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ABSTRACT i 

A class of families of linear congruential pseudo-random sequences 

is defined, for which it is possible to branah at any event without 

changing the sequence of random numbers used in the original random walk, 

and for which the sequences in different branches are statistically 

independent of each other, This is a hitherto unobtainable and computa-

tionally desirable tool. 
·---·---·----·-·-·-·.J 

1. INTRODUCTION 

During the last forty or fifty years, the Monte Carlo method has been 

used with considerable success, to solve large mathematical problems too 

computationally complicated to yield to the classical numerical methods 

developed during the previous four centuries. For general discussions, the 

reader is referred to, e.g., BUS 62, HAM 64, HAL 70, ERM 71, SOB 73, KLE 75, 

YAK 77, or RUB 81. In particular, there is an extensive history of the 

effective application of the Monte Carlo method to partiale-transpor>t 

problems, such as arise in the design of radiation-shielding, nuclear 

reactors, and fission and fusion bombs (see, e.g., CAR 75, SPA 69). 

While the method was originally conceived in terms of representing 

the solution of a problem as a parameter of a hypothetiaal population, 

and using a [truly] random sequenae of numbers to aonstruat a sample of 

the population, from whiah statistiaal estimates of the par>ameter aan be 
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obtained (see HAL 70); it soon became apparent, from the point of view 

of the need both for repeatable results to debug Monte Carlo computer 

programs and for a large, stable supply of suitable 'random numbers', that 

eertain deterministic sequences exhibiting some of the properties of truly 

random sequences were more useful in practice. These became known as 

pseudo-random sequenaes (and, by corruption, as sequences of 'pseudo-

random numbers') (see the abovementioned references, and also LEH 51, HUL 

62, TAU 65, JAN 66, and NIE 78). Somewhat later, even less random-looking 

sequences, dubbed quasi-random, having exceptionally good uniformity 

properties leading to fast convergence of the resulting Monte Carlo 

estimates, were proposed (see HAM 60, HAL 60, ZAR 66, and HAL 72). 

The uniformity of distribution of even the pseudo-random sequences was 

found to be imperfect (FRA 63, GRE 65, MAR 72), and a non-statistical 

approach was developed for error-analysis. 

One of the most successful classes of pseudo-random number generators 

is the so-called linear aongruential algorithm (originally due to Lehmer; 

see LEH 51): the sequence [,;0 , ,;1, ,;2, ,; 3; ••• ] = [,;j]J=O of aanoniaal 

[pseudo-]random numbers, which should be independently uniformly distribu-
00 

ted in [0, 1), is obtained from the integer sequence [x.]. 0 by 
J J= 

where the x. are uniquely 
J 

(Vj;;. 0) 0 "x. < fl, 
J 

,;.=x.;f!, 
J J 

determined by 

x. 1 =ax.+ b (mod ft); 
J+ J 

(1) 

(2) 

that is to say, given the parameters a and b and an intial integer x
0

, 

M each successive xj+l is the remainder ~hen axj + b is divided by 2 • 

In a binary computation, this is the integer consisting of the M least 

significant bits of ax. +b. 
J 
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Many calculations using the Monte Carlo method, including those of 

particle-transport alluded to above, involve the use of a long sequence 

of pseudo-random numbers to generate a sequential history of flights and 

collisions, usually referred-to as a random walk. By averaging so-called 

seores, which are functions of the random walk generated in this way, over 

large numbers of such random histories, it is possible to estimate the 

parameters of interest with considerable accuracy. 

It is clear that two different sequences of random numbers will, in 

general, produce two different random-walk histories, and that these, in 

turn, will generally lead to different scores. While it is inherent in 

the Monte Carlo method that the results should show random fluctuations, 

it is extremely convenient to be able to reproduce a given result exactly, 

when we wish· to do so. In particular, this is important in the initial, 

'debugging' stage of developing a new program (or part of a program) to 

do correctly what the programmer intends; it is also useful when several 

runs must be made to develop intentionally ·correlated random variables, all 

depending on the same random walk; and finally, when it is attempted to 

refine the physics underlying a computation by taking into account some 

concomitant variables or even particles, it is useful to compare the scores 

obtained with and without the refinements, for the same random walks. 

