An Integrated Instrumentation Environment

Technical Report 86-028
1986

Richard R. Morrill

The University of North Carolina at Chapel Hill
Department of Computer Science
New West Hall 035 A

Chapel Hill, N.C. 27514

AN INTEGRATED INSTRUMENTATION

ENVIRONMENT

by

Richard Raymond Morrill

A Thesis submitted to the faculty of The University of
North Carclina at Chapel Hill in partial fulfillment of
the requirements for the degree of Master of Science in
the Department of Computer Science.

Chapel Hill

1986

Approved by:

A\

Adv1ser
/Q}/ = 44%%14/%1/’

©1986
Richard Raymond Morrill

ALL RIGHTS RESERVED

ii

Acknowledgements

The SoftLab team provided invaluable support and aid during the entire thesis project. In
particular, Rick Fisher helped with the design and implementation of the IIE features that depended
on his family of operating systems. Rick Snodgrass as both the head of SoftLab and the advisor
for this thesis was always available for help and gnidance. His insight in the midst of some difficult
design decisions kept things on track. Dr. M. Satyanarayanan provided assistance in getting his
hardware simulator ported a'nd adapted for our use in SoftLab.

Special thanks to Janice, Geoffrey, and Paul. It won’t happen again.

v

Chapter

1

2
2.1
2.2

3

4
4.1
4.2
4.3
4.4
4.5
4.6

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.

7.1

References

TABLE OF CONTENTS

Subject

Introduction

Experiments

Software Systems Experiments
Previous Work in Software Systems Experiments
SoftLab

The IIE Users Manual

Introduction

Major IIE Runtime Components
Experiment Specification
Experiment Preparation

Experiment Execution

Error Handling

The Design

Experiment Suppaort

Experiment Specification
Experiment Component Construction
Experiment Execution

The Primary Softl.ab Components
Additiona] Component Design
Design Evaluation

The Implementation

Major Implementation Considerations
Experiment Specification
Experiment Component Construction
Experiment Execution

Primary SoftLab Components
Additional Tocl Implementation
Implementation Evaluation
Conclusion and Future Work

Future Work

Appendix A: Express Language Syntax
Appendix B: The Design and Execution of a Sample Experiment
Appendix C: Manual Pages

1. Introduction

The SoftLab project strives to treat both education and research in computer science as in
natural sciences. Natural sciences and computer science differ primarily in the experimentation
area. Physics, for example, relies heavily on laboratory use for both education and research. Over
the years physicists have developed many special tools to support these experiments. There are now
some laboratory courses in place for the hardware area of computer science. The SoftLab group set
out to complement these by developing support for experiments in the software areas of computer
science,

Physicists have been developing experiment support tools for hundreds of years. It is not
realistic to think that a small research group can develop tools to support all of the different areas
of software research and education. We must start by providing support for experiments in a few
particular areas, doing so with generality in mind so that we can easily extend this suppert, a little
at a time, to cover a wider and wider range of experiment types.

The selected areas for initial support are operating systems and compiler design. These choices
led to the following major tasks:

1. the design and implementation of a modularized compiler.

2. the design and implementation of a family of modularized operating systems.

3. the design and tmplementation of an environment to support compiler and operating systems
experiments.

As part of the first task, members of the SoftLab team designed and implemented the Interface
Description Language(IDL) [18]. This language is a general purpose interface description tool that
is especially suited to aid in building compilers with multiple passes. As part of task two, other
SoftLab members are nearing completion on the design and implementation of two modular operating
systems [7]. This task required additional compiler support to assure that the operating systems,

1

written in Modula-2, could run on a hardware simulator. Task three requires a number of sapport
programs, e.g., a hardware simulator, to provide necessary experiment components. In addition, this
task requires the design and implementation of a set of support tools that bring all of the experiment
components together and perform a simply specified experiment,

Our involvement in the above tasks was in three main areas: for task two we assisted in the
design of the Multibatch operating system; as part of task three we were involved in modifying
an existing hardware simulator {16] and an M-code, Modula-2 intermediate code, interpreter to
support the SoftLab operating systems; and we designed and implemented the support tools for
aiding experiment specification, synthesis, execution and evaluation.

For this thesis a set of tools, which comprises an Integrated Instrumentation Environment (IIE)
for architectures and operating systems, will be designed and implemented. This IIE will assist users
with a wide range of experiments relating to both hardware and software configuration. As part of
this effort a language will be designed for the purpose of specifying valid experiments.

Chapter 2 deszcribes the problems involved with experiments in general and goes on to show the
particular problems related to software system experimentation.

Chapter 3 presents the SoftLab approach to software system experimentation and a brief de-
scription of the present SoftLab tool set.

Chapter 4 confains the User Manual for the SoftLab Integrated Instrumentation Environment.

The design and implementation of SoftLab’s Integrated Instrumentation Environment is the
subject of chapters 5 and 6. We discuss design and implementation decisions as well as the value of
capitalizing on the UNIX toolset to do rapid prototyping.

In the conclusion, we argue both the generality and utility of SoftLab’s IIE and present some

of the work to be done to extend its present capabilities and enhance its structure.

2. Experiments

Scientific experimentation is generally a very complex and lengthy endeavor. If an experimenter
is to draw reasonable conclusions at the end of an experiment he must know the state of the
experiment initially, while in progress, and at termination. For example, a particular experiment in
the field of Chemistry may require temperature, humidity, and barometric pressure readings while
in progress. A chemist may wish to rerun such an experiment with the same ambient temperature
and humidity but with a different barometric pressure; then, at some future date he may wish to
repeat the original experiment. Experimental chemists have designed special tools over the years
to aid them in this kind of control process. These special tools encourage many experiments, and

series of experiments, that would otherwise be too difficult.

2.1 Software Systems Experiments

The problems involved in experimenta.tioﬁ in Computer Science are similar to those of other
sciences like Chemistry. They are the problems related to repeatability, control, and modification
of experimental parameters. All of these issues are important in the area of operating systems
experimentation. An operating systems experiment generally consists of four main parts: a set of
connected hardware devices (e.g., line printer, cpu, card reader); one or more user programs (the
workload); an operating system; and a mechanism or set of mechanisms to collect data concerning
the state of the experimen$. Each aspect carries with it a set of problems which complicate exper-
imentation. The particular problems related to each of these four areas, as well as some others,
are mentioned below. For the remainder of this section ‘experiment’ refers to ‘operating systems

experiment’.

¢ In most cases an experiment requires the dedicated use of the hardware devices while in progress.
If particular modifications to the hardware are required as part of a set of experiments, these
devices cannot generally be shared. Hardware may have to be acquired if it is necessary to test
the operation of an operating system over a range of equipment —which makes many operating
systems experiments too costly to perform.

o It is not easy to specify workloads for experiments. A program, or set of programs, must be
carefully written so thai it possesses the characteristics required for the correct evaluation of a
particular experiment. If any of the workload characteristics must vary over a set of experimental
runs, different workloads with the correct variations in characteristics must be composed.

¢ Operating systems that are currently in use are generally very large and complex. Even the -
simpler operating systems such as UNIX are composed of more than 10,000 lines of code. Since

efficiency is of paramount importance if an operating system is to be useful, the code is often
very dense and hard to understand.

o The evaluation of most operating system experiments requires the collection of data during
the experimental run. The data collection mechanism must have no substantive effect on the
experiment. This mechanism may well involve modifying existing hardware to provide certain
information. The data collected during an average experiment may also be voluminous. For
example, information concerning the number of memory references during the execution of a
large program may be required. The data collection mechanism should then contain some means
to filter or process this data as it is being collected. If the mechanism does not provide such
means then the processing of the data after the experiment will be a major task in itself,

+ Experimenis which involve classroom assignments can lead to special problems. Many students
may have to carry out the same experiment in roughly the same time frame. Protection issues
become difficult to handle when many students are sharing a large number of files,

It is evident that the problems encountered in experimentation render it too costly in many
of the situations where it would be useful, Very few universities have the resources that would
allow students the kind of opportunities to experiment with operating system design and evaluation
that many educators and the SoftLab group feel they should have. We may be able to solve this
difficulty by developing tools for the express purpose of supporting experiments just as others in the
sciences have done in their respective fields. One advantage that we have is that software systems

experiments can be controlled by the same mechanisms (i.e., software) that are being controlled.

This allows us a unique opportunity to study the properties of this interaction.
2.2 Previous Work in Software Systems Experiments

At this time there has been no project or proposed project that fully addresses the issues
and associated problems with software system experimentation laid out in the previous section.
There have been proposals that address laboratories and experiments in regard to specific topics,
e.g., operating system or compiler designlt, 2, 11, 12, 19]. Only two proposals, however, address
experimentation in more than one area of software system design.

One system, SL230[3, 4], which has been proposed at Carnegie Mellon University, would allow
for experimentation with regard to operating system design. This system provides a large collection

4

of component modules and a means to link them together via a message passing mechanism. A kernel
also provides low level synchronization of the modules. The modules are written in agsembly language
to provide an efficient implementation. A user of the system can carry out experiments related to
modular operating system design easily and efficiently if he restricts himself to modularized operating
systems, based on a message passing paradigm, that can be synthesized from existing component
modules. Since the modules are implemented in assembly language, implementing new modules or
modify existing ones significantly complicates the experimentation process. These restrictions are
clearly a problem if the intended use of the system is for sophisticated experimentation or for flexible
pedagogical purposes, Another drawback of the system is its specific ties with operating systems.
It does not seem to be the basis of a general purpose software system experimentation tool
Halstead’s system[10] proposes a laboratory for both operating system and compiler implemen-
tation. The system includes a modularized compiler for the Pilot language, and a modularized
operating system written in Pilot. Experiments relating to the design and construction of operating
systems or compilers are performed by modifying one or more of the constituent modules. This
system 1s intended as a pedagogical tool only. The simplicity of the included language, Pilot, and
the requirement of a bare machine allow little flexibility in the use of the system. Its use in the
pedagogical environment is also limited by the requirement that each student implement most of

the operating system and compiler with only basic tools (i.e., a text editor and a compiler).

3. SoftLab

The goals of the SoftLab project are to address and to solve az far as possible the problems asso-
ciated with designing and carrying out software systems experiments. Attaining this goal requires a
rich set of experiment components {e.g., operating systems, hardware simulators, etc.) in an environ-
ment which supports experiment design, execution, and control. This project involves designing and
implementing a set of tools that comprises an Integrated Instrumentation Environment(IIE)[17]. An
IIE supports software system experimentation in the way that a programming environment supports
software system development. Programming environments provide programmers with the tools to
support the design, implementation and maintenance of software systems, Some PE’s provide a
collection of tools from which the user can select [5]; others support the programmer through a
particular phase of the software system development life cycle [6}; and still others provide support
across the entire life of a program [8]. The IIE provides a rich set of tocls when viewed from the
point of view of the experiment designer. She can select an operating system, a compiler and a par-
ticular workload as components of an experiment. The experiment performer has the tools to take
the experiment specification and then, step-by-step, take it to a working experiment. Additional
components of the environment allow the experiment to be modified and run repeatedly without
any danger of unspecified inconsistencies entering into the process.

An Integrated Instrumentation Environment will allow the various teols [e.g., machine sim-
ulators, families of operating systems, etc.) to function together and assist in performing a wide
rage of software systems experiments. The IIE solves the problems of repeatability, apecification,
and control that are inherent in the experimentation process. It will also provide the interface to
data collection and analysis tools, device simulators, and modularized software components (e.g.,

compiler passes) that are required for sophisticated experiments.
q P

4. The ITE Users Manual

4.1 Introduction

An Integrated Instrumentation Environment (IIE) supports software system experimentation in
the same ways that programming environments support software system developmeni. Program-
ming environments provide programmers with the tools to support the design, implementation and
maintenance of software systems. Some PE’s provide a eollection of tools from which the user can
select [5]; others support the programmer through a particalar phase of the software system devel-
opment life cycle [6]; and still others provide support across the entire life of a program [8]. The
designer can select an operating system, a compiler and a particular workload as components of an
experiment. The experiment performer has the tools to take the experiment specification and then,
step-by-step, take it to a working experiment, Additional components of the environment allow the
experiment to be modified and run again and again without any danger of unspecified inconsistencies
entering into the process.

The IIE described in this manual is an integral part of the SoftLab environment. It provides
the means to describe and carry out a wide range of software system experiments, We assume
that the user is already familiar with the other SoftLab components that are a part of the planned
experiments. In particular, we assume that the user is familiar with the SoftLab family of operating
systems [7], the SoftLab hardware configuration simulator [16], the Modula-2 programming language
[9, 22] and the C programming language [13].

Section 4.2 contains a brief description of the major runtime components of the IIE. Section
4.3 describes the experiment schema that specifies how these components should interact in a par-
ticular experiment. In Section 4.4 the user learns how to use the experiment preparation program
“SchemnaPrep.” Section 4.5 illustrates the execution of an experiment and describes how to utilize
pieces of an existing experiment in a related experiment. This can often save a lot of time and

7

system resources. Section 4.6 presents a description of an example experiment from start to finish.

The last chapter describes the error handling facilities that are part of the IIE.
4.2 Major IIE Runtime Components

The IIE incorporates many sophisticated components. The major runtime components of an
experiment are the operating system, the hardware simulator and the stimulus, or workicad. We

present the user choices for each of these components below.
The Operating System

The SoftLab operating system family is a set of modularized operating systems. We call this
set a family because of the many similarities among the various operating systems. There is a
clear progression in complexity within the set. Two of the family members are currently being
implemented, the Unibaich operating system and the Multibatch operating system. The former
supports one CPU, one primary memory unit, a card reader and a line printer. It handles one job
at a time. Jobs are entered as card decks and the output of the job is printed on the line printer,
The Unibatch operating system is useful as a model of the most primitive type of operating system;
even though it is very simple it illusirates the basic structure of an operating system. A simple
experiment with this system might involve adding donble buffering to the card reader driver.

