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R. KENT DYBVIG. Three Implementation Models for Scheme (Under the direc

tion of GYULA A. MAGO.) 

Abstract 

This dissertation presents three implementation models for the Scheme Program

ming Language. The first is a heap-based model used in some form in most Scheme 

implementations to date; the second is a new stack-based model that is consider

ably more efficient than the heap-based model at executing most programs; and 

the third is a new string-based model intended for use in a multiple-processor im

plementation of Scheme. The heap-based model allocates several important data 

structures in a heap, including actual parameter lists, binding environments, and 

call frames. The stack-based model allocates these same structures on a stack 

whenever possible. This results in Jess heap allocation, fewer memory references, 

shorter instruction sequences, less garbage collection, and more efficient use of 

memory. The string-based model allocates versions of these structures right in 

the program text, which is represented as a string of symbols. In the string-based 

model, Scheme programs are translated into an FFP language designed specifi

cally to support Scheme. Programs in this language are directly executed by the 

FFP machine, a multiple-processor string-reduction computer. The stack-based 

model is of immediate practical benefit; it is the model used by the author's Chez 

Scheme system, a high-performance implementation of Scheme. The string-based 

model will be useful for providing Scheme as a high-level alternative to FFP on 

the FFP machine once the machine is realized. 
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Chapter 1: Introduction 

This dissertation presents three implementation models for Scheme programming 

language systems. These three models are referred to as heap-based, stack-based, 

and string-based models, because of the primary reliance of the first on heap allo

cation of important data structures, the reliance of the second on stack allocation, 

and of the third on string allocation. The heap-based model is well-known, hav

ing been employed in most Scheme implementations since Scheme's introduction 

in 1975 [Sus75]. The stack-based and string-based models are new, and are de

scribed here fully for the first time. The heap-based model requires the use of a 

heap to store call frames and variable bindings, while the stack-based and string

based models allow the use of a stack or string to hold the same information. The 

stack-based model avoids most of the heap allocation required by the heap-based 

model, reducing the amount of space and time required to execute most Scheme 

programs. The string-based model avoids both stack and heap allocation and 

facilitates concurrent evaluation of certain parts of a program. The stack-based 

model is intended for use on traditional single-processor computers, and the string

based model is intended for use on small-grain multiple-processor computers that 

execute programs by string reduction. 

The author's Chez Scheme system, designed and implemented in 1983 and 

1984, was the first to use the stack-based model. Other systems implemented 

since have employed some of the same techniques, including PC Scheme [Bar86] 

and Orbit [Kra86]. An implementation of ML [Car83, Car84], produced indepen

dently at about the same time as Chez Scheme, also employed some of the same 

techniques. The string-based model has yet to be implemented, though it has been 



2 

tested by interpretation on a sequential computer. It is expected to be employed 

in an implementation of Scheme for the FFP machine of Mag6 [Mag79, Mag79a, 

Mag84], as soon as this machine is realized. The FFP machine is a small-grained 

multiprocessor that directly executes programs written in Backus's FFP languages 

[Bac78]. 

Scheme is a variant of the Lisp programming language [McC60] based on the 

>.-calculus [Chu41, Cur58]. It was introduced by Steele and Sussman in 1975 and 

has undergone significant changes since [Sus75, Ste78, Ree86, Dyb87]. Unlike most 

Lisp dialects, Scheme is lexically-scoped, block-structured, supports functions as 

first-class data objects, and supports continuations as first-class data objects1 . 

The popular Common Lisp dialect of Lisp [Ste84] was somewhat influenced by 

Scheme; it supports lexical scoping and first-class functions but not continuations. 

The ML programming language [Car83a, Mil84, Gor79] is similar in many respects 

to Scheme, supporting lexical scoping and first-class functions, but lacking contin

uations and variable assignments. Because of the similarities, many of the ideas 

presented in this dissertation apply to Common Lisp and ML as well as Scheme. 

This dissertation presents several variants of each implementation model. 

These variants serve to simplify the presentation and to provide alternative models 

that might be useful for other languages similar, but not identical, to Scheme. Each 

model or variant addresses the representation of key data structures, the trans

lation of source-level programs into object-level programs, and the evaluation of 

the object-level programs. The translation processes and most of the evaluation 

processes are described, in part, with working Scheme code, thus providing an 

executable specification of these processes. While it would be possible to base full 

implementations of Scheme on this code, most of the details have been suppressed 

to simplify and focus the presentation. 

1 A first-class object can be passed as an argument to a function, returned as 
the value of a function, and stored indefinitely. Most Lisp systems provide many 
types of first-class objects, including lists, symbols, strings, and numbers. Most 
other programming languages only provide scalar quantities, e.g., numbers and 
characters, as first-class objects. 
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One contribution of this dissertation is practical and i=ediately useful. This 

is the description of the stack-based model for Scheme, which allows Scheme im

plementations on sequential computers to use a standard stack in much the same 

way as implementations of block-structured languages such Algol60 [Nau63], Pas

cal [Jen74] and C [Ker78]. The heap-based model, used by most Scheme systems, 

requires call frames and binding environments to be heap-allocated, resulting in 

slower and more memory-intensive systems. Heap allocation of stack frames was 

thought to be necessary to support closures and continuations. 

Another contribution is the description of a string-based model for Scheme 

that will allow Scheme to run efficiently on the FFP machine of Mag6 and on 

string-reduction machines in general. This will be useful once the FFP machine 

is realized, and may prove useful for other small-grain multiple-processors as well. 

A secondary contribution is the description of a new FFP to support Scheme and 

the corresponding implication for support of other languages using FFP and the 

FFP machine. 

A third contribution is the detailed description and comparison of a set of 

alternative implementation models from the simplest heap-based systems through 

the most complex stack-based and string-based systems. Each may be better than 

the others under certain circumstances. Some are ideally suited to Scheme while 

others are better suited to languages that differ from Scheme in certain ways. 

The stack-based and string-based models support efficient Scheme implemen

tations partly because Scheme encourages functional rather than imperative pro

gra=ing techniques. That is, typical Scheme programs rely principally on func

tions and recursion rather than statements and loops, and they tend to use few 

variable assignments. Assignments are permitted, but they appear infrequently 

in Scheme code. The stack-based and string-based models exploit this, improving 

the speed of assignment-free code while possibly penalizing code that makes heavy 

use of assignments. 

The remainder of this chapter gives background information on functional 
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programming languages, implementation techniques for functional languages, and 

related multiple-processor systems. Chapter 2 provides detailed information on 

Scheme, its syntax, and the features that make it worthy of study. Chapters 3, 

4 and 5 present the heap-based, stack-based and string-based techniques. Chap

ter 6 presents the conclusions and ideas for further research. Finally, Appendix A 

completes the dissertation with a comparison of the stack-based model with the 

heap-based model. It presents the results of an empirical comparison of the two 

models on a set of four simple programs, and compares instruction sequences that 

might be generated by compilers for the two models. 

1.1 Functional Progranuning Languages 

Most Computer programs can be separated into two categories, imperative and 

functional. Imperative programs work by changing state in a statement by state

ment fashion, using statement-oriented loops and subroutines (procedures that 

perform side-effects and that do not necessarily return values) for program control. 

Functional programs work without changing state but by computing values in an 

expression-oriented fashion, using functions (procedures that simply compute and 

return values), recursion, and mapping for program control. A programming lan

guage can usually be placed into one of these two categories according to the style 

of the programs that can be written in the language, which is determined by the 

set of features provided by the language. The principal features of an imperative 

programming language are statements, including declarations (of procedures and 

variables), assignments, loop control statements, conditional statements, subrou

tine or function calls, and arithmetic expressions. In a functional programming 

language, the principal features are expressions, including binding expressions, 

conditional expressions, function calls, and arithmetic expressions. 

Functional programming languages have several advantages over imperative 

programming languages: 
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I. Functional programs are simpler. Functional programs are built from expres

sions in a natural, recursive fashion. Imperative programs are built from com

plex statements, or commands, combined with expressions. Certain contexts 

require expressions while others require statements. Statements are almost 

never allowed within expressions. 

2. Functional programs are generally easier to understand. Each piece of the 

program can be taken apart from its context and studied separately from the 

remainder of the program, because there is little or no state affecting that 

piece of the program. 

3. Correctness proofs can be applied more easily to functional programs because 

of the regularity of structure and lack of state. 

4. Local variables are simpler and never uninitialized in functional programs. A 

variable is a name for a value rather than a storage location. This value is 

established when the variable is bound (declared). In an imperative program, 

the initial assignment is typically separated from its binding (declaration). 

5. Alternative evaluation orders are possible in functional programming lan

guages. The order of execution of two independent expressions of a program 

is not important, and the absence of state ensures that many expressions are 

independent (for example, the arguments to a function application). Such ex

pressions may even be executed in parallel. Furthermore, an expression whose 

value is never required need never be executed at all. 

FFP, the related FP [Bac78], KRC [Tur79, Tur82], and Miranda [Tur86] are ex

amples of functional languages. 

In spite of their attractive semantic properties and potential ease of implemen

tation on parallel computers, there are some programs that are not easily expressed 

in functional languages, i.e., programs that require the concept of state. However, 

many programs are expressible and stylistically more attractive when written in 

a purely functional style. Some languages encourage a functional programming 

style but allow the use of imperative variable assignments when necessary. Such 
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languages support the features that make programming in a functional style pos

sible and omit features that discourage functional programming (such as loops, 

gatos, and statement-oriented conditionals). Scheme is one such language, as are 

Lisp, ML, APL [Ive62], and ISWIM [Brg81]. 

Chapter 2 discusses and illustrates the use of a functional subset of Scheme, 

but gives some examples of problems that do not easily lend themselves to a 

functional style. The Scheme programs used to describe translation and evaluation 

in Chapters 3, 4, and 5 are written where possible in a functional style, using 

assignments only sparingly. They help to demonstrate that Scheme encourages 

programs to_ be written in a functional style while still allowing assignments when 

necessary. 

1.2 Functional Progrannning Language Implementations 

Because Scheme is closer in spirit to functional languages than to imperative lan

guages, it is useful to consider methods commonly used to implement functional 

languages. Functional languages may be implemented in several different ways 

on a sequential computer. The most common way is the construction of an in

terpreter. An interpreter requires modeling of the variable environment (if any), 

handling of any special syntax, providing for function application, and providing 

any run time support (such as storage management) [Wis82]. A related alterna

tive is to compile the source program into a lower-level language (perhaps machine 

code) and to interpret programs in the lower-level language. 

For languages without variables, string or graph reduction is possible, either 

in a sequential or parallel processor. With string reduction [Ber75], the program 

is represented as a string of symbols. Evaluation proceeds by replacing each re

ducible expression with its value, working within the string itself. Graph reduc

tion [Wad71, Rev84, Tur79] is similar, except that the program is represented by 

a graph with common subexpressions sharing the same node (that is, identical 
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subexpressions are not duplicated as they would be by the fiat string representa

tion). The main difference here is that such expressions are reduced only once. 

For functional languages with variables, one alternative is the use of a combi

nator approach, such as described by Turner [Tur79]. Combinators are (typically) 

simple functions with no free variables. Two combinators, called S and K, are 

sufficient to describe any function in the >.-calculus [Cur 58]. Once a program has 

been converted into a composition of S and K combinators, it may be reduced by 

a string or graph reduction machine. Hughes describes the use of more complex 

"super-combinators," to gain a more compact and efficient translation of the input 

program [Hug82]. 

When evaluating programs in a functional language, one has the opportunity 

to use lazy evaluation [Fri76, Hen76, Tur79]. Lazy evaluation, sometimes referred 

to as demand-driven or call-by-need evaluation, promise!! to evaluate only those 

subexpressions necessary to complete the problem. This approach is semantically 

valid because an expression whose value is not required, and that does not cause 

any side-effects (a requirement offunctionallanguages) cannot affect the computa

tion. Such an expression may as well be left unevaluated. Both the interpretation 

and combinator approaches lend themselves to lazy evaluation strategies. 

Languages such as Scheme have somewhat different requirements. In par

ticular, it is not generally possible to use lazy evaluation. Not only must every 

expression that may cause a side-effect be evaluated, but also the ordering of the 

evaluation must be preserved. With lazy evaluation, the order of evaluation is un

predictable, depending upon what is needed when. Because of the requirement for 

a binding environment where changes to the values of variables may be recorded, 

reduction mechanisms are not easily adapted to languages that allow assignments. 

Also, combinators cannot easily be used to remove variables if the variables can 

be assigned. 

This leaves the direct interpretation and compilation (to traditional machine 

code) approaches. Many Scheme systems have been developed [Abe84, Bar86, 
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Cli84, Dyb83, Fri84, Kra86, Sus75, Ste77, Ste78], most of them using some com

bination of interpretation and compilation. There are also many descriptions of 

other Lisp implementations in the literature that use one or both of these ap

proaches; these implementations are not relevant here since they do not address 

support for first-class closures, first-class continuations, or certain other Scheme 

features. Because of the need to support first-class functions and continuations, 

most implementations allocate call frames and binding environments in a heap. 

An optimization of the typical environment structure used in Scheme programs 

was given by McDermott [McD80]. McDermott suggested that heap allocation of 

environments happen only when necessary, and was able to retain some variables 

on the stack. McDermott did not handle full continuations, but suggested that 

even in the presence of full continuations, a similar avoidance of heap allocation 

might be possible. 

The T language developed at Yale was based on Scheme, but its designers 

avoided heap allocation of call frames by omitting full continuations from the 

early versions of the language. To quote from the 1982 Lisp Conference paper: 

"As a concession to efficient implementation on standard architectures, escape 
procedures are not valid outside the dynamic extent of the CATCH-expression 
which creates them; this ensures that the control stack behaves in a stack
like way, unlike in Scheme, where the control stack must be heap-allocated" 
[Ree82]. 

This dissertation shows that this need not be the case, as does a recent paper 

describing the latest implementation ofT [Kra86]. 

Similar heap-allocated stack frames have been used in Smalltalk [Gol83, Ing78] 

implementations because stack frame objects may be retained indefinitely in a 

manner similar to general continuations. 

Cardelli independently introduced a closure object nearly identical to the dis

play closures described later in this dissertation [ Car83, Car84]. The main differ

ence is that Cardelli did not need to support assignment of variables. The use of 

ref cells in ML can replace the automatic generation of boxes for assigned vari

ables described in this dissertation. There is no benefit in stack-allocating variable 
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bindings if the stack itself is implemented in a heap. ML does not support general 

continuations, so this was not a problem for Cardelli. 

1.3 Multiprocessor Systems and Implementations 

Various computer systems have been proposed that provide multiple processor sup

port for the concurrent execution, or parallel processing of subparts of a computer 

program. Parallel processing is often simulated on a single processor by interleav

ing the execution of subparts; this is often referred to as multi-tasking. Parallel 

processing and multi-tasking systems are both considered to be distributed pro

cessing systems. These have been studied in various forms for almost two decades; 

the earliest works on the subject are those of Dijkstra, Brinch Hansen, and Hoare 

[Dij68, Bri73, Bri78, Hoa76]. A review of distributed processing languages and 

abstractions can be found in Filman and Friedman's text [Fi!84]. 

General purpose2 multiple-processor systems (termed multiprocessors) can be 

partitioned into two categories based on the size of the processor and the com

plexity of the co=unication network: small-grain and large-grain. Large-grain 

multiprocessors usually contain from several to several hundred processing ele

ments (PEs), whereas small-grain processors contain anywhere from hundreds to 

millions of PE's. Each PE in a large-grain multiprocessor is typically the size of 

a minicomputer or powerful microprocessor. Each PE in a small-grain proces

sor is typically the size of a small microprocessor or smaller, containing perhaps 

an ALU (arithmetic-logical unit), a few words of memory, and communkation 

circuitry. Large-grain systems often employ a large central memory along with 

smaller local memories at each PE; small-grain systems usually do not have any 

central memory, relying only upon the local storage at the PEs and the temporary 

storage within the communication network. 

2 We will not discuss special-purpose multiprocessors, such as systolic arrays 
or SIMD (single-instruction, multiple-data) machines, since we plan to support 
general-purpose progra=ing where parallelism is not obvious in the data struc
tures or operations of the language. 
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One of the most important distinctions between large-grain and small-grain 

systems is the type of communication network. Large-grain systems tend to be 

well-connected (they can afford to be); that is, access to shared memory and to 

each other is typically through a complex communication network that allows 

relatively high-speed packet-switched communication between any two processors. 

In contrast, small-grain systems provide high-speed, circuit-switched commu

nication between adjacent or nearly adjacent processors, but slow communication 

in general between two distant processors (because the processors are not well

connected). Also, small amounts of information can be communicated efficiently; 

this is not typically the case in large-grain systems. 

Large grain systems are most useful for programs where there is high level 

parallelism inherent in the structure of the program, that is, when a programmer 

or compiler can isolate several large sequential processes. It has yet to be seen 

whether there are effective methods for splitting a computation dynamically. Even 

with static analysis performed by a compiler, the results have not been impressive. 

As a result, most large-grain systems will be programmed by hand, a complex task 

that requires precious programmer time. 

Small-grain systems should be more appropriate where the parallelism exists 

at a lower level, e.g., at the expression level rather than at the procedure level. 

Decomposition, or process-splitting, may be performed dynamically, since the cost 

of communicating locally is minimal, and the cost of shifting within the network 

can be minimized by parallel movement. Although small-grain systems look more 

promising than large-grain systems for some purposes, they have not yet been 

around long enough for their value to be proven. Mag6 [Mag85] and Burton 

and Sleep [Bur81] provide convincing arguments for the viability of small-grain 

systems. 

Several large-grain multiprocessors have been proposed for Lisp dialects. Marti 

and Fitch [Mar83] perform static analysis with a compiler to decompose Lisp 

programs; this seems to be one of the few attempts at executing Lisp programs 
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on a multiprocessor without explicit programmer control over parallelism. Two 

recent contributions, one by Halstead [Hal84] (see also [And82]) and the other by 

Gabriel and McCarthy [Gab84], propose languages with explicit parallel control 

structures of similar natures. Sugimoto, et a!. [Sug83] propose to perform some 

automatic program decomposition dynamically, while allowing access to lower level 

primitives. 

Many small-grain multiprocessors have been proposed to support functional 

languages. These include string reduction machines such as the FFP machine, 

graph reduction machines such as ALICE [Dar81] and AMPS [Kel79], dataflow 

machines [Arv77, Den79], and the shared-memory "ultracomputer" [Got83]. Al

though all of these multiprocessors might be considered to be small-grain systems, 

relative to the FFP machine the others are actually large-grain systems. 





Chapter 2: The Scheme Language 

Scheme is a programming language that is close in spirit to functional program

ming languages but similar in many ways to more traditional languages such as 

Algol 60. The principal similarity between Scheme and Algol 60 is that they 

are both lexica/ly-scoped, block-structured languages. Lexical scoping means that 

the body of code, or scope, in which a variable is visible depends only upon the 

structure of the code and not upon the dynamic nature of the computation (as 

with dynamic scoping, which is employed by many Lisp dialects). Block structure 

means that scopes may be nested (in blocks); any statement (or expression, in 

Scheme) can introduce a new block with its own local variables that are visible 

only within that block. Scheme differs from Algol 60 in that it is an applicative 

order language, meaning that the subexpressions of a function application, i.e., 

the function and argument expressions, are always evaluated before the applica

tion is performed. (In contrast, in Algol 60, evaluation of an argument passed by 

name does not occur until the argument is used.) Furthermore, Scheme supports 

first-class functions, or closures. A closure is an object that combines the function 

with the lexical bindings of its free variables at the time it is created. Closures are 

first class data objects because they may be passed as arguments to or returned 

as values from other functions, or stored in the system indefinitely. 

Scheme also supports first-class continuations. A continuation is a Scheme 

function that embodies "the rest of the computation." The continuation of any 

Scheme expression (one exists for each, waiting for its value) determines what is 

to be done with its value. This continuation is always present, in any language 

implementation, since the system is able to continue from each point of the com-
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putation. Scheme simply provides a mechanism for obtaining this continuation as 

a closure. The continuation, once obtained, can be used to continue, or restart, 

the computation from the point it was obtained, whether or not the computation 

has previously completed, i.e., whether or not the continuation has been used, 

explicitly or implicitly. This is useful for nonlocal exits in handling exceptions, or 

in the implementation of complex control structures such as coroutines or tasks. 

Scheme and Lisp are based on the >.-calculus. The A-calculus is a mathematical 

language for studying functions. In 1982, Rosser summarized the history of the 

A-calculus, which has it roots in the work of Frege in 1893 and Schonfinkel in 

1924 [Ros82]. Since then, Church and Curry have worked extensively with the 

>.-calculus and related matters [Chu41, Cur58]. Knowledge of the A-calculus is 

not essential for the reading of this dissertation, although it is certainly useful in 

understanding the full power and importance of Lisp and Scheme. 

McCarthy introduced Lisp around 1960 (making it the second oldest com

puter programming language in use today, next to Fortran) [McC60]. McCarthy's 

original language has often been referred to as pure Lisp because it was entirely 

expression-oriented. Subsequent dialects of Lisp have included many different sorts 

of imperative control structures. Early Lisp dialects employed dynamic scoping 

and disallowed first-class functions, a definite departure from the A-calculus. 

Sussman and Steele introduced the Scheme dialect of Lisp in 1975 [Sus75]. 

Scheme more accurately reflects the A-calculus by supporting lexical scoping and 

first-class functions. Because lexical scoping is employed rather than the tradi

tional dynamic scoping, Scheme is similar in many ways to Algol 60 and other 

block-structured languages such as Pascal and C. 

Steele describes Common Lisp as a combination of many different Lisp dialects 

[Ste84]. Although Common Lisp is a much larger dialect of Lisp, it is based in 

part on Scheme. Unlike all popular Lisp dialects except Scheme, Common Lisp 

provides lexical scoping and first class functions. 
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Scheme and Lisp are both weakly-typed languages, meaning that the determina

tion of type correctness is delayed until run time, rather than analyzed at compile 

time. In contrast, Algol 60 and Pascal are strongly-typed languages. The ML 

language [Car83a, Gor79, Mil84] is a strongly-typed language with lexical scop

ing and first-class functions. ML's type system is different from that of Algol 60 

and Pascal, in that the type of an expression is determined from context rather 

than user declarations. Strong typing results in fewer bugs after compilation and 

potentially more efficient generated code. In practice, however, the type system 

constrains the programmer in many ways that are unacceptable to Lisp program

mers: data cannot be interpreted as programs, lists must be homogeneous, and 

functions are not easily redefined (as for debugging) without recompiling other 

dependent functions. 

The Scheme language consists of a set of syntactic forms and primitive func

tions. Scheme systems vary widely on the particular syntactic forms and primitives 

that are provided. This dissertation focuses on a small set of the most important, 

or core, syntactic forms. This chapter describes this set as well as the set of syntac

tic extensions (defined in terms of the core set) and the set of primitive functions 

employed by the Scheme-coded programs in the remainder of the dissertation. A 

discussion follows of three important Scheme concepts: closures, assignments, and 

continuations. The last section of this chapter presents a meta-circular interpreter 

for Scheme. 

2.1 Syntactic Forms and Primitive Functions 

The syntax of Scheme expressions includes a set of core syntactic forms (the core 

language) along with a set of syntactic extensions. Syntactic extensions may be 

provided by the system or defined by the programmer. Any syntactic extension 

must be defined in terms of the core syntactic forms, other syntactic extensions, 

and functions, so that the underlying implementation is free to support only the 

core forms. 
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Functions can be broken into two categories: primitive (provided by the 

Scheme system) and user-defined. Some primitive functions may be supported by 

code in the host language, e.g., assembly language, while others may be written 

in Scheme. This distinction is not relevant in this dissertation, however; the focus 

is on support of the core syntactic forms, not on particular primitive functions 

provided by the language. 

This section first introduces the core language. Following this are descriptions 

of the small sets of primitive functions and syntactic extensions employed in this 

dissertation. 

2.1.1 Core Syntactic Forms. The core language varies from system to system. 

In general, the smaller the core language, the smaller and simpler the interpreter 

or compiler. With a small core language, however, the majority of the remaining 

syntactic forms must be provided by syntactic extension. This can result in a 

loss of efficiency unless sophisticated techniques are used to recover information 

that may be obscured in the transformation from syntactic extension into the core 

language. Many Scheme systems treat some of the syntactic extensions introduced 

later as core forms. Likewise, others treat some of the core forms below as syntactic 

extensions. This set is specifically designed to demonstrate the most important 

features of the language and their support in a Scheme system. 

An important aspect of Scheme is that any Scheme program is itself Scheme 

data. Scheme supports lists, e.g., (a b c), symbols, e.g., xyz, integers, e.g., 

12934, strings, e.g., "hi there", and other types of objects. At the same time, 

Scheme variables are symbols, e.g., x, Scheme aggregate expressions are lists, e.g., 

(if (eq? x 0) 0 (* x y)), and Scheme constants are numbers, strings and other 

types of objects. (Lists and symbols may be treated as data with the quote syntac

tic form.) This simplifies the writing of interpreters, compilers, and programming 

tools for Scheme in Scheme, although the use of the list notation tends to require 

a great number of parentheses. 
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A grammar for the core language is given in Figure 2.1. Technically, this 

grammar is ambiguous in two ways: Every expression matches the first clause 

(since every expression is an object), and every expression that matches the quote, 

lambda, if, set! or call/cc clause also matches the last clause. Ambiguities are 

resolved by choosing the most specific production. 

(core) -+ (object) 

(core) -+ (variable) 

(core) -+ (quote (object)) 

(core)-+ (lambda ((variable) ... ) (core)) 

(core) -+ (if (core) (core) (core)) 

(core) -+ (set! (variable) (core)) 

(core) -+ (call/cc (core)) 

(core) -+ ((core) (core) ... ) 

Figure 2.1 Syntax of the Scheme Core Language 

Here is a quick overview of the meaning of each expression: 

(object): Any object other than a list or symbol is treated as a constant. A 

list or symbol is not treated as a constant because it can always be matched to a 

more specific syntactic form. 

(variable): Any symbol is treated as a reference to a variable binding, which 

should be bound by an enclosing lambda. 

(quote (object)): A list or symbol inside a quote expression is treated 

as a constant. In other words, its normal syntactic interpretation is dis

abled. (quote (object)) is often abbreviated with a single quote mark, e.g., 

(quote (a b c)) is abbreviated to ' (a b c). 

(lambda ((variable) ... ) (core)): A lambda expression evaluates to a closure. 

A closure is a combination of the function body (core) with the bindings of the 

function's free variables (those not appearing as formal parameters and hence 
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bound by an enclosing lambda expression). The variables (variable) ... are the 

formal parameters of the function. When the closure is subsequently applied, 

each of the formal parameters will be bound to the corresponding actual parame

ter. These bindings, together with the bindings of the free variables saved in the 

closure, constitute the environment of the function body; the value of any variable 

referenced in the body is found in this environment. 

(if (core) (core) (core)): An if expression causes evaluation of either the 

second or third subexpression depending upon the value of the first. IT the first 

evaluates to true, the second is evaluated and its result returned. If not, the third 

is evaluated and its result returned. 

(set! (variable) (core)): This syntactic form specifies that the variable be 

assigned the result of evaluating (core); this result is also the value of the set! 

expression. The ! is present to signal a side-effect. 

(call/cc (core)): call/cc (short for call-with-current-continuation) spec

ifies that (core) be evaluated and the result (which must be a closure of one 

argument) be applied to the current continuation1 (this is explained further in 

Section 2.4). 

((core) (core) ... ) : This syntactic form specifies that all subexpressions be 

evaluated and the value of the leftmost expression (which must be a closure) be 

applied to the values of the remaining expressions2• 

2.1.2 Primitive Functions. Scheme provides primitives for arithmetic calcu

lations, list and symbolic processing, and a variety of other applications. This 

dissertation is primarily concerned with the list and symbolic processing functions 

1 The syntactic form call/cc is often implemented as a function; since it takes 
its argument evaluated it does not need a special evaluation rule. It is treated 
as a syntactic form here because support for it is fundamental to the compiler or 
interpreter and the underlying system. 

2 This implies, as is true, that all Scheme function applications are written in 
prefix notation. There are no special cases for the traditional set of binary prefix 
and unary postfix functions that most languages provide. 
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since it relies on these to demonstrate the parsing and evaluation of Scheme ex

pressions. However, certain arithmetic functions are needed as well, along with a 

few special-purpose functions. 

The primitive functions given here operate on pairs, lists, symbols, integers, 

and vectors. Integers are the same as for any other language. Symbols are atomic 

objects that resemble variable or other names, e.g., ThislsAnAtom, Hello-Mom, and 

cons. Symbols are often used to represent variables in Scheme compilers; they are 

also commonly used as ordinary names in natural language programs. One aspect 

of symbols that make them particularly suitable for use as variables is that any 

two symbols that look alike are the same (see eq? below). In contrast, two lists 

may not be the same object even if they look the same. 

Pairs are the basic building blocks of lists and other structures in Scheme. A 

pair is a structure with two fields, the car and the cdr. A pair is written as two 

objects enclosed in parentheses and separated by a dot, e.g., (a . b) is the pair 

whose car is the symbol a and whose cdr is the symbol b. This notation is often 

referred to as dotted-pair notation. 

Pairs may be nested to arbitrary depths, and so are useful for building a variety 

of structures. One such structure, the list is so common that it is given a special 

syntax. Lists are sequences of pairs linked through the cdr field and print as a 

sequence of objects enclosed in parentheses (not separated by dots). The end of 

a list (the final cdr field) is signified by a special object, 0, called the empty 

list. The list (a b c) is a list of three elements, and is really the set of pairs 

(a (b . (c . ()))). 

Vectors are more efficient in terms of space and access time than lists because 

they are stored in contiguous memory locations rather than in linked cells. A 

vector with four elements would typically take up five memory locations, the first 

of the five holding the length, whereas a list with four elements would typically take 

up eight memory locations (four pairs of memory locations). A vector is written 

with a .similar syntax to that for lists with a preceding #, e.g., #(a b c d e). 
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Vectors are typically used only when the size of the structure is known in advance 

and when the structure is longer than a few elements. Lists are used when the 

structure is small, the final size is not known ahead of time, or the structure needs 

to be built incrementally. Changing the size of a list only requires the addition or 

removal of a pair or set of pairs, while changing the size of a vector requires the 

creation of a new vector. 

