
EqL's User's Guide 

TR87-010 

May, 1987 (Revised September, 1987) 

Bharat Jayaraman, Gopal Gupta 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
Sitterson Hall. 083A 
Chapel Hill. NC 27514 



UNC is an Equal Opportunity/ Affirmative Action Institution. 



Abstract 

EqL User's Guidet 

Bharat Jayaraman 

Gopal Gupta 

Department of Computer Science 

University of North Carolina at Chapel Hill 

Chapel Hill, NO 27514 

EqL is a general-purpose language that combines the capabilities of functional and 

logic programming languages. A program in EqL consists of a collection of conditional, 

pattern-directed rules, where the conditions are expressed as a conjunction of equations, 

and the patterns are terms built up of data-constructors and basic values. The computa

tional paradigm in EqL is equation solving. In this report we describe EqL informally, by 

first presenting the syntax of constructs and the built-in operations, and then showing how 

to write and run programs using the EqL interpreter. Several examples are presented, il

lustrating the various features of the language: nondeterminism, logical variables, deferred 

evaluation of primitives, higher-order operations, and user-defined constructors. The re

port also describes I/0 operations and other features of the interpreter, including program 

tracing. 

t This research is supported by grant DCR-8603609 from the N a tiona! Science Foundation and contract 

N 00014-86-K-0680 from the Office of Naval Research. 

1 



I. Introduction 

EqL, for Equational Language, is a general-purpose programming language that com

bines the capabilities of two closely-related declarative languages: functional and logic. A 

program in EqL consists of a collection of conditional, pattern-directed rules, where the 

conditions are expressed as a conjunction of equations, and the patterns are terms built up 

of data-constructors, numbers, booleans, atoms, and variables. The theory and rationale 

behind EqL is discussed elsewhere [J85, JS86, J87); in this document we describe EqL 

informally, by first presenting the syntax of constructs and the built-in operations, and 

then showing how to write and run programs using the EqL interpreter. Some knowledge 

of LISP and PROLOG will be helpful in understanding the concepts in EqL. 

This document is organized as follows: section II describes the data objects of EqL and 

the informal meaning of EqL rules. Section III describes interaction with the interpreter 

and consulting files. Section IV forms the heart of the document, and presents several 

examples of EqL programs for functional and logic programming, illustrating nondeter

minism, logical variables, deferred evaluation of primitives, higher-order operations, and 

user-defined data constructors. Section V describes input/ output, section VI debugging, 

and section VII other miscellaneous features of the interpreter. 

EqL is an experimental language, and is likely to evolve as we gain more experience 

with it-desirable extensions in the language and its implementation are already planned. 

We therefore refer to the current language as 'EqL Version 1.0'. Our convention throughout 

this document is to use type-writer font, e.g. cons, for EqL program text, and italics, e.g. 

equation, for syntactic categories. 

II. EqL Language Features 

In this section we describe the data objects in EqL and the informal meaning of rules. 

II.I. Data Objects 

The data objects in EqL are defined below: 

(i) Numbers: The current implementation of EqL provides only integers, e.g. 10, 207, 

0, -11, -3999, etc. 

(ii) Booleans: tr11e, false. 

2 



(iii) Atoms: Any identifier beginning with an upper-case letter or any sequence of charac

ters enclosed within single quotes, e.g. Apple, EqL, 'also an atom', etc. 

(iv) Variables: Normally begin with a lower-case letter, e.g. x, y, tree, pl, ql, etc. 

"Anonymous" variables begin with the underscore symbol, and serve as place holders 

in data structures, e.g. cons (h, _dontcare). The underscore symbol by itself is also 

an anonymous variable. 

(v) Structures: In the current implementation of EqL, there are two built-in structured 

data objects: trees and strings. User-defined structures may be specified using the 

constructor declaration, explained later. We explain trees and strings below. 

As in LISP, the built-in constructor cons(x,y) defines a binary tree, and the op

erations car(t) and cdr(t) access the left- and right-subtree of a tree t respectively. 

Examples: 

cons(lO, 20), 

cons(lO, cons(20,30)), 

cons(cons(a,lO), cons(B, 20)) 

In the third example, note that a is a variable, but B is a atom. 

Because list-processing is a common application of functional and logic languages, 

EqL provides a special notation for lists. Similar to lists in LISP and PROLOG, EqL lists 

are a special case of trees; they correspond to trees which "slope to the right" and end 

with the special symbol [] . The following examples illustrate the connection between lists 

and trees: 

List Notation 

[1,2,3] 

[[[1]]] 

[] 

Tree Notation 

cons(l,cons(2,cons(3,[]))) 

cons(cons(cons(l, []), []), []) 

[] 

Similar to PROLOG, the notation 

[ X I y ] 

is used to stand for cons(x,y). 

String constants are defined by a sequence of characters enclosed within a pair of 

double-quotes, e.g. "abc", "123", "longer string", etc. The empty string is ""· Anal

ogous to the above notation for lists, we use 

3 



( X : y ] 

to refer to the string obtained by prepending the one-character atom denoted by variable 

x in front of string denoted by y. For example, ['a' : "be"] is the string "abc", and 

['a' : '"'] is the string "a". 

