 5 6 7 

Figure 5: A compressed principal and auxiliary representation of the FFP 
expression of Figure 2. 

Tolle was the first use a compressed representation (Tolle81a,Tolle81b) and Middleton has 
stu4ied a variety of them and described the far-reaching effects they have on the whole 
FFP machine (Middl86]. Middleton found that a good compressed representation should 
have no more than one atomic symbol in an L cell, because their processing requirements 
are much higher t~an those of syntactic markers. 
Figure 5 uses a compressed · representation (one among many possibilities) in which an 
arbitrary L cell contains information according to the following pattern: 

< • (• < • ATOM > • )• > • 

where the asterisk (the Kleene star operator) indicates zero or more occurrences of the 
preceding symbol, and ATOM denotes either no symbol or any atomic FFP symbol. Thus, 
the symbol string " < ( < < TAIL" can then be stored in a single L cell, and would be 
represented by the seven tuple 1,1,2,T AI L,O,O,O. 

In compressed representations, there will be one selector sequence, relative level number 
and index per occupied L cell; it belongs to the atomic symbol held by the L cell if one 
is present, and otherwise (somewhat arbitrarily) to the innermost bracket or parenthesis 
held by the cell. 

III.t.-4 The FFP machine as memory 

The FFP machine is a logic-in-memory system designed to do most of its processing in 
memory; its L cells correspond to memory locations, each with built-in processing capa,
bility. One may, therefore, ask what properties the FFP machine has as a memory device 
(in addition to being viewed as a parallel processing device) . 

Since the FFP machine does not use physical addresses to identify its L cells (which are 
its memory locations), it is legitimately viewed as a content-addressable (or associative) 
memory. However, the representation used in the machine differs substantially from those 
in other aasociative machines. Maintaining the left-to-right order of FFP symbols of the 
principal representation can be viewed as a limited use of physical addresses, because the 

12 

• 



• 

order of FFP symbols is determined by the order of the L cella that hold them. In other 
words, although addresses are not used to identify the L cells , the linear ordering of the 
L cells is used in the operation of the machine. This is in contrast with usual associative 
memories, in which all locations are completely interchangeable. 

Maintaining left-to-right order of FFP symbols also means that the contents of a location 
(L cell) can be relocated only to certain other locations without changing the existing 
left-to-right order and thereby changing the structure of the expression. The fact that 
information is not as freely relocatable in this machine as in other associative memories 
may also be expressed by saying that the contents of the FFP machine are not fully "self
describing" as the contents of associative memories usually are. (The left-to-right order of 
symbols carries information not otherwise represented.) 

Ill.3 Overall machine structure 

The four major components of a complete FFP machine are shown in Figure 6: the lin
ear array of L cells, the interconnection network (which also performs certain processing 
functions), a front-end machine and auxiliary memory. 

The representation of FFP expressions in a linear array of small-grain processing elements is 
the cornerstone of the FFP machine; a variety of computing machines could be constructed 
on this foundation. This chapter will describe the variant currently pursued by the FFP 
machine project, which aims to be as simple as possible while still demonstrating the 
advantages of machines of this kind. Possible alternatives for some of the design choices 
will be pointed out throughout this chapter. 

A I 
Front-end machine 

I A 

u I I u 
X X 
I I 

L L 
I I 
A A 
R Interconnection and processing network R 
y y 

M M 
E 

... E 
M 

~'-- - - ,-- '--- .--- - M 
0 

.--'-- 0 L L L L L 
R Cell - Cell - Cell r- Cell - ··· - Cell f.-- R 
y y 

,_ 
~ ~ l..-- l..--

Figure 6: Block diagram of the FFP machine showing its connections with 
auxiliary memory and the front-end machine . 

The linear array of L cells of the "logic-in-memory" system not oniy holds the FFP expres
sion (program and data together), but also carries out most of the processing done by the 
machine. Thus, an L ce ll serves not only as a memory location, but also as a processing 
element (PE) . Adjacent L cells in Figure 6 are connected to form a linear array. These 
connections are used on ly for purposes of storage management, described in Section III.6. 

The front-end machine is in overall control. It contains the definitions of the FFP primitive 
operations that ·the F F P machine uses, con t rois the auxiliary memory devices, and manages 
1/0, which is done by shifting expressions in and out of the ends of the·L array. (A more 
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refined implementation could allow for 1/0 at selected internal points of the L array in 
addition to its endpoints.) 

The auxiliary memory devices (typically disks with large RAM buffers) are connected to 
the two ends of the L array, and they extend the memory capacity o( the machine in a 
manner transparent to the user. A variety of schemes for providing virtual memory are 
possible and have been studied 1FrSiS84J. In the simplest scheme, the L array acts as a 
"sliding window" on a much larger expression, and only the part of the expression within 
the window is available for processing. 

The machine tries to keep the L array nearly full at all times. When the machine is started, 
the L array is empty, and the machine starts its operation by moving information in from 
auxiliary memory. When the contents of the L array expand beyond the array's capacity, 
it simply overflows into auxiliary memory. 

Communication among the L cells is through the interconnection network. This network 
also performs certain processing functions, as will be seen later. All multiprocessors must 
provide for communication among PEs in the system, but small-grain ones must rely on 
communication more heavily than large-grain ones because their PEs can do so little on 
their own. Small-grain multiprocessors favor simple interconnection networks, i.e., ones 
with a low growth rate, since having larger numbers of PEs, they need larger interconnec
tion 'networks than large-grain multiprocessors. 

T his chapter describes an implementation of the FFP machine that uses a binary tree 
interconnection network network, which is one of the simplest possible. (Note, however, 
that some preliminary work has been done in the area of using a richer interconnection 
network to increase the performance of the machine 1Kellm82, Plais85J .) The internal 
nodes of this binary tree network will be referred to as T (tree) cells, 1ts leaves will be 
the L cells, and its root will be connected to the front-end machine. A more refined 
implementation could connect more than one node, e.g., all T cells on a given level of the 
tree, to the front-end machine, thus reducing congestion at the root of the tree. 