Character strings, characters, rational numbers, floating-point numbers, and 

various other data types are found as well in most Scheme systems, but they play 

at most a minor role in this dissertation. In particular, strings, which print as a 

sequence of characters within double quotes, e.g., "hi there", are used in some of 

the programs as error messages but for no other purpose. 

Scheme's notion of boolean values should be explained briefly. In Scheme, all 

objects but one are considered to be true for the purposes of conditional expres

sions, i.e., if. The single false object is the same object as the empty list, (). 

This fact is seldom used in well-written Scheme code, but it is important to know. 

When a boolean constant appears in the text, the false value appears, naturally, 

as (),while the true value appears as t. (More precisely, '() and 'tor (quote ()) 

and (quote t) .) 

Each of the primitive functions described briefly below is shown as an appli

cation of its name to a set of arguments. The 'name of the function is the variable 

name by which the function is accessed. The number of arguments, and the types 

of the arguments are implied by the form of the sample application. For example, 

the header for the description of car, (car pair), declares that car is a function of 

one argument, which must be a pair. 

(+ int1 int2l, (- int1 int2), (* int1 int2), and(/ int1 int2l are the standard ad

dition, subtraction, multiplication, and division operations for integers. Division 

is assumed to truncate the result. 

(= int1 int2l, (< int1 int2l, (> intt int2l, (<= int1 int2l, and (>= int1 int2l are 

the standard relational predicates for integers. Each returns a true value if the 
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relation holds, and () otherwise. 

(eq? obi1 obi2> returns a true value if obi1 and obh are the same object, otherwise 

the false value, (). The ? is often appended to the name of a function that is 

used as a predicate. Two symbols that print the same are never different, while 

two pairs or two vectors are different if they were created at different times. For 

example, (eq? a a) is true but (eq? (cons 'a 'b) (cons 'a 'b)) is not. However, 

((lambda (x) (eq? x x)) (cons 'a 'b)) is true, since both arguments to eq? were 

created by the same cons operation. This property is really only important when 

side-effects to the object are allowed; a change to one object changes another object 

if and only if the two objects are the same. 

(cons obi1 obi2> creates a new pair, e.g., (cons 'a 'b) returns (a . b). If the 

second argument is a list, cons may be viewed as creating a new list whose first 

element is obi1 and whose tail is obi2, e.g., (cons 'a '(b c)) returns (a b c). 

(list obi1 obi2 ..• ) takes an arbitrary number of arguments and creates a list 

with obi1 as the first element, obi2 as the second element, and so on, e.g., 

(list •a 'b •c) returns (a b c). This is more convenient than the corresponding 

applications of cons, (cons 'a (cons 'b (cons 'c •()))). 

(car pair) returns the car field of pair, e.g., (car • (a . b)) returns a. If the 

argument is a list, car may be viewed as returning the first element of the list, 

e.g., (car • (a b c)) returns a. 

(cdr pair) returns the cdr field of pair, e.g., (cdr '(a . b)) returns b. If the 

argument is a list, cdr may be viewed as returning the tail of the list, e.g., 

(cdr '(a b c)) returns (b c). 

Compositions of car and cdr are frequently replaced by functions with names 

of the form c ... r, where ... represents 2 or more occurrences of the letters a (for 

car) andd(forcdr). Forexample,cdarisidenticalto (lambda (x) (cdr (car x))) 

and caddr is identical to (lambda (x) (car (cdr (cdr x)))). The use of these 

functions helps to shorten and simplify the code. 
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(set-car! pair obj) changes the car field of pair to obj, effectively discarding the 

old car field and destructively changing any structure that the pair is a part of. 

The ! is present to signal a side-effect, as with set!. set-car! and set-cdr! 

(below) are rarely useful; they are used in this dissertation to record changes to 

variable bindings in heap-allocated environments, i.e., to support set!. 

(set-cdr! pair obJ") changes the cdr field of pair. 

(length list) counts and returns the number of elements in list. For example, 

(length '(a b c)) is 3. 

(append list1 list2 ) creates a new list from the elements of list1 followed by the 

elements of list2 • For example, (append '(a b) '(d e)) is (a b c d). 

(make-vector n) creates a new vector of length n. 

(vector-ref vector int) returns element int {zero-based) of vector. 

(vector-set! vector int obj) changes element int of vector to obj. 

(vector-length vector) returns the number of elements in vector; the length of a 

vector is always recorded in the vector. 

(box obj) creates a single-cell box containing obj. 

(unbox box) returns the contents of box. 

(set-box! box obj) stores obj in box. 

(integer? obj), (symbol? obj), (string? obj), (pair? obj), (list? obj), and 

(null? obj) all return true if the object is of the appropriate type, false otherwise. 

The null? predicate returns true for only one object, (). The list? predicate re

turns true for pairs and for (), i.e., it does not check to see if the final cdr of a 

sequence of pairs is (). 

(map closure list) applies closure to each element of list, and returns new list of 

the resulting values. For example, (map car ' ((a b) (c d) (e f))) is (a c e). 

(apply closure list) applies closure to the elements of list; each element of list 

is passed as a separate argument to closure. For example, (apply + ' (3 4)) has 

the same result as ( + 3 4). It is often easier to take apart a list of known size 
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with apply than with the corresponding applications of car and cdr. The record 

syntactic extension described later uses apply. 

(error string) aborts a running Scheme program with the message given by 

string3• 

2.1.3 Syntactic Extensions. Syntactic extensions provide a method for defining 

new syntactic forms in terms of other syntactic forms and functions. A variety of 

different mechanisms exist for specifying syntactic extensions. In this section they 

are specified using input pattern, output pattern pairs with italics to set off the 

pattern variables4• 

Syntactic extension is an important tool in Scheme because it reduces the 

number of syntactic forms recognized by the interpreter or compiler, while allow

ing complete syntactic flexibility. The transformations implied by the syntactic 

extensions happen before compilation or interpretation, so that the compiler or 

interpreter only need look for the core forms. 

Equally important is the conceptual simplicity from the programmer's stand

point; once the few core forms are learned, the rest are a matter of understanding 

the transformations taking place. One can either look at the syntactic extension 

abstractly for what it does without thinking of the underlying implement<:tion or 

look at the transformation and try to understand it in terms of the well known 

core forms. 

It is not within the scope of this dissertation to discuss all of the interesting 

possibilities for syntactic extension in Scheme, but a few standard syntactic ex

tensions are used within the dissertation and require discussion here. Also, a few 

other possible extensions not used here are worthy of note because they demon

strate interesting uses for Scheme, especially for Scheme's first-class closures. 

3 This feature is typically implemented with call/ c c. 
4 This notation is similar to a syntactic extension mechanism proposed by Eu

gene Kohlbecker [Koh86]. 
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Perhaps the most important syntactic extension, and one that is often included 

as a core syntactic form because of its importance, is begin. (begin exp1 exp2 •.. ) 

evaluates exp1 first, then exp2, and so on, returning the value of the last expression. 

The values of all but the last expression are ignored, thus, begin is useful only 

when these expressions cause side-effects such as assignments or input/output. 

The syntactic extension for begin takes advantage of Scheme's applicative-order 

evaluation: 

(begin exp1) ~ exp1 
(begin exp1 exp2 ••• ) ~ 

((lambda (x) (begin exp2 •.• )) expl)· 

This transformation is described recursively. The base case is a begin ex

pression with exactly one subexpression; this is simply transformed to the subex

pression itself. In all other cases a lambda expression is introduced to delay the 

evaluation of the second and later subexpressions. This lambda is applied to the re

sult of the first subexpression; because of applicative order this must occur before 

evaluation of the function's body, and hence the second and later subexpressions 

of the begin form. One subtle restriction must be made on this transformation: 

the variable x introduced into the expansion must not appear free within exp2 ..•. 

That is, the new binding for x created by this lambda expression must not capture 

a reference to x anywhere within these expressions. 

The following function returns (a b) regardless of the value of its argument: 

(lambda (x) 

(begin 
(set! x 'b) 
(cons 'a (cons x '())))) 

For convenience, Scheme treats the body of a lambda expression as an implicit 

begin, so the expression above could be written as: 

(lambda (x) 
(set! x b) 
(cons 'a (cons x '()))) 

This is also true for the bodies of let, recur, and record as well as the clauses of 

cond and record-case (to be discussed shortly). 
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The syntactic form let is a syntactic extension that also expands into the 

direct application of a lambda expression: 

(let ( [var val] ... ) exp .•. ) ---> 

((lambda (var ... ) exp ... ) val ... ) 

The brackets set off the pairs of variable/value bindings; brackets are interchange

able with parentheses; they appear in several of the syntactic forms to help read

ability. let differs from lambda in that it binds the values of its variables and 

executes its body immediately, rather than returning a closure that must be ap

plied to the values. The following expression returns (a b c): 

(let ([x 'a] [y '(b c)]) 
(cons x y)) 

The rec syntactic form allows the creation of self-recursive closures. The 

definition of rec is somewhat tricky: 

(rec var exp) ---> 

(let ([var '0]) 

(set! var exp)) 

The binding of var to () by let encloses the expression exp to which var is 

assigned. (The original value () is never referenced.) This means that references 

to var within exp refer to this var and not one outside of this scope, due to 

lexical scoping. Hence, a new local variable var is created and initially bound to 

(). Occurrences of var within exp refer to this new var. var is then bound to 

exp, implying that references to var within exp evaluate to the value of exp itself. 

The expression exp is usually a recursive lambda expression, so var is not actually 

referenced until after the function created by the lambda expression is applied. 

The following recursively-defined function counts the number of elements in the 

list passed as an argument: 

(rec count 
(lambda (x) 

(if (null? x) 

0 
(+ (count (cdr x)) 1)))) 

Within this function, count refers to the function itself, because of rec. 
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Quite often, a rec expression whose body is a lambda is directly applied to 

arguments, usually to implement a loop. The syntactic form recur makes the 

code more readable. recur is defined in terms of rec and lambda in a manner 

similar to let: 

(recur f ( [var init] .•• ) exp ••• ) --+ 

((rec f (lambda (var ... ) exp ..• )) 
init .•. ) 

The bracketed pairs simultaneously specify the parameters to the recursive func

tion and their initial values. The following recur expression determines directly 

that the list (a b c d e) has 5 elements: 

(recur count ([x '(abc de)]) 

(if (null? x) 

0 

( + (count (cdr x)) 1))) 

Two similar syntactic expressions provide nonstrict and and or logical opera

tions. They are nonstrict because they evaluate their subexpressions from left to 

right and return as soon as a true value (or) or false value (and) is found. Both 

expansions are expressed recursively: 

(and exp1) --+ exp1 
(and exp1 exp2 ••• ) --+ 

(if exp1 (and exp2 ••. ) ' 0) 

(or expl) --+ exp1 
(or exp1 exp2 ••• ) --+ 

(if exp1 't (or exp2 •.. )) 

Nonstrict or and and may be used to conditionally avoid unnecessary computa

tions, undefined computations, or side-effects. For example, the following function 

returns the reciprocal of its argument, except when its argument is zero, in which 

case it returns (): 

(lambda (x) 

(and (not (= x 0)) 

(/ 1 x))) 

The syntactic extensions when and unless are useful in place of if when (1) 

the value of the expression is not used (in other words, when the expression is 
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used for effect rather than value, as to perform an assignment), and (2) nothing 

at all is done if the predicate is false (when) or true (unless). In other words, some 

operation is to be performed only if some predicate is true or only if it is false. In 

such situations, when and unless convey more information than if. 

(when test exp ... ) --> 

(if test (begin exp ... ) '()) 
(unless test exp ... ) --> 

(if test ' () (begin exp ... ) ) 

Another syntactic extension, record, binds a set of variables to the elements 

of a list (this list, or record, must contain as many elements as there are variables; 

the variables name the fields of the record). This syntactic extension uses the 

apply function described earlier, which applies a function to a list of arguments: 

(record (var ... ) val exp ... ) ---> 

(apply (lambda ( var ... ) exp ... ) val) 

The following function uses record to help reverse a list of three elements: 

(lambda (x) 

(record (a b c) x 
(list c b a))) 

Two other syntactic extensions of interest provide syntax resembling case 

statements found in many other languages. These are cond and record-case. 

cond is a generalization of if, allowing multiple tests and consequents. cond may 

be defined in terms of if as follows: 

(cond [else exp ... ]) --> 

(begin exp ... ) 
(cond [test exp ... ] clause ... ) ---> 

(if test 
(be gin exp ... ) 
(cond clause ... ) ) 

This form is especially useful when one of several actions is to be taken depending 

upon the type or value of an expression, as in the following function that returns 

one of symbol, integer, list, string, or other, depending upon the type of its 

argument: 
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(lambda (x) 
(cond 

[(symbol? x) 'symbol] 
[(integer? x) 'integer] 
[(list? x) 'list] 
[(string? x) 'string] 
[else 'other])) 

The record-case syntactic extension is a special purpose combination of cond 

and record. It is useful for destructuring a record based on the "key" that appears 

as the record's first element: 

(record-case exp1 
[key var s exp2 ..• ] 

[else exp3 o o.]) --> 

(let ( [r expl]) 
(cond 

[(eq? (carr) •key) 

(record vars (cdr r) exp2 •. o )] 

[else exp3 •oo])) 

The variable r is introduced so that exp is only evaluated once. Care must be 

taken to prevent r from capturing any free variables as mentioned above in the 

description of the begin syntactic extension. record-case is convenient for parsing 

an expression, as in the following function that evaluates simple arithmetic ex

pressions consisting of integers, binary addition, binary multiplication, and unary 

minus: 

(rec calc 
(lambda (x) 

(if (integer? x) 
X 

(record-case x 
(+ (x y) (+ (calc x) (calc y))) 
(* (x y) (* (calc x) (calc y))) 
(- (x) (- 0 (calc x))) 
(else (error "invalid expression")))))) 

Finally, the define syntactic form is used throughout this dissertation to create 



29 

global variable bindings, variable bindings that are visible everywhere. A define 

expression has the form (define var exp), where var is a variable and exp is 

some Scheme expression. The effect of this define expression is to create a global 

binding of var to the value of exp. Because the exact mechanism supporting define 

is highly implementation-dependent, its expansion is not shown here, although it is 

nearly always defined as a syntactic extension (that is, it is rarely a core syntactic 

form). 

Often, recursive functions are simply made global by using define. Since global 

values are visible everywhere, this is an effective method for defining recursive 

functions. A recursive function defined with rec does not use a global name, so 

rec is used when a global definition is not needed or desired. 

2.2 Closures 

First-class functions, or closures, serve a variety of purposes in Scheme. Obviously, 

they are used as simple functions are used in traditional programming languages, 

but they are also used, for example, to implement abstract objects or to specify 

complex control flow. Often, closures are used in judicious combination with 

assignments to provide abstract objects with state. 

A closure retains the lexical bindings, so the x in the closure returned by the 

following expression is the x bound to 3 by the surrounding let, no matter where 

that closure is used: 

(let ( [x 3]) 

(lambda (y) 

(+X y))) 

Using define makes the closure visible globally, still with x bound to 3: 

(define addx 
(let ( [x 3]) 

(lambda (y) 

(+ X y)))) 

If addx is later applied to the argument 4 it will return 7 no matter where the call 

to addx occurs. In particular, the binding of x in the following expression has no 



30 

effect on the value returned by addx; the value is still 7: 

(let ( [x 17]) (addx 4)) 

It is the retention of lexical bindings that makes closures interesting. 

The following definition of kons demonstrates the use of closures to implement 

abstract objects: 

(define kons 
(lambda (kar kdr) 

(lambda (msg) 
(if (eq? msg 'kar) 

kar 
(if (eq? msg 'kdr) 

kdr 
(error "invalid message")))))) 

An invocation of kons binds the two variables kar and kdr to a pair of values and 

produces a closure that retains these bindings. Each time kons is invoked it creates 

a new closure that retains a new set of bindings. Each of these closures accepts 

the messages kar and kdr, returning the value of the variable kar or the variable 

kdr. For example, the expression: 

(let ([p1 (kons 1 2)] [p2 (kons 'a 'b)]) 
(list (p1 'kar) (p2 'kdr))) 

returns (1 b). 

Because the lexical bindings (the state) of a computation are stored within a 

closure, closures may be used to return to a certain state to finish a computation. 

This allows, for instance, the return of multiple values from a given computation. 

The following function, split, takes a list and a function and passes the first and 

second elements of the list to the function: 

(define split 
(lambda (pair return) 

(return (car pair) (cadr pair)))) 

(split '(a b) (lambda (x y) (cons y x))) returns (b a). Another example is 

the function integer-divide, which "returns" to its third argument the quotient 

and remainder of two numbers: 



(define integer-divide 
(lambda (x y return) 

(return (quotient x y) (remainder x y)))) 

(integer-divide 13 4 cons) returns (3 . 1). 
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More than one return function may be passed along to provide, for example, 

both "success" and "failure" returns. For example, integer-divide might return 

the error message "divide by zero" to a failure closure, freeing the caller from 

any explicit tests whatsoever: 

(define integer-divide 
(lambda (x y success failure) 

(if (= y 0) 

(failure "divide by zero") 
(success (quotient x y) (remainder x y))))) 

The call: 

(integer-divide 13 4 cons (lambda (x) x)) 

returns (3 . 1), while: 

(integer-divide 13 0 cons (lambda (x) x)) 

returns "divide by zero". 

This technique of passing explicit return functions is called continuation

passing-style (CPS). This is similar to but not the same as the use of continu

ations discussed in Section 2.4. Here the continuation is explicitly created by the 

program, not obtained from the system with call/cc. 

Delayed or lazy evaluation is also possible using closures. The body of a closure 

does not execute until after the closure is invoked. To delay a computation until 

some future time, all that must be done is to create a closure with no arguments 

(often called a thunk, a term used to describe Algol60 by-name parameters) and to 

apply this closure at some future time. This is a consequence of applicative order 

evaluation; the body of the function cannot be evaluated until (unless) the function 

is applied. For example, suppose that the set of core syntactic forms did not 

include if. Suppose instead that a primitive function choose of three. arguments 
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is provided that returns its second or third argument depending on the value of 

its first argument. That is, (choose 't 'a 'b) returns a, and (choose '0 'a 'b) 

returns b. 

One possible definition for if as a syntactic extension in terms of choose might 

be: 

(if test then else) ---> 

(choose test then else) . 

However, this would result in both of the then and else expressions being evaluated 

no matter what the value of test. This would usually be a disaster (consider the 

use of if to check for zero divisors or to check for the base case of a recursive 

routine). Instead, the evaluation of then and else must be delayed until one or the 

other is chosen: 

(if test then else) ---> 

((choose test (lambda () then) (lambda () else))) 

choose picks between the then and else thunks, and the result is applied, yielding 

the correct behavior. 

Incidentally, the primitive function choose would not be needed if the true 

and false values were defined differently. For example, if true were defined as 

(lambda (x y) x) and false as (lambda (x y) y), if could simply be: 

(if test then else) ---> 

((test (lambda () then) (lambda () else))) 

(Of course, if true and false were defined this way in a Scheme system, primitive 

functions such as eq? would need to return one of these two values.) 

Expanding on the idea of delaying evaluation, closures may be used to create 

seemingly infinite structures. Friedman and Wise proposed in 1976 that "Cons 

should not evaluate its arguments." [Fri76]. They proposed delaying the evalu

ation of its arguments until they are needed by a primitive operation. Using a 

similar notion, it is possible to define a special object, commonly called a stream, 

that is essentially a list whose tail is delayed, i.e., its tail is a thunk. The stream 

object can implement lists that appear infinite. 



The syntactic extension stream defined below creates a stream object: 

(stream exp1 exp2) ~ 
(cons exp1 (lambda() exp2)), 
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stream-ref returns the nth element of a stream for some streams and index 

n. It traverses the stream by applying its cdr to force evaluation: 

(define stream-ref 
(lambda (s n) 

(if (zero? n) 
(car s) 
(stream-ref ((cdr s)) (- n 1))))) 

It is now straightforward to write a function that generates a stream of integers 

that increase in magnitude and alternate between positive and negative: 

(define alternate 
(lambda (n) 

(stream n (alternate (- 0 (+ n 1)))))) 

Notice that alternate is recursive but has no explicit base case! The implicit base 

case is n = 0. stream-ref can now be used to obtain a particular element of an 

alternating series, i.e., (stream-ref (alternate 1) 10) returns •10. Of course, we 

can generalize the function alternate to create many other kinds of series. 

The following section on assignments demonstrates more uses for closures in 

combination with assignments. In particular, a modified stream object is given 

that "remembers" what has been computed so that the elements need not be 

recomputed every time the stream is accessed. 

2.3 Assignments 

Assignments in Scheme are not usually necessary for the same purposes they serve 

in traditional languages. Well-written programs in traditional languages employ 

assignments to initialize variables, to update control variables in loops, and to 

communicate among procedures through shared variables, often because more than 

one value must be returned from a called routine. In Scheme, initialization occurs 

at function application (or in let) at the same time as the binding (declaration) 
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occurs, control variables to a loop are the parameters passed to the tail-recursive 

function that implements the loop, and return of multiple values is accomplished 

by returning a list of values or by using continuation-passing-style. 

Without these traditional uses for assignments, well-written Scheme programs 

rarely require set! . There are, however, enough interesting uses for set! that the 

language would be less powerful without it. This section presents a few of these 

uses. 

2.3.1 Maintaining State with Assignments. The abstract kons object of 

Section 2.2 supports kar and kdr operations but not the corresponding set-kar! 

(for set-car!) and set-kdr! (for set-cdr!) operations. Support of these additional 

operations would require modification of the state within the closure implementing 

the abstract object. The following version of kons uses set! to maintain this local 

state: 

(define kons 
(lambda (kar kdr) 

(lambda (msg) 
(cond 

[(eq? msg 'karl karl 
[(eq? msg 'set-kar!) 
(lambda (x) (set! kar x))] 

[(eq? msg 'kdr) kdr] 
[(eq? msg 'set-kdr!) 

(lambda (x) (set! kdr x))] 
[else (error "invalid message")])))) 

Since the messages set-kar! and set-kdr! require an argument (the new value), 

they return a closure that actually performs the assignment. This new kons object 

is sufficiently powerful to implement Scheme pairs, given the following definitions: 

(define cons kons) 
(define car 

(lambda (x) 
(x 'kar))) 

(define set-car! 
(lambda (x y) 

((x 'set-kar!) y))) 

(define cdr 



(lambda (x) 
(x 'kdr))) 

(define set-cdr! 
(lambda (x y) 

((x 'set-kdr!) y))) 
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(As with the redefinition of true and false suggested above, redefining cons and 

functions related to it would necessitate many changes in the Scheme system, 

including modifying the reader to create these structures when it sees list input.) 

Local state changes may be implicit rather than explicit as they are with the 

set-karl and set-kdr! operations. The following stack object supports push, pop, 

and empty? operations by maintaining a local stack (list). (push x) adds a new 

element, x, to the top of the stack, (pop) returns the top element, removing it 

from the stack, and (empty?) returns true if and only if the stack is empty. 

(define stack 
(lambda () 

(let ( [s ' ()]) 
(lambda (msg) 

(record-case msg 
[(empty?) (null? s)] 
[(push x) (set! s (cons x s))] 
[(pop) (let ([x (car s)]) (set! x (cdr s)) x)] 
[else (error "invalid message")]))))) 

Without the ability to create and modify state, it would be impossible to 

accurately model objects such as the kons and stack objects. Closures allow the 

creation of objects with state local to the object, and assignments allow this state 

to be changed. Many problems do not require this ability, but enough interesting 

problems exist where state is required that to omit assignments from the language 

would significantly lessen its expressive power. The lazy streams described next 

offer a solution to the problem of making streams efficient that would require some 

other language support (such as lazy evaluation) if not for assignments. 

2.3.2 Lazy Streams. The streams introduced in Section 2.2 have the property 

that each time the stream is traversed, the values in the stream are recomputed. 

Needless to say, this can be terribly inefficient. A lazy stream does not recompute 
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these values, but saves them for future use. It saves them by altering the list 

structure of the stream as it traverses it, using set-cdr!. These alterations are 

actually performed by stream-ref, so stream is the same as before: 

(stream exp1 exp2) ~ 
(cons exp1 (lambda () exp2)) 

The new stream-ref checks to see if the cdr is still a closure, i.e., this part of the 

stream has not yet been traversed. If so, it computes the new value of the cdr and 

changes the cdr to this value, before continuing: 

(define stream-ref 

(lambda (s n) 

(if (zero? n) 

(car s) 

(if (pair? (cdr s)) 

(stream-ref (cdr s) (- n 1)) 

(let ([v ((cdr s))]) 

(set-cdr! s v) 

(stream-ref (cdr s) (- n 1))))))) 

The examples given so far use assignments to maintain state local to a sin

gle function. Assignments are also useful for maintaining state local to a set of 

closures or abstract objects, or to allow communication among cooperating tasks 

(coroutines). Often, assignments may be avoided and the resulting code may be 

clearer without them, but sometimes just the opposite is true. 

2.4 Continuations 

The continuation-passing-style (CPS) examples of the Section 2.2 demonstrate the 

use of closures as continuations to alter the flow of control in a Sclleme program. 

In CPS, the programmer must explicitly create the continuation closures and ex

plicitly invoke one to return a result (it would not make sense in the examples 

of the previous chapters to simply return without invoking one of the "return" 

closures). While CPS is a powerful programming tool with many uses, Scheme 

provides an alternative that requires less explicit programming and is sometimes 

more appropriate than CPS. Using the syntactic form call/cc, a program can 
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obtain its own continuation. This continuation is a Scheme closure that may be 

invoked at any time to continue the computation from the point of the call/cc. It 

may be invoked before or after the computation returns; it may be invoked more 

than one time. 

One of the simplest uses is to allow nonlocal exits, as in the following definition 

of reciprocals; which takes a list of numbers and returns a list of their reciprocals. 

If it finds one of the numbers to be zero, it returns immediately with an error 

message: 

(define reciprocals 
(lambda (1st) 

(call/cc 
(lambda (exit) 

(recur loop ([1st 1st]) 
(if (null? 1st) 

·o 
(if (= (car 1st) 0) 

(exit "divide by zero") 
(cons (/ 1 (car 1st)) 

(loop (cdr 1st)))))))))) 

With this definition, (reciprocals '(1 2 3 4)) returns (1 1/2 1/3 1/4), while 

(reciprocals '(0 1 2 3)) returns "divide by zero". 

The reciprocals function demonstrates the use of outward continuations to 

return control "outward" to an expression before that expression has completed. In 

other words, the code that used the call/cc expression is still active and waiting for 

an answer. Continuations can also return control "inward"; an inward continuation 

returns control to an expression that has already completed; the computation is 

restarted from the call/cc expression. In general, the same continuation may be 

invoked to return control outward or inward an arbitrary number of times. 

Inward continuations can easily produce infinite loops: 

(let ([comeback (call/cc (lambda (c) c))]) 
(comeback comeback)) 

The call/cc expression creates a continuation and passes it to the closure created 

by (lambda (c) c). The closure simply returns this continuation, which then 



38 

becomes the value of comeback. The application of this continuation to itself 

returns control to the call/cc with the continuation as its value (again). This 

results in comeback being bound to the continuation (again), and the whole process 

repeats forever. 

If the code were changed slightly so that the continuation is passed a different 

value, say 3: 

(let ([comeback (call/cc (lambda (c) c))]) 
(comeback 3)), 

comeback would be bound to 3 the second time through and the program would 

abort with an error message, something like "attempt to apply nonclosure 3". 

The logical next step is to replace 3 with a closure, such as the identity closure 

(lambda (x) x): 

(let ([comeback (call/cc (lambda (c) c))]) 
(comeback (lambda (x) x))) 

Now, comeback will be bound to the identity closure the second time. This closure 

will be applied to the identity closure, which does not return control to the call/cc 

but rather simply returns its argument. So the above expression does terminate, 

and returns the identity closure. 

Incidentally, this expression may be simplified to: 

((call/cc (lambda (c) c)) (lambda (x) x)) 

and applied to a value of some sort: 

(((call/cc (lambda (c) c)) (lambda (x) x)) 'HEY!). 

Most people guess this returns HEY! even if they cannot figure out why. This is 

probably the most confusing Scheme program of its size! 

In addition to providing interesting puzzles for the mind, inward continuations 

have practical uses. One example is the creation and use of coroutines [Hay86]. 

Coroutines are similar to functions, differing in two important ways. First, they 

do not usually return a value; rather, they simply stop executing. Second, they 

can be restarted from where they left off. Typically, two or more coroutines will 
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cooperate with one another, each executing for a time then stopping and restarting 

the next. 

Here is a simple coroutine syntactic extension: 

(coroutine var exp) --4 

(define var 
(let ([resume 

(lambda (next) 
(call/cc 

(lambda (c) 
(set! var (lambda () (c))) 
(next))))]) 

(lambda () exp))) 

An expression of the form (coroutine var exp) cause a new coroutine to be cre

ated and bound to the variable var. Within the body exp of each coroutine, a 

different resume function is bound to the variable resume. Whenever the coroutine 

wishes to pass control to another coroutine, it invokes its own resume function. 

The resume function saves the continuation of the current continuation as the new 

value for var (wrapped in a thunk since it takes no arguments). So var is initially 

bound to a function that starts the coroutine and is thereafter bound to a function 

that continues the execution of the coroutine. 

2.5 A Meta-Circular Interpreter 

This section presents a meta-circular interpreter for Scheme. A meta-circular in

terpreter for Scheme is an interpreter written for Scheme, in Scheme. The Scheme 

system running the interpreter may be thought of as being at the meta level rel

ative to the Scheme system implemented by the interpreter. It is possible to run 

yet another interpreter within the meta-circular interpreter. The original meta 

level would become the meta-meta level. In theory, this process could be carried 

out indefinitely, providing an infinite tower of interpreters [Smi82]. 

The purpose of presenting this interpreter here is twofold. First, it helps to de

scribe Scheme, providing a sort of operational semantics for the language. Second, 
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it serves as a basis from which the code presented for the implementation models 

of Chapters 3, 4, and 5 can grow and with which that code can be compared. 

While it does serve as a tool for better understanding the language, the meta

circular interpreter does not provide a concrete semantics for the language [Rey72 J, 
nor a viable base for an implementation unless you already have a Scheme system. 