We use the word term to refer to any data object of EqL that is built up from the 

above entities. We sometimes use the word structured term to refer to a term that has a 

constructor at the outermost level. 

II.2. Rules 

We illustrate program rules through examples. Below is a program to find the maximum 

depth of a binary tree of integers. 

depth(x) => 0 where numberp(x) = true 

depth([left I right]) => if dl > dr then dl+1 else dr+1 

where 

dl = depth(left); 

dr = depth(right). 

Program II.l: Maximum depth of a binary tree 

The above program has two rules, which define the two cases for the depth function: the 

case for a leaf (an integer), and the case for a nonleaf (a tree built up from cons). In 

general, an EqL rule may take one of two forms: 

1. /(patterns)=> expression. 

2. f( patterns) => expression where equations. 

We explain each component of a rule below: 

(i) Patterns. The word pattern is a synonym for term, which was defined in the previous 

section. Two or more patterns in a sequence are separated by commas, e.g., 

f ( [xi I y1] , [x2 : y2] , z) => ... 

Zero-argument operations are permitted, and are defined by 

fO => .•. 

4 



(ii) Expressions. All expressions are evaluated in "applicative order," that is, leftmost

innermost expression first. The different kinds of primitives in the current implemen

tation are listed below: 

a. Terms: atoms, numbers, booleans, variables and structures. 

b. Arithmetic: +, -, *, I, di v, mod, and unary -. The operators + and - have 

lower precedence than * and I, which in turn have lower precedence than di v and mod. 

Unary- has the highest precedence. The operators I and div both return the integer 

quotient. All binary operators are left associative. The function abs (x) returns the 

absolute value of x. 

c. Relational: <, >, <=, and >=. The equality symbol = is reserved for defining 

equations. The function eq (x, y) , maps identical atoms, numbers, and booleans 

to true; otherwise it returns false. The functions lessp(x,y), greaterp(x,y), 

lesseq(x,y), and greatereq(x,y) are identical to<, >, <=,and>= respectively. 

d. Boolean: and, or and not. The operator not has precedence over and, which has 

precedence over or. The following domain predicates are provided in the language. 

numberp(x) true if xis a number; false otherwise. 

boolean(x) true if xis a boolean; false otherwise. 

atom(x) 

var(x) 

listp(x) 

null(x) 

e. If then else: 

true if xis an atom; false otherwise. 

true if x is an unbound variable; false otherwise. 

true if x is a list; false otherwise. 

eq(x, []). 

if boolean-expr then expr1 else expr2 

returns expr1 if boolean-expr reduces to true, and expr2 if boolean-expr reduces to 

false. Both the then- and the else-part may have equations associated with them. 

Thus, for example, 

( expr1 where equations) 

may be used in place of expr1 above. We explain equations further below. 

f. Application: 

f (arguments) 

where f is the name of some built-in or user-defined function, or a variable that is 

5 



bound to such a function, and arguments is a sequence of zero or more expressions 

separated by co=as. 

g. Input: 

read(filespec) 

returns the next EqL data item in the file specified by filespec. The read operation is 

discussed in detail in Chapter IV. 

h. Output: 

wri te(filespec, e1, ... , en) 

evaluates e1 through en and writes their values in the file specified by filespec. It 

returns the value of en, the last argument. The write operation is discussed in detail 

in Chapter IV. 

(iii) Equations. An equation is of the form 
. . 

expresszon1 = expresszon2. 

However, for the purpose of explaining how equations are solved, we assume that an 

equation is of the form: 

term = expression or expression = term. 

Although permitted by our implementation, an equation expression1 = expresswn2 of

fers no extra power since it is equivalent to the pair of equations: v= expression1; v = 

expression2, where v is a distinct variable. Actually, it suffices to permit equations of the 

form v = expression, but permitting a term in place of variable v often leads to fewer 

intermediate variables in the source program, and hence clearer definitions. 

Two or more equations in a sequence are separated by semi-colons. Because the 

interpreter is sequential, it solves equations in the sequence presented. There are two 

notable exceptions: 

(1) An equation composed of terms, i.e., without any primitive or user

defined operations, would be solved prior to other types of equations. This re

ordering will not affect the correctness of the program's answer, and can help in 

avoiding unnecessary nontermination. 

(2) An equation involving one of the primitive operators, such as x = y + 

z or atom(x) = false, would be deferred until sufficient information becomes 

6 



available to solve the equation. This delaying is discussed in greater detail in 

section IV.2. 

In the equation-solving rules described informally below,. we refer to expressions being 

'evaluated', but the reader should note that an expression e is evaluated by solving an 

equation v = e. We assume henceforth that an equation is of the form term = expression; 

the sy=etric case is treated similarly. There are six cases for an equation, corresponding 

to the six forms of an expression: 

1. term1 = term2. This is solved by syntactic unification. The equation is unsatisfiable 

if unification fails, and initiates backtracking. 

2. term = f(e 1, ... , en), where each e; is an expression, and f is a user-defined operation, 

whose first rule is 

f(t1, ... , tn) => expression where equations. 