The binary tree interconnection network has many desirable qualities: it is easy to build, 
its growth rate is low, it can be embedded in the plane, and it is easy to extend. A machine 
with a binary tree interconnection network can be extended by connecting two binary tree 
machines to a new root node. Since the binary tree used in the FFP machine does not 
have to be a full binary tree, the trees need not be of equal size, and consequently the 
machine can be extended in large or small increments. 

The operation of the FFP machine is organized into cycles, and each cycle into three 
phases: 
1. partitioning; 

2. execution; 

3. storage management. 

The partitioning phase, which is global to the machine, creates a separate submachine for 
each RA. During the execution phase, each of these submachines operates independently, 
rewriting its RA. The storage management phase is again global to the machine. The 
following sections explain each of these phases. 

lll.4 Partitioning phase 

The partitioning phase of the machine cycle does the following: 

a . it locates all the RAs within the FFP expression contained by the machine, i.e., it 
determines .wh ich computations can be done next; 

b. it partitions, or reconfigures, the machine, into a collection of independent 6ubma-
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chine•, including one for each RA. The submachine for an RA will consist of the 
contiguous set of L cells that hold the symbols of the RA and a tree of communication 
paths and message processors embedded in the interconnection network. · . 

8>) (+ <2 4>) (f (TR <<3 5 > <7 9>~ (+ <1 6 >) (+ < 3 
~~--~--~~--~--~~--~--~~---L--~--~~--~~ .I 
~ ~ ................ _______ _...,.. '----....,---/ ~. 

RA RA RA RA RA 

Figure 7: A fragment of an FFP machine showing the results of partition
ing. Dark. lines represent communication paths of submachines with RAs; 
gray lines represent communication paths for submachines that do not have 
RAs. Subtrees without any parentheses in the leaves result in some paths 
being redundant; these appear as lines that end at aT cell. 

Because partitioning is governed by the expression contained in the L array, it may be 
viewed as a way of fitting or adapting the hardware of the machine to the program that 
is in memory. The details of how this is done depend on the representation of the FFP 
expression. This section describes a method due to Middleton that works with the repre
sentations discussed in Section m.2. 
Figure 7 shows a part of a partitioned machine. In it, five RAs can be seen (two of 
them only partially), and the submachines constructed for them are shown in dark lines. 
Gray lines indicate submachines that were created according to the (strictly local) rules of 
partitioning, but which do not contain RAs. 

Partitioning constructs a submachine for each RA, and the submachines of distinct RAs 
are disjoint. This has several important consequences. Congestion is kept low in the 
interconnection network, because contention can occur only among the messages of a single 
RA. Communication packet formate are simple because there is no need to distinguish 
packets of one RA from those of another; submachines need not deal with alien packets. 
The routing of packets is simple because packets cannot get out of the submachine; e.g., 
broadcasting is used instead of specifying path information or using destination addresses. 
Partitioning allocates the resources of each T cell by setting ita two portitioning 1witchu 
(Figure 8) to one of four poeaible configurations, all of which occur in the example illus
trated in Figure 7. 
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Figure 8: The partitioning switches in the T cell. The inner circle represents 
the message processor of the T cell. 

Figure 9 illustrates the basis for the four partitioning configurations of aT cell. Partitioning 
assigns resources of each T cell to subcomputations that reside, at least partially, in the 
L cell descendants of the T cell. The resources of each T cell consist of communication 
channels that simply route messages through the T cell and a single message processor; 
the message processor is represented by the inner circle of a T cell in Figure 9. 

In case (a) of Figure 9, the T cell shown is part of an edge of the submachine of RAl, which 
is conta.med partly in subtree Sl but extends into subtree SO. This T cell simply provides 
a communication channel for the submachine of RAl; no processing is performed on the 
messages of that machine. The same T cell provides a root for the submachine of RA2, 
which is in Sl and S2. The root cell of an RA always processes the messages of that RA, 
and the message processor of this cell participates in the evaluation of RA2. Additionally, 
the same T cell is part of an edge of the component machine for RA3, which is partly 
in S2 but extends into (and possibly beyond) S3; the cell provides only a communication 
channel for the submachine of RA3. 
In case (b), the T cell shown provides a only a communication channel for RAl, which is 
contained partly in subtree Sl but extends into subtree SO. Because RA2 is in Sl, 82 and 
extends into S3, both children of the T cell see part of RA2, and consequently the message 
processor will participate in the evaluation of RA2. Case (c) is the mirror image of case 
(b). 
Finally, in case (d), the T cell provides an internal node for the submachine of RAl, which 
extends beyond both Sl and S2; the message processor of the node will participate in the 
evaluation of RAl. 
If there are any RAs between those explicitly shown in cases (a) (b) and (c), their subrna
chines are fully contained in Sl or S2, and do not involve the T cefl in question. 
We noted before that while the L cells provide most of the processing power of the FFP 
machine, the T cells contribute to some degree. The processing power of a T cell lies solely 
in its message processor. Although each physical T cell may provide communication paths 
for up to three eubmachinee, messages from at most one RA use the message processor; 
thus there is no contention between RAs for the processing capacity of a T cell. Since 

16 

' 



different RAe use physically diatinct communication channels, there is also no contention 
between RAe for communication channels. 

a) b) 
T: T: 

II II ---
~~ 

(--) (:------:::"~---~ (-- ) 
RA1 RA2 RA3 

( RA1 )(~--RA2-----·) 

c) d) 

T: 

\\ I I \\ I 
...----.... ~ r--- ,...__ 

~~ ~£1 
<------ ---,)(--) c---- - - --R/\1 RA1 RA2 

Figure 9: Examples of occurrences of the four partitioning configurations 
of aT cell. The inner circle of each node represents the message processor 
of the T cell. The message processor is the only part of the T cell that can 
contribute to the evaluation of an RA; partitioning assigns each message 
processor to at most one RA. 

