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The aim of this research has been to create a computer algorithm to segment 

greyscale images into regions of interest (objects). These regions can provide the basis for 

scene analysis (including shape parameter calculation) or surface-based shaded graphics 

display. The algorithm creates a tree structure for image description by defining a linking 

relationship between pixels in successively blurred versions of the initial image. The image 

description describes the image in terms of nested light and dark regions. This algorithm 

can theoretically work in any number of dimensions; the implementation works in one, 

two, or three dimensions. 

Starting from a mathematical model describing the technique, this research has 

shown that 

• by explicitly addressing the problems peculiar to the discreteness of computer rep

resentations the segmentation described by the mathematical model can be success

fully approximated. 

• although the image segmentation performed sometimes contradicts semantic and 

visual information about the image (e.g., part of the kidney is associated with 

the liver instead of the rest of the kidney), simple interactive post-processing can 

often improve the segmentation results to an extent sufficient to segment the region 

desired. 

• the theoretical nesting properties of regions, originally thought to hold in all cir

cumstances, does not necessarily apply to all pixels in a region. 

The interactive post-processing developed selects regions from the descriptive tree 

for display in several ways: pointing to a branch of the image description tree (which is 

shown on a vector display), specifying by sliders the range of scale and/or intensity ofall 

regions which should be displayed, and pointing (on the original image) to any pixel in 

the desired region. 

The algorithm has been applied to about 15 CT images of the abdomen. While 

performance is frequently good, work needs to be done to improve performance and to 

identify and extend the range of images the algorithm will segment successfully. 
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Chapter 1 

Introduction and Overview 

1 The Driving Problem 

Given an array of sampled intensity values that represents an Image, it is very 

difficult to instruct a computer in both a precise and general way to "understand" the 

contents of the image to a level approaching that of humans . Humans are able to recognize 

broad classes of objects from many different angles and distinguish them from noisy or 

cluttered backgrounds. People also understand the relationships between the objects . 

Typically the class of objects and images on which an algorithm will work is restricted, 

in order to make the recognition problem easier . Some algorithms also require human 

guidance at difficult stages of the image analysis. Algorithms also vary in the amount 

of a priori information about the expected scene that is incorporated and the amount of 

context which is taken into account during the recognition process. 

I have choeen as my driving problem the recognition of organs in abdominal CT 

scans. Recognition can be broken down into two fairly standard phases. The first is the 

grouping of pixels into regions such that all the pixels in a region belong to the same 

organ and there are no pixels in the region that don't belong to the organ. This is called 

the segmentation step. The second, or labeling, phase is the semantic understanding of 

what this region represents. I concentrate on the segmentation step in this dissertation, 

but the tree data structure produced by the algorithm is well suited to guide a semantic 

understanding phase. These phases would not necessarily have to be performed completely 

independently of each other. 

:1 Thesis 

My thesis is that the multiresolution extrema following approach to image seg

mentation can be made to produce useful segmentation results in many instances. This 

examination of an image at many levels of resolution incorporates global, contextual infor

mation into the segmentation process. In order to produce successful results, techniques 
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have been developed which bridge the gap between the theoretical exposition of the stack 

method and a practical realization of the method on a digital computer. 

The theory upon which the approach is based is all derived for continuous processes. 

Surfaces are smooth and continuous. Blurring is performed in infinitesimal steps. On the 

other hand, our algorithms must deal with non-smooth sampled images that are blurred 

by non-infinitesimal amounts. In many instances where the initial application of the stack 

algorithm does not yield a completely correct segmentation, the segmentation produced 

can be easily modified in an interactive fashion to produce an accurate segmentation. 

I also claim that modifications to the basic stack algorithm based upon the expected 

image content can perform better, under some circumstances, than the unmodified stack 

which does not include any a priori information. Specifically, allowing the blurring kernel 

to vary its shape based upon information about suspected object positions should improve 

the segmentation phase of the algorithm. 

3 Results 

I have shown that 

1. by explicitly addressing the problems peculiar to the discreteness of computer rep

resentations we can successfully mimic the segmentation abilities of the theoretical 

stack. 

2. although stationary blurring creates links and nesting relationships which some

times contradict semantic and visual information about an image (e.g., part of a 

kidney links to the liver instead), interactive post-processing can still produce use

ful image segmentations. In addition, varying the blurring scheme can improve the 

segmentation results. The specific variation of blurring to perform depends upon 

the certainty of the a priori information provided. 

3. the theoretical nesting relationship which was thought to hold for the stack algo

rithm does not have to hold. From a practical point of view nesting relationships 

are still maintained. 



Chapter 2 

Background on Segmentation 

1 Segmentation as a Step towards Interpretation 

An image as it is stored by a computer is just a multi-dimensional array of pixel 

values. Although we as humans may look at the displayed image and recognize it as 

meaningful, the computer must algorithmically analyze the array of pixel values before it 

can reach any conclusions about the content of the image. 

A computer must deal with objects in an image, as objects and not just as unrelated 

pixels, for many reasons: 

1. computer vision (e.g., robotics) 

2. computer analysis of quantitative properties of objects 

3. computer manipulation of objects for image display via man-machine interactions 

4. object-based nonstationary image restoration. 

Before any of the above mentioned object-related actions can be taken, one or two condi

tions must be met: 

1. The object must be recognized as an entity distinct from other objects in the image 

{i.e., pixels belonging to the object must be understood to be related in some way). 

2. The entity must be labeled. It must be understood that it is, in fact, the specific 

object that is being searched for. 

Most image processing techniques perform step # 1 first and independently of step # 2. 

Step # 1 is commonly called the image segmentation step. Sometimes image segmentation 

is performed in tandem with tentative labeling, thereby gaining the use of additional 

semantic information in order to perform the segmentation more accurately. This approach 

is envisioned for the iterative version of the stack. 



Z Common Segmentation Techniques 

There exists a large number of image segmentation techniques. Most techniques, 

however, fall in to one of two broad categories: 

1. Region growing techniques 

2. Boundary detection techniques 

Both sets of techniques proceed on the assumption that there is some property (or group of 

properties) which is similar or slowly varying among pixels belonging to one object. Region 

growing techniques start with a set of pixels which are similar and keep adding neighboring 

pixels to the set, until no "similar" neighboring pixels remain. Boundary finding techniques 

search the image for locations which display marked dis-similarity between neighboring 

pixels, and thereby locate the boundary of an object. Typically some post-processing is 

necessary· to join together the pieces of boundary found throughout the image into closed 

boundaries. Region growing and boundary finding techniques tend to work in some limited 

circumstances. 

The above approaches fail to take into account global information during the segmen

tation process. Region growing tends to take a slightly more global view than boundary 

finding, but still the decision to create a boundary or add pixels to an object is made by 

looking at the pixels in question and their local neighborhood. Since it is questionable 

whether even humans could correctly segment an image if forced to always look at only 

very local small regions of an image, we would expect better performance by somehow 

creating an algorithm with a more global view. 

Humans also approach the recognition process with a priori knowledge about rela

tions which are valid and to be expected between various objects in the image as well as 

knowledge about objects as entities with a purpose distinct from their "visual" attributes. 

Thus a house painted green and yellow is still recognized as one object, and not two -

one green and one yellow. Similarly, we understand that in some instances we will want 

to distinguish between brown and green grass in a field, and sometimes we want to treat 

them entirely as one entity, depending upon our a priori knowledge and goals. 
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3 Context 

Use of global information is an attempt to use contextual information for image 

segmentation and labeling. To beneficially examine and understand most images, con

textual information must be used. Many researchers have used contextual information to 

help in the analysis of images. The way the information has been used varies consider

ably. Oftentimes a primarily statistical approach to specifying relationships is employed. 

Other times something more akin to simply specifying the allowable consistent relation

ships works well enough. Many applications employ contextual information only for the 

labeling phase of a recognition scheme. Often regions or tokens have already been identi

fied by use of more local means. Toussaint [Toussaint, 1978] gives a survey of several uses 

of context in pattern recognition and scene analysis. He compares the approaches under 

the unifying theme of compound decision theory. One of the conclusions he reaches is that 

"in order to use statistical contextual information in an efficient manner, it is necessary 

to use suitable approximations to otherwise unmanageable probability distributions". 

Haralick [Haralick, 1983] examines several different statistical approaches to incor

porating context. He reframes each in terms of a Bayesian decision theoretic framework. 

The specific problems he was examining had to do with the general labeling problem. 

Haralick reaches the significant conclusion that "more is to be gained by discovering sub

optimal ways of handling context than by discovering optimal ways of handling local 

structure". He also analyzes probabilistic relaxation labeling in terms of Bayesian theory. 

He discovers that 

each iteration computes the conditional probability of each unit's 
category interpretation given a new context which is the context 
of the previous iteration enlarged by one neighborhood width ... 
relaxation iterations must only continue until either the condi
tional independence assumptions no longer hold or until the en
tire context is taken into account. 

So relaxation labeling is also a way of incorporating context into the labeling process. 

Contextual information can also be used in the segmentation phase of image anal

ysis. Feldman and Yakimovsky [Feldman and Yakimovsky, 1974] use Bayesian decision 

theory to decide which regions in an image to merge and when to stop merging. They 

incorporate two levels of learning. The most restrictive assumption in their program is 

that the interpretation of a region only depends upon adjacent regions. Chen [Chen and 
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Pavlidis, 1980] also performs image segmentation as a sequence of decision problems within 

the framework of a split-and-merge algorithm. Regions are not labeled. A statistically 

ambiguous boundary region is also defined. 

Much has been written on the topic of statistical pattern classification using con

textual information. See, for example, the work by Fu and Yu [Fu and Yu, 1980]. A less 

statistical, but perhaps more manageable, approach to using the global contextual infor

mation present in an image for segmentation purposes can be found in the multiresolution 

methods. 

4 Multiresolution Approaches to Image Segmentation 

Multiresolution techniques attempt to gain a global view of an image by examining 

it at many different resolution levels. The lower resolution provides a global view of the 

image, and the higher resolution provides the detail. 

There have been several different attempts to segment images based upon a mul

tiresolution approach. Two of the most well known examples of this are the pyramid 

approach of Burt and Hong [Burt et al., 1981] and the stack approach of Koenderink. 

These are summarized below, alorig with a few other relevant approaches. 

4.1 Details of the Pyramid Approach 

The standard pyramid has the original, or "ground plane", image averaged so as to 

produce an image one-half the length and width of the original. This new image has one

quarter the number of pixels as the original, each pixel being the average of four pixels. 

The same process is applied to the new image to create a third image one-quarter it size, 

and so on. The result is a pyramid of images (see Figure 1, from [Rosenfeld, 1984]). The 

higher up one goes in the pyramid the smaller the image and the lower the resolution. The 

lower resolution image provides a more global view of the image, and the higher resolution 

image provides the detail. Pixels at each level of resolution are linked to father pixels in 

the image above them. Each pixel is given the option of linking to one of four possible 

father pixels. Thus a father can have anywhere from zero to 16 sons (with an average 

of four sons since there are four times as many son pixels). Exact linking schemes vary 

[Hong et al., 1982]. Typically a pixel links to the prospective parent most similar to it in 

grey level. The result is a tree structure of linked pixels. Each pixel is at the root of a 
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Figure 1: A Pyramid structure. 

subtree. By following the links in the tree all the way to the leaves, one determines which 

pixels in the ground plane belong to this subtree. 

Better blurring and thus linking is achieved by recomputing the grey levels for all 

non-leaf pixels by averaging only over their ground plane descendants and then relinking. 

This averaging subtree may be thought of as a segment or part of a segment. The whole 

blurring and linking procedure is iterated. At each iteration the decision as to which pixel 

to link to is made based upon the new grey levels associated with each pixel. The iteration 

process is halted once the links have stabilized. 

Segmentation is performed by noting which leaf nodes (ground plane pixels) are 

associated with each of the highest level (lowest resolution) root nodes (the number of 

which is usually specified in advance). The literature [Rosenfeld, 1984, for example] gives 

many details and variations of the pyramid approach. 

The advantages of the pyramid approach are summarized below. 

1. By linking up pixels between images at different resolutions based upon closeness 
in intensity, it is able to involve global context in segmentation. 

2. By iterating the blurring and linking process, the new global information can be 
incorporated into the next iteration of the process via variable shape blurring within 
segments. 

3. Adjusting the linking scheme (probabilities, weights, etc) allows one to tailor the 
approach somewhat. 

4. Disjoint regions can be considered as one logical entity (this may also be considered 
a dis ad vantage). 
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There are some deficiencies in the Burt and Hong approach: 

1. The basis of segmentation, which is merely following down a tree structure from 
a particular level once convergence has been reached, is ad hoc. This makes com
prehension of why it works difficult, and extension of the technique also becomes 
uncertain. 

2. The segmentation is often based on only a single level of resolution ( a.ll root nodes 
are at the same level) despite the fact that different objects are at different scales. 
Some versions of the pyramid algorithm address this problem by allowing root nodes 
to exist at other than the lowest resolution level. This is done by designating any 
node whose intensity is too different from all of its potentia.! father nodes as a root 
node. 

3. The amount of blurring between levels of the pyramid is greater than considerations 
of error generation would suggest. Thus information can be lost that can result in 
incorrect linking and thus incorrect segmentation. 

4. The type of blurring, non-Gaussian, theoretically can produce artifacts [Yuille and 
Poggio, 1986]. 

5. There is no attempt to describe the structure of the set of blurred images. 

6. There is no obvious way to incorporate a priori knowledge about the image structure 
into the process (with the exception of the ability to specify the number of segments 
and slightly change connectivity by changing weighting functions for the links). 

These deficiencies are addressed by Koenderink's stack approach. 

4.2 The Difference of Low-Pass Transform 

Crowley and Parker [Crowley and Parker, 1984] create a graph (with some tree-like 

characteristics which a.id in matching and picking correct resolutions) from a sequence 

of different resolution images. Each image in the sequence is a band-passed version of 

the original image, with those later in the sequence having a lower high pass cutoff than 

those earlier in the sequence. The actual implementation is done using a difference of 

low pass images with slightly different cutoff frequencies. This permits an efficient imple

mentation of the filtering process. The sequence of pass-band filters used creates some 

overlap between sequential filters to preserve some continuity between image features at 

each resolution. This is equivalent to creating a pyramid of Laplacian images. 

Creation of the graph from the sequence of images occurs in two phases. The first 

phase involves examing each image in the resolution sequence independently. The second 

phase examines pixels in the context of the three-dimensional space-resolution domain. 

Each image in the sequence is first scanned individually to identify "peaks" and "ridges". 

A peak is either a local maximum or a local minimum. Ridges are pixels which are a 
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maximum or minimum in at least one of the four possible directions, i.e., parallel to the x 

axis, the y axis, the x == y axis or the x == -y axis. A peak is called a P node, a ridge an R 

node. Ridges are linked to other similarly oriented ridges on the same level. This creates 

a ridge path between P nodes on a level. Pixels are then examined in a three-dimensional 

context (two spatial dimensions and the resolution dimension- they call this space the 

DOLP space). P nodes are connected to nearby P nodes in other levels. Following this, 

peaks and ridges in the DOLP space are identified. Peaks in this space are called M nodes; 

ridges in this space are called L nodes. A peak in the DO LP space is a local maximum 

in the three-dimensional space. M nodes are connected via L nodes. They claim that 

if a path of peak nodes is followed through DOLP space the intensity of the nodes will 

decrease (increase) and then increase (decrease), so there will be an M node along the 

path. M nodes are considered to be significant features which would play a prominent role 

in any possible matching strategy. The nature of the graph produced is such that 

I. regions which produce a peak at one resolution can produce more than one peak at 
another resolution (i.e., artifacts can be created by the filtering process). 

2. there is no guarantee that each peak corresponds to only one physical object or that 
a particular physical object will result in a single peak (Crowley and Parker, 1984; 
p 158] 

The configuration (but not the metric information associated with the nodes) which 

describes a shape is invariant to the size, orientation, and position of the shape (neglecting 

effects due to quantization). Specific information regarding the degree to which quantiza

tion effects might affect this invariance was not provided. 

The approach taken appears to be very promising. It is still too early to tell how 

difficult it will be to perform matching on the graph structure in day to day practice. The 

graph has a tree-like main skeleton which simplifies matching it to a template; while the 

rest of the graph structure allows for a rich representation of the global interactions. The 

ability of a simple object to produce many nodes (e.g., the bar example, see Figure 2, from 

[Crowley and Parker, 1984]) seems to be a drawback and certainly does not aid in the 

intuitive comprehension of how objects relate to their graph representation. Of course, if 

one works with these representations long enough, intuition may develop for how the two 

correspond. 
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Figure 2: A rhomboidal form and its DOLP representation. The form is dark on a 
light background. Circles indicate the locations and sizes where the bandpass filters 
from a sampled DOLP transform produced 3-space peaks (M-nodes). 2-space peaks 
(P-nodes). and 3-space ridges (L-nodes). The description of the "negative shape" 
which surrounds this form is not presented. 
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Probabilistic Matching of DOLP fiees. Crowley and Sanderson [Crowley and 

Sanderson, 1984] use a tree matching technique in dealing with the trees produced by 

their DO LP transform. The method developed in this dissertation is designed to permit 

the use of their approach to tree matching and tree modeling, at least in the general 

concepts employed. 

Each node in their prototype tree has a list of quantitative attributes. Each attribute 

has both an expected value and a standard deviation associated with it. It is assumed 

that the attribute comes from a Gaussian distribution with these parameters. To simplify 

the calculations, it is further assumed that all the attributes are independent of each 

other. Each prototype node is also assigned probability of occurrence. The probability 

that any particular candidate node P; is actually an instance of a specific prototype node 

,.,. can then be represented as P(P; I,.,.). Bayes' law can be used to find the a posteriori 

probability of any particular match between two nodes 

P( I 
·) - P(P; I ,.,.)P(,.,.) 

"" P, - P(P;) . 

In this expression P( ",.) is the a priori probability of prototype node ",. existing. To 

reflect maximal uncertainty about P(,.,.), it is assumed to be the same for all prototype 

nodes. We are interested in picking the prototype node which maximizes the a posteriori 

probability. The denominator does not affect which "n will yield the maximum a posteriori 
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probability because it is not a function of :If,.. Since we also assume independence of node 

attributes, P(P; I :~r,.) is just a product of Gaussians, over the attributes of the node. We 

can then take the logarithm of the product. Since the log is a monotonic function, we 

try to maximize the log likelihood that the observed node P; is an instance of a prototype 

,.,.. Crowley denotes this by L;,n· This measure will always be negative, unless an exact 

match occurs, in which case it will equal zero. 