While these aims can, in part, be achieved by storing the values of the 

thousands, or even millions, of random numbers required, it would be more 

convenient to adjust the random generator (algorithm) so as to be able to 

achieve these ends. The original invention of pseudo-random sequences was 

for this purpose, and the present development is a further move in this 

direction. 
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This problem was first raised by Warnock (see WAR 83) and suggestions 

of a general nature were made by him as to its solution. The author wishes 

to acknowledge several interesting discussions of the question with Dr War-

nock. The present paper presents a possible explicit approach to the 

task of generating a large number of pseudo-random sequences which are 

mutually independent in a rigorously specified manner. 

2. ANALYSIS OF LINEAR CONGRUENTIAL GENERATORS 

We consider the sequence defined by (2). Here, it is assumed that 

a and bare themselves integers in [0, ~). It is easily verified by 

induction that 

xn = anx0 + Sn(a)b (mod~), 

where 2 3 n-l S (a) = 1 +a+ a +a + ••• +a n 

If a = 1, we have 

and xn- x0 + nb (mod~); 

If a ~ 2, we have 

(3) 

(4) 

(S) 

(6) 

It is clear that the generator (2) is periodic; for there are only ~ 

possible values of all the xJ., and if some x. = x., then thereafter 
7- J 

all xi+k = xj+k (k = 1, 2, 3, ••• );but the first~+ 1 values in the 

sequence must necessarily have at least one such identity. If we choose 

i and j defined by the identity of x. and x. to be minimal, then it is 
7- J 

evident that p = j - i is the period of the sequence, with all x0, x1, 

:x:
2

, ••• , x. 
1 

different. 
7-+p- . 

all possible integer values (modulo 2M) occur in every period and, 

If the period is maximal, with p = ~. then 

incidentally, i = 0, necessarily. 
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The generator (2) will have maximal period~. therefore, if, by (3), 

~ is the least value of n such that 

x = x = anx + S (a)b (mod zM), 
0 n 0 n (7) 

and, by (5) or (6), this is equivalent to 

Sn(a)[(a- l)x0 + b] = 0 (mod zM). (8) 

If a is even, there will certainly be a minimal t such that at= 0 (mod zM); 
and then, for any n ~ t, by (3), x = S (a)b, and, by (4), S (a) = St(a) + n n n 

atsn-t(a) = St(a); so that xn = Sn(a)b = St(a)b = xt (mod~). Since both 

xt and xn lie in [0, zM), it follows that xn = xt; so that the period is 1, 

which is hardly maximal! Thus, a must be odd. We may then write 

a = (2r - 1) 2q - 1, (9) 

where the positive integers q and .!' are clearly unique. 

Now, by (4), Sn(a) is the sum of n odd numbers, and will therefore be 

even only if n is even. Since (a - l)x
0 

is certainly even, the parity of 

the factor [(a- l)x0 + b] is the same as that of b; if (8) holds, the 

product on the left of (8) must be divisible by ~. so that we tend to 

lengthen the period of (2) by making b odd; we now suppose that this is 

the case, and then we see that the period is maximal if S (a) is divisible n . 

by zM only if n = zM. 
We now observe that 

= 1 + z + z2 
+ z 3 

+ ••• 

= (1 + z)(l + z2 + z4 + 

= (1 + z)S (z 2). m 

Given (9), we see that 

1 + a = (2r - 1)2q, 

2m-2 2m-l 
+ z + z 

2m-2 
.... + z ) 

(10) 

