
Scheme Evolution and the Relational Algebra

TR87-003

Revised

May 1988

Edwin McKenzie*
Richard Snodgrasst

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

*Research by this aut,hor was sponsored in part by the United States _.-iir Force.
j Research by this author was supported in part by an IBM Faculty Dc-relopment
Award.
This research was also supported by NSF grant DCR-8402339 .

. UNC is an Equal Opportunity/Aflirmati,·e Action Institution.

Scheme Evolution and the Relational Algebra

Edwin McKenzie and Richard Snodgrass

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27514

May 31, 1988

Abstract

In this paper we discuss extensions to the conventional relational algebra to support both
aspects of transaction time, evolution of a database's contents and evolution of a database's
scheme. We define a relation's scheme to be the relation's temporal signature, a function
mapping the relation's attribute names onto their value domains, and class, indicating the
extent of support for time. We also introduce copunands to change a relation, now defined as a
triple consisting of a sequence of classes, a sequence of signatures, and a sequence of states. A
semantic type system is required to identify semantically incorrect expressions and to enforce
consistency constraints among a relation's class, signature, and state following update. We
show that these extensions are applicable, without change, to historical algebras that support
valid time, yielding an algebraic language for the query and update of temporal databases. The
additions preserve the useful properties of the conventional algebra.

A database scheme describes the structure of the database; the contents of the: database
must adhere to that structure [Date 1976, Ullman 1982]. Scheme evolution refers to c;hanges to
the scheme of a database over time. Conventional databases allow only one scheme to he in force
at a time, requiring restructuring (also termed logical reorganization [Sockut & Goldb~rg 1979])
when the scheme is modified. With the advent of databases storing past states [McKenzie 1986],
it becomes desirable to accommodate multiple schemes, each in effect for an interval of time in the
past.

In an earlier paper [McKenzie & Snodgrass 1987 A] we proposed extensions to the conven­
tional relational algebra [Codd 1970] that model the evolution of a database's contents. We did
not, however, consider the evolution of a database's scheme. In this paper, we provide further
extensions to the conventional relational algebra that model the evolution of a database's scheme.
The extensions that support evolution of a database's contents are repeated here for completeness
and because the extensions supporting scheme evolution are best explained in concert with those
earlier extensions.

1 Approach

Languages for database query and update exist at no less than three levels of database abstraction.
At the user-interface level, calculus-based languages such as SQL are available for expressing query
and update operations. At the algebraic level, the relational algebra is the formal, abstract language
for expressing these same operations. Finally, at the physical level, query and update opera.tions can
be defined in terms of data structures and access strategies. In this paper we focus on language
definition at the algebraic level. Our goal here is to define formally an algebraic language for
database query and update that supports evolution of a database's scheme, as well as its contents.
To do so, we extend the relational algebra to handle one aspect of time in databases.

Time nnst be added to the underlying data model before it can be added to the relational
algebra. In previous papers, we identified three orthogonal aspects of time that a database man­
agement system (DBMS) needs to support: valid time, transaction time, and user-defined time
[Snodgrass & Ahn 1985, Snodgrass & Ahn 1986]. Valid time concerns modeling time-varying real­
ity. The valiC. time of, sa.y, an event is the clock time when the event occurred in the rea.! world,
independent of the recording of that event in some database. Transaction time, on the other hand,
concerns the storage of information in the database. The transaction time of an event is the trans­
action number (an integer) of the transaction that stored the information about the event in the
database. User-defined time is an uninterpreted domain for which the DBMS supports the opera­
tions of inpuL output, and perhaps comparison. As its name implies, the semantics of user-defined
time is proviced by the user or application program. These three types of time are orthogonal in
tr.e support required of the DBMS.

In these same papers, we defined four classes of relations depending on their support for valid
time and tramaction time: snapshot relations, rollback relations, historical relations, and temporal
relations. User-defined time, unlike valid time and transaction time, is already supported by the
relational algebra, in that it is simply another domain, such as integer or character string, provided
by the DBMS [Bontempo 1983, Overmyer & Stonebraker 1982, Tandem 1983]. Snapshot relations
support neitl.er valid time nor transaction time. They model an enterprise at one particular point
in time. As a snapshot relation is changed to reflect changes in the enterprise being modeled,
past states o: the relation, representing past states of the enterprise, are discarded. A snapshot
relation consists of a set of tuples with the same set of attributes, and is usually represented as a
two-dimensional table with attributes as columns and tuples as rows, as shown in Figure 1. Note
that snapsho: relations are exactly those relations supported by the relational algebra. Hence, for
clarity, we will refer to the relational algebra hereafter as the snapshot algebra. Rollback relations
support transact.ion time but do not support valid time. They may be represented as a sequence
of snapshot states indexed by transaction time, as shown in Figure 2. (Here, the last transaction
deleted one tuple and appended another.) Because they record the history of database activity,
rollback relaLons can be rolled back to one of their past snapshot states for querying.

Historical relations support valid time but do not support transaction time. They model the
history, as it is best known, of an enterprise. \Vhen an historical relation is changed, however, its
past state, like that of a snapshot relation, is discarded. An historical relation may be represented as
a three-dimerosional solid, as shown in Figure 3. Because they record the history of the enterprise
being moC.eled, historicc.l relations support historical queries. They do not, however, support

2

~ ~ ~ ~ ~

~
~
~
~
~

Figure 1: Snapshot Relation

" " " " i\. i\.
" i\. "

!\. \ " " " " \ ' ' \ ' \.

" ' \.

transaction

time

Figure 2: Rollback Relation

3

Figure 3: Historical Relation

~l 'ill ~
val;;;.,... vali';pi. vali~

I

1--
~'

time time time

transaction

time

Figure 4: Temporal Relation

I ~
'!-.. ,, vali':PiJ.

time

I

rollback operations. Temporal relations support both valid time and transaction time. They may
be represented as a sequence of historical states indexed by transaction time, as shown in Figure 4.
Because they record both the .history of the enterprise being modeled and the history of database
activities, temporal relations support both historical queries and rollback operations.

Data models that support these four classes of relations have several important properties.
First, a relation's scheme can no longer be defined in terms of the relation's attributes alone; it
must also include the relation's class (i.e., snapshot, rollback, historical, or temporal). Second,
rollback and temporal relations, unlike snapshot and historical relations, are append-only relations.
Information, once added to a rollback or temporal relation, cannot be deleted; othen'lise, rollback
operations could not be supported. Third, valid time and transaction time are orthogonal aspects
of time. A relation may support either valid time or transaction time without supporting both.
Also, the time when an enterprise changes (i.e., valid time) need not be, and usually will not be,
the same as the time when the database is updated (i.e., transaction time) to reflect that change.
Finally, the same measures of time need not be used for valid and transaction time. For example, a

4

temporal relation will have a variable granularity, which 'C_hanges with each update, fcc tra:•sactio~
time but could have a fixed granularity (e.g., second) for valid time.

Fortunately, since valid time and transaction time are orthogonal, they may be stl!died in
isolation. There have already been several proposals for adding valid time to the snapshot algebra
(Ben-Zvi 1982, Clifford & Croker 1987, Gadia 1984, Gadia 1986, Jones et al. 1979, Lorer.tzos &
Johnson 1987, McKenzie & Snodgrass 1987B, Navathe & Ahmed 1987, Tansel1986, Yeung 1986},
so we will not consider valid time in detail. We focus here on extensions to support transaction
time.

In a previous paper (McKenzie & Snodgrass 1987 A] we discussed extensions to the snapshot
algebra to enable it to handle one aspect of transaction time: evolution of a database's contents.
To handle evolution of the contents of a database containing both snapshot and rollback relations,
we defined a relation to be a sequence of snapshot states, ordered by transaction number. Snapshot
relations were modeled as single-element sequences while rollback relations were modeled as multi­
element, append-only sequences. We also defined a database to be an ordered pair whose first
component was a function from identifiers (i.e., relation names) to relations and whose second'·
component was the transaction number of the most recently committed transaction on the database:·
vVe then augmented the algebra with a rollback operator to make past ~tales of rollback relations
available in the algebra and encapsulated this extended algebra in a language of commands for
database update. Finally, we showed that the same approach could be used to extend an arbitrary
historical algebra (i.e., an algebra supporting valid time) to handle evolution of the contents of a
database containing both historical and temporal relations.

vVe now want to extend the relational algebra to handle the other aspect of transactio:J. time:
evolution of a database's scheme. Scheme evolution is associated solely with transaction time,
since it defines how reality is modeled by the database. For example, a person's marital status is
a (time-varying) aspect of reality, but the decision whether to record marital status. encoded in
the scheme, is a (time-varying) aspect of the database. Hence, we add the scheme to the comain
of database states. The scheme and the contents of the database combine to define the database's
state.

Adding the database's scheme to the domain of database states requires two key changes to
our earlier proposal. First, we define a relation's scheme to be a pair consisting of its class and a•
function, which we refer to hereafter as the relation's signature, that maps the relation's attribute
names onto their value domains. (If the identification of primary keys is desirable, this would also
properly go into the signature.) Second, we augment a relation, defined in our earlier paper as
a single sequence of states, with two other components: a sequence of classes and a sequence of
signatures, both of which are also ordered by transaction number. A relation's class and signature,
as well as its state, are now allowed to change over time. We retain our earlier definition of a
database as an ordered pair whose first component is a function from identifiers to relatio:1s and
whose second component is the transaction number of the most recent!;· committed tr.ansac:ion on
the database.

To express scheme evolution, we replace the modify _state command, introduced in o'.lr pre­
vious paper, with a modify..relation command that alters the class and signature, as well as
the state, of relations. We also extend the define..relation command, introduced in our previ-

5

ous paper, to handle class and signature and we define the new .commands delete...relation and
rename_relation. The delete...relation is the counterpart of the define_relation comn1and.
It either physically or logically deletes from the database the current class, signature, and state of a
relation, depending on the relation's class when the command is executed. The rename.relation
command binds the current class, signature, and state of a relation to a new identifier. \Ve assume
that these commands execute in the context of a single, previously created database. Hence, no
commands are necessary to create or delete the database. Since we are considering modeling trans­
action time from a functional, rather than a performance, viewpoint, commands affecting access
methods, storage mechanisms, or index maintenance are also not relevant.

Allowing a database's scheme to change increases the complexity of our language. If we
allow the database's scheme to change, an algebraic expression that is semantically correct for the
database's scheme when one command executes may not be semantically correct for the database's
scheme when another command executes. We now need a mechanism for identifying semantically
incorrect algebraic expressions relative to the database's scheme when each command executes and
a way of ensuring that the scheme and contents of the database state resulting from the command's
execution are compatible. To identify semantically incorrect expressions, we introduce a semantic
type system and augment all commands to do type-checking.

Finally, we enca.psulate commands within a system of transactions to provide for both single­
command and multiple-command transactions. A multiple-command transaction, like a single­
command transaction, is treated as an atomic update operation, whether it changes one relation
or several relations.

Summarizing these changes, we add

• the scheme (i.e., class and signature) to the formal definition of database state and to the
define...relation command,

• a modify _relation command to handle changes in both the scheme and contents of relations,

• delete_relation and rename_relation commands,

• a semantic type system to identify semantically incorrect algebraic expressions and enforce
consistency constraints between the scheme and contents of the database,

• augmented commands that do type-checking, and

• a system of transactions to provide for single-command and multiple-command transactions.

The result is an algebraic language that supports both aspects of transaction time: evolution of
a database's contents and evolution of its scheme .. This approach applies without change to all
historical algebras supporting valid time, yielding an algebraic language for the query and update
of temporal databases.

This language was designed to satisfy several other objectives as well. First, the language
subsumes the expressive power of the snapshot algebra. For every expression in the snapshot
algebra, there is an equivalent expression in our language. Second, the language ensures that all

6

data stoced in a relation when its class was either rollba~k or temporal are retained permanently
and are accessible via a rollback operator, even after the relation is logically deleted from the
database. Third, commands change only the class, signature, and state of relations current at the
start of a transaction. Past data that are retained to support rollback operations, once saved,
are never changed. Hence, the language accommodates implementations that use write-once-read-

. many (WORM) optical disk to store non-current class, signature, and state information.

In defining the semantics of commands 0-nd algebraic operators, we have favored simplicity
of semacotics at the expense of efficient direct implementation. The language would be inefficient,
in terms of storage space and execution time, if mapped directly into an implementation. How­
ever, the semantics do not preclude more efficient implementations using optimization strategies
for both storage and retrieval of information. In Section 4, we review briefly some of the tech­
niques for efficient implementation, compatible with our semantics, that have been proposed by
others. We also, without loss of generality, assume that transactions are executed sequentially in a
single-user environment. Our approach applies equally to environments that permit the concurrent
execution of transactions as long as their concurrency control mechanisms induce a serialization of
transactions.

Our language for supporting the above extensions will be the topie of the next section. Ad­
ditional aspects of the rollback operators are discussed briefly in Section 3. Section 4 will review
related work, compare our approach with those of others, and note possible future work.