It still remains to be decided whether one prototype node will be allowed to match 

only one candidate or several. This will depend upon the observed characteristics of 

our data and the sophistication of our global matching algorithm (how we match all the 

candidate nodes to prototype nodes). Noisy data or a matching algorithm that is not 

flexible enough will mean that we may match a prototype to a candidate node incorrectly 

and throw off all further attempts at a match for the remaining nodes. Crowely tries both 

approaches (i.e., matching only one node or several nodes), finding that the second is more 

robust. 

Crowley does not search the entire state space for a global maximum; instead he 

uses a faster "greedy" heuristic. After matching the roots of the two trees, he examines 

all nodes at the next level. If there are N such nodes in the prototype and M in the 

candidate, then there are MN possible binary combinations (matches). The log-likelihood 

for each such match is calculated and a sorted list of triples (P,., ,..,., L,.,,.) is created which 

is sorted with the more likely triples ahead of the less likely triples. All nodes in both 

trees are initially unmatched. The list is then traversed. Any time a triple is encountered 

which contains both an unmatched candidate node and an unmatched prototype node, 

the two nodes are matched to each other. Otherwise no matching occurs and the next 

triple is examined. 

The children of a node are then matched to the children of the node it was matched 

to. Crowley's nodes always have a small number of children, so at this point he examines 

all possible combinations of matches and picks the best one. The process continues until 

all the nodes in the prototype tree are matched. I have omitted details relating to how 

one decides if the match does not meet minimal requirements and is rejected and how one 

normalizes to compensate for the number of nodes matched. 

An additional method Crowley uses to minimize the amount of error in a match 

which might be produced by an object in one image being displaced slightly from its 

location in the other is to have many attributes of a node stored as information relative to 
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Figure 3: An intensity distribution and associated relational tree. 

the parent node. So position, perhaps, would be stored as an offset from a parent node's 

position rather than as absolute coordinate values. 

Crowley creates his prototype trees by using a training set of objects known to be 

of a certain type. Human intervention is required at times to guide the process. 

4.3 Cheng and Lu 

Cheng and Lu [Cheng and Lu, 1985] present a tree representation for waveforms 

and a technique for matching those trees. Many aspects of it are similar in spirit to 

the multiresolution trees that are produced by the stack method (when applied to one

dimensional images). Their domain of application is stratigraphic interpretation of seismic 

or well logs. They are interested in correlating two waveforms in the presence of stretching, 

shrinking, and missing intervals between them. 

They examine three tree representations for a waveform, each containing more in

formation than the previous one. The relational tree is formed as follows (see Figure 3, 

from [Cheng and Lu, 1985]). A root node is created. It is associated with the highest peak 

in the waveform. The waveform is then split at its lowest valley. A node is created for each 

subwaveform (so the root now has two children, each associated with the highest peak in 

its section of the waveform). Each of these can be considered a root of one subwaveform. 

The process is continued until no valleys remain in any subwaveform. This tree contains 

no information about exact heights of the peaks or about widths. This information could 

be added to the nodes, but that would make the matching routine more difficult. 



/]\ f'\ 
I ~~ \./'\ 

!\I I \ 

_/ l. ------- ~-

f--+--t-1 l/i -1-1-
f-+-1-1- (~ \;:;!~--- _1_1_ 

r----. D ---- -, 1\---1-
1--\-V(, d - -lo>+-t--t='~--+--1 

I :'\ 

Figure 4. Left: Skeletal tree. Right: Complete tree. 
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A more informative tree is the skeletal tree (see Figure 4). It contains information 

about the heights of the peaks by quantizing the intensity levels in the waveform. Instead 

of simply associating an intensity with the node, a chain (grandparent ~ parent ~ son 

~ ... ) of nodes of length proportional to the intensity of the peak node is created. This 

is similar to the tree produced by the stack algorithm in the sense that an extremum 

which exists for a long time before annihilation will also be represented by a long chain of 

extremum nodes (the extremum path). The skeletal tree can be expanded into a complete 

tree (see Figure 4) by also quantizing horizontal distance and adding nodes to represent the 

width of peaks. One advantage of the complete tree representation is that waveform point

to-point correlation can be achieved within a peak or valley (instead of just indicating that 

some whole peak matches some other whole peak). 

The matching algorithm used does not need to handle labeled nodes or arcs. The 

match is based upon the minimum number of father-son node splits or merges and brother

brother splits or merges necessary to form the match. This allows a simple interpretation 

of the difference between two waveforms (e.g., a father-son node split means that the 

peak on one waveform is a little higher than the peak on the other waveform). Under 

certain assumptions they claim that the tree matching algorithm has time complexity of 

O(n3 ), where n is the number of tree nodes. They present several matched waveforms 

as examples. The matching of two trees of approximately 150 nodes each took about 25 

minutes on a VAX 11/780. 

The splitting of the waveform into subwaveforms is similar in philosophy (although 

very different in approach) to the stack approach of looking for nested regions. The 



discretizing of intensity levels to create multiple nodes is similar to the creation of stack 

levels. It remains to be seen if Lu's method could be extended to two dimensions because 

it is not clear what the appropriate method for splitting a two-dimensional wave form 

would be. It is also not clear if the matching algorithm is flexible enough to be applied 

successfully in the two-dimensional case. 

4.4 The Stack 

An attractive image description which also examines images at multiple resolutions 

and emphasizes the role of extrema is that of Koenderink (Koenderink, 1984]. This ap

proach focuses on decomposing the image into light and dark spots, each, except for the 

spot representing the whole image, contained in others. Thus a face might be described as 

a light spot containing a light spot (a reflection from the forehead) and three dark spots 

(the mouth and the regions of the two eyes). In turn the eye regions would be described 

as containing a dark spot (the eyebrow), a light spot (the eyelid), and a dark spot (the 

eye), with the latter containing a light spot (the eyeball) which itself contains a dark spot 

(the iris) which finally contains a yet darker spot (the pupil). We call these light and 

dark spots, at whatever seale, eztremal regions, since they each include a local intensity 

maximum or minimum. 

I choose to use the stack approach of Koenderink [Toet et al., 1983; Koen

derink, 1984] as the basis for producing an image description because I believe that it 

has several strengths: 

1. it is based on considering the image simultaneously at multiple levels of resolution 
and can therefore use global information 

2. it produces a natural tree structured extremal region description useful for matching 
purposes 

3. it has a firm mathematical description giving investigation and extension a firm 
footing. 

By using Gaussian blurring from level to level, creation of artificial objects by blur

ring can be minimized (Babaud et al., 1986; Yuille and Poggio, 1986; Koenderink, 1984] 

and the stack of images can be modeled precisely via the heat diffusion equation [Koen

derink, 1984]. The image changes between stack levels can be described with mathematical 

care using differential geometry and Morse theory (Poston and Stewart, 1978]. This yields 

a precise way to recognize a coherent region (an "object piece") as an extremal region, the 

levels ofresolution (scale) at which an object exists, and the object containment relations. 

A more detailed exposition follows. 
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Figure 5: Extremum paths through the stack. 

Hierarchical Descriptions .from Multlresolution ProceBBing. The image descrip

tion in terms of extremal regions can be produced by following the paths of extrema in 

a stack of images in which each higher image is a slightly blurred version of the previous 

one . .Ai; illustrated in Figure 5 and explained in Koenderink (Koenderink, 1984], progres

sively blurring an image causes each extremum to move continuously and eventually to 

annihilate as it blurs into its background. An extremum path is formed by following the 

locations of an extremum across the stack of images. 

Intensity change must be monotonic (increasing for dark spots and decreasing for 

light spots) as one moves along an extremum path from the original image towards images 

of increased blurring . .Ai; illustrated in Figure 6, while following each extremum path one 

can associate each path point with the isointensity contour that is at that point's intensity 

and that surrounds that extremum in the original image (Koenderink, 1984]. The points 

(pixels) in the original image thus associated with each extremum path then form an 

extremal region (see Figure 7). Equivalently, each contour (non-extremum) point in the 

original image can be associated with its extremum path by linking the point to the 

closest point with its intensity level at the next level in the stack and continuing this 

linking through the levels until the extremum path is reached (see Figure 8). This process 

defines an isointensity path . 

.Ai; indicated above, extrema anniliilate when the blurring is sufficient to make 

the light or dark spot blur into an enclosing region. The amount of blurring necessary 

for an extremum to annihilate is a measure of the importance or scale of the extremal 

region, including the subregions that it contains. The intensity of the topmost point on 
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region and iA its minimum intensity. 
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an extremum path is its annihilation intensity. This is the intensity of the isointensity 

contour that forms the boundary of the associated extremal region. The annihilation 

intensity bounds from below (above) the intensities in the extremal region if the associated 

extremum is a maximum (minimum) and if there are no extremal sub-regions enclosed. 

A Tree of Extremal Regions for Image Description. As illustrated in Figure 6, 

when an extremum annihilates at some annihilation intensity, another region's isointensity 

contour at that intensity encloses the region associated with the annihilating extremum 

[Koenderink, 1984]. Thus, a containment relation among extremal regions is induced by 

the process. This set of extremal regions together with their containment relations can 
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Figure 8: Extremum paths (solid lines) and isointensity paths (broken lines). 
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region is a subregion of the right extremal region. 
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be represented by an extremal region tree in which nodes represent extremal regions and 

a node is the child of another if the extremal region that it represents is immediately 

contained by the extremal region represented by the parent (see Figure 9). The root of 

the description tree represents the entire image. 

Each node in the extremal region tree can be labeled with its scale, i.e. the total 

amount of blurring necessary for its extremum to annihilate. Furthermore, each node can 

be labeled with the annihilation intensity of the associated extremum. Finally, the node 

can be labeled with its size, shape, orientation, location, or other spatial characteristics. 

It is possible that the description process described above can be beneficially pre

ceded by some preprocessing, e.g. to enhance contrast or edges. In fact, Crowley's [Crow

ley and Parker, 1984] approach can be thought of as extremum following in a multiresolu

tion pile of images that are edge-enhanced by a type of unsharp masking. We have tried 

such preprocessing a few times with some benefit but will not discuss it in greater detail 
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Figure 9: Left: Extremum paths, with their regions and scales. The vertical direc
tion represents blurring. Right: The associated image description tree. 
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in this paper. However, it is worth noting that a noncognitive component of human visual 

perception may possibly be well modeled by an edge-enhancing preprocessing followed by 

the production of a stack-based image description. 

4.5 Helmink's Work 

Helmink [Helmink, 1984] has implemented a discrete approximation to the basic 

stack approach. Although the basic design is strong, the implementation does not ap

proximate closely enough the desired linking strategy dictated by the continuous theory 

to lead to any definitive conclusions about the strengths and weaknesses of the stack. 

Shortcomings of his approach are as follows. 

1. Any extremum which gets created at lower resolutions is not explicitly followed and 

can therefore never have an extremal region associated with it [Helmink, 1984; p 

39]. 

2. Boundary values are merely duplicated outside the image in directions perpendicular 

to the boundary (e.g., all pixels at x > xdim, 1 <= y <= ydim are given the value 

of the boundary pixel (xdim, y)). 

3. If a non-extremum pixel's intensity does not fall between those of the pixels in 

the neighborhood directly above it, hill climbing (pit sliding) is performed until a 

local maximum (minimum) is reached. This is not the linking strategy which the 
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continuous description of the algorithm describes and can result in an isointensity 

path linking to the wrong extremum path. 

4. "Isointensity" paths take on the intensity of the pixel they link to instead of keeping 

their initial intensity. 

5. Paths which pass less than a pixel from each other automatically become linked 

together. 



Chapter 3 

Mathematical Properties of the Basic Stack 

Several of the nice properties associated with the stack approach stem from basic 

results in Morse theory. One such result is that the number of minima, maxima, and 

saddle points cannot change (at least in the "typical" case) except through a bifurcation 

which causes an extremum and a saddle point to appear (or disappear). Similarly, the 

characteristic way in which the bifurcation occurs can be studied by examining simple 

"generic" cases. Morse theory precisely defines the meaning of the terms "typical" and 

"generic". Some of the basic principles of Morse theory are presented below, along with 

a rough sketch of how some of them are derived. Differences between the canonical cases 

discussed in the derivation and our particular case (which has the additional restriction of 

having to satisfy the heat equation) have some important theoretical implications which 

will be presented following the canonical exposition. 

1 Morse Theory Basics for the Generic Case 

The following presentation of Morse theory follows Poston [Poston and Stew

art, 1978]. Page references are to this book. The exposition presents in a cursory fashion 

some of the central theorems of Morse theory. These theorems are used to help analyze 

the qualitative nature of functions and families of functions. They allow us to study many 

seemingly different functions by instead looking at the behavior of only a handful of generic 

cases. With these results we will be able to examine easily all of the typical ways in which 

extrema can interact (appear and disappear). 

Many of the theorems stated pertain to all functions related to each other by a 

particular class of coordinate transformations. This class of coordinate transformations 

usually satisfies constraints that the transformations be smooth and reversible. Technically, 

the change is a diffeomorphism [Poston and Stewart, 1978; pp 47-50 ]. By smooth we mean 
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the function possesses derivatives of arbitrary order in the entire domain. Specifically, let 

U, V be open sets in R". Suppose f (U) = V. Then f is a diffeomorphism, provided 

a. f is smooth 

b. f has an inverse function g : V -+ R" s.t. fog = 1v, g of = 1u 

c. g is smooth 

A local diffeomorphism at a point x is a mapping from an open set containing x which is 

a diffeomorphism onto its image. 

The Inverse Function Theorem yields a simple method for testing a mapping to 

see if it is a diffeomorphism. Specifically, let f: U-+ R" be smooth, and let x E U. If the 

linear map D liz is non-singular, then f is a local diffeomorphism at x. Note that D fiz is 

non-singular if and only if the Jacobian determinant J liz= detD liz i= 0. 

Two smooth functions /,g: R" -+ R are said to be equivalent around the origin 

if there is a local diffeomorphism y:R" -+ R" around the origin and a constant 1 such 

that, around the origin, g(x) = f(y(x)) +I· Then y is a smooth reversible change of 

coordinates, and 1 adjusts the value of the function at the origin, taking care of various 

translations of the origin (p. 58-59). 

1.1 The Morse and Splitting Lemmas 

Let f: R" -+ R be a smooth function. A point u E R" is a critical point iff 

/flu = 0, Vi ::; n. If n = 1 , the only such points are called minima, maxima, or 

inflection points. In higher dimensions the situation is not quite so simple. If n = 2 we 

have maxima (z = -x2 - y2), minima (z = x 2 + y2 ), saddle points (z = x2 - y2), and 

others such as a monkey saddle (z = x3 -3xy2), pig-trough (z = x2), and crossed pig-trough 

(z = x2y2)- see Figure 1 {from Poston [Poston and Stewart, 1978]). 

We say f has a non-degenerate critical point at u if the Hessian matrix H flu = 

fa~:/z; lu] is non-singular (i.e., det(Hfl,.) i= 0). The last three examples all have degen

erate critical points at the origin. The last two do not even have isolated critical points; 

there is no sufficiently small region around a critical point which does not contain another 

critical point. Non-degenerate critical points are always isolated (but not the converse). 

A non-degenerate critical point is a Morse critical point. The Morse Lemma is the 

following (p. 54): 
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Figure 1: The top three images are of Morse critical points. the bottom three 
images are of non-Morse critical points. 

Let u be a non-degenerate critical point of the smooth function 
I= R" --+ R. Then there is a local coordinate system (YI> .. . , y,.) 
in a neighborhood U of u, with ('Vi) y;(u) = 0 , ('v'u E 
U) (3k) s.t. I= l(u)- Yi- ·"- Y; + Yi+l + .. · + Y~· 
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The quadratic terms above constitute a function called a Morse k-saddle. This 

means that every non-degenerate critical point can be transformed via a diffeomorphism 

to a Morse k-saddle for some k. When k = n, we have a maximum, and when k = 0, we 

have a minimum. 

By straightforward application of the Implicit Function Theorem (which is simply 

derived from the Inverse Function Theorem), the Morse Lemma can be extended to de

generate critical points. This is the Splitting Lemma: 

Let I : R" --+ R be a smooth function whose Hessian at 0 has 
rank r. Then I is equivalent, around 0, to a function of the form 
±yr ± Yi ± · · · ± Y; + i(Yr+l> ... , Yn) where j: Rn-r --+ R is 
smooth and can be thought of as the degenerate portion of I. 
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This means that the study of the unique characteristics of a function near a degenerate 

critical point can be reduced to the study of a function (/) of only n - r variables. 

It is possible to prove (pp. 65-71) that a critical point is structurally stable if and 

only if it is non-degenerate. A function f is structurally stable if, for all suf!iciently small 

smooth functions p, the critical points off and f +pare of the same type (and number); 

or in other words if f and f + p are equivalent after a suitable translation of the origin 

(p. 62). For instance: f(x) = x2 has a Morse critical point at x = 0, and no others. 

j ( x) = x2 + 2fx has a similar point at x = - f and no others. In contrast, if f ( x) = x3 , 

there exists one critical point, a degenerate one at x = 0. But i(x) = x3 + £x has no 

critical points if £ > 0 and two critical points if f < 0. 

Lemmas for Families of Functions. Now let us turn our attention from a single 

function to a parameterized family of functions. For instance, y(x, a) = x2 f- a is a 

family of functions, one function for each value of the parameter a. The set of images 

produced by the stack multiresolution segmentation algorithm can be interpreted as a 

family of functions. Each image is a function of two spatial variables, x and y. There 

is a different image or function for each value of the parameter which specifies spatial 

resolution. Hence, an understanding of the properties of families of functions should yield 

insight into how an image may change as its spatial resolution changes. We denote a 

family of functions formally as f: R" x R' ---+ R for an n variable, r parameter family. 