The equation reduces to the following sequence of equations, where each v; is a distinct 

variable: 

v1 = e1; ... ; Vn = en; v1 = t1; ... ; Vn = tn; equations; term= expression. 

That is, the expressions e1 .•• en are first evaluated and their results then unified 

with t 1 •.• tn respectively; the equations in the body off are then solved; and finally, 

the expression in the body of f is evaluated and unified with term. If at any stage 

unification fails, backtracking occurs to the dynamically most recent operation having 

an untried rule. Note that the evaluation order is essentially call-by-value. Also, the 

implementation ensures that each e; is not re-evaluated when an alternate rule for f 
is attempted upon backtracking. 

3. term = if p then e 1 else e2 • If expression p evaluates to a boolean, the equation 

term = e1 or term = e2 is solved. If p evaluates to an unbound variable, say x, two 

nondeterministic paths arise: (1) the equation term = e1 is to be solved, where x 

<-- true; and (2) the equation term = e2 is to be solved, where x <-- false. These 

two paths are tried out sequentially, with backtracking. Note that if e1 or e2 were 

accompanied by equations, these equations would be solved before solving term = e1 

or term= e2. 

4. term = primitive. The arguments of the primitive operator are first evaluated. If they 

are fully instantiated, the operator is applied to the arguments to produce a result, 

7 



which is then unified with term. Otherwise, the equation is deferred, or delayed, until 

all unbound variables are fully defined. 

5. term = read( filespec). The next EqL term is read from the file filespec and unified 

with the left hand side term. The equation is unsatisfiable if unification fails, and 

initiates backtracking. 

6. term = write(filespec, ei, ... , en)· This equation is equivalent to the following sequence 

of equations: 

VI= ei; ... ; Vn =en; term= write(filespec, VI, ••• , Vn)· 

The value returned is that of Vn· This value is unified with term; the equation is 

unsatisfiable, and initiates backtracking, if unification fails. 

Finally, in any place where an equation might appear, EqL permits a membership assertion 

of the form: 

term E expression 

The above membership is satisfiable if term is unifiable with some object in the set of objects 

that expression evaluates to. The remaining objects, if any, are immediately discarded from 

further consideration. This construct is analogous to the "cut" in Prolog, but with cleaner 

semantics. We explain E in greater detail in section IV.l.l.l. 

III. The EqL Interpreter 

The top-level query of an EqL program is either an expression or an equation or a set of 

equations, terminated by a period. A top-level expression e is actually treated internally 

as an equation, _ = e, where_ is the anonymous variable. 

A typical session in EqL is a "conversation" between the user and the interpreter. 

The interpreter is first invoked by the command 

% eql 

where we assume% is the Unix command-level prompt. The interpreter would respond as 

follows: 

EqL Version 1.0 

eql> 

For example, the response to a query 

8 



eql> 2+4. 

would be 

6 

eql> 

To exit EqL, type CTRL-d when the above prompt appears. The interpreter will respond 

with 

[ EqL execution halted ] 

% 
III.l Consulting Files 

Often, a set of EqL rules are kept in a file, which can be read in by a consult operation 

(as in C-Prolog). For example, if depth is the name of a Unix file containing the two rules 

for the depth function, it can be read in as follows. 

eql> consult('depth'). 

EqL will respond with 

true 

eql> 

Now, the depth function can be invoked on some input tree, e.g., [10 I [20 I [30 I 

40]]] , as follows: 

eql> depth( [10 I [20 I [30 I 40]]]). 

The interpreter would respond with 

3 

eql> 

The consult operation can be used in any EqL rule, and will have the effect of reading in 

the rules contained in the file specified as the argument of consult. The consult returns 

true if the specified file is found, otherwise it returns false. Note that the rules from the 

specified file are read in only after the query evaluation is over and not at the time of 

the evaluation of the consult in the query. Note that consult augments the set of rules 

currently known to the interpreter; it does not replace any rule. Replacement of existing 

rules can be accomplished through the operation reconsult, described below. 

9 



Suppose that, after the file depth has been read in, the function depth is to be 

modified, say, to accept both atoms and numbers at the leaf of a tree. This could be 

achieved as follows: Use CTRL-z to suspend the interpreter; then edit the file depth so 

that the first rule reads as follows: 

depth(x) => 0 where numberp(x) or atom(x) = true. 

Re-enter the interpreter using the Unix foreground command, and re-consult the changed 

file by typing: 

eql> reconsult ('depth'). 

The new rules in the file depth will replace the old rules, and the interpreter will respond 

with: 

true 

eql> 

In general, rules read in by re-consulting a file would replace all existing rules that define 

the same operations as those defined in the rules read in. 

The user can input rules directly, without suspending the interpreter, by executing: 

eql> consult('tty'). 

After receiving the prompt, 

true 

the user can type in one or more rules. The end of the input is specified with a period on a 

new line. This mode of supplying rules is sometimes convenient when the rules are short. 

The interpreter may also be initially invoked by specifying any number of input files 

in the command line, e.g. 