Because it relies on the underlying Scheme system (at the meta level) for the 

support of closures and continuations and the proper treatment of tail calls, it does 

not demonstrate any of the techniques for implementing these features directly. 

Lexical variable bindings are recorded in an environment structure. The envi

ronment is a list of pairs of lists, the two lists in each pair being a list of variables 

and a corresponding list of values. During the evaluation of any expression, the 

list of pairs corresponds to the nesting of the lambda expressions surrounding the 

expression; the first pair of lists contains the bindings for the closest enclosing 

lambda, the second contains the bindings for the next enclosing lambda, and so on. 

This environment representation is often referred to as a rib cage because of its 

structure, and the list of variables and list of values are referred to as variable 

and value ribs. This structure is used as well in Chapter 3 and is described more 

completely there. 

Closures in interpreted code are implemented by closures in the interpreter. 

The lexical environment and body are present in an interpreted closure because 

they are lexically visible in the closure created by the interpreter. Continuations 

are also implemented by continuations in the interpreter. 

Here is the code. First, meta takes the input expression and passes it on to 

exec along with an empty environment: 

(define meta 

(lambda (exp) 

(exec exp '()))) 

exec takes an expression exp and an environment env as input, and performs 

the evaluation. The cond and record-case syntactic forms within the code parse 

the expression. The three cond clauses correspond to variables, list-structured 
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forms, and other objects. Each of the record-case clauses but the last (else) 

clause is for for a particular core syntactic form; the else clause is for applications. 

(define exec 
(lambda (exp env) 

(cond 
[(symbol? exp) (car (lookup exp env))] 
[(pair? exp) 
(record-case exp 

[quote (obj) obj] 
[lambda (vars body) 

(lambda (vals) 
(exec body (extend env vars vals)))] 

[if (test then else) 
(if (exec test env) 

(exec then env) 
(exec else env))] 

[set! (var val) 
(set-carl (lookup var env) (exec val env))] 

[call/cc (exp) 
(call/cc 

(lambda (k) 
((exec exp env) 
(list (lambda (args) (k (car args)))))))] 

[call/cc (exp) (call/cc (exec exp env))] 
[else 
((exec (car exp) env) 

(map (lambda (x) (exec x env)) (cdr exp)))])] 
[else exp]))) 

When the expression is a variable, the interpreter returns the value of this 

variable in the current environment by calling the function lookup. Since lookup 

is used for both variable reference and variable assignment, it returns the list con

taining the value as its first element, so that it may be changed with set-car!. The 

function lookup traverses the environment structure to find the variable, returning 

the corresponding list tail: 

(define lookup 
(lambda (var e) 

(recur nxtrib ([e e]) 
(recur nxtelt ([vars (caar e)] [vals (cdar e)]) 

(cond 
[(null? vars) (nxtrib (cdr e))] 
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[(eq? (car vars) var) vals] 
[else (nxtelt (cdr vars) (cdr vals))]))))) 

When the expression is of the form (quote obJ"), or just obj when obj is not a 

symbol or pair, the interpreter simply returns obj. 

When the expression is of the form (lambda vars body), the interpreter creates 

a closure within the scope of the.variables bound to the body, the variables, and the 

environment. Later, when this closure is applied, it extends the environment with 

the variables and the values it is passed and then recursively evaluates the body 

using this new environment. The function extend builds the new environment by 

creating a pair from the variable and value ribs and adding this pair to the old 

environment: 

(de:fine extend 
(lambda (env vars vals) 

(cons (cons vars vals) env))) 

For an i:f expression, (i:f test then else), the interpreter recursively evaluates 

either test or else depending on the result of recursively evaluating test. 

A set! expression, (set! var val), alters the environment structure to change 

the binding of var to the result of recursively evaluating val. 

For a call/cc expression of the form (call/cc exp), the interpreter recursively 

evaluates exp and invokes call/cc to apply the resulting closure (it must be a 

• closure) to the current continuation. 

Finally, for an application of the form (jcn arg1 ... argn), the interpreter 

applies the result of evaluating fen (which must be a closure) to a list of the results 

of evaluating arg1 . . . argn. As explained above, this results in the evaluation of 

the body of the closure. 



Chapter 3: The Heap-Based Model 

This chapter describes a heap-based implementation model for Scheme. Heap

based models have been used in many Scheme implementations, including Scheme-

84 [Fri84], C-Scheme [Dyb83] an~ Scheme-311 [Cli84]. These systems are all essen

tially the same as the ones described in the first report on Scheme [Sus75], though 

each uses different strategies for compilation and interpretation. 

The first section of this chapter describes the motivation behind and the prob

lems with the heap-based model. The second section presents the data structures 

needed to support the heap-based model, and the third describes the operation 

of this model. This is followed in the fourth section by a compiler that gener

ates code for the heap-based model and a virtual machine that specifies how this 

code is executed. Finally, the fifth section presents a common improvement that 

substantially cuts the execution overhead of most programs and presents a modi

fied compiler and virtual machine that serve as a basis for those presented in the 

following chapter. 

This chapter together with the two that follow describe a sequence of models 

along with translators (compilers) and evaluators that implement these models. 

Each model builds upon the previous ones, and each translator and evaluator uses 

what it can from previous translators and evaluators. Working Scheme code is 

given for each of the translators and for the evaluators of this chapter and the 

next (Chapter 5 uses a different method for describing the meaning of its low-level 

code). Not all of the models support the full Scheme language; the ones that do not 

are present because they help focus the reader's attention on the most important 
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details, they help to highlight problems with supporting particular features, and 

they may also be useful for languages differing from Scheme in certain ways. 

3.1 Motivation and Problems 

In a typical implementation of a lexically-scoped language such as Algol 60, C or 

Pascal, a true stack1 is used to record call frames [Aho77, Ran64]. Each call frame 

contains a return address, variable bindings, a link to the previous frame, and 

sometimes additional information. The variable bindings are the actual parameters 

of the called routine and local variables used by the called routine. A call frame 

is typically built by the calling routine, or caller. The caller pushes the actual 

parameters on the stack, a link to its stack frame, the return address, and jumps 

to the called routine, or callee. The callee augments the frame by pushing values 

·of local variables. If the callee in turn calls another routine, it creates a new stack 

frame by pushing the actuals, frame link, and return address, and so on. When 

the callee has reached the end of its code, it returns to the caller by resetting the 

frame link, removing the frame, and jumping to the saved return address. In this 

manner, the state of each active call is recorded on the stack, and this state is 

destroyed once the call has been completed. 

Because of Scheme's first-class closures and continuations, this structure is 

not sufficient. First-class closures are capable of retaining argument bindings 

indefinitely. In particular, the closure and the saved bindings may be retained 

in the system even after the call that created the bindings has returned and its 

stack frame has been removed from the stack. For this reason, it is not possible to 

store argument bindings in the stack frame. Instead, a heap-allocated environment 

is created to hold the actual parameters, and a pointer to this environment is 

1 The term "true stack" here refers to the typical stack provided by modern 
sequential computer architectures. The operations provide (at least) the ability to 
push items onto the top of the stack, index into the stack to retrieve an item, and 
remove items from the top of the stack. The ability to maintain multiple pointers 
into the stack is also assumed. 
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placed in the call frame in their place. When a closure is created, a pointer to this 

environment is placed in the closure object. 

Moving the variable bindings into the heap saves the bindings from being 

overwritten as the stack shrinks and grows. With the call frames (minus variable 

bindings) still stored on the stack, the only additional overhead in performing a 

function call is the allocation of the environment. Howevet, first-class continua

tions require heap allocation of the call frames as well as the environment. This 

is because the natural implementation of a continuation is to retain a pointer into 

the call stack. Recall that a continuation is a closure that, when invoked, returns 

control to the point where the continuation was obtained. Because the contin

uation is a first-class object, there is no restriction on when it may be invoked. 

In particular, it may be invoked even after control has returned from the point 

where it was obtained. If so, the stack may have since grown, overwriting some of 

the stack frames in the continuation. The natural solution, then, is to maintain 

a linked list of heap-allocated stack frames. As the stack grows, a new frame is 

allocated in an unused portion of the heap so that the old stack frames remain 

intact. 

The major problem with heap allocation of call frames and environments is 

the overhead associated with the use of a heap. This overhead includes the direct 

cost of finding space in the.heap when building the call frames and environments, 

and of following links instead of indexing a stack or frame pointer when accessing 

pieces of the frame or environment. The overhead also includes the indirect cost 

of storage reclamation to deallocate and reuse stack frames and environments and 

the indirect cost of using excessive amounts of memory2• Furthermore, use of 

2 One might expect this not to be a problem on virtual memory computers 
with huge address spaces, but it is indeed a problem. The performance of virtual 
memory systems is directly related to locality of reference; the fewer pages of 
memory used over a period of time, the fewer page faults. A stack-based model 
uses and reuses the same stackframes as calls and returns are made. A heap-based 
model, however, allocates a new stack frame each time, so unless these frames are 
reclaimed frequently (usually implying garbage collection overhead), new pages 
are constantly being accessed. 
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the heap rather than a stack prevents the use of commonly available hardware 

or microcode-supported stack push, pop and index instructions and the use of 

function call and return instructions. 

3.2 Representation of Data Structures 

In the heap-based system, essentially five different data structures support the core 

language. These are environments, call frames, the control stack, closures, and 

continuations. The structure of these objects is critical in the design of a Scheme 

system, since they are involved in every computation performed by the Scheme 

system. These structures are described here along with their representation in 

Scheme. 

3.2.1 Environments. An environment is built from pairs created with cons. 

The structure of an environment resembles a rib cage, since the environment is a 

list of pairs of lists. Each element of the top level structure contains the bindings 

established by one closure; multiple sets of bindings are needed when the code 

consists of nested lambda expressions. Each element contains two lists: a list of 

variables (the variable rib) and a corresponding list of values (the value rib). As a 

simple example, consider the following code containing nested lambda expressions: 

((lambda (a b) . 
((lambda (c) 

0 1) 

((lambda (d e f) body) 3 4 5)) 
2)) 

Assuming that the environment is empty when the expression is evaluated, the 

environment upon evaluation of the body of the outermost lambda expression is a 

list containing one pair of the variable rib (a b) and the value rib (0 1). Printed 

in Scheme dotted-pair notation, this structure looks like ((a b) . (0 1))3. 

3 The Scheme printer avoids using the dotted-pair notation wherever possible, so 
it would actually print the pairs of ribs without the ".",as ((a b) 0 1). Regardless 
of how the structure prints, the car of this pair is (a b) and the cdr is (0 1). This 
dissertation uses these notations interchangeably. 
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Once inside the next lambda expression, the environment consists of two 

pairs, the first containing the variable rib (c) and the value rib (2), and the 

second being the environment structure from above. ,This structure looks like 

(((c) . (2)) ((a b) . (0 1))). Finally, inside the innermost lambda expression 

(that is, during the evaluation of body), the environment looks like: 

( ( (d e f) . (3 4 5)) 

((c) . (2)) 

((a b) . (0 1))). 

Figure 3.1 contains a diagram of the typical internal representation of this envi-

ronment. 

Note that the innermost bindings are first in the list. This occurs naturally 

with the use of cons, which adds an element to the front of a list; here cons takes 

the new pair of ribs and adds it to the front of the existing environment. This 

structure makes sense anyway in terms of execution efficiency, since it is common 

that most references within a particular lambda expression are to the parameters 

of that lambda expression, that most other references are to the next level out, and 

so on. 

The improvement described in Section 3.4 allows the variable ribs to be 

dropped from the environment structure; the environment becomes a list of value 

ribs. 

3.2.2 Frames and the Control Stack. Frames are used to record the state of 

a pending computation while performing another. They are most often created 

when one function calls another; the first is suspended waiting for the value of 

the second. Any information required to continue evaluation of the first function 

must be recorded in the frame. Depending upon the implementation, frames may 

be needed for other operations as well, although such frames are not used here. 

Call frames are used throughout this chapter and the next, and the particular 

format varies from model to model. However, a call frame must always contain a 

"return address" or expression to be evaluated next, the environment or equivalent 
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description of the active variable bindings, a pointer to the previous frame, and 

any other state required to continue the computation. 

In the heap-based system, call frames are simply lists that contain four fields. 

The first field is the expression field. This field determines the next expression 

to be evaluated. It corresponds to a return address (saved program counter or 

instruction counter) in a standard computer architecture. The second field is the · 

environment field. This contains the currently active environment. The third field 

is the rib field. During the evaluation of an application, this field contains a list 

of the arguments that have been evaluated so far. The fourth and final field holds 

the next frame. 

The control stack in a heap-based system is the linked structure of the current 

frame, the previous frame, its previous frame, and so on. It resembles a linked list, 

where the fields of each frame are the elements and linking is internal through the 

"next frame" pointer. It is reasonable to structure the control stack so that the 

links are external to the frames as long as no extra storage overhead or overhead 

in following links is introduced. 

3.2.3 Closures and Continuations. Closures in a heap-based system are simple 

objects that combine the text or executable part of a function with the current. 

environment. Unless the improvement of Section 3.5 is used, the variables are 

needed as well. In the system of Section 3.4, then, a closure object is a list of three 

elements: a function body, an environment, and a list of variables. For example, 

the closure returned by: 

((lambda (x) 
(lambda (y) (cons x y))) 

'a) 

would look something like: 

((cons x y) ((x) . (a)) (y)) 

except that the actual body would be a compiled version of (cons x y). In the 

system of Section 3.5 a closure is a list of only two elements, an environment and 
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a function body. 

A continuation is a closure that contains enough information to continue a 

computation from a given point. Essentially this means that it returns to the point 

where call/cc created it. The value it returns is its own argument. To realize 

this behavior in a heap-based system, the entire stack, i.e., the top frame, must 

be saved somehow. A continuation is simply a special closure object containing a 

reference to the current frame (and hence the entire control stack). 

It would be possible to tag closures to set the special continuation closures 

apart from normal closures, and explicitly check this tag when applying a closure 

to its arguments. However, performing this check would be inefficient; continuation 

closures are infrequently invoked relative to normal closures. Instead, continuation 

closures have the same structure as normal closures, but with a body that, when 

executed, restores the saved stack and returns the continuation's argument to the 

routine that created the continuation. 

3.3 Implementation Strategy 

This section describes one strategy for the implementation of a heap-based system 

using the data structures described in the previous section. Many different strate

gies are possible; the one given here is intended to be simple to understand and 

to generalize easily to the systems of the following chapter. It does not exactly 

model any used by the implementations mentioned at the start of this chapter. 

Computation is performed in an iterative fashion using a set of registers to 

hold the state of the computation. An iterative approach is necessary because the 

more straightforward recursive approach of the meta-circular interpreter presented 

in Chapter 2 cannot properly support continuations or tail calls. The evaluator 

must have explicit access to the state of the computation in order to save this state 

in a continuation, and recursion makes some of this state implicit; this state is on 

the meta level and not available directly to the implementation. Tail calls cannot 
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be properly supported unless the implementation (at the meta level) supports 

them properly. 

The strategies of this chapter use five registers: 

a: the accumulator, 

x: the next expression, 

e: the current environment, 

r: the current value rib, and 

s: the current stack. 

The paragraphs below describe the use of these registers. 

The accumulator holds the last value computed by a value-returning operation 

such as loading a constant or referencing a variable. During function application 

it holds the value of each of the arguments in turn before they are saved on the 

value rib, and the function value before it is applied. During the evaluation of 

an if expression it holds the value of the test expression; if uses it to determine 

which of the two other subexpressions to evaluate. The value of the accumulator 

when a computation finishes is the value of the computation. 

The next expression specifies the next expression to evaluate, such as the load

ing of a constant, the creation of a closure, the assignment of a closure, or the 

application of a closure. The expression is almost the same as a Scheme source 

expression, except that it has been compiled to make the evaluation more efficient4• 

The current environment holds the active lexical bindings. A new environment 

is established upon application of a closure from the closure's saved environment 

and the arguments to the closure. Variable references, variable assignments, and 

4 It would be reasonable to avoid the compilation- step and use a source-level 
interpreter with the same registers given here. This is often done with heap-based 
interpreters because the overhead of interpretation is not that great compared with 
the overhead of allocating frames and environments and the reference of variables. 
A compiler is used here for two reasons: first, the modification given in Section 3.5 
requires a preprocessing step anyway, and second, compilation is more important 
in the stack-based models presented in the following chapter, so for uniformity we 
use a compilation strategy throughout. 
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lambda expressions, i.e., creation of closures, use the current environment. Because 

the environment is destroyed by function application, the environment is saved in 

a call frame before the application takes place and restored upon return from the 

application. 

During evaluation of an application, the current value rib holds a list of ar

guments evaluated so far. As with any expression, when the computation of an 

argument expression completes, its value is in the accumulator. This value is added 

to the current rib using cons. Once all of the argument values and the closure value 

have been computed, the current rib combines with the closure's environment to 

produce the new current environment. Because the current rib is destroyed by 

the evaluation of an application, it is saved along with the environment in the call 

frame before the application takes place. 

Finally, the current stack holds the top call· frame. Call frames are added to the 

stack before the start of an application, and removed upon return from a closure. 

As noted earlier, a call frame consists of a saved environment, a saved value rib, a 

saved expression that corresponds to a return address, and a link to the previous 

call frame. When a call frame is removed from the current stack, these saved 

values are restored to the current environment, current rib, and next expression 

registers. The current stack itself may be saved at any time in a continuation 

object by the evaluation of a call/cc expression. 

It may already be apparent how the evaluation of most Scheme expressions 

takes place from the description of the registers. However, some aspects of this 

evaluation, especially with respect to applications, have not been explained. The 

evaluation strategies for constants, variables, applications, and the core syntactic 

forms in terms of how they affect the registers is given in the paragraphs below. 

A variable reference changes the accumulator to the value of the variable found 

in the current environment. (Also, the next expression x is changed to a new 

expression determined by the compiler. The other operations change the next 

expression x in the same way except as noted below.) 
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Constants and quote expressions are treated in the same manner; both cause 

a specific object to be loaded into the accumulator. 

A lambda expression results in the creation of a closure. This closure is placed 

into the accumulator. 

Evaluation of an if expression occurs logically in two steps. First, the com

piler generates the appropriate code to leave the result of the test expression in the 

accumulator before the if operation is evaluated. The if operation tests the accu

mulator and changes the next expression to one of two expressions corresponding 

to the "then" or "else" parts of the if expression. 

A set ! destructively alters the structure of the current environment to change 

the value of the variable it assigns. As with i:f, the compiler arranges for the value 

it needs to be in the accumulator prior to the set! operation. 

Evaluation of a call/cc expression results in the creation of a new call frame 

to save the current environment, current rib, and the expression to return to. The 

new stack is then captured in a continuation object, which is added to the current 

rib (which is the empty list, if all is working right). The next expression is updated 

to an expression that first evaluates the function expression and then applies the 

resulting closure to the current rib. When this continuation is subsequently in

voked, the saved stack is restored, the top frame is removed, and the argument to 

the continuation is placed in the accumulator. 

Evaluation of an application occurs in several steps. The first step is the 

creation of a new stack frame to save the current environment, the current rib, 

and the return expression of the application. Also during this step the current rib 

is reinitialized to the empty list. Then each of the arguments is evaluated in turn; 

their values are added to the current rib. The function expression is evaluated and 

its value left in the accumulator. Finally, the closure in the accumulator is applied 

to the argument values in the current rib. Upon application, the new environment 

formed by combining the closure's environment with the current rib is placed in 

the current environment register and the closure's body is placed in the current 
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expression register. When the closure returns, the top stack frame is removed and 

the saved values restored (the return value is in the accumulator when the closure 

returns; it is left there). 

There is one anomaly in the evaluation of call/cc and application expressions 

regarding tail calls. In order to optimize tail calls, i.e., in order not to build up 

the control stack on a tail call, a new call frame is not added to the stack. The 

purpose in adding a call frame is to save the environment, value rib, and return 

expression for the code that needs them after the call; in this case the only code 

after the call would be a return, which would merely restore the next set of values 

immediately. 

3.4 Implementing the Heap-Based Model 

This chapter and the two that follow demonstrate each model with a complete 

compiler and a virtual machine (VM) that executes the compiled code or (in 

Chapter 5) a semantic description of the low-level language produced by the com

piler. In this chapter and in Chapter 4, each compiler transforms input Scheme 

expressions into an "assembly code" for the corresponding virtual machine. This 

assembly code is not in the linear form that one expects assembly language code to 

be in, with labels and jumps for sequencing. Rather, it is in the form of a directed, 

acyclic graph that may be processed without the need for labels and jumps. It 

would be a simple matter to convert this form into a more traditional assembly 

language. Alternatively, the virtual machine assembly code could be assembled 

into byte codes for a more compact and faster virtual machine, or perhaps for a 

hardware or microcode implementation of the virtual machine. 

In this section, the compiler performs a relatively simple transformation, and 

the virtual machine is itself relatively simple. The compilers and virtual machines 

that follow. are somewhat more complex. 
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3.4.1 Assembly Code. The assembly code for the VM described in this section 

consists of 12 instructions each with zero or more operands. The instructions are 

described below. 

(halt) halts the virtual machine. The value in the accumulator is the result of 

the computation. 

(re:f er var x) finds the value of the variable var in the current environment, and 

places this value into the accumulator and sets the next expression to x. 

(constant obj x) places obj into the the accumulator and sets the next expression 

to x. 

(close vars body x) creates a closure from body, vars and the current environment, 

places the closure into the accumulator, and sets the next expression to x. 

(test then else) tests the accumulator and if the accumulator is nonnull (that is, 

the test returned true), sets the next expression to then. Otherwise test sets the 

next expression to else. 

(assign var x) changes the current environment binding for the variable var to 

the value in the accumulator and sets the next expression to x. 

(conti x) creates a continuation from the current stack, places this continuation 

in the accumulator, and sets the next expression to x. 

(nuate s var) restores s to be the current stack, sets the accumulator to the value 

of var in the current environment, and sets the next expression to (return) (see 

below). 

(:frame x ret) creates a new frame from the current environment, the current rib, 

and ret as the next expression, adds this frame to the current stack, sets the current 

rib to the empty list, and sets the next expression to x. 

(argument x) adds the value in the accumulator to the current rib and sets the 

next expression to x. 

(apply) applies the closure in the accumulator to the list of values in the current 

rib. Precisely, this instruction extends the closure's environment with the closure's 
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variable list and the current rib, sets the current environment to this new environ

ment, sets the current rib to the empty list, and sets the next expression to the 

closure's body. 

(return) removes the first frame from the stack and resets the current environ

ment, the current rib, the next expression, and the current stack. 

3.4.2 Translation. The compiler transforms Scheme expressions into the assem

bly language instructions listed above. Some Scheme expressions, such as variables 

and constants, are transformed into a single assembly language instruction. Oth

ers, such as applications, are turned into several instructions. 

The compiler looks for each type of expression in turn and converts it into 

the corresponding instructions. The inputs to the compiler are the expression to 

compile and the next instruction to perform after the expression completes. The 

next instruction may be thought of as the continuation of the expression (not to 

be confused with continuation objects returned by call/cc). 

The code for the compiler appears below. Note the use of cond and record-case 

to parse the expression; these are used in all of the compilers in this dissertation. 

They are described along with the other Scheme syntactic forms in Chapter 2. 

(define compile 
(lambda (x next) 

(cond 
[(symbol? x) 
(list 'refer x next)] 

[(pair? x) 
(record-case x 

[quote (obj) 
(list 'constant obj next)] 

[lambda (vars body) 
(list 'close vars (compile body '(return)) next)] 

[if (test then else) 
(let ([thenc (compile then next)] 

[elsec (compile else next)]) 
(compile test (list 'test thenc elsec)))] 

[set ! ( var x) 
(compile x (list 'assign var next))] 



[call/cc (x) 
(let ([c (list 'conti 

(list 'argument 
(compile x '(apply))))]) 

(if (tail? next) 
c 
(list 'frame next c)))] 

[else 

[else 

(recur loop ([args (cdr x)] 
[c (compile (car x) '(apply))]) 

(if (null? args) 
(if (tail? next) 

c 
(list 'frame next c)) 

(loop (cdr args) 
(compile (car args) 

(list 'argument c)))))])] 

(list 'constant x next)]))) 
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This compiler performs no error checking, though any compiler intended for actual 

use should at least verify the number and structure of the arguments. The com

pilers and virtual machines presented throughout this dissertation perform little 

or no error checking in the interest of shortening the code and. simplifying the 

presentation. 

The transformations for variables (symbols), quote expressions, and constant 

expressions (specified in the else clause of the cond expression) are straightforward. 

A variable, v, with next instruction, next, is transformed into (refer v next). 

Similarly, (quote obj) and simple obj are transformed into (constant obj next). 

The transformation of lambda expressions is also straightforward. An ex

pression of the form (lambda vars body) is mapped into one of the form 

(close vars cbody), where cbody is the result of compiling body. The next ar

gument used when compiling body is a (return) instruction. 

Both if and set! need one of their subexpressions to be evaluated before 

the real work of the expression can be done. This is where the next argument .to 

the compiler becomes useful. For an if expression of the form (if test then else), 
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the test subexpression is compiled with a next argument formed from the compiled 

then and else subexpressions, (test ethen eelse). This result of compiling the test 

subexpression with this next argument is returned as the compiled form of the if 

expression. Incidentally, by passing on the original next argument when compiling 

both of the then and else subexpressions, the compiler is creating a graph structure. 

This is how the use of labels and jumps is avoided. 

A set ! expression is treated in a manner similar to an if expression. 

(set! var x) is transformed into the compiled representation of x with a next 

instruction of (assign var next), where next is the original argument to compile. 

The remaining two expressions, call/cc and application, are treated in a some

what similar manner. An application of the form (/en arg1 ••. argn) is transformed 

into an instruction "sequence" of the form: 

frame 
argn 

argument 

arg1 
argument 

fen 
apply. 

The first instruction to be performed will be a frame instruction of the form 

(frame e next), where c refers to the compiled code to perform the application and 

next is the next instruction argument to the compiler (this is the return address 

of the application). The true next instruction, c, is the compiled code for the last 

argument, whose next instruction is the argument instruction. Its next instruction 

is the compiled code for the second to last argument, followed by another argument 

instruction, and so on, through the first argument and the corresponding argument 

instruction. Finally, the next instruction after the last argument instruction is the 

apply instruction. 

The arguments to an application are evaluated last to first so that they will 

be "consed" onto the value rib in the right order. cons adds elements to the front 



59 

of a list, so the last object pushed is the first object on the list. 

A call/cc may be thought of as a special case of an application with a single 

argument, an imaginary expression that returns the current continuation. An 

expression of the form (call/cc exp) results in an instruction sequence of the 

form: 

frame 
conti 

argument 
exp 

apply. 

This causes the frame to be pushed, followed by creation of the continuation, the 

adding of this continuation to the current rib, the computation of exp, and finally 

the application of exp to the list of arguments containing the continuation. 

Both applications and call/ cc expressions are treated slightly differently if 

they appear in the tail position. This is determined simply by looking at the next 

instruction to see if it is a return instruction as follows: 

(define tail? 
(lambda (next) 

(eq? (car next) 'return))) 

An application or call/cc expression in tail position does not push a call frame, 

so the :frame instruction is omitted. 

3.4.3 Evaluation. The virtual machine, VM, interprets the instructions produced 

by the compiler given above, using the data structures and registers described 

earlier. Its structure is similar to that of a SECD machine [Lan64, Lan65]; the 

state changes to a set of registers are modeled by a tail-recursive function. The 

arguments to the function are the registers themselves. Each recursive call to the 

VM signals the start of a new machine cycle; the new values for the VM registers 

are specified by the arguments. This structure avoids the use of assignments, 

allowing a cleaner and smaller description of the VM and its state changes. 

Here is the code for the VM: 
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(define VM 
(lambda (a x e r s) 

(record-case x 
[halt 0 a] 
[refer (var x) 

(VM (car (lookup var e)) x e r s)] 
[constant (obj x) 

(VM obj x e r s)] 
[close (vars body x) 

(VM (closure body e vars) x e r s)] 
[test (then else) 

(VM a (if a then else) e r s)] 
[assign (var x) 
(set-car! (lookup var e) a) 
(VM a x e r s)] 

[conti (x) 
(VM (continuation s) x e r s)] 

[nuate (s var) 
(VM (car (lookup var e)) '(return) e r s)] 

[frame (ret x) 
(VM axe '() (call-frame ret e r s))] 

[argument (x) 

(VM a x e (cons a r) s)] 
[apply 0 
(record a (body e vars) 

(VM a body (extend e vars r) '() s))] 

[return 0 
(record s (x e r s) 

(VM axe r s))]))) 

The operation of the VM follows the description of the instructions given 

earlier. Notice that most of the instructions only alter one or two of the regis

ters. Only one of the instructions performs a side-effect; this is assign, which 

destructively alters the current environment. The help functions lookup, closure, 

continuation, call-frame, and extend are shown below. 

The function lookup finds the value of the variable var in the environment e. It 

does this by searching each variable rib in turn until it finds the variable. As soon 

as it finds the variable it returns the list whose car is the corresponding value. It 

returns this list rather than the value itself so that it may be used by both refer 



and assign; assign alters the list structure to perform the assignment. 

(define lookup 
(lambda (var e) 

(recur nxtrib ([e e]) 
(recur nxtelt ([vars (caar e)] [vals (cdar e)]) 

(cond 
[(null? vars) (nxtrib (cdr e))] 
[ (eq? (car vars) var) vals] 
[else (nxtelt (cdr vars) (cdr vals))]))))) 
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Two loops are needed, one over the ribs of the environment, the other over the 

variables in the variable rib. The second loop carries along with it the value rib, 

so that the value can be picked out as soon as the right location is found. Notice 

that the loops are tail-recursive; the search is iterative. 

The function closure creates a new closure object, which is simply a list of a 

body, an environment, and a list of variables: 

(define closure 
(lambda (body e vars) 

(list body e vars))) 

The function continuation creates a new continuation object. A continuation 

is a closure; the body is a nuate instruction, the environment is empty, and the list 

of variables contains one element, v. The particular variable name chosen here does 

not matter. What does matter is that the variable that appears in the variable 

list is the same as the variable enclosed in the nuate instruction. nuate uses this 

variable to access the first (and presumably only) argument to the continuation. 