For instance, f(x,£) = z3 + fZ is a family of functions with one spatial variable (x) and 

one parameter ( £). The ultimate aim is to classify these families of functions in such a 

way that the critical point structure is not affected qualitatively by suitable coordinate 

changes. The following extensions of the Splitting and Morse Theorems help us along the 

way. 

In order to extend the theorems, the concept of equivalence of functions must first 

be expanded to encompass equivalence of families of functions. When dealing with func

tions, a transformation was applied from the spatial coordinates of one to the spatial 

coordinates of the other. There are more coordinate transformations to deal with when a 

parameter space exists also. For each specific value ( s) from the parameter space, there is 

a transformation (y8 (x)) from the spatial coordinates of the first family to the spatial co

ordinates of the second. There is also a mapping from the parameter space of one function 

(s) to the parameter space of the other (e(s)). Finally, for each specific parameter value 

(s) we allow a translation to be added (-y(s)). Thus, the complete mapping is defined as 



24 

follows (pp.90-91). / and g are equivalent families of functions if there exist functions 

e,y,"f defined in a neighborhood of x= 0, such that g(x,s) = f(y.(x),e(s)) +1(s) for all 

(x, s) E R" x R' in that neighborhood, where e is a diffeomorphism e: R' -+ R'; y is a 

smooth map y: R" x R' -> R" such that for each s E R' the map y.: R" -+ R" with 

y.(x) ~ y(x,s) is a diffeomorphism; '1 is a smooth map 1:R'-> R. 

We can now state the Splitting Theorem for Families (p. 95-96): 

Let F: RN x R' -+ R be smooth. Denote a point in RN x R' by 
(x,c) = (xl, ... ,xN,cl, ... ,c,). Suppose that the Hessian H = 
[a~:f.,h:Si,J:SN has co-rank (N minus the rank) mat (x,c) = 0. 
Then F is equivalent to a family of the form 

F(y1(x,c), , y.,.(x, c), c) ± y!,+1 ± · · · ± yJ. 
where y1 through y.,. are called the essential tJariables. 

The Morse Lemma for Families follows directly (p.97): 

Let F:RN x R' -+ R be smooth. Suppose that the Hessian 
[a~;'{., h:Si,J:SN is non-degenerate at (x, c) = 0. Then F is equiv
alent to a family of the form 

This tells us that not only does a small perturbation of a Morse function f: R N -+ R make 

no qualitative difference but that any smooth family of perturbations F: RN x R' -+ R, 

where FIRNx{O} is just /, can also be reparameterized away (i.e., each member of the 

whole family still "looks like" ±yf ± · · · ± yJ.), yielding simply a Morse function. We 

can therefore conclude that creation or annihilation of critical points does not happen as 

long as the critical points remain Morse (p. 98). The collection of critical points can 

change only by one or more of them becoming non-Morse. For a two dimensional image 

this means that maxima, minima, and saddle points can only appear or annihilate during 

the blurring process by first becoming degenerate. Since this is the case, we will focus on 

trying to catalog the types of degenerate points possible and how they appear and disappear. 

Typically (in a rigorous sense) a one parameter family of functions will have non

critical points, Morse-critical points, and degenerate points. The degenerate points typ

ically will have a Hessian of corank = 1 (i.e., although all the first derivatives are zero 

only one dimension out of all the possible dimensions has a zero second derivative). So, 

although they are degenerate they have the minimum amount of degeneracy possible. 
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Around each of these degenerate points we can express the function (by the Splitting 

Theorem for Families) by f(xt,X2, ... ,x,.;t) = i(xt,t) ± x~ ± ··· ± x!. i(xt,t) is the 

degenerate portion of f. It contains just one spatial dimension since degenerate points 

typically have a Hessian of corank = 1. We study the behavior of f by examining i( Xt, t). 

Fix t temporarily. Let g.(x) = i(xt, t = a), with x = Xt. Now expand g0 in a Taylor 

series about 0: g.(x) ""'g.(o) + f.g.(O)x+ ~g.(O)~+ f.,.g.(O)~ + · · · . Here g.(O) is a 

constant that we don't need to be concerned with. Now g1 and g11 = 0 (since we assumed 

g was the degenerate portion of f), while g111 # 0. Therefore g.(x)""' kg111 x3+ higher order 

terms. There is a theorem (pp. 57-59) which says any smooth one-variable function has 

its behavior determined locally by its first nonzero term. Hence g0 (x) is of the form x3 . 

We now want to reintroduce t into the formula to "unfotd" the function back into a 

family of functions. Once this is done, we will have produced a simplified degenerate family 

of functions with only one spatial dimension. The Splitting Theorem for Families tells us 

that by studying the behavior of this simpler function we can learn about the behavior of 

the more complex function f. But does it make a difference how t is reintroduced into g 

to produce the one parameter family? At first glance it seems as though the qualitative 

nature of the family could be greatly affected by the specific choice made. Luckily this is 

not the case, and most choices will result in qualitatively similar behavior. This is result of 

what is called the "equivalence of universal unfoldings" which means that "any transverse 

way through any non-Morse function (e.g., x3 ) which can be met transversely by a finite

dimensional family, looks like any other" (p. 105). Readers who wish to know precisely 

what a "transverse way" is can read the reference; for our purposes it is enough just to 

know that one transverse way through x3 is given by ft(x) = x3 + tx. This transverse 

unfolding can be transformed into any other unfolding via a mapping very similar to those 

allowed under the definition of equivalence of families of functions. So we can now state 

f(xt. ... , x,.; t) = o1 +txt± x~ ± · · · ± x~. See Figure 2 for graphs of x~ +txt at several 

values oft. 

Let us recapitulate where we have come from and what we have concluded. Our 

interest is in determining how maxima and minima behave when an image is blurred. 

Maxima and minima are of interest because these are the basic structures to which nonex

tremum points link and thereby define extremal regions in the original image. We noted 

that blurring an image (function) creates a family of images {family of functions). By 

using the Morse and Splitting lemmas for families of functions we found that the only way 

for Morse points to appear or disappear was by first becoming non-Morse. Non-Morse 
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Figure 2: I= x~ +tx1 (canonical annihilation) for various values oft . The abscissa 
ranges from -6 to 6. as does the ordinate. 

points are almost always only degenerate in one dimension. We therefore constructed a 

one dimensional non-Morse function and then unfolded that into a typical one dimensional 

family of functions which was non-Morse when the parameter (t) was zero. Then to get 

back to the original number of dimensions we were working with, we added back in the 

Morse dimensions (x~, etc.). For two dimensional images we get f(x 1 , x2 ; t) = x~+tx1 ±x~. 

We now proceed to investigate the way the Morse and non-Morse points of 

f(xt, ... , x,.; t) = x~+tx1 ±xi±-- ·±x! behave. We can visualize this behavior most easily 

by examining f ( Xt; t) = x~ + tx1 and remembering that in the other dimensions we have 

positive or negative quadratic (Morse) terms. For negative values of t both a maximum 

and a minimum are present in f(xt; t). These are Morse critical points. The type of Morse 

critical point they represent for the higher dimensional case (f(x1 , .•• , x,.; t)) depends upon 

the signs of xi through x~. Hall the signs are all positive, there is a minimum (0-saddle) 

meeting a 1-saddle. In general we have a k-saddle meeting a (k+ 1)-saddle. As t increases 

towards zero, the two Morse critical points approach each other and merge, creating a 

non-Morse critical point temporarily at (x1 = 0, t = 0). For positive values oft, no 

critical points remain. If n = 2, we always have minimum or maximum point annihilating 

with a saddle point to temporarily create a non-Morse critical point. These two cases 

correspond to the two possible signs that may exist in front of the x~ term. If the x~ 

term has a plus sign in front of it, the one-dimensional minimum in f(x1 ; t) becomes a 
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Figure 3: Extremum positions (abscissa) for x~ + tx1 as a function of time (or-
dinate). The abscissa ranges from -2 to 2, the ordinate from -4 to 0. The two 
paths meet at time t = 0. 

minimum in f(x!, x2; t) and the maximum in f(xl; t) becomes a saddle in f(x~o x2; t). On 

the other hand, if the xi term has a minus sign in front of it, the maximum in f(x 1; t) 

becomes a two-dimensional maximum in f(x~ox2;t) and the minimum becomes a saddle 

in the two-dimensional function. We therefore conclude that typically the only way for 

an extremum in an image to annihilate is by meeting a saddle point. Similarly, if an 

extremum is created, a saddle point must be created also. Figure 3 and Figure 4 show the 

position and intensity of the extrema from the graphs in Figure 2. 

This particular unfolding of x3 is "typical", and therefore all other unfoldings of x3 

can be induced from it (p. 146-147). Although Morse theory considers these unfoldings 

to be representations of the same phenomenon, the sorts of transformations allowed to 

induce the other unfoldings (which are very similar to those used for showing equivalence 

of families of functions) can be indicative of different blurring schemes and path structures 

in the corresponding stack tree. Thus for our purposes they may sometimes have to be 

considered as different functions. I will expand on the nature of this difference in the 

following sections. 
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Figure 4: Extremum intensities (ordinate) for x~ + tx1 as a function of time 
(abscissa), The abscissa ranges from -20 to 0. the ordinate from -10 to 10. The 
two paths meet at time t = 0. 

Z Embedding an Image in a Family Based Upon Gaussian Blurring 

Several researchers have investigated ways of representing one image at multiple 

resolution scales. They all use similar criteria for deciding upon the best approach to 

creating lower resolution images. 

The most important property is one of causality. This means that any feature 

present at a coarse resolution level should have a similar feature present at a finer resolution 

level. Features should not spontaneously appear as we move from high to low resolution 

scale space. But what, precisely, are features? Several researchers use zero-crossings of 

various operators (i.e., zeroes of the functions) as their features. We are concerned with 

extremal paths when creating the tree representation from a stack of image. Therefore 

our features are extrema. Ideally an extremum should not be allowed to be created (i.e., 

an extremal path to start) at any resolution level except the original one. 

Secondly, any embedding must be smooth. This means that intensity changes occur 

in a continuous manner as scale space is traversed. This implies that extremal paths and 

isointensity paths are smooth curves in position-scale space. 
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Let us first examine which possible convolution kernels can be applied to the original 

image and satisfy the above criteria. Note that the restriction to convolutions forces the 

filter kernel to be shift invariant (but not necessarily radially symmetric). 

Witkin [Babaud et al., 1986] shows that among all possible well-behaved kernels 

the Gaussian is the only one which does not create zero crossings (or zero crossing for 

any derivatives). His work only applies in one-dimension and only for filters which can be 

expressed as convolution kernels. 

Yuille and Poggio [Yuille and Poggio, 1986] give an alternative derivation of Witkin's 

result. They also extend the analysis to two (and higher) dimensions. They too only 

examine the class of filters which are shift invariant. They show that if the features 

of interest are zero crossings of linear derivative operations, the causality property is 

satisfied (for all images) if and only if the image is filtered with a two-dimensional (not 

necessarily rotationally symmetric) Gaussian. More generally, they show that for any 

differential operator L commuting with the diffusion equation (see next paragraph), then 

L(F • I) = constant will not have solutions created if and only if F is Gaussian. 

Directional derivatives are linear (if in a fixed direction) and therefore this proof applies 

to features such as ravines and ridges. Note that this result does not pertain to zero 

crossings of nonlinear derivatives. Thus, the proof does not apply to extrema creation. For 

the specific nonlinear derivative represented by zero-crossings of the directional derivative 

along the gradient they were able to show that no (shift invariant) filter has the required 

behavior. 

Koenderink [Koenderink, 1984] examines the specific case of intensity creation. No 

intensity should exist at a low resolution level which cannot be traced (in a continu

ous manner) to an identical intensity at a higher resolution. Applying the constraints 

of causality, homogeneity, and isotropy, he derives the following sufficient relationship: 

I •• (x,y,s) + Iuu(x,y,s) = I,(x,y,s), where I(x,y,s) is intensity, sis scale or resolution, 

and a subscript denotes a partial derivative. He approaches this by examining surfaces 

of constant intensity, I(x,y,s) = Ao, where Ao is a constant. Since we require that the 

blurred image not possess intensity values which cannot be traced to higher resolution 

levels, I = Ao should point its convex side towards the direction of decreasing resolution 

at the extrema locations. That is, the principal curvatures must have the same sign sense 

as the normal direction, (I., Iv, I,). The sign sense of this can be taken to be I,. In 



an appropriate coordinate system, the principal curvatures of the surface at the extrema 

locations are proportional to the A of 

with a positive scale factor [Spivak, 1970]. But at an extremum the curvature (second 

derivative) in any direction must have the same sign as in any other direction , so lul1111 

must be positive. It follows that the sign of the principal curvatures, at the extrema, is 

the same at that of In+ !1111 • Therefore, Izz + 11111 = a 2 (x, y , s)I, , where a is never equal 

to 0. This can equivalently be written as V2 I = a 2 (x, y, s )I, . We can conclude that it 

is necessary and sufficient that the family of derived images satisfy this relationship at 

extrema locations so that no new intensity levels are created. Going one step further, it is 

sufficient for the family of derived images to satisfy V 2 I = I, . This differential equation 

is the heat conduction (or diffusion) equation. 

Despite the fact that no new intensity levels are created, extrema can be created 

m dimensions higher than one. An easy example to help in the visualization of how 

this can occur in two dimensions is as follows. Imagine two broad, high mountains with 

a deep wide valley between them. One mountain is higher than the other. Connect 

these two mountains with a thin ramp bridge between their tops. The heights of the 

mountains, the valley, and the bridge represent intensity levels. The shorter mountain is 

not a local maximum because the ramp connects it with the higher mountain. But as 

diffusion occurs on the intensity distribution represented by this geography, the intensities 

of points represented by the bridge will decrease, since the deep valley is on both sides of 

it. It will quickly turn into a bridge with a deep dip in the middle . This will turn the 

smaller mountain into a local maximum. 

A specific example of extremum creation is shown in Figure 5 (worked in collab

oration with Professor Halton at U.N.C.) . The example clearly shows a maximum and 

a saddle appearing {and eventually annihilating) under diffusion. This is a graph of the 

function f(x , y) = -.25x4 + .5x2 - x + 4 - 10y2(x + 1.5)2 (x - 1)2 . This function has a 

shape approximating that described above. The width of the function in the y-direction 

is greatest at x = - 1.5 and x = 1, since the magnitude of the coefficient for the y2 term is 
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Figure 5: Cross-section at y = 0 of a function under diffusion (Gaussian blurring). 
A maximum and a saddle are created. The abscissa ranges from x = -2 to x = 2. 
The ordinate ranges from y = -10 to y = 10. Sigma is the standard deviation of 
the Gaussian kernel applied to the initial function to produce the blurred version. 

31 

zero there. The graph shows a cross section of the function (y = 0) after various amounts 

of blurring. 

The diffusion (heat) equation seems to be the best alternative available to guide 

blurring, since it does not create new intensity levels. The ability to create extrema 

is undesirable; features exist at low resolution levels which do not exist at higher ones. 

Nevertheless, this method of extrema creation is preferable to others which may also create 

new intensity levels. There are several additional reasons for desiring that the embedding 

satisfy the heat equation everywhere. First, if the inlage satisfies the heat equation, the 

solution of the equation will depend continuously on the data (original image and boundary 

conditions) [Zachmanoglou and Thoe, 1976; p 333). Second, if the inlage satisfies the heat 

equation, I(x,y,t > 0) is infinitely differentiable (in x andy) even if I(x,y,O) is not. 
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To blur an image, one should convolve it with the filter kernel that is the Green's 

function for the diffusion differential equation. The solution to a differential equation 

depends upon its initial conditions and boundary conditions. The initial condition is 

I(x, y, 0) = H(x, y), where H(x, y) is the original image. If the original image has no 

boundaries (i.e., takes up all of R 2), the solution yields a Gaussian filter kernel. This 

essentially develops from the heat equation as follows. If only one point is set to a particular 

nonzero temperature (intensity) at time t = 0, there will be a Gaussian temperature 

distribution around that point at some later time t (assuming isotropy of the the medium, 

etc.). The variance of the Gaussian is related tot by u 2 /2 = t. The temperature (intensity) 

distribution at time t of an entire image is just the combination of Gaussian distributions 

resulting from each pixel. This is the same as the convolution of a Gaussian with the 

initial heat (intensity) distribution [Sokolnikoff and Redheffer, 1966; p 498 J. 

Unfortunately, if the image is not infinite in extent, the simple result of a Gaussian 

filter kernel is not necessarily correct. There are several ways the original image might 

be modified to eliminate its boundaries, and thereby maintain a Gaussian kernel solution 

to the diffusion equation. Mirroring of the image at its boundaries essentially creates 

an infinite image. The infinite image has symmetries such that convolution of it with a 

Gaussian will yield the same result as performing a convolution with the finite image (while 

mirroring the kernel at the boundaries to handle the edge effects). This image modification 

has several problems. The image created has symmetries, an atypical behavior. The 

mirroring also creates ridges and ravines along the boundary of the image. These are 

non-Morse phenomena. Such a blurring scheme will also not result in just one extremum 

in the limit after sufficient blurring, whereas an ordinary infinite image will yield just one 

extremum after being blurred sufficiently. A mirrored image will yield an extremum at 

each corner and one in the interior of the original image, plus their reflected copies in the 

rest of the infinite image. 

An alternative approach to eliminating boundaries is to wrap-around an image at 

the boundary. This means that points outside a boundary are interpreted as being inside 

the boundary on the opposite side of the image. This is equivalent to changing the image 

topology to that of a torus. This will not result in only one extremum remaining in the 

limit after sufficient blurring; a torus topology does not permit the existence of only one 

critical point. After such an image is blurred sufficiently, one minimum, one maximum, 

and two saddle points will be left in the image. Such a distribution can visualized by 

imagining a doughnut (torus) standing on its side. Let the intensity at each point on the 

• 
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torus be its height above the ground. Then the highest point will be a maximum and the 

contact point with the ground the minimum. Opposite each of these points there will be 

a saddle point. Wraparound also creates discontinuities in the image initially, since the 

intensity at one boundary of an image is usually not the same as at the opposite boundary. 

Yet a third method of handling the boundary conditions is to solve the diffusion 

differential equation explicitly for the finite plane with the given initial conditions (the 

initial image). The general solution to the finite domain heat equation is [John, 1982; p 

219 J 

I(~, T) = fo K(x,~, T)I(x,O) dx 

+ {T dtf. (K(x,~,T-t)dl~x,t)_I(x,t)dK(x,i,T-t))ds,. 
Jo xeao n n . 