2 The Language

In this section we provide the syntax and denotational semantics of our language for database
query and update. In denotational semantics, a language is described by assigning to each lan­
guage construct a denotation - an abstract entity that models its meaning [Gordon 1979, Scott
1976, S:oy 1977, Strachey 1966]. We chose denotational semantics to define our language because
denotational semantics combines a powerful descriptive notation with rigorous mathematical the­
ory [Gordon 1979], permitting the precise definition of database state. First, we define the syntax
of the language. Then we define the language's semantic domains and a semantic type system for
expressions. Finally, we define the semantic functions that map the language constructs onto their
denotations.

2.1 Syntax

Our language has three basic types of language constructs: programs, commands, and expressions.
A program is a sequence of one or more transactions. Both single-command and muJti-command
transactions are allowed. Commands occur within transactions; they change relations (e.g., define
a relation, modify a relation, delete a relation). Expressions occur within commands and denote
a single snapshot or historical state. We represent these three types of constructs by the syntactic
categories:

7

PR.OQRAM
COMMAND
D't'PRESSION

Category of programs
Category of commands
Category of expressions

\Ve use Backus-N aur Form to specify here the syntax of programs, commands, and expressions
in terms of their immediate constituents (i.e., the highest-level constructs that make up programs,
commands, and expressions). The complete syntax of the language, including definitions of the
lower-level constituents such as identifiers and snapshot states is given elsewhere [McKenzie 1988].

p

c

E .. -

Z' .. -

z

M' .. -

M .. -

begin_transaction C commi t_transaction

I begin_transaction C abort_transaction

I P,; p2

define_relation(J, Z, M) I modify _relation(!, Z', M', E)

I delete..relation(J) I rename_relation(11 , 12) I C1 , C2

[snapshot, M, S] I [historical, M, H] 11

IE, u E2 I E,- E2 I E, X E2 I 7rX (E) I Cip(E)

I E, 0 E2 I E, :._ E2 I E, x E2 I frx (E) I &p (E)

I pU, N> I .OCI, N)

z I*

snapshot I rollback I historical I temporal

M I*

CI,,,:1,,2, ... , !j,, : 1;,2)

C, C1 , and C 2 range over the category COMMAND;
E, E 1, and E2 range over the category EX'JYRE:SSION;
F ranges over the category :F of boolean expressions of elements from the categories

IVE.A!'IT:FIER and STRINQ (i.e., the category of strings in an alphabet),
the relational operators, and the logical operators;

H ranges over the category 'H-STATE of alphanumeric representations of historical
states in an arbitrary historical algebra;

I, I 1 , !,, 11 ,1 , ... , !;,2 range over the category IVEN7T:FIER of alphanumeric
identifiers;

.\f ranges over the category SIQNA7/JRE of alphanumeric representations
of signatures;

8

N ranges over the category .A21M£RAL of decimaLnumerals;
P, P 1 , and Pz range over the category PRO(iRAM;
S ranges over the category S-ST AT£ of alphanumeric representations of snapshot

states;
X ranges over the category fiJ(ID£k7T:FI£R), the power set of ID£N'II:FI£R; and
Z ranges over the category CLASS of character strings denoting relation classes.

An expression, which evaluates to either a snapshot or historical state, may be a constant (i.e.,
an ordered triple consisting of a relation class, signature, and state); an identifier I, representing
the current state of the relation denoted by I; or an algebraic operator on either one or two other
expressions. The allowable operators include the five operators that serve to define the snapshot
algebra and the operators that serve to define an arbitrary historical algebra [McKenzie & Snodgrass
1987C]. Any operator in a given historical algebra may be included in the language as long as
expressions involving that operator evaluate to a single historical state in the algebra. Because
historical algebras have different sets of operators, we show here only the historical counterparts
to the conventional algebraic operators, simply for illustration. Each is represented as op to
distinguish it from its snapshot algebra counterpart op. We also have included two additional
operators, a rollback operator p and its historical counterpart p. The rollback operator p takes two
arguments, an identifier I and a transaction number N, and retrieves from the relation denoted
by I the snapshot state current at the time of transaction N. Similarly, the rollback operator p
retrieves from the relation denoted by I the historical state current at the time of transaction N.

EXAMPLES. The following are two examples of syntactically correct expressions in the language.
·The first is a constant and the second is an expr!'ssion involving both a rollback operator and a
constant. Their semantics will be specified in Sections 2.3 and 2.4. Because the historical algebras
all define historical relations differently, we show in this paper only examples involving snapshot
and rollback relations. Each example, however, has, for a given arbitrary historical algebra, an
analogue involving historical and temporal relations.

[snapshot, (sname: string, class: string), (sname: "?hil", class: "junior"),
(sname: 11 Linda 11

, class: 11 senior 11
),

(sname: "Ralph", class: "senior")]

7rsname (p(R1, 4)) x [snapshot, (course: string), (course: "English")]

Note that the alphanumeric representation of a signature includes both the names of attributes
and the names of the attributes' value domains. 0

There are four commands in the language. We present here a brief description of each com­
mand, with some examples. The semantics of commands will be defined formally in Section 2.5.

The define.relation command binds a class, a signature, and an empty relation state to an
identifier I.

9

EXAMPLE.

define_relation(R1, snapshot, (sname:string, class:string))

Here, the identifier R1 is defined to denote -a snapshot relation with two attrib:1tes, sname and
class. The contents of the relation is, by default, the empty set. 0

The modify _relation command may change the current class, signature, oc state of a rela­
tion. Command parameters specify the new class, signature, and state. The special symbol "*"
represents, depending on context, either the current class or the current signature of a relation. It
may appear as a parameter in a modify _relation command to indicate tha~ a relation's new class
(or signature) is simply the relation's current class (signature), unchanged.

EXAMPLES.

modify_relation(R1, *• *• [snapshot, (sname:string, class:string),
(sname: ''Phil 11

, class:'' j unior 11
) ,

(sname: 11 Linda11
, class: 11 senior 11

),

(sname: 11 Ralph 11
, class: 11 Senior 11

)])

modify_relation(R1, *• (sname:string, course:string),
rrsnameCRi)X [snapshot, (course:strir.g),

(course: "English")])

modify_relation(R1, rollback, *• R1)

The first command changes the state of the relation denoted by Rl but lea\·es tl.e rela:ion's class
and signature unchanged. The second command changes the relation's signature and state, but
not its class. The third command changes only the relation's class, as the expression R: evaluates
to the current state of the relation. 0

The delete_relation command either physically or logically deletes a relation's current
class, signature, and state depending on the relation's class when the command :s executed. The
rename_relation command renames a relation by binding its current class, sigr.ature, and state
to a new identifier.

EXAMPLES.

delete_relation(R1)

rename_relation(R2, R1)

10

Here we first delete the relation denoted by R1 and then rename the relation denoted by R2 as R1. 0

Prograrns in our language contain two types of transactions, committed transactions and
aborted transactions. Committed transactions are transactions, which the user initiates, that
eventually commit. Aborted transactions are transactions, which the user initiates, that for some
reason, dictated either by the user or by the system, abort rather than commit. The semantics of
programs will be defined formally in Section 2.6.

2.2 Semantic Domains

In our language, a program denotes the database resulting from the execution of one or more
transactions, in order, on an empty database. By defining the database that resUlts from the
execution of an arbitrary sequence of transactions, we specify the semantics of that transaction
sequence, and hence the semantics of the language. In this section, we will define formally the flat
domain (i.e, a domain with a trivial partial ordering [Schmidt 1986]) of databases; later sections
will provide the connection between the syntactic category of programs and the semantic domain
of databases. All domains introduced are flat domains and the notation·{···} is used to represent
flat domains.

Assume that we are given the domain D = {D1 , ... , Dy}, where each domain Dj, 1 ~ j ~ y,
is an arbitrary, non-empty, finite or denumerable set. Then, we can define the following semantic
domains for our language.

TRANSACTION .A/UMBER= {0, 1, ... }

A transaction number is a non-negative integer that identifies a transaction that changes the
database. The transaction number assigned to a transaction can be viewed as that transaction's
time-stamp.

RELATION CLASS= {UNDEFINED, SNAPSHOT, ROLLBACK, HISTORICAL, TEMPORAL}

A relation is either undefined or defined to be a snapshot, rollback, historical, or temporal
relation.

RELATION SIQNA7WU = IDfNTIJ'TE'R ~ [D +{uNBOUND})

where the notation "+" on domains means the disjoint union of domains. A relation's signature
is a function that maps identifiers either onto a domain Dj, 1 ~ j ~ y or onto UNBOUND. If a
signature maps an identifier onto Ul'BOUND, then the identifier is unbound in that signature (i.e.,
it is associated with no domain). If, however, a signature maps an identifier onto a domain, then
that mapping defines an attribute.

11

S.VAPSHOT STAT£= Domain of all semantically correct snapshot states (;~cs of n-tuples),
as defined in the snapshot algebra [Maier 1983], for elements of the domC..::1 RELATION
SIQNAJUR£ and the domain {D1 + · · · + Dy}, where 0 is the empty snapshot state.
Hence, a snapshot state s on a relation signature m is a fin.ite set of :nappings from
{I I m(I) # UNBOUND} to D. with the restriction that for each mapping t ;:: s, t(I) E m(I).

HISWRICA.C STAT£ =Domain of all semantically correct historical states as defined in an
arbitrary historical algebra (e.g., as defined in [Ben-Zvi 1982, Clifford 6.: Croker 1987,
Gadia 1984, Gadia 1986, Jones et al. 1979, Lorentzos & Johnson 19E~, McKenzie &
Snodgrass 1987B, Navathe & Ahmed 1987, Tansel1986, Yeung 1986]).

R££.ATION = [RUATION CLASS x TRANSACTION .A!UMBt:R x

[TRANSACTION .A!UM 6£R + H]]+ X

[RUATION SIQNAJURt: x mAJlsAcTioN NUMBt:R]* x

[[sNAPSHoT STAT£ x m.ANsAcTioN .A!UMBt:RJ+

[HISTORICA.C STAT£ x TRANSACTION AUMBt:RJ :"'

where the special element "-" stands for the present time. A relation is thus ac. ordered triple
consisting of

• a sequence of (relation class, transaction nuinber, transaction number or "-'· triples,

• a sequence of (relation signature, transaction number) pairs, and

• a sequence of (relation state, transaction number) pairs.

Relations are dynamic objects whose class, signature, and state are all allowec to change over
time. For example, a relation defined initially as a snapshot relation could be modified to be an
historical, rollback, or temporal relation. Later, the relation could be modified to be a snapshot
relation once again. Every relation always has at least one element in its class se~uence, the last
element recording the relation's current class (i.e., undefined, snapshot, rollback. or temporal).
Any other elements in the sequence record intervals when the relation's class wa.o either rollback
or temporal.

A relation's signature (state) sequence will be empty only if the relation is cuEently undefined
and it was never a rollback or temporal relation. If a relation is currently other than ·cndefined, there
is at least one element in its signature (state) seq.uence, the last element recordir.g the relation's
current signature (state). Any other elements in the sequence record the signatuce (state) of the
relation when its class was either rollback or temporal.

The transaction-number components of all elements, but the last element, in a relation's
class sequence can be viewed as time-stamps defining a fixed, closed interval d~ring which the
element's class component was the relation's class. In contrast, the third compoc.ent of the last

12

element in the sequence is always "-''; it is used to dcline an interval of dynamic length that
always extends to the present. The transaction-number component of each element in a relation's
signature (state) sequence can be viewed as a time-stamp indicating when the element's signature
(state) was entered into the database and became the relation's current signature (state). Since we
assume that database changes occur sequentially, the transaction-n11mber components of a signature
(state) seq11ence, while not necessarily consecutive, will be nevertheless strictly increasing. Th11s,
we can interpolate on the transaction-number component of elements in a relation's signature
(state) sequence to determine the signature (state) of the relation at any time its class was either
rollback or temporal.

EXAMPLE. The following is a sample relation. For notational convenience in this and later
examples, we show only the attribute portion of a signature (i.e., the partial function from attribute
names to value domains). Each signature maps all identifiers not shown onto UNBOUND. Also for
notational convenience, we assume the natural mapping from attribute names onto attribute values
for each tuple (e.g., (ename --> "Phil'', ssn--> 250861414)).

class signature ~ate

((ROLLBACK, 2, 6), (((sname--> string, ((0, 2),
ssn--> integer), 2),

({("Phil'', 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 4),

((sname --> string,
.

({("Phil'', "junior"),
class --> string), 5), ("Linda", "senior"),

("Ralph", "senior")}, 5),

(SNAPSHOT, 8, -) ((ssn--> integer, ({(250861414, "junior"),
class --> string), 8) (147894290, "senior"),

)) (459326889, "senior")}, 8))

The relation shown here was defined to be a rollback relation by transaction 2 and remained a
rollback relation through transaction 6. While the relation was a rollback relation, all changes to
its signature and state were recorded; its state was changed by transaction 4 and both its signature
and state were changed by transaction 5. Transaction 7 redefined the relation's class and the
relation was last updated as a snapshot relation by transaction 8. Only when a relation's c11rrent
class is either rollback or temporal is the relation treated as an append-only relation. In all other
cases, updates cause outdated information to be discarded. Hence, the lack of information about
the relation's class, signat11re, and state before transaction 2 and at transaction 7 implies that the
relation was either undefined or a snapshot or historical relation at those times. Note that this
relation can be rolled back only to transactions 2 through 6. Also note that the last element in the
class sequence defines the relation to be a snapshot relation from transaction 8 to the present. D

VATAEAS£ STAT£ = TDUvTI:FI£1?.--> R.U.ATIOJV

13

A database state is a function that maps each identifier onto a relation. If an identi­
fier I is mapped onto a relation whose current class is UNDEFINED, then I denotes an unde­
fined relation. In the empty database state, all identifiers map onto undefined relations (i.e.,
(((UNDEFINED. 0, -)), (), ())).