(define continuation 
(lambda (s) 

(closure (list 'nuate s 'v) '() '(v)))) 

The function call-frame merely makes a list of its arguments, a return address, 

an environment, a rib, and a stack, i.e., the next frame in the stack: 

(define call-frame 
(lambda (x e r s) 

(list x e r s))) 

Finally, the function extend creates a new environment from an environment, 
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a variable rib, and a value rib: 

(define extend 
(lambda (e vars vals) 

(cons (cons vars vals) e))) 

One more function is needed to tie the compiler and virtual machine into a 

working Scheme evaluator, this is the function evaluate that starts things off: 

(define evaluate 
(lambda (x) 

(VM '0 (compile x '(halt)) •o '0 •()))) 

The initial value in the accumulator is not really important, but the initial values 

of the other registers are. The next expression is the compiled input expression; 

its next instruction is halt. The current environment starts out as the empty 

environment (an empty list of ribs), the current rib starts out as the empty list, 

and the stack starts out empty as well. 

3.5 Improving Variable Access 

Looking at the code for the virtual machine given in the last section, it is appar

ent that the five help functions lookup, closure, continuation, call-frame, and 

extend do most of the work. No other substantial processing is performed by the 

virtual machine. It is to these functions, therefore, that we look to improve the 

performance of the Scheme system. 

The stack-based models presented in the following chapter address each of 

these functions, and greatly improve (or omit altogether) the lookup call-frame, 

and extend functions, which are the most frequently used functions in the eval

uation of almost all Scheme programs. However, before going to a stack-based 

model, there is one thing that can be changed to improve performance somewhat. 

This change improves the lookup function by performing part of its work in the 

compiler. 

Scheme variables are statically scoped. This means that the binding of any 

variable is apparent in the static structure of the program (see Chapter 2). Because 
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of this, it is possible to determine from looking at the source exactly where a 

variable will appear in the run-time environment. One way to do this is to maintain 

a similar environment in the compiler. 

The goal of this exercise is to compute for each variable its location in the 

environment, so that the virtual machine can go straight to this location to find 

the variable's value without searching along the way. To do so, the virtual machine 

must know which rib the value is in, i.e., how many ribs to skip over, and which 

element it is in the rib. The refer and assign instructions must include these two 

numbers. 

Consider the following Scheme code: 

(lambda (x y) 

((lambda (a b c) 

X 

X 

(a (lambda (x b) (y x c b)) 
b 
y)) 

y)). 

To determine the number of ribs and the number of variables within the rib to 

pass over, it suffices to (1) find the correct binding, (2) count the number of 

intervening lambda expressions, and (3) count the number of intervening variables 

in the variable list. For example, the reference to c in the innermost lambda 

expression refers to the c not in the current lambda but in the next one out. So the 

rib number is 1. Two variables appear before c in the variable list, so the element 

number is 2. Replacing all of the references in this piece of code with pairs of the 

form (rib . e/t), the result is: 

(lambda (x y) 

((lambda (a b c) 
((0 . 0) (lambda (x b) ((2 . 1) (0 . 0) (1 . 2) (0 . 1))) 

(0 1) 

(0 0) 

(0 0) 

(1 . 1))) 

(0 1))). 
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Notice that the rib of the (rib . elt) pair for a particular variable differs depending 

on where that variable is referenced. This is because the rib number depends on 

how many ribs will be in front of the desired rib at run time. 

3.5.1 Translation. The following compiler is similar to the one from the preced

ing section except that it takes an extra argument e, an environment that holds 

only one rib, the variable rib, during compilation. This environment is searched 

to produce the rib, element pairs for variable references and assignments. 

(define compile 
(lambda (x e next) 

(cond 
[(symbol? x) 
(list 'refer (compile-lookup x e) next)] 

[(pair? x) 
(record-case x 

[quote (obj) 
(list 'constant obj next)] 

[lambda (vars body) 
(list 'close 

(compile body (extend e vars) '(return)) 
next)] 

[if (test then else) 
(let ([thenc (compile then e next)] 

[elsec (compile else e next)]) 
(compile test e (list 'test thenc elsec)))] 

[set! ( var x) 
(let ([access (compile-lookup var e)]) 

(compile x e (list 'assign access next)))] 
[call/cc (x) 
(let ([c (list 'conti 

(list 'argument 
(compile x e '(apply))))]) 

(if (tail? next) 
c 

(list 'frame next c)))] 
[else 
(recur loop ([args (cdr x)] 

[c (compile (car x) e '(apply))]) 
(if (null? args) 

(if (tail? next) 
c 



[else 

(list 'frame next c)) 
(loop (cdr args) 

(compile (car args) 
e 
(list 'argument c)))))])] 

(list 'constant x next)]))) 
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Several things have changed with the addition of the environment argument. 

First, rather than including the variable in the refer and assign instructions, 

the compiler includes the result of calling compile-lookup with the variable and 

environment. Also, no longer must the close instruction be given the list of 

variables; they are no longer needed in the run-time environment. Notice, however, 

that the compiler's environment is updated with extend just as the virtual machine 

updated its environment. This extend is slightly different, however, since it only 

adds one rib to the environment: 

(define extend 
(lambda (e r) 

(cons r e))) 

This version of extend is used as well by the new virtual machine given later, 

except there r refers to the value rib rather than to the variable rib. 

The function compile-lookup is similar to the original lookup used by the old 

virtual machine. However, instead of returning the value, it returns a pair of the 

rib and element indices. It is this pair that the refer and assign instructions 

employ. 

(define compile-lookup 
(lambda (var e) 

(recur nxtrib ([e e] [rib 0]) 
(recur nxtelt ([vars (car e)] [elt 0]) 

(cond 
[(null? vars) (nxtrib (cdr e) (+ rib 1))] 
[(eq? (car vars) var) (cons rib elt)] 
[else (nxtelt (cdr vars) (+ elt 1))]))))) 

3.5.2 Evaluation. The new virtual machine must support the slightly different 

environment format and slightly different refer, assign and lambda instructions. 
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Most of these changes are to the help functions lookup, closure, continuation, 

extend. In fact, the only change to the coding of the VM is to reflect the different 

structure of the lambda instruction, and the corresponding change of arguments to 

the closure function. 

(define VM 
(lambda (a x e r s) 

(record-case x 
[halt () a] 
[refer (var x) 

(VM (car (lookup var e)) x e r s)] 
[constant (obj x) 

(VM obj x e r s)] 
[close (body x) 

(VM (closure body e) x e r s)] 
[test (then else) 

(VM a (if a then else) e r s)] 
[assign (var x) 
(set-car! (lookup var e) a) 
(VM a x e r s)] 

[conti (x) 
(VM (continuation s) x e r s)] 

[nuate (s var) 
(VM (car (lookup var e)) '(return) e r s)] 

[frame (ret x) 
(VM axe '() (call-frame rete r s))] 

[argument (x) 
(VM a x e (cons a r) s)] 

[apply () 
(record a (body e) 

(VM a body (extender) '() s))] 
[return 0 
(record s (x e r s) 

(VM axe r s))]))) 

The change to extend to omit the variable rib was already given above. The 

changes to closure and continuation are minor. closure now takes only a body 

and an environment: 

(define closure 
(lambda (body e) 

(list body e))) 
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In continuation, the call to closure no longer passes the variable list (v). 

Also, instead of including v in the instruction, it now includes an explicit reference 

to the first argument of the closest rib, (0 . 0): 

(define continuation 
(lambda (s) 

(closure (list 'nuate s '(0 . 0)) '0))) 

The major change comes in lookup, which was the goal of this section. The 

new lookup now simply moves directly to the specified rib and returns the specified 

list cell within that rib: 

(define lookup 

(lambda (access e) 
(recur nxtrib ( [e e] [rib (car access)]) 

(if (z rib 0) 
(recur nxtelt ( [r (car e)] [elt (cdr access)]) 

(if (= elt 0) 

r 

(nxtelt (cdr r) (- elt 1)))) 
(nxtrib (cdr e) (- rib 1)))))) 

The inner loop is now executed only once for each variable lookup, when the proper 

rib is located. Also, the only test on each iteration is for zero, rather than the two 

tests of the previous version, one to test for the end of the rib and the other to 

compare the two variables. 

The improvement given here is substantial and important, but the system still 

requires two loops and potentially many memory references to find the binding 

of a variable. Also, call frames and environments are still in the heap, although 

the latter are now one pair smaller for each environment level. The stack-based 

models of the next chapter streamline variable access to as little as one instruction 

(actually, to as little as one operand of one instruction) while avoiding most of the 

allocation for call frames and environments. 





Chapter 4: The Stack-Based Model 

An execution profile analysis of a heap-based implementation of Scheme (the au

thor's C-Scheme [Dyb83]) showed that more than half of the running time of 

the tested programs was spent performing variable lookups and function calls. In 

contrast, an insignificant amount of time was spent creating closures, creating con

tinuations, and invoking continuations. This was due, in part, to the large number 

of variable references and function calls performed by most programs, combined 

with the overhead of performing these operations. To improve the efficiency of a 

Scheme system, then, requires improvement of these basic operations. In a heap

based system, finding a variable potentially requires following several links, while 

performing a function call requires heap allocation of an environment rib and a 

call frame. 

Perhaps worse than the overall efficiency problem is that the knowledge that 

variable references and function calls are slow relative to other operations can 

affect programming style. Programmers take for granted that function calls and 

variable references are relatively inexpensive; it is unsettling to find out that they 

are not, and this can result in a strained progra=ing style (avoidance of the use 

of both variables and functions) that adversely affects readability and modularity. 

The typical implementation of a block-structured language such as Algol 60, 

Pascal, or C does not require the use of a heap to allocate environments or call 

frames. However, although all three languages allow nested blocks, and although 

Algol 60 and Pascal allow nested function declarations, none of these languages 

allows a function to be returned and subsequently called outside of the scope of an 

enclosing block or function, as Scheme does. Early Scheme implementors believed 
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that because of the need to support first class functions, the standard techniques 

used for block-structured languages were not suitable for Scheme. The need to 

optimize tail calls and support continuations further convinced early implementors 

that the standard stack techniques were unsuitable. However, as this chapter will 

show, these techniques can be made to work for Scheme with a few modifications. 

The resulting implementation model allows most function calls to be performed 

with little or no allocation, and allows variable references to be performed in one 

or two memory references. Heap allocation remains necessary to support closures, 

assigned variables, and continuations. Since function calls and variable references 

are faster and heap allocation is limited, the running time for most programs is 

greatly decreased. 

The first section of this chapter describes a typical stack-based implementation 

of a block-structured language, including a discussion of the data structures and 

concepts involved. A compiler and virtual machine for this standard implemen

tation is presented. This sets the groundwork for the remaining sections of this 

chapter, providing a basis for a stack-based model for the full Scheme language. 

The next five sections develop a stack-based model for Scheme through a series 

of modifications to the heap-based model of the preceding chapter and to the com

piler and virtual machine implementing that model. In Section 4.2, the heap-based 

model is modified to move the control stack onto a true stack, making function 

calls faster but creation and application of continuations slower. Section 4.3 further 

modifies this model to move the environment onto the stack, sacrificing support 

for first-class functions, tail-call optimization, and assignments. Support for first

class functions, assignments and optimized tail calls is added is Sections 4.4, 4.5, 

and 4.6. 

The resulting model supports Scheme and uses a true stack for call frames and 

variable bindings. This model has proven itself viable in the author's Chez Scheme 

system that, at the time it was first distributed in early 1985, was considerably 

faster than any other Scheme system. 
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Finally, Section 4. 7 describes some important techniques that may be employed 

by a sophisticated compiler to avoid the (less significant) allocation overhead for 

closures, assigned variables, and continuations in certain situations. 

4.1 Stack-Based ImP.lementation of Block-Structured Languages 

This section describes the typical implementation of Algol 60, C, or Pascal. To 

simplify the presentation, the source language considered is a dialect of Scheme 

without first-class functions, continuations, and optimized tail-calls, making it 

similar to the more standard block-structured languages. Parameters are passed 

by value, in contrast to Algol 60, which allows parameters to be passed by name, 

and Pascal, which allows parameters to be passed by reference. (The distinctions 

among parameter passing styles is not important here.) Functions are allowed as 

parameters (functionals ), but they are not first class objects since they cannot be 

reliably retained and invoked after the defining scope no longer exists. 

4.1.1 Call Frames. A call frame is created each time a function is applied to 

a set of arguments1. It must hold the parameters to the called function, any 

saved pointers and registers (the program counter, expression temporaries, etc.) 

to restore upon return, room for local temporaries, the dynamic link, and the static 

link (see the following section for a description of the dynamic and static links). 

Call frames in the stack model described in this section contain 

1. the frame pointer holding the address of the call frame of the suspended call 

(the dynamic link), 

1 In some instances, a call frame is also created whenever a new block is entered, 
as with some Algol 60 implementations [Ran64], in which case the new block is 
considered to be a parameterless function. A similar solution is to treat the lo
cal declarations of any block as a function invocation where the parameters are 
the locally declared variables. This is most suitable for language constructs like 
Scheme's let expression where the initialization always appears with the decla
ration. More often, however, the implementation treats variables declared in the 
nested block as temporary storage locations local to the current call frame to avoid 
the overhead of creating a separate call frame. 
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2. the arguments to the called function, 

3. the return address (the next expression after the call), and 

4. the frame pointer holding the address of the call frame for the next outer scope 

of the called function (the static link). 

This information-is layed out in the call frame as follows: 

static link (pushed last) 

first argument 

last argument 

next expression 

dynamic link (pushed first) 

The ordering of the fields in a call frame is somewhat arbitrary; however, support 

for optimized tail calls is greatly simplified by the placement of the next expression 

(return address) and dynamic link below the arguments and the static link (see 

Section 4.6). 

4.1.2 Dynamic and Static Links. The dynamic link always points to the 

caller's frame. It is used when returning from a function to determine where the 

next frame lies on the stack. The dynamic link is sometimes unnecessary since the 

next frame always lies just below the current frame on the stack; assuming the 

sizes of the current and previous frames are known to the compiler, it can often 

generate efficient code for restoring the previous frame upon return. However, 

the dynamic link is nearly always used to simplify the return sequence, to support 

debugging, or to facilitate the use of microcoded call and return instructions (such 

as the VAX calls/callg and ret instructions [Dig81]). 

The static link, on the other hand, always points to the frame of the clos

est enclosing function definition of the called function, i.e., the frame containing 

the closest outer set of variable bindings visible within the called function. The 

assumption that the language does not support closures, optimized tail calls, or 
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continuations is important here since it must be guaranteed that this frame is 

still on the stack. For instance, if a closure could be returned and used outside 

its scope, the frames statically visible to the closure might be gone by the time 

the closure is invoked. Similarly, optimizing a tail call may cause the current 

stack frame to be deleted; it will not be available when needed by the invocation 

of a function within its scope. Continuations pose similar problems discussed in 

Section 4.3. 

The static link may or may not point to the same frame as the dynamic link. 

The dynamic links create a single chain offrames on the stack (the dynamic chain), 

each link pointing to the frame below. The static links, however, potentially create 

many static chains, where each link points to a frame somewhere below and each 

chain ends at the frame of the outermost function in the scope. 

In the heap-based model, the static and dynamic chains also exist, but they 

exist separate from each other. The linked control stack of call frames is the 

dynamic chain, while each environment represents a static chain. The static and 

dynamic links are the links that hold the structures together. A dynamic link is 

a pointer to the next frame in the control stack; a static link is a pointer to the 

next rib of an environment. 

Separation of the dynamic and static ·chains facilitates the support of closures 

and tail calls. Closures require the retention of the bindings, so naturally only 

the static chain need be kept. To keep the entire dynamic chain (sometimes much 

larger) would waste storage space. Optimized tail calls require that part of the 

dynamic chain be released even though the static chain may still be required. 

Heap allocation protects the static chains (environments) retained in a clo

sure and the dynamic chain retained in a continuation from being overwritten 

by subsequent operations. With a true stack, as control moves into and out of 

called routines, the same memory locations record different information at differ

ent times. Allocation of a fresh block of memory each time a call frame or value rib 

is created guarantees that nothing is overwritten (except that the storage manager 
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may determine that the call frame or value rib is no longer needed and reclaim its 

storage for later use). 

4.1.3 Functionals. It is possible within the framework of this simple stack model 

to pass functions as arguments, so long as the function is invoked only while the 

call frames in its scope are active. That is, the function must not be returned or 

stored and later invoked after the static chain it requires has been overwritten. 

Because a functional may be invoked from a block or function with a different 

static chain, the functional must retain the static chain just as the closures of the 

last chapter retained the environment. This entails saving the address of the frame 

when the functional is created along with the body of the functional and restoring 

it when the functional is called. 

The code for creating a functional in this system appears to be the same as 

the code for creating a closure in the heap-based model: 

(define functional 
(lambda (body e) 

(list body e))) 

However, there is an important difference; the environment, e, passed to the 

functional function is a frame pointer pointing to a frame in the stack, not a 

heap-allocated environment. 

Since a functional never outlives the code that creates it (that is, it cannot be 

used once the scope in which it was created has been exited), it is not necessary to 

heap allocate a functional as is implied by the use of the list operation. Instead, 

the functional would more appropriately be given space on the stack in the call 

frame for the function responsible for creating the functional. In the interest of 

keeping the call frames simple, this improvement is not employed here. 

4.1.4 Stack Operations. The major difference in the implementation of a stack

based model and a heap-based model is, naturally, that call frames and variable 

bindings are placed on a true stack rather than in a heap-allocated linked structure. 

This difference does not affect the implementation as much as might be expected; 
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the compiler and virtual machine presented in this section are quite similar to the 

ones presented in the preceding chapter. 

The stack is implemented as a Scheme vector: 

(define stack (make-vector 1000)) 

The chosen length (1000) is, of course, arbitrary2 • Stack indices grow from zero 

as elements are added, and multiple stack pointers (actually, vector indices) are 

allowed. The function push takes a stack pointer (which should be the virtual 

machine's notion of the current top-of-stack) and an object and adds the object 

to the top of the stack. It returns the updated (incremented) stack pointer: 

(define push 
(lambda (x s) 

(vector-set! stacks x) 
(+ s 1))) 

The push function corresponds to the auto-increment or auto-decrement operand 

addressing mode provided by many contemporary machine architectures. 

Two operations are provided for referencing or changing an element of the 

stack, index and index-set!. The index function takes a stack pointer (which 

should be at or below the virtual machine's notion of the current top-of-stack) 

and an index and returns the object found at the specified offset from the stack 

pointer. Similarly, the index-set! function takes a stack pointer, an index, and 

an object and places the object at the specified offset from the stack pointer: 

(define index 
(lambda (s i) 

(vector-ref stack (- (- s i) 1)))) 

(define index-set! 
(lambda (s i v) 

(vector-set! stack (- (- s i) 1) v))) 

2 No checks for stack underflow are necessary if the machine is operating cor
rectly, and checks for stack overflow, while necessary, are never shown. It is as
sumed that the machine architecture for which a high-performance implementa
tion of this system was designed would provide some mechanism for trapping and 
reporting or recovering from stack overflow. 
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(The expression (- (- s i) 1) allows positive indices to be used for referencing off 

of the stack pointer even though the stack grows in the opposite direction.) The 

index and index-set 1 operations correspond to the deferred operand addressing 

mode provided by many contemporary machine architectures. 

Elements are removed implicitly from the stack by the virtual machine when 

it decrements its notion of the current top-of-stack pointer. 

4.1.5 Translation. The compiler shown below differs from the compiler of Sec

tion 3.5 in three relatively minor ways. 

First, since the arguments to a function are to be placed directly in the call 

frame, the size of a call frame is a function of the number of arguments. The 

virtual machine's return instruction, which is responsible for removing the call 

frame, must have this information. Hence, the return instruction is augmented 

to accept an argument, n, that tells it how many elements to remove from the 

stack in addition to the saved dynamic link and next expression that it removes 

and restores explicitly. Since the static link is also stored on the stack but not 

explicitly removed it is included in the count. 

The second difference is that, since tail calls are not to be supported, the 

conditional expression with respect to tail? has been removed from the code for 

function application. 

The third difference is that support for continuations has been omitted entirely. 

Here is the compiler: 

(define compile 
(lambda (x e next) 

(cond 
[(symbol? x) 
(compile-lookup x e 

(lambda (n m) 
(list 'refer n m next)))] 

[(pair? x) 
(record-case x 

[quote (obj) 
(list 'constant obj next)] 



[lambda (vars body) 
(list 'close 

(compile body 
(extend e vars) 
(list 'return (+ (length vars) 1))) 

next)] 
[if (test then else) 
(let ([thenc (compile then e next)] 

[elsec (compile else e next)]) 
(compile test e (list 'test thenc elsec)))] 

[set ! ( var x) 
(compile-lookup var e 

(lambda (n m) 
(compile x e (list 'assign n m next))))] 

[else 

[else 

(recur loop ( [args (cdr x)] 
[c (compile (car x) e '(apply))]) 

(if (null? args) 
(list 'frame next c) 
(loop (cdr args) 

(compile (car args) 
e 
(list 'argument c)))))])] 

(list 'constant x next)]))) 
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The functions compile-lookup and extend, which are shown below, are identical to 

the functions of the same name used in Section 3.5 for the (improved) heap-based 

model. This is because both models require the traversal of a given number of 

links to find the right frame or rib and the reference of a given position within 

that frame or rib. Note, however, that extend is now only used by the compiler 

and not in the virtual machine, since values are stored on the stack rather than 

in a rib of an environment. 

(define compile-lookup 
(lambda (var e return) 

(recur nxtrib ([e e] [rib 0]) 
(recur nxtelt ( [vars (car e)] [elt 0]) 

(cond 
[(null? vars) (nxtrib (cdr e) (+ rib 1))] 
[(eq? (car vars) var) (return rib elt)] 
[else (nxtelt (cdr vars) (+ elt 1))]))))) 
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(de:fine extend 
(lambda (e r) 

(cons r e))) 

4.1.6 Evaluation. The virtual machine has a similar structure to that of Sec-

tion 3.5, and supports most of the same instructions. Two of the registers are 

used in exactly the same manner, the accumulator (a) and the next expression 

(x), while two are used differently, the environment (e) and stack (s). Thee reg

ister still holds an environment of sorts, the static link. However, it is now a stack 

pointer pointing at the call frame of the next outer scope. The s register is a stack 

pointer pointing at the current top-of-stack. One register, the current rib (r), is 

gone entirely. It is no longer needed since arguments are placed directly on the 

stack rather than into a heap-allocated rib. 

Some of the instructions supported by the virtual machine have changed in be

havior from the virtual machine of the preceding chapter, as shown in the following 

(halt) behaves the same. 

(ret er var x) follows static links on the stack instead of links in a heap-allocated 

environment. (It also uses an index operation in place of a loop once it finds the 

appropriate frame.) 

(constant obj x) behaves the same. 

(closure vars body x) creates a functional rather than a closure. 

(test then else) behaves the same. 

(assign var x) follows static links on the stack instead of links in a heap-allocated 

environment. 

(conti x) not supported. 

(nuate s var) not supported. 

(frame x ret) starts a new frame by pushing the dynamic link (the current frame 

pointer) and next expression ret. The virtual machine of the preceding chapter 
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built a call frame in the heap. 

(argument x) pushes the argument on the stack instead of adding an element to 

the current rib. 

(apply) behaves similarly, but pushes the static link from the functional onto the 

stack rather than building onto it by adding a rib. 

(return n) takes an additional argument, n, that determines the number of ele

ments it removes from the stack in addition to the saved dynamic link and next 

expression. 

Here is the code for the virtual machine: 

(define VM 
(lambda (a x e s) 

(record-case x 
[halt () a] 
[refer (n m x) 

(VM (index (find-link n e) m) x e s)] 
[constant (obj x) 

(VM obj x e s)] 
[close (body x) 

(VM (functional body e) x e s)] 
[test (then else) 

(VM a (if a then else) e s)] 
[assign (n m x) 
(index-set! (find-link n e) m a) 
(VM a x e s)] 

[frame (ret x) 
(VM a x e (push ret (push e s)))] 

[argument (x) 
(VM a x e (push a s))] 

[apply () 
(record a (body link) 

(VM a body s (push link s)))] 
[return (n) 
(let ([s (- s n)]) 

(VM a (index s 0) (index s 1) (- s 2)))]))) 

The only help function not yet described is :find-link, which is the analog to 

the outer loop of the lookup function in the heap-based model of Section 3.5. It 
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receives two arguments, a number n and a frame pointer e, and locates the nth 

frame (zero based) in the static frame starting with e: 

(define find-link 
(lambda (n e) 

(if (= n 0) 

e 

(find-link (- n 1) (index e -1))))) 

The evaluate function shown below invokes the compiler and starts the vir

tual machine with the empty list as the initial accumulator, the compiled input 

expression as the next expression, and zero for both the current frame pointer and 

the stack pointer: 

(define evaluate 
(lambda (x) 

(VM '0 (compile x '0 '(halt)) 0 0))) 

4.2 Stack Allocating the Dynamic Chain 

This section and the ones that follow transform the heap-based model of Section 3.5 

step by step into one that can be implemented nearly as efficiently as the stack

based model shown in the preceding section. Some concessions are made to support 

closures, continuations, and tail calls, but most of these concessions need affect 

only programs that take advantage of these features. The resulting model can 

result in an implementation far more efficient in terms of memory allocation, 

memory references, and number of instructions executed than a heap-based model. 

The first step in the transformation, shown in this section, is to place the 

dynamic chain, or control stack, on a true stack, while leaving the static chain, 

or environment, in the heap. The primary difficulty in doing so is the support 

of continuations. Continuations must be able to retain and restore the dynamic 

chain, even after some or all of the chain has been removed from the stack and 

the stack rewritten. 
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4.2.1 Snapshot Continuations. The solution taken here is to make a copy, or 

snapshot, of the stack to store in a continuation, and to restore the copy when the 

continuation is invoked. The return addresses and environment pointers retained 

therein provide sufficient information to continue the computation, just as they 

do when the stack is heap-allocated. Furthermore, no changes are made to the 

stack itself (frames are added and removed from the top and nothing in a frame 

is ever changed), so there are no updating problems involved with the duplicated 

structure. 

This solution works-but it may seem rather expensive. After all, the stack 

could become quite large, and the allocation and copying overhead associated 

with creating a continuation and the copying overhead associated with invoking 

a continuation can be great. The reason why this is not of great concern is that 

continuations are created and invoked infrequently compared with function calls. 

In other words, the allocation and execution time savings from function calls 

nearly always outweighs the corresponding costs from creation and invocation 

of continuations. 

To see why the savings outweigh the costs, consider first a program that makes 

no use of continuations. With the dynamic chain stack-allocated, this program 

never requires any call frame to be heap-allocated. On the other hand, consider a 

program that makes few calls but creates and perhaps invokes many continuations. 

This program would create small continuations; few calls means few call frames. 

Perhaps more typical would be a program where the dynamic chain grows and 

shrinks, creating or invoking a continuation relatively infrequently compared to 

this growing and shrinking. To this program, many of the call frames created on 

the stack will never require heap allocation because they will never be needed by 

a continuation. A small number will, but the total allocation overhead may still 

be no more for these; if each call frame is saved in exactly one continuation, it 

takes up no more room in the heap than if it were placed there to begin with (and 

potentially less, depending upon the allocation mechanism). 
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In fact, the only situation in which this solution is guaranteed to come out 

significantly behind is a fairly contrived one. This is when a program performs 

many nested or recursive calls that build up a large dynamic chain on the stack 

and while this dynamic chain remains intact creates and perhaps invokes more 

than one continuation, then returns through the dynamic chain without making 

any further calls. In this situation, the stack is large when the continuations are 

created, and all of the call frames created by the program end up in the heap in 

more than one place3• 

Perhaps the most important reason why this is a reasonable solution is that 

any program that does not use continuations does not pay for them, and that even 

programs using continuations in a moderate fashion pay less for them than they 

save from the now less expensive function calls. This is a simple case of a good 

principle, to make common operations as fast as possible while making the less 

common operations pay their own way. 

4.2.2 Evaluation. The use of stack allocation in place of heap allocation does 

not affect the compiler, but does affect a few of the virtual machine instructions. 

(Since the compiler is identical to the one shown in Section 3.5, it is not shown 

here.) The instructions that change are the instructions that manipulate the stack 

register s. These are the conti, nuate, frame, and return instructions. 

The frame and return instructions change only in that they now use push, 

index, and - to manipulate the stack in place of cons, car and cdr. The push and 

index operations used are the ones defined in the preceding section. 

The conti instruction still creates a continuation, but it does so with the help 

of the function save-stack: 

3 It is possible to avoid this duplication in many cases by moving the stack into 
the heap and leaving behind a link rather than copying it. This means copying 
it back not only when the continuation is called explicitly but also when the 
function passed to call/cc returns normally. This was the solution chosen in the 
implementation of Texas Instruments' PC Scheme [Bar86]. 



(define continuation 
(lambda (s) 

(closure 
(list 'refer 0 0 (list 'nuate (save-stack s) '(return))) 
'()))) 
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The function save-stack creates a Scheme vector to hold the stack, and copies the 

current stack from its start (at index 0) to the current stack pointer, passed as 

the argument s: 

(define save-stack 
(lambda (s) 

(let ([v (make-vectors)]) 
(recur copy ([i 0]) 

(unless ( = i s) 

v))) 

(vector-set! v i (vector-ref stack i)) 
(copy (+ i 1)))) 

The nuate instruction, uses the help function restore-stack to restore the stack 

saved by saved-stack: 

(define restore-stack 
(lambda (v) 

(let ([s (vector-length v)]) 
(recur copy ([i 0]) 

(unless (= i s) 

s))) 

(vector-set! stack i (vector-ref v i)) 
(copy (+ i 1)))) 

Here is the virtual machine: 

(define VM 
(lambda (a x e r s) 

(record-case x 
[halt () a] 
[refer (n m x) 

(VM (car (lookup n m e)) x e r s)] 
[constant (obj x) 

(VM obj x e r s)] 

[close (body x) 
(VM (closure body e) x e r s)] 

[test (then else) 
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(VM a (if a then else) e r s)] 
[assign (n m x) 
(set-car! (lookup n m e) a) 
(VM a x e r s)] 

[conti (x) 
(VM (continuation s) x e r s)] 

[nuate (stack x) 
(VM axe r (restore-stack stack))] 

[frame (ret x) 
(VM axe '() (push ret (push e (push r s))))] 

[argument (x) 
(VM a x e (cons a r) s)] 

[apply 0 
(record a (body e) 

(VM a body (extender) •() s))] 
[return 0 

(VM a {index s 0) (index s 1) (index s 2) (- s 3))]))) 

The evaluate function initializes the accumulator to the empty list, the next 

expression to the compiled input expression, the environment and value ribs to 

the empty list, and the stack pointer to zero: 

(define evaluate 
{lambda (x) 

(VM '0 (compile x '0 '(halt)) '0 '() 0))) 

4.3 Stack Allocating the Static Chain 

The preceding section showed how the dynamic chain can be moved from the heap 

onto the stack. The other half of the transformation from a heap-based to a stack

based model is the movement of the static chain to the stack. This problem is 

somewhat more difficult, and requires this section and the three following sections 

to describe. 