(1) 

Here I(~,T) is the image at timeT. K(x,f,T) is a Gaussian of width T. 0 is the region 

the image is defined on, and an is its boundary. dS. is just the length element along the 

boundary, and fn is the derivative in the direction normal to the boundary. This solution 

reduces to a convolution of the image with a Gaussian kernel if only the first term is 

nonzero. The conditions under which this is so will now be discussed. 

The second term in the second integral will be equal to zero if the intensity of the 

image is zero along the boundary. An image which obeys the diffusion equation and has 

boundary values of zero can be created from the initial image (assuming the boundary 

conditions of the initial image are time independent). This is done by subtracting off an 

image which is invariant under blurring and has the identical boundary conditions. The 

original image satisfies the diffusion equation: lt(X, t) - V2 I(x, t) = 0; x E 0, t > 0. 

Let the invariant part be v(x) which is the solution to 

v(x) = I(x,O), x E an. 

Now define the time varying component as w(x,t) such that I(x,t) = v(x) + w(x,t). For 

w(x, t) to satisfy this equation it must be the solution to 

X En, t > 0, 

w(x, 0) = I(x, 0) - v(x), X En, 

w(x,t) = 0; x E an, t ~ 0. 



If we use w instead of I in equation 1 (and then add v back into the result at the end if 

desired), the second term in the second integral will be zero. 

The first term in the second integral will be nonzero unless an additional constraint 

1s added, that the image be insulated, i.e., have d1~~,t) = 0 at the boundary. This is 

not an unreasonable constraint to impose. The image is already discretely sampled in 

space. We can therefore always assume that the unknown intensity distribution between 

a boundary pixel and its neighbor in the interior is such that the constraint is satisfied 

without contradicting any known data or forcing the interpixel intensity distribution to 

be unnatural. 

We can conclude that convolution of a bounded image with a Gaussian kernel (whose 

contribution is set equal to zero if outside the image boundary) can indeed be considered 

to be an appropriate solution to the diffusion equation for an insulated bounded image 

with zero intensity along its boundary. Since this approach is valid, it is the method used 

in this dissertation. Toet [Toet et al., 1986] also uses this technique but did not show that 

it was in fact valid. 

It is possible that a more flexible blurring strategy which does not satisfy the dif

fusion equation might be developed. Satisfaction of the diffusion equation is a sufficient, 

but not necessary, condition to prevent creation of new intensity levels. The necessary 

and sufficient condition for no intensity level to be created is that V'2 I = a 2 ( x, y, s )I, (the 

sign of the Laplacian of the intensity is equal to the sign of olfos) at the locations of 

the extrema only. In particular, nonstationary blurring schemes may be derivable using 

this constraint. There is probably a relatively simple way to insure that the production of 

lower resolution images still satisfies the necessary constraints. This would be as follows. 

The necessary constraints describe how an image is allowed to change as it evolves into 

a lower resolution image. We can construct a difference image which, when added to one 

image, will produce an image of lower resolution. This difference image can be easily 

constructed so that the image will evolve according to the diffusion equation around the 

extrema locations. Other pixels in the difference image would be free (except probably 

for some continuity constraints) to have whatever intensities were deemed desirable. 
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3 Containment for Extremal Region Paths in the Generic Case 

Deciding on an embedding scheme for the original image in a family of lower res

olution images is not enough. Points in the image at one resolution level must also be 

associated with points in the image at another resolution level. This will define a path 

through resolution space for each point in the original image. As mentioned in chapter 2, 

the way that these paths (links) join up with each other will induce a decomposition of 

the original image into nested regions. All those paths which link to the same extremal 

path define the extremal region associated with that extremal path. Criteria for linking 

both nonextremum points and extremum points at one level to the appropriate pixels at 

the next level are needed to guide the creation of this path structure. I will use the same 

linking criteria as Koenderink, although the derivation of the results differs somewhat. 

There are two criteria a path of a nonextremum point should satisfy. First, the 

intensity should stay constant along the path; the path of a nonextremum is therefore also 

called an isointensity path. Second, the point should move along the isointensity surface 

(in :z:,y,s space) in a path of steepest ascent (where 8, the resolution dimension, is up). 

Let the direction in which a path should move be defined as ti = (v1 , "2, vs), where the 

three components are in the :z:, y and 8 directions respectively. The first constraint can 

now be written as dl· ti = 0 or lzVl + r.v2 + I,vs = 0, where the subscripts of :z:, y, 

and 8 represent partial differentiation with respect to each of those variables. The second 

constraint is equivalent to stating that the component of ti in the (:z:, y) plane should be in 

the same direction as the gradient, i.e. (Iz,I.). If this component of ti and the gradient 

are in the same direction, their cross product is zero. So, (v1,t12,0) x (Iz,l",O) = 0. This 

yields Izv2 + J•"l = 0. The results are two equations in three unknowns: 

(1) 

(2) 

We can now solve for a direction for ti, although its magnitude will be arbitrary. This 

results in 

(3) 

This is the direction the path of a nonextremum point should take. At an extremum Iz and 

I" are both equal to zero, so ti is a null vector. In other words, once a non extremum path 

meets an extremum, ti no longer specifies the direction in which to proceed. Criteria for 

the path direction of an extremum hold from then on. The extremal region associated with 
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an extremum path is just all those points whose paths eventually join with the extremal 

path. 

The path criterion for extrema is very simple. Each extremum is isolated in the 

typical case. That is, there are no other extrema in some neighborhood around each 

extremum. In addition, their positions move continuously through scale space. It is 

therefore always immediately evident what path each extremum should take. Contrary to 

isointensity path criteria, intensity along an extremal path changes. Intensity along the 

path of a maximum will decrease with decreasing resolution, while intensity of a minimum 

will increase. When an extremum annihilates, its path continues on as an isointensity 

path (see figure 8 of chapter 2). The path criteria for nonextremum and extremum points 

determine which regions in the original image become associated with each extremal path. 

Let us now examine the generic case of extremum annihilation (derived in the sec

tion on Morse theory basics for the generic case) in an attempt to understand the rules 

guiding extremal region formation. The generic description of a saddle and a minimum 

annihilating was shown at the beginning of this chapter to be f(x, y; t) = x3 + tx + y2 • 

The simplest way to visualize this (see Figure 6) is to imagine a second minimum (which 

will not annihilate) existing on the other side of the saddle point. The saddle exists be

tween the two minima so that the isointensity curve through the saddle point surrounds 

the two minima. Annihilation of the saddle with one minimum takes place at x = 0, 

y = 0, t = 0. The annihilation intensity is zero. At some initial time to < 0 the zero 

intensity contours surrounding the minima lie inside the isointensity contour of the sad

dle. As time progresses, the minimum which will annihilate and the saddle point move 

towards each other. The lobe of the saddle isointensity contour which surrounds this min

imum gets smaller, as does the zero intensity contour which surrounds the minimum. The 

zero intensity contour remains inside the saddle intensity contour the entire time. The 

zero intensity contour surrounding the annihilating minimum and the lobe of the saddle 

contour surrotinding the annihilating minimum become identical for the brief instant as 

annihilation occurs. To determine the nature of the extremal region such a scenario will 

produce, one must examine which nonextremum paths link to the annihilating extremum. 

Nonextremum paths are isointensity paths. Those starting out inside the zero intensity 

contour surrounding the extremum have intensities less than zero. They can not cross the 

zero intensity surface represented by the zero contour in scale space. Yet the zero intensity 

contour eventually collapses into the extremum point, enclosing no area at annihilation 

time. The only place for the nonextremum paths to go is to link up with the extremum 
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path. This means that all isointensity paths through resolution space that start off inside 

the zero intensity contour must eventually link up to the annihilating minimum. This 

region represents the extremal region associated with the annihilating extremum. 

Another way to see this result is to look again at how I(x,O,t) = x3 + tx changes 

as time increases (see Figure 2). The point at x = 0 has a fixed (constant) intensity for 

all time. Note that all the intensities at points x less than zero fall in intensity as time 

increases, and vice-versa for those for which xis greater than zero (the extremal region for 

the annihilating minimum). This means that a point at x > 0 has its intensity increasing 

with time. So if an isointensity path is at a particular x > 0 at some t, at time t + ot it 

will have to move towards the minimum, to compensate for the fact that all the intensities 

around it are rising. One can easily visualize how this phenomenon tends to cause the 

isointensity paths starting with x > 0 and intensity less than zero (i.e., those inside the 

zero intensity contour) to link to the extremal path for the minimum. 

4 Noncontainment for Extremal Region Paths in the Gaussian Case 

Imposing the constraint of satisfying the heat equation (i.e., convolution with a 

Gaussian) modifies the conclusions reached above about the manner in which extrema 

annihilate. Once we restrict the embeddings to a particular class of smooth embeddings, 

namely those satisfying the heat equation, it becomes very difficult to know which de

scriptions are "generic" in this restricted subclass. Nevertheless, specific cases can and 

will be examined which must fit into the diffusion framework. There is no reason to expect 

that the qualitative nature of these solutions should be different from others satisfying the 

constraints, although some anomalies may be introduced. 

Blurring r /6+ tx with a Gaussian produces the prototypical diffusion annihilation. 

In the one-dimensional case nothing changes significantly from the canonical (nondiffusion) 

description given above. The time parameter in the formalism gets replaced by u 2 /2, where 

u is the total standard deviation of the Gaussian blurring done so far. The x3 term gets 

a factor of 1/6 in front of it so that the prototype equation satisfies the one-dimensional 

heat equation. 

The two-dimensional annihilation via a diffusion process changes from the generic 

annihilation in a subtle but very important way. The annihilation equation representing 

the diffusion case is I(x, y, t) = x3 /6 + tx + t + y2 /2. We have been forced to add a term 

solely in t to preserve the diffusion characteristic! This has many important consequences. 

I will now examine this equation, which is for a saddle and a minimum annihilating, in 
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Figure 6: Saddle and zero intensity contours at various times until annihilation. 
Nondiffusion case. 
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detail; identical conclusions can be drawn from looking at the -y2/2 case which is for a 

saddle and a maximum. 
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Figure 7: Saddle (upper curve) and minimum (lower curve) intensities (ordinate) 
with respect to time (abscissa). The time axis ranges from -10 to 0, and the 
intensity axis ranges from -8 to 2. Diffusion case. 

The positions of the two critical points (saddle point and minimum) remain the 

same as in the nondiffusion case. This is simply derived by setting ai(:;"'t) = 0 and 

solving for :1:, the x position of the critical point. :1:2/2 + t = 0, as in the previous case, 

so :1: = ±.;=2t, t :5 0. However, the intensities of these critical points differ from the 

nondiffusion case (see Figure 7). J(:i:,O,t) = ±(-2t'' ± t{-2t)112 + t, where+ is used 

for :1: > 0 (1(:1:) < 0) whereas for :1: < 0 (J{:i:) > 0) - is used and the square root 

is interpreted as being the positive root. This equation is valid for t :5 0. Now examine 

I( :1:, 0, f) = 0, i.e., those times when the critical point intensity equals zero. We find that, as 

before, both the saddle and the minimum intensities equal zero at t = 0, the annihilation 

intensity and time. But we also now have zero intensity at i = -9/8 for the saddle 

intensity! The saddle intensity, which starts out greater than zero (for time < -9/8), 

gradually decreases becoming less than the annihilation intensity when t > -9/8 . This is 

confirmed by setting 81~;o,t) = 0 and noting that the saddle (but not the minimum) has 

a turning point in intensity at t = -1/2. From t = -1/2 to t = 0 the saddle intensity is 

increasing, as is the minimum intensity. 

There are significant consequences of the saddle intensity dipping below the anni

hilation intensity and then rising back up to it. In the canonical case analyzed previously, 



when a saddle existed between two minima, the isointensity curve through the saddle 

point surrounded the two minima (see Figure 6). The saddle intensity contour remained 

outside the zero intensity contour until annihilation time. This is not true for the diffusion 

case (see Figure 8). The zero intensity contour, which starts out inside the saddle inten

sity contour, ends up outside the saddle intensity contour! The saddle intensity contour 

and the zero intensity contour become identical at the instant the zero intensity contour 

surrounding the annihilating minimum joins the zero intensity contour surrounding the 

other minimum. Mter this time the zero intensity contour surrounds the saddle intensity 

contour and both of the minima. The "lobe" of the zero intensity contour that surrounds 

the minimum that will annihilate gradually contracts and "pinches off" at x = 0, t = 0 

(see Figure 8). 

The fixed point of I(x, 0, t), which does not change intensity with time, is now at x = 

-1 (see Figure 9). Intensities for all x < -1 continuously decrease, while those for points 

x > -1 continuously increase. Hence, if an isointensity path is at a particular x > -1 at 

some t, then at time t+5t it will have to move towards the minimum, to compensate for the 

fact that all the intensities around it are rising. There are points with x < -1 that have 

negative intensities. These points will move away from the minimum even though their 

intensities are less than the annihilation (zero} intensity! The annihilation isointensity 

surface in (x, y, t) space is still a concave cap, but now it has a hole in its side where it 

joins up with the other zero intensity surface; isointensity paths can escape from under 

the cap by sneaking out through this hole, so they are not forced to join the annihilating 

minimum's path! 

It is difficult to describe mathematically the nonextremum paths which escape 

through this hole. The isointensity paths are integral curves of the vector field v = 
(-I.It,-lylt,I; + 1;). What needs to be done is to substitute into this the formula for 

I(x, y,t) and solve analytically for the isointensity paths. Unfortunately, an analytical 

solution of these differential equations is intractable. Nevertheless, qualitative exami

nation of the vector field directions can yield a simple proof that some nonextremum 

paths do escape. The proof is as follows. For the prototypical diffusion case we have 

v= (-(•; +t)(x+ 1},-y(x+1),("; +t)2 +y2). This means that any point with x < -1 

and positive y coordinate will have a positive y component in v, and such points will move 

away from the x axis, which is where the saddle and minimum are. Furthermore, if such 

a point should happen to try to move towards an x coordinate greater than -1, it will 

not get there. This is because at -1 both the x and y components of v are zero and the 
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point will stay fixed at x = -1 for all future time. By showing that all points with x 

coordinates less than -1 move away from the x axis (if not on it to begin with) and that 
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Figure 9: The prototypical annihilation satisfying the diffusion equation. I= :z:3 /6+ 
tx + t is graphed for various values oft. The abscissa (:z: axis) and the ordinate 
(intensity axis) both range from -6 to 6. 

these points can never move to an :z: value greater than minus one, we have shown that 

these points (paths) can never meet either the saddle or the minimum path. Yet many of 

these points have intensity between that of the minimum and the annihilation intensity 

(zero). Therefore, some points inside the annihilation intensity contour do not link to the 

minimum path. 

I have been able to display the entire paths of escaping nonextremum paths by 

simulating the blurring and linking process. In order to make the simulation as accurate 

as possible, an analytic model of the blurring process was created. The analytic model 

calculates the result of convolving a separable two-dimensional polynomial with a Gaus

sian. The two-dimensional polynomial represents the two-dimensional intensity field of 

an image. Using this technique it is possible for a computer to take small steps through 

three-dimensional intensity-scale space. The direction of the step is guided by the equa

tion for the vector field ( iJ). The step size and direction can be dynamically modified to 

keep the change in intensity along the "isointensity" path within small limits. Using this 

simulation, I have indeed been able to identify isointensity paths which start out inside 

the annihilation intensity contour, and yet do not link up to the extremal path of the 
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annihilating minimum. Not only do paths starting at :z: coordinates less than -1 escape, 

but some paths with :z: greater than -1 never reach the annihilating minimum. 

The existence of isointensity paths which have intensity less than the annihilation 

intensity yet manage not to link to the closest minimum is surprising and unsettling. One 

of the reasons for choosing the stack as a multiresolution scheme was the nice containment 

properties of the extremal regions. The situation is both worse and better than it might 

appear at first glance. It is worse because all of this analysis has been done for the 

"prototypical" case. This prototype must truly describe an arbitrary annihilation only 

in a small spatial and temporal neighborhood around the annihilation. In actual images 

the more global motions will probably be more complex, and one would expect more 

complex motions to yield even stranger linking relationships. On the other hand, despite 

the surprising theoretical result that nonextremum paths can escape from the extremal 

region they originate in, I have yet to observe any clear examples of escaping paths when 

working with actual images. This is most likely due to the fact that extremal regions are 

not sufficiently isolated from other regions to display the type of behavior shown in the 

"prototypical diffusion" annihilation case. The behavior of that case stemmed primarily 

from the fact that all points with :z: coordinate less than -1 continually decreased in 

intensity. In an actual image this would not occur since there would be another minimum 

at some :z: less than -1 and this would tend to cause intensities in the region to increase 

under blurring. In addition, our sampling resolution may be coarse enough to miss small 

regions. The explanation of why escaping paths are not encountered needs to be researched 

further. 



Chapter 4 

Theoretical Issues due to Discreteness 

The entire theory upon which the stack algorithm is based applies to continuous 

Morse images embedded continuously in resolution space. Unfortunately images of this 

form cannot be handled by a digital computer. The continuous image must be approxi

mated by one which is spatially discrete (i.e., made up of pixels). The smooth embedding 

of the image in resolution space is approximated by a stack of images each derived from 

the previous one by convolution with a blurring kernel of non-infinitesimal width and fi

nite extent. Nonextremum and extremum paths, which theoretically are continuous paths, 

become represented by a chain of links from a pixel in one image to a pixel in the next 

image to a pixel in the next image and so on. The best manner in which to create these 

approximations and the complications such approximations create are the subjects of this 

chapter. 

1 Linking Criteria 

As mentioned in chapter 3, the nonextremum paths are theoretically integral curves 

of the vector field (-It I., -I1Iv, 4 + r;). This is equivalent to the requirement that a 

nonextremum path stay on an isointensity surface and move along it in the steepest path 

possible. This theoretical goal can only be approximated by a computer algorithm due 

to the discrete nature of the image representation and the non-infinitesimal amount of 

blurring occurring at each stage. The linking criteria employed should enable the discretely 

linked path to closely approximate the continuous path. 