DATABASE= DATABASE STAT£ x TRANSACTION }/UMBER

A database is an ordered pair consisting of a database state and the transaction number
assigned to the most recently committed transaction on the database state (i.e., the last transaction
to cause a change to the database state).

2.3 A Semantic Type System for Expressions

Before specifying the semantics of the expressions defined syntactically in Section 2.1, we introduce
a semantic type system for expressions. All syntactically correct expressions in our language are
not necessarily semantically correct. An expression is semantically correct, with respect to a
database state and a command, only if its evaluation on the database state during the command's
execution produces either a snapshot or an historical state. Also, if the expression contains a
rollback operator, it must be consistent with the class and signature of the relation being rolled
backed at the time of the transaction to which the relation is rolled back. Because the class
and signature, as well as the state, of a relation are allowed to change over time, the semantic
correctness of expressions also can vary over time. 'Hence, expressions that are semantically correct
on a database state when one command is executed may not be semantically correct on the same
database state when a subsequent command is executed (although the correctness of rollback
operations to existing states will be unaffected by subsequent commands).

The semantic type system defined here allows us to do expression type-checking independent
of expression evaluation. In Section 2.4, where we define the semantics of expressions, we will
use the type system to restrict evaluation of expressions to semantically correct e>.-pressions only.
Hence, any future implementation of the language can avoid the unnecessary cost associated with
attempted evaluation of semantically incorrect expressions. The type system will also be used to
define the semantics of commands so that commands whose execution would result in an incom­
patibility among a relation's class, signature, and state will never be executed. Also, separation of
semantic type-checking and evaluation of expressions simplifies the formal definitions of the seman­
tics of both expressions and commands. Note that while semantic type-checking and evaluation of
some expressions (i.e., those expressions involving only constant expressions and rollback operators
that roll back a relation prior to the query analysis time) can be done when a query is analyzed,
most semantic type-checking and expression evaluation will have to be done when the query is
executed.

Semantically correct expressions in our language evaluate to either a single snapshot state
or a single historical state. We define a snapshot state's type to be an ordered pair whose first
component is S1'APSHOT and whose second component is the state's signature. Similarly, we define
an historical state's type to be an ordered pair whose first component is HISTORICAL and whose

14

seco•1d component is the state's signature. A semantically correct expression's type is therefore
the class and signature of the relation state resulting from the expression's evaluation and two
exp,essions are said to be of the same type if and only if they evaluate to either snapshot or
historical states on the attributes of the same signature.

We use the semantic function T to specify an expression's type. A semantic function is simply
a function that maps a language construct onto its denotation or meaning. T defines an expression
as a function that maps a database state and a transaction number onto either an ordered pair
or TYPEERROR, depending on whether the expression is a semantically correct expression on the
database state when a command in the transaction assigned the transaction number is executed.
The ordered pair will have as its first component either SNAPSHOT or HISTORICAL and as its second
component the signature of the relation state that the expression represents. Hence, T defines the
type denotation of exp_ressions in our language.

T : EXPRESSION-+ [['DATABASE STATE x TR.AfJSAC7TON J!UMBER.] _,

[[{SNAPSHOT, HISTORICAL} X

R.U.A7TOJ.I SIQNA7UR.£,) + { TYPEERROR} J]

The r,!'5ult ·of type-checking a syntactically correct expression is the class and signature of the
rela~ion state that the expression represents if the expression is semantically correct and an error
if tc.e .fxpression is semantically incorrect. An expression's type may depend on a database state's
con~en,ts. The type of an expression involving a r<>llback operator also depends on the transaction
number of the transaction in which the command containing the expression occurs. Hence, a
database state and transaction number together define the environment in which type-checking is
performed.

Before defining the semantic function T, we describe informally several auxiliary functions
used in its definition. Formal definitions for FINDTYPE and FINDSIGNATURE appear
elsewhere [McKenzie 1988]. Formal definitions for the other functions are either straightforward
or cumbersome and therefore not presented.

FIND CLASS maps a relation onto the class component of the element in the relation's class
sequence whose first transaction-number component is less than or equal to a given integer
and whose second transaction-number component is greater than or equal to the integer. If
no such element exists in the sequence, then FIND CLASS returns ERROR.

FINDSIGNATURE maps a relation onto the signature component of the element in the re­
lation's signature sequence having the largest transaction-number component less than or
equal to a given integer, if FIND CLASS does not return an error for the same integer. If
FIND CLASS returns an error or no such element exists in the sequence, then FIND SIG­
NATURE returns ERROR.

LAST CLASS maps a relation onto the class component of the last element in the relation's class
sequence.

15

LASTSIGNATURE maps a relation onto the signatu1e component of the last ,:ement in :he
relation's signature sequence. If the relation's signature sequence is emp:y, L-\.STSIGKA­
TURE returns ERROR.

H is a semantic function that maps each alphanumeric representation of an historic:J state in :he
syntactic category 1i-STAT£ onto its corresponding historical state in the se:.:antic dom2..in
HISTORICAL STAT£. The definition of H depends on the historical algebra used, as each
historical algebra requires a different version of the function.

M is a semantic function that maps each alphanumeric representation of a relational signaLre
in the syntactic category STQJVA7Uf?_£ onto its corresponding relational sipature in :he
semantic domain R£LA7TO.N STQ.NA7Uf?_£.

N is a semantic function that maps the syntactic category NUM£RAL of decimal numerals i:.to
the semantic domain TRA.NSAC'ITO.N NUM/3£R.

S is a semantic function that maps each alphanumeric representation of a snapshc: state in :he
syntactic category S-STAn onto its corresponding snapshot state in the sec.antic domain
SNAPSHOT STAT£. -

Z is a semantic function that maps each character string in the syntactic category CLASS o:.to
the relation class that it denotes in the semantic domain R.£LA7TON CLASS.

VALIDF is a boolean function that determines whether a boolean expression F is '-valid boolean
expression for the selection operator cr and a-given signature.

VALIDH is a boolean function that determines whether an historical state is a ·:alid historical
state on a given signature. The definition of VALIDH, like that of H, de?ends on :he
historical algebra used.

VALIDS is a boolean function that determines whether a snapshot state is a vald ;e1apshot s:<.te
on a given signature.

VALID X is a boolean function that determines whether each identifier in a set of i:ientifiers X is
mapped onto a domain in a given signature.

We now define formally the semantic function T for each kind of expression dlowed in our
language. For this and later definitions of semantic functions, let

d range over the domain "DATABAS£ STAT£,
m, m 1 , and m2 range over the domain R£LA7TON STQNA7Uf?_£, and
n range over the domain TRANSAC'ITON NUMB£R.

16

T[[snapshot, M, S]](d, n) if (M[M] #ERROR II S[S] #ERROR

II VALIDS (M[M], S[S]))

then (sNAPSHOT, M[M])

else TYPEERROR

If a snapshot constant represents a snapshot state on a signature, the expression's type is the
ordered pair whose first component is SNAPSHOT and whose second component is the snapshot
state's signature. Otherwise, evaluation of the expression's type results in an error.

EXAMPLE. For this and later examples in Section 2, assume that we are given the database
(DS, 8) where the database state DS maps the identifier R1 onto the relation shown in the example
on page 13.

T[[snapshot, (sname:string, class:string), (sname:"Phil", class:"junior"),
(sname: 11 Linda 11

, class: 11 senior 11
),

(sname: 11 Ralph11
, class: 11 senior 11

)]

] (DS, 9) =(sNAPSHOT, (sname....., string, class....., string))

Here we assume that type-checking is being performed as part of transaction 9. Note, however, that
the database state is not consulted to determine the constant expression's type; the expression's
type is independent of the database state. Actually, the only expressions whose type depends
directly on the database state are identifiers and expressions involving the rollback operators. 0

Evaluation of a snapshot· constant's type produces an error if and only if the expression does
not represent a snapshot state on a signature. As we will see in Section 2.4, evaluation of a
constant expression's type produces an error under exactly the same conditions that evaluation of
the expression produces an error. This relationship between a constant expression's type and value
is both a necessary and sufficient condition to ensure that the evaluation of any expression will
result in an error when evaluation of the expression's type results in an error.

17

T[J](d, n) = if (LASTCLASS (d(I)) =SNAPSHOT

V LASTCLASS (d(I)) =ROLLBAcK)

then (sKAPSHOT, LASTSIGNATURE(d(I)))

else if (LASTCLASS (d(I)) =HISTORICAL

V LASTCLASS (d(I)) =TEMPORAL)

then (HISTORICAL, LASTSIGN ATURE (d(I)))

else TYPEERROR

where the notation d(I) stands for the relation denoted by the identifier I in the database state d.
The type of an expression I is the ordered pair whose first component is SNAPSHOT if I's current
class is either snapshot or rollback and HISTORICAL if its current class is either historical or temporal.
The ordered pair's second component is always J's current signature. An error occurs if the relation
is currently undefined.

EXAMPLE.

T[Ri] (DS, 9) = (sKAPSHOT, (ssn-> integer, class-> string))

0

T[E1 U E2](d, n) = if T[El](d, n) = T[E2](d, n) =(sNAPSHOT, m)

then T[EI](d, n)

else TYPEERRO R

if T[E1](d, n) = T[E2](d, n) =(sNAPSHOT, m)

then T[E1](d, n)

else TYPEERROR

18

T[E1x E2](d, n) =

if (T[E1](d, n) =(sNAPSHOT, m1) II T[E2](d, n) =(sNAPSHOT, m 2)

II YJ, J E TDt:NTI:Fit:R, (m1(I) =UNBOUND V m 2 (I) =UNBOUND))

then (sNAPSHoT,{(!, D;) 11 :<:; j :<:; y II ((I, D;) E m 1 V (I, D;) E mz)}

U {(J, UNBOUND) I IE IDt:N'TI:Fit:R II (I, UNBOUND) E m1

II (I, UNBOUND) E m2})

else TYPEERROR

T[r.x(E)] (d, n) =

if (T[E](d, n) =(sNAPSHOT, m) II VALIDX (m, X))

then (sNAPSHOT, {(I,Dj) I IE X II 1 :<:; j :<:; y 1\ (I, Dj) Em}

u { (I, UNBOUND) I I 1! X II I E IDt:N1'I:FI£R})

else TYPEERRO R

T[ap(E)](d, n) = if (T[E](d, n) =(sNAPSHOT, m) 1\ VALIDF (m, F))

then T[E](d, n)

else TYPEERRO R

The type of an expression involving one of the five basic snapshot operators is an ordered pair
whose first component is SNAPSHOT and whose second component is the signature of the relation
state produced when the expression is evaluated, if two conditions are met. The first component
of the type of all su bexpressions must be SNAPSHOT and the second component of the type of all
sub expressions must be a signature satisfying any restrictions placed on the signatures of relation
states in corresponding expressions in the snapshot algebra. For example, our definitions of union
and difference require that the signatures for E1 and E2 be identical while our definition of cartesian
product requires that the attributes defined by the signatures for E 1 and E2 be disjoint. (1\ote
that we can eliminate this last restriction and effectively allow the cartesian product of snapshot
states on arbitrary signatures through the introduction of a simple attribute renaming operator
[Maier 1983] into the language.) If either condition is not met, evaluation of the expression's type

<results in an error.

19

T[pCI, N)](d, n) if N[N] < n A FINDTYPE (d(I), N[N]) =ROLLBACK

then (sNAPSHOT, FINDSIGNATURE (d(I), N[N]))

else TYPEERROR

A rollback expression's type is the ordered pair whose first component is SNAPSHOT and whose second
component is the signature of the relation denoted by I when transaction N[N] was processed,
if the relation was a rollback relation at that time. Otherwise, evaluation of the expression's type
results in an error. Because we assume sequential transaction processing, n is the transaction
number of the one active transaction and all transactions with a transaction number less than n
are committed. Hence, we allow rollback only to committed transactions.

EXAMPLES.

0

T[p(R1, 4)] (DS, 9) =(sNAPSHOT, (sname....., string, ssn-+ intege<))

T[7rsname(p(R1, 4))](DS,9) =(sNAPSHOT, (sname-+ string))

T[7rsname (p(R1, 4)) X [snapshot, (course: string), (course: "English")]
] (DS, 9) =(sNAPSHOT, (sname-> string, course-+ string))

The semantic function T for expressions involving historical operators follows directly. The
type denotations for these expressions are identical to those for expressions involving snapshot
Operators, except that HISTORICAL and TEMPORAL are substituted for SNAPSHOT and ROLLBACK,
respectively.