This section shows the modifications to move the static chain onto the stack 

at the expense of omitting support for first-class functions, assignments, and op

timized tail calls. The three following sections add these features back into the 

model one at a time. 
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4.3.1 Including Variable Values in the Call Frame. Moving the static chain 

onto the stack means placing the arguments to a function into the call frame along 

with the control information already present there. This can be accomplished by 

merging the stack-based model shown in Section 4.1 with the modified heap-based 

model shown in Section 4.2. The merger of these two models allows arguments to 

be placed in the call frame, as with the Section 4.1 system, while allowing support 

for continuations. 

However, the Section 4.1 system did not support first-class functions or opti

mized tail calls. That system did not support first-class functions because that 

would require the retention of the static chain that resides on the stack. Of course, 

it would be possible to save the entire stack each time a closure is made, just as 

the entire stack is saved when a continuation is created. This is likely to be an un

acceptable solution because the creation of closures is fairly common in Scheme, 

much more common than the creation of continuations. A much more efficient 

strategy is presented in Section 4.4. 

The same system did not support tail calls because it is not always possible 

to delete the frame of the caller when it contains variable bindings that may 

be required by the called function. The solution to this problem is discussed in 

Section 4.6. 

Furthermore, with the possibility that a continuation might be created, it 

becomes difficult to support assignments as well. Assignments to stack-allocated 

variable bindings are difficult to handle in the presence of continuations supported 

as they are in the system of Section 4.3, because of a multiple-update problem. 

Because each continuation may have its own copy of a segment of the stack, it is 

possible that a copy of the same stack frame is in more than one place in memory. 

If variable bindings are stored directly in the call frame as they are in the system 

of Section 4.1, this means that the value of a variable may be stored in more than 

one place. An assignment to such a variable would require that all copies were 

updated, not just the one currently on the stack. 
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This is a serious problem because it is not possible for the compiler to detect 

when a continuation will be created or invoked, and when one will not be cre

ated. This means that some run-time bookkeeping would be required to support 

assignments, slowing down assignment and causing additional storage overhead 

(probably in the heap). A solution to this problem is given in Section 4.5. 

4.3.2 Translation and Evaluation. The new compiler and virtual machine 

must place argument values in the call frame and support continuations, but they 

do not support first-class functions, assignments, or optimized tail calls. Since the 

design is a merger of the designs of Sections 4.1 and 4.2, it should not be surprising 

that a compiler and virtual machine can be produced by merging the compilers 

and virtual machines from these sections. 

These compilers and virtual machines already have some features in common: 

the essential structure of the stack and the code generated for simple expressions 

such as constants and if expressions. The new system retains these similarities, 

takes the code for pushing arguments and the static link onto the stack from the 

Section 4.1 code, and the code for creating and invoking continuations from the 

Section 4.2 code. Support for first-class functions, assignments and tail calls is left 

out entirely. 

One thing that may not be obvious in the code for the compiler and virtual 

machine is that the code for the continuation function has changed slightly from 

the previous section to reflect the change in the return instruction: 

(define continuation 
(lambda (s) 

(closure 
(list 'refer 0 0 (list 'nuate (save-stacks) '(return 0))) . ()))) 

As in Section 4.1, return requires an argument, the number of elements to 

remove from the stack in addition to the dynamic link and next expression. Since 

the frame pushed by the conti instruction contains neither arguments nor a static 

link, the number to remove in this case is always zero. 
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Here is the code for the merged compiler and virtual machine. Help func

tions are as defined in previous sections (the evaluate function is the same as for 

Section 4.1). 

(define compile 
(lambda (x e next) 

(cond 
[(symbol? x) 

(compile-lookup x e 
(lambda (n m) 

(list 'refer n m next)))] 
[(pair? x) 
(record-case x 

[quote (obj) 
(list 'constant obj next)] 

[lambda (vars body) 
(list 'close 

(compile body 
(extend e vars) 
(list 'return (+ (length vars) 1))) 

next)] 
[if (test then else) 
(let ([thenc (compile then e next)] 

[elsec (compile else e next)]) 
(compile test e (list 'test thenc elsec)))] 

[call/cc (x) 
(list 'frame 

next 
(list 'conti 

(list 'argument 
(compile x e '(apply)))))] 

[else 
(recur loop ([args (cdr x)] 

[c (compile (car x) e '(apply))]) 
(if (null? args) 

(list 'frame next c) 
(loop (cdr args) 

(compile (car args) 
e 
(list 'argument c)))))])] 

[else 
(list 'constant x next)]))) 

(define VM 
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(lambda (a x e s) 
(record-case x 

[halt 0 a] 
[refer (n m x) 

(VM (index (find-link n e) m) x e s)] 
[constant (obj x) 

(VM obj x e s)] 
[close (body x) 

(VM (closure body e) x e s)] 
[test (then else) 

(VM a (if a then else) e s)] 
[conti (x) 

(VM (continuation s) x e s)] 
[nuate (stack x) 

(VM a x e (restore-stack stack))] 
[frame (ret x) 

(VM a x e (push ret (push e s)))] 
[argument (x) 

(VM axe (push a s))] 
[apply 0 
(record a (body link) 

(VM a body s (push link s)))] 
[return (n) 
(let ([s (- s n)]) 

(VM a (index s 0) (index s 1) (- s 2)))]))) 

4.4 Display Closures 

First-class functions pose a similar problem to continuations, in that the existence 

of a closure may require certain information to be retained that otherwise would 

have been unnecessary. For continuations, this information is the entire dynamic 

chain from the point of continuation and the static chains containing variable 

bindings that may be needed upon continuation. For a closure, the amount of 

information retained is much smaller; only one static chain is needed and the 

dynamic chain is not needed. 

For this reason it would be grossly inefficient to simply copy the entire stack 

as is done when creating a continuation. Instead, this section describes a strategy 

for retaining only the particular static chain (actually, only the particular values) 
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needed by the function. A new function object, the display closure, is introduced. 

The creation and maintenance of this object is similar to the creation and main

tenance of a display in the implementation of a more traditional block-structured 

language. 

This section provides background information on the use of displays, then 

describes the display closure and how it is created and maintained, and concludes 

with a new compiler and virtual machine. 

4.4.1 Displays. In a program with deeply nested function definitions and blocks, 

it may be inefficient to access the free variables of a particular block through 

the traversal of static links. Traversal· of static links requires one extra memory 

reference per block level. A display is sometimes used to improve free variable 

access [Ran64]. A display is an array of display pointers, each holding the address 

of one frame in the current static chain. Because the display pointers are typically 

held in machine registers or in high-speed memory, a restriction is usually placed 

on the maximum nesting level of a program. The compiler enforces this restriction; 

it determines both the nesting level and the display pointer to be dedicated to each 

block from the structure of the program. 

With a pointer to each frame in an index register, access of any variable 

requires at most one memory reference to bring the display pointer into a register 

if it is in memory and one to access the value, indexed off of the display pointer by 

its position relative to the frame. The overhead on entry to the block is minimal: 

at most one memory reference to store the current frame address in a display 

pointer. 

Static links are no longer needed with the display approach, because the same 

linkage information is maintained in the set of display pointers. The cost of initial

izing the display pointer on entry to a block is thus compensated by the avoided 

cost of saving the static link in the frame. 

The display approach is not easily supported in the presence of functionals. 

The display is ordinarily maintained by an incremental change to the current 
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display by initializing a new display pointer. But a functional may have been 

created with an entirely different set of display pointers. The functional must 

retain the entire set and restore it before executing. 

4.4.2 Creating Display Closures. With the display approach, each display 

element is a pointer to a call frame in the static chain. Assume that, instead, each 

display element were a pointer to a particular value in some call frame of the static 

chain. This may require more or fewer display elements, since the current block 

may require zero, one, or more variables in each call frame of the static chain. 

In practice, it is rare for a particular block to use more than a few of the free 

variables found in outer blocks, just as it is rare for the nesting of blocks to be 

deep, so the number of display elements required in either case is usually small. 

One advantage of maintaining pointers to particular values is that there is 

no indexing required after following the appropriate pointer to find the value. 

With the usual display approach, after following the pointer, an index operation 

is required to find the value in the call frame, since the pointer is to a call frame 

rather than to a value. 

Taking this one step further, assume that instead of maintaining a set of 

pointers to values in the display, the system were to maintain a set of the actual 

values instead4
• This would result in saving the pointer dereference as well as 

the index operation. Furthermore, if the values required by a particular block are 

stored in the display, there is no need to retain the static chain on the stack! This 

is exactly what is needed to support first-class functions, since first-class functions 

may outlive the code that creates them. 

Using this idea, the system of the previous section may be modified to handle 

first-class functions by creating and maintaining display closures in place of simple 

functionals. A display closure contains a copy of each of the values of the free 

4 This presumes that the values do not change unless some arrangement is made 
to write the altered values back from the display into the original location on the 
stack. This is one reason that support for assignments has been put off until later 
in the chapter. 
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variables of the function, as well as the code of the function itself. That is, the set 

of values, which may be kept in a vector-like structure, takes the place of the saved 

static link in the functional, or the saved environment in the closures of earlier 

sections. 

To see exactly what a display closure looks like, consider the function defined 

by: 

(lambda (x) (lambda (f) (f x))). 

If this were applied to the symbol a, the result would be a display closure that 

looked something like: 

I code a 

where code represents the code for (lambda (f) (f x)). This code would access 

x by looking in its own closure for the second element (the value of the first, and 

only, free variable). 

Similarly, for the function defined by: 

(lambda (x y) (lambda (f) (f x y))) 

applied to the symbols a and b, the result would be a display closure that looked 

something like: 

I code a b 

Here, code would access x by looking at the second element of its closure, and y 

by looking at the third element of its closure. 

In order to create a display closure, it is necessary for the compiler to compute 

the set of free variables of the function, and to generate code that collects the 

values of these variables and stores them in the closure. The remainder of this 

section presents a simple algorithm for computing the free variables of a function 

along with a new compiler and virtual machine to implement the modified model. 

4.4.3 Finding Free Variables. Computing the set of free variables of an ex

pression means finding the set of variables referenced, but not bound, within the 
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expression. One way to do this is to traverse the expression and its nested subex

pressions, remembering the set of variables bound by enclosing lambda expressions. 

Any variable referenced and not in this set is a free variable. 

The following function, find-free, uses this simple algorithm to return the 

set of free variables of an expression x, given an initial set of bound variables b. 

Because it must descend recursively into the input expression, it must recognize 

each type of syntactic form: variables, quote expressions, lambda expressions, if 

expressions, call/cc expressions, applications, and constants. 

(define find-free 
(lambda (x b) 

(cond 
[(symbol? x) (if (set-member? x b) '() (list x))] 
[(pair? x) 
(record-case x 

[quote (obj) ' ()] 
[lambda (vars body) 
(find-free body (set-union vars b))] 

[if (test then else) 
(set-union (find-free test b) 

(set-union (find-free then b) 
(find-free else b)))] 

[call/cc (exp) (find-free exp b)] 
[else 
(recur next ([x x]) 

(if (null? x) 
'0 
(set-union (find-free (car x) b) 

(next (cdr x)))))])] 
[else '()]))) 

When the input expression is a variable, the set of free variables is either the 

empty list (set), or a list (set) containing the variable, depending upon whether 

the variable appears in the set of bound variables b. In all other cases, the set of 

free variables is the union of the free variables found in the subexpressions, if any, 

of the input expression. For a lambda expression, this is the set of free variables 

found recursively in the body; on recursion, the formal parameters of the lambda 

expression are added to the set of bound variables. 
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find-free employs a pair of help functions, set-member? and set-union, that 

implement set membership and set union operations on lists. Their definitions 

are straightforward but are given below for completeness, along with a few other 

definitions needed in the next section. 

(define set-member? 
(lambda (x s) 

(cond 
[(null? s) '0] 
[(eq? x (car s)) 't] 
[else (set-member? x (cdr s))]))) 

(define set-cons 
(lambda (x s) 

(if (set-member? x s) 

s 
(cons x s)))) 

(define set-union 
(lambda (sl s2) 

(if (null? sl) 

s2 
(set-union (cdr sl) (set-cons (car sl) s2))))) 

(define set-minus 
(lambda (sl s2) 

(if (null? sl) 

'0 
(if (set-member? (car sl) s2) 

(set-minus (cdr sl) s2) 
(cons (car sl) (set-minus (cdr sl) s2)))))) 

(define set-intersect 
(lambda (sl s2) 

(if (null? sl) 

'0 
(if (set-member? (car sl) s2) 

(cons (car sl) (set-intersect (cdr sl) s2)) 
(set-intersect (cdr sl) s2))))) 

4.4.4 Translation. A compiler to support display closures must determine the 

free variables of each lambda expression, generate the appropriate variable refer-
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ences to collect the values of these variables, and store these values in the display 

closure. In addition, it must handle references to two types of variables: those 

local to the current call frame and those stored in the display closure of the active 

function. 

The code for the compiler is shown below. It employs the function :find-free 

defined above to locate the free variables of a lambda expression. The compiler 

and its remaining help functions are explained after the code. 

(define compile 
(lambda (x e next) 

(cond 
[(symbol? x) (compile-refer x e next)] 
[(pair? x) 
(record-case x 

[quote (obj) (list 'constant obj next)] 
[lambda (vars body) 
(let.([free (find-free body vars)]) 

(collect-free free e 
(list 'close 

(length :free) 
(compile body 

(cons vars free) 
(list 'return 

next)))] 
[if (test then else) 

(length vars))) 

(let ([thenc (compile then e next)] 
[elsec (compile else e next)]) 

(compile test e (list 'test thenc elsec)))] 
[call/cc (x) 
(list 'frame 

next 
(list 'conti 

(list 'argument 
(compile x e '(apply)))))] 

[else 
(recur loop ([args (cdr x)] 

[c (compile (car x) e '(apply))]) 
(if (null? args) 

(list 'frame next c) 
(loop (cdr args) 

(compile (car args) 
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(list 'argument c)))))])] 

[else (list 'constant x next)]))) 
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The most important change is in the treatment of lambda expressions. After calling 

find-free to locate the free variables of the lambda expression, the compiler uses 

the function collect-free (shown below) to collect these variables for inclusion in 

the closure. collect-free arranges to push the value of each fre.e variable in turn 

on the stack (using the argument instruction): 

(define collect-free 
(lambda (vars e next) 

(if (null? vars) 
next 
(collect-free (cdr vars) e 

(compile-refer (car vars) e 
(list 'argument next)))))) 

The help function compile-refer is used by the compiler for variable references 

and by collect-free to collect free variable values. Variable reference is slightly 

more complex than in previous compilers, since variables may be found on the stack 

in the current call frame or in the closure of the current function. compile-refer 

employs the function compile-lookup, which is similar to the compile-lookup of 

the preceding section. The primary differences are that this version takes two 

return arguments, one for when it locates a local variable, one for free variables, 

and this version only has to look at two levels; either a variable is in the list of local 

variables or it is the list of free variables. A compile-time environment is a pair 

whose car is the list of local variables and whose cdr is the list of free variables. 

(define compile-refer 
(lambda (x e next) 

(compile-lookup x e 
(lambda (n) (list 'refer-local n next)) 
(lambda (n) (list 'refer-free n next))))) 

(define compile-lookup 
(lambda (x e return-local return-free) 

(recur nxtlocal ([locals (car e)] [n 0]) 
(if (null? locals) 

(recur nxtfree ([free (cdr e)] [n 0]) 
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(if (eq? (car free) x) 
(return-free n) 
(nxtfree (cdr free) (+ n 1)))) 

(if (eq? (car locals) x) 
(return-local n) 
(nxtlocal (cdr locals) (+ n 1))))))) 

Several new or modified instructions are generated by this compiler; these 

instructions are described next along with the new virtual machine. 

4.4.5 Evaluation. Two new instructions, refer-local and refer-free, replace 

the refer instruction implemented by the previous virtual machines. These are 

the only new instructions. In addition, the close, frame, and return instructions 

require modification. To support free variable references out of the active func

tion's closure, an additional virtual machine register, c, is required. (Also, since 

the environment is now stored partly in the current call frame and partly in the 

current closure, the old e register has been renamed f for "frame.") 

Here is a summary of the new or modified instructions: 

(refer-local n x) This instruction loads the nth argument value stored in the 

current call frame f into the accumulator. 

(refer-free n x) This instruction loads the nth free variable value stored in the 

current closure c into the accumulator. 

(close n body x) Closures are now vectors containing the function body and the 

values of the free variables of the function; this instruction builds this vector from 

body and the top n items on the stack and places it into the accumulator. 

(frame ret x) This instruction now saves the current closure c and the current 

frame pointer f, not just the frame pointer. 

(return n) This instruction now restores the closure and frame pointer, not just 

the frame pointer. 

Here is the code for the virtual machine: 



(define VM 
(lambda (a x f c s) 

(record-case x 
[halt () a] 
[refer-local (n x) 

(VM (index f n) x f c s)] 
[refer-free (n x) 

(VM (index-closure c n) x f c s)] 
[constant (obj x) 

(VM obj x f c s)] 
[close (n body x) 

(VM (closure body n s) x f c (- s n))] 
[test (then else) 

(VM a (if a then else) f c s)] 
[conti (x) 

(VM (continuation s) x f c s)] 

[nuate (stack x) 
(VM ax f c (restore-stack stack))] 

[frame (ret x) 
(VM a x f c (push ret (push f (push c s))))] 

[argument (x) 
(VM a x f c (push a s))] 

[apply () 
(VM a (closure-body a) s a s)] 

[return (n) 
(let ( [s (- s n)]) 

(VM a (index s 0) (index s 1) (index s 2) (- s 3)))]))) 
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The help function closure is responsible for building the vector representing 

the display closure. It builds a vector of the appropriate length, places the code 

for the body of the function into the first vector slot and the free values found on 

the stack into the remaining slots: 

(define closure 
(lambda (body n s) 

(let ([v (make-vector (+ n 1))]) 

(vector-set! v 0 body) 
(recur f ( [i 0]) 

(unless (= i n) 

v))) 

(vector-set! v (+ i 1) (index s i)) 
(f (+ i 1)))) 
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The functions closure-body and index-closure reference the body or argument 

values of a display closure. index-closure is similar to index, which references a 

given element of the stack relative to a stack pointer: 

(define closure-body 
(lambda (c) 

(vector-ref c 0))) 

(define index-closure 
(lambda (c n) 

(vector-ref c (+ n 1)))) 

The remaining help functions have not changed from the previous virtual ma

chine. 

Finally, the evaluate function compiles the input expression and invokes the 

virtual machine with the empty list in the accumulator a, the compiled expression 

in the next expression register x, the default pointer value 0 for the current frame 

f and the stack pointer s, and the empty list for the current closure c (since any 

program that compiles correctly will not have any free variables, the initial value 

() of the current closure is never referenced): 

(define evaluate 
(lambda (x) 

(VM '() (compile x '() '(halt)) 0 '() 0))) 

4.5 Supporting Assignments 

The introduction of a true stack (Section 4.2) required that a copy of the stack 

be made for each continuation. With bindings placed on the stack instead of in 

an environment (Section 4.3), this means that whenever a continuation is cre

ated, the bindings stored on the copied stack are stored in (at least) two places. 

Furthermore, with the addition of display closures (Section 4.4), bindings of free 

variables are copied whenever a closure is created. As a result, each variable may 

appear on the stack, in one or more saved stacks (continuations), and in one or 

more closures. 
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Multiple copies of a variable binding do not cause problems as long as the 

variable is not assigned. However, if the variable is assigned, each copy of the 

variable binding must be updated. It is impossible, in general, to determine the set 

of closures and continuations containing a particular variable binding at compile 

time. Thus, run-time bookkeeping and lookup is required to keep track and to 

update the bindings, and it is likely that the overhead of this mechanism would be 

more costly than the use of environments. Furthermore, the run-time bookkeeping 

would require some heap allocation to hold a set pointers to the closures and 

continuations holding a copy of each variable binding. Since one of the objectives 

is to reduce heap allocation and variable access (including assignment) time, this 

solution may well be worse than heap allocation. 

On the other hand, using an environment for all variables seems wasteful, since 

most Scheme variables are never assigned. The solution taken here is to introduce 

a box, a single-cell object allocated in the heap, for each assigned variable and only 

for assigned variables. A pointer to this box is stored in the call frame on the stack 

in place of the value; the contents of the box is the value. It is this pointer that 

is copied when a continuation or display closure is created. This allows the value 

of the variable to be shared by the call frame, any stack copies, and any display 

closures with the minimum possible additional allocation overhead of one cell per 

value. 

Fortunately, because of lexical scoping, it is possible for a compiler to determine 

for each variable whether it may be assigned or not, just as it can tell whether it 

is free in a particular function or to what variable a particular occurrence in the 

code refers. It can determine this by analyzing set! expressions within the scope 

of each variable. If this were not true, the system could not be sure that a variable 

might be assigned until it actually is assigned, and at that time it may be too late. 

In other words, the system would have to be pessimistic and allocate a box for all 

variables. 

When variable bindings are placed in an environment, the calling routine is 
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responsible for creating the environment rib containing argument values, rather 

than the called function. However, it is not possible, in general, for the caller 

to know which of the called function's arguments, if any, may be assigned by 

the function, so the caller cannot be responsible for boxing assigned variables. 

Instead, the called function itself must create a box for each argument that may 

be assigned, and place the argument value in this box. Thus, function call works 

as in the previous system; arguments are pushed on the stack after the frame 

header and control is passed to the function. Once control reaches the function 

but before it begins execution of its body, the function allocates the boxes. 

Variable references for unboxed (unassigned) variables do not change. For 

boxed (assigned) variables, the only difference is an extra level of indirection, 

since the item stored in the call frame or closure is a pointer to the variable's 

value rather than the value itself. 

In creating a closure, the collection of free variables does not change, even for 

boxed variables. Since the closure must have the box rather than the value, no 

indirection is necessary. 

The use of boxes is similar in some ways to call-by-reference parameter passing. 

With call-by-reference, the calling function passes a pointer to each parameter, 

rather than the value of each parameter (as in call-by-value). The similarity is that, 

in both cases, the value is obtained through an indirect memory reference, and in 

both cases the intent is to allow assignments to the variable to be shared. However, 

with call-by-reference, the value is normally kept in a stack location, rather than 

in a heap (at least in a traditional block-structured language implementation). 

Also, the reference, or pointer, is generated by the calling function rather than by 

the called function, as with boxed variables. 

Cardelli's ML implementation [Car83, Car84], which uses objects that are 

in essence the same as display closures to support first-class functions, does not 

support variable assignments. Assignments are not a part of the ML language. 

However, the ML language does have a ref cell data type that can be used explicitly 
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by the programmer in the same manner that boxes are used here by the system. 

In fact, it is possible to use a preprocessor to insert code that performs the boxing 

and unboxing of assigned variables; this approach is used in the Yale "Orbit" 

compiler forT (a dialect of Scheme) [Kra86]. 

One potential improvement relating to boxes, continuations, and closures is 

important enough to mention here, even though it is not readily applicable to 

Scheme. If there is no possibility that a continuation will be obtained while a 

particular assigned variable is active (that is, while running code within the scope 

of the variable), and there is no possibility of a closure being created that refer

ences or assigns the variable, it is not necessary to create a box for that variable. 

Whether or not the first condition is satisfied is not easily determined without sig

nificant analysis by the compiler; any function call to code outside the scope of the 

variable potentially results in the creation of a continuation. On the other hand, 

the second condition is easily checked by surveying the list of free variables of each 

lambda expression within the scope of the variable. Implementations for languages 

that support first-class functions and assignments but not continuations (such as 

Common Lisp) can benefit from this optimization; the criteria for creating boxes 

is not only that a variable is assigned but also that it occurs free in some function 

for which a closure might be created. 

4.5.1 Translation. The most interesting changes to the compiler to support 

boxed variables involve finding the assigned variables in a lambda expression and 

generating boxes for these variables. Finding the assigned variables of a lambda 

expression is a similar problem to finding the free variables of an expression. The 

following function, find-sets, looks for assignments to any of the set of variables 

v. It returns the set of variables in v that are assigned. 

(define find-sets 
(lambda (x v) 

(cond 
[(symbol?x) '()] 
[(pair? x) 
(record-case x 
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[quote (obj) '()] 
[lambda (vars body) 
(find-sets body (set-minus v vars))] 

[if (test then else) 
(set-union (find-sets test v) 

(set-union (find-sets then v) 
(find-sets else v)))] 

[set ! ( var x) 
(set-union (if (set-member? var v) (list var) '()) 

(find-sets x v))] 
[call/cc (exp) (find-sets exp v)] 
[else 
(recur next ( [x x]) 

(if (null? x) 

'0 
(set-union (find-sets (car x) v) 

(next (cdr x)))))])] 
[else ' ()]))) 

The implementation of find-sets differs from the implementation of find-free in 

two major ways. The first difference is that find-sets searches for assignments, 

not for references. The other is that find-sets looks only for variables contained 

in its second argument v, whereas find -free looks for variables not in v. (The 

definition of find-free given later in this section is only slightly different from 

the definition given earlier with the addition of the set! expression to the set of 

expressions it must traverse.) 

Once the compiler determines what subset of the arguments to a lambda ex

pression are assigned, it must generate code to create boxes for these arguments. 

The following function, make-boxes, generates this code from a list of assigned 

variables (sets) and a list of arguments ( vars): 

(define make-boxes 
(lambda (sets vars next) 

(recur f ([vars vars] [n 0]) 
(if (null? vars) 

next 
(if (set-member? (car vars) sets) 

(list 'box n (f (cdr vars) (+ n 1))) 
(f (cdr vars) (+ n 1))))))) 
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The variable n counts the arguments; the argument number is used by the box 

instruction to access the correct stack location (see the description of the virtual 

machine instructions given later). 

Here is the code for the compiler. The major changes not yet described are the 

addition of the s argument telling the compiler what free variables are assigned 

and the use and maintenance of this argument in the compilation of variable 

references, variable assignments, and lambda expressions. The slightly modified 

help function find-free is shown below, while the help functions compile-refer 

and compile-lookup are the same ones given in the preceding section. 

(define compile 
(lambda (x e s next) 

(cond 
[(symbol? x) 
(compile-refer x e 

(if (set-member? x s) 
(list 'indirect next) 
next))] 

[(pair? x) 
(record-case x 

[quote (obj) (list 'constant obj next)] 
[lambda (vars body) 
(let ([free (find-free body vars)] 

[sets (find-sets body vars)]) 
(collect-free free e 

(list 'close 
(length free) 
(make-boxes sets vars 

(compile body 

next)))] 
[if (test then else) 

(cons vars free) 
(set-union 

sets 
(set-intersect s free)) 

(list 'return (length vars)))) 

(let ([thenc (compile then e s next)] 
[elsec (compile else e s next)]) 

(compile test e s (list 'test thenc elsec)))] 
[set ! ( var x) 
(compile-lookup var e 
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(lambda (n) 
(compile x e s (list 'assign-local n next))) 

(lambda (n) 
(compile x e s (list 'assign-free n next))))] 

[call/cc (x) 
(list 'frame 

next 
(list 'conti 

(list 'argument 
(compile xes '(apply)))))] 

[else 
(recur loop ([args (cdr x)] 

[c (compile (car x) e s '(apply))]) 
(if (null? args) 

(list 'frame next c) 
(loop (cdr args) 

(compile (car args) 
e 

s 

(list 'argument c)))))])] 
[else (list 'constant x next)]))) 

(define find-free 
(lambda (x b) 

(cond 
[(symbol? x) (if (set-member? x b) '() (list x))] 
[(pair? x) 
(record-case x 

[quote (obj) •()] 
[lambda (vars body) 
(find-free body (set-union vars b))] 

[if (test then else) 
(set-union (find-free test b) 

(set-union (find-free then b) 
(find-free else b)))] 

[set! (var exp) 
(set-union (if (set-member? var b) '() (list var)) 

(find-free exp b))] 
[call/cc (exp) (find-free exp b)] 
[else 
(recur next ([x x]) 

(if (null? x) 

·o 
(set-union (find-free (car x) b) 
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(next (cdr x)))))])] 
[else '()]))) 

4.5.2 Evaluation. The virtual machine supports several new instructions, de

scribed below: 

(indirect x) The indirect instruction assumes that the accumulator is a box, 

and performs the indirection by placing the contents of the box (obtained with 

unbox) into the accumulator5• 

(box n x) This instruction allocates a new box, places the nth element (zero

based) from the top of the stack into the box, and places this box back into the n 

slot. 

(assign-local n x) The assign-local instruction is similar to the refer-local in

struction except that it stores the accumulator in a local variable rather than load

ing the accumulator from a local variable, and it always indirects (using set-box!). 

(assign-free n x) The assign-free instruction is identical to assign-local except 

that, as with refer-free, it accesses the current closure rather than the stack. 