While in the theoretical case all paths are continuous and a point can always link to 

an arbitrarily nearby location with intensity identical to its own in an arbitrarily nearby 

image plane, it is not uncommon for pixels to fail to satisfy this property in the discrete 

case. There are three main causes for this phenomenon. 

1. Areas of an image with high contrast tend to change intensity more rapidly for a 

fixed amount of blurring than regions of low contrast. Hence the change in the 
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intensities of all the pixels in the region may be too large for any good match in 

intensities to be found in a small local region around the current position of the 

linking path. In this case the local region has been blurred more than is desirable. 

A similar problem occurs along ridges which slope very gently along their length. 

A very gentle slope means that the intensity difference between two pixels which 

are far apart on the slope may be very small. Even a slight blurring which would 

cause small intensity changes along the length of the ridge would necessitate a large 

spatial distance between pixels in a nonextremum path. 

2. The image manipulated by the computer is a sampled version of the the continuous 

image dealt with in theory. The samples chosen may not be identical in intensity 

to that of an isointensity path being followed, even though the continuous image 

does, in fact, include that exact intensity between the sampled pixels. In this case 

the desired intensity can be interpolated from nearby pixels; a slower blurring rate 

would not alleviate this problem. 

3. Nonextremum regions very close in both intensity and position to an extremum 

will have no intensity to link up to {in the next level of the stack), due to the 

non-infinitesimal amount of blurring which has to take place. This is because the 

extremum intensity has passed through the desired intensity without ever having 

explicitly represented that intensity in one of the stack levels. These near-extremum 

points should be linked to the extremum. This problem exists independently of the 

rate of blurring. 

Spatial discreteness caused by sampling is dealt with via a combination of two meth

ods: use of an "original intensity" field and interpolation. Instead of searching for a parent 

pixel of intensity identical to the intensity of the pixel through which the nonextremum 

path currently passes, one is sought which has the original intensity of the nonextremum 

path as an interpolant of its local neighborhood. If a check for interpolation is not per

formed, the linking process becomes captive to the vagaries of the sampling process, and 

strange artifacts can occur. Particularly damaging would be the escape of a nonextremum 

path from the extremal region it should remain in by passing through an isointensity sur

face due to quantization artifacts. This would result in a nonextremum pixel becoming 

associated with the wrong extremal region. 

The linking algorithm for a nonextremum path from one stack level up to the next 

(lower resolution) level is roughly as follows. First, an "original intensity" field is associated 
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with each nonextremum path when it starts. The intensity value of a nonextremum path 

does not change along its path. In particular, its intensity at a particular level is not 

the intensity of the pixel on that level with which it is currently associated. That pixel 

will, in general, not be of exactly the same intensity as the nonextremum path. By 

not associating the intensity of the pixel through which a path passes at any particular 

level with the path itself, the intensity value along the path is kept from changing and 

gradually drifting away from the desired original intensity. All tests for linkage are done by 

comparing pixel intensities in the new (lower resolution) plane with the original intensity 

field of the path. The 3 by 3 pixel region in the lower resolution image above the current 

position of the nonextremum path is tested to see if the desired intensity value is neither a 

maximum nor a minimum when compared with these 9 intensity values. If it is neither a 

minimum nor a maximum, its value must be able to be interpolated between the candidate 

pixel and one of its neighbors. If this is the case, a link is created to the candidate pixel. 

This allows the link to be theoretically off by almost one pixel, if the interpolated value is 

very close to the neighbor's value and not the candidate pixel's value, but not by more. 

This interpolation check is a fairly fast test to execute. If the path intensity is not an 

interpolant of the neighborhood around the candidate pixel, hill walking is performed. If 

the intensity of the nonextremum path is above (below) the intensity of the current region, 

the steepest path up (down) hill is traversed. Hill walking is terminated when a region 

is reached in which the nonextremum path intensity is an interpolant, or when a local 

extremum is reached. Hill walking .is an attractive approach because it is directly tied to 

the intensity information in the image. A technique which simply enlarges the surrounding 

search area until it includes an interpolating region does not take this intensity information 

into account. Such an enlarging scheme can cause the link to skip over all types of image 

features (e.g., peaks and ridges) and to pass through intensity surfaces which it should 

not pass through. 

A nonextremum link is not found if hill walking results in a local extremum being 

reached without reaching a neighborhood that has the original path intensity as an inter

polant. If no nonextremum link can be found using the above technique, the possibility 

of linking to an extremum path is examined. There are three types of extremum paths 

which must be checked: a regular extremum path, a path which is annihilating at the 

present level, and a path which is appearing at the present resolution level. The local area 

is searched for extremum paths. The intensity along the path at the higher and lower 



resolution levels is checked. H the desired intensity (original intensity) is between the in

tensities of the extremum path, the nonextremum path is considered to have annihilated 

by connecting up with the extremum. An appropriate link is then formed. 

A more difficult case to recognize is that of a near-extremum when the associ

ated extremum itself annihilates between the higher and lower resolution images. Non

infinitesimal blurring between images guarantees that the exact annihilation intensity of 

an extremum path is never known. This creates two problems. The first concerns the dif

ficulty in determining how to continue the extremum path (as a non extremum path) after 

it annihilates; it is not known which nonextremum path the extremum path should join. 

As mentioned in chapter 3, an extremum annihilates when it meets a saddle point. The 

intensity of the extremum and the saddle when they merge is the annihilation intensity of 

the extremum path. In the continuous case, there will always be a nonextremum path (at 

the annihilation intensity) which passes through the annihilation location and continues 

on. Since the exact annihilation intensity and position of the extremum is not known, it 

can never be certain which nonextremum path the extremum path joins. An educated 

guess must be made. The second problem follows from the first and affects near-extremum 

paths. Since the exact annihilation intensity of the extremum which the near-extrema are 

near is not known, there can be no accurate intensity range associated with the last link 

of the extremum path. Yet this range is precisely what near-extrema examine in order to 

make the decision for linkage to the extremum path. Incorrect links may result from an 

inaccurate intensity range assigned to the annihilating extremum path. 

It might be thought that it is possible to reduce some of the annihilation ambiguity 

by searching for the saddle point with which the extremum is annihilating. Hopefully this 

would put some bounds on the possible positions and intensities of the annihilation point. 

Unfortunately there will still be some inherent ambiguity. This is due to two factors. First, 

depending upon the image and the blurring rate, it may be difficult to identify which saddle 

point is the one with which the extremum annihilates. Second, even correct identification 

of the saddle point does not necessarily put a bound on the intensity range within which 

the annihilation intensity must fall. The intensity of the saddle point is not constrained 

to change monotonically as blurring occurs (unlike the intensity of an extremum). This 

means that knowing the saddle intensity at the stack level prior to annihilation does not 

yield any hard information pertaining to its annihilation intensity. Heuristics might be 

developed to use the saddle intensity and location prior to annihilation to help handle 

extremum path annihilation uncertainties. Theory provides no clearly appropriate way to 
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handle the situation. Due to these difficulties, saddle point information is not employed in 

the present stack implementation. Currently the link continuing an annihilating extremum 

is created by hill walking on the lower resolution image until reaching a region where the 

extremum intensity is an interpolant of the neighborhood pixel intensities. A link is created 

to a nonextremum pixel in this neighborhood. Near-extrema examine the intensity range 

between the extremum pixel's intensity and the intensity of the nonextremum pixel to 

which the extremum links. If the near-extremum has an intensity in this range, it is linked 

to the annihilating extremum. If a decision is made to link to an annihilating extremum 

path, the near-extremum is linked in a manner which incorporates it into the extremal 

region of the annihilating extremum, and not into the larger region within which the 

extremum will be nesting (the nonextremum path the extremum joins will be associated 

with this larger region). 

If, after considering these cases, a nonextremum link cannot be found, it could be 

assumed that this is due to overblurring between adjacent resolution levels of the region 

and not to sampling artifacts. This region of the image has changed so much from one 

blurring level to the next that it is no longer possible to correctly track isointensity paths. 

This implies that smaller blurring steps are needed in this region. One way in which I 

have tried to handle this is to calculate an image with resolution between that of the 

two that are currently being linked. This is done by blurring the higher resolution image 

with a kernel with a smaller variance than that used to create the lower resolution image. 

Linking is then attempted again. Kernels of smaller and smaller variance are applied to 

the higher resolution image until a satisfactory link to a. pixel on an intermediate level can 

be found. There is then an attempt to link this intermediate pixel to the lower resolution 

level that was initially calculated. If a link to this level still can't be found, reblurring 

with a. smaller kernel is again executed. The process is repeated until satisfactory Jinks 

all the way up to the initially desired final resolution level can be created. 

Reblurring can be a very time consuming task. H this has to be separately performed 

for each path which has difficulty linking, much time is lost. It is possible that a. fast 

examination of an image may be able to yield information about the best blurring rate. 

One would like a scheme which is intimately related to all the implementation decisions 

and the current image, not one which is the result of a. hypothetical model which may or 

may not apply for a particular image. This suggests a method based upon either results 

from previous blurring levels or some type of preliminary quick linking of the current level 

for predictive purposes. No successful scheme of this type has been found yet. 



There are other complications associated with reblurring schemes. Time can be 

saved by reblurring only a small piece of the image. If only a subset of the image is 

reblurred, the intermediate pixel values along the edges of this region will not accurately 

reflect the correct intermediate values (those which would exist if the entire image was 

reblurred). Paths which move a considerable distance during reblurring may move out 

of the region which is being accurately reblurred. Ridges with a gentle intensity change 

along their length tend to display this behavior. Pixels at one end of the ridge will move 

considerable distances to the other end under very slight blurring. The only way to be 

certain to avoid this problem is to reblur the entire image. Another problem occurs 

when nonstationary blurring is performed. Nonstationary blurring in two steps is not 

equivalent to a larger one step nonstationary blur (see chapter 5). There is no clear way 

to subdivide the blurring steps. In this instance, it is probably better not to attempt to 

exactly duplicate the image produced by the large blurring level, and just to back up to 

the higher resolution image and start reblurring by smaller amounts. The exact blurring 

schedule is not known precisely in any case. 

Due to these complications I have decided that it is best to omit reblurring and 

simply link the nonextremum path to the closest intensity pixel in the region to which it 

has hill walked, despite the fact that it is not an interpolant of this region. The intensity 

of the nonextremum path is also modified to be this new pixel's intensity (otherwise the 

same problem would also occur at all future stack levels). This clearly does not correctly 

mimic the continuous case. I have found that a judicious initial blurring scheme usually 

does not produce too many such cases and that the deviations from the theory have not 

been too visible. 

A subtle problem which must be addressed in the implementation of the linking 

strategy occurs when multiple nonextremum path pixels link up to the same pixel on a 

lower resolution image. It would introduce significant error into the nesting structure to 

consider all paths which link to one pixel to be the same path from there on. Each of 

these nonextremum paths possess their own "original intensity". These values may be 

quite different from each other. The pixels are all linking to the same pixel because, due 

to spatial quantization, their preferred interpolated positions are nearest it. Therefore, 

the ability is provided to allow several distinct paths to pass through one pixel, without 

the paths becoming merged. The paths may eventually separate, and possibly even end 

up in different extremal regions. 
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In addition to affecting the linking of nonextremum paths, discreteness also makes 

the linking of extremal paths more difficult. Several aspects of extremal path linking are 

affected. First, as mentioned above, annihilation intensity and position are difficult to 

determine. Second, in the continuous case extremal points always follow continuous paths 

and no other extremal paths exist in some finite sized neighborhood around them (unless 

the image is degenerate). The extremal path is therefore always immediately apparent. 

In the discrete case it is not always clear which of several nearby extrema in the higher 

resolution image should link to which extrema in the lower resolution image. If several 

extrema are in close proximity, when one of the extrema annihilates between the two levels 

it is not even always obvious which extremum was the one to annihilate. The situation 

can become even more complicated. In the continuous case the only way an extremal path 

eventually links up with a different extremal path is for one of them to first annihilate 

and become a nonextremum path. All a nonextremum path, it may then eventually join 

up with the other extremal path. But the blurring rate may be such that between two 

levels the annihilating extremum may well have annihilated into a nonextremum path 

which, by the next resolution level, should already link into one of the remaining extremal 

paths. Clearly, the smoother the image and slower the blurring process, the less severe 

this problem will be. But it has the potential to occur despite any precautions which may 

be taken. 

The current implementation handles these problems in several steps. First, all 

extrema which might conceivably link to an extremum in the lower resolution image are 

identified. From this list the extremum which is judged most likely to be on the same 

path is identified. This criterion basically matches an extremum at one level with the 

spatially closest one at the other level, assuming they are both of the same type {e.g., both 

maximums) and their intensities are related correctly {e.g., the intensity of a maximum 

must decrease towards lower resolution). This process is performed for each extremum. 

Extrema which do not end up linked to another extremum are passed to the second step, 

which tries to link them to a non extremum pixel. If the intensity of the extremum is found 

to be an interpolant among the nonextremum pixels in the region, it is linked to one of 

them. Otherwise it is assumed that the nonextremum path that it would have become has 

itself already joined an extremal path. Therefore the extremum is linked to an extremal 

path, but not as the main path. This is not a foolproof scheme, but due to the inherent 

theoretical ambiguity introduced by non-infinitesimal blurring, a better approach is not 

easily derivable. 
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Z Blurring 

The blurring process itself is complicated by the discreteness of the implementation. 

Instead of a continuous Gaussian kernel of infinite extent a discrete approximation of 

finite extent must be used. Spatial Gaussians with very small variance are difficult to 

represent accurately. Small variance spatial Gaussians have more high frequency content 

than large variance spatial Gaussians. Hence sampling into them can cause significant 

aliasing artifacts. Even if one first analytically convolves the Gaussian with a sine function 

(i.e., multiply the Gaussian by a low-pass box filter in the frequency domain to eliminate 

high frequencies which would alias during the sampling process) and then samples into it 

for the discrete representation, problems still remain. This is because even though aliasing 

artifacts no longer occur, a Gaussian is no longer being used. 

The practical implications of this are two-fold. First, since blurring is not performed 

with an exact Gaussian, the theory which Koenderink derived no longer precisely applies. 

His analysis is for Gaussian blurring. Conclusions that new intensity levels cannot be 

created do not necessarily apply when convolution is not with a Gaussian. Second, since 

Gaussians are no longer being used, filter kernels lose many of the nice properties they 

would otherwise have. The convolution of two digital representations of a Gaussian is no 

longer necessarily equivalent to a digital representation of a third Gaussian whose variance 

is the sum of the first two variances. In fact, it may not be the digital representation of 

any Gaussian. Therefore, subdivision of the blurring into many small steps makes it 

difficult to know exactly what sort of large scale blurring will be performed. The total 

sum of the variances is no longer a completely accurate guide to when an equivalent 

amount of blurring has occurred. H any reblurring of an intage is attempted due to poor 

ability to find links, this possible discrepancy between the sum of the variances and the 

true total blurring amount must be addressed. If it is critical for the reblurring to end 

in the exact lower resolution image initially attempted, then instead of blurring one of 

the new intermediate intages in an attempt to yield the lower resolution image initially 

tried, one must recreate the lower resolution intage via the exact blurring process initially 

used on the initial higher resolution image. That is, links should be attempted to the 

previously calculated lower resolution image instead of one calculated based upon one 

of the intermediate resolution images calculated during the reblurring phase. It is also 

desirable that none of the intermediate images created during the reblurring process are 

of lower resolution than the originally attempted low resolution intage. The intensity of 

several pixels can be tracked from intermediate level to intermediate level to help insure 



that overblurring does not occur. If the intensity of a pixel moves outside the intensity 

range represented by the intensity at the initial higher resolution image and the initial 

lower resolution image, overblurring may be occurring. 

At the other end of the spectrum are Gaussians with large spatial variance. The 

aliasing artifacts are not nearly so severe for these. However, to accurately represent 

them one would want samples aut to at least two standard deviations from the center. 

Such a large convolution matrix can lead to substantially longer convolution times with 

such a kernel. There is a crossover point where, at a certain size convolution matrix, it 

is faster to perform the blurring operation in the frequency domain. (If a nonstationary 

blurring scheme is used - see chapter 5, a frequency domain approach to blurring will 

not be possible.) Another way to speed up the convolution times is to only apply the 

convolution matrix to, say, alternate pixels. This amounts to sampling into the image at a 

lower rate. Doing so would normally be expected to create aliasing problems but, if large 

blurring steps are only desired after a significant amount of blurring has already occurred, 

most high frequency components in the image should already be gone. Therefore sampling 

alternate pixels for blurring purposes should cause a minimal amount of aliasing. These 

time considerations become even more important when working with three-dimensional 

images. The current implementation has the ability to perform the blurring in either the 

spatial or frequency domain. The blurring rate is limited so that a blurring step is never 

attempted which would necessitate too large a matrix to represent it (i.e., one which would 

take too long to apply). 

3 Blurring Rate 

The amount of blurring in each step needs to be controlled so that confusion in 

following extremal paths and associated contour levels across stack levels is avoided, while 

limiting the number of steps so that reasonable efficiency is achieved. When there are 

many extremal paths, this criterion may be interpreted to imply an inter-level blurring 

that is just large enough to ensure that real changes dominate changes due to arithmetic 

error. When there are few extremal paths, an inter-level blurring is chosen that produces 

faster progress toward annihilation of one of the paths. It is safe to perform faster blurring 

at this point since there are no longer any features left which will change quickly due to 

blurring. 

For resolution levels before the point where efficiency considerations lead to faster 

blurring (when only few extrema remain and they are widely separated), there is the need 



53 

to interpret the phrase "real changes dominate changes due to arithmetic error" more 

precisely. Koenderink [Koenderink, 1984] and Pizer [van Os, 1984] have both interpreted 

this to mean that the attenuation of the height of some basic function is a small integer 

multiple of the arithmetic error, but these two investigators have chosen a different basic 

function. Koenderink chose a sinusoid at the Nyquist frequency associated with the total 

amount of blurring at any given level, while Pizer chose a Gaussian which was a spike in 

the scene (but not the original image, which already is a blurred version of the scene) on 

a flat background, where the ratio of the height of the spike to the background has some 

value chosen as a parameter. 