2.4 Expressions

The semantic function E defines the denotation of expressions in our language. E defines an
expression as a function that maps a database state and a transaction number onto either a snapshot
state (i.e., an element of the S.NAPS1i0T STAT£ semantic domain), an historical state (i.e., an
element of the HISTORICA.C STATE: semantic domain), or ERROR.

E: t:A'JYR.ESSIO.N-+ [[DATABASE: STATE: x Tl?ANSACJT0/1! Aft.JMBt:R] _,

[SNAPSHOT STAn+ HISTORICAL STAn+ {ERRoR}]]

20

If an expression is a semantically correct expression on a_database state, expression e\·aluation on
the database state produces either a snapshot state or an historical state. Otherwise, expression
evaluation produces an error. The environment for expression evaluation, a database state and
the transaction number of the active transaction, is the same as that for expression type-checking.
Note that expression enluation has no side-effect; it leaves the database state unchanged.

Before defining the semantic function E, we describe informally FINDSTATE and LAST­
STATE, two additional auxiliary functions used in E's definition. Formal definitions appear
elsewhere [McKenzie 1988].

FINDSTATE maps a relation onto the state component of the element in the relation's state
sequence having the largest transaction-number component less than or equal to a given
integer, if FIND CLASS does not return an error for the same integer. If FINDCLASS
returns an error or no such element exists in the sequence, then FIND STATE returns ERROR.

LASTSTATE maps a relation onto the state component of the last element in the relat.ion's state
sequence. If the relation's state sequence is empty, LASTSTATE returns ERROR. ,

We now define formally the semantic function E for each kind of·expression allowed in the
language.

E[[snapshot, M, SJ](d, n) = if T[[snapshot, M, SJ](d, n) f' TYPEERROR

then S[5]

else ERROR

EXAMPLE.

D

E[[snapshot, (s!lame:string, class:string), (sname:"Phil", class:"junior"),
(sname: 11 Linda11

, class: 11 senior 11
),

(sname: "Ralph", class: "senibr")]
] (DS, 9) = {("Phil", "junior"), ("Linda", "senior"), ("Ralph", "senior")}

E[JTI(d, n) if T[J] (d, n) f' TYPEERROR then LASTSTATE (d(J)) else ERROR

An identifier expression, if semantically correct, always evaluates to the current state of the
relation denoted by I.

21

EXAMPLE.

E[R1] (DS, 9) = { (250861414, "junior"), (147894290, "senior"), (459326889, "senior")}

0

E[E1 U E2](d, n) =if T[£1 U E2](d, n) oft TYPEERROR

then E[EI] (d, n) U E[£2] (d, n)

else ERROR

The definitions of E for the other four snapshot operators are analogous to that for the union
operator. For each of these operators, the denotation of a semantically correct expression containing
the operator is defined as the standard snapshot operator over the den?.tation of the argument(s)
to that operator.

E[p(I, N)](d, n) if T[p(I, N)] (d, n) oft TYPEERROR

then FINDSTATE(d(I), N[N])

else ERROR

A semantically correct rollback expression evaluates to the snapshot state of the relation denoted
by I at the time of transaction N[N]. The rollback operator always rolls a relation backward,
but never forward, in time. Because transactions always update the database as they are executed,
postactive changes (i.e., changes that will occur in the future) [Snodgrass & Ahn 1985] need not be
considered. Postactive changes are associated only with valid time, not transaction time. Recall
from the definition of the semantic function T that the expression is semantically correct only if
the relation was a rollback relation when the transaction was processed.

22

EXAMPLES.

D

E[p(R1, 4)](DS,9)

{("Phil", 250861414), ("Linda", 147894290), ("Ralph", 459326889)}

E[1fsname(p(R1, 4))](DS,9) = {("Phil"), ("Linda"), ("Ralph")}

E[1fsname (p(R1, 4)) X [snapshot, (course: string), (course: "English")]
] (DS, 9) = {("Phil", "English"), ("Linda", "English"), ("Ralph", "English") }

The semantic function E for expressions involving historical operators follows directly. The
denotations for these expressions are identical to those for expressions inYolving snapshot operators,
except that HISTORICAL and TEMPORAL are substituted for SNAPSHOT and ROLLBACK, respectively.

2.5 Commands

The semantic function C defines the denotation of commands defined syntactically in "Section 2.1.
C defines a command as a function that maps a database state and a transaction number onto a ' .
database state and a status code. Execution of a semantically correct command produces a new
database state and the status code oK, indicating that the command was successfully executed.
Execution of a semantically incorrect command produces the original database state unchanged
and th~·status code ERROR, indicating that the command could not be executed.

C: COMMAND--+ [[DATABASE STATE x TRANSACTIO.V .1/'UMBER]--+

[DATABASE STATE X {OK, ERROR} J l

The environment for command execution is the same as that for expression type-checking and eval­
uation, a database state and the transaction number of the active transaction (i.e., the transaction
in which the command being executed occurs). A command produces a new database state from
the given database state by changing a relation.

vVe use semantic type-checking of expressions in the definition of C to restrict evaluation of
expressions to semantically correct expressions only.· We also incorporate error-checking, based on
the type system for expressions, into C's definition to guarantee consistency among a relation's
class, signature, and state following update. Error-checking ensures that commands actually change
relations only when the change would result in a relation with compatible class, signature, and state.
Commands whose execution would result in an inconsistency among a relation's class, signature,
and state are effectively ignored (i.e, they do not alter the database state).

23

Before defining the semantic function C, we describ.e informally several additional auxiliary
functions used in its definition. Formal definitions for MSoT and its subordinate functions appear
in Appendix B. Formal definitions for the other functions appear in [McKenzie 1988].

M' is the same as the semantic function M with the exception that it maps the special symbol *
onto a relation's current signature.

Z' is the same as the semantic function Z with the exception that it maps the special symbol *
onto a relation's current class.

CONSISTENT is a boolean function that determines whether a class and signature are consistent
with an expression's type.

EMPTYSTATE maps a relation class onto the empty relation state consistent with the class.

MSoT (Modified Start of Transaction) is a function that maps a relation and a transaction
number onto the history of the relation as a rollback or temporal relation prior to the start
of the transaction assigned the transaction number. \Ve refer to this history as the relation's
MSoT for that transaction. The significance of MSoT will become·apparent when we discuss
multiple-command transactions.

EXAMPLE. Again assume, as in earlier examples, that we are given the database (DS, 8) where
the database state component maps the identifier R1 onto the relation shown in the example on
page 13.

MSoT (R1, 9) =

class signature state
((ROLLBACK, 2, 6) (((sna.:ne--> string, ((0, 2),

ssn ~integer), 2),

({("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 4),

((sna.:ne--> integer, ({("Phil", "junior"),
class--> string), 5) ("Linda", "senior"),

)) ("Ralph", "senior")}, 5))

In this example, MSoT retains R1 's history as a rollback relation prior to transaction .9. Although
R1 's current class, signature, and state were recorded before the start of transaction 9, they have
been discarded because they are not part of R1 's history as a rollback relation. If, however, the
last clement in R1's class sequence had been (ROLLBACK, 8, -),then R1's current class, signature,
and state also would have been retained. In this case, MSoT simply would have changed the
second transaction-number component of the last element in R1's class sequence to 8 to indicate

24

that the resulting relation only records Rl 's Lstory as a. rollback relation through transaction 8.
If Rl had never been a rollback or temporal celation, then MSoT would have ma.pped Rl onto
((),(),()). 0

EXTEND replaces the second transaction-n·cmber component in the last element of a relation's
MSoT class sequence with the special Element "-". EXTEND has the effect of making
the length of the interval for the class cc-:nponent of this element dynamic, extending to the
present.

NEWSIGN ATURE maps a relation's MSoT and a (signature, transaction number) pair onto the
empty sequence, if the signature in the laot element of the relation's MSoT signature sequence
is equal to the signature in the (signature. transaction number) pair, or a one-element sequence
containing the (signature, transaction m::nber) pair, otherwise.

NEWSTATE maps a relation's MSoT, a (re:ation state, transaction number) pair, and a (class,
signature) pair onto the empty sequence, if the class and signature in the last elements of the
relation's MSoT class and signature seq1:ences are consistent with the (class, signature) pair
and the state in the last element of the re:ation's MSoT state sequence is equal to the relation
state in the (relation state, transaction ::umber) pair, or a one-element sequence containing
the (relation state, transaction number) ~air, otherwise.

\Ye define formally the semantics of coiLmands using the same approach we used to define
the semantics of expressions. We define the semantic function C for each kind of command al­
lowed in the language. In each of the followi:.g definitions, the predicate specifies the conditions
under which the command is executed. If these conditions hold, a new database state is produced
and the status code OK is returned; otherwise, the database state is left unchanged and the sta­
tus code ERROR is returned. The conditions specified in each definition are both necessary and
sufficient to ensure that only semantically co:rect expressions are evaluated and that the class,
signature, and state of each relation in the database state following execution of the command are
consistent. In all five definitions we assume that if ah a2, a3 , b1 , b2, and b3 are all sequences, then
(a,, a2, a3) 113 (b1, b2, b3) denotes the triple (a1 .I b1 , a2ll b2, a311 b3), where "II" is the concatenation
operator on sequences. Also, the notation d [r I] stands for a new database state that differs from
the database state d only in that it maps the odentifier I onto the relation r.

2.5.1 Define..relation

The define..relation command assigns to a relation, whose current class is UNDEFINED, a new
class and signature and the empty relation stete consistent with the new class. The assignment
becomes effective when the transaction in whjch the command occurs is committed. The changes
that the command makes to the relation to eff,ct this assignment depend on the relation's current
class; the last class, signature, and state, if eny, in the relation's MSoT for the t(ansaction in
which the command occurs; and whether the new class is a single-state class (i.e., SNAPSHOT or
HISTORICAL) or a multi-state class (i.e., ROLL2ACK or TEMPORAL). We hereafter refer to the last
class, signature, and state in a relation's MSoT, if present, as the relation's MSoT class, signature,
and state, respectively. The actions performec by the define..relation command, for all possible

25

Current Class New Class

SingleStateC!ass MultiStateC!ass

1
ExtendMSoT

New Class Append to MSoT,
Extends Nat Applicable if Changed

MSoT Class Append to MSoT,
if Changed

Undefined
2

Append to MSoT Append to MSoT
New Class Append to MSoT, Append to MS,T,

Does Not Extend if Changed if Changed
MSoTC!ass Append to MSoT, Append to MSoT,

if Changed if Changed

SingleStateC!ass 3 Error Error
-··

MultiStateC!ass Error Error

Table 1: DefineJelation Command

combinations of these variables, can be reduced to the three cases shown in Table 1.

If tl::e reiation's current class is UNDEFINED, the define..relation command replaces the
relation with i:s MSoT, augmented to include the new class, signature, and state. If the new
class rep:esents a non-disjoint extension of the relation's MSoT class, the interval assigned the
MSoT class is extended (i.e., made into a dynamically expanding interval by changing the second
transaction-number component to "-") to include the transaction in which the command occurs.
This case is limited to define..relation commands in multiple-command transactions, which we
discuss in Section 2.5.5. Otherwise, the new class is appended to the MSoT class sequence. In
either case, a new signature (state) is added to the MSoT signature (state) sequence only if it
differs from the MSoT signature (state). If the relation's current class is other than UNDEFINED,

the command encounters an error condition and leaves the relation unchanged.

The formal definition of define_relation follows directly from Table 1.

26

C[define_relation(I, Z, M)](d, n) =
if (r = MSoT (d(I), n) II LASTCLASS (d(I)) =UNDEFINED

II Z[Z] oF ERROR II M[lvf] "#ERROR)

then if FIND CLASS (r, n- 1) = Z[Z]

then (d[(EXTEND(r) 113

((),

NEWSIGNATURE(r, (M[M], n)),

NEWSTATE(r, (EMPTYSTATE(Z[Z]), n), (Z[Z], 1I[M])))

)/I], oK)

else (d[(r 113(((Z[Z], n, -)),

NEWSIGNATURE(r, (M[M], n)),

NEWSTATE(r, (EMPTYSTATE(Z[Z]), n), (Z[Z], M[M])))

)/I], oK)

else (d, ERROR)

where r ranges over the domain RLCA7TON + {.((), (), ())}.

EXA.MPLES. In these, and later examples, we show the result of executing a sequence of commands,
starting with the database (DS, 8). We assume that each command corresponds to a single­
command transaction that commits. For simplicity, we always refer to the current database state
as DS, although it changes with each command's execution (i.e., transaction's commitment). We
also restrict the commands to the relations denoted· by the identifiers R1, R2, and R3 and show
only the portion of the database state changed by each command's execution. We assume that DS
maps the identifiers R2 and R3 onto the following relations.

class signature state
R2-+ ((ROLLBACK, 1, 5), (((ename-> string, ((0, 1),

ssn -> integer), 1)

({("Phil'', 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 3)

(UND£FINED, 6, -))) -)

27

class signatuTe state
R3--> I (\UNDEFINED, 0, -)) () ()

Note that a relation whose current class is UNDEFINED has neither a current signature nor a curreat
state. The relation denoted by R2 has a MSoT signature (state), but not a current signature (state).
The relation denoted by R3 has neither a MSoT signature (state) nor a current signature (state).