(11) 
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and 1 + a2m = 1 + [(2r- 1)2q- 1]2m = 1 + [1 

for any positive integer m. Every term on the right of (12) is clearly 

an integer; and every term except the 2 is divisible at least by 4; so 

that 1 + a2m is divisible by 2 but not by 4. Thus, in order that S (a) n 

should be divisible by ~. it is necessary that n be divisible by 

~-q+l; for then we can apply (10) repeatedly to yield that 

q 2 4 8 fhl 
Sn(a) = (2r - 1)2 (1 + a )(1 + a )(1 + a ) ••• (1 + a ) sn!ZM-•+da), 

(13) 

If the period is maximal, we need to have n = ~,'or q = 1. Therefore the 

condition for maximal period is that 

a = 1 (mod 4) and b = 1 (mod 2). (14) 

Note that these conditions are satisfied by many choices of a and b, 

and are independent of the initial value x
0

• Indeed, there are 2M- 2 

choices of a and ~-l choices of b. For every such choice, the period of 

length~ begins at once, with x0 (i.e., xzw = x0 , and, thereafter, xzM+k = 

xk' fork= 1, 2, 3, ••• ), and every possible intege~ value in [0, 2M) 

occurs just once (in a fixed order) in the period. 2M-3 There are 2 

choices of parameters (not necessarily leading to different periodic 

orders), out of (2M)! possible permutations of~ integers. 

Let us write 2u II N, for any non-negative integer u and integer N, to 

denote that 2u, but not 2u+l, divides N without remainder. As usual, we 

write 2u IN when 2u divides N, but 2u+l might also divide N. Suppose now 

that b is even, and that, for some integer e ~ 1, 
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2a II b. c1s) 

If we strengthen (14) (which was imposed to ensure that q = 1) to 

a = 5 (mod 8), . (16) 

then, by (9) with q = 1, 2(2r - 1) - 1 = Ss + 5, for some integer s; 

whence 4r = 8(s + 1), or a= 8(s + 1) - 3, or a- 1 = 8(s + 1) - 4. In 

other words, 

4 II ca - 1) • (17) 

[If a= 1 (mod 8), then, similarly, 2(2r- 1) - 1 = 8s + 1; whence 

4r = 8s + 4, or a = 8s + 1, or a - 1 = 8s; so that 8 I (a - 1) .] Now 

consider the factor 

f(a, b, x.) = (a - l)x. + b = f 
1- 1-

(18) 

from (8), generalized to If, as we shall henceforth assume, (16) 

holds, and 

then 

t + 2 < a 

and t + 2 = a 

By the same line of 

that the resulting 

=> 2t+2 II f, 

=> 2a+1 I f. 

argument as was 

sequence x
0

, x
1

, 

X.' 
1-

t + 2 >a => 2a II f, } 
used above when b was odd, 

x2, 
-j'1-u • • • has a period , 

2u II f. 

(19) 

(20) 

we see 

where 

(21) 

[This follows from (8), (13), and (17), with u determined as in (20).] 

Further, by (2) with (19), if t <a, then 2t llxj for every j ~ i; while, 

a II a+l I if t > a, then 2 x. 1 and then 2 x. 2, and so on, so that, if t ~ a, -z..+ -z..+ 

alternate x. are odd and even multiples of 2a. 
J 
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We may summarize our results as follows: 

Theorem 1: If the sequence [xjlj=O is generated by (2). where (15). 

(16), and (19) hold, then the sequence wiU be periodia. The period will 

be given, for a defined as in (15) and t defined as in (19), by: 

(Case A) a = 0: period = fl. • 
(Case B) a;;. 1, (i) t + 2 < a: period = fl-t-2; 

(ii) t + 2 = a: period = fl-u 
• with u >a; 

(iii) t + 1 = a: period = fl-a; 

(iv) t ~ c: period = fl-a • 

Proof: [We have shown that the period for odd b (a = 0, in (15)) is 2M, 

yielding Case A; and that, for even b (a> 1), the period is fl-u, where 

u satisfies (21). By (20), in Case B(i), u = t + 2, in Case B(ii), u >a, 

and in Cases~ B(iii) and B(iv), t + 2 >a, so that u =a.] 