The code for the virtual machine incorporating the new instructions is shown 

below: 

(define VM 
(lambda (a x f c s) 

(record-case x 
[halt 0 a] 

[refer-local (n x) 
(VM (index f n) x f c s)] 

[refer-free (n x) 
(VM (index-closure c n) x f c s)] 

[indirect (x) 
(VM (unbox.a) x :f c s)] 

[constant (obj x) 
(VM obj x f c s)] 

[close (n body x) 

5 Instead of adding an indirect instruction, it would be possible to add two 
new reference instructions, refer-local-indirect and refer-free-indirect, since 
indirect is only used after a variable reference. This would result in a more efficient 
but less modular virtual machine. 
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(VM (closure body n s) x f c (- s n))] 
[box (n x) 
(index-set! s n (box (index s n))) 
(VM a x f c s)] 

[test (then else) 
(VM a (if a then else) f c s)] 

[assign-local (n x) 
(set-box! (index f n) a) 
(VM a x f c s)] 

[assign-free (n x) 
(set-box! (index-closure c n) a) 
(VM a x f c s)] 

[conti (x) 
(VM (continuation s) x f c s)] 

[nuate (stack x) 
(VM ax f c (restore-stack stack))] 

[frame (ret x) 
(VM a x f c (push ret (push f (push c s))))] 

[argument (x) 
(VM a x f c (push a s))] 

[apply 0 
(VM a (closure-body a) s a s)] 

[return (n) 
{let ([s (- s n)]) 

(VM a (index s 0) (index s 1) (index s 2) (- s 3)))]))) 

Finally, the evaluate function changes slightly to pass the compiler the initial 

value of 0, representing the empty set, as the set of assigned free variables: 

(define evaluate 
(lambda (x) 

(VM '0 (compile x '0 '0 '(halt)) 0 '0 0))) 

4.6 Tail Calls 

The heap-based model of the preceding chapter optimized tail calls by simply 

avoiding the creation of a new frame for the tail call. Essentially this same mech

anism can be employed here. However, because variable bindings are stored on 

the stack in addition to the other frame information, these variable bindings must 

be removed. This is not as straightforward as it might seem, since the bindings 
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cannot be removed as long as they may still be referenced (e.g., by a function 

created within the scope of the binding). 

In an implementation employing static links, thus requiring the bindings offree 

variables held in one or more frames above· the current frame, it is possible that a 

variable must be held on the stack long after its fra.II).e is no longer needed. As a 

result, some tail calls cannot be optimized. In general, if there is any possibility 

that the called routine might return to the scope of the calling routine's variables, 

the calling routine's call frame must be left on the stack. Functionals passed as 

arguments can allow such a return to occur, even if the initial call is to a function 

defined outside of the current scope. 

However, in a simple block-structured language without nested function decla

rations (such as C), it is possible to optimize all tail calls, since it is never possible 

for a tail call to return to the scope of the calling function's variables. Nested 

blocks present no problem if variables they introduce are placed within the cur

rent frame, as is typically done. Furthermore, if nested blocks are considered to be 

applications of parameter-less functions, these applications are never considered 

to be tail calls. 

An implementation employing display closures can release the stack locations 

holding a functions arguments as soon as control leaves that function on a tail call, 

since there is no possibility for reference through the particular stack locations 

involved. Even still, the variable bindings cannot in general be released before 

the arguments to the tail call have been evaluated and placed on the stack. As a 

result, the stack locations to be released end up being lower on the stack than the 

arguments; shifting is necessary to fully release the storage. 

4.6.1 Shifting the Arguments. The frame header (pushed by the frame in

struction in the virtual machine) consists of (a) the caller's display closure, (b) 

the caller's frame pointer, and (c) the next expression to execute after the call. 

None of this information is dependent upon the called function. If we think of a 

tail call as a jump rather than a call, it is easy to see that none of this information 
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needs to change when the called function tail calls (jumps to) a new function. 

Thus, in this system, as in the system of the preceding chapter, tail calls do not 

rebuild a frame but instead leave the existing frame on the stack. 

However, as mentioned above, just before a tail call is performed, the argu

ments of the calling function are still on the stack, underneath the arguments of 

the function to be called. For example, consider the following Scheme expression: 

(let ([g (lambda (x) x)]) 
(let ([f (lambda (x y) (g y))]) 

(h (f 'a 'b)))) 

This expression creates functions named f and g. The function f calls g and returns 

the value of this call; this is a tail call. The call to f is used as an argument to h, 

which must be defined outside of this expression. Because its value is used directly 

by the calling code, the call to f is not a tail call. 

When f is called in the body of the innermost let expression, the first few 

items on the top of the stack will be the following: 

a, the first argument to f 

b, the second argument to f 

the next expression after call to f 

the frame pointer off's caller 

the display closure of f 's caller 

Just before the tail call to g, the argument to g will also have been added: 

b, the first argument to g 

a, the first argument to f 

b, the second argument to f 

the next expression after call to f 

the frame pointer off's caller 

the display closure off's caller 
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However, when g receives control, the stack should hold the argument to g and 

the frame header but not the arguments to f, which are no longer needed, do to 

the fact that the call to g is a tail call: 

b, the first argument to g 

the next expression after call to f 

the frame pointer of f 's caller 

the display closure of f 's caller 

The most straightforward way to accomplish this change is to shift the arguments 

of the called function over the arguments of the calling function while subtracting 

the number of arguments removed from the stack pointer. 

Notice how the seemingly arbitrary decision to push the frame header before 

pushing the arguments pays off here. If the header information were pushed after 

the arguments, i.e., just before the call, it would end up between the old and new 

arguments and the rearrangement would be more complex: 

b, the first argument to g 

the next expression after call to f 

the frame pointer off's caller 

the display closure of f 's caller 

a, the first argument to f 

b, the second argument to f 

Given this stack layout, it would be necessary to save the frame information while 

shifting the arguments, or to perform more than one shift, unless the number of 

arguments to the called function is the same as that to the calling function (as in 

the case of a recursive tail call, i.e., direct tail-recursion). 

4.6.2 Translation. The changes to the compiler required to optimize tail calls 

affect only the code for call/cc and applications. In both cases, the generated code 

must be sensitive to tail calls in two ways: first, on a tail call, no frame instruction 
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is generated, and second, on a tail call, a shift instruction is generated to shift 

the new arguments over the old. These changes are shown in the new compiler 

below: 

(define compile 
(lambda (x e s next) 

(cond 
[(symbol? x) 
(compile-refer x e 

(if (set-member? x s) 
(list 'indirect next) 
next))] 

[(pair? x) 
(record-case x 

[quote (obj) (list 'constant obj next)] 
[lambda (vars body) 
(let ([free (find-free body vars)] 

[sets (find-sets body vars)]) 
(collect-free free e 

(list 'close 
(length free) 
(make-boxes sets vars 

(compile body 

next)))] 
[if (test then else) 

(cons vars free) 
(set-union 

sets 
(set-intersect s free)) 

(list 'return (length vars)))) 

(let ([thenc (compile then e s next)] 
[elsec (compile else e s next)]) 

(compile test e s (list 'test thenc elsec)))] 
[set ! ( var x) 

(compile-lookup var e 
(lambda (n) 

(compile x e s (list 'assign-local n next))) 
(lambda (n) 

(compile x e s (list 'assign-free n next))))] 
[call/cc (x) 
(let ([c (list 'conti 

(list 'argument 
(compile x e s 

(i:f (tail? next) 



(list 'shift 
1 
(cadr next) 
'(apply)) 

'(apply)))))]) 
(if (tail? next) 

c 
(list 'frame next c)))] 

[else 
(recur loop ( [args. (cdr x)] 

[c (compile (car x) e s 
(if (tail? next) 

(if (null? args) 
(if (tail? next) 

c 

(list 'shift 
(length (cdr x)) 
(cadr next) 
'(apply)) 

'(apply)))]) 

(list 'frame next c)) 
(loop (cdr args) 

(compile (car args) 
e 

s 
(list 'argument c)))))])] 

[else (list 'constant x next)]))) 
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4.6.3 Evaluation. The only new instruction required by the virt~al machine is 

the shift instruction described below. 

(shift n m x) The shift instruction moves the top n stack elements m places 

down the stack. 

The shifting is performed by the function shift-args that is invoked by the 

virtual machine. It moves the given number of values down the stack, and returns 

the new stack pointer: 

(define shift-args 
(lambda (n m s) 

(recur nxtarg ([i (- n 1)]) 
(unless ( < i 0) 

(index-set! s (+ i m) (index s i)) 
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(nxtarg (- i 1)))) 
(- s m))) 

The virtual machine code changes only with the addition of the shift instruc

tion. The code is shown in its entirety below: 

(define VM 
(lambda (a x f c s) 

(record-case x 
[halt 0 a] 
[refer-local (n x) 

(VM (index f n) x f c s)] 
[refer-free (n x) 

(VM (index-closure c n) x f c s)] 
[indirect (x) 

(VM (unbox a) x f c s)] 
[constant (obj x) 

(VM obj x f c s)] 
[close (n body x) 

(VM (closure body n s) x f c (- s n))] 
[box (n x) 
(index-set! s n (box (index s n))) 
(VM a x f c s)] 

[test (then else) 
(VM a (if a then else) f c s)] 

[assign-local (n x) 
(set-box! (index f n) a) 
(VM a x f c s)] 

[assign-free (n x) 
(set-box! (index-closure c n) a) 
(VM a x f c s)] 

[conti (x) 
(VM (continuation s) x f c s)] 

[nuate (stack x) 
(VM ax f c (restore-stack stack))] 

[frame (ret x) 
(VM ax f c (push ret (push f (push c s))))] 

[argument (x) 
(VM a x f c (push a s))] 

[shift (n m x) 
(VM a x f c (shift-args n m s))] 

[apply 0 
(VM a (closure-body a) s a s)] 

[return (n) 
(let ([s (- s n)]) 
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(VM a (index s 0) (index s 1) (index s 2) (- s 3)))]))) 

4. 7 Potential Improvements. 

The final model of Section 4.6 is essentially the one implemented by the author's 

Chez Scheme system. However, any serious implementation of Scheme, such as 

Chez Scheme, must addresses several functionality and efficiency issues not directly 

covered by the model. Some of these issues are touched upon in this section; others 

were discussed earlier, including the use of a segmented stack (Section 4.5) and 

the avoidance of boxed variables (Section 4. 7). 

4. 7.1 Global Variables and Primitive Functions. Most Scheme programs 

use several primitive functions supplied by the system for list processing, generic 

arithmetic, and a variety of other operations. Since these primitive functions are 

shared by all programs in the system, it is useful to bind them to globally-visible 

variables; variables that are visible in every program without any explicit binding 

on the part of the user. 

Global variables are also useful for extending the Scheme system with user

defined functions. A Scheme system typically allows the programmer to define a 

set of functions that may invoke each other, in any order, and to redefine any of 

the functions in order to fix an incorrect program. 

The most natural way to handle global bindings is to give them the same status 

as other variables, and to copy them in the display closure for any function that 

references them. This approach would require that all global bindings be given 

boxes, since it is cannot be known for certain that a global variable will not be 

assigned. However, it would add significantly to the size of most display closures. 

Another possibility is to accelerate pointers to the boxes of global variables 

into the code generated for the expressions entered by the programmer. That is, 

each reference to a global variable in an input expression is replaced by a reference 
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directly to the box for that variable, rather than through a display closure created 

at run time6 • 

4. 7.2 Direct Function Invocations. It is possible to optimize direct function 

invocations, which usually result from let expressions, to avoid creating a closure 

and performing the function call. The variables of a direct lambda invocation 

correspond to the local declared variables of a block in Algol 60 or C. Rather than 

forcing the creation of a closure and call frame, the compiler can generate code to 

place these local variables into stack locations within the call frame. The compiler 

does this either by saving space in the call frame or by extending the call frame 

as needed. 

In Algol 60 or C this saves the allocation of a call frame on the stack. In 

Scheme, this saves collecting the values of the free variables of the directly-applied 

lambda expression and the allocation required to create the closure object. 

4. 7.3 Tail Recursion Optimization. Recursive functions are used to implement 

loops in Scheme; there is no other way to perform iteration. It is often the case that 

the recursive function calls itself directly, and only in tail position (tail recursion). 

Given sufficient analysis to insure this and that the variable used to name the 

recursive procedure is never assigned, it is possible to change the recursive calls to 

direct jumps, rather than going through the closure to find the function's value7• 

If, in addition, the function is directly invoked (as with recur), it should be 

possible to avoid creation of the closure (by analogy with direct lambda invocations) 

6 It would be possible, in fact, to accelerate all variable references into the code 
(boxed or not) if we are willing to delay compilation or linking of a function's code 
until it is time to create a closure for the code, and avoid the display part of the 
closure altogether .. This would even allow for better code generation, since the 
unboxed (unassigned) free variables of the function would have constant values 
[Amb84]. However, it is unlikely that the cost of ·this run-time compilation or 
linking would be recovered in most situations. 

7 Furthermore, if checks are inserted to verify that the function receives the 
correct number and type of arguments, it may be possible to avoid these checks 
on the direct tail call. 
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and to perform optimizations commonly applied to looping constructs in more 

traditional languages. 

4.7.4 Avoiding Heap Allocation of Closures. In some circumstances, it is 

possible to stack allocate a closure instead of heap allocating it or to avoid the 

creation of a closure altogether. This is only possible if the compiler can prove that 

the closure cannot survive the code that creates it, as in the following example, 

where the closure bound to f need not be heap allocated: 

(let ([f (lambda (x) (+ x x))]) 
(f 3)) 

If a closure is passed to another (unknown) function that might save the closure, or 

if it is returned from the code that creates it, the closure must be heap allocated. 

4.7.5 Producing Jumps in Place of Continuations. Continuations are often 

used for simple nonlocal exits, as in the following function that sums a set of 

numbers read from an input file until a special end-of-file (eof) object is read. If 

any of the objects read from the file is not a number, the function quits with the 

value error: 

(define sum-input 
(lambda (file) 

(call/cc 
(lambda (quit) 

(recur sum ([x (read file)]) 
(if (eof-object? x) 

0 

(if (number? x) 
(+ (sum (read file)) x) 
(quit 'error)))))))) 

It would be possible to write this particular program more clearly without the 

call/cc, but it serves to illustrate the use of call/cc for nonlocal exits. In this 

case, the call/cc has the effect of establishing the variable quit as nothing more 

than a label for the end of the loop, and the invocation of quit within the loop is 

nothing more than a "goto" to this label. A sophisticated compiler can recognize 
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these situations and generate the appropriate labels and jumps in place of the far 

more expensive stack copies and allocation. 

Some restrictions must be obeyed in order for this to work. The most im

portant restriction is that the continuation must be able to outlive the code that 

creates it, or the stack will need to be restored (and hence, saved when the con

tinuation is created). 



Chapter 5: The String-Based Model 

The string-based implementation model proposed in this chapter is intended for 

the FFP machine introduced by Mag6 [Mag79, Mag79a] and refined by Mag6 

and others [Mag80, Mag84, Mag85, Dan83, Dan83a, Mid87]. The FFP machine 

employs string reduction, evaluating expressions in FFP by reducing the text of 

the FFP program piece by piece until each evaluable expression has been fully 

reduced. It would be possible to employ the techniques described herein to design 

a Scheme implementation for any processor capable of string reduction. 

One of the most important features of this model is that applicative order 

evaluation of function and argument expressions is maintained. That is, the body 

of a function is not allowed to begin execution until after each of its argument 

expressions has been computed. This has three benefits: 

1. The programmer can force sequential evaluation of certain expressions to en

sure that side-effects are ordered properly. 

2. The programmer can force sequential evaluation of certain expressions to in

hibit parallelism; this may be necessary to avoid overcommitment of comput

ing resources. (Parallelism may also be inhibited with conditional expressions 

[Pag81]). 

3. There is no need for the system to detect and halt processes that are no longer 

useful [Bak77, Gri81, Hud82]. 

Of course, the benefits derived from parallel evaluation of the function body and 

the argument expressions are lost; these benefits are similar to the benefits derived 

from lazy evaluation. 
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The first version of the string-based model described in this chapter supports 

a subset of Scheme without assignments and continuations. Since many useful 

Scheme programs can be and are written without these features, an implementa

tion based on this model would be useful. Also, in the absence of assignments and 

continuations, Scheme obeys the Church-Rosser property (as long as applicative 

order is taken as a feature of the language and not of the implementation), so that 

concurrent evaluation of subparts of a program does not affect the meaning of the 

program. This subset of Scheme may be particularly valuable to the users of the 

FFP machine as a high-level alternative to FFP. 

This model requires the design of a new FFP language1 and the implementa

tion of this language on the FFP machine. In essence, the new FFP is an assembly 

language tailored to Scheme, and this assembly language is implemented in the 

hardware or microcode of the FFP machine. Although the FFP machine is the 

primary target of this effort, this model can be the basis for a Scheme imple

mentation on any machine capable of evaluating FFP programs (or of employing 

string-reduction). Since FFP is significantly simpler than Scheme, it is conceivable 

that this model would indeed be valuable elsewhere. 

Techniques for supporting assignments and continuations are discussed in later 

sections of the chapter. These techniques rely on the addition of an external store 

to the FFP machine and on the ability to obtain a snapshot of the program at any 

time during its evaluation. These are not expressible within the FFP framework, 

and may not be supportable on machines evaluating FFP in a radically different 

way from the FFP machine. 

5.1 FFP Languages and the FFP Machine 

FFP languages were introduced by Backus in his 1977 ACM Turing Award Lecture 

[Bac78]. FFP languages are less restricted variants of the FP languages introduced 

1 Although this dissertation often refers to FFP as if it were a single, well-defined 
language, FFP is also used to refer to a class of languages with certain properties 
[Bac78]. 
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by Backus in the same paper. (FP stands for Functional Programming, and FFP 

for Formal Functional Programming.) Both classes of languages are characterized 

by a simple set of control structures based on functions and applications, and 

by the lack of variables as names (or placeholders) for intermediate values. The 

FP languages described by Backus are too restrictive to be practical for general

purpose programming, and both sets of languages lack the amenities of many 

higher level languages needed to make them practical end-user programming lan

guages. However, FFP is particularly well suited for parallel evaluation and is 

sufficiently general to support most features found in higher level languages. 

5.1.1 FFP Syntax. FFP expressions consist entirely of three syntactic forms: 

atoms, sequences, and applications. For our purposes, an atom is a symbol nam

ing a primitive function, a positive integer representing a selector (for sequence 

elements), or the empty sequence,<>. 

Symbols are written as strings consisting of a letter possibly followed by one 

or more letters and digits, and selectors are written as strings consisting of one 

or more digits. Sequences are ordered lists of expressions, i.e., atoms, sequences 

or applications, written with the elements in order, separated by commas, and 

enclosed in angle brackets ( < , > ). Applications are pairs of expressions, the 

first expression of the pair representing the function and the second representing 

its arguments. They are written with the two expressions separated by a colon 

( : ) and enclosed in parentheses. 

A summary of FFP syntax is given in Figure 5.1. 

5.1.2 FFP Semantics. Backus described the semantics of FFP by defining a 

meaning function, Jl-, for all FFP expressions. This meaning function is shown in 

Figure 5.2. 

In the definition of /1-, A is the (infinite) set of atoms, and D is a (finite) set of 

user definitions. The first line of the definition for 11- defines the meaning of any 

atom to be the atom itself. The second line defines the meaning of a sequence 
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(expression) --> (atom) I (sequence) I (application) 

(atom) --> (symbol) I (selector) I <> 

(sequence)--> <(exprlist)> 

(exprlist)--> (expression) ·I (expression),(exprlist) 

(application) --> ( (expression):(expression)) 

Figure 5.1 FFP Syntax 

p,x = x E A --> x; 

x = (y: z)--> 

(yEA & (ty: D) = # --> p,((py)(p,z)); 

yEA & (ty :D) = w-> p,(w : z); 

Y = <y1, ... ,yn>--> J.!-(Yl: <y,z>);p,(p,y: z)); .l 

Figure 5.2 Backus's FFP Meaning Function 

of expressions to be a sequence of the meanings of the expressions. The third, 

fourth, and fifth lines define the meaning of FFP applications. If the function 

expression y is an atom, the meaning depends upon whether the atom represents 

a user definition (in D) or a primitive (not in D). In the former case, the result 

is simply the meaning of the text of the definition applied to the argument z, i.e., 

p,(w : z). In the latter case, the result is the meaning of the primitive py applied 

to the meaning of the argument z. If the function expression is neither an atom 

nor a sequence, the meaning is the meaning of the function expression applied 

to the argument expression. The function p applied to an atom is the primitive 

denoted by that atom. If the function expression y is a sequence, the meaning 

is the meaning of the application of the first element of y to a sequence whose 
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first element is y and whose second is z. This is the metacomposition rule; some 

consequences of this rule are discussed below. Finally, if the expression x is not 

an atom, sequence, or application, the meaning is undefined. The special symbol, 

j_ (called bottom), is used to represent undefined meaning. 

The metacomposition rule allows structured objects, i.e., sequences, to repre

sent functions. Because metacomposition allows the function to operate on itself, 

it is possible to use metacomposition to include constants in the program or to 

define self-recursive functions. Metacomposition also allows the construction and 

subsequent application of arbitrary new functions. 

· Bottom ( j_ ) represents the meaning of any expression that has no (other) 

meaning. That is, whenever evaluation of an FFP expression would result in an 

error, its meaning is said to be L Furthermore, whenever evaluation of an FFP 

expression would not terminate, its meaning is j__ All FFP primitives are j_

preserving; an FFP primitive applied to j_ returns L The FFP meaning function 

J.L is also j_-preserving in that, if any of the tests performed by J.L (such as x E A) 

operate on j_, J.L returns j__ 

Definitions can be handled using the same mechanism as for primitives, by 

including a special type of primitive to handle this situation, as Danforth mentions 

in his description of the FFP machine [Dan83a]. This simplifies the meaning 

function somewhat, as shown in Figure 5.3. 

p,x = x E A -> x; 

X= <x1, ... , Xn> -t <J.LXJ, ... , J.LXn>i 

x = (y: z)-> 

(yEA-> p,((py)(p,z)); 

Y = <Yt.···,Yn>-> J.L(Y!: <y,z>);p,(J.LY: z));j_ 

Figure 5.3 Meaning Function for FFP without Definitions 



122 

If taken as operational specifications for how FFP programs are to be com

puted, these definitions for 11- suggest a certain order in which expressions are to be 

evaluated. In particular, it may appear that when xis an application of the form 

(y: z) where y is the sequence <y1 , ... , Yn>, z must not be evaluated until after 

metacomposition occurs. This is not the case. If the application has a meaning 

(not ..L), it is not important in which order y (or any part of y) and z are evaluated. 

Furthermore, if either y (or any part of y) or z produces ..l., the result will be ..l.. 

For this reason, the alternative definition for 11- shown in Figure 5.4 is equivalent, 

although (if taken as an operational specification) it suggests that both y and z 

are evaluated (by JJ-) before application (by a). It also suggests the possibility that 

y and z may be evaluated concurrently. Because the FFP machine evaluates only 

the innermost applications of an expression, and evaluates them in parallel, this 

definition more accurately reflects its operation. 

Jl-X = x E A -> x; 

X= <X!, ... , Xn>-> <JJ-Xl, •.. , JJ-Xn>; 

x = (y : z) -> JJ-( a(JJ-Y )(JJ-z)); ..l. 

ayz =yEA-> ((py)z); 

Y = <Y1. · .. , Yn>-> ay1 <y, z>; ..l. 

Figure 5.4 FFP Meaning Function Employed by the FFP Machine 

Incidentally, in his description of the FFP machine, Danforth avoids one reduc

tion step in meta-composition by expanding out the last case of the above meaning 

function. His meaning function could be given by the definition in Figure 5.5. 

·Of course, this changes the way FFP metacomposition primitives are defined, 

since they must now operate on application expressions as well as on atoms and 

sequences. Although this is clearly more efficient, in order to avoid this slight 
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JLX-XEA-+x; 

x = <xr, ... , x,.> -+ <JLXr, ... , JLXn>; 

x = (y: z) -> JL(JL1(JLY)(JLz)); ..L 

JL1yz = y E A -+ ((py)z); 

(Yl E A-+ ((PYl)(Y: z)); 

Figure 5.5 FFP Meaning Function Used by Danforth 

complication we will assume that the meaning function of Figure 5.4 is obeyed by 

the FFP machine. 

5.1.3 Examples. The simplest FFP function given by Backus is the identity 

function, ID, which returns its argument: 

(ID : <a,b,c>) => <a,b,c> 

Backus also prescribed a set of selector functions for FFP, represented by the 

positive integers starting at 1. These return the given element of a sequence: 

(2 : <a,b,c>) => b 

If the sequence has fewer elements than required by the selector, the result is ..L: 

(4 : <a,b,c>) => ..L 

Of course, since FFP functions are ..L-preserving, the application of a selector to 

..L is also ..L. 

The metacomposition function CONSTANT returns the same value regardless of 

its argument (unless the argument is ..L): 

(<CONSTANT,a> b) => a 
(<CONSTANT,a> c) => a 
(<CONSTANT, a> .l) => .l 
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Applying the metacomposition rule, we can see that (<CONSTANT a> : b) reduces 

to (CONSTANT : «CONSTANT a>, b>) before reducing to a. The primitive definition 

for CONSTANT, pCONSTANT, could be given as follows (for all x andy, y not j_): 

( (pCONSTANT) : «CONSTANT, x>, y>) :: x 

Another convenient metacomposition function is COMPOSE, which forms the 

composition of two functions: 

(<COMPOSE,2,1> : <<a,b>,c>) => b 

In this example, the selector 1 is applied to the argument «a, b>,c>, and the 

selector 2 is applied to the result, <a, b>, yielding b. The primitive definition for 

COMPOSE could be given as: 

( (pCOMPOSE) : «COMPOSE ,f, g>, x>) :: (/ : (g : x)) 

It is interesting to note that CONSTANT need not be a primitive; it may be 

defined instead in terms of the selectors 1 and 2 and the COMPOSE metacomposition 

function: 

Def CONSTANT :: <COMPOSE, 2, 1> 

To see that this definition works, consider the expression (<CONSTANT, a> : b). 

This reduces to (CONSTANT : «CONSTANT,a>,b>), which by our definition re

duces to (<COMPOSE, 2, 1> : «CONSTANT, a>, b>). This .applies the selector 1 to 

«CONSTANT,a>,b> and the selector 2 to the result, <CONSTANT,a>, yielding a. Of 

course, this definition of CONSTANT requires additional reduction steps and would 

be less efficient than a primitive definition for CONSTANT that reached directly for 

the appropriate piece of the input. 

Another useful FFP metacomposition function is CONSTRUCT. CONSTRUCT applies 

an arbitrary (but finite) number of functions to its argument, creating a sequence 

out of the results: 

(<CONSTRUCT,3,2,1> : <a,b,c>) => <c,b,a> 

The primitive definition of CONSTRUCT could be given as: 



((pCONSTRUCT) : «CONSTRUCT./t.··· ./n>,x>) -
<(ft : x), ... , Cfn : x)> 
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One final metacomposition function, COND is worthy of mention here, because 

it involves conditional reduction, and because it requires a "help" function, COND1. 

COND applies a test function to the argument, and depending upon the value of 

this application, applies one of two other functions to the argument. It is similar 

to Scheme's i:f expression, except that the "test," "then," and "else" parts of the 

COND are functions rather than expressions; the functions are embedded within the 

COND metacomposition function, as with the subfunctions of CONSTRUCT: 

(<COND, 1, 2, 3> <t, a, b>) => a 

(<COND, 1, 2, 3> <f, a, b>) => b 

(Here, t represents true, and f represents false.) 

COND must apply the test function to the argument first, then choose one of the 

two other functions depending upon the value of the first application. It does this 

by reducing to an application of a help function, COND1, setting up the application 

of the test function to the argument as part of the argument to COND1: 

( (pCOND) : «COND ./1. f2 ./a>: x>) -

((COND1 : <(ft : x)./2./a>) : X) 

((pCOND1) : <b,f2 .fa>) =: 
if b then !2 else fa 

We could have defined COND and COND1 a little differently, so that the burden of 

creating the second application is on COND1 instead of COND: 

( (pCOND) : «COND, ft, f2 .fa>: x>) =: 
(COND1 : <(ft : X) ,f2.fa,x>) 

((pCOND1) : <b,f2,f3 ,x>) : 
if b then (/2 : x) else Cfa : x) 

The first definition seems preferable, for two reasons. First, COND1 is much simpler 

and COND not much more complex than in the second definition, and so the first 

definition may yield faster code. Second, the first definition of COND1 may be more 
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useful on its own, as a function that chooses the second or third member of a 

sequence depending upon the (boolean) value of the first. 

5.1.4 The FFP Machine. The FFP machine is a small-grained multiprocessor, 

intended to have thousands or millions of processing elements. These processing 

elements are arranged into a tree-structured communication network. The leaf 

nodes of the tree are called leaf cells, or L-cells, while the internal nodes are called 

tree cells, or T-cells. Figure 5.6 contains a simple diagram of a machine with 

eight L-cells; the circles represent T-cells, and the squares represent L-cells. The 

'program is stored in the L-cells (collectively called the L-array), while the T -cells 

are used for communication and some processing. Each L-cell is a microprocessor 

with a small control store for microcode, a simple ALU, a few registers, and 

connections to the T -cell above it. T -cells are similar to L-cells, with connections 

linking it to the two L-cells or T -cells below and one T -cell above. 

The FFP machine directly interprets an FFP program via string reduction. 

·The symbols of the program are placed in consecutive L-cells of the L-array, one 

symbol per L-cell. The colon and comma delimiters are omitted to save space; the 

FFP machine does not need them to parse FFP expressions (this is a result of the 

fact that atoms cannot span cell boundaries). Figure 5.7 shows an FFP program, 

( 1 : <a, b, c >), stored in the L-array. 

The machine scans the program for innermost applications (also called re

ducible applications or RAs), reduces them in parallel, then scans again. It is 

possible that an RA may not be completely reduced before the next scan, in 

which case it is again considered to be an RA. 

The machine actually operates in cycles, each consisting of three phases: 

• Partitioning. During this phase, the RAs are located and parsed, and appro

priate microcode segments are broadcasted from the root node to the L-cells 

containing each RA. RAs are located by matching opening and closing paren

theses, and RAs are parsed according to opening and closing brackets enclosed 
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Figure 5.6 An FFP Machine with Eight L-cells 

Figure 5. 7 An FFP Program in the L-array 
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within the RA. After parsing, each L-cell is informed where in the RA it re

sides, and it uses this information to determine what segment of microcode 

broadcasted from the root it should load and execute. 

• Execution. During this phase, each L-array segment containing an RA and 

the T-cells above it act as a single virtual processor that begins to reduce the 

RA. Reduction occurs as each L-cell executes its microcode segment, commu

nicating with the other L-cells as necessary through the T-cells above them. 

If the reduction operation for a particular RA is complex, the reduction may 

be only partially completed before the end of this phase. 

• Storage management. The reduction of an RA can require more L-cells than it 

has available, or it may require fewer L-cells than it has available. That is, the 

result of the reduction may be larger or smaller than the original expression. 