C[define_relation(R2, rollback, (ename:string, ssn:integer))](DS, 9)

class signature state
-'

R2--> ((ROLLBACK, 1, 5), (((ename -> string, ((0, 1),
ssn-> integer), 1)

({("Phil'', 250861414),
("Linda", 14 7894290),
("Ralph'';-459326889)}, 3),

(ROLLBACK, 9, -))) . (0, 9))

C[defir.e_relation(R3, snapshot, (sname:string, class:string))](DS, 10)

class signature state
R3--> ((SNAPSHOT, 10, -) (((sname-> string, ((0, 10)

) class -> string), 10)))

The firs: command makes the relation denoted by R2 a rollback relation over the attributes ename
and ssn, effective when transaction 9 commits. Although the new class and the relation's MSoT
class are equal, the intervals associated with the two are disjoint. Hence, the new class is appended
to the relation's MSoT class sequence. The new signature is not appended to the relation's MSoT
signature sequence because it is the same as the relation's MSoT signature. The new state, the
empty set, differs from the relation's MSoT state. Hence, it is added to the relation's liiSoT state
sequence. The second command makes the relation denoted by R3 a snapshot relation over the
attributes sname and class, effective when transaction 10 commits. Because the relation's MSoT at
transaction 10 is ((), (), ()), the command transforms the relation's class, signature, and state
sequences i::1to single-element sequences containing the new class, signature, and state. Note that
informajon about both rela.tions when they were undefined has been discarded as it i~ not needed
for rollback. 0

28

Current Class New Class

SingleStateClass JlfultiStateClass

1
ExtendMSoT

New Class Append to MSoT,
Extends Not Applicable if Changed

MSoT Class Append to MSoT,

SingleStateC!ass
if Changed

or
MultiStateClass 2

Append to MSoT Append to MSoT
New Class Append to MSoT, Append to MSoT,

Does Not Extend if Changed if Changed
MSoT Class Append to MSoT, Append to MSoT,

if Changed if Changed
.

Undefined PError]1rror I

Table 2: Modify _relation Command

2.5.2 Modify..relation

The modify ..relation command assigns to a relation, whose current class is otb.er than UNDEFD<~D,
a new class, signature, and relation state. The assignment becomes effective ·when the transaction
in which the command occurs is committed. The modify..relation command differs from the
define..relation command in only three respects, First, the modify.rela~ion command o:.ly
updates a relation if its current class is not UNDEFINED, whereas the define.=elation commc.nd
does just the opposite. Second, the modify..relation command, unlike the define..relat:O.on
command, allows the new class (signature) to be the relation's current class (signature). Thiod,
the modify ..relation command allows the new relation state to be the value of any semanticc.lly
correct expression consistent with the new class and signature, whereas tr.e define..relation
command requires that the new state be the empty state consistent with the new class. Otherwise,
the semantics of the two commands is the same. The actions performed by tile define.relat:O.on
command are summarized in Table 2.

The formal definition of modify ..relation follows directly from the abo-;e description of :he
command and Table 2.

29

C[nodify_relation(!, Z', M', E)](d, n) =

if (r = MSoT(d(l), n) 1\ LASTCLASS(d(I)) i' UNDEFINED

1\CONSISTENT(Z'[Z'](d(I)), M'[M'](d(I)), T[E](d, n)))

then if FIND CLASS (r, n- 1) = Z'[Z'](d(I))

then (d[(EXTEND(r) 113

(() ,
NEWSIGNATURE(r, (M'[M'](d(I)), n)),

NEWSTATE(r, (E[E](d, n), n), T[E](d, n)))

)/!), oK)

else (d [(r 113 (((Z'[Z'](d(I)), n, -)),

NEWSIGNATURE(r, (M'[M'](d(I)), n)),

NEWSTATE(r, (E[E](d, n), n), T[EHd, n)))

)/I], OK)

else (d, ERROR)

If a relation's current class is other than UNDEFINJi:D, the modify _relation command replaces the
relation with its MSoT, augmented to include the new class, signature, and state. If the relation's
current class is UNDEFINED, the command encounters an error and leaves the relation unchanged.

EXAMPLES.

C[modify_relation(R2, *, *, p(R2,5) - aename="Ralph"(p(R2,5)))](DS, 11)

class signature state
R2-+ ((ROLLBACK, 1, 5), (((ename--+ string, · ((0, 1),

ssn--+ integer), 1)

({("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 3),

(ROLLBACK, 9, -) (0, 9), -
({("Phil", 250861414),

)) ("Linda", 147894290)}, 11))

30

C[r.:odify ..relation(R3, *, *, p(R1, 5))](DS, 12~

class signature state
((SNAPSHOT, 12,) (((sname ___,string, (({ ("Phil", "junior"),

class ---+ string), 12) ("Linda", "senior"),
)) ("Ralph", "senior")}, 12))

The first command changes the state of the relation denoted by R2 while the second command
changes the state of the relation denoted by R3. The commands, however, do not change the class
or signature of either relation. For the first command, the new class (i.e., R2's current class) is a
non-disjoint extension of R2's MSoT class. Hence, the interval for R2's MSoT class is made into
a dynamically expanding interval that includes transaction 11, but no new element is added to
R2's MSoT class sequence. The new signature (i.e., R2's current signature) is the same as R2's
MSoT signature, hence it is not added to R2's MSoT signature sequence. The new state differs
from R2's MSoT state, hence it is appended to R2's MSoT state sequence. Because R3's MSoT
at transaction 12 is still ((), (), ()), the second command transforms..R3's class, signature, and
state sequences into single-element sequences containing the new class (i.e., R3's current class),
signature (i.e., R3's current signature), and state. Note that R2's state at transaction 9 through
transaction 10 has been retained and remains accessible via the rollback operator p, but R3's state
before transaction 12 has been discarded (i.e., physically deleted from the database state).

C[r.:odify..relation(R3, *• (sname:string, course:string),

class
((SNAPSHOT, 13, -)

)

7rsname (R3) X [snapshot, (course: string),
(course:"English")J)](DS, 13)

signature state
(((sname-+ string, (({("Phil", "English"),

course---+ string), 13) ("Linda", "English"),
) ("Ralph", "English")}, 13))

This coiClmand changes R3's signature and state but leaves the relation's class unchanged. It
illustrates two possible changes to a relation's signature, deletion of one attribute and addition of
another attribute. Deletion of an attribute is usually expressed as a projection over the remaining
attributes. Addition of an attribute requires that a value for the new attribute be determined for
each tuple in the relation. Often, as in this example, a single default value is specified, which is then
appended to each tuple. Note again that R3's state before transaction 13 has been discarded. 0

The modify..re1ation command has several noteworthy properties. First, the command
supports all update operations on a relation's state. Append is accommodated by an expression E,
general!:-' containing a union operator, that evaluates to a snapshot or historical state containing

31

all the tuples .in a relat.ion:s current state plus one or ruore tuples not .in the rela.tion,s current
state. Delete is accommodated by an expression E, generally containing a difference operator,
that evaluates to a snapshot or historical state containing only a proper subset of the tuples in a
relation's current state. Replace is accommodated by an expression E that evaluates to a snapshot
or historical state that differs from a relation's current state only in the attribute values of one or
more tu pies.

Second, the modify ..relation command ensures that a relation's class, signature, and state
are consistent following update. The command changes a relation's state only if the new state is
consistent with the relation's class and signature. Whenever the command changes a relation's
signature, it also changes the relation's state to ensure consistency among the relation's class,
signature, and state [Navathe & Fry 1976]. Likewise, whenever the command changes a relation's
class, it also updates the relation's state, if necessary, to ensure consistency among the relation's
class, signature, and state.

Finally, the modify ..relation command always treats a relation's signature (state) sequence
as an append-only sequence when the relation's current class is either rollback or temporal, but it
does not automatically discard a relation's current signature (state) on update even if the relation's
current class is snapshot or historical. If a relation's current class iii" a single-state class, the
command discards the relation's current signature (state) on update only if the signature (state)
is not part of the relation's history as a rollback or temporal relation.

2.5.3 Delete...relation

The command delete..relation assigns to a relation, whose current class is other than UNDE­

FINED, the new class UNDEFINED. It also deletes, either logically or physically, the relation's current
signature and state.

C[delete..relation(l)](d, n) =
if r = MSoT (d(I), n) 1\ LASTCLASS (d(I)) fo UNDEFINED

then (d[(r 113 (((UNDEFINED, n, -)), (), ())

)jf], OK)

else (d, ERROR)

If the identifier I denotes a relation whose current class is other than UNDEFINED, the command
simply appends the new class cmEFINED to the relation's 1ISoT for the transaction in which the
command occurs.

32

EXAMPLES.

C[delete..relation(R2)] (DS, 14)

class signature state
R2--+ ((ROLLBACK, 1, 5), (((ename--+ string, ((0, 1),

ssn--+ integer), 1)

({("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 3),

(ROLLBACK, 9, 13), (0, 9),

({("Phil", 250861414),
("Linda", 147894290)}, 11)

-··
(UNDEFINED, 14, -))))

Cidelete..relation(R3)] (DS, 15)

class signature state
R3--+ I ((UNDEFINED, 15, -)) () ()

Because R2 denotes a relation whose current class is ROLLBACK, the first command uses the function
MSoT to "close" the interval associated with the relation's current class. It then appends the
element (cNDEFINED, 14, -)to R2's class sequence. These actions together have the effect of!ogically
deleting R2's current signature and state when transaction 14 commits. Note, however, that this
signatw.re and state information is still accessible via the rollback operator p. The second command
uses the function MSoT to physically delete R3's current class, signature, and state. No record of
R3 as a snapshot relation is retained. 0

It is important to observe from these, and previous, examples that signature and state infor­
mation associated with a relation when its class was either snapshot or historical was transient.
It was physically removed when it became outdated. Hence, the language is consistent with con­
ventional relational DBMS's that discard out-of-date signature and state information_(relation R3
illustrates this). However, signature and state information associated with a relation when its class
was rollback or temporal is retained, ensuring later access to past states via the rollback operator.
Definition of the rollback operator assumes access to a complete record of a relation's signature
and state during intervals when the relation's class was either rollback or temporal.

33

2.5.4 Rename_relation

The con1n1and rename_relation binds a relation's current class, signature, and state to a ner .. ·
identifier.

C[rename_relation(J1 , Iz)](d, n) =

if (LAST CLASS (d(J,)) f' UNDEFINED 1\ LAST CLASS (d(h)) =UNDEFINED

A Z[Z] = LASTCLASS (d(J,)) 11 M[M] = LASTSIGNATURE (d(J,))

A C[define_relation(Jz, Z, M)](d, n) = (d', OK)

A C[modify_relation(J2 , *• *• h)](d', n) = (d", oK)

A C[delete_relation(h)](d", n) = (d'", oK))

then (d"', oK)

else (d, ERROR)

The rename_relation first assigns to the relation denoted by h the current class and signature
of the relation denoted by fi. It then assigns to ! 2 the current state of fi. Finally, it assigns the
class UNDEFINED to h and deletes, either logically or physically, I 1 's current signature and state.
Note that the execution environments for rename_relation's three subordinate commands, while
containing different database states, contain the s_ame transaction number. Hence, the changes to
both J1 and J 2 become effective when a single transaction commits.

EXAMPLE. Recall that R1 is the relation shown on page 13.

C[renarne_relation(R1, R3)](DS, 16)

class signature state
R1-> ((ROLLBACK, 2, 6), (((snarne -> string, ((0, 2),

ssn _,integer), 2),

({("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 4),

((snarne -> string, ({("Phil'', "junior"),
class --> string), 5) ("Linda", "senior")~ .

("Ralph", "senior")}, .5)

(UNDEFINED, 16, -))))

34

class signature state .
R3~ ((s:-;APSHOT, 16, -) (((ssn-> integer, (({(250861414, "junior").

class __, string), 16) (147894290, "senior").
)) (459326889, "senior")}, 16))

This command binds the current class, signature, and state of the relation denoted by Rl to the
identifier R3. Hence, R3 becomes a snapshot relation when transaction 16 commits. T:te command
also transforms Rl into an undefined relation, effective when transaction 16 commits. Because
Rl's current class, signature, and state are not part of the relation's history as either a rollback or
temporal relation, they are physically deleted. D

If two or more commands appear in sequence, the commands are executed sequentially. If a
command executes without error, the next command is executed using the database state resulting
from the previous command's execution. If all the commands execute without error, the commands
are mapped onto the final database state and the status code OK. If, however, any command's
execution causes an error, the remaining commands are not executed and all the commands together
are mapped onto the original database state and the status code ERROR.

C[C1 , C2](d, n) = if C[Cr](d, n) = (d', <>K) then C[C2](d 1
, n) else (d, ERROR)

Two or more commands appearing in sequence are all commands in the same transaction. Their
execution environments have different database states but the same transaction number. Hence, if
the commands change the same relation only the last changes to the relation's class, signature, and
state are recorded in the final database state. Recall that while a relation's new cla~s, signature,
and state may depend on its current class, signature, and state, all commands define the resulting
relation in terms of the relation's modified start of transaction. Also, if the comrr:ands change
several relations, all the changes become effective when the transaction commits.