Theorem 2: In eve:ry aase, with the same postulates as in Theorem 1, 

(a) the periods begin with x0, and (b) the numbers occurring in eaah period 

are equally-spaced, modulo fl. 

[(a) Consider the sequence 1, a, a2, a3
, ; •• ,reduced modulo 2M. Since 

there are only zM-l distinct odd values in [0, 2M), it is clear that there 

must be 0 ~ i < zM-l and 0 < m ~ zM-l such that ai = ai+m (mod fl). The 

difference ai+m - ai must be divisible by f1 and is clearly also divisible 

by ai; since a is odd, it follows that am - 1 must also be divisible by zM, 
i.e., that am= 1 (mod fl). If we find a period, as we have shown that we 

must, with x. = x. 
'2- 'l,+p 

_M m-1 m-1 
(mod z·), then a (x.- b)= a (x. -b); and, by 

'2- 'l,+p 

(2), x.-b=ax. 1; 
J J-

th t 
_ m m-1 _ m-1 _ 

so a x. 1 =ax. 1 =a ax. 1 =a ax. 1 = x. ·1• 
'2-- '2-- '2-- '2-+p- '2-+p-
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By induction, we see that eventually we must reach x0 = xp (mod~). 

(b) We consider the various cases listed in Theorem 1. (A) a = 0: 

period 11. We have already shown that theintervalJM= [0, 2M) contains 

just ~integers, all of which therefore occur just once in the period. 

They are therefore equally-spaced, with spacing 1. 

~M-t-2 (B)(i) t + 2 <a: period z~ . As in Cases (B) (ii) and (B) (iii), 

t <a, and we have seen that then every x. In-
J 

deed, by (2), 

- -t -j1-t Kj+ 1 = aKj + 2 b (mod ), (22) 

-t where 2 b is an even integer, by (15). In the present case, since we 

must assume that a .;;; M, (23) 

and here a~ 3, it follows that M- t ~a- t ~ 3; whence, by (16) and (22), 

Kj+ 1 - aKj = Kj (mod 4). Now, the number of integers K congruent to x0 

modulo 4 and lying in JM-t is just ~-t-Z; so all of these must occur just 

once in each period, and these values are equally-spaced, with spacing 2t+Z. 

(B) (ii) t + 2 = a: period 2M-u, where u is defined by (21). If we 

write fj = f(a, b, X} = (a-l)x.+ b, (24) 
J 

for a given sequence, following (18), then we see that, by Part (a) of 

present theorem, fo = F2u 
' 

(25) 

where F is odd. Let b = B2a, (26) 

similarly, where B is also odd, by (15). By (17), we see that, if 

a - 1 = 4A, (27) 

where A is odd, then we can write, by (24), 

Thus, by (22), we see 

a f. = 2 (AK • + B) • 
J J 

that f . 1 = 2a {A [ ( 4A 
J+ 

(28) 

+ 1)K. + 4B] + B} (mod 2M), 
J 

the 
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which simplifies to f. 
1 

= 2a(AK. 
J+ J 

+ B)(4A + 1) 

or f. 1 =af .• (29) 
J+ J 

Thus, fj = it0 
(mod 14); (30) 

and since, by (2) and (24). 

fJ. = x. 1 - x. (mod 14) , 
J+ J 

(31) 

it follows that 
(32) 

Apart from an offset of x
0

, the values of the xj in any period take the 

values of Sj(a)f
0 

= Sj(a)F2u reduced modulo zM, for j = 0, 1, 2, ••• , 
_M-u _ z-- 1. No two of these numbers are the same; for, if, for instance, 

S. (a)F2u = S. (a)F2u (mod 14), with i < j, tnen [S. (a) - S. (a) ]F2u would 
1- J 1- J 

·be divisible by 14, or S.(a)- S.(a) = aiS .. (a) would be divisible by 
1- J J -1- . 