Koenderink's choice leads to 

where 112 is the variance of the total blurring in the image at the present resolution level, 

0112 is the variance of the blurring to be applied to that image, {! is the bound on the 

relative error in the computer representation of intensity, and k is a small integer. This 

has the attractive property that the amount of additional blurring ( 0112) is proportional 

to the total blurring done to create this level. 

Pizer's choice leads to 

0112 k' {!(1 - .8~) 
-= 0 

112 1 - k' {!.85- ' a. 

where {!is as before, ~ is a small integer, .8 is the ratio of background to peak height in 

the scene, and 115 is the blurring due to imaging. Eventually the peak height relative to 

the background becomes so small that no blurring can reduce it by the criterion degree. 

At this point the algorithm for determining the blurring rate at each step is changed. For 

all lower resolution levels the blurring rate is set to allow a decrease in spatial sampling 

of 2 in each dimension, a common approach in multiresolution methods. To achieve this 

goal, 0112 must be proportional to 112 with a constant of proportionality of 3; the result is 

that the total blurring standard deviation increases by 2 at each step. Studies by van Os 

and Pizer [van Os, 1984] suggest that Pizer's choice leads to fewer levels of blurring with 



54 

no major loss in the quality of the result, when the blurring used in the very first step of 

the two approaches is the same. 

In practice, the blurring rate should be based upon the actual image. As mentioned 

above, one such approach, reblurring, has been tried. Exact blurring rates are not critical, 

as long as the rate is not significantly too fast. In particular, I have found that the 

blurring rate suggested by Pizer is reasonable until the criterion switches to using three 

times the current total variance as the variance of the kernel for each step. Such a large 

increase causes large changes in the image from level to level. This makes it difficult to 

follow isointensity and extremum paths and to determine the annihilation intensity for 

extremum paths. Instead I increase the standard deviation of the blurring kernel by ten 

percent far eaclt leveL This is a slightly faster rate than what Pizer's criterion yields 

before it swit:d:tes to using three times the total variance for the current variance. It is 

fairly easy to get a feel for the rate to blur certain classes of images (i.e., similar region 

sizes and noise characteristics) based upon experience with a few images. 

4 Spatial Sampling 

The sampling in space should, by normal sampling practice, decrease as you move 

up the h!tack, that is, as the amount of blurring increases. More precisely, the inter-pixel 

m,;t<l.nce sl:um!d he proportional to the standard deviation of the total amount of blurring 

due to imaging and !>luning to cre.ate the resolution level image. Using an argument based 

on the aliasing erro:r at the Nyquist irequency, Pi7-er [Pizer, 1983] suggests a proportionality 

constant of "PI'•oximately -x f-../1 -lnp. However, changing the spatial sampling at lowcer 

resolution levels in the stack complicates the extremum and isointensity path following 

processes. As a. r.,..uJt the spatial sampling in all resolution levels has been left the same 

as in the original image. .Part of the effieieucy of z.-;sampliug is still achieved since only 

extremum paths and iz.ointensity paths that have not yet joined an extremum path are 

followed to the next resolution level. 

5 Extrema Creation 

Several mechanisms can create extrema during blurring. One moch..msm was men

tioned earlier. If the neighborhood around a nonextremltll1 point decreases (increases} in 

intensity faster than the point itself does, t.he nonextremum point becomes a maximum 

(minimum). This cannot happen in the one-dimensional case under Gaussian blurring. In 

higher dimensions it can occur. 
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Another possible cause of extrema creation is the non-Morse nature of an original 

image. Plateaus in intensity oftentimes exist in the initial image. These plateaus are non

Morse and hence nongeneric. Any slight perturbation of the image (e.g., blurring) will 

cause these plateaus to break up. In the process many extrema will get created. The most 

common time this occurs is during the initial blurring of the image. This phenomenon 

is minimized by blurring the initial image slightly before analyzing it. This new image 

(which would be Morse if the blurring kernel was of infinite extent, and has fewer plateaus 

in the finite kernel case) is the one which the stack algorithm is applied to. The intensity 

values of the original image are still used for display purposes. In addition, ridges and 

other non-Morse features may get created if certain types of non-Gaussian blurring are 

employed (see chapter 5). Extrema creation will inevitably follow as soon as the non-Morse 

image is blurred. 

A third way extrema can be "created" is due to the spatial sampling. If an extremum 

is of very small spatial extent, the extremum may be missed completely at one resolution 

level and sampled into at another. 

Two precautions are taken in order to mitigate the consequences of extremum cre

ation. First, nonextremum paths are allowed to turn into (as opposed to link to) an 

extremum path. Second, extremum paths which appear but are not on any path which 

started in the original image plane are still tracked. Since the extremum exists, nonex

tremum paths may very well eventually need to link into this extremum. 

6 Artifacts Introduced by Discrete Implementation 

A single isolated pixel can link to a distant object in instances in which it would not 

be isolated in the spatially continuous case. This occurs because the region that would also 

link to the object, and keep this isolated pixel from becoming isolated, is not represented 

in any pixel. An example will make this clearer. Suppose we have a group of pixels with 

initial intensities as follows: 

100 100 100 

100 75 100 

50 50 50 
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Now suppose there is a nearby maximum with an initial intensity of 90 and an 

annihilation intensity of 60. Then the only pixel in this group which is between 60 and 90 

and thus may link to this maximum is the center one. It might do this because as lower 

resolution images are created an isointensity path to the maximum might appear. If this 

is the case, it will be the only pixel in this three by three neighborhood to link to this 

maximum. If the image was not discretely sampled, this pixel would not be an isolated 

region linking up to the maximum. Between the pixel at 100 on the center-right and the 

pixel at 50 on the bottom-right there would be a thin region at an intensity such that it 

would link to the same maximum as the center pixel. Since original intensities are kept 

for each nonextremum path and regions are always examined to determine if the original 

intensity is an interpolant, the path linking algorithm would have no problem correctly 

linking the isolated pixel (the one with intensity 75) to the correct extremum path. 



Chapter 5 

Extensions to the Stack- Embedding Schemes 

The basic stack algorithm does not always segment an image in the most preferred 

manner. It can take pixels that, visually, all belong to one region and link them to 

different extremum paths (and hence different regions). It may also join pixels together 

in one region that visually are very similar but semantically should not be joined (i.e., 

they are in different organs which happen to abut each other). The algorithm works well, 

but not always well enough. It therefore seems reasonable to try to adjust it in a way 

which would improve its performance. The aforementioned problem is one of accuracy 

in segmentation. An accurate tree description implies the existence of subtree structures 

whose leaves represent completely an area of the image which we subjectively determine 

to be meaningful, and only that region (e.g., it would include all pixels in the liver, and 

none not in the liver). 

The question is how the stack algorithm should be modified to produce a more 

accurate image segmentation. There are two modifications to the algorithm which come 

immediately to mind. One is to alter the way the original image is embedded in the 

multiresolution stack. A different embedding should cause different extremal regions to 

form. The second approach is to alter the linking criteria. Modification of the linking 

criteria has not been investigated but would be an area for promising research in the 

future. Of course, both of these modifications could be applied concurrently. 

Intuitively one would expect that modifying the shape of the blurring kernel to 

reflect the shapes of the regions of interest would yield better segmentation results than 

always performing stationary, isotropic Gaussian blurring. Any blurring scheme adopted 

should still be required not to create any new intensity levels as blurring proceeds. Koen

derink's main criterion for this is that ~~~+lvv = a 2(z, y, t)It at the extrema. Of course, the 

embedding should also remain smooth. This allows for considerable flexibility in choosing 

a blurring strategy. Let us first examine the effects of stationary, but anisotropic, blurring, 

and then those of nonstationary blurring. 
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1 Anisotropic Stationary Blurring 

It is fairly easy to show that for anisotropic Gaussians with u zu = 0, convolution 

of that Gaussian with a polynomial is equivalent to a rescaling of the coordinate axes, 

isotropic blurring, and then rescaling the coordinates back. This result has validity over a 

wider set of cases than might be originally thought. Since axes can always be chosen for any 

Gaussian so that "•u = 0, the result applies to any anisotropic convolution of a Gaussian 

with a polynomial. But even the restriction to polynomials is less constraining than 

it appears. Since we can approximate any continuous function arbitrarily closely with a 

polynomial [Kolmogorov and Fomin, 1970; p48], any image of interest can be represented 

by a polynomial. Thus, convolution of any continuous image with any anisotropic Gaussian 

can be represented equivalently as a coordinate scale change followed by isotropic blurring 

followed by a coordinate change back. But a smooth coordinate change cannot create 

or eliminate local extrema from an image. This means that the properties of isotropic 

Gaussian blurring of images discussed in chapter 3 (no creation of new intensity levels, 

theoretical ability of paths to leave their original extremal region) should apply to the 

anisotropic case also. It does not mean that the extremal regions formed are identical in 

the isotropic and anisotropic cases. 

A way to study the extremal regions formed is to investigate the analytical form 

of an anisotropic Gaussian convolved with the generic ": + tz + t + llj- polynomial. A 

two-dimensional Gaussian is represented by 

where 

and 

Examination of the simpler case of a Gaussian oriented along one of the coordinate axes 

yields the separable case of 

1 -·' 1 ::;5. 
G(z,y) = (v'2if e'-r)(vrz;r: e'"• ). 

2.-u. 2.-"u 

In this case a convolution yields 
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Similar results are obtained from b,.y"' * G(x, y). For cx"y"' • G(x, y) the result is just 

c x (x" • G) x (y"' • G). Using these results, we find that 

xs 
(6+t •• x+tou +y2/2) •G(x,y) 

is equal to 

( 1) 

Let us now investigate how this new formula changes which pixels are associated 

with the extremal region as compared with those associated in the isotropic case. Nonex

tremum pixels link to form nonextremum paths by following an isointensity path through 

resolution space. The vector field, ii, defining the direction of the isointensity paths 

changes because of differences between equation 1 and that for the isotropic case. Re

call that the defining equation for ii is (-Itl., -Itiu, I;+ I;). The isotropic case of 

I(x,y,t) == x8/6 + tx + t + y2/2 produced I. = x2/2 + t, Iu = y, and It =X+ 1. 

Before calculating the equivalent quantities in the anisotropic case, a decision must be 

made as to what the "time" parameter is in this case. The coefficient for the x term in 

equation 1 changes at a different rate than the one for the low order term (x0 term). For 

the simple case when .,..(image;) = cc7u(image;) for all images, the choice between ~ 
and ~ as the time parameter is not significant since the rates are related by a constant. 

This is the case we will analyze. Let the "time" parameter be chosen as t •• + .,.;/2 with 

.,.. = CO"u for all images. In this case I. and Iu are the same as for the isotropic case but 

now It = x + l/c2 • This has several implications. The first is that the point which does 

not change intensity over time (fixed point) is different from the isotropic case. Before 

it was at x = -1, y = 0 (because c was equal to one and the solution is for that x for 

which It= 0). Now the fixed point is at x = -l/c2 • All points with x coordinate less 

than the fixed point decrease in intensity continuously and all points with x coordinate 

greater than the fixed point increase in intensity continuously. The second implication 

is that the annihilation intensity has also changed. This can be seen as follows. Since 

annihilation still takes place at the origin, we can see from equation 1 that the annihila

tion intensity is tou + .,.;(t.,.,.)/2, where tann is t at the annihilation time. A simpler form 

for this expression is found by rewriting .,.;(tann)/2. We know that at annihilation time 

t = 0. Therefore, t0 z + .,.;(tann)/2 = 0, i.e . .,.;(tann) = -2t0 z. But since 17z(t) = CO"y(t), 

this is the same as .,.;(tann) = -;l". Substituting in the previous expression for .,.;(tann) 

gives an annihilation intensity of toy- t •• / c2 • This can be simplified even further if we let 
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toy = to• = to, which was done for the isotropic case. The annihilation intensity becomes 

t 0 (1- 1/c2). Thus, the annihilation intensity is no longer zero. 

Changes in v cause changes in the isointensity paths. Since I. and Iy have not 

changed, the third or time component (I; +I:) of vis as before. Also the ratio of the 

x and y components to each other remains the same. Thus the orientation of the x, y 

component of v has not changed. At first this seems to imply that the paths have not 

changed. This contradicts our intuitive belief that changes in the relative amounts of 

blurring in the x and y directions should cause the isointensity paths to move more in one 

direction than the other. We would expect I. to grow relative to Iv ifu. = cuv for c > 1. 

Our intuition has not failed us, but the mathematics which expresses the change in path 

direction is more subtle than expected. Even though the x and y components have not 

changed relative to each other, they have changed relative to the time component, since 

It has changed from the isotropic case and the time component does not contain It as a 

factor. This means that the path taken will not be the same as in the isotropic case. For a 

given point in an image, both a path for the isotropic case and a path for the anisotropic 

case will start off in the same (x, y) direction, but they will climb in the resolution direction 

at different rates. So, for example, after some 8t the two paths will be at different ( x, y) 

positions in the image - even though they started out at the same position. From now on 

their (x, y) components don't even agree since the intensity distribution about each point 

will be different. 

Modification of the simulation program (see chapter 3) to perform anisotropic con

volutions has permitted simulation of isointensity paths for anisotropic Gaussian blurring. 

Comparisons of Figure 1 (anisotropic paths) to Figure 2 (isotropic paths) clearly show 

that the isointensity paths are able to move more quickly in the y direction when c < 1. 

In addition, paths which before headed away from the minimum (which has x > 0 and 

y = 0 and moves towards x = 0 as time progresses) now head towards it. The extremal 

region associated with the minimum is clearly different in the anisotropic case from the 

isotropic blurring case. 

Analysis of the more complicated case of stationary, anisotropic blurring when the 

ratio c(image;) of 170 to uy is not held constant yields similar conclusions about the ability 

to change extremal regions. The following results are easy to prove for such blurring 

applied to the canonical formula x3 /6 + tx + t + y2 /2. The positions of the two critical 

points remain symmetric with respect to each other; that is, a plot of both the saddle and 

minimum positions versus time will have the time axis as a symmetry axis. The specific 



Figure 1: lsointensity paths under anisotropic blurring. Compare these paths with 
those in Figure 2. Note that many paths which do not reach the x axis in the 
isotropic case do reach it (and join the extremum which is on the axis) in this case. 
The abscissa (x) ranges from -2 to 4. the ordinate (y) from -3 to 3. 
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plots are not, however, the same as in the isotropic and constant c(image;) anisotropic 

cases. There will be no point along the x axis with fixed intensity (since "c" is now a 

function of time) for all time. The saddle may follow a complex series of increases and 

decreases in intensity as blurring proceeds, depending upon the function c. Nevertheless, 

it can still be shown that the intensity of the saddle and the intensity of the extremum 

will never cross each other. This last result agrees with physical intuition. For instance, a 

saddle (pass) between two peaks clearly must always be lower in intensity than either of 

the peaks it is separating. These results are not very surprising. 

These results may all also apply in the stationary isotropic case when the domain 

of investigation shifts from the canonical description (which is a local description induced 
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Figure 2: lsointensity paths under isotropic blurring. The abscissa (x) ranges from 
-2 to 4. the ordinate (y) from -3 to 3. 
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from the initial image via suitable coordinate transformations) to more global untrans

formed descriptions of the blurring phenomenon. In other words, all extremum annihi

lations do not necessarily behave quantitatively the same as the canonical x 8 /6 + tx + t 
case. However, after suitable coordinate transformations (based upon equivalence rela

tionships), all the annihilations will be quantitatively identical to the canonical case (at 

least for some time close to the annihilation time). If any particular extremum annihi

lation is studied without transforming to the canonical description, the intensity of the 

saddle may increase and decrease as in the anisotropic canonical case when c is not held 

constant. 

Figure 3 shows the effect of isotropic and anisotropic blurring schemes on a synthetic 

image of ellipses. This demonstrates that segmentation results vary depending upon the 

orientation of the Gaussian kernel used to blur the image. Convolution of the image 



Figure 3: Original image (left) and anisotropic segmentation of ellipses (right). All 
pieces of each ellipse are found (but not joined together). only some are displayed 
here. 
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with an isotropic Gaussian finds each ellipse as an extremal region. When this image is 

convolved with a Gaussian which has four times the standard deviation in the y direction 

(up-down axie on the page) as in the x direction, each ellipse is not found as a single 

extremal region. As one would expect, the results are worse since the ellipses are oriented 

at a 90 degree angle to the Gaussian kernel. The algorithm is robust enough not to merge 

pixels from several neighboring ellipses into one region, but it also does not link all the 

pixels in one ellipse into one region. Each ellipse is represented by several regions, each of 

which independently links up to the last remaining extremum (instead of to each other). 

The second image in Figure 3 shows several of these regions. Despite this fragmentation 

of ellipses into multiple regions, the post-processing discussed in chapter 6 ("displaying a 

union of subtrees") would allow us to view each ellipse in its entirety. 

2 Nonstationary Blurring 

Spatially variant blurring based upon local image content should improve the cor

respondence between the extremal regions and the semantically meaningful regions in the 

image. This statement is motivated by the human visual model of Cohen and Grossberg 

[Cohen and Grossberg, 1984], which indicates that object perception is performed via an 

intensity diffusion process (i.e., blurring) which is moderated by edge strength measures 

in the image (i.e., it is nonstationary). The precise way that local image content should 

guide nonstationary blurring has not yet been resolved. Below I discuss the results of a 

preliminary investigation into various aspects of nonstationary blurring. 



2.1 Mathematics of Nonstationary Blurring 

Nonstationary blurring is multiplication and integration of an image with a kernel 

whose shape varies depending upon its current position. In one dimension this is repre

sented as g(x) = f
10 

/(JJ)h(x- JJ; x) dJJ. Here h(x- JJ; x) depends not only on x- JJ, but also 

on x. Unlike the anisotropic stationary case, nonstationary blurring is not equivalent to a 

simpler blurring scheme applied in some other coordinate system. This can be shown for 

a simple case as follows. Imagine a one-dimensional case where the nonstationary blurring 

of I(x) is with a Gaussian with u1 for all x < 0 and with a Gaussian with u2 = ku1 for all 

x 2: 0. If there is a coordinate system in which an equivalent stationary blurring can be 

performed, it must be a rescaling of the positive coordinate axis by a factor of 1/k. This 

is clear since in the limit as u1 and u2 go to zero, the image values at positive and negative 

x coordinates interact with each other less and less and therefore the two parts of the x 

axis can be treated separately. To show that the nonstationary blurring is not equivalent 

to stationary blurring, it is enough to show that at least one point does not have the same 

intensity after the nonstationary blurring as it does when stationary blurring is performed 

in the rescaled coordinate system. 