EXAMPLES. In the previous examples, we assumed that the commands were all taken from single­
command transactions. VIe now show the result of executing multiple commands from the same
transaction. Recall from page 33 that R2 is currently undefined.

C[define_relation(R2, rollback, (enarne:string, ssn:integer)),

modify_relation(R2, *, *, p(R2,5)),

modify_relation(R2, *, *, R2 - <Tenarne;"Linda" (R2))](DS, 17)

35

class signature state -
R2-> ((ROLLBACK, 1, 5), (((ename -> string, ((0, 1),

ssn-> integer), 1)

({("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 3),

(ROLLBACK, 9, 13), (0, 9),

({("Phil", 250861414),
("Linda", 147894290)}, 11),

(ROLLBACK, 17, -) ({("Phil", 250861414),
)) ("Ralph", 459326889)}, 17))

C[delete..relation(R2), delete..relation(R3)] (DS, 18)

class signature state
R2-> ((ROLLBACK, 1, 5), (((ename -> string, ((0, 1),

ssn-> integer), 1)

({("Phil", 250861414),
("Linda", 147894290),

. ("Ralph", 459326889)}, 3),

(ROLLBACK, 9, 13), (0, 9),

({("Phil", 250861414),
("Linda", 147894290)}, 11),

(ROLLBACK, 17, 17) ({("Phil", 250861414),
("Ralph", 459326889)}, 17)

(UNDEFINED, 18, -))))

class signature state
R3-> I ((uNDEFINED, 18, -)) () ()

In the first example, all three commands change R2. Yet, only the last changes to the relation's
class, signature, and state are recorded in the database state. Although the first command defined
R2 as a rollback relation and the other commands changed R2's state, only the final change in state
is recorded. Hence, all the commands in a single transaction that change the same" relation are
treated as an atomic update operation. Note that temporary relations can be defined, modified,
and then deleted within a transaction without their creation being recorded. In the second example,
both R2 and R3 are deleted when transaction 18 commits. 0

36

2.6 Programs

The semantic function P defines the denotation of programs in our language, where a program is
a sequence of one or more transactions. Transactions, in turn, may be either single-command or
multiple-command transactions. P defines a program as a function that maps a database onto a
database and a status code. A program is the only language construct that changes a database.
Execution of a transaction that commits produces a new database and the status code OK, while
execution of a transaction that aborts produces the original database unchanged and the status
code ERROR.

P: P1WQRAM-+ [VATABASt:-+ [VATABASt: x {oK, ERROR}])

Note that the environments for command and program execution, although similar, are different.
The environment for command execution is a database state and the transaction number of the
active transaction. In contrast, the environment for program execution is a database, which is
an ordered pair consisting of a database state and the transaction number of the most recently
committed transaction on that database state.

We now define formally the semantic function P for each kind of program allowed in our
language.

P[begin_transaction C cornmit_transaction](d, n) =

if C[C](d, n + 1) = (d', OK) then ((d', n•+ 1), OK) else ((d, n), ERROR)

Committed transactions represent transactions that commit if their commands all execute
without error. If all the commands in a transaction execute without error, the transaction is com­
mitted. The database's database-state component is updated to record the changes that the com­
mands make to relations, the database's transaction-number component is incremented to record
the transaction number of this most recently committed transaction, and the status code OK is pro­
duced. If any command's execution produces an error, the transaction is aborted. The database is
left unchanged and the status code ERROR is produced. The database is valid independent of the
status code.

P[begin_transaction C abort_transaction](d, n) = ((d, n), OK)

Aborted transactions are transactions, which the user initiates, that for some reason, dictated
either by the user or by the system, abort rather than commit. They do not change t,b.e database.

P[P1; P2] (d, n) =

ifP[P1](d, n) = ((d', n'), oK) then P[P2](d', n') else P[P2](d, n)

37

If a prog~am contains multiple transactions, they .are processed in sequence. If the first
transaction commits and produces a new database, the second transaction is processed using the
new database. 0 therwise, the second transaction is processed using the original database.

Finally, we require that each arbitrary sequence of transactions representing a program map
onto the database resulting from the execution of the transactions, in order, starting with the empty
database. The empty database, (EMPTY, 0), is defined using the semantic function EMPTY:
ID0!7TFit:R _,. (((uNDEFINED, 0, -)), (), ()). Hence, the database-state component of the
empty database is defined to be the function that maps all identifiers onto undefined relations; the
transaction-number component of the empty database is defined to be 0. This requirement is both
necessary and sufficient to ensure that the transaction-number components of elements in the class,
signature, and state sequences of each relation in the database are strictly increasing. A database
will always be the cumulative result of all the transactions that hr,ve been performed on it since it
was created.

We now define the semantic function P' that maps a program onto the database resulting
from the execution of the program's transactions, starting with the empty database.

P' : PR.OQRAM -+ DATABASe

P'[P] = FIRST(P[P](EMPTY, 0))

where FIRST is the function that maps an ordered pair onto the first component of the ordered
pa!I.

2. 7 Language Properties

We now state, as theorems, three properties of our algebraic language for database query and
update. Informal proofs of these theorems are given in Appendix A. The first property was stated
initially as an objective of our extensions.

Theorem 1 The language is a natural extension of the relational algebra for database query and
update.

By natural extension, we mean that our semantics subsumes the expressive power of the relational
algebra for database query and update. Expressions in our language are a strict superset of those
in the relational algebra. Also, if we restrict the class of all relations to UNDEFINED and SNAPSHOT,

then a natural extension imples that (a) the signature and state sequences of a defined relation will
have exactly one element each: the relation's current signature and state; (b) a new state always
will be a function of the current signature and state of defined relations via the relational algebra
semantics; and (c) deletion will correspond to physical deletion.

38

The second property argues that the semantics is minimal, in a specific sense.

Theorem 2 The semantics of the language minimizes the number of elements in a relation's class,
signature, and state sequence needed to record the relation's current class, signature, and state and
its history as a rollback or temporal relation.

Other definitions of minimality, such as minimal redundancy or minimal space requirements, are
more appropriate for the physical level, where actual data structures are implemented, than for
the algebraic level.

The third property ensures that the.language accommodates implementations that use WORM
optical disk to store non-current class, signature, and state information, another objective of our
extensions.

Theorem 3 Transactions change only a relation's class, signature, and state current at the start
of the transaction.

3 Additional Aspects of the Rollback Operators

The rollback operators in our language are more powerful than suggested in the previous section
in several ways. First, the rollback operators, as defined, are restricted to the retrieval of a single
snapshot or historical state from a named relation current at the time of a specified transaction.
In reality, however, the rollback operators derive a single snapshot or historical state from one
or more of the named relation's stored states rather than simply retrieving a single state. The
rollback operators actually roll back a relation to the subsequence of the relation's state sequence
corresponding to an interval of time of arbitrary length, if the relation's class and signature remained
constant over that interval of time. The rollback operators return the single state composed of
tuples from all the states in the specified subsequence of relation states (effectively, a relational
union, either snapshot or historical, is performed). The rollback operators thus take two transaction
times as arguments:

E p(l, N' N) I p(I' N' N)

Second, the rollback operators do not simply retrieve a snapshot or historical state from a
named relation but rather an augmented version ·of that state. To the state's explicit attributes,
defined in its signature, the rollback operators add new explicit attributes correspo~ding to the
state's implicit time attributes (i.e., transaction times for snapshot states, transaction and valid
times for historical states). The rollback operators' addition of these new attributes to the state's
existing explicit attributes allows the user to display the values of the state's implicit time attributes
without allowing direct access to the attributes themselves. These explicit values are considered

39

to be in the domain of user-defined time. This behavio.r requires that the semantic function T
compute a relational signature containing these additional attributes.

Third, the rollback operator p can be applied to temporal relations as well as rollback relations.
·If p rolls back a relation to a time when the relation's class was TEMPORAL, p will convert the
relation's historical state current at that time into a corresponding snapshot state and return this
new snapshot state. Likewise, the rollback operator p can be applied to rollback relations as well
as temporal relations. If p rolls back a relation to a time when the relation's class was ROLLBACK, p
will convert the relation's snapshot state current at that time into a corresponding historical state
and return this new historical state.

While these extensions are conceptually straightforward, the notation required to define them
formally is cumbersome and will not be presented here.

4 Summary and Related Work

In summary, this paper has defined an algebraic language for databa.Se query and update that
subsumes the relational algebra, can accommodate an arbitrary historical algebra, and supports
both snapshot and historical rollback. The language also has a simple semantics and supports
scheme evolution. Only two additional operators, p and p, were necessary. The additions required
for transaction time did not compromise any of the useful properties of the (conventional) snapshot
algebra. Type-checking was also introduced, freeing the encapsulated algebra from dealing with
expressions not consistent with the (possibly time: varying) scheme.

The primary contribution is an algebraic means of supporting scheme evolution in the context
of general support for transaction time. As an algebraic language for database query and update,
our language can serve as the underlying evaluation mechanism for queries and updates in a tem­
poral data manipulation language that supports evolution of a database's contents and scheme. It
can also be used as the basis for proving various physical implementations of temporal database
management systems correct. Our language also is compatible with efforts to add transaction time
to the relational data model at both the user-interface and physical levels. At least three tem­
poral query languages have been proposed that support rollback operations [Ariav 1986, Ben-Zvi
1982, Snodgrass 1987] and several studies have investigated efficient storage and access strategies
for temporal databases [Ahn 1986A, Ahn 1986B, Ahn & Snodgrass 1986, Ahn & Snodgrass 1988,
Lum et al. 1984, Rotem & Segev 1987, Shoshani & Kawagoe 1986]. Also, the considerable re­
search into efficient storage and access strategies for persistent data structures [Chazelle 1985, Cole
1986, Dobkin & Munro 1985, Myers 1984, Sarnak & Tarjan 1986] can be used to implement our
semantics.

While a few authors have envisaged the benefits of a time-varying scheme [Ariav 1986, Ben­
Zvi 1982, Shiftan 1986, Woelk et a!. 1986], only one other extension of the relational algebra, that
proposed by Ben-Zvi, includes support for an evolving scheme. Ben-Zvi proposes that a temporal
relation's scheme itself be represented as a temporal relation, thus providing a uniform treatment
for evolution of a relation and its scheme [Ben-Z vi 1982]. He does not, however, provide formal

40

semantics for scheme evolution in the context of gener~l support for transaction time. Gadia
also proposes an extension of the relational algebra that supports transaction time but does not
address the problem of scheme evolution [Gadia & Yeung 1988]. Martin proposes a non-algebraic
solution to the problem of an evolving scheme in temporal databases using modal temporal logic
[Martin, et a!. 1987]. A scheme temporal logic is proposed to deal with changes in scheme. A
set of scheme temporal logic formulae are associated with a scheme to describe its evolution and
temporal queries are interpreted in the context of these formulae. This approach, unlike ours,
forces synchronization between valid time and scheme changes. Again, formal semantics are not
provided. Finally, Adib~, in describing mechanisms for the storage and manipulation of historical
multi-media data, advocates, like Ben-Zvi, that the history notion used to model changes in a
database's contents also be used to model changes in its scheme [Adiba & Bui Quang 1986].

While there has been significant interest in database reorganization and restructuring [Baner­
jee et al. 1987, Markowitz & Makowsky 1987, Navathe & Fry 1976, Navathe 1980, Shu et al. 1977,
Shu 1987, Sockut & Goldberg 1979], such approaches have assumed that the scheme (and hence
the contents) of the entire database will be modified during restructuring, ensuring that only one
scheme is in force. Since we formalize the scheme as a sequence indexed by transaction ,time, sev­
eral schemes can be in force, selectable through the rollback operator. A second difference is that
we focus solely on algebraic support for scheme evolution, while the ot:iier papers considered the
related issues of determining what changes to the scheme are necessary and what those changes
imply regarding the new state to be calculated. Certainly, all these issues must be addressed before
a comprehensive solution to scheme evolution is developed.

In contrast to these previous approaches, the WAND system did permit several generations
ofschemes to be simultaneously present [Gerritsen & Morgan 1976]. This system differs from our
approach in two respects. First, the WAND system was based on the network model, whereas our
approach is based on the relational model. More significantly, scheme evolution was supported
inJhe WAND system to allow dynamic restructuring of the database. While data in the WAND
sy§;tem could also be associated with one of several generations of schemes, the data were always
restructured to match the most recent scheme as they were referenced. Multiple generations were
introduced to achieve concurrency between restructuring and execution of application programs.
Hence, the underlying model did not support transaction time or rollback. The WAND system
was effectively a snapshot DBMS that permitted applications to access and change the database
while a global restructuring was being performed.

ORION, a prototype object-oriented database system being developed at MCC, takes a similar
approach [Banerjee et a!. 1987]. An important difference is that when the scheme in ORION is
modified, no disk-resident data instances need be updated. Instead, when an instance is referenced
by an application program and fetched into memory, it is transformed into an instance conforming
to the scheme currently in effect. Again, only one scheme is ever in effect; the implementation
places the burden of updating the data across a scheme change on subsequent retrievals.