The latter O/S supports one basic CPU, one primary memory unit, a disk drive, 2 card reader
and a line printer. More than one job may reside in main memory at a given time. The jobs
come into the system as separate card decks. The results of all of the jobs appear as hardcopy
on the line printer. The Multibatch operating system represents the next step in complexity. The
addition of multiple batch job processing capabilities carries with it an impressive jump in code
size. The three level scheduling mechanism, the memory management module and the interrupt
handler provide ample opportunity to investigate real operating system design decisions. These two

operating systems are implemented in Modula-2.

The Hardware Simulator

Dr. Satyanarayanan, at Carnegie Mellon University, designed and implemented a flexible hard-
ware simulator to aid in the design and investigation of sophisticated network file servers — this tool
was adapted for SoftLab. Each component of the hardware is specified in a device module file. This
file contains entry and exit points for both control and data, procedures that embody the component
simulation algorithms and special simulation directives. One of these device modules is constructed
for each of the components of the hardware that we wish to simulate. A hierarchy deseription file
contains the component interconnection specifications and component initialization directives. A
completed simulator consists of one hierarchy description file and any number of device module files.
The implementation language for both file types is classc, a modified version of the C langnage
with classes [20, 21]. Two simulators constructed with this tool are presently in use: the Umachine,
which supports the Unibatch operating system, and the Mmachine, which supports the Multibatch
operating system. The Umachine contains one CPU device module, a main memory device module,
a card reader device module and a line printer device module. The Mmachine contains one CPU
device module, a main memory device module, a card reader device module, a disk device modz.xle
and a line printer device module. The main memory device module, the card reader device module
and the line printer device module are identical in the two machines. Each CPU device module
contains a slightly different M-code interpreter. M-code is the intermediate langunage for Modula-2;

p-code is the analogous language for Pascal [15].
The Stimulus

The SoftLab stimulus facility consists of 2 number of libraries of workload component routines.
Programs are written that reference these routines; the appropriate library is linked at compile time.
This facility reduces the time and difficulty involved in defining and implementing a stimulus with
specific properties. The libraries differ in the execution time of the routines and in $arget type. Two
libraries, both intended for single processor machines, may contain corresponding routines that,
although similar in function, differ by a factor of ten in running time for example. Other libraries
may have a multi-processor machine as the intended target. Routines that differ in running time

9

only have the same name by convention. The user selects workload duration at compile time by

hinking with the desired library.
Other IIE componenis

The operating system family, the hardware simulator creation tool and the stimulus facility are
integral parts of the SoftLab IIE. They are also tools in their own right. Other IIE components are
more tightly bound and do not have a usgeful separate existence. We will discuss their features in

the context of the experiment specification facility in the following section.

4.3 Experiment Specification

The components of the IIE’s runtime environment are powerful but complex. An additional
facility is necessary to describe the interconnections of the components so that the user can easily
specify and evaluate an experiment. The Ezpress (Experiment Requirements Specification Schema)
language provides this facility. The user writes a description of the experiment in this language.
We call this description the experiment schema, hereafter known as the schema; we call the file
that contains this description the schema file. Examples from a valid schema file example. sch are
presented; the example file is given in the Appendix.

A schema file contains six major parts. Each of the parts specifies part of the runtime environ-

ment of the IIE. The six sections are:
Initialization Section

The body of this section provides the information necessary to select various initialization op-
tions of IIE runtime components. Possible initialization options are the memory size for a particular
hardware configuration, the number of processors for a multiprocessor hardware specification and
the per process stacksize limit for an operating system supporting multiple users. The initialization
section is not supported in the IIE implementation.

Initialization Section from the file example, sch:

InitSection
EndInit

10

Stimulus Section

The stimulus, or workload, exercises the runtime environment and is necessary for any real
experiment to take place. It is possible to spacify an experiment that has an empty workload, but
outside of testing the initialization features of the hardware configuration and operating system it
is not useful to do this.

In the stimulus section the user may specify a SoftLab stimulus library and a stimulus program.
The stimulus library contains routines that the stimulus program imports. The library routines
each embody a real user workload feature such as I/O-bound code, compute-bound code or code
exhibiting little locality. The user stimulus program must be a valid Modula-2 program. The
program may import SoftLab stimulus routines only from the specified library.

Stimulus Section from the file example. sch:
StimulunsSection
Library: lowref

File: /unc3/unc/drm/s8l/src/Stimulus/main.mod
EndStimulus

The stimulus library lowref is selected along with user written driver main.mod.

Hardware Configuration Seclion

The user must choose one of SoftLab’s hardware simulators. He must also specify the config-
uration of these components by naming a hardware configuration file. These two selections taken
together specify a valid hardware simulator, called the base machine, Additional schema file entries
for the hardware configuration section specify modifications to the base machine. These modifica-
tions consist of pairs of device module file names. The first file name specifies one of the device
modules that is part of the base machine; it is assumed to be in the base machine directory. The
second file name specifies a substitute device module and may be an arbitrary path name. The

resulting hardware simulator consists of the base machine with the specified substitute device mod-

ules.

11

Hardware Configuration Section from the file example.ach:

HWConfigSection
Machine: Bmachine
HD: Bmachine.hd

DMSubs:
Bmainmem.dm submem.dm
Bepuint.dm subcpu.dm
EndSubsa
EndHW

The hardware simulator Brachine iz selected along with itz primary hierarchy description file
Bmachine.hd. Other hierarchy description files for the hardware simulator Bmachine are also pos-
sible, specifying different variations of the same machine. The device module files Bmain.mem and
Bcpuint.dm are replaced with the files submem.dm and subcpu.dm respectively. The replacement

files are in the schema file directory since no path components are specified.
Operating System Configuration Section

The operating system configuration section is similar to the hardware configuration section. It
starts with the choice of an operating system from the SoftLab family of operating systems. The
next selection is the main module of the Modula-2 program that implements the chosen operating
system. This main module is similar in function to the hierarchy description file for the hardware
configuration section. The choice of different main modules specifies different variations of the same
basic operating system. In each case the final program is built from selections from the same pool of
modules. The user may now choose to substitute modules in the operating system. Since Modula-
2 programs incorporate both definition modules and implementation modules, the user is able to
substitute for either module type. The resulting operating system consis.ts of the basic operating
system selected with the specified modules incorporated.

Operating System Configuration Section from the file example.sch:
08ConfigSection

0S: unibatch

Main: UniBatch.mod

DefSubs:
Loader.def /unc/drm/ms_work/Imp/test/subloader.def

EndDefSubs
ImpSubs:

12

Loader.mod /unc/drm/ms_work/Imp/test/subloader.mod
EndImpSubs
End0S

The unibatch operating system and its main module UniBatch.mod are selected. The definition
module Loader.def is replaced. Notice that here the full path name of the substituted file is given.

The implementation module Loader.mod is also replaced.
Sensor Section

Each of the components of the SoftLab hardware simulators, operating systems and stimulus
libraries contain sensors. These sensors are embedded code fragments that supply information from
the runtime system to the experiment manager. In addition, the user may define new sensors.
These additional sensors could be found in the user stimulus program, substitute device modules
or substitute operating system modules. Each sensor has a unique name. The experiment manager
selects the information from the sensors that are of interest to the experimenter. The user may
name the sensors of interest directly in this section of the schema or indirectly by naming a file that
includes a list of the sensors after the switch ~f. Multiple sensor files are acceptable but they must
each be proceeded by ~f. The documentation for specific SoftLab components contains lists of the
sensors for that component. The SoftlLab monitor document contains the description of a sensor
code fragment.

Sensor Section from the file example.sch;

SensorSection
SensorList: 158
-f senslist
45
EndSensorList
EndSengor

The sensors 1, 5, 8 and 45 are selected explicitly in this section. The sensors listed in the file
senslist in the schema file directory are also selected. An arbitrary pathname could have been

used for the sensor file.

13

Directives Section

This section specifies the number of runs of the simulation system that are to take place in the
experiment ag well as the variations for each run. The only per run variation that we allow at this
time is the choice of stimulus. Thus, for example, the nser may direct the experiment manager to
execute the simulation system three times with a different stimulus for each run via three separate
run-tuples. Each stimulus is a selection from the stimuli built in the stimulus section. The five
elements in each run-tuple are: first, the base machine; second, the executable operat':ing system file
name; third, the executable stimulus file name; fourth, the construct;d sensor list file name; fifth,

the output file name.

Directives Section from the file example.ach:

DirectivesSection
Runl.ist: ("Bmachine","UniBatch.out", "main.out","sengora", "outl")
{"Bmachine","UniBatch.out","main.out", "sensors", "out2")
EndRunList
EndDirectives

Two runs of the simulator are specified in this section. At preseﬁt the only possible variation
in these run-tuples is different names for the run output files. In this case the file out1 will contain
the output from the first run and the file out? will contain that of the second. In the future any
of the run components listed in the run-tuple, the simulator, the operating system, the stimulus,
the sensors and the output file may change from run to run. The corresponding sections of the
schema file will also change to allow more than one run coinponent, e.g., two operating systems, to

be specified.
Summary

The schema file contains a complete specification of a SoftLab software experiment running
under the IIE. Modifications to a schema file represent new experiments. These modified schemas,
however, make the differences in each experiment clear, and provide an easy means for the user to
specify a series of experiments in a controlled manner with small variations at each step. The next
chapter contains a description of the tool that interprets a schema file and prepares the components
of the experiment for execution. The Appendix contains the description of a valid schema file.

i4

4.4 Experiment Preparation

A schema file describes an experiment by specifying each of the major components of the
ITE runtime system and also by issuing directives of which the experiment manager will take note
during experiment execution. The program SchemaPrep (see SchemaPrep man page in Appendix C)
takes this schema file as input and prepares the experiment components for execution. In addition
to naming the schema file the user may also set command line switches. Setting a switch causes
SchemaPrep to process the associated section of the schema. If no switch is set the program processes
all sections of the schema. Sections of the schema that SchemaPrep ignores, due to switch settings,

must still contain the correct delimiting keywords. The experimenter invokes SchemaPrep as follows:

BchemaPrep [-dhimow] schema file
The switches have the following meanings:

-d Interpret the directives section

-h Interpret the hardware configuration section
-i Interpret the initialization section

-m Interpret the sensor section (for monitoring)
~o Interpret the operating system section

-w Interpret the stimulus section (the workload)

The user must also include the directory fusr/scftlab/bin in the environment variable PATH
string. See the Unix manual entry on ¢sh to find out how to do this.

The SchemaPrep program reports its progress on interpreting the schema fo both standard
output and the file SchemaPrep.log in the current directory. When the program encounters errors
in a schema file section it reports the difficulty and attempts to parse subsequent sections of the
schemna. The user may call SchemaPrep with the appropriate switches set to parse sections that
were incorrect on a previous execution. If the file SchemaPrep.log is present SchemaPrep appends
any new messages to the end of the file. This provides a complete account of the preparatory phase

of the experiment.

15

If the user first executes SchemaPrep in a directory containing only the schema file, the result
of a successful parse of the schema is the creation of a number of new sub-directories and files. For
example, if we started in a directory containing the following files;

example.sch senglist subcpu. dm submem.dm

and invoked SchemaPrep on the example described in Chapter 3, a successful parse of the schema
file would leave us with the following additional files

SchemaPrep.logmakefile sensliat subcpu.dm submem.dm

and subdirectories

.eXp.mgr:
.hweonfig:

.osconfig:

.stimulus:

each containing a makefile and other files.

Executing the makefile in the schema file directory will cause each of the subdirectory make-
files to execute in turn. If errors cause any of the makefiles to stop before making the associated
component, the user can correct the problem and then run SchemaPrep on the problem section. The
higher level makefile will remain, and execution of the makefile will continue with the problem
subdirectory. When the upper level makefile completes its execution it produces an executable file

exp.mgr in the schema file directory. This program executes the experiment as specified in the

schema. The appendix shows this process in more detail.
4.5 Experiment Execution

The user executes the experiment specified in the schema file by executing the program exp.mgr
{ see exp_mgr man page Appendix C) in the schema file home directory. The experiment will then
run until all of the requested runs complete. The results of the experiment are written to the files
named in the run-tuples in the associated schema. In addition to the results files, exp_mgr produces
a file containing a log of the experiment in the same directory. This file is named expmgr.log.
The log file contains information on the experiment specifications, the time the experiment was run

16

and any warning or error messages produced as a result of the execution. The logging mechanism
is not currently implemented. The user can obtain the same information from the other log file,
SchemaPrep.log, and from what is printed to standard output during the experiment run. The
results file contains the formatted output of the experiment with the information requested in the
sensor section of the schema. In the example execution {see Appendix B) two runs are carried out
with the names of the output files the only difference.

The files out1 and out2 contain the following information:

e the sensor id;

e the first time the sensor was reached, in simulation time units;
» the last time the sensor was reached, in simulation time units;
e the average time between sensor events;

» and the number of times the sensor was reached.

Any execution of an exp_mgr program derived from the same schema will produce the exact
same result and log files. The only obvious exception is the experiment time information in the log
file.

The user may modify a schema file after executing an experiment. SchemaPrep switches are set
to select the modified sections of the schema for processing. The SchemaPrep. log file will contain the
new experiment preparation log information in addition to the previous contents. The user should
delete this file before running SchemaPrep if she wants it to contain just the new information. The
new exp.mgr program and the files resulting from its execution will overwrite the previous files. A
user wishing to run more than one experiment using modified versions of the same schema file in the
same directory should copy each set of log and result files before the next experiment. A full example

of an experiment from the preparatory phase to completion is in Appendix B of this manual.
4.6 Error Handling

SchemaPrep and exp.mgr can produce three types of errors. The steps for the user to take
are evident from the initial message: she should consult the appropriate langnage manuals, SoftLab

manuals, or local experts for help.

17

Configuration Errors

These errors are the result of naming files in the schema that do not exist or do not have the
appropriate permissions. This includes naming non-existent SoftLab components. Configuration

errors produce clear messages that pinpoint the difficalty.