Partitioning is a single, distributed operation in which all cells of the machine participate. 
Partitioning must not only physically partition the machine (by setting the partitioning 
switches) but must also identify the root nodes of submachines assigned to RAs. Partition
ing is done as follows: certain information about parentheses (which delimit applicat ions) 
is passed from all L cells towards the root of the tree interconnection network. Each T cell 
receives a partitioning packet from each of its children. In response to the information in 
these two packets, the T cell sets its partitioning switches and sends a partitioning packet 
to its parent cell. By the time a partitioning packet is produced by the root of the tree, 
the partitioning of the machine has been completed and the root nodes of submachines of 
RAs can be identified. 

Partitioning switches are set according to whether the subtrees contain parentheses: if the 
left (right) subtree contains no parentheses, the left (right) partitioning switch of t he T 
cell is set to the inward position. 

To identify the T cella that are the roots of RA submachines, it is sufficient to know about 
the leftmost and the rightmost parentheses in each subtree of the machine. Accordingly, t he 

17 



partitioning packet emergin~ from an each node carries the following information (which 
can be encoded in three bits) about its L cell descendants. 

- : there are no parentheses in the subtree; 

() : the leftmost parenthesis is "(", the rightmost one is ")"; 

( ( : the leftmost parenthesis is "(", the rightmost one is "("; 

)) : the leftmost parenthesis is ")", the rightmost one is ")"; 

)( : the leftmost parenthesis is ")", the rightmost one is "(". 

If a subtree contains only one parenthesis, then that parentheses is both leftmost and 
rightmost. 
The partitioning packet to be sent to the parent cell is computed from the two partitioning 
packets received from the children according to the table shown in Figure 10. 

Right subtree: 

Left subtree:-

() 

(( 

)) 

)( 

--
-

() 

(( 

)) 

)( 

() (( )) )( 

() (( )) )( 

() (( () (( 

() (( () (( 

)) )( )) )( 

)) )( )) )( 

Figure 10: Computing a partitioning packet to be sent to the parent cell. 
Highlighted entries correspond to conditions in which the T cell is the root 
node of a submachine that holds an RA. 

The identification of the root nodes of submachines assigned to RAs can be done based on 
the partitioning packet as follows: if the rightmost parenthesis in the left subtree is "(", 
and the leftmost parenthesis in the right subtree is ")", then the T cell contains the root 
node of a submachine that holds an RA. 

The method just described locates all innermost applications (by identifying the root nodes 
of the submachines that will process them) in the FFP expression and constructs subma· 
chines to process the RAs. Evaluation methods other than innermost can be obtained by 
slight modifications of it. For example, if two kinds of parentheses are introduced - say 
red and green - and partitioning of the machine is done based on the innermost green 
parentheses, then outermost evaluation can be done as follows: start with all parentheses 
colored red except the outermost ones. Locate all innermost green parentheses, execute 
the corresponding applications, and make the applications responsible for creating new 
green and red parentheses. 

m.o Execution phase 

Computation in the FFP machine proceeds by reducing innermost applications; these 
reductions are· always performed by submachines. The larger the RA, the larger its sub
machine tends to be. (This relationship is complicated by two factors: empty L cells within 
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the RA increase the size of the submachine, whereas using a compressed representation 
decreases it.) However, since an L cell holds at most one atomic symbol, even the smallest 
RA involves at least two L cells, one holding the operator and another one holding the 
operand. As a result, the reduction of an RA within a submachine is always a distributed 
computation. 

Reduction of an RA takes place during the second phase of the machine cycle. The 
following subphases can be distinguished: 

2.1: request L cell program; 

2.2: create the auxiliary representation; 

2.3: receive L cell program; 

2.4: execute local code in L cell; 

2.5: participate in co=unication (message waves); 
2.6: request extra space and suspend execution. 

Subphases 2.1 through 2.3 occur only once for each RA and are completed within a single 
machine cycle; they prepare the RA for execution, and are collectively called initialization. 
Initialization brings a program that will reduce the RA into the L cells of the submachine 
and constructs the auxiliary representation, which is needed for execution of this program. 

The program brought into the L cells of a submachine is determined by the FFP operator 
of the RA; a program is available for each machine primitive. The program specifies an 
algorithm to be executed by each L cell that holds a symbol of the RA; execution of the 
algorithm by all the L cells of the submachine results in the reduction of the RA. These 
programs are written in a language called the L cell programming language, which is a 
lower level language than FFP. Programs written in the L cell progra=ing language are 
executed during phases 2.4 through 2.6. 

A resident program in the L cells manages initialization; this program can be viewed as the 
kernel of a simple operating system. Even if an RA takes more than one machine cycle to 
execute, it goes through initialization only once, during the first cycle. (The information 
provided by initialization is retained until the reduction of the RA is complete.) If a 
reduction requires more than one cycle, it resumes execution in one of the subphases 2.4 
through 2.6, at whatever step was not completed during the previous cycle. 

111.5.1 Constructing the auxiliary representation 

As explained in Section ID.2, the auxiliary representation includes a certain number of 
selectors (typically three or four), the relative level number and the index. Computing 
each of these involves computing cumulative sums of values as follows: The input to the 
computation is a sequence of values laid out left to right in the L array: a1, a2 , ... an (at most 
one value per L cell, even in compressed representations). The result of the computation 
is another sequence b1 , b2 , .. • bn, such that the L cell that held a, holds b,. The result is 
computed as follows: b, = a1 , and b; = a1 + ... +a; = b,_, +a; for 2 :o; i :o; n. 

We shall explain each of these computations with the help of an example. For simplicity, 
we shall use the non-compressed representation in these examples. Figure 11 shows the 
computation of the index for an RA expression. For an L cell that is not empty, the input 
is a; = 1. Empty L cells do not participate in this computation. (We shall not discuss how 
this is done.) The result of the cumulative sum computation is the required index value. 
Figure 12 shows the computation of the relative level number. In this computation, the 
input is a; = 1 if the L cell holds an opening bracket or parenthesis, a; = -1 if the L 
cell holds a closing bracket or parenthesis, and a, = o for all other occupied L cells. The 
cumulative sum gives the correct value for all cells except those that hold opening brackets 
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( m < < 2 4 6 > < 3 5 7 ' > > ) 

Input: 1 1 1 - 1 1 1 1 1 1 1 1 - 1 1 1 1 

Oulput: 1 ·2 3 4 5 6 7 8 9 10 11 12 13 14 15 ' - -
I 

Figure 11: Computation of the index 

and parentheses, which receive an integer one larger than they should. These cells simply 
subtract 1 from the value they receive to produce the correct relative level number values. 