Several researchers have used denotational semantics to define formally the semantics of data­
bases, DBMS's, and query languages. Subieta proposes an approach for defining query languages
formally using denotational semantics [Subieta 1987]. This approach allows powerful query lan­
guages with precise semantics to be defined for most database models. Rishe proposes that de­
notational semantics be used to provide a uniform treatment of database semantics at different

41

information levels based on hierarchies of domains of ma,.ppings from "less semantic" representa­
tions of information into "more semantic" representations [Rishe 1985]. Neither Subieta nor Rishe,
however, include in their approaches any facilities for dealing with transaction time or an evolving
scheme. Lee proposes a denotational semantics for administrative databases, where databases are
regarded as a collection of logical assertions [Lee 1985]. Here, the denotation of an expression in a
first-order predicate calculus is based, in part, on its evaluation in a time dimension, analogous to
valid time, in a possible world, analogous to a cross-section of a database state at a transaction.

An obvious next step would be to implement an evolving scheme that fully supports the
rollback operator. One approach we are considering converts the system relations in our prototype
[Ahn 1986A] to be rollback relations, rather than snapshot relations as they are now. Changes to
the semantic analysis portions of the query analysis would be required, but it appears that changes
to the backend of the DBMS would be minimal.

Another step would be to investigate extensions to the language. A straightforward extension
of the language would introduce algebraic operators that map between the domain of snapshot
states and the domain of historical states directly. The introduction of such operators into the
snapshot and historical algebras would render the algebras multisorted. Because the two algebras,
without these operators, are unisorted and because we wish to retain this-property for the algebras,
we have elected not to introduce such conversion operators into our language.

A second extension would introduce an algebra of signatures, analogous to the algebras of
snapshot and historical states, to remove the restriction that signature specifications in the com­
mands define.relation and modify.relation be a relation's current signature or a constant.
This extension would support signature changes dependent on both the current and past signa­
tures of relations in the database.

A third extension would remove the requirement of a relation's scheme being constant over
the transaction interval specified in the rollback operation. The major problem is in calculating
the scheme for the resulting relation. A general but simple approach has not yet been found.

Finally, the effect of scheme evolution on applications programs accessing the database should
be considered [Gerritsen & Morgan 1976]. Maintaining consistency between such programs and the
database scheme becomes more difficult. Similarly, query pre-compilation, such as performed in
System R [Chamberlin et al. 1981], may or may not be effective, depending on whether the time­
stamps provided to the rollback operators are constants or are values supplied by the application
program. However, it appears that techniques similar to those employed by the WAND system
and ORION could serve to amortize the cost of scheme changes.

5 Acknowledgements

We would like to thank Bharat Jayaraman and Peter Mills for suggesting many corrections and im­
provements to this paper and the referees for suggesting significant improvements to the formalism
used here.

42

This research was supported by NSF grant DCR-840.2339 and ONR grant N00014-86-K-0680.
Research by the first author also was supported by the United States Air Force. Research by the
second author was supported in part by an IBM Faculty Development Award.

6 Bibliography

[Adiba & Bui Quang 1986) Adiba, M. and N. Bui Quang. Historical Multi-media Databases, in
Proceedings of the Conference on Very Large Databases, Ed. Y. Kambayashi. Kyoto,
Japan: Aug. 1986, pp. 63-70.

[Ahn 1986A) Ahn, I. Towards an Implementation of Database Management Systems with Temporal
Support, in· Proceeding of the International Conference on Data Engineering, IEEE Com­
puter Society. Los Angeles, CA: IEEE Computer Society Press, Feb. 1986, pp. 374-381.

[Ahn 1986B) Ahn, I. Performance Modeling and Access Methods for Temporal Database Manage­
ment Systems. PhD. Diss. Computer Science Department, University of North Carolina at
Chapel Hill, July 1986.

[Ahn & Snodgrass 1986) Ahn, I. and R. Snodgrass. Performance Evaluation of a Temporal Data­
base Management System, in Proceedings of ACM SIGMOD International Conference on
Management of Data, Ed. C. Zaniolo. Association for Computing Machinery. Washington,
DC: May 1986, pp. 96-107.

[Ahn & Snodgrass 1988) Ahn, I. and R. Snodgrass. Performance Analysis of Temporal Queries.
Information Sciences, 11, June 1988.

[Ariav 1986] Ariav, G. A Temporally Oriented Data Model. ACM Transactions on Database Sys­
tems, 11, No. 4, Dec. 1986, pp. 499-527.

[Banerjee et al. 1987] Banerjee, J., W. Kim, H.-J. Kim and H.F. Korth. Semantics and Implemen­
tation of Schema Evolution in Object-Oriented Databases, in Proceedings of ACM SIGMOD
International Conference on Management of Data, Association for Computing ;¥achinery.
San Francisco, CA: 1987. ·

[Ben-Z vi 1982) Ben-Zvi, J. The Time Relational Model. PhD. Diss. Computer Science Department,
UCLA, 1982.

(Bontempo 1983] Bontempo, C. J. Feature Analysis of Query-By-Example, in Relational Database
Systems. New York: Springer-Verlag, 1983. pp. 409-433.

(Chamberlin eta!. 1981) Chamberlin, D.D., M.M. Astrahan, W.F. King, R.A. Lorie,.J.W. Mehl,
T.G. Price, M. Schkolnick, P. Selinger Griffiths, D.R. Slutz, B.W. Wade and R.A. Yost.
Support for Repetitive Transactions and Ad Hoc Queries in System R. ACM Transactions
on Database Systems, 6, No. 1, Mar. 1981, pp. 70-94.

(Chazelle 1985) Chazelle, B. How to Search in History. Information and Control, 64 (1985), pp.

43

77-99.

(Clifford & Croker 1987] Clifford, J. and A. Croker. The Historical Relational Data Model (HRDM)
and Algebra Based on Lifespans, in Proceedings of the International Conference on Data
Engineering, IEEE Computer Society. Los Angeles, CA: IEEE Computer Society Press,
Feb. 1987, pp. 528-537.

(Codd 1970] Codd, E.F. A Relational Model of Data for Large Shared Data Bank. Communications
of the Association of Computing Machinery, 13, No. 6, June 1970, pp. 377-387.

(Cole 1986] Cole, R. Searching and Storing Similar Lists. Journal of Algorithms, 7, No. 2, June
1986, pp. 202-220.

(Date 1976] Date, C. J. An Introduction to Database Systems. Systems Programming Series. Read­
ing, MA: Addison-Wesley Publishing Company, 1976.

(Dobkin & Munro 1985] Dobkin, D.P. and J.I. Munro. Efficient Uses of the Past. Journal of
Algorithms, 6, No. 4, Dec. 1985, pp. 455-465.

(Gadia 1984] Gadia, S.K. A Homogeneous Relational Model and Query. Languages for Temporal
Databases. 1984. (Unpublished paper.)

(Gadia 1986) Gadia, S.K. Toward a Multihomogeneous Model for a Temporal Database, in Proceed­
ings of the International Conference on Data Engineering, IEEE Computer Society. Los
Angeles, CA: IEEE Computer Society Press, Feb. 1986, pp. 390-397.

(Gadia & Yeung 1988] Gad.ia, S.K. and C.S. Yeung. A Generalized Model for a Relational Temporal
Database, in Proceedings of ACM SIGMOD International Conference on Management of
Data, Association for Computing Machinery. 1988.

(Gerritsen & Morgan 1976] Gerritsen, R. and H.L. Morgan. Dynamic Restructuring of Databases
with Generation Data Structures, in Proceedings of the A CM Annual Conference, Associa­
tion for Computing Machinery. Houston, TX: Oct. 1976, pp. 281-286.

(Gordon 1979] Gordon, M.J.C. The Denotational Description of Programming Languages. New
York-Heidelberg-Berlin: Springer-Verlag, 1979.

(Jones et a!. 1979) Jones, S., P. Mason and R. Stamper. LEGOL 2.0: A Relational Specification
Language for Complex Rules. Information Systems, 4, No. 4, Nov. 1979, pp. 293-305.

(Lee 1985) Lee, R.M. A Denotational Semantics for Administrative Databases, in Proceedings of
the IFIP WG 2.6 Working Conference on Data Semantics (DS-1}, Ed. T.B. Steel and R.
Meersman. IFIP. Hasselt, Belgium: Jan. 1985, pp. 83-120.

(Lorentzos & Johnson 1987] Lorentzos, N .A. and R.G. Johnson. TRA: A Model for a Temporal
Relational Algebra, in Proceedings of the Conference on Temporal Aspects in Information
Systems, AFCET. France: May 1987, pp. 99-113.

[Lum eta!. 1984] Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and

44

J. Woodfill. Designing DBMS Support for the Temporal Dimension, in Proceedings of A CM
SIC MOD Intemational Conference on Management of Data, Ed. B Yormark. Association
for Computing Machinery. Boston, MA: June 1984, pp. 115-130.

[Maier 1983) Maier, D. The Theory of Relational Databases. Rockville, MD: Computer Science
Press, 1983.

[Markowitz & Makowsky 1987} Markowitz, V.M. and J.A. Makowsky. Incremental Reorganization
of Relational Databases, in Proceedings of the Conference on Very Large Databases, Ed.
P. Hammersley. Brighton, England: Sep. 1987, pp. 127-135.

[Martin, et aL 1987) Martin, N.G., S.B. Navathe and R. Ahmed. Dealing with Temporal Schema
Anomalies in History Databases, in Proceedings of the Conference on Very Large Databases,
Ed. P. Hammersley. Brighton, England: Sep. 1987, pp. 177-184.

[McKenzie 1986] McKenzie, E. Bibliography: Temporal Databases. ACMSIGMOD Record, 15, No.
4, Dec. 1986, pp. 40-52.

[McKenzie & Snodgrass 1987 A) McKenzie, E. and R. Snodgrass. Exten@.ng the Relational Algeb;~
to Support Transaction Time, in Proceedings of ACM SIC MOD International Conference on
Management of Data, Ed. U. Dayal and I. Traiger. Association for Computing Machinery.
San Francisco, CA: May 1987, pp. 467-478.

[McKenzi)' & Snodgrass 1987B) McKenzie, E. and R. Snodgrass. Supporting Valid Time: An
Historical Algebra. Technical Report TR87-008. Computer Science Department, University
of North Carolina at Chapel HilL Aug. 19'87.

[McKenzie & Snodgrass 1987C) McKenzie, E. and R. Snodgrass. An Evaluation of Historical
Algebras. Technical Report TR87-020. Computer Science Department, University of North
Carolina at Chapel HilL Oct. 1987.

[McKenzie 1988] McKenzie, E. An Incremental Relational Algebraic Language for Temporal Data­
bases (in progress). PhD. Diss. Computer Science Department, University of North Car­
olina at Chapel Hill, 1988.

[Myers 1984) Myers, E.W. Efficient Applicative Data Types, in Conference Record of the Eleventh
Annual AC1>1 Symposium on Principles of Programming Languages, Salt Lake City, UT::
Jan. 1984, pp. 66-75.

[Navathe & Fry 1976) Navathe, S.B. and J.P. Fry. Restructuring for Large Databases: Three Levels
of Abstraction. ACM Transactions on Database Systems, 1, No. 2, June 1976, pp. 138-158.

[Navathe 1980) Navathe, S.B. Schema Analysis for Database Restructuring. ACM Transactions on
Database Systems, 5, No. 2, June 1980, pp. 157-184.

[Navathe & Ahmed 1987) Navathe, S.B. and R. Ahmed. TSQL-A Language Interface for History
Databases, in Proceedings of the Conference on Temporal Aspects in Information Systems,
AFCET. France: May 1987, pp. 113-128.

45

(Overmyer & Stonebraker 1982] Overmyer, R. and M. Stonebraker. Implementation of a Time
Expert in a Database System. ACM SIGMOD Record, 12, No. 3, Apr. 1982, pp. 51-59.

(Rishe 1985] Rishe, N. On Denotational Semantics of Data Bases, in Proceedings of the Inter­
. national Conference on Mathematical Foundations of Programming Semantics, Ed. A.

Melton. Manhattan, KA: Springer-Verlag, Apr. 1985, pp. 249-274.

(Rotem & Segev 1987] Rot em, D. and A. Segev. Physical Organization of Temporal Databases, in
Proceedings of the International Conference on Data Engineering, IEEE Computer Society.
Los Angeles, CA: IEEE Computer Society Press, Feb. 1987, pp. 547-553.

(Sarnak & Tarjan 1986] Sarnak, N. and E. Tarjan. Planar Point Location Using Persistent Search
Trees. Communications of the ACM, 29, No. 7, July 1986, pp. 669-679.

[Schmidt 1986] Schmidt, D.A. Denotational Semantics, A Methodology for Language Development.
Newton, Massachusetts: Allyn and Bacon, 1986.

[Scott 1976] Scott, D.S. Data Types as Lattices. SIAM Journal of Computing, 5, No. 3, Sep. 1976,
pp. 522-587.