14-u, and, since a is odd, this would require, by (13), that j-ibe 

itself divisible by zM-u, which is impossible, since j - i < zM-u. So 

we see that the number of distinct values of S.(a)F2u is equal to the 
J 

total number of multiples of 2u in JM; so that all these values occur just 

once in every period, and they are equally-spaced with spacing 2u. 

(B)(iii) t + 1 =a: period 2M-a= 14-t-l. This equals the total 
. t 

number of odd multiples of 2 in J M;- so each of them occurs just once in 

each period, and the values are equally-spaced with spacing 2t+l. 

(B)(iv) t >a: period 14-a. As has been explained, the values of 

the x. alternate between odd and even multiples of 2a. Since the total 
J 

number of multiples of 2 in is just equal to the period, each value 

occurs just once in every period, and the values are equally-spaced with 

spacing 2a. ] 
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Corollary 1: Under the conditions of Theorems 1 and 2, the values 

generated have the foZZowing spacing: 

(Case A) c = 0: spacing 1; 

(Case B) c ~ 1, (i) t + 2 < c: 

(ii) t + 2 = c: 

(iii) t + 1 = c: 

spacing 

spacing 

spacing 

..... . zc (ivJ t ? c: spac~ng • 

2t+2. 
' 

2u· 
' 

2t+l; 

[The equally-spaced points have spacings evaluated in the proof of 

Theorem 2. Note that, in every case, 

SPACING = fl /PERIOD; (33) 

as must necessarily be the case, since there are t 4 integers in JM = [0, fl).] 

The property of equal spacing of values in a period is highly desirable 

in pseudo-random generators, and will be called uniformity. 

3. FAMILIES OF INDEPENDENT GENERATORS 

Now consider several generators of type (2): 

(34) 

with v = 1, 2, 3, Define 

a = a(ll) - a(v) 8 = b(Jl) 
]l'V , ]lV 

(35) 

and o . = x~Jl) - x~v) 
)lVJ J J ' 

(36) 

reduced modulo~ (so that a negative difference becomes incremented by fl). 
If we apply (2) to (34) - (36), we get that 

o . =a x~ll) + a(v)o . + 8 (mod~). 
)lV (J+ 1) )lV J )lVJ )lV 

(37) 

We see from this that, if, as we shall henceforth here assume, 
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(Vv) a(v) =a, so that (lf]l,v) et. = 0, 
].IV 

(38) 

then we have 0 c· 1) =a& . + e (mod zM), 
].IV J+ ].lVJ ].IV 

(39) 

which is exactly of the form (2); so that we may apply Theorems 1 and 2 

"' to the resulting sequence of differences [& .] . 0 • 
].lVJ ;;= 

For each pseudo-random sequence, we maximize uniformity and the 

length of the period by adopting the conditions (16) and 

b = 1 (mod 2), (40) 

i.e., making a and b odd. The period is then of length zM (maximal) and 

the spacing of the equally-spaced values is then 1 (optimal uniformity). 

Theorems 1 and 2 tell us that the differences & . will also exhibit 
]lVJ 

uniformity, but we cannot get the best result, that of Case A, since now 

every a is- even, being the difference of two odd numbers; this is Case B, 
]lV 

with a ;;. 1. 

When the differences between two pseudo-random sequences exhibit uni-

formity, this shows a kind of 'incoherence' between the two sequences, and 

this clearly desirable property, which mimics, to some extent, statistical 

independence, will be called independence here. 

Corollary 2: All pseudo-random sequences satisfying (2) and (16) exhibit 

uni[or>mity; families of suah sequences satisfying (34} - (40) exhibit 

independence. 

[This is a restatement of Theorems 1 and 2.] 

Corollary 3: The aanoniaal pseudo-random sequences (l) formed from (2) 

with (16} have unifor>mity (measUPed by the fineness of the spaaing of values 
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oaCUPring in every period) equal to the period of the sequenae. Maximum 

uniformity is thus -Jd. 
[The spacing of the values~. is, 

J 

-M by (1), 2 times the spacing of 

the x. (called 'SPACING' in (33)). By (33), this is therefore 1/PERIOD. 
J 

Since we measure the degree of uniformity as the reciprocal of the spacing 

of the ~ ., it follows that this is just equal to PERIOD, the length of the 
J 

period of the sequence (1) or (2).] 