Syntaz Errors

These errors result from incorrect syntax in nser written experiment components such as sub-
stitute device modules or a stimulus program, and from syntactic errors in the schema file. Syntax
errors in the schema file may lead to additional error messages aséociated with subsequent schema
sections that are correct. The user should correct the schema file at the place where the first error

occurred and then run SchemaPrep again before attempting any other modifications.

Runtime Errors

These are the result of a variety of errors in the user written Modula-2 routines or C language

routines.

18

5. The Design

Thie chapter presents the overall design of the IIE introduced in Chapter 4. We include herein
materials on the design of the tools for specifying and managing an experiment, the modification
and incorporation of the main components presented in Chapter 3, and the design of the stimulus

and monitoring facilities. We assume the reader is familiar with the definitions and terminology

presented in the previous chapter.
5.1 Experiment Support

The IIE requires tools to support experiment specification and management, in addition to a
set of experiment components (e.g., hardware simulators). The framework for the design of these
support tools (including those for the contents of the schema file) derives from the work of Segall,
et al, at Carnegie Mellon University on the design of an IIE [17].

The experiment process seems to fall naturally into five main steps: 1) the specification of the
experiment; 2) the preparation and testing of the specified experiment components; 3} the construc-
tion of the experiment components; 4) the execution of the experiment; and 5) the presentation of

the experiment results. We now discuss each step in more detail.

o The first step involves analyzing the requirements of an experiment and then writing the ap-
propriate specification. The specification of the experiment, termed the ezperiment schema, is
written in the Express language.

o In the second step, component specifications are checked, and necessary preparation for com-
ponent constraction (e.g., moving files to a particular directory) takes place. The SchemaPrep
program carries out the duties for step two.

o During the third step, the actual construction of each component occurs. The UNIX make
utility provides the function for this step, including the conditional processing necessary to
avoid repeating the checking and preparation of all components when only one requires it.
Handling the experiment preparation phase in this way supports a batch oriented approach
to each stage of the experiment process, and is vital if fifty students will carry out the same
experiment over the period of a week or two.

¢ Managing an experiment requires experiment imitialization, execution and run-time control.
These tasks are well suited to an implementation with multiple processes, each with separate

19

duties. The incorporation of inter-process communication into the design iz beyond the scope
of this thesis and must be left for future work. For this reason, the design for the experiment
manager program exp_mgr should admit a straightforward uni-process implementation,

o The data collected during an experiment execution may require significant post~processing to be
comprehensible, and depend on a sophisticated data storage mechanism along with a powerful -
data processing tool. The design and implementation of such tools is beyond the scope of

this thesis. The analysis and presentation of data in this design is simple enough to require a
minimum of implementation effort, though still support real experiments.

5.2 Experiment Specification
Schema Design Considerations
The design of the schema was directed by three primary considerations, namely:
e that it support the specification of a wide range of O/S experiments;
e that it allow easy extension to encompass new experiment components; and

» that it be readable and self-explanatory.

The Schema Contents

The specification of an O/S experiment starts with the selection of the experiment components.
The operating system, hardware simulator, and stimulus are the primary elements and require
attention in the schema. The schema must also provide the means to direct the monitor to collect
the necessary data during an experiment run. Real experiments may consist of related sets of
runs; therefore, the schema should enable a user to specify multiple runs of an experiment, where
each run may contain different selected components. Particular components of an experiment may
include instantiation parameters, allowing, for example, the selection of the number of processors in
a multi-processor configuration or the per-process stack size limit in a multi-user operating system.

Separate sections in an experiment schema distiguish experiment configuration, data collection,
and management specifications. Breaking the schema into distinct sections provides easy extension;

we can add a new section without interfering with the contents of the others.

20

Instialization Section

Within this section we are able to set instantiation parameters. The design does not provide
more than the existence of this section at this time. Design decisions of greater detail should await .
additional component specifications. It is too difficult at this time to gauge the range of possible

instantiation directives.
Stimulus Section

The selection of a SoftLab stimulus library and a particular file that uses routines from the
library constitutes the specification of a give workload. The stimulus library designers can provide
ag extensive a set of individual routines as they see fit. It seems more appropriate to keep this
section simple and leave the workload complexity issues to stimulus writers. The design can easily
encompass modifications to allow the specification of more than one workload through minor changes

to the Express language and SchemaPrep.
Hardware Configuration Section

The SoftLab approach for O/S experiments includes the notion of a set of hardware simulators
from which the experimenter selects. Since there may exist more than one hierarchy description file
for a particular simulator, this section includes the selection of this file in addition to the particular
machine. A list of device module substitutions in this section allows the selection of 2 machine vari-
ant. This section along with possible instantiation parameter settings should provide the necessary

range of hardware selection.
Operating System Configuration Section

The content of this section follows from the structure and intended unse of the SoftLab family of
operating systems. We allow the selection of an operating system by name, followed by the selection
of a main module, since more than one may exist. Modula-2 programs contain both definition and
implementation modules; this calls for a section for each type of module substitution. Additional

selection specifications do not seem necessary.

21

Sensor Section

We include sensor files in the sensor list for experiments requiring the enabling of a common
subset of sensors. A simple extension will allow for the construction of more than one sensor list.
Future designs may also include the ability to enable and disable sensors while a run is in progress.
The design of such a feature is beyond the scope of this thesis, since it involves complex interactions

among the components during a run.
Directives Section

This section was the most difficult to design. The choice to compose a list of run-tuples spec-
ifying the experiment components was due in part to ease of implementation. This design does not
require any re-building of components or inter-process communication to provide different experi-
ment characteristics for each run. Minor changes in the design of the earlier sections of the schema
can allow for multiple instances of each component. The individual entries in each run-tuple will be
selections from pools of each component type. The consistency checking that one would like among

multiple runs with different components is not supported.

The Schema Language [Ezpress)

The Express language is a minor component in the overall IIE design. Its features support the
above specified schema contents, as well as a simple implementation. Designing a formal language for
software systems experiment design constitutes a dissertation, not a thesis component. The schema
design will certainly change, due to tool use and further SoftLab tool design; hence the language
will also change. This provides further motivation for expending 2 minimum of effort on the design
of Express.

The keyword approach makes for very simple parsing in the implementation, It also supports
the ease of extension that is useful in a prototype design and implementation. One flaw in the design

lies in its not supporting comments.

22

SchemaPrep

The SchemaPrep program reads the schema file and prepares for the construction of each of the
experiment components. The idea for a separate program to prepare for component construction
comes from Dr. Satyanarayanan’s hardware simulator construction tool [16]. The program processes
each section of the schema file separately. When an error occurs in one section of the schema the
program may continue, depending on the nature of the error, to process the remaining schema
sections, thereby isolating the parsing of as much of the schema as possible. Command line switches
explicitly direct the processing of only selected sections. The user avoids the repeated parsing of
correct sections by setting the correct switches.

The SchemaPrep program constructs hidden subdirectc.nries under the current directory in the
fashion of the Cambridge Modula-2 system [14]. Each subdirectory holds the files necessary for the
preparation and construction of one run-time component. The user may ignore the contents of these
directories. The sophisticated experimenter may make modifications in the directories contents,
although this invalidates most of the consistency checking the lIE tools currently provide. We felt
that the user should have easy access to the component files, during early use of this tool, for error
checking and modification suggestions.

The execution of SchemaPrep causes the files makefile and SchemaPrep.log to appear in
the current directory, The makefile supports the actual component construction stage of the
experiment. The SchemaPrep.log file contains a log of the SchemaPrep program execution. This
log provides useful documentation and supports a batch oriented execution. The contents of the

sub-directories follow in the next sections.
The .ezp_mgr Directory

The exp_mgr program carries cut monitoring directives. The file sensor in the .exp_mgr subdi-
rectory contains the enabled sensor list. A change in the design will allow multiple lists in the one file
or multiple sensor list files with appropriate names. The file main.c contains the schema run-tuple
information and permits an easy implementation of the multiple runs per-experiment feature. The
file makefile supports the UNIX make utility used in the next stage of component construction.

23

The .hweonfig Directory

After running SchemaPrep this directory contains a copy of the selected hierarchy description
file, a .c file related to the hierarchy description file, symbolic links to each of the device module
files for the selected simnlator, and a makefile to construct the simulator. The hierarchy descriptor
file is a copy since device module substitutions require changes in its contents. The use of symbolic
links for the device module files supports efficient use of the file system. The makefile and the .c
file are the result of a componexnt in the hardware simulator tool set., Their creation is not explicit

in the design.
The .osconfig Directory

Symbolic links associate all of the components of a particular operating system with the .os~
config directory, with the exception of the main module. We use a copy of the main module to
keep the design parallel with that for the simulator. The final specification for the contents of the
main module was not known at the time of this design; it may permit, or perhaps require, useful
modifications when making substitutions for the other modules. The parallel design of the compo-
nent construction phase for both the simulator and operating system will aid in understanding and
ease of implementation. A Modula-2 utility program requires the presence of the m2path file and

constructs the makefile,

The .stimulus Directory

A copy of the user main module file resides here, as well as the supporting m2path file and
makefile., A set of subdirectories under the .stimulus directory could easily support mulsiple

workloads.
5.3 Experiment Component Construction

A successful execution of the program SchemaPrep places all of the necessary files, or links fo
them, in the appropriate sub-directory for each tool component. In addition, a makefile is in place
in the experiment directory and in each sub-directory. The invocation of the main makefile in

24

the experiment directory with the UNIX make utility program will result in the invocation of the
makefiles in each of the sub-directories.

The top-level makefile provides the main control facility for component construction. Execut-
ing make with no arguments causes make to execute in each of the sub-directories. A file Make.log
collects the output of the make programs and provides documentation on the component construc-
tion process. This file also supports batch oriented component construction. The user can invoke
the make program and put it in the background to execute. At some later point, she can examine
the contents of the Make.log file to ascertain which components were successfully constructed and
which components contain errors that prevent their construction,

The execution of the make utility in a sub-directory will cause the re-construction of the associ-
ated component only if a change occurs in a depending file. This conditional execution is a feature
of the make utility and its associated makefile. There is no need to provide any additional facility
to support efficient component construction. Although the casual user should not tamper with the
makefiles, these files do provide additional control to the sophisticated user to make modifications
to experiment components that are not supported in the current implementation,

The exp_mgr is t';he only component that does not reside in its sub-directory. The top level
makefile causes it to move to the experiment directory since its invocation actually executes an

experiment. The other components are all manipulated by this program.
5.4 Experiment Execution

The experiment execution faciliby was the mosté difficuli to design. The ideal facility would
provide control over all parts of the simulation and all simulation components. To implement this
requires an extensively instrumented hardware simulator, operating syséem, stimulus, and monitor.
The design of such components and the means of their manipulation is far beyond the scope of this
thesis. The experiment execution facility was therefore restricted to have no control at all during an
individual run of an experiment. This decision allowed the current SoftLab hardware simulator to
be used with only minor modifications and permitted an execution to take place without requiring

inter-process communication.

23

After this decision, it was necessary to decide what kind of inter-run control should be provided.

Section 5.2.8 presents the main reasons for the chosen approach,
Ezp_mgr

The exp_mgr program executes an experiment. It first creates symbolic links in the experiment
directory to the stimulus and operating system M-code files. These links can change between each
run if the corresponding run-tuples in the schema file contain different operating system or stimulus
selections. These links, along with the other configuration information contained in the current
associated run-tuple, provide all of the information that is necessary for the start of the current
simulation. The simulation now runs to completion. The file sens.out contains the record of
the sensor invocations. The contents of this file are now interpreted by the exp_mgr program to
produce the output for the current experimen$ run. The output is written to a file named in the
associated run-tuple for the current run. The use of the file sens. out provides great flexibility for

the implementation of the data analysiz and presentation phase of the experiment.

5.5 The Primary SoftLab Components

The current SoftLab operating system and hardware simulator required minor modification to
permit their integration in the ITE. For the most part, these modifications were driven by the selected

embedded sensor design,
The Operating System

The SoftLab family of operating systems was designed with the SoftLab hardware simulator
tool in mind. The design of the other run-time components, e.g., the monitor, was not complete at
the time the operating systems were designed. This leads to minor modifications to the two current
operating systems, Unibatch and Multibatch. Sensors, short Modula-2 code fragments, installed in
the source code for the operating systems, will support the appropriate collection of data. Using
code fragments provides easy modification or addition of sensors to support particular experiments.
A standard set of sensors, with unique identifiers, for the operating systems has not been determined
at this point.

26

The Hardware Stmulator

The hardware simutlator contained an internal monitor mechanism when received from Dr.
Satyanarayanan. The modification of this mechanism should drive the design of the sensor facility
in the simulator. The cwrrent design, for reasons of time, ignored this mecharism and relied on the

addition of C code fragments for sensors. This provides the same ease of modification and addition

as in the operating systems.

5.6 Additional Component Design

The Workload

The design of a full workload facility encompassing a family of operating systems and related
hardware simulators i1z beyond the scope of this thesis. The properties of each of the run-time
compouents, as well as the current SoftLab M-code interpreters in the hardware simulators, would
have to be carefully studied to ensure that particular M-code stimulus routines had the desired
characteristics. The current design concentrated on the stimulus selection mechanism rather than
on the content of the stimulus routines. For this reason, the design specified Modula-2 routines as
the building blocks for the stimulus libraries and supported the compilation of a Modula-2 workload.
The main components of the schema interface to the stimulus facility were designed to support a
smooth transition to M-code library routines. The user will still provide the control skeleton for the

workload and select library routines with particular characteristics.