Let us examine the intensity at a specific point x1 > 0. Does its intensity after 

convolution with a Gaussian with u2 equal its intensity after convolution with a Gaussian 

with u1 and requisite coordinate transformations? In other words, does 

1 Joo I(x)e-(•-•d'/:W~ dx ~ 
J2;ru2 -oo 

1 Jo I(x)e-(•-•,fk)'f:w: dx + 1 100 

I(xk)e-(•-•tfk)'f:Wl dx (2) 
J2;ru1 -oo J2,ru1 o 

The left hand side of this equation represents the results of nonstationary blurring. It 

results from the convolution of a Gaussian with a standard deviation of u 2 with the image 

(convolution with a Gaussian with standard deviation u1 occurs for points x < 0, but that 

need not concern us here). For a specific point this is just the integral of the product of a 

Gaussian centered at that point with the image itself. The right hand side of the equation 

represents the results at point x1 of convolving a rescaled image with a Gaussian with 

standard deviation of u1 (convolution with a Gaussian of this standard deviation occurs 

for all points). We have rescaled the positive half of the x-axis by the factor 1/k (the ratio 

of the two a's). This rescaling moves the point of interest from x 1 to x 1jk. Therefore, 

the result of the convolution at this point is again just the integral of the product of a 

Gaussian (with u = u1) centered at xt/k with the rescaled image. This is broken up into 
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two parts. The image for x < 0 has not been rescaled. Its contribution to the integral is 

the first term on the right hand side of equation 2. The second term is the contribution 

from the rescaled part of the image. It is identical to the first except that I(xk) is used 

instead of I(x). I(xk) is the intensity of the rescaled image at x; this can be understood 

as follows. Since the coordinate system was scaled by 1/k, a point in the rescaled image 

at xjk has the intensity of the point in the original image at x. Therefore a point in the 

rescaled image at x has the intensity of the point from the original image at xk. Now 

rewrite the right hand side by performing the variable substitution z = xk. This yields 

By substituting <72 for ku1 this can be rewritten as 

Since z is a dummy variable of integration, the second term is now identical to the left 

hand side of equation number 2, except for the limits of integration. Subtracting this from 

both sides yields 

1 1° I(x)e-(•-•,)• /2al dx Jo 1 1° I(z/k)e-(•-•,)• /2ol dz. 
,!2iru2 - oo v'2ifu2 - oo 

Since, in general, I f(x)g(x) dx #-I f(xjk)g(x) dx, nonstationary blurring is not the same 

as stationary blurring applied to a transformed coordinate system. 

One might also wonder whether nonstationary blurring can be considered as a non

planar slice through an image-resolution space generated via stationary blurring. In other 

words, can each output pixel be considered to be a Gaussian (centered at the output pixel) 

weighted average of the surrounding input pixels, 'Mth each Gaussian possibly having a 

different variance? Certainly for any nonstationary, isotropic Gaussian blurring applied 

once to an image the answer is yes. This is clear since the conditions set forth in the 

question precisely describe the definition of a nonstationary blur of an image. The answer 

is quite different if one is concerned about whether the output of several successive non

stationary blurrings can be considered as a nonplanar slice through an image-resolution 

space produced by stationary blurring. The most important fact for analyzing this situa

tion is that two successive nonstationary blurrings with Gaussian kernels is, in general, not 

equivalent to any one nonstationary blurring with any other Gaussian kernel. This can 
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be demonstrated quite simply in one dimension. Suppose the two separate nonstationary 

blurrings are 9t(x) = f~f(p)h(x- p;x)dp and g2(x) = f~gi(v)h(x-v;x)dv. Then, 

92(x) = 1i f(p)h(v- p;v)dp h(x -v;x)dv 

= i f(p)[1 h(v- p; v)h(x- v; x) dv] dp 

Therefore the two successive blurrings are equivalent to one convolution with the kernel 

given in brackets. This function is not a Gaussian even when h() is. 

2.2 Blurring Strategies 

There is no simple relationship between embeddings produced by nonstationary 

blurring schemes and stationary blurring schemes. Nevertheless, many nonstationary 

schemes can satisfy the causality and smooth embedding constraints. Which nonsta

tionary approach should be used to best insure a close relationship between extremal 

regions produced and the semantic regions present in an image? Let us first examine the 

unrealistic, but simple and hopefully enlightening, case when exact object locations and 

boundaries are known. The problem is to determine the best way to use this information 

to guide the nonstationary blurring. Any blurring scheme must address several questions. 

The scheme must not only be able to decide how much to blur inside an object, but also 

how much to blur between objects. A related topic is how to switch between objects of 

different scales. A pixel is in many objects, each of which is a subobject of a larger object. 

How does one decide which of these object dimensions to use as a guide for blurring? 

Several approaches seem reasonable at first glance. They are discussed below. 

1. We want to make it more difficult for isointensity paths to cross out of one object 

and into another. One way to do this is to «slow time down" for paths near the 

boundaries. In other words, blur at a slower rate near the boundaries of regions and 

at a higher rate near the center. Since the rate of blurring is slower along the edge, 

it will take longer for a path which would normally escape to do so. The amount of 

blur at the center may be based upon the size of the region. 

A significant problem with this approach is that the local extrema (due to noise, 

perhaps) which exist near the boundaries of regions tend to remain for a long time, 

since minimal blurring is performed near the boundaries. The center of the region 

becomes smooth with one extremum while the region remains ringed with other 

extrema. 
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2. A different line of reasoning leads to opposite conclusions as to what to do. Pixels 

near the edge of a region must move the most before they link up with the extremum 

(on the average, assuming the extremum is near the center). Therefore edge regions 

should be blurred the fastest so that all pixels in the region reach the extremum in 

approximately the same time frame. 

This would speed up the entire stack process, but it is not clear it would improve 

the correspondence of extremal regions with meaningful objects. It may even create 

more problems, since stronger blurring near the edges of a region will tend to cause 

it to merge with neighboring regions quicker. 

3. A third approach is to move away from Gaussian blurring by forcing those parts 

of the filter kernel falling outside the region to be zero. In other words, use a 

"Gaussian" kernel but set the contribution to the convolution equal to zero for any 

part of the kernel which falls outside the region of the pixel it is centered at. This 

allows a rapid rate of blurring near the edges, alleviating the problem with the first 

approach above, while still minimizing the probability that a isointensity path will 

leave the specified region, thus handling the problem with the second technique. 

The way to view this approach inside the diffusion framework is to think of each 

region (0) as completely isolated (this isolation might change at a later point in 

time when the decision is made to blur based upon a larger, containing region or if 

the paradigm is changed to allow some blurring across borders). The total intensity 

within a region will not change. Eventually the region will be of one intensity, 

its initial average intensity. This form of blurring is equivalent to changing the 

boundary conditions on the diffusion equation to read ~~ (x, y, t) = 0; (x, y) E 

an, t ?; 0, where M, denotes the directional derivative of I in the direction of 

the normal n to ao. That is, the border is insulated so no intensity flows across 

it. If the initial boundary intensity of the region is also held fixed, the solution 

to such a diffusion (heat) equation problem is precisely that which we used on the 

image as a whole when performing the standard stationary, isotropic blurring. It is 

just blurring with a Gaussian kernel inside the boundary while setting contributions 

from outside the region to zero. 

This approach presents its own problems. Since it uses a very precise cutoff at 

the boundary, once it is applied to applications in which the region boundaries 

are not precisely known it may be very unforgiving of errors. Also, it tends to 
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create images with sharp changes in intensity across the region boundaries, and 

very uniform intensity distributions inside the regions. These are very non-Morse 

images, and hence the differential topology theorems do not apply to these. On 

a specific practical note, when blurring is finally allowed across a boundary, many 

extrema will be created because the ridge of constant intensity along the boundary 

will get worn away unevenly, creating pits and peaks. However, realistically the 

region boundary would not be precisely known. Therefore, the insulation of the 

region would be partial and consequently extrema creation would be minimized. 



Chapter 6 

Use of the Stack Program 

1 Implementation Performance 

The implementation of the stack and display algorithms has not been optimized for 

speed of execution or minimization of space requirements. Some indications of the speed 

and size of the implementation are nevertheless in order. The stack program has been 

applied to about 15 two-dimensional CT images of the upper abdomen. Approximately 

five one-dimensional and three-dimensional images have been analyzed also. To provide 

faster results for testing purposes, most of the CT images have been reduced from an 

initial size of 512 by 512 pixels to 64 by 64 pixels. Running on a moderately loaded VAX 

780, it takes approximately 30 to 45 seconds to create each level in the stack, together 

with all of its associated data structures. The 64 by 64 images tend to need about 30 

levels of blurring before only one extremum remains. Thus the program runs about 20 

minutes. The image description tree created is approximately 250 kbytes. 

All of the above numbers scale approximately linearly with image area. Of course, 

an image with a lot of noise or very many objects will tend to take longer and create a 

larger data structure. Hit is known in advance that the structures of interest in an image 

are of small scale, the processing may be terminated before only one extremum remains, 

saving time. 

The table below lists typical subroutine execution times when applied to a 128 by 

128 pixel image. 

%time"' total sees #of calls msfcall name 
42.2 6,695.52 59 113,483.40 blur image 
18.8 9,675.96 1 2,980.44 calc. invariant image 
13.9 11,876.58 1,294,414 varies linking overhead 
8.1 13,169.04 59 21,906.16 diagnostics 
6.4 14,182.78 592,108 1.71 link nonextrema 
4.2 14,848.05 60 11,157.89 find extrema 
1.7 15,117.32 65,248 4.12 link extrema 
0.1 15,135.14 5,273 3.38 annihilate extrema 

Not all routines are shown, so times may not add to 100% 



70 

Note that the vast bulk of the time is spent performing the blurring. A large percentage 

of time is also spent calculating the image that is invariant under Gaussian blurring and 

has the same boundary values as the initial image. This algorithm was chosen for ease 

of implementation without regard to execution speed. I believe that the stack program 

execution time can be decreased by at least a third to a half without the use of any special 

hardware. 

Typical relative frequencies of link types and typical distances for several blurring 

levels are shown below (not all link types are shown so numbers may not add exactly). 

Level 5 of 38 levels for a 64 by 64 image 
link type #of links avg dist max dist 

nonextremum to extremum 48-1% 1.29 2.00 
extremum continuing 456- 11% 0.01 2.00 
extremum annihilating 1-0% 2.00 2.00 
nonextr. to annihilating extr. 2-0% 1.50 2.00 
nonextremum continuing 3,477 - 86% 0.01 3.00 
total of all links 4,001 - 100'i1> 0.03 3.00 

Level 15 of 38 levels for a 64 by 64 image 
link type #of links avg dist max dist 

nonextremum to extremum 147-4% 3.22 11.00 
extremum continuing 170 - 5'i1> 0.12 3.00 
extremum annihilating 6-0% 4.83 9.00 
nonextr. to appearing extr. 24-0% 1.25 2.00 
nonextremum continuing 2,555 - 86'i1> 0.42 9.00 
total of all links 2,946- 100% 0.56 11.00 

Level 35 of 38 levels for a 64 by 64 image 
link type #of links avg dist max dist 

nonextremum to extremum 17 - O'ill 4.24 7.00 
extremum continuing 129• - 6'7o 0.01 1.00 
extremum annihilating 0-0% 0.00 0.00 
nonextr. to appearing extr. 0-0% 0.00 0.00 
nonextremum continuing 1,821 - 92'i1> 0.36 5.00 
total of all links 1,967 - 100% 0.37 7.00 
All but one extremum are along the edge and w11l not annihilate 
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Figure 1: Average link distances between resolution levels. The standard deviation 
of the convolution kernel is increased by 10% starting at level 16 (see chapter 4). 
The abscissa is the stack resolution level and ranges from 0 to 40. The ordinate is 
the average link distance in pixels from 0 to 0.8 . 
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The path link types maintain approximately the same relative frequencies through a wide 

resolution range. Average link distances for nonextremum paths of less than one pixel 

indicate that the blurring rate is slow enough to minimize errors in following isointensity 

paths. 

Typical average and maximum link distances as a function of resolution level are 

shown in Figure 1 and Figure 2. The link distances are averaged over all link types. 

Figure 3 is a graph of the number of paths remaining at each level in the stack (this 

number decreases as isointensity paths link up to extremum paths). 

2 Interactive Display Based on the Image Description Tree 

I have investigated several different interaction methods with the data structure pro

duced by the stack algorithm. The display techniques developed permit easy specification 

of the region of interest to be examined and also yield insight into why certain subregions 

nest the way they do. The display program initially reads in the image description tree 

from a file produced by the stack algorithm. A user can then interactively control which 

regions in the image (subtrees in the data structure) are displayed. Several methods for 

specifying these regions are provided. These methods are discussed at length below. 



Figure 2: Maximum link distances between resolution levels. The standard de
viation of the convolution kernel is increased by 10% starting at level 16 (see 
chapter 4). The abscissa is the stack resolution level and ranges from 0 to 40. The 
ordinate is the maximum link distance in pixels from 0 to 20. 

72 

The image is displayed on an Adage 3000 raster graphics system. A vector represen

tation of the tree of extremum paths (along with the nonextremum paths they turn into) 

can be displayed simultaneously with the raster image. The vector image is displayed in 

three dimensions (x, y, t) on an Evans and Sutherland Picture System 300. This is a color 

vector graphics system. Paths of minima and maxima are displayed in different colors 

(see Figure 4). This tree can be interactively rotated using knobs to specify the rotation 

about each axis. This display gives the user a very good feel for the way the extrema. in 

the image have moved and merged together during the blurring process. This tree can be 

interrogated by picking any branch using a light pen. The extremal region associated with 

this branch will then be displayed on the raster display device. This has turned out to be 

a. very powerful tool for visualizing the relationship between the tree structure produced 

and the original image. Frequently a major organ can be displayed quickly by using a light 

pen to choose the major tree branch (i.e., a branch that exists until very low resolution 

levels) in the location of interest. A visual examination of the tree structure sometimes 

focuses attention on high interest areas. For instance, noting that the extremum path 

representing the stomach region has a smaller branch (subregion) associated with it can 

focus attention on that subregion, which may be a tumorous mass. 
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Figure 3: The number of paths remaining in each level. The standard deviation of 
the convolution kernel is increased by 10% starting at leve116 (see chapter 4). The 
abscissa is the stack resolution level and ranges from 0 to 40. The ordinate is the 
number of paths remaining and ranges from 0 to 5000 (this data is from a 64 by 64 
pixel image). 
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A different visualization of the tree can be presented on the vector display. This 

version represents each region by a cube whose side area is proportional to the area of the 

region represented. Each cube is displayed at a depth position related to the resolution 

level at which its extremum path annihilated, and at the (z,y) position of the annihilation 

point. A region which is nested inside another region is shown as a cube connected by a 

line (branch) to the other cube (which will be larger and at a greater depth). This tree 

representation shows the nesting relationship between regions very clearly. Figure 5 is an 

example of this type of display. 

The tree data structure can be examined more globally via various A/D. devices. 

Two sliders are used to specify a scale range of objects which should be displayed. The 

two sliders specify the low and high scale limits of the range of interest. The scale of a 

region is defined to be the blurring level at which its associated extremum path annihilates. 

All extremum paths which annihilate within the scale range specified by the sliders have 

their associated extremal regions displayed on the raster display. This method of choosing 

regions has been very useful. Organs in the CT images can frequently all be chosen 

simultaneously simply by setting the sliders to display only regions of large scale. The 



Figure 4: Paths of maxima and minima. Roughly half of these paths are minima 
and half maxima. The actual display is in color: this clearly differentiates between 
the two types. 
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length of time it takes to display the specified regions depends upon the number of regions 

specified. Typical display times range from about two to five seconds. 

Similarly, two other sliders specify the intensity range of objects to be displayed. 

Even if the annihilation level of an extremum path lies within the specified scale range, it 

is only displayed if the average intensity of its associated region lies within the intensity 

window selected by the intensity sliders. Intensity windowing is useful when the regions of 

interest (or regions of disinterest) are most easily distinguished based upon their intensity. 

This would be used, for example, to select bright objects like the spinal column in the 

abdominal CT images or eliminate dark regions such as bowel gas. The display of extremal 

regions can also be constrained based upon the (:r, y) position of the annihilation point 
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Figure 5: Extremal regions represented as cubes. The actual display is in color. 

of the associated extremum path. Four knobs are used to specify the range of spatial 

locations (maximum and minimum :z: and !I coordinates) within which extremum paths 

must annihilate in order to be candidates for display. The chosen extremum paths can 

also be highlighted on the Picture System 300 display for better visualization. Intensity 

and spatial windowing have not been used extensively. It is not yet clear how useful they 

will be in a production (e.g., clinical) setting. 

There is a difficulty in displaying some of the lowest resolution (largest scale) struc

tures in an image. This is easiest to explain by use of an example. The spinal column and 

its associated musculature are oftentimes the largest object in an abdominal CT scan. In 

this case an intensity maximum in the spinal column will become the extremum path in 

the image which lasts the longest under blurring. If this extremum path is picked with the 



Figure 6. Left: Original image. Right: Spinal region. A 128 by 128 pixel noisy 
image created by adding Gaussian white noise with a mean of 0 and a standard 
deviation of 30 added to a CT image (which ranged in intensity from 0 to 1023). 
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light pen and its associated extremal region is displayed, the entire image appears. This is 

so because all pixels in the image eventually link up to the last remaining extremum path. 

There is no subtree which explicitly represents just the spinal column region. I have at

tempted to deal with this problem by providing more flexibility in the display mechanism. 

Entire regions associated with an extremum path do not have to be displayed. Subsections 

can be specified. Instead of followmg down all links from an extremum path, the user can 

specify that only links which join up before a certain blurring level be traversed. By pick

ing this level low enough (high enough resolution), much of the image can be eliminated 

from the display. This often allows the isolation of the region of interest (e.g., the spinal 

column). The spinal region shown in Figure 6 was specified in this manner (Figure 9 is a 

schematic of organ positions in an abdominal CT scan). This method works since the true 

object of interest is usually spatially the closest to the extremum which forms the longest 

extremum path. As such, pixels in this region usually join the extremum path sooner than 

the other pixels in the image. Alternatively, if a resolution level is specified which is not as 

high as one used for the spinal region, the entire body in the CT image may be displayed 

without any of the surrounding image (e.g., the table the person is resting on). 