( TR < < 2 4 6 > < 3 5 7 > > ) 

Input: 1 0 1 - 1 0 0 0 -1 1 0 0 - 0 -1 -1 - 1 

Output: 1 1 2 - 3 3 3 3 2 3 3 3 - 3 2 1 0 

RlN: 0 1 1 - 2 3 3 3 2 2 3 3 - 3 2 1 0 

Figure 12: Computation of the relative level number (RLN) 

Figure 13 shows the computation of three selectors for each L cell. The input to this 
computation is derived from a modified relative level number (RLN'), which is defined as 
follows: RLN' = o· for L cells holding closing brackets or parentheses, and RLN' = RLN 
otherwise. The input to the computation in each L cell is a triple of Boolean values 
< RLN' = 1, RLN' = 2, RLN' = 3 >, with 1 and 0 representing "true" and "false" respectively. 
The result of the computation in each L cell is a triple of selectors < Sl', S'J:, S3' >. These 
selectors are again computed as modified cumulative sums. Sl' is the cumulative sum of 
the first components of the input triples, while S2' and S3' are the cumulative sums of the 
second and third components respectively, except that a one in the first component restarts 
the snmming of the second components, and a one in the second component restarts the 
summing of the third components. The selector value Si for a symbol ., is computed from 
Si' as follows: If the RLN of :z: is less than i, then Si is set to 0; otherwise, Si is set equal 
to Si'. 

For example, in Figure 13 the L cell holding the FFP symbol 7 has received the selectors 
< 2, 2, 3 >, and the components of the input triples that contributed to these values 
have been highlighted. (A zero value in the selector triple should be interpreted as being 
undefined.) 

The values of cumulative sums are computed in the T network. This task, like many others·, 
is done by processing messages that originate in the L cells and are sent up through 
the T network in an upsweep and then broadcast back down from the root of the RA 
sub machine in a downsweep. Using this mechanism, the values of the cumulative sums for 
any expression are computed in time logarithmic in the number of L cells that hold the 
expression. 

Figure 14 shows what an arbitrary node of the submachine does when it participates in 
the computation of a cumulative sum. On the upsweep, the node receives two integers, a 
and 6. It computes a+ b and sends it to its parent node, and also saves the value a. Later, 
during the downsweep, the node receives a value d from the parent, which it sends to the 

20 



Principal 
repr. 

RIJit 

RIJit = 1 
RLN'=2 
RLN'=3 

S1 
S2 
S3 

( 

0 

0 
0 
0 

0 
0 
0 

TR < 

1 1 -

~ ~ -
0 0 -
0 0 -
1 2 -
0 0 -
0 0 -

< 2 4 6 > 

2 3 3 3 0 

0 0 0 0 0 
~ 0 0 0 0 
0 1 1 1 0 

2 2 2 2 2 
1 1 1 1 1 
0 1 2 3 0 

Figure 13: Computation of the selectors 

< 3 5 7 > > ) I 
2 3 3 - 3 0 0 0 

0 0 0 - 0 0 0 0 

~ 0 0 - 0 0 0 0 
0 ~ ~ 1 0 0 0 

2 2 2 - :i! 2 2 0 
2 2 2 - :i! 2 0 0 
0 1 2 - :il 0 0 0 

left child, while sending a+ d to the right child. The root node uses d = 0 to start the 
downs weep. 

Upsweep: Downsweep: 

TCell TCell 

~ 
a b d 

Figure 14: Computing a cumulative sum 

The computation of the selectors is somewhat more complicated because of the need to 
restart the summation repeatedly, but this is easily handled with the modest process
ing power of a T cell. Danforth's dissertation explains this computation in more detail 
[Danfo83aJ. 

II/.5.!! The L cell programming language 

L cells execute programs written in the L cell programming language, a language much 
simpler than the FFP language. Executing such programs in the L cells reduces the RA. 
Since the RA is distributed over a number of L cells, reducing an RA is always a distributed 
computation, and the L cell programs interact, when necessary, by passing messages to 
each other through the interconnection network. 

L cell programs are not kept in the L cells so that the L cell can be kept small while 
allowing implementation of a rich set of primitive operations. The L cell program for 
an RA is brought into the machine after the RA is located and the three leftmost FFP 
symbols within ·the RA have been found. The first such symbol is a left parenthesis. If 
the second symbol is an atom, then that atom is the operator and the appropriate L cell 
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program is brought in. (If no L cell program exists, then a program error hu occurred.) 
If the second symbol is an opening bracket, then the language definition specifies that the 
RA is to be rewritten using the metacomposition rule (this rule wu explained in Section 
II). In fact, for common functional forrn.e, such u those in Table 2, an L cell program 
exists which avoids use of the metacomposition rewrite rule and proceeds directly to a 
subsequent expression. (An example will be given later in this Section.) If the second 
symbol is an opening bracket but no appropriate program exists for the third symbol, then 
the metacompoeition rule is invoked. The second and third symbols of the RA are used 
as the request for the L cell program, and they are also broadcast from the root of the 
submachine so that all the L cells of the RA will know what reduction is to ta.ke place. 
In the simplest case, all L cells holding an RA may receive the same L cell program. This 
program is typically a sequence of conditional statements that ascertains which part of the 
expression the L cell holds, and then performs the required actions. A more economical 
solution [Mago79,Danfo83a,Danfo83b) is to break each L cell program into segments, and 
for each L cell to accept only the segment it needs. The L cell chooses the appropriate 
segment based on the principal and auxiliary representation contained in the L cell. 
The L cell programs rewrite the RA by performing the following types of actions: (1) 
ascertain what part of the RA the L cell holds (this is done by inspecting the part of the 
principal and auxiliary representation held withm the L cell); (2) perform local actions in 
the L cell (e.g., erase the FFP symbol, or overwrite it with another symbol contained in 
the L cell program); (3) communicate with other L cells via messages sent through the 
interconnection network; (4) request extra space and suspend execution. 
We will describe three example L cell programs. The L cell programming language presents 
rich ·opportunities for detecting improper operands, but we will not address this problem 
here; the illustrative L cell programs we give will only handle operands of the proper form. 