The Moniter

During the design of the monitor we encountered many of the same issues as we did during the
design of the experiment manager. The monitor will collect information from experiment components
implemented in different languages. Ideally, different kinds of data, i.e., data from different sensors,
should be accessible at different times during the same experiment rﬁn. A valuable feature of a
monitor in this experiment environment would support gelection of data from particular sensors
based on the current data being received. These issues led to design difficulties that could not be
easily overcome within the constraints of the current thesis. The current design permits the selection

27

of different sensors on a per-run basis. A design extension involving extensions to the schema and
the monitor should be possible to allow selection of different sensors during the course of the same
run. An extension to support sensor selection based on current data does not seem possible with
the present approach. An overall design that supported a multiple process design with infer-process
communication would be necessary to efficiently provide this extension. Section 6.6 in Chapter 6

looks at the implementation issues that affected the design of this component.

5.7 Design Evaluation

The design supports a workable implementation and provides an environment in which real
experiments may be carried ouf, thereby meeting the primary goals set forth in the associated thesis
proposal. A more ambitious design that addresses many of the problems pointed out in this chapter
was originally intended. However, the necessity of a more focused design soon became apparent.
Therefore, the overall mechanism of the HIE became the primary focus of the thesis,

Overall the design meets the requirements set out in Chapter 2. An experimenter has the tools
at hand to

s specify an experiment: SchemaPrep; Express Language.
¢ construct an executable simulator: O/S family; Hardware Simulator; Workload Libraries.
e perform and evaluate an experiment: Monitor; exp_mgr.
In addition we used the UNIX makefile utility and options to SchemaPrep to easily modify and

rerun existing experiments.

Design Strengtha

The modular structure of the IIE components is the greatest strength, since it supports compo-
nent extension and enhancement, Progress in extending or enhancing the design would be very slow
if minor changes led to modifications in each of the components. We expect the design to grow and
change as new SoftLab tools become available. Experiments that require multi-processor simulators
and process oriented operating systems are a natural outgrowth of the modular design.

A second strength of the design also follows from the modularity. The modular design supports
easy debugging and quick turn around time when synthesizing a particular simulator. If the user

28

had to remake each of the IIE components each time she encountered errors in a component or
component interface, very little experimentation could take place. For the student, the task would
be to get the simulator running. The evaluation of the experiment and the lessons it might hold

would become secondary.
Design Weaknesses

The inability of the experiment manager to influence the run-time components during a run
is the major weakness in the design. The ability to effect changes in the simulator as a result of
data received by the monitor is desirable. Experiments related to run-time tuning of component
function are then possible. Experiment variations on a per-run basis can be too coarse for complex
experiments involving many parameters. We feel that this weakness will become more problematic
as the components grow in sophistication.

Another weakness that contributes to the problems with the exp mgr mentioned above stems
from allowing major IIE components to be specified in different high-level langnages. On a superfi-
cial level portability is clearly an issue. On a more fundamental level interprocess communication is
very difficult when the processes involved are written in different languages. An inter-process com-

munication facility of some type will surely be necessary to provide intra-run modification supports.

29

6. The Implementation

The design of the IIE focuses on the experimental specification and execution process rather
than on the function of the particular components of the experiment. Restricting the focus in this
way allows for the completion of the design within the framework of this thesis. A similar restriction
applies to this first implementation of the IIE. In this chapter, we present the major implementation
decisions, as well as implementation details for each of the experiment components. Code fragments
are often appropriate as part of the detailed exposition of the implementation. Those fragments
included in subsequent sections of this chapter do not contain all of the comments and error handling

statements that are in the actual implementation. We will evaluate the current implementation in

the last section of this chapter.
6.1 Major Implementation Considerations

The complétion of the SoftLab M-code compiler, the UniBaich operating system, and the Bma-
chine will produce ‘the first fully working implementation of the SoftLab IIE. The first implemen-
tation of the SoftLab IIE contains sufficient function to be useful to both researchers and teachers.
Extensive use by these two groups during the IIE development will lead to early detection of design
flaws and critical implementation requirements. We felt that it was more important to implement
a prototype IIE than to refine the IIE design, or extend its domain, A partial implementation is
presently operational and was the basis of the experiment example in Appendix B of the IIE User
Manual presented in Chapter 4 of this paper.

The UNIX program design philosophy calls for making use of existing tools to design new ones.
In ths spirit, we incorporated numerous UNIX utilities, ¢.g., sed and make, into small C programs
for quick implementation of the IIE. In addition to speed, this approach provides a very flexible -
framework for future modification. Future SoftLab designers and implementers can use the present
implementation as both the model for a production level implementation and also as a base for

30

IIE design modifications and extension evaluation. The modular character of the implementation
supports quick and easy incorporation of different implementations of particular functions and/or
components,

The potential use of the IIE by whole classes of students requires that it work efficiently in
both space and time. Symbolic links, a feature of the UNIX BSD4.2 file system, provide a simple
mechanism to share files and avoid unnecessary copying. The use of these links, along with minimal
usge of intermediate support files, keeps disk resource use to a minimum. Design decisions regarding
the splij:ting of the experiment process into preparation, integration and execution phases, as well as
the selective nature of the SchemaPrep and make programs, lead to a time efficient implementation.
The three primary support tools may all be run in the background, and hence may be scheduled
to run during nighttime hours. Once an experiment begins execution, the overhead of the exp.mgr
program is negligible in comparison to that of the operating system or hardware simulator.

The judicious use of symbolic links helps prevent the occurrence of potential security and
inconsistency problems. Access to files via symbolic links falls under the same access permission
restrictions as the original file instance. The possibilities of accidently modifying a file required by
others or picking up the wrong version of a file are reduced substantially.

This implementation is flexible, easily modifiable, quite efficient in use of resources, and rea-
sonably secure. These criteria were applied to select the proper path to take at each phase in the

implementation process.
8.2 Experiment Specification

"The program SchemaPrep reads the schema file a string at a time, where a string is any sequence
of characters bounded by white space (see Appendix A of the SoftLab IIE User Manual for a
description of white space). Express language keywords provide the structure necessary for parsing
the input.

The keystruct structure contains; the bounding keywords for each main section in the schema,
a pointer to the function responsible for processing that section, the associated command line switch,
and a descriptive string for messages. An array of keystruct structures, keylist, is defined in the

3%

header file schemaprep.h.

struct keystruct {

char *keyword; /* Section Start Keyword =/

char *delimit: /* Section End Keyword */

int (*keyfunc)(); /* Associated Procedure x/

char sw_char; /* Associated Command Line Switch */
char *desc; /* Descriptive String =/

} keylist[] = {

I¥

"BeginSchema", NULL, BeginProc, NULL, NULL,

"InitSection", "EndInit", InitProc, 'i', "initial",
"StimulusSection”, "EndStimulusg", StimProc, ’w’, "stimulus",
"HWConfigBection", "EndHW", HWCProc, 'h', "hardware",
"0SConfigSection", "End0S", 0SCProc, 'o', "operating system",
"SensorSection", "EndSensor", SensProc, 'm’, "sensor®,
"DirectivesSection", "EndDirectives", DirProc, ’d’, "directives",
"EndSchema", NULL, EndProc, NULL, NULL

The entry for the hardware section of the schema contains the beginning keyword HWConfigSection

and the ending keyword EndHw. The procedure HWCProc processes the body of the hardware

configuration section.

HYCProc()

{

}

/* Create the hidden directory for the hardware component */
mkdir(".hwconfig", 0755);

fprintf (stdout,"In HWCProc \n");

fprintf (1£p,"In HWCProc \n");

/* Process the body of the section */
hwcprep{sfp,1fp);

Actions that are part of the section processing but do not rely on the content of the section are

performed first. The creation of the hidden directory is the omly such action for the hardware

component. The procedure hweprep(}, which processes the body of the section, has as parameters

pointers to the schema file, sfp, and the log file, 1fp. The procedures for the other sections of the

schema are similar to HWCProc and hwcprep.

The UNIX system routine supplies the actions required for the main body processing for each

schema section. The following code fragment is part of hweprep() from the file hwcprep.c.

strepy(command, "filesubs ");
strcat (command,buffer);
strcat (command,® ");

32

strcat (command,buffer3);
strcat (command," *);
strcat (command, " .hwconfig");
strcat (command,®/");
gtrcat (command,hdfile);
systen(command) ;

Invoking system{) executes the program filesubs that modifies the hierarchy description file

in the hidden directory .hwconfig. The modification consists of substituting one device module

name for another as specified in the schema. The program filesubs is a shell script that makes use

of another UNIX utility, sed, to actually make the substitution. The body of filesubs follows.

Substitute string $2 for string $1 in file $3.
sed -e "/$1/87$17827" $3 >!

cp temp $3
/bin/rm temp

temp

The procedures, programs, and code fragments listed above illustrate the rapid prototyping

approach taken in implementing the SchemaPrep tool, based on existing UNIX utilities.

6.3 Experiment Component Construction

Along with the related makefiles, the UNIX make utility program supports the implementation

for the component construction phase of the IIE. The schema directory level makefile actually

invokes each component makefile via a shell script. The scripts redirect the output of the component

make invocations to the file Make.log in the schema directory. The contents of the main makefile

and the shell script that invoke make in the hardware hidden directory follow.

Main makefile

all:
touch Make.log # Create the log
makehw.sh # Invoke make in
makeos.sh # Invoke make in
makestim.sh # Invoke make in
makeexpmgr.sh # Invoke make in
clean;
/bin/Im -f -r .exp.mgr
/bin/rm -f -r .hwconfig
/bin/rm -f -r .esconfig
/bin/rm -f -r .stimulus
/bin/rm -f Make.log
/bin/rm -f 08.mcd Stimulus.mcd
/bin/rm -f sens.out sim.log
/bin/rm -f exp_mgr

33

file

.hweconfig
.osconfig
.stimulus

.eXp_mgr

Shell Seript makehw.sh

cd .hwconfig; make "HOME = /usr/softlab" >>& ../Make.log

6.4 Experiment Execution
Main Program Module

The experiment manager directives section of the schema contains part of the entry procedure
call to the supporting library routines. The run-tuples in the DirectiveSection section of the
schema are the actual parameter lists to a procedure, The S8chemaPrep program concatenates
the string DoRun with each run-tuple, and writes the resulting string to the file main.c in the
experiment manager hidden directory . exp.mgr. The following is an example of the contents of the

main.c file following an execution of SchemaPrep.

main{)

{

DoRun("Bmachine”,"UniBatch.out","main.out”, "sensors”, "outi");
DoRun("Bmachine", "UniBatch.out","main.out”, "sensora", "out2");

}

Running make in the .exp mgr directory causes the compiling of the file main.c and the linking
with the experiment manager library to produce the executable file , exp.mgr. The makefile below
contains all that is necessary to produce .exp.mgr in the schema directory.

LIB = /unc/drm/s1/1ib/libexp mgr.a

install: main.o ${LIB)

cc main.o -o expmgr $(LIB)
nv exp.mgr ..

Library Routines

The.library entry routine, DoRun, contains three main sections, accomplishing simulation prepa-
ration, simulator invocation, and simulation output processing.

e The preparation section links the files containing the M-code for the operating system and the
stimulus to files in the schema directory. Symbolic links to files in the schema directory hide
the hidden directory structure from the simulator so that changes in the directory structure
will not cause modifications in the simulator.

strcpy(buffer, ".osconfig/");
strcat(buffer, oa}:
symlink{buffer, "0S.mcd")};

34

strcpy(buffer, ".stimnlus/");

atrcat(buffer, stim);

symlink(buffer, "Stimulus.mcd");
The main memory device module in the simulator expects to find 08.med and Stimulus.med in
the current directory. The schema directory must be the current directory when the simulator

execukes,

¢ The experiment manager forks off a process to do the simulation. The experiment manager
then waits until the process is complete before attempting to process the output.

pid = fork();
if (pid == 0) {

/* in child */

execl{simbuf, simbuf, "-4%, "100", 0);
}
else {

if (wait(Q) != pid)

elze {

Processutput(out, sensbuf);
}

}

The system utility execl overlays the current text segment in the newly forked process with
the executable code in the process indicated by the contents of simbuf. The string in simbuf
contains the full path to the executable hardware simulator in the hidden directory .hwconfig.

* The procedure ProceseButput reads in the sensor information and prints out a processed sensor
report. The active sensor list is read from the sensor file in the .exp.mgr directory.

for (i=0; i<MAX_SENSORS; i++)
arr[i].id = -1;

while (fscanf(sfp, "}d". 4mewid) != EOF) {

if (mewid >= MAX_SENSORS) {
continue;
}

arr[newid] .id = newid;
arrfnewid] .first = 0.0;
arr[newidl.last = 0.0;
axrr[nevwid] .avg = 0.0;
arr[newid] .count = 0;
} /* end while */

Each arr array entry contains a structure for the information collected from one sensor. The
id field of the structure distinguishes between sensors selected in the active sensor file, pointed
to by sfp, and those not selected, i.e., those with an id set to negative one.

while (fscanf(ofp, "%d,%f", &inst, &stime) != EOF) {

35

if (inst >= MAX_SENSORS) {
continue;
}

if (arr[inst].count == 0)
arr[inst] .first = stime;

arr[inst].count += 1;

arr[inst] .last = stime;

arr{inst] .avg = (stime - arr[inst].firat) / arr[inst].count;

} /% end while */
The sensor cutput of the simulation is in the file pointed to by ofp. Each valid sensor record, i.e.,
the value of the sensor identifier is less than MAX_SENSORS, causes an update to the appropriate
sensor structure. The active sensor list has no bearing on the processing of sensor information
in the sensor output file. The output report code prints the sensor information only for those
structures with an id field not equal to negative one. Processing all sensor information supports

different implementations where information from the sensors loads directly into a database.
The resultant queries to collect output report information would result from the contents of the

active sensor list.
6.5 Primary SoftLab Components
The Hardware Simulator

The hardware section of the schema specifies a base machine selected from the SoftLab ma-
chine collection, and possible device module substitutions. The associated implementation task is to
build an executable simulator from the proper components. Creating symbolic links in the hidden
directory .hweconfig to the correct device module and hierarchy description files provides all of the
components. The CPU module must contain the proper interpreter for the specified workload and
operating system. As the user is responsible for specifying the correct components in the schema,
the implementation contains no consistency checking mechanism. The main memory modules must
contain the correct memory configuration and also the correct paths to the workload and oper-
ating system M-code files. Section 6.4 presents the solution to the main memory and M-code file

consistency problem. Section 6.6 discusses the current handling of sensors in the hardware simulator.