[Shiftan 1986] Shlftan, J. An Assessment of the Temporal Differentiation of Attributes in the Im­
plementation of a Temporally Oriented DBMS. PhD. Diss. Information Systems Area,
Graduate School of Business Administration, New York University, Aug. 1986.

[Shoshani & Kawagoe 1986] Shoshani, A. and K. Kawagoe. Temporal Data Management, in Pro­
ceedings of the Conference on Very Large 1Jatabases, Ed. Y. Kambayashl. Kyoto, Japan:
Aug. 1986, pp. 79-88.

[Shu eta!. 1977] Shu, N.C., B.C. Taylor Housel, R.W., S.P. Ghosh and V.Y. Lum. EXPRESS: A
Data EXtraction, Processing, and REStructuring System. ACM Transactions on Database
Systems, 2, No. 2, June 1977, pp. 134-174.

[Shu 1987] Shu, N.C. Automatic Data Transformation and Restructuring, in Proceedings of the
International Conference on Data Engineering, IEEE Computer Society. Los Angeles, CA:
IEEE Computer Society Press, Feb. 1987, pp. 173-180.

(Snodgrass & Ahn 1985] Snodgrass, R. and I. Ahn. A Taxonomy of Time in Databases, in Pro­
ceedings of ACM SIGMOD International Conference on Management of Data, Ed. S.
Navathe. Association for Computing Machinery. Austin, TX: May 1985, pp. 236-24.6.

(Snodgrass & Ahn 1986] Snodgrass, R. and I. Ahn. Temporal Databases. IEEE Computer, 19, ::\'o.
9, Sep. 1986, pp. 35-42.

[Snodgrass 1987] Snodgrass, R. The Temporal Query Language TQuel. ACM Transactions on
Database Systems, 12, No. 2, June 1987, pp. 247-298.

[Sockut & Goldberg 1979] Sockut, G.H. and R.P. Goldberg. Database Reorganization- Principles
and Practice. ACM Computing Surveys, 11, No. 4, Dec. 1979, pp. 371-395.

46

[Stoy 1977) Stoy, Joseph E. Denotational Semantics: The Scott-Stmchey Appcoach to Programming
Lang!Wge Theory. The MIT Series in Computer Science. The MIT Press, 1917.

[Stracl1ey 1966] Strachey, C. Towards a Formal Semantics, in Formal Language Description Lan­
guages for Computer Programming. North Holland, 1966. pp. 198-220.

[Subieta 1987] Subieta, K. Denotational Semantics of Query Languages. Information Systems, 12,
No. 1 (1987), pp. 69-82.

[Tandem 1983] Tandem Computers, Inc. ENFORM Reference Manual. Cupertino, CA, 1983.

[Tanse\1986] Tansel, A.U. Adding Time Dimension to Relational Model and Extending Relational
Algebra. Information Systems, 11, No. 4 (1986), pp. 343-355.

[Ullman 1982] Ullman, J.D. Principles of Database Systems, Second Edition. Potomac, Maryland:
Computer Science Press, 1982.

[Woelk et al. 1986] Woelk, D., W. Kim and W. Luther. An Object-Oriented Approach to Multime"dia
Databases, in Proceedings of ACM SIGMOD International Conf.?.rence on Management of
Data, Washington, DC: ACM, May 1986, pp. 311-325.

[Yeung 1986] Yeung, C.S. Query Languages for a Heterogeneous Temporal Database. Master's
Thesis, EE/CS Department, Texas Tech University, 1986.

A Proofs of Language Properties

In this aRpendix, we provide informal proofs for three properties of our language, stated as theorems
in Section 2.7.

Theorem 1 The language is a natural extension of the relational algebra for database query and
update.

PROOF. First, .we show that expressions in our language are a strict superset of those in the
relational algebra. Suppose we only allow expressions involving constants that denote snapshot
states, identifiers that denote relations whose current class is SNAPSHoT, and the five relational
operators. Then, expressions in the language are exactly those allowed in the relational algebra.
But expressions in our language also may involve constants that denote historical states, identifiers
that denote relations whose current class is other than SNAPSHOT, and both historical and rollback
operators. Hence, expressions in our language are a s.trict superset of those in the relational algebra.

Next, we show that our semantics reduces to the conventional semantics of database state and data­
base update via the relational algebra. Suppose we restrict the class of all relations to UNDEFINED
and SNAPSHOT. Then,

47

(a) The signature and state sequences of a defined relatien will have exactly one element each, the
relation's current signature and state. The relation can have no history as?. rollback or tem­
poral relation; hence its MSoT always will be ((), (), ()). Because the <iefine_relation
and modify_relation commands change a relation's signature sequence by appending no
more than one element to the relation's MSoT signature sequence, these commands always
will produce a relation with a single-element signature sequence. The same holds for the
relation's state sequence.

(b) A new state always will be a function of the current signature and state of defined rela­
tions via the relational algebra semantics. Both the define _relation and modify _relation
commands determine a new state via expression evaluation. The only semantically correct
expressions are those involving constants that denote snapshot states, identifiers that denote
relations whose current class is SNAPSHOT, and the five relational operators. These expressions
are exactly those allowed in the relation algebra, their value depending on the current state
and signature of defined relations only.

(c) Deletion will correspond to physical deletion. The delete_relation command changes a
relation by appending an element to the relation's MSoT class sequence; it never adds infor­
mation to the relation's signature or state sequences. The delete_relation command always
will produce a relation whose signature and state sequences are empty, which corresponds to
physical deletion of a relation's current signature and state. I

Theorem 2 The semantics of the language minimizes the number of elements in a relation's class,
signature, and state sequence needed to record the relation's current class, signature, and state and
its history as a rollback or temporal relation.

PROOF. Assume that the number of elements in a relation's class sequence exceeds the minimum
needed to record the relation's current class and its history as a rollback or 1emporal relation.
Then, (a) there are two consecutive elements in the sequence that can be combined or (b) there is
an element in the sequence that can be removed. Consider case (a). Consecutive elements in the
class sequence can be combined only if they record the same class over non-disjoint intervals. But
the commands only append a new element to a relation's class sequence if it either differs from the
relation's MSoT class or its interval is disjoint from that of the relation's MSoT class. Hence, no
two consecutive elements in a relation's class sequence can have the same class but non-disjoint
intervals. Now, consider case (b). Commands always produce a new relation by appending new
class information to a relation's MSoT class sequence. But, it can be shown that all elements in a
relation's MSoT class sequence record intervals when the relation was either a rollback or temporal
relation. Hence, no element can be removed. If no two elements can be combined and no element
can be removed, our assumption is contradicted and the number of elements in the class sequence
must be minimal. Similar arguments hold for the relation's signature and state sequences. I

Theorem 3 Tmnsactions change only a relation's class, signature, and state current at the start
of the transaction.

PROOF. This property is a consequence of the way the MSoT function is defined and used. \Ve
first prove the property for a relation's signature sequence and then for its class and state sequences.

48

A relation's current signature at the start of a transaction is the last ele:c:ent in the relation's
signature sequence. Assume, therefore, that a transaction changes an eleme:ct that is in the rela­
tion's signature sequence at the start of the transaction but is not the last ele:nent in the sequence.
Such a change must occur during the execution of a command. When the first command in a
transaction executes, MSoT discards the last element in the relation's sign~ture sequence, if the
relation's current class is either SNAPSHOT or HISTORICAL. Otherwise, it retcins all the elements.
When each subsequent command in the transaction is executed, MSoT only discards any element
that the preceding command added to the sequence. Hence, MSoT never changes an element in
a relation's signature sequence that precedes the last element in the sequence at the start of the
transaction. Commands, although they may append an element to the relation's lvfSoT signature
sequence, never change existing elements. Hence, commands never change an element in a relation's
signature sequence that precedes the last element in the sequence at the start of the transaction
and our assumption is contradicted. The same argument holds for the relation's state sequence.

The above argument holds for a relation's class sequence with the following provisos. I'Vhen the
first command in a transaction executes, MSoT discards the last element in the relation's class
sequence if the relation's current class is UNDEFINED. Also, if the relation's current class is either
ROLLBACK or TEMPORAL, MSoT changes the last element in the sequence to "close" the interval
assigned to the relation's current class at the start of the transaction-:· ·when each subsequent
command in the transaction is executed, MSoT "re-closes" this same interval, if extended by
the preceding command. Hence, MSoT never changes an element in a relation's class sequence
that precedes the last element in the sequence at the start of the transaction. Commands may
change the)ast element in a relation's MSoT class sequence to "extend" the interval assigned to
the class c.;mponent of that element, but only if the new class and the relation's MSoT class are
equal and their intervals abut. This occurs only_ when the last element in the relation's MSoT
class sequence corresponds to the last element in the relation's class sequence at the start of the
transaction (i.e., the class of the relation at the start of the transaction w<:s either ROLLBACK or
TEMPORAL). Otherwise, the interval's collid not abut as there wollid exist an intervening interval
when the nilation's class was either s~·iAPSHOT, HISTORICAL, or UNDEFINED. Hence, commands never
change an element in a relation's class sequence that precedes the last element in the sequence at
the start of the transaction. I

B MSoT and its Subordinate Functions

In this appendix, we present formal definitions for MSoT (Modified Start of Transaction) and
its subordinate .functions. For these definitions, let

l range over the domain SNAPSHOT STAT£ + 1-tiSTORICA.C STAT£,

n, n', n1, and n2 range over the domain TRANSACTION .N'LIMBt:R,

m range over the domain Rt:.CATION SIQNA7UJU,

u and u' range over the domain [Rt:.CATION C.CASS x TRANSACTION NUMBt:R]*,

v range over the domain [Rt:.cATION SIQNA7WU x TRANSACTIO.V NUMBt:R]*,

49

w range over the domain [[S.VAPSHOT STAT£ x TR.ANSACTIO.V N2!ME~JG) +
[HTSTOJGICAL STAT£ x TRANSACTION .\UM5£1G]]*,and

z range over the domain "RELATION CLASS.

MSoT maps a relation (u, v, w) and a transaction number n onto the history of the relation as a
rollback or temporal relation before the start of transaction n.

MSoT((u, v, w), n) =

if (u' = PREFIXCLASSES (u, n) A u' f- () An'= LASTTRNUMBER(u'))

then if MULTISTATECLASS (LAST CLASS (u'))

then (CLOSE(u', n- 1), PREFIXSIGS (v, n), PREFIXSTATES (w, n))

else (PREFIXCLASSES (u, n'), PREFIXSIGS (v, n'i,

PREFIXSTATES (w, n'))

else ((), (), ())

PREFIXCLASSES maps a relation's class sequence u and a trans~ctioc. number n onto the
subsequence recorded before the start of transaction n.

PREFIXCLASSES(u, n) =

if (u f. ()A HEAD(u) = (z, n1, n2) A n 1 < n)

then HEAD(u) II PREFIXCLASSES(TAIL(u), n)

else ()

where HEAD and TAIL are the head and tail operations for sequences aLd "II" is the concate­
nation operator on sequences.

PREFIXSIGS maps a relation's signature sequence v and a transactiorc number n onto the
subsequence recorded before the start of transaction n.

50

PREFIXSIGS (v, n) =

if (v of. () A HEAD (v) = (m, nl) A n, < n)

then HEAD (v) II PREFIXSIGS (TAIL(v), n)

else ()

PREFIXSTATES maps a relation's state sequence w and a transaction number n onto the
subsequence recorded before the start of transaction n.

PREFIXSTATES(w, n) =

if (w of. () A HEAD (w) = (I, n1) A n 1 < n)

then HEAD (w) II PREFIXSTATES (TAIL (w), n)

else ()

LASTTRNUJ\1BER maps a relation's class seq)lence onto the transaction number of the trans­
action that appended the last element to the sequence. If the relation's class sequence is
empty, LASTTRNUMBER returns ERROR.

LASTTRNUMBER(u) =
if (u of. ()A HEAD (u) = (z, n1, n2))

then if TAIL(u) = ()

then n 1

else LASTTRNUMBER(TAIL(u))

else ERROR

LASTCLASS maps a relation's class sequence onto the class recorded in the sequence's last
element. If the sequence is empty, LAST CLASS returns ERROR.

51

LASTCLASS (u) =

if (u oJ () 1\ HEAD (u) = (z, ill, il2))

then if TAIL(u) = ()

then z

else LASTCLASS (TAIL (u))

else ERROR

CLOSE maps a relation's class sequence u and a transaction number il onto the subsequence
recorded through transaction il. It also sets the the second transaction-number component in
the last element of the resulting sequence to il if the component is either "-" or greater than
il.

CLOSE(u, n) =

if (u oJ () 1\ HEAD (u) = (z, il1 , il2) 1\ il1 :S il)

then if TAIL(u) oJ ()

then HEAD(u) II CLOSE(TA.IL(u), n)

else if (il2 = - V (n2 oJ - 1\ il2 > il))

then (z, il1 , il)

else (z, ill, il2)

else ()

:tviULTISTATECLASS is a boolean function that determines whether a class is either ROLLBACK

or TEMPORAL.

MULTISTATECLASS(z) =

if (z =ROLLBACK V Z =TEMPORAL)

then TRUE

else FALSE

52