Figure 15 shows t.he L cell program for APNDL (append-t~the-left), and the effect of 
applying it to a specific argument. Implementation of this function requires no additional 
L cells and no communication between L cells and will always be done in a single machine 
cycle. 

RA expression: 

S1 
S2 
S3 

( 

0 
0 
0 

.1ptd 

1 
1 
0 

Result expression: 

< < a 

2 2 2 
0 1 1 
0 0 1 

b > < d f > > ) 

2 2 2 2 2 2 2 0 
1 1 2 2 2 2 0 0 
2 0 0 1 .2 0 0 0 

Figure 15: L cell program for the machine primitive append-t~the-left 
(A PNDL) 
1. If (S1 < 2) or (S:z = 2 and S3 = o) then erase FFP symbol. 

Figure 16 shows the L cell program for the FFP operator IP (innerproduct) and the effect 
of applying it to a given expression. This example illustrates message sending and the 
use of message · waves. The operand is a pair of vectors of atoms, which first must be 
multiplied componentwise. The corresponding components of the two vectors are brought 
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together by broadcasting each element of the first vector as a pair of the form < i, i'h 
vector element>, and causing the L cell holding the i'h element of the second vector to 
accept the .~h element of the first vector. Figure 16 shows how the intermediate result of 
these products has replaced the second vector. Finally, these products are summed, and 
one cell is programmed to accept and hold this sum when the reduction is completed. The 
summation is done by the tree network: each L cell that computed a product sends a 
message of the form < +,product> into the tree network. When a node of the submachine 
receives messages of the form < +,:r > from its children, it adds the second components. 
Nodes other than the root of the submachine then send a message of the form < +,sum> 
to their parent; the root node broadcasts the sum. 

RA expression: 

S1 
S2 
S3 

( 

0 
0 
0 

IP < 

1 2 
0 0 
0 0 

< 

2 
1 
0 

Intermediate result: 

Final result: 

1 2 3 

2 2 2 
1 1 1 
1 2 3 

4 > < 11 12 13 14 > > ) 

2 2 2 2 2 2 2 2 2 0 
1 1 2 2 2 2 2 2 0 0 
4 0 0 1 2 3 4 0 0 0 

.I 1139 I I I I I I I ·1 I I I I I I I 
Figure 16: L cell program for the machine primitive innerproduct (IP) 
1. if S1 = 2 and S2 = 1 and S3 -F o then send the pair < S3 , FFP symbol>. 

2. if S1 = 2 and S2 = 2 then 

a. accept any message (of message wave 1} of the form< z,y >if z = S3 ; 

b. store y in BV; 

c. multiply BV by FFP symbol and store in P; 

d. broadcast the pair < +, P >. 

3. if S1 = 1 then accept any message (of message wave 2). Make the symbol 
received in the message the new FFP symbol. 

Note that messages can be sent sequentially. In IP, for example, broadcasting the elements 
of one vector to the other must be completed before the summation is begun. Messages 
are kept apart by putting them into separate "message waves," which are separated from 
each other by end-of-wave markers. 

Each L cell sends an end-of-wave marker to end its participation in each message wave 
(whether or not it sent a message). Nodes of the submachine wait for one such marker 
on each of their inputs before sending one to their parent node. As a result, messages of 
different waves cannot meet each other. The root node of the submachine broadcasts the 
end-of-wave marker, signalling to the L cells that they can start sending messages in the 
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next wave. 
When many messages participate in a message wave and the messages are not combined, 
or when an L cell program sends a sequence of message waves, more than one machine 
cycle may be required for all messages to be processed. It must, therefore, be possible to 
interrupt a message wave and resume it in the next machine cycle; this requires that each 
L cell know whether the messages it has sent have been processed. Since messages that 
are not combined (such as those of the form <83,FFP symbol>, sent in the first wave of 
IP) are broadcast from the root, if an L cell receives its own message, that message has 
been successfully broadcast, and it need not be resent. Messages that are combined (such 
as the second wave of messages of the form < +, P > in /P) need not be resent if the L cell 
receives the (combined) result of the message wave. 

R/\ expression: 

S1 
S2 
S3 

RLN 

( 

0 
0 
0 

0 

< (M 

1 1 
0 1 
0 0 

1 2 

Result expression: 

f g 

1 1 
2 3 
0 0 

2 2 

< h k > > X ) 

1 1 1 1 1 2 0 
4 4 4 4 0 0 0 
0 1 2 0 0 0 0 

2 3 3 2 1 1 0 

Figure 17: L cell program for the functional form composition (CMP). The 
FFP expression of the example shown is (<CMP,f,g,<h,k>>:x), which is to 
be rewritten to (f:(g:( <h,k>:x))). 

(I) If S1 = 1 then broadcast < max, S2 >. (Determine the length of the 
operator expression; broadcast values are compared on the upsweep 
and only the largest sent upward; the maximum is broadcast by the 
root.) 

(2) If FFP symbol= ")" then accept the broadcast value and store in BV. 

(3) If 81 = 1 and S2 > 2 and RLN = 2 and FFP symbol 'i' ">" then request 
one empty L cell. If FFP symbol = ")" then request BV - 2 empty L 
cells. Suspend execution until storage management has provided the 
necessary cells. 

(4) If 81 = 1 and S2 > 2 and RLN = 2 and FFP symbol <F ">" then insert 
"(" to the left of the FFP symbol. (This will require moving the FFP 
symbol to the right if the empty L cell is provided to the right of the L 
cell holding the symbol.) 

(5) If FFP symbol = ")" then place BV - 2 copies of ")" in the L cells 
provided (either to the right or left). 

(6) If 81 = 1 and 82 < 2 then erase the FFP symbol. (The opening "(" is 
not erased.) 