The Operating Systems

There is currently no facility to insert sensors into the operating system. We felt that such
a decision could better be made with a Modula-2 to M-code compiler in hand. To be amenable
to the IIE implementation, the operating system does not require any additional modification., As

36

mentioned in section 6.8, the user is responsible for specifying an operating system that is compatible

with the other selected run-time components.
6.8 Additional Tool Implementation
Workload Library

The workload library must consist of M-code routines in order to behave in accordance with
performance requirements, A library of Modula-2 routines would have performance characteristics
that are dependent on the current Modula-2 to M-code compiler. It is probable that desired workload
characteristics would not be attainable given a particular compiler. To generate a full ibrary in
M-code that contains routines covering the range of necessary performance characteristics would
comprise a Master’s Thesis in itself. The current implementation contains Modula-2 routines simply
to demonstrate that the mechanism works. An additional file contains M-code instructions to exercise

the sensor handling function of the M-code interpreter in the CPU module.
The Monitor Facilily

The current implementation prints time-stamped information to a file for each sensor that the
simulation reaches. The print statements are built into the simulator code. An M-code instruction
will be modified and used for the sensor entries in the workload and in the compiled operating
system. The SoftLab operating systems will require the incorporation of the necessary sensors, and

the Modula-2 compiler must also change so as to recognize a Modula-2 sensor instruction.
6.7 Implementation Evaluation
Implementation Strengths

The flexibility of the implementation is its main strength. The implementer may easily sub-
stitute shell scripts, C code, or UNIX utilities for existing components. A flexible implementation
is very important since we expect the implementation to change as new SoftLab tools come into
being and the IIE takes on a wider range of uses. The modular structure of all the IIE components
supports the ease of modification. The rapid prototyping approach that we took also led to a less
rigid design since it resulted in a large number of external procedure calls.

37

The current implementation also supports easy extension, As more and more users experiment
with the system, future implementers can promote more segments of the implementation to well-
tuned C code. The overhead associated with calling the system utility and invoking shell scripts

will then disappear.
Implementation Weaknesses

The component tool modification mechanisms are not sufficiently general. Various mechanisms
are neceSSaI.ry for each component, and keeping modifications consistent is not easy. For example,
sensors having the same identifier may be added to different components. No mechanism is in place
that can check the current sensor set for conflicts, This in not a major weakness but may cause
unnecessary confusion,

There 1s also no consistency checking mechanism to ensure that the workload, operating system,
simnulator, and sensors actually correspond to each other. This particular weakness will become
more important as users start running experiments that entail a large number of different runs with
differing components,

The current SoftLab Modula-2 to M-code compiler is not yet in place. A full test of the
implementation is not possible without a working compiler, so that an operating system and workload
can actually run on the simulator. The first full test may bring to light further inadequacies in the

implementation that are currently hidden.

38

7. Conclusion and Future Work

We set out to design and implement a set of tools that comprises an Integrated Instrumentation
Environment. We have successfully completed this task. Chapter 5 presents the design of the IIE
and Chapter 6 presents the implementation. Chapter 4 illustrates the possible uses of the IIE in
the sections describing the contents of the schema file. The various run-time systems, together with
the possible monitor and experiment manager directives, that may be selected in a schema support
a wide range of software and hardware configuration experiments. We developed EXPRESS as the
experiment schema specification language to assist the user in experiment design.

The prototype of the IIE meets the functioral requirements set forth in Chapter 2, as evidenced
in the sample experiment run in Appendix B. Even though the M-code for the operating system
and the stimulus were not available, a simple substitution of another M-code file allowed the sample
experiment to complete. The ease of the substitution itself illustrates the flexibility of the implemen-
tation. Besides being useful in its own right the current IIE is a valuable tool for evaluation of future
ITE’s for SoftLab. The modular and flexible ITE permits modifications to design or implementation
elements to test new ideas. The final sections of chapters 5 and 6 evaluate the implementation in

more detail.
7.1 Future Work

We designed this IIE with operating systems experiments as the primary focus. However, we
had other software system experiments in mind — most notably those related to compiler design.
A valuable extension would tie the code generation phase of a compiler to the specification of the
M-code interpreter on the target simulator. A new section in the schema containing interpreter
directives, together with a modified SchemaPrep program, would then effect the appropriate modi-
fications to the interpreter in the CPU device module of the selected hardware simulator.

39

Two functions currently relegated to the exp_mgr program are to process and present experiment
data to the user. A new, more powerful program, taking over these functions, would take data and
processing directives from the exp_mgr and provide sophisticated processing and result presentation.
The schema would contain processing directives in the sensor directives section, No other component
of the IIE would need to be changed.

Selected operating systems, simulators, and workloads must correspond if they are to work
correctly together. The IIE user would like to know that the current set of sensors is consistent,
The addition of consistency checking to the implementation could prevent many potential problems
from occuring. We expect additional consistency problems to arise as the IIE grows to comprise
more components,

A multi-process implementation of the exp_mgr program with inter-process communication
support would provide access to the run-time components during an experiment run. A wide range
of design decisions related to experiment control would arige if such an implementation existed.

The above modifications would extend the utility and the function of the IIE. However, none
of these modifications are necessary to make the current IIE useful or efficient. The SoftLab IIE is

a powerful and usable tool in its current form for both educational and research applications.

40

References
1. Ben-Ari, M. Principles of Concurrent Programming. Prentice-Hall, Inc., Englewood Cliffs, N.J.
(1982).
2. Comer, D, Operating System Design, the Xinu Approach. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey (1984).
8. Corbin, K., Corwin, W., Goodman, R., Hyde, E., Kramer, K., Werme, E, Wulf, W. A Software

Laboratory, Preliminary Report. 71-104, Computer Science Department, Carnegie-Mellon Uni-

versity (August 1971).

4. Corwin, W., Wulf, W. SL230—A Software Laboratory, Intermediate Report. Computer

Science Department, Carnegie-Mellon University (May 1972).

5. Dolotta, T.A., Haight, R.C., Mashey, J.R. Unix Time-Sharing System: The Programmer’s

Workbench. Bell System Technical Journal 57, 6 (1978}, 2177-2200.

6. Feiler, P.H., Medina-Mora R. An Incremental Programming Environment. IEEE Transactions

on Software Engineering 7.5E-7, 5 (Sept. 1981}, 472.

7. Tisher, F. A. A Family of Operating Systems in a Software Laboratory. Master’s Thesis,

Computer Science Department, University of North Carolina at Chapel Hill {April 1986).

8. Goodwin, J.W. Why Programming Environments Need Dynamic Data Types. IEEE Transactions

on Software Engineering 7.5E-7, 5 {Sept. 1981}, 451.
9. Gutknecht, J. Tutorial on Modula-2. Byte (August 1984), 157-176.

10. Halstead, M.H. A Laboratory Manual for Compiler and Operating System Implementation,

American Elsevier, New York, NY (1974).

11. Heindel, L.E., Roberto, J.J. LANG-PAK-An Inferactive Language Design System, vol. 13.

American Elsevier Pub. Co., New York, N.Y. (1975).

12. Holt, R.C., Graham, G.S., Lazowska, E.D., Scott, M.A. Struciured Concurrent Programming
with Operating System Applications. Addison-Wesley Pub. Co., Reading, M.A. (1978).

41

13. Kernighan, B.W., Ritchie, D.M. The C Programming Language. Prentice-Hall, Englewood

Cliffs, N.J. (1978).

14. Cambridge University Computer LaboratoryCambridge Modula-2 Manual Pages. Cam-

bridge University, Cambridge, England {1985).
15. Ohran, R. Lilith and Modula-2. Byte 9, 8 (August 1984), 181-192.

16. Satyanarayanan, M. A Modularized Architectural Simulator. (SoftLab Internal Working
Document No. 2), Computer Science Department, University of North Carolina at Chapel Hill

(April 1085).

17. Segall, Z., Singh, A., Snodgrass, R., Jones, A. J., Siewiorek, D. P. An Integrated Instrumentation

Environment for Multiprocessors. IEEE Transactions on Computers C-82 (January 1983), 4-14.

18. Shannon, K. idle Users Manual, (Version 2.0). (SoftLab Document No. 8), Computer

Science Department, University of North Carolina at Chapel Hill (December 1985).

19. Shaw, A. Operating Systems (The Series in Automatic Computation). Prentice-Hall, Inc.,

Englewood Cliffs, N.J. {1974}.

20. Stroustrup, B. A Set of C Clagses for Co-Routine Style Programming. Computing

Science Technical Report No. 90, Bell Laboratories (November 1980).

21, Stroustrup, B. Classes: An Abstract Data Type Facility for the C Language. Com-

puting Science Technical Report No. 84, Bell Laboratories (August 1981},

22. Wirth, N. History and Goals of Modula-2. Byte (August 1984}, 145-152.

42

Appendix A

Express Language Syntax

This appendix provides the syntax for the Express language, a description of valid file contents

for required files and valid file names. Terminals are in bold and italics. The terminals in italics are

defined informally at the end of the listing, e.g., sist2mlib. Those in bold are reserved keywords in

the language, e.g., BeginSchema. The remaining strings are non-terminals, e.g., stimlib.

schemalfile

initsect
stimsect
hwsect
ossect
sensect
dirsect
stimlib
stimfile
hw

kwhd
hwdmsubs
08

osmain
osdefsubs
osimpsubs
senslist
runlist

dmsub

BeginSchema initsect stimsect hwsect ossect sensect
dirsect EndSchema

InitSection EndInit

StimulusSection stimlib stimfile EndStimulus

HW ConfigSection hw hwhd hwdmsubs hwmodsubs EndHW
OSConfigSection os osmain osdefsubs osimpsubz EndOS
SensorSection senslist EndSensor

DirectivesSection runlist EndDirectives

Library: slstimlib

File: userfile

Machine: simachine

HD: slmachinehd

DMSubs: dmsub* EndSubs

OS: slos

Main: slosmain

DefSubs: osdefsub* EndDefSubs

ImpSubs: osimpsub* EndImpSubs

SensorList sensentry* EndSensorList

RunList runentry* End RunList

devicemodule userfile

43

oadefsub n= definttionfile userfile

osimpsub = smpfile uwserfile
sensentry = slist | sfile
runentry n= (“simachine™ ,“slosmain® ,“sensin® ,“userfile”)
slist u= number®
Terminals:
slmachine The name of one of the SoftLab simulators.
simachinehd The name of a hierarchy description file for the selected simulator.
devicemodule The name of a device module for the selected simulator.
slos The name of a SoftLab operating systems.
slosmain The name of a main module for the selected operating system.
definitionfile The na.rﬁe of a definition module for the selected operating system.
impfile The name of an implementation module for the selected operating system.
sfile The name of a file containing an skist.
slstimlih The name of one of the ScftLab stimulus libraries,
userfile The name of a user supplied file.
number A number is an unsigned integer.

White space consists of blanks, tabs and newlines. The name of a file can be an arbitrary
path in the file system and is not to be quoted. Relative path names are relative to the directory

containing the schema file. Names, not specifically file names, are identifiers of SoftLab components.

44

Appendix B

The Design and Execution of a Sample Experiment

The following example experiment contains two separate runs that differ only in the names of

the output files that they produce. In this typescript, the following steps are performed:

o the current contents of the schema file directory are listed
e the contents of file senslist is printed

e the contents of the schema file, example.sch, is printed

» the program SchemaPrep is executed

+ the new contents of the schema file directory are listed

e make is executed

o the new contents of the schema file directory are listed

e the exp mgr is executed

e the final contents of the directory are listed

» the contents of the two experiment output files are listed

In this script, text typed by the user is bold italics.
% s -a

senslist subcpu.dm submem, dm example.sch
% cat senslist

12

24

% eat ezample.ach

BeginSchema

InjitSection
EndInit

StimulusSection
Library: lowref
File: /unc3/unc/drm/sl/src/Stimulus/main.mod
EndStimulue

BWConfigSection
Machine: Bmachine
HD: Bmachine.hd
DMSubse:

45

Bmainmem.dm submem,dm
Bepuint.dm subcpu.dm
EndSubs
EndHW

08ConfigSection
0S: unibatch
Main: UniBatch.mod
DefSubs:
Loader.def /usr/softlab/src/08/unibatch/Loader.def
EndDefSubs
ImpSuba:
Loader.mod /uer/softlab/src¢/08/unibatch/Loader.mod
EndImpSubs
End0s

SensorSection
Sensorlist: 158
-f senslist
45
EndSensorList
EndSensor

DirectivesSection
RunList: ("Bmachine","UniBatch.out”,"main.cut","sensors","outi")
{"Bmachine","UniBatch.out","main.out","sensors", "out2")
EndRunList
EndDirectives

EndSchena
% SehemalPrep example.sch

In BeginProc
In InitProc
In S5timProc
Using Stimulus Library "/unc3/unc/drm/sl/src/Stimulus/lowref"
Using Stimulus File "/unc3/unc/drm/sl/src/Stimulus/main.mod"
Ne match.
In HWCProc
Using Machine "/unc3/unc/drm/sl/src/machine/Bmachine"
Using Hierarchy Description File "Bmachine.hd"
Substitubting Device Module "submem.dm"
for Device Module "Bmainmem.dm"
Substituting Device Module "subcpu.dm"
for Device Module "Bepuint.dm"
In 08CProc '
Using Operating System “/unc3/unc/drm/sl/src/0S/unibatch"

Using Main Module File "/unc3/unc/drm/sl/src/DS/unibatch/UniBatch.mod"
Substituting Definition Module "/usr/softlab/src/0S/unibatch/Loader.def"

for Definition Module "Loader.def"
Substituting Implementation Modnle
W fusr/scftlab/src/0S/unibatch/Loader.mod"
for Implementation Module "Loader.mod"
In SensProc

46

Using Sensor "1"

Using Sensoxr "5"

Using Sensor "8"

Using Sensor File "senslist"

Uging Sensor "12¢

Using Sensor "24"

Using Sensor "45"
In DirProc
Adding run tuple ("Bmachine","UniBatch.out","main.out","sensors","outi")
Adding run tuple {("Bmachine" ,"UniBatch.out","main.out", *sensors", "out2")
In EndProc

% ls -a

total 50

.exp_nmgr .hwconfig .osconfig .stimulus
SchemaPrep.log example.sch makefile genslist
subcpu.dm gubmem. dm

% make

Making hardware simulator.