In order to satisfy the needs of reductions requiring more L-cells, the storage 

management phase shifts the programs in the L-array to move empty L-cells 

towards these L-cells. 

The network of T-cells provides a simple communication network whereby 

information can travel from any L-cell to any other in time proportional to the 

logarithm of the size of the L-array. In practice, local communication within an 

RA during the execution phase can be much faster, since the height of the tree 

above the L-array segment is often smaller than the height of the entire tree. 

Furthermore, the local communication within an RA does not interfere with local 

communication within other RAs, except when T-cells are shared by more than 

one RA (any T-cell can be shared by at most two RAs). 

The root T -cell is distinguished, in that it contains a link to the external store 

that holds the program segments sent in during the partitioning phase. It is also 

the node through which programs are input and results are returned. (An actual 

implementation of the FFP machine architecture may connect cells at lower levels 

to the external store to avoid making the root cell a bottleneck.) 

An FFP machine with one million cells total provides a working "memory" of 
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roughly one-half million L-cells. These machine cells are each capable of handling 

fairly large pieces of data, including fixed-precision numbers, symbols, and small 

strings (perhaps 20 characters or less). So the overall storage capacity may be 

several times that of a one-half million byte store on a sequential computer. On the 

other hand, there will always be duplicated information and internal fragmentation 

in the machine wasting some of this storage area. 

Large programming systems today often require several million bytes of mem

ory to hold system programs, user programs, and data. Since much of the system 

code will be stored in the external memory area, a million-cell machine will be large 

enough for many computations. However, there will be computations that do not 

fit in a million-cell machine. Furthermore, not all machines built are likely to have 

a million cells (hardware technology may not allow it for a while, and "economy" 

models would probably be available even once hardware advances allow for one 

million cells or more). 

The logical solution is the same as for sequential machines: supply virtual 

memory. Virtual memory systems for the cellular computer are being investigated 

[Fra79, Fra84]. The proposed virtual memory systems allow the contents of L-cells 

to migrate in and out of the machine through the ends of the L-array. This mi

gration occurs naturally during storage management, when shifting already takes 

place. 

5.2 An FFP for Scheme 

It is reasonable to view FFP as an assembly language for the FFP machine, im

plemented in :tnicrocode. Taking this view, the most natural approach to imple

menting a high-level language such as Scheme on the FFP machine is to translate 

programs in the high-level languages into FFP. The layers in this implementation 

would be similar to typical high-level language implementations for sequential 

machines: 

• the high-level language (Scheme), supported by 
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• the assembly language, (FFP), supported by 

• the firmware (L-cell microcode) supported by 

• the physical hardware (the FFP machine). 

When we implement a new language for a sequential computer, the most com

mon practice is to target the existing assembly language, leaving the microcode 

and architecture alone. However, because of the special problems with implement

ing Scheme (and Lisp), microcode support is often contemplated, and there have 

actually been entire new assembly languages designed and implemented for Lisp 

on microcodable computers [Who84]. Furthermore, completely new computer ar

chitectures have been built to run Scheme and Lisp efficiently [Ste81, Sym84]. The 

approach taken here is to design a new FFP specifically for Scheme and to describe 

the meaning of this FFP so that it can be implemented in the microcode of the 

FFP machine. 

The remainder of this section describes the representation of Scheme expres

sions in FFP, an FFP designed for Scheme, and a translator for converting Scheme 

programs into FFP. Assignments and continuations are not treated initially, since 

they require support outside the existing framework of FFP and the FFP machine2 • 

Modifications to support assignments and continuations are given in Sections 5.4 

and 5.5. 

5.2.1 Representation. Before designing an FFP for Scheme, we must establish 

how Scheme programs are to be represented in FFP. As the first step, we will 

consider how to maintain variable bindings. 

Because FFP programs must be written without the aid of variables for input 

values and intermediate results, input values and intermediate results that may 

be required in more than one part of the program must be stored explicitly in 

2 It would be possible by using continuation semantics and maintaining an ex
plicit store to implement Scheme within FFP. However, this mechanism would 
result in sequentializing all Scheme programs and so does not seem worthy of 
pursuit. 
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a sequence (with CONSTRUCT) to be retrieved later (with selectors). A significant 

amount of sequence manipulation on the part of the programmer is sometimes 

required to maintain these values. These sequence manipulations are similar to 

the environment manipulation performed (automatically) by the heap-based and 

stack-based Scheme systems. It seems na~ural, then, to use sequences for binding 

environments and to generate the appropriate sequence manipulation as part of 

the compilation process. 

With environments represented by sequences, we can represent Scheme expres

sions by FFP functions; the argument to an FFP function representing a Scheme 

expression is the current environment containing the values of lexical variables 

possibly required by that expression. The application of the FFP function to an 

environment corresponds to the evaluation of the original Scheme expression in 

that environment. 

These environments can be maintained in a manner similar to the environ

ments in the heap-based system. Each function closure can retain a copy of its 

lexical environment to be augmented by the list of arguments passed to it, and this · 

environment may be accessed through a mechanism similar to the two index lookup 

described in Section 3.5. However, to avoid unnecessary copying it would be more 

desirable to store only those values needed by the function, i.e., to implement the 

display closures introduced in the preceding chapter. This can result in significant 

savings as environments are copied to give expressions evaluated in parallel their 

own environments. The environment trimming technique discussed in Section 5.3 

takes this one step further, maintaining the smallest possible environment at all 

times, not just within a closure. 

In a heap-based system, memory locations are linked together in a graph 

structure when new environments are created from old environments. This is not 

the case on the FFP machine; structures are copied rather than linked. As a result, 

it is no more expensive to append two sequences than to pair two sequences. That 

is, for sequences <xi. ... ,xn> and <y1 , ••• , Ym>, it does not take any more space 
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or time to create 

than to create 

In fact, the latter may be more expensive in terms of space, if the machine uses 

an 1-cell to hold each sequence bracket~ It is reasonable, therefore, to represent 

environments as fiat sequences rather than the more structured representation 

used in the heap-based system. This simplifies value access to one index in place 

of two. 

5.2.2 Compilation. As in the preceding two chapters, description of the model 

involves description of translation to a virtual machine language (here, an FFP), 

and description of the evaluation of the virtual machine language (the FFP prim

itives). 

Each of the FFP primitives introduced by the compiler corresponds to one 

Scheme syntactic form, just as did the virtual machine instructions (for the most 

part) in the preceding chapters. Essentially five different primitives are generated 

by the compiler: the metacomposition functions CONSTANT (for quote and constant 

expressions), CLOSE (for lambda expressions), TEST (for if expressions), and APPLY 

(for function applications) and selectors for variable lookups. These primitives are 

described after the code for the compiler. 

The compiler is a fairly straightforward adaptation of the compilers given in the 

preceding chapters. The function compile-lookup is simpler than its earlier coun

terparts, since it assumes a fiat environment structure. Two functions, sequence 

and application are used throughout the code but never defined. These functions 

are assumed to create FFP sequences or applications in whatever representation 

might be expected by the FFP machine or some other FFP evaluator. Also, the 

function evaluate shown after the compiler invokes the function ffp-eval, which 

is assumed to start up the FFP machine. evaluate is given primarily to show how 

the compiler is invoked initially. 
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The code for find-free is not shown here. The version from Section 4.4 is 

suitable, although it handles call/cc expressions, which do not appear in the 

language at this point. 

(define compile 
(lambda (x e) 

(cond 
[(symbol? x) (compile-lookup x e)] 
[(pair? x) 
(record-case x 

[quote (obj) (sequence 'CONSTANT obj)] 
[lambda (vars body) 
(let ([free (find-free body vars)]) 

(sequence 
'CLOSE 
(compile body (append free vars)) 
(apply sequence 

(map (lambda (x) (compile-lookup x e)) 
free))))] 

[if (test then else) 
(sequence 

'TEST 
(compile then e) 
(compile else e) 
(compile test e))] 

[else 
(sequence 

'APPLY 
(compile (car x) e) 
(apply sequence 

(map (lambda (x) (compile x e)) 
(cdr x))))])] 

[else (sequence 'CONSTANT x)]))) 

(define compile-lookup 
(lambda (x e) 

(recur next ( [e e] [n 1]) 
(if (eq? x (car e)) 

n 

(next (cdr e) (+ n 1)))))) 

The evaluate function builds an application of the compiled argument to an 

empty sequence representing an empty environment, and passes this application 
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to the FFP evaluator. The compiler is called with the expression and an empty 

initial environment: 

(define evaluate 
(lambda (x) 

(ffp-eval (application (compile x '()) (sequence))))) 

5.2.3 Evaluation. In order to fully describe the specialized FFP language de

signed for Scheme evaluation, we must consider the structure and meaning of each 

of its primitives. Part of the set of primitives was enumerated earlier, and the 

structure of some of these primitives should be apparent from the translation per

formed by the compiler shown above. Two additional primitives, CLOSURE and 

TEST1 are introduced and described below along with the other primitives. 

One of the simplest primitives of this new FFP is CONSTANT. CONSTANT is es

sentially the same as the primitive of the same name given earlier; it returns a 

particular object regardless of the argument, which in this case is the current 

environment. Its definition is the same: 

((~CONSTANT) : «CONSTANT, x>, e>) = x 

An environment can never be ..L, so there is no need to qualify this or most of the 

other definitions by what happens when the argument is undefined. 

Another simple primitive is the selector generated for a variable reference: 

((~ 8) : <xt • ... , Xn>) = Xs 

The selector represents the single index required to access a particular value in 

the (flat) environment. 

The CLOSE primitive is somewhat more complicated: 

((~CLOSE) : <<CLOSE, X, <St, ... , Sn>>, e>)-
<CLOSURE, X, <(SJ :e), ... , (sn: e)>> 

CLOSE creates a closure object that is itself a metacomposition function named 

CLOSURE. This new function carries with it the function body, x, and a subse

quence of the environment. This subsequence contains the values of the free vari

ables of the function. The subsequence is determined by the sequence of selectors 
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<si , ••• , s,.> within the CLOSE function. 

When subsequently applied to a sequence of arguments, the CLOSURE function, 

the arguments are appended onto the saved values to form a new environment. 

The body, x, is applied to this environment: 

( (JLCLOSURE) : «CLOSURE, x, <XI, ... , x,.», <yi , ... , Ym») -
(x : <XI , ... , x,. , YI • · •. • Ym>) 

CLOSURE must be sensitive to· _i, since its argument is a sequence of argument values 

and so may be _l. 

The CLOSE operation might be made faster by microcode support for the ap

plication of the sequence of selectors <si, .•• , s,.> to the environment e, in such 

a way that multiple copies of e would be required. The primitive CLOSE could then 

be defined more succinctly as: 

((JLCLOSE) : <<CLOSE, x, <si, o o o 1 Sn>>, <XI , •.• , Xm>>) -

One straightforward way to implement this on the FFP machine would be to 

broadcast the selectors si through s,. to the elements XI through Xm, and the 

elements that were not selected would simply erase themselves, thus constructing 

the environment in place. 

The TEST primitive is similar to the COND primitive shown earlier. The only 

difference is the order of subexpressions: 

((JLTEST) : <<TEST, XI, X2, Xs>. e>) -

((TEST! : <XI, X2, (xs : e)>) : e) 

The test part of the TEST primitive appears to the right instead of to the left of 

the then and else parts; this minimizes the distance e must travel, thus reducing 

storage management overhead. The "help" primitive TEST1 is nearly identical to 

COND1, which was shown earlier: 

( (JLTEST1) : <XI, X2, b>) -
if b then XI else x2 

Finally, APPLY arranges for the evaluation of function and argument expres

sions and subsequent application of the function value to the argument values. 
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APPLY is also the place where concurrency is introduced, since the function and its 

arguments are permitted to execute in parallel: 

( (JLAPPL Y) : «APPLY, I, <xr , ... , Xn», e>) -

((I : e) : <(xr : e). ... , (xn : e)>) 

The applications of I and x; to e are innermost applications and therefore can 

proceed in parallel. Applicative order is preserved, however, because the outer 

application (of the function to the sequence of arguments) cannot proceed until 

the function and all of its arguments have been completely reduced. Thus, the 

programmer may rely upon applicative order to control parallelism. 

Incidentally, tail calls are optimized here as they should be, in the sense that 

the string does not contain anything that is not necessary to further evaluation 

once the application has been made. This is a direct result of the copying of 

environments and the reduction mechanism, which allows us to avoid creating 

stack frames altogether. 

5.3 Environment Trimming 

One of the penalties of the string reduction mechanism is that no part of an 

environment or its contents can be shared by different subexpressions that use the 

environment. That is, each subexpression executing on the machine must have its 

own copy of the environment. This is offset by the benefit of parallel evaluation; 

having its own copy allows each expression to proceed without interference from 

other expressions. Also, on average, environments appear to be relatively small 

and do not often contain excessively large elements. Some environments, though, 

may be large enough that the overhead of copying them and using up space for 

them may outweigh the gains from parallel evaluation. This section addresses this 

problem by introducing a technique that allows the least possible copying to occur. 

It is worth noting that some copying has already been avoided by the use of 

display closures, or closures that contain only the values of free variables. This is 

clearly better than retaining with the closure the entire environment as would be 
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done in a heap-based system. However, wherever the reduction rules above create 

multiple copies of the environment there is a chance that more is copied than is 

necessary. 

For example, the reduction rule for APPLY calls for n + 1 copies of e, where n 

is the number of argument expressions. Often, each of the function and argument 

expressions can only use a subset of the values stored in the environment. It would 

be better if each expression could be evaluated in an environment containing only 

those values that might be referenced, i.e., the values for free variables of the 

expression. The process of removing unneeded elements from the environment 

is referred to here as trimming the environment. Trimming occurs before the 

FFP function representing a Scheme expression is applied to an environment, so 

that expression is evaluated in the smallest possible environment. A new FFP 

primitive, TRIM, performs the trimming. 

5.3.1 Translation. A TRIM function has the form <TRIM, <s1 , ... , sn». It 

·works in a way similar to the CLOSE operation. Of course, it does not create a 

closure object, but it does create a subsequence of the current environment passed 

to it from the set of selectors sr through Sn stored within it. The selectors represent 

in this case the set of free variables of an arbitrary expression, not just of a lambda 

expression. However, translation is surprisingly straightforward, since we already 

have a mechanism for finding. free variables and selecting their values. 

Instead of determining the free variables only during compilation of lambda 

expressions, this compiler determines the free variables of all expressions. From 

the set offree variables it generates a TRIM function for each expression, in addition 

to the function generated by the previous compiler. It can still use the same 

definition for find-free, which is fortuitously defined for all expressions, not just 

for lambda expressions. 

The complexity added to the compiler to generate TRIM functions is compen

sated somewhat by simplified compilation for variables and lambda expressions. 



138 

For any variable, the set of free variables of that variable contains only the vari

able itself. That is, free(x) where xis a variable is the set containing only x. This 

means that an environment trimmed to contain only free variables contains only 

one element, the value of that variable. Therefore, the selector 1 is generated for 

all variables, and no compile-time lookup is necessary. 

For lambda expressions, the environment is already trimmed by the enclosing 

TRIM function, so the trimming formerly performed by the CLOSE function is no 

longer necessary. 

The code for the compiler appears below3. 

(define compile 
(lambda (x e) 

(let ([free (find-free x '())]) 
(sequence 

'TRIM 
(cond 

[(symbol? x) 1] 

[(pair? x) 
(record-case x 

[quote (obj) (sequence 'CONSTANT obj)] 
[lambda (vars body) 
(sequence 

'CLOSE 
(compile body (append free vars)))] 

[if (test then else) 
(sequence 

'TEST 
(compile then free) 
(compile else free) 
(compile test free))] 

[else 
(sequence 

'APPLY 

3 Anyone looking carefully at the code given for this compiler, as for the compiler 
of Section 4.4, will notice that the compilation algorithm is quadratic in the nesting 
level of the program, since find-free is called at each level and find-free itself 
traverses the program from that level. It is straightforward to do the compilation 
in two linear passes: one to determine the free variables, and one to generate code. 
Use of the two-pass algorithm would complicate the presentation here, since the 
slower one-pass algorithm is both shorter and simpler. 



(compile (car x) free) 
(apply sequence 

(map (lambda (x) (compile x free)) 
(cdr x))))])] 

[else (sequence 'CONSTANT x)]) 

(apply sequence 
(map (lambda (x) (compile-lookup x e)) 

free)))))) 

139 

5.3.2 Evaluation. The only new primitive, TRIM, does part of the work of the 

CLOSE operation of the preceding section. And, because TRIM now does this work, 

CLOSE does not. The reduction rules for these two primitives are shown below; none 

of the other rules change (except that the full selector rule for variable evaluation 

is no longer needed, since the only selector generated is the selector 1): 

( CttTRIM) : «TRIM, x, <s1, . . ... sn», e>) = 
(x : <(SJ : e), ... , Csn : e)>) 

((ttCLOSE) : <<CLOSE, x>, e>) :::<CLOSURE, x, e> 

As for the CLOSE operation of the preceding section, the FFP machine can 

perform the TRIM operation more efficiently with specialized microcode support. 

Thus, TRIM could be defined as: 

( CttTRIM) : «TRIM, X, <s1 , ... , Sn», <X!, ... , Xm») -

(X : <X81 , •.• , Xsn>) 

It should also be noted that more copying still takes place than is strictly 

necessary because the TRIM operation is performed separately from the other op

erations and after some copying has been done. Furthermore, introduction of 

one TRIM function for each expression effectively doubles the number of reduction 

steps. The trimming could be performed by each operation instead, saving the 

extra reduction step and reducing the amount of copying. For example, the APPLY 

function could incorporate a sequence of selectors for each subexpression, and use 

these sequences to trim the environments it creates for the subexpressions: 

( CttAPPLY) 
«APPLY, <f, <s{, ... , s{,.», 

<<Xt, <s~ 1 , ••• , s;:>>. 
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<Xn. <sin ... , s;; >>>> 
<y! • ... • Yq») = 

((/:<y,, ... ,y,>) 
81 Bm 

<(Xl: <ystAl• ... , Yszl>), 
1 PI 

(Xn : <y8•n, ... , y8 •n>)>) 
1 Pn 

This might be implemented on the FFP machine by broadcasting the elements of 

the environment just as if full copies were to be made. The sequences of selectors 

inserted for trimming would select and store only the necessary elements. This 

could greatly improve performance, but it would complicate the microcode for 

each primitive, though not more than for the APPLY primitive above. 

5.4 Assignments 

Assignments in the heap-based system result in side-effects to environment struc

tures stored in the heap. Assignments in the stack-based system result in side

effects to single-cell boxes stored in the heap. In both cases, the strategy is to 

alter a structure that is shared by all code that might reference a particular vari

able. In FFP, there is no way to perform a side-effect and no way (or need) to 

specify that an object must be shared. Since communication is local to an RA 

(except during partitioning), the FFP machine cannot directly support structure 

sharing or modification of shared structure. Therefore, if structure sharing is to 

be supported, modifications to the FFP machine and to FFP are necessary. 

The technique proposed here involves the use of an external store attached to 

the root T-cell of the FFP machine, and the use of this external store as a heap. 

Communication with the store would be through input/output channels that must 

be present anyway for loading programs and returning results. 

5.4.1 Representation. In the FFP machine, any element of a sequence can 

be accessed as quickly as any other, assuming that the sequence is not so large 

that it cannot fit within the machine. Many other operations occur in constant 



141 

time as well, such as removal of any element and concatenation of two sequences. 

This makes the sequence an extremely useful and efficient data structure on the 

FFP machine [Mag87]. Pairs, lists, and vectors can all be represented easily with 

sequences, so long as side-effects to these objects are not permitted. Although 

Scheme systems typically do permit side-effects to pairs, lists, and sequences, 

side-effects are infrequent. If the system does allow side-effects to these objects, it 

would be valuable to include immutable versions if they could be supported more 

efficiently, as they can on the FFP machine. 

Mutable objects on the FFP machine must reside in the external store, so 

that side-effects are shared. Wherever the object would have appeared in the 1-

array, it is replaced with a pointer into the external store. Operations for creating, 

referencing, and changing locations in the external store must be made available 

to the microcode of the machine. 

In particular, three operations would be necessary to support assignments, 

using the techniques of the previous chapter: create a box (box), dereference a box 

(unbox), and change the contents of a box (set-box). These are used to implement 

the new FFP primitives BOX, UNBOX, and SETBOX. 

5.4.2 Translation. The translation process is a straightforward merger of the 

translation processes of Sections 4.5 and 5.3. The most interesting modification is 

the sequence of functions generated by make-boxes to be stored in a closure by the 

CLOSE primitive. This sequence is applied element by element to the arguments of 

the closure, and each element is either the identity function ID or the box creation 

function BOX. This is the functional equivalent to the box creation for specific 

arguments in the preceding chapter. 

The code for a compiler supporting assignments appears below. Code for 

find-free and find-sets is not shown here. The versions in Section 4.5 are suit

able, although as noted for find-free at the beginning of Section 5.3, those versions 

handle call/cc expressions, which are not a part of the language at this point. 
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(define compile 
(lambda (x e s) 

(let* ([free (find-free x '())] 
[sfree (set-intersect s free)]) 

(sequence 
'TRIM 
(cond 

[(symbol? x) 
(if (set-member? x s) 

'UNBOX 
1)] 

[(pair? x) 
(record-case x 

[quote (obj) (sequence 'CONSTANT obj)] 
[lambda (vars body) 
(let ([sets (find-sets body vars)]) 

(sequence 
'CLOSE 
(compile body 

(append free vars) 
(set-union 

sets 
sfree)) 

(apply sequence 
(make-boxes sets vars))))] 

[if (test then else) 
(sequence 

'TEST 
(compile then free sfree) 
(compile else free sfree) 
(compile test free sfree))] 

[set! ( var x) 
(let ([n (compile-lookup var free)]) 

(sequence 
'SETBOX 

n 

(compile x free sfree)))] 
[else 
(sequence 

'APPLY 
(compile (car x) free sfree) 
(apply sequence 

(map (lambda (x) (compile x free sfree)) 



(cdr x))))])] 

[else (sequence 'CONSTANT x)]) 
(apply sequence 

(map (lambda (x) (compile-lookup x e)) 
free)))))) 

(define make-boxes 
(lambda (sets vars) 

(map (lambda (x) (if (set-member? x sets) 'BOX 'ID)) 
vars))) 
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The evaluate function is slightly different from the one shown previously, in 

that it passes an additional argument to compile, the set of assigned free variables: 

(define evaluate 
(lambda (x) 

(ffp-eval (application (compile x '() '()) (sequence))))) 

5.4.3 Evaluation. The compiler above generates four primitives not previously 

generated: ID, BOX, UNBOX, and SETBOX. These are described below along with the 

modified CLOSE and CLOSURE primitives and the "help" primitive SETBOX1. 

CLOSE now carries with it a sequence of box creation or identity functions, b. 

This sequence is placed directly into the CLOSURE function created by CLOSE: 

({J.LCLOSE) : «CLOSE, x, b>, e>) = <CLOSURE, x, e, b> 

CLOSURE applies this sequence of box creation or identity functions to the argument 

sequence before appending it to the end of the sequence of saved bindings: 

( (J.LCLOSURE) : 

<<CLOSURE, X, <x1 •... , Xn> <b1, 

<y1, • · · • Ym») = 
(x : <x1. . .. , Xn, (bl : Yl) • 

... ' 

.... (bm : Ym)>) 

Since assignments are infrequent, a worthwhile optimization would be to avoid 

generating the sequence b of box creation or identity functions whenever each 

function is the identity function. That is, whenever none of the formal parameters 

of a lambda expression are assigned, the sequence of boxing/identity functions 

should be omitted. This would necessitate the addition of new CLOSE and CLOSURE 

primitives that did not expect the sequence to be present. 
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The primitive ID is the same one described in Section 5.2: 

((JLID) : X) :: X 

BOX, UNBOX, and SETBOX rely on the machine-supported box, unbox, and setbox 

operations. SETBOX uses a "help" primitive, SETBOX1, to evaluate its argument 

before performing the assignment; the microcode call to setbox actually occurs in 

SETBOX1: 

( (JLBOX) x) = box(x) 

( (JLUNBOX) : <b>) - unbox(b) 

( (JLSETBOX) : «SETBOX, s, x>, e>) :: 
(SETBOX1 : <(s : e), (x : e)>) 

((JLSETBOX1) : <b,x>) = set-box! (b,x) 

5.5 Continuations 

A continuation object embodies "the remainder of the computation" at some point 

during the execution of a program. In a heap-based system, the remainder of the 

computation is fully specified by a link to the heap-allocated control stack. In 

a stack-based system, the remainder of the computation is fully specified by a 

copy of the control stack. In both cases, the stack contained enough information 

to continue the computation with the correct environments or variable bindings 

and the correct return addresses specifying what to do next. In happens that in 

the string-reduction implementation of FFP on the FFP machine we have a data 

structure with this same information: the 1-array. 

The 1-array contains at all times a string representing the current program. 

The current program is the same as the original program, except that certain 

subexpressions have been evaluated, or reduced, to equivalent expressions. In 

other words, the current program contains "the remainder of the program," which 

implicitly specifies exactly what we need: "the remainder of the computation." 

Given this, the implementation of continuations is straightforward, in an abstract 
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sense. A continuation object is simply a copy, or snapshot, of the string represent

ing the current program. This is entirely analogous to the snapshot continuations 

described for stack-based systems in the preceding chapter. 

5.5.1 Translation. The modifications to the compiler required by the addition 

of call/cc are trivial. Only one new FFP primitive is generated, the metacompo

sition function CALLCC. CALLCC has the form: 

<CALLCC, x> 

where xis the compiled argument to the call/cc form. 

The functions find-free and find-sets are not shown below since they can 

be identical to the ones defined in Section 4.5. 

(define compile 
(lambda (x e s) 

(let* ([free (find-free x '())] 
[sfree (set-intersect s free)]) 

(sequence 
'TRIM 
(cond 

[(symbol? x) 
(if (set-member? x s) 

'UNBOX 
1)] 

[(pair? x) 
(record-case x 

[quote (obj) (sequence 'CONSTANT obj)] 
[lambda (vars body) 
(let ([sets (find-sets body vars)]) 

(sequence 
'CLOSE 
(compile body 

(append free vars) 
(set-union 

sets 
sfree)) 

(apply sequence 
(make-boxes sets vars))))] 

[if (test then else) 
(sequence 

'TEST 
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(compile then free sfree) 
(compile else free sfree) 
(compile test free sfree))] 

[set! ( var x) 
(let ([n (compile-lookup var free)]) 

(sequence 
'SETBOX 
n 

(compile x free sfree)))] 
[call/cc (exp) 
(sequence 

'CALLCC 
(compile exp free sfree))] 

[else 
(sequence 

'APPLY 
(compile (car x) free sfree) 
(apply sequence 

(map (lambda (x) (compile x free sfree)) 
(cdr x))))])] 

[else (sequence 'CONSTANT x)]) 
(apply sequence 

(map (lambda (x) (compile-lookup x e)) 
free)))))) 

5.5.2 Evaluation. The reduction rule for the single new FFP primitive, CALLCC, 

is: 

( (JLCALLCC) : «CALLCC, x>, e>) =: (CONTI : (x : e)) 

CALLCC causes its argument to be evaluated and introduces a new primitive, 

CONTI. Unfortunately, CONTI cannot be described as the other primitives have been 

described earlier. CONTI requires special treatment from the FFP machine, since 

it involves not just the symbols in the reducible application, but the entire string 

of symbols representing the current program. This is because CONTI must create 

a copy of this string to store in the continuation object. So for CONTI we must 

consider the contents of the entire L-array. 

After the application of x to e completes, the L-array contains: 
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.•• 8-1 (CONTI : V) 8+1 ... , 

where ... B-1 are the symbols to the left of the application (CONTI : v), and 

8+1 . . . are the symbols to the right of the application. These are the symbols re

quired to continue the computation from the point at which the call/cc expression 

was evaluated. 

The symbols on both sides of the application must be saved in a continuation 

object so that they can be restored when that continuation object is later applied. 

One possibility is to collect symbols on the left into a sequence, the symbols on the 

right into another sequence, and create a new metacomposition function, NUATE 

that includes these sequences. The argument v to CONTI represents the function 

argument passed to call/cc, so it is applied to the continuation. After creating 

the NUATE function and applying v to it, the 1-array contains: 

... 8_1 (v : <NUATE < ..• 8-1> <8+1 ... ») 8+1 .... 

Now, when the NUATE function is recognized in an innermost application, the 

reverse process occurs. At this point, the 1-array contains: 

8~ 1 (NUATE: <<NUATE < ... 8-1> <8+1 ... >>, <v>>) 8~ 1 

The symbols stored with the NUATE function are restored to the 1-array by deleting 

the symbols surrounding the NUATE application. In addition, the argument v passed 

to NUATE is placed between the two sets of symbols ... 8_1 and 8+1 ... , where 

the original CALLCC application resided. After doing so, the 1-array contains: 

... 8-1 V 8+1 .... 

This solution has one major flaw. The two sets of symbols ... 8-1 and 8+1 ... 

include atoms, sequence brackets, and application parentheses. Unless the CALLCC 

application is the entire program by itself (that is, there are no symbols to the 

left or right), some of the opening brackets or parentheses to the left are matched 

by closing brackets or parentheses to the right. Simply picking up these symbols 

and placing them into separate sequences would leave the sequences improperly 

nested. 
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The simplest solution to this problem is to convert the brackets and parenthe

ses into some other symbol when the continuation is built, and to convert them 

back when the continuation is invoked. 

Another solution is to store the sequences of symbols in an external store, 

perhaps the same store used for mutable objects. This store need not attach any 

significance to particular symbols, since it would perform no reduction. Although 

it would require a large amount of I/0, it would cut down on storage management 

overhead when the continuation is created, and reduce the amount of storage taken 

up by continuation objects. 

Incidentally, assigned variables whose values are stored in an external store 

are treated correctly by this solution. Continuations should contain only control 

information, not binding information; assignments to variables made after a con

tinuation is created but before it is invoked should not be undone by the invocation 

of the continuation. In a heap-based system this is assured by the fact that assign

ments change heap-allocated environments, while in the stack-based system they 

change heap-allocated boxes. In this system, they change boxes stored outside of 

the machine, and only unassigned (unchangeable) values are stored in the string. 

So when the string is restored, it restores unchanged values but not assignable 

values. 