% eql -f file1 file2 file3 

A query may be included in a file by preceding it with a ? . Queries may be placed at 

the beginning of a file, between rules, or at the end of a file. 

Before we proceed further, we note again that the top-level query can, in general, be 

an equation or a sequence of equations. For example, the following goal is equivalent to 

depth( [10 I [20 I [30 I 40] J]): 

eql> x = depth( [10 I [20 I [30 I 40]]]). 

10 



The interpreter's response to this goal would be: 

X = 3 

eql> 

Actually, the top-level query depth( [10 I [20 I [30 I 40]]]) would in fact be inter

nally converted into an equation, _ = depth( [10 I [20 I [30 I 40]]]). 

If the EqL interpreter finds that it cannot solve the top-level query, it would respond with 

the message, 

no solution 

This might happen, for example, when the top-level query is: 

eql> depth([]). 

because [] is not an atom. To account for this case, an explicit rule, 

depth([]) => 0. 

can be provided. 

ITI.2. Obtaining Multiple Solutions 

Consider the following definition for the familiar append function of LISP, for non-destructively 

concatenating two lists: 

append([] , x) => x. 

append([hlt], y) => [h I append(t,y)]. 

Program III.l: List append 

For example, the result of the query 

eql> append( [1, 2], [3, 4]). 

would be the list 

[1. 2, 3, 4]. 

It is just as easy to find out the lists x and y such that when appended together will yield 

the list [ 1, 2, 3, 4]. This query can be expressed as follows: 

eql> append(x,y) = [1,2,3,4]. 

The interpreter will respond with: 

11 



X = [] 

y = [1. 2. 3. 4] 

Upon typing a semi-colon at the end of the second line above, the interpreter will respond 

with the second solution: 

X = [1] 

y = [2. 3. 4] 

Typing a carriage return instead of a semi-colon will cause the interpreter to discard 

remaining solutions and return with the 

eql> 

prompt. All five solutions to the above query can be inspected by typing a semi-colon at 

the end of each preceding solution. 

In general, when a semi-colon is typed and there are no further solutions, the interpreter 

will respond with the message: 

no solution 

eql> 

The interpreter for EqL, like a PROLOG interpreter, explores alternative solutions to a 

query by depth-first search with backtracking. 

IV. Programming in EqL 

We now illustrate through examples the various features of EqL: non-determinism, de

layed evaluation of primitives, logical variables, higher order operations, and user-defined 

constructors. 

IV.!. Nondeterminism 

We already saw in the previous chapter that multiple solutions may exist for an equation. 

We illustrate nondeterminism in EqL further through two examples: the family database, 

and the N Queens problem. 

IV.I.l. Family Database 

12 



Shown below are four operations: f (x), which returns the father of some person x; m(x), 

which returns the mother of x; p(x), which returns the parent of x; and gp(x), which 

returns the grand-parent of x. 

f(Bob) => Gary. 

m(Bob) => Mary. 

f(Ann) => Gary. 

m(Ann) => Mary. 

f(Gary) => Joe. 

m(Gary) => Jane. 

f(Mary) => Steve. 

m(Mary) => Sue. 

m(Joe) => Donna. 

m(Jane) => Diane. 

m(Steve)=> Diane. 

p(x) 

p(x) 

gp(x) 

=> f(x). 

=> m(x) . 

=> p(p(x)). 

Program N.l : Family Relationships 

The operation p (x) is nondeterministic because there are two rules for operation p. This 

reflects the fact that a person in this database has more than one parent-two to be 

precise. Because gp(x) is defined in terms of p(x), it is easy to see that gp(x) is also 

nondeterministic. The grand-parent of some person, say Bob, could be found by: 

eql> gp(Bob). 

The first answer produced by the interpreter would be Joe, because p(Bob) would first 

return Gary, and p(Gary) would first return Joe. Upon requesting the next answer (by 

typing semi-colon), the interpreter would backtrack to the latest point where another 

choice is possible. Thus p(Gary) is recomputed, via m(x), to be Jane, which becomes the 

next answer to the top-level query. The other answers, Steve and Sue, are determined 

similarly. 

The grand-children of some person, say Joe, could be found with query such as: 

eql> gp(x) = Joe. 

13 



IV.l.l.l. The use of<-

Suppose that we wanted to find the siblings of some person. Let us assume that two people 

are siblings if they have the same parents, and it suffices to check that they have one parent 

in co=on. We might initially try the following rule: 

sib(x) => y where p(x) = p(y); eq(x,y) =false. 

With this definition of sibling, the response to a goal, 

eql> sib(Bob). 

would first be Ann. Upon requesting another solution, we would once again receive Ann as 

the answer. The reason for this behavior is that the same answer, Ann, is discovered in 

two ways, first via the father of Bob, and again via the mother of Bob. We can avoid this 

behavior by selecting one parent of x, and then making sure that this parent is the same 

as that for y. In order to select an element from a set, the element-of construct, <-,can 

be used. The desired sibling definition is as follows: 

sib(x) => y where z <- p(x); 

z = p(y); eq(x,y) =false. 