Making operating system.

Making stimulus.

Making experiment manager.

Experiment components successfully created.
Executable file is "exp._mgr".

% ls -a

.exXp_mgr .hwconfig .osconfig .8timulus
Make.log SchemaPrep.log example.sch eXp.mgr
makefile senslist subcpu, dm submem.dm
% exp_mgr

Begining experiment

Begining experiment run number 1

Linking "0S5.mcd" to ".osconfig/Unibatch.out"
Linking "Stimulus.mcd" to ".stimulus/main.out"
Invoking simulator ".hwconfig/Bmachine.gim"
Reading from enabled sensor file ".exp.mgr/sensors"
Reading from simulation sensor file "sens.out"
Processing gensor statistics

Writing output file "outi"

Experiment run number 1 completed

Begining experiment run number 2

Linking "0S.mcd" to ".osconfig/Unibatch.out"
Linking "Stimulus.mcd" to ".stimulus/main.out"
Invoking simulator ".hwconfig/Bmachine.sim"
Reading from enabled sensor file ".exp.mgr/sensors"
Reading from simulation sensor file "sens.out®
Writing output file "out2"

Experiment run number 2 completed

Ending experiment

% Is -a

.eXp_mgr .hwconfig .osconfig .stimulus
Make.log 08.mcd SchemaPrep.Log Stimulus.mcd
example.sch exXp_mgr makefile outl

out2 sens.oub senslist subcpu.dm

47

submem.dm

% eat outi
Sensor First Laat Average Count
1 340.00 340.00 - 1
5 40.00 320.00 83.33 4
8 0.00 0.00 - 0
12 100.00 260.00 32.00 6
24 160.00C 160.00 - 1
45 20,00 360.00 48.57 8
% cat outz
Sensor First Last Average Count
1 340.00 340.00 - i
5 40.00 320.00 93.33 4
8 0.00 0.00 - 0
12 100.00 260.00 32.00 6
24 160.00 160.00 - i
45 20.00 360.00 48.57 8

48

Appendix C

Manual Pages

49

SCHEMAPREP(1) UNIX Programmer’s Manual SCHEMAPREP(1)

NAME
SchemaPrep — IIE component preparation program

SYNOPSIS
SchemaPrep [-dhimow | schemafile

DESCRIPTION

A schema file describes an experiment by specifying each of the major components of the IIE
run-time systemn and also by issuing directives that the experiment manager will take note
of during experiment execution. The program SchemaPrep takes this schema file as input
and prepares the experiment components for execution. A subdirectory for each component
is created in the current directory along with a log of the component preparation process in
the file SchemaPrep.log in the current directory. In addition, the file Makefile is created in the
current directory. This file contains the UNIX make utility directives to construct the executable
experiment manager program erp_mgr.

In addition te naming the schema file the user may also set command line switches. Setting a
switch causes SchemaPrep to process the associated section of the schema. If no switch is set
the program processes all sections of the schema. The switches have the following meanings:

-d Interpret the directives section

-h Interpret the hardware configuration section
-i Interpret the initialization section

-m Interpret the sensor section (for monitoring)
-0 Interpret the operating system section

-w Interpret the stimulus section (the workload)

EXAMPLES
SchemaPrep schemafile
#processes the entire schema in file schemafile and prepares all of the components.

SchemaPrep -dm schemafile
#processes the directives and sensor sections of the schema in file schemafile
#and prepares only the experiment manager component.

FILES
.J.expamgr /¥ experiment manager subdirectory */
./.stimulus /* workload subdirectory */
.[-hweonfig /* hardware simulator subdirectory */
./.osconfig - /* operating system subdirectory */
./makefile /¥ experiment construction makefile */

SEE ALSO
exp_mgr(1), make(1)
IIE Users Manual, by R. Morrill

RESTRICTIONS
The current working directory must contain the schema file. The log file is always appended
and must be explicitly removed if its current contents are no longer useful.

ERRORS
The error messages are intended to be self explanatory.

AUTHOR
Richard Morrill
University of North Carolina at Chape] Hill

Printed 4/20/86 local 1

EXP_MGR(1) UNIX Programmer’s Manual EXP_MGR(1)

NAME

exp.ngr — IIE experiment execution program
SYNOPSIS

exp_mgr
DESCRIPTION

The user executes an IIE experiment by executing the program exp.mgr in the schema file home
directory. The experiment will then run until all of the requested runs complete. The results of
the experiment are written to the files specified in the run-tuples of the associated schema file, In
addition to the results file, exp_mgr produces a file containing a log of the experiment in the same
directory. This file is named exp_mgr.log. The log file contains information on the experiment
specifications, the time the experiment was run and any warning or error messages produced as a
result of the execution.

FILES

.Jexp_mgr.log /* experiment manager log */

SEE ALSO
SchemaPrep(1), make(1)
HE Users Manual, by R. Morrill

RESTRICTIONS

The logging mechanism is not implemented.

ERRORS
The error messages are intended to be self explanatory.

AUTHOR

Richard Morrill
University of North Carolina at Chapel Hill

Printed 4/20/86 local 1

Apr 12 09:17 1986 scheomeprep.h Page 1

struct keystruct {
char *keyvord;
char *delimit;
int (*keytunc) () ;
char swv char;
char *desc;
} keylist[] = {
"BoginSchema", NULL, BeginProc, NULL, NULL,
*InltSection”, "EndInit", InitPrac, 'i', "initial",

"StimylusSection”, "EndStimulus", StimProc, 'w', "stimilus”

"HWContigSeatlon”, "EndHW®, HWCProc, 'h', "hardware",

"0SConfigSection”, "End0S", OSCProc. 'o', "operating system"“,

“SensorSection", “EndSensor", SenaProc, ‘'m', "sensor”,

"DirectivesSection", "EndDirectives", DirProc, ‘d', "directives",

"EndSchena®, NULL, EndProc, NULL, NULL
}:

#define MAXEWITCH 6
#define LOGFILE “SchemaPrep.log"

Apr 22 31:08 1986 SchemaPrep.c Page 1

/i

* FILE: SchemsPrep.c

L

* CONTENTS:

* main Driver for the IIE schemm preparation program.
* *Proc Bection processing routinas,

* SwitchOn Section awitch on detector.

* InvalidSwitch Invalid switch detector.

* SwitchError Bwitch error help routine.

* Ignore Section ignore, by consuming, routine.
*

* HISTORY:

L]

#include <stdie.h>
#include “schems.h"
#include "schemaprep.h™

static FILE #afp;

static FILE +1fp;

static char switches [MAXSWITCH + 1):;
static char rcsild[] = "#¢%;

e
L d

PURPOSE :
BRETUBRN CODESR:
Nene.

RESTRICTIONS /ASSUMPTIONS:

None.

LR N N N
S

main {arge,argv)
int argec;

char targv(];
{

/I
/ia
/ﬁ

/*

/* Schenms program definitions and censtants */
/* Driver definitions and constants */

Scheza file pointer */
Schema log file pointer */
Switch array */

RC5 ident string */

Driver for the IIE schema preparation program,

char temp [MAXARGLEN+1): /% Input buffer */

char schemafile[MaxFileName + 1}; /% File nama byffer */
boolean flleflag; /* File name read flag */
boolean switchflag; /* Switch read flag %/
int 1; /* Loop index */

char switchtemp[LINELENGTH + 1]; /* Switchan read buffer */

char buffer [MAXKEYLEN + 1}];

*

* Initialize.
*

fileflag = FALSE;
switchflag = FALSE;
*

* Command line parsing,

Section keyword buffer */

Apr 13 21:08 1986 SchemaPrep.c Page 1

a
for (1=1; i<arge; i++} {

sscant (*++argy,¥Ya", temp)
it (lstrncmp (tewmp, win 1))
1f (switchflag = TRU'E) {
fprintf (ltdaz-r,
“Warning: ignoring additiconal switches Ys\n",temp):

olse {
sscanf (&temp(1],"Ys", switchtemp) ;

it (strlen(switchtemp) > MAXSWITCH) {
fprintf (stderr,"Error: tco many switches \"¥e\"\n\n",
switchtemp) !
SwitchError () ;
axit(l);

else 1f (InvelidSvitch(switchtemp}) {
tprint.f {stderr,"Error: invalid switch(es) \"¥s\"‘\n\n",
switchtemp) ;
SwitchError ().
exit(l);

stropy (switches, swvitchtemp):
switchflag = TRUE;
}

else {
if (fileflag == TRUE)

fprintf {stderr,"Warning: jignoring mdditional file ¥a\n", temp);

alse {
sscanf (temp, *Ys", schemafile) ;
fileflng = TRUE;
}
}

} /t end for */

/¥
* No schema file name in command line.
*

if (1fileflag) {

fprintf (stderr,“Error: input flle requiredi\n"):;
exit (1)

i¢ (! (sfp = fopen(schemafile,r"))) {
fprintf(stderr, "Error: cannot open file ¥s\n",schemafile);
exit(1);

Apr 321 21:08 1986 SchemaPrep.c Page 3

1# (1(1fp = fopen(LOGFILE,*a"})) {
fprintt {stderr “Error: cannot open or cresats £ile ¥s\n",
LOGFILE) ;
eaxit(l);

/*
* No switches set =mo
* select all schoma sections,
*/
if (lowitchflag) {
for (1=0; L<MAXSWITCH; 1++) {
switches{i] = leylist[itl].sw_char;
}

}
7
* Attempt to process all
* aight sections.
*/
for (i=0 :1<@ ;i++)
tecanf (sfp, "Ys" buffer);
1f () (stromp (buffer keylist{i) .keyword})) {

/i
* Involos the section processing routine
* for the current section.
*
it (SwitchOn(switches keylist([i].avw _char))
(*keylist([1] .keyfunc) () ;

*

* Consume the current section since
* it was not sslected for procasalng.
*/
else {
tprintf (atdout, "Ignoring \"¥s\" section\n", leylist[i].desc);
fprintf(1fp, "Ignoring \"¥s* section\n", keylist[i].desc):
Ignore (laylist[1] .delimit);

}
else {
fprintt (stdout,"no match: Xs, keyword Ys\n",bufter,
keylist[1] .leeyward) ;
fprintf(1fp,%no match: ¥a, leyword Xl\n" buffer,
loeylist[1] . keyword) ;
}

}

clone(sfp):
close (Lfp) ;

}

BeginProc()
{

Apr 322 31:08 1986 SchemaPrep.c Page 4

fprintf (stdout,™In BeginProc \n");
fprintf (1fp,"In BeginProc \n");

InitProc()
{

mledir (" . exp _mgr®,0755) ;
fprintf(stdout,"In InitProc \n");
fprintf(lfp,"In InitProc \n");
initprep (sfp,1fp);

Stimfroc()
{

miedir (" .stimlus® ,0755) ;

forintf (stdout,."In StimProc \n"):
fprintf(lfp, "In StimProc \n"};
stimprep (sfp,1fp);

HWCProc ()
{

wiedir (" . hweonfig®,0755) ;

tprintf (stdout,"In HWCProc \n");
fprintf({1lfp,*In HWCProc \n");
hwcprep (sfp, 1£p} ;

08CProca()
{

micdir (*.oscontlig”, 0755) ;

tprintf (stdout, *In 0SCProc \n"):
tprintf(1fp,"In 0SCProc \n"};
oscprep (stp, 1fp);

SensProc{)
fprintf (stdout,"In BenaProc \n"):

fprintf (1£fp, "In SensProc ‘\n");
senaprep (sfp,1Lp) ;

DirProc()
{
fprintf (stdout,"In DirProc \n"):

tprintf (1fp, "In DirProc \n");
dirprep (sfp,1fp):

/*

Apr 21 21:08 19856 SchemaPrep.c Page 5

* Used for testing purposes.
* Replace any processing function entry
* in schemaprep.h with this call.
*/
DupmyProc ()
{
fprintf (stdout, "In DummyProc \n");
tprintf(1£p, "In DummyProc \n");
EndProc ()
{

fprintf {atdout,"In EndPrec \n"):
fprintf (1£p,"In EndProc \n");:

N W

* % % % *F FR %+ X}
S

PURPOSE:
Consums the contents of tha schema f1ile

from the current poaition up to and including
the string 'string‘.

RETURN CODES:
None.

RESTRICTIONS/ASSUMPTIONS:

None.

Ipore(string)

char *string; /% IN --- section closing keywork */

{
char buf(128+1];
int eof _flag;

ecf_flag = TRUE;
while (facanf(sfp, "Xs", buf) != ECF)
if (letremp (buf,.string)) {
eof_flag = FALSE;
break;
}

1f (ecf_flag)

fprintf (stdout, "ERROR: Missing keyword \"¥s\" \n", string};
fprintf(1£p,*ERROR: Missing keyword \"Ya* \n", string):

e

* % % ¥ * * ¥* * * ®

PURPOSE :

Print the current switches to standard out
and the log flle.

RETURN CODES:
None .

RESTRICTIONE /ASSUMPTIONS:
" None.