Instead of displaying regions, the user has the option of displaying edges of regions 

superimposed over the original image. This is often useful since the interpretation of an 

isolated region displayed out of context can be difficult. Superimposing the edge of a region 
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over the original image takes slightly more time than simply calculating the region itself. 

The time taken is highly variable depending upon the number of objects in the image, 

the number of objects specified to be displayed, and system load. The slower update rate 

does not significantly hamper interaction unless a large number of regions is specified. 

Perhaps the most natural region specification method is via a cursor on the raster 

graphics console. By moving the puck on a data tablet, the user can position the cursor 

over a pixel in a region of interest (perhaps a pixel in the kidney). When a button on the 

puck is depressed, the smallest extremal region this pixel is in is displayed. Upon display, 

information about the region is shown on the user's terminal. This includes region size 

in pixels and average intensity of pixels in the region. The next larger extremal region is 

displayed when another button is pressed. Each successively larger region can be displayed 

until the root node of the entire tree is reached. This display method is the easiest to use, 

and will probably dovetail well with the future post-processing techniques. 

3 Future Post-Processing Techniques 

The difficulties with the algorithm as it stands now are: 

1. A region of interest might not be precisely represented by an extremal region. 

2. A region of interest does not always show up as one explicit subtree in the tree 

structure. It may be two subtrees with no common root except the last extremum. 

An example of the first case might be an extremal region which includes the liver, 

but also includes part of the chest wall near the liver (see Figure 7). An example of the 

second type might be the kidney. Due to its shape, the two halves of the kidney may be 

represented as separate extremal regions. If the kidney is far enough from other organs, 

these two region will join together (with one extremum path remaining) and be represented 

as one subtree. But proximity to the liver may cause each subtree to separately link to 

the liver extremum path instead of to each other (see Figure 8). If this is the case, there 

is no single subtree which will display just the kidney. 

One way of dealing with these problems is to modify the basic stack algorithm. Var

ious different blurring strategies based upon a priori and edge information seem promising 

(see chapter 5). An interactive post-processing step may be a simpler way to handle these 

difficulties. Various post-processing capabilities might be provided. A few of the most 

promising ones are discussed below. 



Figure 7. Left: Original image. Right: Segmented image. The liver and part of· 
the chest wall are on the left side of the segmented image. The kidneys. intestine. 
pancreas. and a few blood vessels are also shown. A 128 by 128 pixel image. 

Figure 8: Left: Original image. Right: The liver and a piece of the kidney. The 
other piece of the kidney links to the liver at a higher level and is not shown. A 64 
by 64 pixel image. 

18 

Difficulties presented by the first case listed above could be mitigated by use of a 

simple pixel editor. This editor would allow use of the cursor to delete or add pixels to a 

region displayed on the console. If the region displayed is accurate except for a few pixels, 

it would be a simple matter to delete or add those pixels to the display. If desired, it 
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would &lao be simple to actually change the corresponding links in the data structure so 

that the data structure remains in accord with the display . 

Problems arising from the second case {multiple disconnected subtrees) could be 

minimized by building a simple graphical editor for the tree data structure which is dis

played on the Picture System 300. Using the light pen as a dragging device, the branch 

representing one of the kidney subtrees could be picked and dragged over to the other 

subtree and graphically joined to it. This graphical operation could then be used to guide 

a similar change in the actual data structure. Alternatively, disconnected subtrees can 

be dealt with by finding connected regions in the displayed image (as opposed to in the 

data structure). Even if the kidney is represented as two subregions which do not link to 

each other in any way, the capability currently exists to display both subregions simul

taneoualy. This i.a done by picking each subregion separately while specifying that the 

previously picked region remain on the display. Once the entire kidney is displayed , it 

would be ·a simple matter to automatically find all the pixels which are in the one con

nected region representing the kidney. AB long as the pixels in the region of interest can 

be displayed on the console as a connected, isolated region, that region could be easily be 

defined to be one object and information about it calculated. 

4 Results 

The results obtained so far have been encouraging. Many correct image segmenta.

tions have been produced. Presented below are examples from several different images; 

the images on the left side of each photograph are the originals. CT scans are oriented so 

that the view presented is as if the viewer is standing at the foot of a table that the patient 

is lying on (face up), looking toward the patient 's head. Thus the left side of the image 

is the right side of the person and the spinal column is toward, the bottom of the image. 

High density objects {such as bone) show up as higher intensity (whiter) regions in the 

image. A schematic of the organ locations is shown in Figure 9 (from [Lee et al., 19831). 

Which organs are actually present in a particular CT slice, and their size, depends upon 

the axial position of the slice and whether disease is present. 



Figure 9: An anatomical model. RK-right kidney. LK-Ieft kidney. L-liver. ST
stomach . P-pancreas . DJ-duodenojejunal flexure (part of the intestine) . The white 
object in lower center is the spinal column. The cross-hatched region above it is the 
aorta. This figure is from Lee [Lee et al .. 1983]. 
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Figure 10: The kidneys . liver. and some blood vessels (the aorta and inferior vena 
cava. running perpendicular to the image plane near the center of the image) . The 
dark region near the kidney and the liver is a part of the intestine, as is the region 
near the left kidney (right side of image). The region extending out from the top of 
the left kidney is a large tumor. as is the very small region extending out from the 
bottom right part of the right kidney. A 128 by 128 pixel image . 

Figure 11: The intestines (white region running horizontally along the top). liver. 
kidneys . and spinal region. The pancreas is the triangular shaped region near the 
right kidney (left side of image). The image on the right does not have the dark 
regions interior to the body displayed (this is much clearer on the color display 
which is actually used). A 64 by 64 pixel image. 
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Figure 12: The kidneys. liver. spinal region, aorta. inferior vena cava. and pancreas. 
The two small light regions near the top of the pancreas are the superior mesenteric 
vein and artery. A 128 by 128 pixel image. 

Figure 13: The kidneys, liver. aorta and inferior vena cava. This image is the image 
in Figure 6.12 with Gaussian white noise of mean 0 and standard deviation 30 
added to it. The original image ranged in intensity from 0 to 1023. 
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Chapter 7 

Conclusions and Future Directions 

1 Conclusions 

Stack-based image segmentation correctly isolates anatomical structures in abdom

inal CT images. Both small vessels running perpendicular to the image plane and large 

organs are successfully identified in many instances. The inaccurate segmentations are fre

quently close enough to the desired result so that a simple interactive post-processing step 

might produce a correct segmentation. Post-processing is necessary because sometimes 

two nearby objects are represented as one extremal region, or a few pixels are missing 

from (or added to) a desired object. It remains to be seen whether a system with sim

ple post-processing abilities will be accurate enough, often enough, to be employed on a 

routine basis. 

The main problem remaining is the incorporation of additional, probably imprecise, 

knowledge about the image into the stack segmentation algorithm. The knowledge might 

be edge strengths from the image itself, or perhaps model-based information. The chal

lenge is to use this information in a manner which produces a more accurate segmentation 

without forcing the result to mimic the input knowledge. 

Z Future Directions 

As suggested in chapter 5, it would be useful to investigate various different blurring 

strategies. One approach might be to use edge strength information to guide the diffusion 

process in a manner similar to Grossberg [Cohen and Grossberg, 1984]. Post-processing 

graphical editing of pixel-to-region identification (as discussed in chapter 6) may also be 

extremely useful in insuring that region identification is accurate enough for quantitative 

information derived about a region to be useful. 

It may be desirable to match the tree produced by the stack algorithm with a 

template tree for labeling purposes, identification of abnormalities (e.g., tumors), and 

guidance of the blurring process. Many tree matching algorithms exist. The properties 



of the trees being matched determine which algorithm to use. Therefore, properties of 

the tree produced by the stack algorithm should be examined. Of primary interest are 

the stability and nesting characteristics of extremal regions. The exact nature of these 

characteristics will help determine how to model families of trees, how to modify the stack 

blurring algorithm to change the extremal region structure, and how to predict changes in 

the tree due to the presence of noise. One might also want to study under exactly which 

circumstances paths really do escape from their initial extremal region. A discussion of 

some of these issues follows. 

7.2.1 Modeling Tree Stability and Deformations 

Equivalence Relations. Only once an equivalence relation between trees is defined can 

there be a well defined answer to the question of whether two trees are the same and how 

much a tree has changed. The relation definition incorporates our notion of which changes 

are signifi,cant and which ones are not. One common equivalence measure between images 

is topological equivalence. 

An image is a scalar function of points in the plane. Suppose there exist two images, 

that is, two functions l,g: R 2 -+ R. We can define these two functions to be topologically 

equivalent if there is a homeomorphism h: R 2 -+ R 2 such that I = gh [Blicher, 1984; p 

170 J. Therefore, if I and g are topologically equivalent, h takes level sets (isointensity 

contours) of I into level sets of g. A type of tree called a level set tree can be constructed 

such that if I and g are topologically equivalent, the level set trees produced from the two 

images will be the same. Unfortunately, a level set tree is not the same as a stack tree. 

A level set tree is formed from an image quite simply. Each extremum in the image 

is represented as a leaf node. Each isointensity contour through a saddle point in the 

image is represented as an interior node. If an extremum is surrounded by the isointensity 

contour through a saddle, its leaf node becomes a child of the interior node. Figure 1 

(from [Blicher, 1984]) shows a hypothetical image, and Figure 2 (from [Blicher, 1984]) 

shows two slightly different level set tree descriptions of that image. 

All topologically equivalent images can be represented by the same level set tree, but 

they may not be represented by the same stack tree. This can be visualized quite easily. A 

topologically equivalent image can be created from an initial image by dilating (expanding) 

the region around an extremum point. But there are two parameters which determine the 

range of scales for which a given feature (extremum path) in a Gaussian stack will exist. 

They are the geometric extent of the region and the intensity of the extremal region 
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Figure 1: lsointensity contours through the saddle points of an image and a side 
view of the image. + marks a local maximum in intensity. - a local minimum. 

b 

Figure 2: The level set tree for Figure 1. 
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relative to its neighborhood. Both of these factors are important perceptual clues as to 

the significance of a region in an image. Yet, combining them (by blurring) to determine 
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Figure 3: Two different stack trees which may be formed from the image character
ized by Figure 1. The exact intensity values of the critical points determines which 
tree will in fact get produced. 
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region importance prohibits any direct relationship between the topology of the level sets 

of an initial image and the stack tree which represents the image (see Figure 3). Since 

topologically equivalent images can yield different stack trees, more sensitive equivalences 

must be developed. 

Dynamical Systems and tbe Stability of Paths. One way to analyze the stability of 

the stack tree under noise and blurring modifications is to rephrase the problem in terms 

of a dynamical system. The behavior of dynamical systems has been well studied. lilly 

system of simultaneous first order differential equations can be thought of as dynamical 

system. The description of the isointensity path of a point in an image is a set of such 

equations: v = (-I,I., -l1 ly,l~ + 1;). The path of the point is just the integral curve 

of this three-dimensional vector field. Integral curves of a vector field are just curves 
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which are always tangent to the vector field. The integral curves are also known as 

orbits or trajectories. The integral curves are solutions of a three-dimensional autonomous 

(time independent) system, namely, i = -I,I, , t = -I,I,, : = r; + r;, where 

r is a variable introduced to represent the resolution dimension. This formulation is 

time independent since none of the right hand sides depend upon t. Alternatively, an 

equivalent two-dimensional nonautonomous formulation (time dependent) is i = - I1I, 

and i=-I1I,. 

Three main types of stability have been identified in dynamical systems work. They 

are as follows: 

1 . Liapunov Stability: this is concerned with how much the path of a point changes 

if you perturb its starting point. 

2 . Structural (Andronov-Pontryagin) Stability: this describes the qualitative changes 

in the structure of the orbit fields if the vector field is perturbed slightly. 

3 . Bifurcation Theory: this investigates changes in the orbit structure due to changes 

in the form of the equations defining the vector field (not just perturbation in the coeffi

cients as in structural stability). 

Several different classes of vector fields with different characteristics for their orbits 

have been identified. Conservative fields are fields which preserve some quantity along 

each orbit. The isointensity curves of the stack preserve intensity! Therefore analysis 

of the paths should probably center on the study of the quslities of conservative fields. 

Most analyses are for fields with isolated sink points (locations where the differential 

equation is zero). In the three-dimensional autonomous representation for the stack each 

extremum path is a path of sink points. Therefore the sink points of the dynamical system 

representing the stack are not isolated. This makes the analysis more difficult. The 

recognition that there is still a well defined path for a point once it reaches an extremum 

(i.e., the extremum path) may solve this difficulty. If the definition of the extremum path 

can be added to the dynamical system description in a tractable way, it would have no 

sinks, but it would no longer be a conservative field. 

Unfortunately, many of the results from a dynamical systems stability analysis may 

not be applicable to our problem. Most of the theorems are phrased in terms of E (very 

small) perturbations and whether the resulting field is diffeomorphic to the original field. 

Thus, most of the analysis is for perturbations which are smaller than interest us, and the 
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definition of equivalence of orbits is too liberal to be applied to an analysis of structural 

stability of stack trees. Nevertheless, the sophistication and insight gained by studying 

dynamical systems may be useful. In addition, some of the qualitative results may be of 

direct practical value. 

2.2 Tree Matching 

Ail mentioned above, labeling regions in an image, detecting abnormalities, and 

guiding future blurring may all be possible by matching the tree produced by the stack 

algorithm to a prototype tree. Various prototypes may exist, one for each class of "objects" 

(e.g., different regions in the body). The goal in this case may be to decide to which of 

these classes of objects the candidate tree actually belongs. Alternatively, there may be 

only one prototype tree which we attempt to match with the candidate tree in the "best" 

possible way. 

The specific type of match chosen will have an important effect. For instance, 

a symmetrical matching algorithm would not be a wise choice for our application. In 

a symmetrical match, if tree A matches tree B, then B matches A. At first thought this 

might seem to be a necessity for any "reasonable" matching scheme, but this is not so. For 

example, a prototype tree may contain only branches relating to large regions of interest 

in an image. Any calculated candidate tree would have not only these branches but also 

many more representing less significant image features. A match from a candidate with 

extra branches to a prototype with fewer branches would not be a cause for much concern; 

a match from a candidate to a prototype with more branches would be considered highly 

suspect. If we also want to be able to pick a best match, we need more than a set of 

rules deciding if two trees match; a goodness of fit measure (figure of merit, cost function, 

distance) is needed. 

There has been much mathematical research done in the more general area of graph 

matching. The most exact match defined is a relational isomorphism. This is a sym

metrical match. The least restrictive match, which allows many nodes in one graph to 

match the same node in the other, is a relational homomorphism. Even this match is 

probably not flexible enough for our purposes; it cannot deal with matching nodes which 

have real valued attributes associated with them (e.g., region size). It also is not able to 

recognize if a match is close, or pick the "best" of several matches. Shapiro [Shapiro and 

Haralick, 1981] generalizes the matching notion to an €- homomorphism. This definition 

weights each relation in a graph. If that relation is not represented in the graph being 
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matched to, then a cost proportional to the weight is incurred. Similarly for attribute 

values associated with the nodes, if differences between the prototype and candidate are 

not within some acceptable threshold, a cost is incurred. Any attempted correspondence 

whose total cost exceeds some epsilon threshold is disallowed. If the cost is less than the 

threshold, a "match" is found. Haralick and Shapiro just use this information to determine 

whether an £ - homomorphism exists, not to rank matches. 

Haralick and Shapiro present another interesting paradigm for deciding which of 

many prototypes a candidate graph matches best. We assume that the candidate is 

created by random fluctuations in one prototype due to noise and other influences. We can 

then calculate the probability that the candidate is an instance of each of the prototypes. 

A likelihood ratio can be calculated with the numerator being the probability that the 

candidate is an instance of a particular prototype and the denominator the probability 

that the candidate arose from a completely random structural description. The prototype 

match which maximizes the likelihood ratio is then chosen. 

Wong and You [Wong and You, 1985] spell out the details of a philosophically similar 

approach. They define the notion of a random graph. In a random graph, each vertex and 

arc is a random variable. Each particular outcome of a random graph has a probability 

associated with it. Synthesis of a random graph from a set of observed graphs is also 

possible. By combining in this manner the tree structures derived from several similar 

images we could create a "random graph" prototype tree. Wong and You also define a 

distance measure between two random graphs based upon an entropy measure. Using 

this method both supervised and unsupervised classification of graphs is possible. Their 

technique is also capable of the automatic detection of subclasses in a set of observed 

graphs. This means that a series of images that differ due to some disease process might 

be automatically recognized as a subclass. 

The relative strengths and weaknesses of the above mechanisms for creating proto

types and matching them to a candidate tree must be evaluated. As mentioned in chapter 

2, Crowley's approach [Crowley and Sanderson, 1984] also seems very promising. Perhaps 

the strengths from several of these algorithms can be combined. 
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2.3 Additional Modlfications to the Blurring Algorithm 

Another avenue for investigation is the use of model or template tree structures to 

guide the blurring. A model tree might be produced manually, it might be the result 

of applying the basic stack algorithm to a model image, or it might be a composite tree 

(e.g., random graph) produced from applying the stack algorithm to many sample images 

of similar scenes. The present implementation of the stack algorithm can read in such 

a model tree and consult the model tree to guide the blurring at each pixel and level of 

the process. The question remains how to best use this information to guide the blurring 

process. 

2.4 Linking Strategies 

Segmentation results can be modified not only by changing the blurring algorithm, 

but also by changing the linking algorithm used to create the isointensity paths. Linking 

strategies which do not require paths to stay on an isointensity surface may prove more 

flexible and accurate in identifying semantically meaningful objects. An object which 

changes intensity significantly from one of its sides to the other (perhaps a blood vessel 

with varying amounts of contrast material down its length) may be more likely to be 

accurately delineated if isointensity contours are not the sole determining linking criterion. 

For example, links may be restricted from crossing over regions which in the original image 

have high edge strength values. 
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