Chapter 6: Conclusions 

The principal contributions of the research documented in this dissertation are (1) 

the design and development of a stack-based implementation model for Scheme 

that supports efficient evaluation of programs written in Scheme or in similar 

languages on sequential computers, and (2) the design and development of a string

based implementation model for Scheme that shows great promise for parallel 

implementations of Scheme or similar languages. These contributions are related 

in that the same set of data structures (display closures, snapshot continuations, 

and boxes) are used to support first-class functions, continuations, and assigned 

variables. 

The stack-based implementation model for Scheme is of great practical use 

because it allows most Scheme programs to execute with comparable efficiency to 

their counterparts in Lisp and in more traditional block-structured languages such 

as Algol 60, Pascal, and C. The only heap allocation performed by the stack-based 

model results from the use of assignments, first-class closures, and continuations. 

Variable references, which require a minimum of two memory references in the 

heap-based model (with no upper bound), require one or at most two memory 

references in the stack-based model. The stack-based model has been put to use 

in the author's Chez Scheme system, which was designed and implemented in 

1983 and 1984. Based on published benchmark figures for existing Lisp systems, 

Chez Scheme is among the fastest available Lisp systems for standard computer 

architectures. 

The string-based implementation model avoids both heap allocation and stack 

allocation, instead allocating data structures, where possible, directly in the pro-
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gram text. Programs are evaluated via string reduction, the program text changing 

as reductions are made. Display closures are expanded directly into the program 

text, and the call frames employed in the heap-based and stack-based models 

do not exist (except implicitly as changes to the program text). The string

based model facilitates multiple-processor implementations of Scheme, allowing 

the subexpressions of an application to be evaluated in parallel. The string-based 

model is intended for use on the FFP machine. The FFP machine evaluates FFP 

programs via string reduction; the stack-based model calls for transformation of 

Scheme programs into a special FFP designed specifically to support Scheme. 

While it is too early to judge the efficiency of this model, it seems clear that if 

the FFP machine can execute FFP languages efficiently, it will be able to execute 

Scheme efficiently as well. 

Two aspects of the string-based model and its realization on the FFP ma

chine simplify both the writing and compilation of Scheme programs. The most 

important is that the FFP machine is a small-grain multiprocessor that dynam

ically partitions the program into expressions that may be evaluated in parallel. 

Because of the small granularity, there is no penalty for splitting the program 

along very fine lines, e.g., splitting up the function and argument expressions of 

an application. The dynamic partitioning allows the splitting to occur at fre

quent intervals without requiring explicit instructions from the programmer or 

compiler. The other aspect that simplifies the writing and compilation of Scheme 

programs in the string-based model is the choice to retain applicative order eval

uation. Applicative order evaluation allows the programmer to exercise control 

over parallelism in a way that naturally extends existing sequential control struc

tures. This control can be used to guarantee correct ordering of side effects and to 

control parallelism that might result in over-commitment of computing resources. 

Because this control is available to the user, a compiler for Scheme targeted to the 

FFP machine need not address these issues. 

Development of the stack-based model was guided by a general principle too 

often overlooked in the development of language implementations: it is important 
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to support the most commonly-used features with the greatest possible efficiency 

even if this means supporting the less common features with less than optimal 

efficiency. The traditional heap-based model violates this principle. Indeed, the 

features used the least often in typical Scheme code (creation and application of 

continuations) are two of the most efficient operations supported by the heap

based model. In order to make these operations efficient, the heap-based model 

causes the most common operations (variable reference and function call) to be 

much less efficient than they should be. The stack-based model turns this around, 

making variable references and function calls inexpensive, sacrificing efficiency in 

the creation and application of continuations. 

The development of both of the stack-based and string-based models was also 

guided by a related principle: if a language feature is difficult to implement effi

ciently, and if the choice is between supporting the feature inefficiently and leaving 

it out, the choice should be to support it inefficiently (assuming the feature is worth 

having at all). Of course, the choice becomes less obvious when support for the 

feature seems to affect the more common features, as it does in the heap-based 

model. Some ingenuity is required to develop an implementation that supports 

the feature in question but that does not severely reduce the efficiency of the re

maining features. Some Lisp and Scheme system designers choose not to support 

continuations or first-class functions because they may cause the entire Lisp sys

tem to be inefficient; the stack-based model shows that this need not be the case 

as long as these features incur all or most of the additional overhead. Some de

signers of multiple-processor systems, especially of small-grain and medium-grain 

systems, choose not to support assignments; the string-based model shows that 

this need not be the case. When this principle is applied correctly, programs that 

do not use the features in question do not incur significant additional overhead, 

but programs that do use these features are still supported. 

One counter-intuitive aspect of the stack-based and string-based models is that 

both models keep many copies of things that can be shared. In the string-based 
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model, this is what allows a multiple-processor computer to evaluate subexpres

sions in parallel; the lack of shared structure means the subexpressions can pro

ceed independently of one another. The stack-based model, though, is intended 

for single-processor use, yet it allows multiple copies of a variable binding or stack 

frame to exist. The heap-based model never allows multiple copies of a variable 

binding or control frame to exist. In spite of this, the heap-based model still 

requires a much greater amount of heap allocation. This is not really paradox

ical; while the stack-based model does not require as much heap allocation, it 

does require stack allocation, which is fortunately more efficient in several ways 

than heap allocation. One reason that stack allocation is more efficient is that it 

takes less work to push values onto a stack than to find space for them in a heap. 

Also, because storage allocated on the stack is reclaimed as soon as it is no longer 

needed, it does not necessitate the use of a garbage collector. Furthermore, stack 

allocation of aggregate structures is more efficient in terms of space and time, since 

links that are often required for heap allocation are often implicit in the order of 

stack allocation. 

Chapter 5 demonstrates that Scheme can be translated into an FFP language 

designed for Scheme and suggests that this new FFP language be implemented in 

the microcode of the FFP machine. This is potentially of great benefit to those 

who will use the FFP machine. Scheme will be an excellent high-level alternative 

to FFP on the FFP machine, just as high-level languages on single-processor com

puters are often excellent alternatives to traditional assembly languages. However, 

the technique of translating a high-level language into an FFP designed specifi

cally to support the high-level language, and implementing this FFP directly in 

hardware or microcode may be one of the most important contributions of this re

search. This technique can be generalized to support languages similar to Scheme 

(such as Common Lisp or ML), and it may be possible to generalize it to lan

guages less similar to Scheme. Furthermore, it may be possible to generalize this 

technique to machines other than the FFP machine, perhaps to other small-grain 

machines that support string reduction or other forms of reduction. 
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This dissertation does not address many of the problems associated with multi

processor languages, such as communication among processes, control over mutual 

access to shared variables, and indeterminate computations. Limited control over 

shared variable access may be exercised with the use of applicative order, but this 

often results in a sequential ordering of certain computations and may not allow 

the programmer to take full advantage of available parallelism. These are some 

of the areas that should be addressed in future research on implementations of 

Scheme and similar languages on the FFP machine. 

One advantage of the stack-based model for single-processor computers is that 

it is similar to the traditional stack-based model used in the implementation of 

many block-structured languages. As a result, many of the optimization and 

representation techniques employed by existing compilers for these languages are 

also useful for Scheme. Research into the use of these techniques could result in 

much faster implementations of Scheme than currently exist. Also, although a 

great deal of heap allocation is avoided by the stack-based model relative to the 

heap-based model, there may still be room for improvement. Avoiding the creation 

of closures, boxes, and continuations whenever possible should be one target of 

further research and compiler development for Scheme and Scheme-like languages. 





Appendix A: Heap-Based Vs. Stack-Based 

This appendix presents two comparisons of the heap-based and stack-based imple

mentation models for Scheme. Section A.l compares the amount of heap allocation 

and the number of memory references required by each model to evaluate four sim

ple Scheme programs. Section A.2 compares the number of instructions, amount 

of heap allocation, and number of memory references required to implement the 

most fundamental operations of each model, by first describing instruction se

quences that might be produced by compilers for each model. 

A.l Empirical Comparison 

This section presents an empirical comparison of the stack-based model with the 

heap-based model, comparing the amount of heap allocation and the number of 

memory references required to evaluate four simple test programs. 

In order to determine the amount of allocation and the number of memory 

references performed by a program, the virtual machines of Sections 3.5 and 4.6 

were modified to record this information. Also, an initial environment containing 

a small set of primitive functions was added to each virtual machine. The three 

measured programs are variations of a simple program to compute the Fibonacci 

numbers, a sequence of numbers beginning with 0 and 1 where each element of 

the sequence is the sum of the previous two elements [Knu85]. The first version 

of the Fibonacci program (fib) is a doubly-recursive version that implements the 

definition literally, using Peano arithmetic [Men84] to define addition in terms of 

addition and subtraction by one. 
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(define add 

Cree add 

(lambda (x y) 

(if (zero? y) 

X 

(add ~add1 x) (sub1 y)))))) 

(define :fib 

Cree :fib 

(lambda (x) 

(i:f (zero? x) 

1 

(if (zero? (sub1 x)) 

1 

(add (fib (sub1 x)) 

(fib (sub1 (subl x))))))))) 

This program does not create any closures or continuations, and performs no 

assignments. It does perform many function calls and variable references. 

The second version, fibk, is the same as the :fib, except that it has been 

converted into continuation-passing-style: 

(define addk 

(ree addk 

(lambda (x y k) 

(if (zero? y) 

(k x) 

(addk (add1 x) (sub1 y) k))))) 

(define fibk 

Cree fibk 

(lambda (x k) 

(if (zero? x) 

(k 1) 

(i:f (zero? (sub1 x)) 

(k 1) 

(:fibk (subl x) 

(lambda (a) 

(fibk (sub1 (sub1 x)) 

(lambda (b) 

(addk a b k)))))))))) 
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In addition to the function calls and variable references, this version also creates 

many closures. 

The third version, fibc, is very similar to fibk, except that it uses call/cc to 

obtain continuations, instead of explicitly creating them with lambda: 

(define addc 
(rec addc 

(lambda (x y c) 
(if (zero? y) 

(c x) 

(addc (add1 x) (sub1 y) c))))) 

(define fibc 
(rec fibc 

(lambda (x c) 
(if (zero? x) 

(c 1) 

(if (zero? (sub1 x)) 
(c 1) 

(addc (call/cc 
(lambda (c) 

(fibc (sub1 x) c))) 
(call/cc 

(lambda (c) 
(fibc (sub1 (sub1 x)) c))) 

c)))))) 

Instead of creating closures, this version creates continuations. 

The fourth version, fib!, is similar to the first version, fib, except that it 

performs assignments within the definition of add. 

(define add! 
(lambda (x y) 

( (rec add! 
(lambda () 

(define fib! 
(rec fib 

(if (zero? y) 

X 

(begin (set! x (add1 x)) 
(set! y (sub1 y)) 

(add!)))))))) 
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(lambda (x) 
(i:f (zero? x) 

1 

(i:f (zero? (sub1 x)) 
1 

(add! (:fib (sub1 x)) 

(:fib (sub1 (sub1 x))))))))) 

This version creates no closures or continuations, but it does perform many 

variable assignments. 

Each of the functions :fib, fibk, :fibc, and :fib! were used to compute the 

lOth Fibonacci number in each of the two modified virtual machines. Figures A.l 

through A.4 summarize the results for each function. For all of the programs, the 

stack-based model requires much less allocation, and for all but fibc (because of 

the continuation copying overhead), the stack-based model performs fewer memory 

references. While these programs are certainly not typical of all Scheme programs, 

they do represent a wide range of characteristics and therefore provide some indi

cation of the behavior of the two models. 

Model Allocation (cells) Memory References 

Heap-Based 22302 45806 

Stack-Based 0 19145 

Figure A.l Allocation and Reference Counts for fib 

Model Allocation (cells) Memory References 

Heap-Based 22956 48199 

Stack-Based 617 23261 

Figure A.2 Allocation and Reference Counts for fibk 
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Model Allocation (cells) Memory References 

Heap-Based 25426 52521 

Stack-Based 8023 53945 

Figure A.3 Allocation and Reference Counts for fibc 

Model Allocation (cells) Memory References 

Heap-Based 22592 46889 

Stack-Based 177 19793 

Figure A.4 Allocation and Reference Counts for fib! 

A.2 Instruction Sequences 

This section describes instruction sequences that might be produced by a Scheme 

compiler targeting the Digital Equipment Corporation VAX computer architec

ture [Dig81]. Sequences for both the heap-based model of Section 3.5 and the 

stack-based model of Section 4.6 are given, showing assembly code for variable 

reference and assignment, function call (including tail call) and return, closure 

creation and application, and continuation creation and application. The num

ber of instructions, number of cells of heap allocation, and number of memory 

references (outside the instruction stream) are computed for each sequence, and 

comparisons are drawn between corresponding sequences for the two models. 

The instruction sequences are representative of what a simple code generator 

would produce for each model. A code optimizer could produce much better code 

in some cases for both models. Certain features of the VAX architecture, such as 

quadword and octaword addressing modes, are not used. 
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To simplify instruction sequences that perform heap allocation, the allocation 

operations do not check for heap overflow (that is, the need for garbage collection). 

Furthermore, allocation is always performed from the current end of the heap, 

i.e., from the end-of-heap pointer (hp). No type information or object descriptor 

information that may be required by the system is included. This allows the use 

of a rather unrealistic two-instruction sequence to reserve space in thE! heap. It 

is likely (though not necessary) that allocation would actually be performed by 

a library routine called from the instruction sequences, making allocation more 

expensive than it would appear to be here. 

Similarly, instruction sequences that push values onto the stack do not check 

for stack overflow. This is not unrealistic, since most modern computer architec

tures and operating systems provide some mechanism for trapping and recovering 

from stack overflow. 

A few other simplifications have been made because they are more realistic in 

an object-code translation. For the stack-based instruction sequences, the frame 

pointer register (fp) is not employed because it is always a known distance from the 

stack pointer (sp). Wherever the frame pointer would be used (variable reference 

and assignment), the stack pointer is used instead. For the heap-based instruction 

sequences, a call frame is stored in four consecutive memory locations, rather than 

in four cons-cells. This cuts the amou;t of allocation for a call frame in half and 

simplifies the function entry and function return sequences. Also, the continuation 

creation instruction sequences for both models create slightly more space-efficient 

structures from those specified by the code for the virtual machines. 

The instruction sequences for the heap-based model can become lengthy, es

pecially with allocation performed in-line (not by a procedure call). This has 

lead most implementors to develop specialized virtual machine languages and to 

write assembly-code interpreters for these languages. This additional overhead, 

a direct result of the complexity of the instruction sequences for the heap-based 

model, is an additional reason why heap-based systems are often much slower than 
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The heap-based instructions employ the following registers: 

ac (accumulator), to hold returned values, 

xp (extra pointer), to hold miscellaneous values, 

sp (stack pointer), to hold a pointer to the (heap-allocated) stack, 

ep (environment pointer), to hold a pointer to the environment, and 
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rp (rib pointer), to hold a pointer to the value rib currently under construction. 

The stack-based instructions employ the following registers: 

ac (accumulator), to hold returned values, 

xp (extra pointer), to hold miscellaneous values, 

sp (stack pointer), to hold a pointer to the current top of stack, 

cp (closure pointer), to hold a pointer to the current 

A.2.1 Variable Reference and Assignment. For the heap-based model, vari

able reference takes a minimum of one instruction and one indirection. Additional 

instructions or indirections are required for variables further into a rib or further 

down the chain of ribs. 

The instruction sequences given below are for variable reference. Variable as

signment requires the same number of instructions and memory references. In fact, 

the only difference between the assignment sequences and the reference sequences 

is the direction of the last movl instruction in the sequence (from ac to memory 

instead of from memory to ac), so the assignment sequences are not shown. 

In order to give the best possible instruction sequences, variable references are 

considered in six different cases, depending upon the value's rib m of the current 

environment and element n of this rib. When m = n = 0 (the first local variable), 

the single instruction is: 

movl @(ep),ac 

When m = 0 and n>O, two or more instructions are required: 
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movl (ep),xp 
the following instruction is repeated n - 1 times: 

movl 4(xp),xp 
movl <!l4 (xp) , ac 

For m = 1 and n = 0, two instructions are needed: 

movl lll4(ep),xp 
movl (xp),ac 

For m = 1 and n>O, two or more instructions are required: 

movl ill4 (ep) ,xp 
the following instruction is repeated n - 1 times: 

movl 4(xp),xp 
movl l!l4 (xp) , ac 

When m> 1 and n = 0, three or more instructions are needed: 

movl 4(ep) ,xp 
the following instruction is repeated n - 1 times: 

movl 4(xp),xp 
movl ill4 (xp) ,xp 
movl (xp),ac 

Finally, when m> 1 and n>O, three or more instructions are required: 

movl 4(ep) ,xp 
the following instruction is repeated m - 2 times: 

movl 4(xp) ,xp 
movl 1124(xp),xp 

the following instruction is repeated n - 1 times: 
movl 4(xp),xp 
movl lll4(xp),ac 

In all cases, m + n + 2 memory references are required. The number of instructions 

ranges from one, in the case m = n = 0, to a worst case of m + n + 0, when m> 1 

and n>O. 

For the stack-based model, variable reference can be performed in one in

struction. If the reference is to an assigned variable, an additional indirection is 

needed, but not an additional instruction. Assignment can also be performed in a 

single instruction, and the indirection is always needed (since there cannot be an 

assignment to an unassigned variable). 
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One of four instructions may be necessary for variable reference. The first is 

for any unassigned local variable n cells from the stack pointer: 

movl 4n(sp) o ac 

(The factor of four appearing here is due to an assumption that each cell is 32 

bits, or four bytes long.) The second is for any unassigned nonlocal variable (that 

is, not in the current frame but in the current closure): 

movl 4n(cp)oac 

The third is for any assigned local variable: 

movl C4n(sp)oac 

The fourth is for any assigned nonlocal variable: 

movl C4n(cp) o ac 

In all cases only one instruction is required, with one or two memory references, 

and no heap allocation. 

Only two instructions are possible for variable assignment. The first is for any 

local variable: 

movl ac 0 C4n(ac) 

and the second is for any nonlocal variable: 

movl ac o C4n(cp) 

In either case, one instruction, two memory references, and no heap allocation is 

required. 

Although the element number n and the rib number m in the heap-based 

model are often small, the average number of instructions and memory references 

is probably at least twice or three times the average number for the stack-based 

model. In no case does the heap-based model require fewer instructions or memory 

references than the stack-based modeL 

A.2.2 Nested (Nontail) Call. Function call instruction sequences are sepa

rated into two categories, nested (nontail) calls and tail calls. In addition to the 

instructions required to perform a call, instructions are required to apply a closure 
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or continuation. For the stack-based model the application instructions allocate 

boxes for any assigned variables, in the case of closure application, or copy the 

saved stack elements into the stack, in the case of continuation application. For 

the heap-based model the closure application instructions create the environment 

from the saved environment (in the closure) and the current rib, while the con

tinuation application instructions reinstate the stack pointer to the saved stack 

pointer. Instruction sequences for closure and continuation application are given 

later in this section. 

Function calls in the heap-based model require heap allocation of the argument 

rib, one element at a time, plus heap allocation of a stack frame. The sequence of 

instructions below performs a nontail call with n arguments: 

movl hp,xp 
addl2 #4*4,hp 
moval ret, (xp) 
movl ep,4(xp) 
movl rp,B(xp) 
movl sp,12(xp) 
movl xp,sp 
movl nil,rp 

the next sequence of instructions is repeated n times: 
ac = evaluate(argument) 
movl hp,xp 
addl2 #4*2,hp 
movl ac,(xp) 
movl rp,4(xp) 
movl xp,rp 

end of repeated sequence 

ret: 

cp = evaluate(function) 
jmp <a(cp) 

This sequence requires 5n+9 instructions, 2n+5 memory references, and 2n+4 cells 

of heap allocation. (The instructions for evaluating each argument and placing the 

result in the accumulator are not included here or in the other sequences involving 

function call.) 

The stack-based .model nontail call pushes a frame header and arguments on 
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the stack. The sequence of instructions below performs a nontail call with n 

arguments: 

pushal ret 
pushl cp 

the next sequence of instructions is repeated n times: 
ac = evaluate(argument) 
pushl ac 

end of repeated sequence 

ret: 

cp = evaluate(function) 
jmp IO(cp) 

This sequence requires n + 3 instructions, n + 3 memory references, and no heap 

allocation. That the stack-based model uses fewer instructions and performs fewer 

memory references is less important than that it performs no heap allocation, since 

this avoids garbage collection overhead and other overhead associated with the use 

of large amounts of memory. 

A.2.3 Tail Call. Tail calls in the heap-based model are simpler in that no frame 

is created. The following sequence performs a tail call with n arguments: 

the next sequence of instructions is repeated n times: 
ac = evaluate(argument) 
movl hp,xp 
addl2 #4*2,hp 
movl ac,(xp) 
movl rp,4(xp) 
movl xp,rp 

end of repeated sequence 

ret: 

cp = evaluate(function) 
jmp IQ(cp) 

This sequence requires 5n + 1 instructions, 2n + 1 memory references, and 2n cells 

of heap allocation. 

The stack-based tail call is simpler than the stack-based nontail call in that no 

frame header is pushed on the stack, but more complex in that arguments must 

be shifted before jumping to the called routine. The following sequence performs 

a tail call with n arguments from a function of m arguments: 



166 

the next sequence of instructions is repeated n times: 
ac = evaluate(argument) 
pushl ac 

end of repeated sequence 
cp = evaluate(function) 

the next instruction is repeated for i = n - 1, i = n - 2, ... , i = 0: 
movl 4i(sp),4(i+~)(sp) 
addl2 #4~, sp 
jmp tll(cp) 

ret: 

The repeated movl instruction that shifts the arguments is not needed when ~ = 0, 

and neither is the instruction that adjusts the stack pointer, since the new argu

ments are already positioned correctly when~= 0. When n is large (and ~>0), 

a movc3 (block move) instruction can be used in place of the movl instructions used 

to shift the arguments. This decreases the number of instructions but does not 

change the number of memory references (outside of the instruction stream). An

other way to reduce the number of instructions is to employ movq (move quad word) 

and movo (move octaword) instructions to move two or four cells per instruction. 

When ~ = 0, the sequence above requires n + 2 instructions, n + 1 memory 

references, and no heap allocation. When ~>0, it requires 2n + 2 instructions, 

3n + 1 memory references, and no heap allocation. The number of memory refer

ences for a tail call in the stack-based model is more than the number of memory 

references for the heap-based model (except when ~ = 0), while the number of 

instructions is less (except when n = 0). However, as with nontail calls, the fact 

that the stack-based model avoids heap allocation is more important than the 

relative number of instructions or memory references. 

A.2.4 Return. The return sequences for both models restore the machine reg

isters from the saved frame and jump to the saved return address. The sequence 

is executed by any function after it completes its body, unless it avoids a direct 

return by performing a tail call. The return sequence is also used to restore the 

machine registers after a continuation application (they are saved by the code for 



call/cc). 

Here is the return sequence for the heap-based model: 

movl (sp),xp 
movl 4(sp) ,ep 
movl S(sp),rp 
movl 12(sp),sp 
jmp lll(xp) 
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This sequence requires 5 instructions, 5 memory references, and performs no heap 

allocation. 

The return sequence in the stack-based model depends upon the number of 

arguments of the returning function, and hence the size of frame. The return 

sequence for n arguments follows: 

addl2 #4n,sp 
movl (sp) +, cp 
rsb 

When n = 0, the first instruction in this sequence can be omitted. The rsb 

instruction is equivalent to jmp ~(sp)+, but takes one fewer byte in the instruction 

stream. This sequence requires 3 instructions, 3 memory references, and performs 

no heap allocation. It is only nominally better than the sequence required by the 

heap-based model. However, because of code size considerations, the heap-based 

sequence might be performed by a library subroutine, whereas the stack-based 

sequence is sufficiently smaller that this is probably unnecessary. 

A.2.5 Closure Creation. Closure creation in the heap-based model reqmres 

allocating a two-cell closure object and inserting a pointer to the function code 

and a pointer to the current environment in this object. The following sequence 

performs this operation, where code is the function body: 

movl hp,ac 
addl2 #4*2,hp 
moval code,(ac) 
movl ep,4(ac) 
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This sequence requires 4 instructions, 2 memory references, and 2 cells of heap 

allocation. 

Creating a closure in the stack-based model requires allocating a display clo

sure with enough cells to hold a pointer to the function code and the value (or box 

holding the value)" of each of the function's free variables. Values (or boxes) are 

moved directly from their location on the stack or in the current closure into the 

new closure in a manner similar to unassigned variable reference. The following 

sequence creates a display closure containing values or boxes for n free variables: 

movl hp,ac 
addl2 #4(n+1),hp 
moval code,(ac) 

the following instruction is repeated for i = 1, ... , i = n: 
movl 4o;(r;),4i(ac) 

The notation 4o;(r;) is used to represent some offset 4o; from the register r; 

(where r; is either sp or cp), i.e., the address of a local or nonlocal variable. This 

sequence requires n + 3 instructions, 2n + 1 memory references, and n + 1 cells of 

heap allocation. Since it is fairly common for n to be 0 orl, creation of display 

closures is often no more expensive and sometimes less expensive than creation of 

heap-based closures. Furthermore, with no more compiler analysis than is already 

required by the stack-based model, when n = 0 the closure can easily be created 

at compile or load time rather than at run time. 

A.2.6 Function Entry. The task performed at entry to a heap-based function 

is the creation of an environment containing the current rib (the arguments to the 

function) and the environment saved in the function's closure. 

This environment could be created in the calling sequence (both nontail and 

tail call). However, there are two benefits to creating the environment after entry 

to the function rather than during the call to the function. The first benefit is 

that, while there is typically only one entry to a function, there are often many 

places that call the function. Placing the code at the front of the function body 

means that the code appears once for each function rather than once for each call 
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to a function. This does not save time, but it does save space in the instruction 

stream. The other benefit is that environment creation is avoided in the case of 

continuation application, which is shown later. 

The following code is performed on entry to each heap-based function to create 

the environment: 

movl hp,ep 
addl2 #4*2,hp 
movl rp, (ep) 
movl 4(cp) ,4(ep) 

This sequence requires 4 instructions, 3 memory references, and 2 cells of heap 

allocation. 

In the stack-based model, the environment is separated into two parts: the 

local variables on the stack and the nonlocal (free) variables in the function's 

closure. The only thing that must be done to complete the environment is to 

allocate boxes for assigned variables to contain the values on the stack. 

The following sequence allocates space for each value to be placed in a box, 

fills each box with the appropriate value and replaces this value on the stack with 

its box, for n values: 

movl hp,xp 
addl2 #4n,hp 

the following pair of instructions is repeated n times: 
movl 4o;(sp),(xp) 
moval (xp)+,4o;(sp) 

The notation 4o;(sp) represents some offset 4o; from sp, i.e., the address of one of 

the argument values. When n = 0 this sequence can be omitted, and so requires no 

instructions, memory references, or cells of heap allocation. When n>O it requires 

2n + 2 instructions, 3n memory references, and n cells of heap allocation. 

In well-written Scheme code, assignments are rare, so the case n = 0 is com

mon. In no case does the amount of allocation here exceed the amount of allocation 

saved by not creating argument ribs and environments, although the number of 

memory references is greater in the worst case (all variables are assigned variables). 
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A.2.7 Continuation Creation. Continuation creation is significantly simpler 

and more efficient in the heap-based model than in the stack-based model. The 

heap-based model requires only that a closure be created with a pointer to the 

continuation restoration code (nuate) and a pointer to the current stack. (This 

is a slightly simplified implementation of the virtual machine conti instruction 

from Section 3.5. The virtual machine instruction created a "true" environment 

to place in the environment slot of the closure; here the stack pointer is placed 

directly in the environment slot.) The following instruction sequence performs 

this simple operation: 

movl hp,ac 
addl2 #4*2,hp 
moval nuate,(ac) 
movl sp,4(ac) 

(Here and in the stack-based sequence below, nuate is the address of the appro

priate continuation application code.) The instruction sequence above requires 4 

instructions, 3 memory references, and 2 cells of heap allocation. Since the con

tinuation is always passed to an argument closure (as required by call/ cc), the 

cost of calling a function with one argument should also be added in. 

In the stack-based model, the cost of creating a snapshot continuation depends 

upon the size of the stack to be copied. Creating the continuation requires the 

creation of a display closure of sufficient size to hold the elements of the stack, then 

copying the contents of the stack to the closure. In addition to the code pointer (to 

nuate) and the stack contents, the closure also contains a field giving the size of the 

stack for the continuation application code. (This represents a slight simplification 

of the virtual machine conti instruction of Section 4.6. The virtual machine code 

creates a display closure that points to a separate vector containing the stack 

elements.) The following instruction sequence creates a snapshot continuation 

from a stack whose base is given by stackbase: 



movl hp,ac 
subl3 sp,#stackbase,xp 
addl2 #4*2,hp 
addl2 xp,hp 
moval nuate, (ac) 
movl xp,4(ac) 
movc3 xp,(sp),B(ac) 
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This instruction sequence requires 7 instructions, 2n + 2 memory references, and 

n + 2 cells of heap allocation, where n is the size of the stack (the number of cells 

between stackbase and sp). As with heap-based continuation creation, the actual 

cost would include the overhead of passing the continuation as an argument to 

another function. 

A.2.8 Continuation Application. The instruction sequence to restore a con

tinuation from its closure representation in the heap-based model requires only 

that the argument to the continuation be placed in the accumulator and that the 

saved stack pointer be restored. The following instruction sequence performs this 

operation: 

movl (rp),ac 
movl 4(cp),sp 

This sequence requires 2 instructions, 2 memory references, and no heap allocation. 

The actual cost also includes the cost of the return sequence, which is not shown. 

Restoration of a snapshot continuation proceeds in a similar manner, with 

the argument removed from the stack and placed in the accumulator, and the 

stack copied from the continuation. The instruction sequence below performs this 

operation, determining the number of bytes to copy from the saved size field in 

the continuation. 

movl (sp),ac 
movl 4(cp),xp 
subl3 xp,#stackbase,sp 
movc3 xp,B(cp),(sp) 
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This sequence requires 4 instructions, 2n + 2 memory references, and no heap 

allocation. As with the heap-based model, the actual cost would also include the 

cost of the return sequence (from a routine with no arguments). 
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