Apr 22 21:08 1986 ESchemaPrep.c Page 6

*

SwitchError()
{

S

% % % % % % & ¥ * *

*

int &i; /* locp index */
fprintf (stdout,"Valid switches are:\n"};
fprintf (1fp,"Vallid svitches wre:\n");
for {i=1; 1<=MAXSWITCH; i++)
fprintf (stdout, *\t\t\t\"¥c*---¥Ys\n",
keylist{i].swv_char, keylist{i].desc};
fprintf (Lp, "\tA\ENEV " Yc\" -~ -¥s\n",
koylist(i].sv_char, keyllst{i].desc):;

PURPOSE:
Checlc 's' to ses 1f it contains only valid switches.

RETURN CODES:

TRUE if 's' contains an invalid awitch specification;
FALSE otherwise.

RESTRICTIONS /ASSUMPTIONS:
Asgume the 's' is not longer that MAXSWITCH characters,

boolean InvalidSwitch(s)
/

char *a

{

}

'

*
*

* IN --- svitch array */

int i;
int svitchcount;
boolean invalid:

/* Array index */
/* Valid switch in sawitch array count */
/* Return code */

switchcount = 0
/i

* Incremant 'switchcount' for every valid
* gwitch spwcified in 's’.
*

for (1=1; 1<=MAXSWITCH; 1++) {
if (index (s, keyliat([i].sw_char)) {
switchcount += 1;
}

}

*
* It all the svitches arsa valid the
* value of switchcount ahould be equal

* to the number of characters in 's'.
*

invalid = {awitchcount I= strlen(s}):
roturn{invalid);

PURPOSE:

Chaclkc to see if 'c' is NULL or in the charmcter array 's'.

Apr 22 21:08 1986 SchemaPrep.c Page 7

*
* RETUBN CODES:
* TRUE if '¢' is NULL or in character array 's';
* FALSE otherwise.
-
* RESTRICIIONS /ASSUMPTIONS:
* None.
*
SwitchOn(ms,c)
cher *am; /* IN -~- switch array */
char ¢; /* IN --- current section switch or NULL */
{
int on; /* Return code */
it (¢ == NULL)
en = TRUE;
alse
on = (index(s.c) I= 0);
return{on) ;
}

Apr 22 21:33 1986 inltpreop.c Page 1

* % B % B B * X

FILE: init.c
CONTENTS: IYE schema initimlization section preparation routine.

HISTORY: Written by Richard Morrill for SoftLab, UNC-CH, 1/1/86.

/

#include <atdioc.h>
#include “schems.h"

/*
* PURPOSE:
* Process the initimlization section of = schews.
*
+ RETURN CCDES:
* None.
*
* RESTRICTIONS /ASSUMPTIONS:
* Rone.
®
initprep (sfp, 11p)
FILE *sfp; /* IN --- schema file */
FILE *1fp; /% IN --- mchema log file */
{
char buffer{128+1]; /% Btring bullding buffer */
char command(128+1]: /* System command bullding buffer */
*
* Create a link to the experiment manager
* majew file in the .exp_mgr directory.
*/
strepy (command, *Iln -s “);
strcat (command, EMMAKEFILE) ;
streat (command, " .exp mgr/makefile"):
systea (command) ;
/h
* Create a link to the tirin experiment
* malon fila in the schema diractory.
*/
strcpy (command, “ln -s “);
strcat (command, MAINMAXEFILE);
stroat (comwand, “ makefile"):
system (command) :
facanf (sfp,"¥s" buffer);
{f (strewmp(bufter,"EndInit"))
fprint £ (stdout, ¥Keyword *EndInit\" expected --- read ““¥s\'"\n",
butfer) ; '
fprintf (1£p, "Keyvord \"EndInit\" expscted --- read \"¥s\"\n",
buffer) . i
} |
} i

Jan 19 12:01 1986 stimprep.c Page 1

#include <stdio.h>
#include “achema.h"

stimprep(sfp.12p)
FILE *sfp;
FILE *1fp;

{

char buffer[128+1];
char stimlib[128+)];
char libpath([128+1];
char stimfile[128+1];
char stimpath[128+1]:

char comnand[300] ;

tacanf(sfp, “Ys" butter);
if (stromp(buffer,"Library:")) {
tprintf (stdout,
“EKeyword \“Library:\" expected --- read \"¥s\'\n",
buffer)
fprintt(1£p.
"Keyword \"Library:\" expected --- read \"¥s\"\n",
butfer)

else {
facant {afp,"Xs".stimlib) :
strepy (libpath, SLatimpath} ;
streat (libpath," /) ;
streat{libpath,stinlib);
fprintf (stdout, "\tUsing Stimulus Library \"¥s\"\n", likpath):
fprintf(1£p,"\tUsing Stimulus Library \"¥s\"\n", libpath):
>

facanf (afp,"¥a" ,buffer);
it (strcop{buffer,“File:"}) {

fprintf (stdout, "Keyword \"File:\" expected --- read \"Ys\"™\n",
buffer);
tprint? (1fp, "Keyword \"File:\" expected --- resd \“¥s\"\n",
buffer) ;
else { ;

fscanf (sfp,“Ys",stimfila) ;

tprintf (stdout, "\tUsing Stimalus File \"¥a\"\n".stimflle);
tprintf (1£p. "\tUsing Stimulus File \"{a\'"\n",stimfile);

strepy (command, “1n ") ;

strcat (command, stimfile) ;

strcat (command, " .stimulus/main.mod");
system (command) ;

¥

tscanf{afp,"Ya" buffer);
if (stremp{buffer, "EndStimilus”)) {
fprintf (stdout,

"Keyvord \"EndStimilus\" expscted --- read \"¥s\"\n",

Jan 19 12:01 1986 stimprep.c Page 2 Apr 21 21:39 1986 hwcprep.c Page 1

buffer) *
fprintf(lfp, * FILE: hweprep.c
"Xeyvord \"EndStimalus\" expected --- read \"¥s\"\n", *
bufter) ; ¢ CONTENTS: IIE hardware section processing routine.
} &
* HISTORY: Writtan by Richard Morrill for Softlab, UNC-CH, 1/1/86.
olse { */
strepy (command, “cd .stimulus; mZhdir");
system (command) ; #include <stdin. h>

#include "schema.h"
strepy (command, “op /uncd/unc/drm/sl/bin/Stimmlpath ,stimalus/m2path");

systen {command} ; /*
* PURPOSE:
streopy (command, “fileaubs STIMDIR “); * Process the hardware configuration section of the schema file.
stroat {comnand, SLstimpath) *
strcat (command, “ .stimalus/mipath™); + RETURN CODES:
systen (command) ; * Nonwe .
*
strepy (comnand, “Stimmake.sh main.mod"); * RESTRICTIONS/ASSUMPTIONS:
systam{comeand) ; * None.
b e */
} hwoprep (sfp, 1£5)
FILE *sfp; /* IN --- Bchema file */
FILE *1fp; /% IN --- Bchema log file ¥/
{
int len; - /* hierarchy description file name length %/
char buffer[128+1]; /* string bullding buffer */
char buffer2[128+1]; /% string bullding buffer */
char buffer3d[128+1]; /% string bullding buffer */
char machdir[128+1}; /% selected machine subdirectory */
char dirpath[128+1]; /* path to SeftLab machine directory */
char hdfile{128+1]; /* hiersrchy description file name */
char hdpath[128+1]; /* path to the hierarchy description file #/
char

cammand [300] ; /* system cotmand buffer */

tscant (sfp,"¥a" , buffer);
if {strcmp{buffer,“Machine;:")) {

fprintf (stdout, "Keyword \"Machine:\" expected --- read \"¥s\"\n",
buffer) ;
fprintf(lip, "Kayvord \"Machine:\" expected --- read \"¥s\"\n",
buffer) ;
}
/i

* Belect machine.
*/

alse {
fscanf (afp.*¥s", machdir):
strepy (dirpath, SLmachpath) ;
streat (dirpath," /") ;
streat (dirpath, machdir) ;
fprint ¢ (stdout, "\tUsing Machine ‘\“¥s\'"\n",dirpath};
fprintf (1fp, "“\tUsing Machine \"¥s\"\n", dirpath);

Apr 22 21:29 1986 hwcprep.c Page 2

fscanf (sfp,"Xs" buffer);
it (strcmp{buffer,“HD:")) {

fprintf{stdout, "Keywvord \"HD:\" expscted --- read \"¥s\"\n",
buffer) ;
tprintf (1fp, “Keyword ‘\"HD:* expected --- read ‘\"¥s\'"\n",
buffer):
}
/*

* Crente n link in the .hwecontig directory
* to the selectsd hierarchy deseription file.
*/
ealse {
facant (sfp,“¥s" hdfile):

fprintf (stdout ,"\tUsing Hiersrchy Description File \"¥s\"\n" hdfile};
ferintf(lfp."\tUsing Hierarchy Description File ‘\"¥%s\“\n",hdfile):

strepy (hdpath,dirpath) ;
streat (hdpath," /") ;
strcat (hdpath, hdfile);
stropy (command, *In -8 *);
strcat (command, hdpath) ;
streat (command,* (hwoeanfig"):
systeam (command) ;

}

tacant (sfp,"Y¥a" buffer);
it (strcmp(buffer,*DMSubs:")} {

tprintf (stdout, “Keyword \"DMSubs:\" expected --- read ‘“¥s\'\n",

buffer);

fprintf (1£p, "Xayword \"DMSubs:\" axpected --- read \"¥s\"\n",

butfer)
}

*
* Mala tha specified substituticns in the simulator
* by linking to alternate device module files.
*/
alaa {

vhile (fscanf(sfp,“¥s",buffer) I= EOF) {

it (!stremp (bufter, "EndSuba™})
brealk;

tacanf (sfp."Ys" butferi):

fprintf(atdout, "\tSubstituting Device Module \"¥s\"\n",bufferl);
fprintf(1fp, "\ tBubatituting Device Module \"Xa\"\n",bu!ferz) H
tprintf{stdout, "\t tor Device Module \"¥s\"\n",buffer):
fprintf{1£fp," "\t for Device Module \"¥a\"\n",buffer);

if (strnemp(bufferd, /", 1}) {
strepy(butferd, ™. . /M)
stroat (bufferd, buffer?);

else i
stropy (bufferd, bufferl) ; i

Apr 22 21:29 1986 hwcprep.c Page 3

strepy (command, *In -s *);
streat {command, butterd) ;
streat (command,* .hwoontig/™);
stroat (command, buf fer) ;

system (command) ;

Take care of relative path nanes

in the hierarchy desecription file

dovice moduls replacement implementation.

it (strnemp(bufferz,”/".1)) {
strepy (bufferd,™../");
stroat (bufferl bufferl) ;

}

elen
strepy (bufford, bufferi) ;

strepy (command, ¥ 2ilesubs ") ;
strcat (command, buf fer) ;
strcat (command,™ ") ;
strcat (command, hutter3)
strcat (command,® %) ;
strcat (command, " .hwconfig") ;
streat (command, " /%) ;
atrcat (command, hdfile) ;
systes (command) ; .74
}
}

facant (sfp,“Ys" buffer);
it {strcmp (buffer,“EndHW")) {
tprintf (stdout, "Keyvord \"EndHW\" axpscted --- read \"¥s\"\n",

buffer);
fprintf{1£p, "Keyword \"EndHW\" expected --- read \“¥s\"\n",
buffer) ;
}
elae {

*

* link in the rest of the .dm files

+/
stropy (command, “chdir .hwconfig; LoDMFile.sh) ;
strcat (command, dirpath) ;
system (command) ;

/*
* mtrip ".hd" suffix from hiersrchy description tile
*/

len = strlen(hdfile);

strocpy (buffer, hdfile, len-3);
strepy (dbuffer [len-3], "");

/i

Apr 23 21:19 1986 hvceprep.c Page 4 Apr 22 21:43 1986 oscprep.c¢ Pags 1

* Execute the command to prepare /¥
* the hiersrchy description file * FILE: omcprep.c
* and create the maks file for the *
* sslacted device modules, * CONTENTS: IIE operating system schema sectlion preparation routine.
i/ *
stropy (command, "cd .hwconfig:"); * HISTORY: Writtem by Richard Morrill for SoftLab, UNC-CH, 1/1/86.
strecat (command, "hdprep %) ; */
ltr::;scomngibuft-r); #include <stdio.h>
sys command) ; ude <s o,
} #include “achews.h”
} *
* PUBPOSE:
ke

* RETURN CODES:
*

* RESTRICTIONS /ASSUMPTIONS:

*

ascprep (afp, 1fp)

FILE *afp; /* IN --- schanma file */

FILE #1fp; /% IN --- schema log file */

{
char buffaer{l128+1}; /% string building buffer */
cher buffer2[128+1]; /% string bullding buffer */
char osdir(138+1]; /* selected operating system subdirectory */
char dirpath[128+1]; /* SoftLab operating systeam directory */
char mainfile{l128+1]; /* main module flle for selected O/5 #/
char mainpath[128+1]; /* main module flle path */
char command[300]; /* system command buffer */

facanf (afp. "Ys" .bufter);
it (stromp (butfer, ™05:%)) {
Eprintﬂ(:tt)iaut,"m\mrd \M05:* expected --- read \"¥s\"\n",
buf £ H
fprint!(;:p,"Word \"0S:\" expected --- resad \"¥s\'"\n",
buffer)
}

*
* Salect operating system.
*/

olse {

fscant (sfp,"¥a", oadir) ;

stropy (dirpath, Slospath) ;

strcat (dirpath,” /") ;

strcat (dirpath, osdir);

fprintf (stdout, "\tUsing Operating System \"¥s\"\n",dirpath):
y fprintf{lfp,"\tUsing Operating System \“¥s\"“\n", dirpath);

fscanf(sfp,“Ys" buffer);
i1t (strcmp (buffer,“Main:")) {
tprintf (lt():lcut, "Keyword \"Main:\" expected --- resd ‘\"{s\"\n",
butter)
fprintt (1fp, "Keyword \"Main:\" expectad --- read \“gs\"\n",