Whenever the element-of construct is used to discard alternative solutions, the user 

should be aware that the "hi-directionality" of the operation using this construct could be 

affected. For example, a goal such as 

eql> sib(x) = y. 

will not enumerate all possible sibling pairs; rather, it will produce at most one answer, 

depending upon whether the first parent found in the database had two children or not. 

In our example, the response to the above query will be 

x = Bob 

y - Ann 

Upon typing a semi-colon, the interpreter would respond 

no solution 

eql> 

indicating thereby that there are no further solutions. 

IV.1.2. N Queens Problem 

We now present a more complex example of nondeterministic programming. The problem 

14 



is to place N queens on an N by N chess board in such a way that no two queens are 

attacking one another. A simple approach to this problem is to place queens on successive 

columns so that each new queen placed is not attacked by any queen in the preceding 

columns. If a queen cannot be placed on a given column, we go back to the preceding 

column to see if the queen there has another "safe" position. If there are no safe positions 

remaining on that column, we back up to the preceding column, and so on. A solution is 

found if we can thus place queens on all N columns. We have exhausted all solutions if we 

attempt to go back from the first column to the 0-th column. 

Below is an EqL program for specifying the desired search: 

queens(n) =>solve (1. [], n). 

solve(col, safelist, n) => if eq(col,n+l) then safelist 

else place ([col I row(n)], safelist, n). 

place(q, safelist, n) => solve (col+l, [qlsafelist]. n) 

where q = [coli row]; 

safe(safelist, q) = true. 

safe([] ,q) => true. 

safe([ql f t], q) => safe(t,q) where threatened(q. ql) = false. 

threatened([cllri], [c2lr2]) => eq(r1,r2) or eq(abs(r1-r2), abs(c1-c2)). 

row(n) => n where n>O = true. 

row(n) => row(n-1) where n>O = true. 

Program IV.2 : N Queens Problem 

The nondeterminism in the above program lies in the operation row(n), which generates 

the sequence of integers n, n-1, ... , 1, one at a time. This provides a way for stepping 

through the rows in any particular column. 

IV.2. Delayed Evaluation of Primitives 

An interesting aspect of the execution of an EqL program is the way primitive operators are 

handled. Basically, when a primitive operation, such as+, atom(x), >,etc., has all of its 

arguments defined, it is simplified to produce a result. However, when its arguments are not 

sufficiently defined when first encountered, it will be deferred until sufficient information 

is available to simplify it. This delayed evaluation has many uses, as we will illustrate in 

this and subsequent sections. 

15 



IV.2.1. Simulating Sets with Lists 

The following rules define the familiar LISP operation member, which tests if an element 

x is a member of a list. 

member ( [] , x) => false. 

member ([xI t] , x) => true. 

member([ylt] .x) => member(t.x) where eq(x,y) =false. 

Program IV.3 : List Membership 

It is easy to see that member will correctly check if an element, say 3, is a member 

of some list, say, [ 1 , 2, 3. 4. 5]. Member could just as easily be used to enumerate the 

elements of a list, using a goal such as 

eql> member([1,2.3,4,5], z) =true. 

which would return 1 . 2, 3, 4, and 6 as the value for z, one at a time. What would 

happen if the goal 

eql> member([1,2,3,4,5], z) =false. 

were presented to the interpreter? The first rule of member fails because [] does not 

match [ 1, 2, 3, 4, 5]. The second rule initially succeeds in unifying the goal arguments 

with its patterns, but its result, true, fails to match false in the top-level query. Thus 

the third rule of member is taken. 

When the operation eq (x, y) is encountered, y is bound to 1 but x is unbound. The 

EqL interpreter therefore defers this equation (by moving it to a global stack of such 

deferred equations), and proceeds with the recursive call on member. Each succeeding call 

on member results in one new deferred equation, eq (z, 2) = false, eq (z, 3) = false, 

etc. Finally, the first argument to member is [], and rule 1 succeeds, and all equations are 

solved, except for the deferred equations. Because z is still unbound, the EqL interpreter 

responds as follows: 

Input equations not fully constrained 

z = _16 

eql> 

The binding of z to a number preceded by the under-score symbol indicates that z is un

bound. Although the above behavior might not seem useful at first, consider the following 

natural definition of set difference (in terms of member). 

16 



diff(x,y) => d where member(y, d) = false; 

member(x, d) = true. 

ProgramTV.4 : Set Difference 

The above rule states that the difference of two sets x and y (represented as lists) consists 

of elements d such that d is not a member of y and d is member of x. For example, the 

goal 

eql> diff([1,2,3,4,5], [1,3,5,6,7]). 

will return 2 and 4 as answers, one at a time. 

EqL is able to find these answers as follows. At the end of solving the first equation, 

member(y, d) =false, where y = [1,3,5,6,7], there will be, five deferred equations: 

eq(d,1) =false; eq(d,3) =false; ... ; eq(d,7) =false. 

When attempting solve member (x, d) = true, with x = [ 1 , 2 , 3 , 4, 5] , the binding of d 

to the values 1, 3, or 5 will cause one of the deferred equations to fail, and hence these 

are determined not to be solutions. However, the binding of d to the values 2 or 4 will 

cause all the deferred equations to succeed, and hence these are determined to be solutions. 