Figure 17 shows the L cell program for the composition operator, and the. effect of applying 
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it to a given expression. This reduction has the property that its result cannot be held 
in the cells holding the original RA. (When using certain compressed representations, 
the result of this RA would not re]uire additional space.) The FFP machine uses the 
mechanism of storage management to be discussed in the following section) to provide 
empty L cells wherever they are nee ed: L cell programs request the required number of 
empty L cells, suspend execution and wait for storage management, and resume execution 
in the next machine cycle after the empty L cells have been made available. (An RA is 
prevented from executing in thtl next cycle only if storage management moved some part 
of it to auxiliary storage.) 

For simplicity, Figure 17 shows empty L cells within the original RA wherever the result 
needs them. 

III.6 Storage management phase 

Storage management is the process of remapping an FFP expression onto the L array 
of the FFP machine, i.e., changing the principal representation of the expression. The 
need for storage management arises when the rewriting (or evaluation) of at least one RA 
requires L cells other than those that held the symbols of the original RA. This occurs most 
commonly when reduction of an RA results in a larger expression. Since such reduction 
steps are the basic computational steps of the FFP machine, the required empty L cells 
should be provided as soon as possible. Furthermore, the principal representation has the 
property that empty L cells may be found anywhere among the occupied ones, and thus 
the required empty L cells may be arbitrarily far from where they are needed (or may not 
be a~ilable in the L array at all). 

This suggests the need for a frequently repeated, global remapping of the FFP expression 
so that reduction of RAs can begin soon after they are created. This need is met by 
organizing the machine operation into cycles and making storage management a part of 
each cycle. 

Storage management can be viewed as moving empty L cells to where they are needed 
by shifting the contents of L cells in the machine while maintaining the left-to-right order 
of the FFP symbols. Here we assume that direct horizontal connections exist between 
the L cells, and they are used only for symbol movement during storage management. 
Alternatively, symbol movement could be done through the interconnection network. 

Figure 18 shows schematically two snapshots of an L array (a blank square indicates an 
empty L cell, and a square with an x in it indicates an occupied L cell). Before storage 
management, 1,3 and 7 additional L cells are needed at the places shown by the vertical 
arrows. The figure shows one of the many possible ways that FFP symbols (or rather 
contents of occupied cells, which may include partially executed L cell programs) could be 
shifted to create the required spaces. 

Figure 19 shows how the planning of storage management can be formulated as a problem 
of calculating flows in a linear graph. The situation shown in Figure 18 is depicted as 
a linear graph, in which the empty L cells needed are sources of flows (vertical arrows 
entering), empty L cells available are sinks of flows (vertical arrows leaving), and moving 
symbols correspond to flows (horizontal arrows) which originate in sources and end in 
sinks. The flows calculated must empty all sources, although they need not fill all the 
sinks. (Auxiliary memory, at each end of the L array, provides one or more arbitrarily 
large sinks that make it possible to empty all sources.) A request for n empty L cells is 
represented by the integer n in the L cell making the request. During storage management, 
n placeholders "flow out" of the L cell originating the request into adjacent L cells. 

The shifting of the FFP symbols is planned for the whole machine using one upsweep 
and one downsweep in the T network in time proportional to the height of the machine. 

25 



3 7 

~ t t 

Figure 18: Storage management: an example of how requests can be satis
fied by remapping the FFP expression onto the L array. A labelled vertical 
arrow indicates a request, a blank square indicates an empty L cell, and a 
square with an X in it indicates an occupied L cell. 

3 7 

..!...- .2 ~!2- ...?..!~ 4 ~ -
2 2 1 2 2 3 

Figure 19: The storage management problem of Figure 18 is represented as 
a flow problem in a linear graph. Sources represent requests for L cells; sinks 
denote contiguous sequences of empty cells. Satisfying all requests requires 
that the contents of each source be emptied into one or more sinks. 

Planning consists of determining which direction each FFP symbol should move in the L 
array, and how far. 

After planning is complete, all symbols start moving at the same time, and (assuming that 
it takes unit time to move a symbol from one L cell to the next) the time needed to do 
storage management is proportional to the longest distance travelled by any symbol (FFP 
symbol or placeholder). Optimal storage management planning would therefore minimize 
the maximum distance travelled by any symbol in the machine. 
A sequential planning algorithm for that minimizes the maximum distance travelled by 
any symbol has been found [StaMa79], but that algorithm is not well-suited to execution 
on the FFP machine. A planning algorithm suitable for execution on the FFP machine can 
be based on divide-and-conquer; each T cell computes how many symbols or place-holders 
will flow across the edge in the L array that connects its left subtree and right subtrees. 
An optimal algorithm of this type that requires O(logn) time, where n is the number of L 
cells, has been described [StaMa81]. 
The current machine uses a simpler algorithm, which results in symbols travelling no more 

26 



than twice as far as necessary. During the upsweep each L cell sends to its parent cell +1 
if it is empty, and a negative integer equal to the number of L cells requested if it is not. 
Each T cell receives two such numbers. It stores both of them, and sends their sum to the 
parent cell; this sum is equal to the net number of empty L cells in the subtree. At the 
end of the upsweep, all T cells together have complete information about the distribution 
of the available and needed empty L cells in the L array. During the downsweep, this 
information is used by each T cell to compute the flow over the edge that connects the 
rightmost L cell of its left subtree with the leftmost L cell of its right subtree; this flow is 
equal to the number of FFP symbols that must be moved from one of its subtrees to the 
other. Figure 20 shows how this flow, denoted by M, is computed. 

~<L,R> 
T: 

<L,M;/' ,M,R> 

L M R 

Figure 20: The downsweep of a simple algorithm for storage management 
preparation. EL and ER are the number of empty L cells in the left and 
right subtrees respectively; L is the flow into the left subtree, R is the flow 
out of the right subtree, and M is the flow from the left subtree into the 
right subtree. Each flow can be. positive, zero, or negative. M is computed 
as follows: 

M = if L- EL > 0 then L- EL; 
if R+ER < 0 then R+ ER; 
else o. 