Thus the uniformity of the sequences [<(v)]~ is maximal: zM. 
~j J=O 

Note that Theorem 2 and its corollaries allow us to use Theorem 1 alone 

[ (v) ~ 
to determine the uniformity of the pseudo-random sequence ~j ]j=O' or 

the independence of two such sequences, similarly. 

Our procedure is as follows: 

(I) At each step, we may choose to follow one of two branahes 

of a random walk, which we shall call the Zeft and right branches; thus 

random Zists are replaced by Pandom (binary) trees (later we shall extend 

consideration to trees of general degree). These are the structures that 

Warnock (WAR 83) calls 'tree-structured random walks'. 

(II) At the start, or root, we initiate the sequence [<(l))~ 
'j j=O 

with ~( 1 ) = x(ll;2M. 
0 0 

(III) We may number the ~odes by ZeveZs; so that node N has as 

left-child the node 2N,and as right-child the node numbered 2N + 1. In 

binary notation, node b0b1 ••. hk has left-child b0b1 ••. bk0 and right-child 

h0h1 ••• hk1; the root is node 1 (b 0 = 1); and we see that k is the level of 

the node N = (b0h1 ••• hklbase 2• 
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(IV) As we arrive at node N, we establish a record (N, uN' vN)' 

where uN is a parameter taking a value b(v), for some v to be determined, 

and vN is similarly a value xjv), for some j and the same v, with tne 

record (1, b (l), xa 1)) at the root-node. 

(V) If we move to the left-child, node 2N, we form the record 

that is, we continue the sequence of the same random generator. 

record 

(VI) If we move to the right-child, node 2N + 1, we form the 

(2N +_1, u2N+l' v 2N+l) = (2N + 1, u2N+l' avN + u2N+l (mod zM)); 

( 42) 

that is, we modify vN to vN and adopt a new random generator, with a new 

parameter u = b ( ll) ior some different ll from v. 
2N+1 

What characterizes this procedure precisely is, of course, the way in 

which we transit from vN to vN and from uNto u2N+l" But, in every case, 

so long as the generators we use are of type (2) and the congruences (16) 

and (40) apply to a and all the uN' Theorems 1 and 2 ensure that the 

individual (left-branching) sequences are all uniform and that the separate 

generators are all independent,_ in the sense defined earlier. 

In WAR 83, it is proposed that (in our notation) all uN be the same, 

with the left branch representing the path of a given particle from any 

node. The right branch then represents the initiation of a new particle, 

with the step from VN to vN being effected by a different generator, vN 

= a'vN + b' (mod~). However, our theorems do not apply here. The paths 

of individual particles are, in fact, computed from different segments of 
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the same large period of a single generator. For perspective, we should 

consider that a typical value of M is 

M = 48, so that (43) 

and a typical usage of random numbers might be of the order of 104 to 106; 

so that, since disjoint segments of a period are pretty incoherent with 

each-other, it is reasonable to assume that Warnock's scheme may well 

work efficiently. However, no rigorous mathematical results have yet 

been obtained to support this conjecture. 

4. SPECIFIC PROCEDURES 

The general procedure we propose is given in the algorithm (I) - (VI) 

·outlined above. As a first proposal, consider the simplest arrangement: 

and u2N+l = 2N + 1, with (44) 