IV.2.2. Arithmetic primitives 

Deferring the evaluation of arithmetic primitives also has some interesting uses. Consider 

the conversion of centigrade to fahrenheit, expressed by the following rule: 

f(c) => 32 + 9*c/5. 

This rule can be used to convert centigrade to fahrenheit by a goal such as 

eql> f(100). 

It can also be used to find the centigrade for some particular fahrenheit, by a goal such as 

eql> f (x) = 212. 

To understand the process by which this equation is solved, it should noted that EqL 

converts the above rule into the following program: 

f(c) => 32 + t2 where t1 = 9*c; t2 = t1/5. 

The top-level goal, f (x) = 212, results the following sequence of equations to be solved: 

t1 = 9*x; t2 = t1/5; 32 + t2 = 212. 

17 



EqL defers the first two equations, and solves the last equation to obtain the value of t2. 

With this information t1 is determined from the second equation, and finally x from the 

first equation. Note that EqL will solve equations of the form c = a op b where op is an 

arithmetic operator ( +, -, *, /) and two of the three arguments (a, b, c) are known. 

With this capability, the reader may verify that the interpreter will be able to find the x 

such that 

eql> fact(x) = 24. 

where fact is the familiar factorial function, defined as: 

fact (0) => 1. 

fact(n) => n*fact(n-1) where n>O = true. 

We also leave it to the reader to explain why, for example, fact (x) = 23 will fail to 

terminate. 

IV.3. Logical Variables 

Much of the power in logic programming lies in its "logical variables." All variables in 

EqL are logical variables in that they derive their values not by direct binding but by the 

satisfaction of constraints. The following examples will serve as illustrations. 

IV.3.1. Difference Lists 

A classic example of logical variables is its use in defining "difference lists", which permit 

list concatenation in constant-time. The following is the EqL definition of difference-list 

concatenation. 

dconc([xlt], [tly]) => [xly]. 

Difference lists can be used to avoid the use of append in many places. Consider, for 

example, the following inefficient definition of quick-sort. 

qsort ( []) => [] . 

qsort([pll]) => append(qsort(a), [plqsort(b)]) 

where [alb] = part(l, p). 

part ( [] , p) => [ [] I []]. 

part ([hIt] , p) => if p>h then [[hI a] I b] else [a I [hI b]] 

where 

18 



[alb] = part(t, p). 

Program IV.5 : Naive Quicksort 

The above program is inefficient because it employs a linear-time append operation at each 

stage of the sorting process. This inefficiency can be avoided by concatenating the sorted 

lists in constant-time by representing them as difference lists, as follows. 

sort(l) 

dsort( []) 

dsort( [p I 1]) 

=>answer where [answer I []] = dsort(l). 

=> [xlx]. 

=> [sorta I tail] where 

[a I b] = part(l,p); 

[sorta I [pi sortb]] = dsort(a); 

[sortb tail] = dsort(b). 

Program IV.6 : Quicksort with difference lists 

IV.4. Higher-order operations 

One of the advantages of functional languages over logic language is their support of 

higher-order functions. A well-known example is LISP's map function, which "maps" a 

unary function to each element of a list in order to produce a new list with mapped 

elements. This function can be expressed in EqL as follows: 

map([], f) => []. 

map([hlt], f) => [f(h) map(t,f)]. 

Program IV.7 : List Mapping 

For example, the goal 

eql> map([0,2,3,4], 'fact'). 

would return the list [1, 2, 6, 24] as the answer. 

(As an aside, the reader may note that, because of deferred evaluation of arithmetic oper

ators, the goal 

eql> map([a,b,c,d], 'fact') = [1,2,6,24] 

would yield a=O, b=2, c=3, and d=4!) 

Because function names are atoms, they can be held in data structures. The following 

example shows how to take advantage of this ability. 

19 



simplify([op, el, e2]) => op(simplify(el), simplify(e2)). 

simplify(n) => n where numberp(n) = true. 

add(x,y) => x+y. 

times(x,y) => X*Y· 

sub(x,y) => x-y. 

quo(x,y) => x div y. 

For example, the goal 

Program N.8 : Simplification 

eql> simplify(['times', ['add', 3, 4], 10]). 

would yield 70. 

Note that EqL does not permit nested definitions ofrules or global variables. All func

tions exist at one level; functions do not have any lexically-scoped or dynamically-scoped 

environment from which they obtain information. Just as functions can take function 

names as arguments, they may also be returned as results. 

IV.5 Strings and User-defined Structures 

Consider the following definition for non-destructively concatenating two strings: 

cat([] , x) => x. 

cat([h:t], y) => [h: cat(t,y)]. 

Program N.9: String Concatenation 

Using the above definition, we may determine the two portions, front and back, of some 

string s, such that they are separated by some specific word w, as follows: 

split(w, s) => [front, back] where cat(front, cat(w, back)) = s. 