The (arbitrary) T cell receives two values, Land R, from its parent, where Lis the number 
of symbols that must enter the tree from the left, and R is the number of symbols that 
must leave the tree to the right. The tree under the T cell contains E empty L cells (if 
E < 0 then -E empty L cells are needed by the tree). After storage management, the tree 
will have E' = E- L + R empty L cells. One of the following conditions must hold for E, L 
and R: 

1. E < 0 and E' = 0 and L - R = E, i.e., the number of empty cells requested exceeds the 
number of available empty cells, and there is a net outward flow of symbols from this 
subtree to one or both adjacent subtrees. The flow between trees is made as small as 
possible; hence E' = 0. Note that all requests are satisfied in each subtree, even if this 
means that the subtree overflows into an adjacent subtree or into auxiliary storage. 

2. E = 0 and E' = 0 and L- R = o, i.e., the number of empty cells requested equals the 
number of available empty cells, and all requests of the subtree can be satisfied within 
it. The net flow of symbols between this subtree and adjacent subtrees is 0. 

3. E > 0 and E' = 0 and L-R = E, i.e., the subtree contains more empty cells than requests, 
but the netflows into the subtree from adjacent trees cause all empty cells to be filled. 

4. E > 0 and E' > 0 and L ~ 0 and R ~ 0, i.e., the subtree contains empty cells both before 
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and after storage management. Consequently, the tree is able to acco=odate its own 
requests as well as any flows in from adjacent trees. 

This relationship among L, R and E can be stated more concisely using a predicate p 
defined as follows: 

p(L,R,E) = {L-R=E} or{L-R<EandL~oandR:50}. 

It can be shown that computing M as given in Figure 20 preserves this property, i.e., if 
p(L,R,E) then { p(L,M,EL) and p(M,R,ER) }. 

At the root cell of the machine, the values of L and R are chosen to establish p initially at 
the beginning of the downsweep. Note that not only can these flows be set to allow the 
expression in the L array to overflow into the virtual memory (thus satisfying all requests); 
they can also be set to fill the machine completely or partially from auxiliary memory. 

We note two advantages of machine-wide storage management that uses global information: 
( 1) deadlocks are prevented, since there is no competition for any specific empty L cell 
(i( more space is needed than is available, the machine simply overflows into auxiliary 
memory); (2) the movement of FFP symbols is conflict-free, and thus can be done with 
the maximum amount of parallelism (i.e., all symbols can be moved simultaneously). 

Ill. 7 The L and T cells 

So far the FFP machine has been considered from a global point of view, i.e., as a collection 
of small processing elements that together act as an interpreter for the FFP language. 
This section will take a more local view, and briefly consider the two building blocks of 
the !!lachine, the L and T cells. 

Both kinds of cells are small-grain processing elements, too simple and too small to know 
the FFP language; a single L cell is not able to recognize, hold or reduce an RA, only a 
collection of cells can. The behavior of individual cells is most easily related to the phases 
of the machine cycle, and "that is what we shall do here. 

The L cell is an instruction-set processor. It executes a small resident kernel, which knows 
about the phases of the machine cycle, and the L cell program (brought into the machine 
during execution), which defines a reduction rule. The T cell is not progra=able in the 
usual sense. It only performs some simple processing on packets as specified by information 
contained in them. 

The T cell consists of two parts: G (global) and P (partitioned). G deals with packets that 
affect the whole machine irrespective of its present partitioning, e.g., the packets that do 
partitioning, request L cell programs, or prepare for storage management. P is the part 
of the T cell that is partitioned in each machine cycle, and it deals, for example, with 
submachine initialization, including generation of the auxiliary representation, and the 
message packets generated by the L cell programs. The cells of the L array are connected 
to their parent cells in the T network through both G and P channels, and thus one may 
consider the whole tree machine to be composed of two trees: the G tree, which is never 
partitioned, and the P tree, which is partitioned once each machine cycle into submachines 
as discussed in Section III.4. 

The L cell kernels together drive the machine cycle by emitting a variety of message 
packets in well-defined sequences. (The T cells treat packets received on their P channels 
uniformly, whether they were sent by the kernel or by L cell programs.) The packets are of 
variable length, and are preceded by a type field indicatin{l the nature of the packet (e.g., 
a partitioning packet, or a message from an L cell program). The packets are pipelined on 
narrow (typically bit-serial) channels. 

The L cell begins the machine cycle by sending a partitioning packet on its G channel. H 
the L cell contains an L cell program (that is, if the L cell contains part of an RA that was 
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interrupted before completing its reduction) then it i=ediately continues its execution, 
which will typically involve sending and rece1ving messages (on its P channel) generated by 
the L cell program. Otherwise, the L cell begins initialization by sending a series of packets 
to determine which L cell program to r«!quest, and to compute the auxiliary representation. 
The L cell will at some later time receive on its P channel a packet stating whether the 
submachine it is in contains an RA, and if so, another packet stating which L cell program 
to accept. After these, packets bringing components of the auxiliary representation are 
received. If the L cell receives a program, it begins execution i=ediately, otherwise it 
remains idle for the rest of the machine cycle. 

The duration of the machine cycle is determined by an interrupt packet, which is broadcast 
from the root of the machine on the G channel. When an L cell receives this interrupt 
packet, it continues any RA processing in progress but begins preparation for storage 
management by sending its request for L cells in a packet on the G channel. These packets 
together form the upsweep of planning for storage management. When the downsweep 
of storage management planning reaches (on the G channel) a T cell that contains the 
root node of a submachine, the root node finishes broadcasting (on its P channel) any 
message that is currently passing through it, but does not allow any succeeding messages 
to pass through it. All other messages that have entered into the tree network (even if 
only partially) are discarded. When the storage management planning downsweep packets 
have been received by an L cell, and all messages have been emptied out of the T network 
above it, the L cell begins storage management. 
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IV. EXAMPLE 

In this section we discuss execution of a matrix multiplication program on the FFP ma
chine. Our program trace will treat the case of a pair of n x n matrix operands, although 
the program will multiply any pair of conforming matrices. Multiplication of matrices of 
atoms can be done with an FFP machine primitive, but space constraints prohibit our 
discussing the implementation of that primitive. 