The generators of the two sequences (of left branches) starting at nodes 

2N and 2N + 1 (presumably representing the histories of two particles 

coming from the same event) will have b-parameters of the form (2r + 1) 

and (2r + 1)2k + 1 (if node N is descended by a series of k left branches 

from a right-child or the root). The corresponding difference-generator 

(39) will have 6 = (2r + 
)JV 

1)(2k- 1) + 1 (mod 2M) (k ~ 1) and c 
0 

= 6 
lJV l-!V' 

by (41) and (42). Thus, t = e and we are in Case B(iv) with independence 

measured by ~-e, by Corollary 3 applied to the difference sequence 

(independence is just uniformity of differences). IVe see that 6 
)JV 

(2r + 1)2k - 2r, so that, if nodes 2N and 2N + 1 are at level h and node 

2r + 1 is at level h - k (remember that the level of a node is the highest 

power of 2 which does not exceed the node number; so 2h-k < 2r + 1 < 2h-k+l 

and 2h < (2r + 1)2k + 1 < 2h+l, which is consistent), then at most 2h-k 
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will divide 2r. If we let 2r = R2q with R odd, then q ~ h - k and if q = 
h-k k k h- k then 2r = 2 , i.e., R = 1. Now (i) if > h- (i.e., 2k >h), 

then a = q ~ h k < h; 

h - k, when 2r = 2h-k = 

(ii) if k = h - k (i.e., 2k = h), then either q = 

2k and 8 = (2k + 1)2k - 2k = 22k, so that a = 2k 
]JV 

= h; or q < h- k, when a= q < h; (iii) if k < h- k (i.e., 2k <h) then 

either q < k and a = q < k < h; or q = k and a = 2k < h; or k < q ~ h - k, 

when a = k <h. That is, in all circumstances, a ~ h, and this bound is 

attained when and only when h = 2k and 2r = 2k, or h = k and 2r = 0. 

If we use the random tree as suggested, taking left branches to 

generate the histories of particles and branching to the right when we 

create a new particle, or perform equivalently in other problems, then the 

physical situation indicates that adjacent branches (such as are discussed 

ab.ove) should be most independent. 

When we examine the other parts of Case B, we see that (iii) is bad 

(like (iv)) and (ii) is worse. We note that we have not yet taken the 

freedom of choosing the transition from vN to vN. In general, o 0 = av' 
JJV N 

- avN + 8 (mod tv), and, by the analog of (19), we can make t = 0, say, 
]JV 

simply by forcing, for example 

(45) 

This yields the case (i) if a ~ 3, and this latter can be forced by 

taking u
2

N+ 1 = BN + 1 (mod tv) . ( 46) 

Now the independence is measured by 2M- 2 , which is excellent, for 

adjacent branches. One remaining problem, which seems to have no easy 

solution, is that non-adjacent, but close, branches may well have large 

values oft, which may put us into (ii), (iii), or (iv). 
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Nevertheless, the procedure embodied in (45) and (46) is clearly a 

valuable and workable one. A discussion similar to that given for the 

first method indicates that the maximum value of a at level h is h + 2, 

not much worse than the previous bound of h. (The two b-parameters are 

now 8r + 1 and (2r + 1)2k+2 
+ 1, whose difference is just four times the 

previous form. ) 

For n-fold branching, we may simply use the binary branching 

repeatedly, and this may be sufficient for routine purposes, to avoid 

many ad-hoc procedures. It is possible, of course, to number the nodes 

of an n-ary tree by levels, as described in (III). The obvious procedure 

is now to number the children of node N as nN- (n- 2), nN- (n- 3), 

nN - 1, nN, nN + 1 (note that the children of N + 1 follow immediately 

after those of N). The analog of (44), the simplest scheme, is then: 

(nN, unN' vnN) = (nN, uN, avN + uN (mod zM)); 

with 

and 

(nN + J' u v ) = (nN + J. u av + u (mod 2M) ) , 
' nN+j' nN+j ' nN+j' N nN+j 

unN+l - 3 + 2(n 

unN+j = 3 + 2(n 

for j = 2 - n, 3 - n, .•. , -2, -1, + 1; 

1) (N - 1) (mod zM), 

1)N + 2j (mod zM), 

for j = 2 - n, 3 - n, .•. , -2, -1. 

It would seem unnecessary to complicate things further by adopting a 

form such as (45) and (46), when it would only improve things for one 

of the branches. 

... ' 

( 4 7) 
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