User-defined constructors are declared before their use. They can be declared anywhere 

in a file between the rules, e.g. 

constructor: seq, fun. 

where seq and fun are the names of the constructors. These two constructors may be used 

in a program for performing type inference-c-seq and fun stand for sequence and function 

respectively. For example, the following rules illustrate how these construc~ors may be 

20 



used to define the types of some primitive functions on sequences: Nil, Head, Tail, and 

Adds. 

type(Nil) => seq(x). 

type(Head) => fun(seq(x), x). 

type(Tail) => fun(seq(x), seq(x)). 

type(Adds) => fun(x, fun(seq(x), seq(x))). 

IV.6. Programming Hints 

To conclude this chapter we offer a few suggestions to aid the construction of more efficient 

program. Th~se are not meant to be rigid rules, but general guidelines. 

• Try to distinguish the different rules defining an operation based on the first argument 

of each rule-this facilitates rule indexing [G87], an optimization which eliminates 

unproductive alternatives by inspecting the first argument of rules. 

• Use pattern matching instead of if-then-else - this leads to clearer programs and 

faster execution. 

• Ensure that operands of strict operators are fully instantiated when they are to be 

applied - equation delaying is an expensive operation. 

V. Input/Output 

EqL provides two forms of I/0 operations: non-backtrackable I/0, and backtrackable 

I/0. We first discuss non-backtrackable I/0. 

To read data from standard input, use 'tty' or TTY instead of the file name. The 

operation 

read (filespec) 

returns the next EqL data item in the file specified by filespec. This data item could be 

an atom, number, boolean, or any structured term, including trees, lists and strings. The 

operation 

read (line, filespec) 

would read the EqL items (which may be numbers or atoms) on the current line, and 

return a list of these items. The operation 

21 



read(list, filespec) 

would look for a list as the next item in the input. The operation 

read(char, filespec) 

would return the next character in the input, as an atom. The operations read(int, 

filespec) and read(boolean, filespec) allow reading an integer and boolean respectively. 

All read operations would fail if an unexpected item is found in the input stream. 

The write operation can take any number of arguments, which can be expressions. 

The expression 

write (filespec, e1, ... , en) 

is treated as 

write(tl, ... , tn) wheret1=e1; ... ; tn=en; 

where each t; is a distinct variable. The value returned by write is that of its last argument 

expression, namely, tn. The non-graphic characters newline and tab are written following 

the C language convention, namely, '\n' (newline) and '\t' (tab). 

EqL allows, as a special exception, a write to be used as an expression in any place 

where an equation might occur, e.g., 

write(TTY, 'Type a statement ending with period.', '\n') 

This expression is converted internally into the equation: 

_ = write(TTY, 'Type a statement ending with period.', '\n') 

Because the current implementation is sequential, read and write operations have 

backtrackable variants, which, in this implementation, can occur only with respect to 

'tty'. To specify backtrackable read and write, use readb instead of read, and wri teb 

instead of write, and omit the filespec in both cases. Backtracking past a readb would 

cause the data item read to be returned back to the input. Similarly, backtracking past 

a wri teb would cause the output to be retracted. All output produced with a wri teb 

will appear only when the top-level query has succeeded-the implementation maintains 

a buffer for all intermediate output; a similar buffer is maintained for backtrackable input. 

The interpreter automatically opens a file when I/0 is to be performed with it. At 

the end of each query, all files opened during the query are closed. 

VI. Errors and Debugging 

22 



The EqL interpreter detects a variety of errors. The parser detects all syntactic and lexical 

errors. A few runtime errors, such as divide by zero, undefined operation, etc. are also 

detected. Debugging facilities have been built into the interpreter to help detect other 

sources of programming error. 

The EqL parser reports the line numbers on which errors occurred and the token on the 

line near which the error occurred. No further analysis of the error is made. Usual causes 

of errors are: unmatched parentheses and brackets; omitting important punctuation, such 

as commas and semicolons; and using a reserved word as a variable name. The reserved 

words are as follows: 

true, false, abs, div, mod, and, or, not, if, then, else, where, read, write, 

readb, writeb, line, list, char, int, consult, reconsult, trace, constructor, 

cons, car, cdr, eq, atom, numberp, listp, var, boolean, null, lessp, greaterp. 

lesseq, greatereq, cputime, timer, save. 

The keyword save, for saving the execution state, has not yet been implemented. 

One of the most common sources of run-time error, during initial program develop

ment, is the invocation of an undefined operation, or an operation with incorrect number 

of arguments. The interpreter will fail when this happens, and backtrack as usual, but will 

print out a message indicating that it did not find the desired operation. 

Errors in logic can often be detected using the trace feature. Two forms of tracing 

are available: non-selective tracing, and selective tracing. The former is specified by 

eql> trace. 

which prints out a trace of every call of every function. To turn off the trace, the same 

command is issued. To selectively trace a function foo, type 

eql> trace('foo'). 

and to turn off the tracing of foo, repeat the above command. 

Because the interpreter performs last equation optimization [ G87], which is a gener

alization of tail-recursion optimization, exit information for an operation may not always 

be printed out. We illustrate the trace feature for the following program, which computes 

(naively) the reverse of a list: 

rev([]) => [] . 

rev([hlt])=> app(rev(t), [h]). 