A variety of matrix multiplication programs can be written in FFP, with widely varying 
performances when executed on the FFP machine. Backus gave an easily understood 
highly parallel program [Backu78], but the parallelism requires O(n') space on the FFP 
machine, and hence O(n3 ) time. The program that follows computes the entries of each 
row of the result matrix in parallel, but finds the rows sequentially. This program exhibits 
less parallelism than Backus's, but requires only O(n2 ) space and time. 

The co=ents about space requirements given below apply to a noncompressed represen
tation; a compressed representation would require less space and less storage management 
(at the cost of more complex L cell programs). Except for the step that rewrites the func
tional form INSERT, each step of the executiOn of the example program requires at most 
a constant number of additional L cells and will therefore require at most two machine 
cycles to complete. 

The definition of the program MM (matrix multiply} is the following: 
MM ::<CMP,2,<INSERT,ROWOP>,APNDR,<AR,<CMP,<BU,ROTL,ql >,TR>>> 

Application of the function MM to a pair of square matrices < A, B > produces an expression 
consisting of a single RA. Because of its operand, the expression requires O(n2 ) space. The 
first step in evaluation causes MM to be replaced by its definition. 
(MM:<A,B>) _, ( <CMP,2,<INSERT,ROWOP> ,APNDR,<AR,<CMP,<BU,ROTL,ql >,TR>> >:<A,B>) 

The resulting expression has a single application (which is therefore an RA) with CMP 
(denoting composition) as the controlling operator of a composite function. Rewriting this 
produces: 

(2:(<INSERT,ROWOP>:(APNDR:(<AR,<CMP,<BU,ROTL,ql >,TR>>:<A,B>)))) 

The resulting expression has several applications but only one RA, whose operator is a 
composite function with AR (Apply-to-the-right) as its controlling operator. AR applies 
its parameter to the rightmost entry B of its operand, resulting in: 

(2:( <INSERT,ROWOP>:(APNDR:<A,( <CMP,<BU,ROTL,ql >, TR>:B)>))) 

The sole RA in the new expression has CMP as its controlling operator; the next rewrite 
produces: 

(2:(<INSERT,ROWOP>:(APNDR:<A,(<BU,ROTL,ql >:(TR:B)) >))) 

Next the transpose function TR transposes B. Transposing a matrix of atoms can be done 
in place (i.e., without additional L cells) by a machine primitive in O(n2 ) time. Since there 
is no danger of confusion, we will represent the transposed matrix by B as well, giving: 

(2:( <INSERT,ROWOP>:(APNDR:<A,(<BU,ROTL,ql >:B) >))) 

MM operates by finding the result matrix a row at a time. The initial approximation to 
the result matrix is the empty matrix ql, which is created using the BU (Binary-to-unary) 
functional form. BU pairs ql with the matrix B producing: 

(2:( <INSERT,ROWOP>:(APNDR:<A, (ROTL:< qi,B>) >))) 

and ROTL (Rotate-left) interchanges the elements of this pair, giving: 
(2:( <INSERT,ROWOP>:(APNDR:<A,<B,ql >> ))) 
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APNDR (Append-to-the-right} then produces the following, where we have expanded the 
matrix A: 

(2:(<1NSERT,ROWOP>:< a, 1 ,CJ:~, ... a,,<B,qo >>)) 

Rewriting the INSERT functional form requires O(n} additional space to create n new 
applications, with ROWOP the operator in each: 

(2:(ROWOP:< a1 ,(ROWOP:< <>2, ••• (ROWOP:< a,.,<B,qo >>) ... > )>)) 

ROWOP is then executed n times (sequentially, from right to left}, once for each row of 
the matrix A. ROWOP takes an argument of the form < a;, <B,C' >>, where a; is a row 
of A and C' is a matrix consisting of the first n - i rows of the result matrix. The value of 
ROWOP operating on this argument is of the form <B,C" >,where C" is C' augmented 
with another row of the result matrix. Thus each execution of ROWOP multiplies a row 
of A .with the entire matrix B and produces another row of the result matrix. We will not 
describe in detail how ROWOP works, but it is a machine primitive that is similar to IP 
(innerproduct}, described in Section III.5.2. ROWOP broadcasts the row a; to the matrix 
B, where scalar multiplications are performed in the L cells, and the n inner products are 
formed in the T cells. Each execution of ROWOP requires O(n) time; then executions of 
ROWOP require O(n°) time. The result of the sequence of executions of ROWOP is a pair 
of matrices consisting of B and the (now complete) partial result C. In the final step of 
the computation, the selector function 2 selects the result: · 

(:i:<B,C>) -+ C. 
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V. CONCLUSIONS 

Although reduction machines have thus far not been investigated thoroughly, they have 
considerable promise as easily programmable parallel computers. But their implementation 
poses many problems, some of which are poorly understood. The FFP machine design dif
fers from both conventional architectures and other reduction machines on several counts, 
and offers a new approach to problems that have been obstacles to the programmability 
of parallel computers. 

The program decomposition problem is handled automatically and gracefully: the hard
ware is reconfigured at run-time to fit the needs of the program running on the machine. 

The machine is programmable in a high level language such as FFP, with parallelism 
invoked naturally and without explicit programmer specification. FFP operators specify 
transformations of data objects, while message passing is encapsulated in programs of the 
L cell language and does not concern the FFP programmer. 
The parallelism of the FFP machine is not limited to that in a user program, but occurs 
also in the execution of individual language operations and the operating system functions, 
including partitioning and storage management. 

Finally, although the FFP language has guided and inspired many of the design decisions 
in the machine, the machine is not constrained to that language. It can execute lambda 
calculus based languages, and we expect that the machine will also do well on logic pro
gramming languages [Smith84]. 

Because the design represe~ts a radical departure from machines that are commonly avail
able, the ultimate utility of such a machine is difficult to assess. Moreover, the massive 
asynchronous parallelism of the design makes it difficult to predict or simulate performance 
on problems that are not either small or based on highly regular computations. It appears 
that a thorough and realistic evaluation will only be feasible with a carefully designed 
prototype. 
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