23 



Suppose the top-level query were: 

eql> rev([1, 2, 3]). 

The trace would be as follows: 

trying rev at frame 0 with [1, 2, 3] 

trying rev at frame 1 with [2. 3] 

trying rev at frame 2 with [3] 

trying rev at frame 3 with [ ] 

Exiting frame 3 

trying app at frame 2 with [ ] [3] 

Exiting frame 2 

trying app at frame 1 with [3 ] [2 ] 

trying app at frame 1 with [ ] [2 ] 

Exiting frame 1 

trying app at frame 0 with [3. 2] [1] 

trying app at frame 0 with [2] [1] 

trying app at frame 0 with [ ] [1] 

[3. 2. 1] 

eql> 

Notice that all invocations of the append operation (see program III.l) are performed 

on the same frame, and hence no exit information for these operations is printed. Also, 

because of rule-indexing, unproductive choice points are discarded based on the arguments 

to rev and app. A trace feature showing a fuller account of the execution has not been 

installed in this version of the interpreter. The above information, nevertheless, is of much 

use in identifying errors in the program. 

Errors in the interpreter would result in one of the following types of messages: 

panic 

Bus error: 

Segmentation violation: 

The latter message is also produced when attempting to unify two infinite objects or 

printing out an infinite object. 

VII. Other Interpreter ~eatures 

24 



Timing: 

The current time, in microseconds, is obtained from the variable cputime. To time the 

execution of a goal, such as rev( [1, 2, 3,4, 5, 6, 7, 8, 9 ,10]), one may write the following 

query: 

eql> before= cputime; 

answer= rev([1,2,3,4,5,6,7,8,9,10]); 

time = cputime - before. 

The response, on a Sun-2, might be something like: 

before = 2516666 

answer= [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] 

time = 150000 

indicating that the run-time for the rev( ... ) goal was approximately .15 Sun-2 seconds. 

The automatic timing of goals can be requested by the command 

eql> timer. 

which gives the cpu-time for all successive top-level queries, until turned off explicitly by 

the same command. 

Interrupt: 

The execution of any goal can be interrupted while in progress. The interpreter will 

trap the interrupt and respond as follows: 

What now? (type h for help): 

Upon typing h, the response would be: 

type a for abort 

type c for continue 

type t for trace 

type u for untrace 

type r for reset 

type e for erase constructors 

What now? (type h for help): 

Typing a causes the current query to be aborted; c continues execution; t starts tracing; 

u stop tracing; r causes all rules to be discarded; and e causes all constructor declarations 

to be wiped out. 

25 



Interpreter options 

As mentioned in section IIL2, the EqL interpreter may be invoked on any number of 

input files using the -f option. The other options allow the user to specify the sizes for var

ious internal run-time data-structures except the equation trail stack which is implemented 

as a part of the trail stack. The general form of the Unix command line is 

% eql [ -c control-stack-size ] 

[ -e equation-delay-stack-size ] 

[ -f file-names ] 

[ - h static-area-size ] 

[ -r read-stack-size ] 

[ -t trail-stack] 

[ -v variable-stack-size ] 

[ -w write-stack-size ] 

The control-stack holds the control information for each invocation of a user-defined opera

tion; the space for variables is allocated separately in a variable-stack. Except for numbers 

and boo!eans, each entry in the variable-stack is a pointer. For structured objects, this 

pointer points to a molecule-heap. As in Prolog implementations, the trail-stack is used to 

record variables whose binding must be undone upon backtracking. The read-stack and 

write-stack are used to implement backtrackable read and write operations respectively. 

The equation-delay-stack is used to implement delayed execution of equations. The default 

allocations, measured in terms of stack entries, for each of the above data structures are: 

75000 (-c), 10000 (-e), 75000 (-h), 10000 (-r), 75000 (-t), 150000 (-v), and 10000 (-w). 

Implementation Note: 

EqL has been implemented by Gopal Gupta as part of his Master's Thesis [G87]. The 

implementation has been carried out under the Unix operating system, using the tools 

Lex, Yacc, and C. Planned enhancements include: set expressions, garbage collection, and 

modules. EqL can be obtained, at nominal distribution cost, by writing to the first author, 

whose e-mail address is bjillcs.unc.edu, or ... !decvax!mcnc!unc!bj. 

References 

[J8~] B. Jayaraman, Equational Programming: A Unifying Approach to Functional and 

26 



Logic Programming, TR 85-030, Dept of Computer Science, University of North Car

olina at Chapel Hill, October 1985. 

[JS86] B. Jayaraman and F.S.K. Silbermann, Equations, Sets, and Reduction Semantics for 

Functional and Logic Programming, In 1986 ACM Conference on LISP and Functional 

Programming, M.I.T., August 1986, pp. 320-331. 

[J87] B. Jayaraman, Semantics of EqL, To appear in IEEE Transactions on Software En

gineering, 1987. 

[G87] G. Gupta, An interpreter for EqL, M.S. Thesis, Dept. of Computer Science, University 

of North Carolina at Chapel Hill, expected December 1987. 

27 