Apr 22 21:43 1986 oscprep.c Page 2 Apr 22 21:43 1986 oscprep.c Page 3

buffer) ; tprintf (1fp, "Xeyword \"ImpSubs:\" sxpected -- resd \"¥s*\n",
} buffer) ;
: }
*
* Select operating systea main module. /*
*/ * Malks ths appropriate implementation module subatitutions
else { * by creating links to alternate filea in the .oscontflg
facant (sfp, “Ys" mainfile); * gubdirectory.
strcepy (mainpath,dirpath); */
streat (mainpath, ™ /") ; else {
stroat (mainpath, meinfile) ; vhile (fscenf(sfp."¥s" . buffer) != ECF) {
tprintf (stdout, "\tUsing Main Module Flle ‘\"Ys*\n" mainpath);
fprintf (1£p, " \tUsing Main Module File \"¥a\"“\n",.mainpath); if {istrcmp(buffer,"EndImpSubs“}) {
} break;
}

facant(sfp, *Ys", bufter)

it (lt.rclp(btl!!.f."b.lﬁuh-:“)l { facant (sfp,“Ys" ,bufferd);
fprint! (stdout, "Keyword \“DefSubs:\" expected -- read \"¥s*\n", tpr.h.-'ltt (stdout, .
buffer) ; \tSubstituting Implementation Module \“Is*\n",
Epr:l.nt.f(l!i."t-yvord \"DefSubs:\" sxpected -- read \"“¥s\"\n", buffaerl);
buffer); fprinte (12p,
} #\tSubstituting Implementation Module \"Zs\"\n",
buffarl) ; .
* fprintf (stdout,
* Make the sppropriate definitiocn module substitutions "\t(for Implementation Module \“Ys\"\n",
* by creating links to alternate files in the ,osconflg bufter) :
* gubdirectory. tprintf(1£p,
*/ "\t for Isplementation Module \“¥s\"™\n",
olse { buffer) ;
vhile (fscanf (afp,"Ya" buffer) != EOF) { strepy (commend, "In -8 ¥);
it (tstrcmp(buffer,"EndDefSubs")) { strcat (command, buf fer) ;
break; streat (command, ™ .oacontlig/™);
Yacans (s2p,"Ys", bustfara) ; :;:::: {::m.lndm),l:ut!or) ’
fprintf (stdout, }
"\ ¢Substituting Definition Module \"¥s\"\n", }
bufferi) ;
fprintf(lfp, *\tSubstituting Definition Module ‘*¥s\“\n", facant (sfp, "Yas” ,buffer)
bufferl); i1f (stremp (buftfer, "End0S")) {
tprix:tt(lt:dout, - fprint £ (stdout, “Keyword \"EndOS\" expected -- read ‘\"g¥s\"\n",
\t for Definition Mocule \"¥s\"\n", buffer) ; W
buftor);. . . fprintf (1fp, *"Eoyword \"EndO5\" expocted -- resd \“¥s*\n",
epm;:: ‘(11:1): \t for Definition Module \"¥s\"\n", N bufter) ;
ar);
strepy (command, "1n -s %) ;
strcat (commend, butferl) ; else {
stroat (Command, ” .osconfig/"): :
streat (command, butfer) ; /*
system(command) ; * Make the hidden Modula-2 hidden directorles
y } * in the ,osconfig subdirectory.
*

stropy (command, “chdir .osconfig; m2hdir");
tscant{sfp,“Ys" . butfer); system {cCommand) ; ’
if (estrcmp (buffer,“ImpSubs:"))
fprintf (stdout, "Keyword \"ImpSubs:\" expected -- resd ““¥s\"\n", S ;
buffer); * Create links to all dafinition and implementation

i
|

Apr 22 11:43 1986 oscprep.c Page 4 Apr 21 21:50 1986 aansprep.c Page 1

* modules without current links in the .osconflg VA
* gubdirectory. Only substituted modules should * FILE: sensprep.c
* currently have links. *
./ * CONTENTS: IIE sensaor section preparation routine.
strepy (command, "“chdir .osconfig; InDirFile.sh "); *
strost (command, dirpath) ; * HISTORY: Written by Richard Morrill for Softlab, UNC-CH, 1/1/86.
systen (command) ; */
Al #include <satdio.h>
* Create the malkefile for the current operating #include "schema.h"
* gystem in the .osconfig subdirectory.
*/ /t
strepy (comand, “chdir .osconflg: /bin/ra malmfile *); * PURPOSE:
system (command) ; * Process the sensor sectlon for the schema.
strepy (conmand, "emlm.sh) ; *
streat (command, mainflle): * RETUBRN CODES:
system (command) ; * None.
&
} * RESTRICTIONS/ASSUMPTIONS:
* Hone,
} */
senaprep (sfp, 1fp)
FILE *safp; /* IN --- schema file */
FILE *1fp; /% IN --- schems log file */
{
char buffer(128+1]: /* string bullding buffer */
char sensfile[128+1]; /* sensor file path buffer */
char command [300] ; /% system command buffer */

facant (s fp, "¥s" ,buffer) ;
it (strcmp (buffer,"SensorLlist:"}) {
fprintf (stdout,
"Keyword \"ESensorList:\" expected --- read \"¥s*\n",
buffer):
tprintt(1£p,
“Keyword \"SensorList:\" expected --- read \"¥s\"\n",
buffer);

else {

/*

* Create the sensor file

* in the .exp_mgr subdirectory.
*/

strepy (command, *touch") ;
streat {command,” . exp_mgr/sensors”) ;
sysaten (command) ;
*
* Build the enabled sensor list
* until the end of the section is reached.
*/ :
while (fscanf(sfp, “¥s",sensfile) I= EOF) {
it (istrcop (sens ul-; “EndSensorList"))
1

'i
!

Apr 22 21:50 1986 sensprep.c Page 2

break;

*

t Add the sensors from m file.
*

it/(!-trnm:p (sensfile,®-",1))
{

fucan? (sfp,"Ys" . aenstfile);
tprintf (stdout,

‘“tUsing Sensor File \“¥s"\"\n",sensfile):
fprintf (1tp,

“\tUsing Sensor File \"¥s\"\n".sensfile);
stropy (commpand, "cat “);

*

* Add individual sensora.
t/

slse

fprintf (stdout,

"\tUsing Sensor “\"¥s\"\n" sensfile);
forintt (1tp,

"\tUsing Sensor \"xu\"\n ,sansfile);
strepy (command, "echo M) ;

strcat (command, sens £1le) ;

strcat (commend, * >> .exp_mgr/sensors™);
syoten (command) ;

} /* end vhile */
} /* end ealse */

tecanf (afp, “Ys . buffer);
if (strcmp{buffer, “EndSensor“)) {
torinti (stdout,

“Keyword \"EndSensor\" expected --- resd *¥s\"\n",

bufter);
fprint?(lfp,

“"Keyword \“EndSensor\® oxpected --- rsad \"¥s\"\n",

buttaer);

Apr 22 21:17 1986 dirprep.c Page 1

]
*

*
#

FILE: dirprep.c
*

CONTENTS: IIE Schems directive section processing routine.

* HISTORY: Written by Richard Morrill for Softlab, UNC-CH, 1/1/86.
*/

#include <stdic.h>
#include “schema . h®

/i
* PURPOSE:
* Procens the directive section of a schema file.
L3
+ RETURN CODES:
* Nona.
&
* RESTRICTIONS /ASSUMPTIIONS:
* None.
*/
dirprep (atp, 1fp)
FILE *sfp /* IN --- Bchema file */
FILE *ltp, /% IN ~~- Schaua log file */
{

int initflag;
char buffer[1328+1];
char command[128+1];

/* Pun-tuple added flag */
/% Btring bullding buffer *+/
/* Bystem command buffer */

facanf (sfp, "%s" ,butter);
if (strcmp (buffer,"BunList:")} {
tprintf (stdout, "Keyword \"BunList:\" sxpected --- resd \"¥s\"\n",
buffer);
fprintf (1 ¢fp, "Keyword \"RunList:\" expected --- raad \"{s\"\n*,
buffer);
b
alse {

initflag = O;
/i
* Create a nev main.o file in the
* .exp.mgr subdirectory.
*/
stropy (command, " /bin/rm -£ ") ;
streat (command, EXPMAIN) ;
systen {commuand) ;
strepy (command, *cp ") ;
stroat (command, SLEXPMAIN} !
streat (command, ™ ")
streat (command, EXPMAIN) ; i
system (command) ; !

Apr 322 21:17 1986 dirprep.c Pags 3

/i

* Procass to the end of the section
* gr the and of the file:

* yhichever comes first,

&®

vhile (fscant(stfp,"Xs" ,buffer) != EQF) {

if (1strcmp {bufter, "EndRunList"))
break;

olse {
if {linittlag)
initflag = 1;

fprintf (stdout,*Adding run tuple ¥s\n", buffer}):
fprintct (1£p, "Adding run tuple ¥e\n", buffer);

/*

* Appetid the current run-tupls

* ¢o main.c in the .exp_mgr

* subdirectory.

*/

strepy (command, “echo \'");
stroat (command, BUN_PROCEDURE) ;
streat (command, buffer);
strcat (command, ";\' >> "};
stroat (command, EXPMAIN) ;
systea (command) ;

} /‘}-nd while */

*
* Close off the main.c flle in the
* exp_mgr subdirectory.
ks
strepy (command, “cat ™)
strcat (command, SLEXPMAINEND) ;
stroat (command,
stroat (command,
systenm (command) ;

if (tinitflag) {
fprintf (stdout,
"Noe run tuples where sdded; the simulator will not be invoked.\n");
fprintt (lep,
“NMo run tuplea whare added; the simulator will not be invoked.\n");
}

} /% end alza */

facanf (efp, "Ys" bulfer);
it (strcmp (buffer,EndDirectives™)) {
tprint f (atdout, "Eeyword \"EndDirectives\" expected --- read *¥s\"\n",
bugfer);
forintf(1fp, “Keyword ‘"*EndDirectives\" expected --- read ‘"¥s\"\n",
buffer) ;

Apr 22 21:17 1986 dirprep.c Page 3

Oct 12 16:40 1985 schama.h Page 1

#dafine
f#dafine

#define
#define
#detine
#detine
#define
#define
#define
f#define
#datine
#define
#define

typedef

TRUE 1
FALSE O

MAXARGLEN 30

MaxF ileNsme 20

MAXKEYLEN 20

LINELENGTH 80

PATHTAIL “: /usr/1ib/local/modula2™
RUN_PROCEDURE “DoRun"

EXPMAIN “.exp. mgr/main.c"

SLEXPMAIN * /unc/drm/sl/src/exp_ mgr /main,c"
SLEXPMAINEND " /unc/drm/sl/src/exp_mgr/mainend®
EMMAKEFILE ®/unc/drm/sl/arc/make,/ezMakefile”
MAINMAREFILE */unc/drm/sl/src/make /MainMalkefile”

int boclean;

int BeginProc():
int InitProc{):
int StimProcf();
int HWCProc(};
int 0SCPrec();
int BensProc():;
int DirPreoc();
int DummyProc() .
int EndProc();

statlc char *SLmachpath = */unc3/unc/drm/sl/src/machine®;
static char *SLospath = "/uncd/unc/drm/sl/src/0S%;
static char *SlLatimpath = "/uncd/unc/drm/sl/src/Btimuilus™;

Apr 22 20:13 1986 output.c Page 1

iz

* FILE: output.c

*

* CONTENTS:

* The simulation output routine for the sxperiment manager

* library libexp.a.

*

* HISTORY: Written by Richard Morrill for SoftLab, UNC-CH, 1/1/86.
*

*

/

#include <stdic.h>
#include "exp_mgr.h"

/i-
* Sensor information.
*/
struct sensor_struct {
int id; /* Sensor id %/
Eloat first; /* First time the sensor was reached */
float laat; /% Last time the sensor was reached */
float avyg; /* Average durstlion between sensor invocations */
Int count; /* Number of times the sensor was rosched */
}:
typadef struct sensor_struct sentyps;
/*
* PURPOSE:
* Calculate the appropriate sensor information from the simulator
* output file and write it to the selected results flle, ‘cut'.
*
* RETURN CODES:
* None.
*

* RESTRICTIONS /ASSUMPTIONS:

* Rone.
*

ProcessOutput {out, sens)

char *out; /* IN --- experimsnt cutput results file */
char *sens; /* IN --- anabled sensors file */
{
sentypa srr [MAX_SENSORE] ; /* sensor array */
int §; /* loop Index */
int newid; /* new sengor id */
int inst; /* new sensor instance from sim.log */
float stime; /* nev sensor time form sim.log */
EILE *ofp; /* slmuletor output results flle */
FILE *xfp; /* experiment cutput results file */
FILE *ufp; /* enabled sensors fila */

sfp = fopen (seans, "r");

if (sfp == (FILE *) NULL) {

fprintf (stderr,

“Unsble to open sensor file ¥, no output processed.\n", sens};

Apr 21 20:13 1986 output.c Page 2

return(-1);

ofp = fopen("sens. out", *r");
1t (ofp == (FILE *) NULL) {
fprintf {stderr,
"Unsble to read simulator sensor file ¥s, no output processad.\n",
"sens.out") ;
fclose (sfp):
return(-1);

xfp = fopen(out, “w"):
if (xfp == (FILE *) NULL} {
€printf (stderr,
"Unable to create results file ¥s, no output processed.\n",
out) ;
fcloae (sfp) ;
fclose (ofp);
return{-1);

¥

*

* Initislize ssnsor arrasy.
*

for (i=0; i<MAX_SENSORS; 1+*)
arrfi].id = -1;

fprintf (stdout, "Remding from enabled sensor file \"Xs\"\n", sens);

*
* Distlnguish ensbled sensors.
*

/
vhile (fscanf{sfp, “Yd", &newid) 1= EOF) {

if (newid >= MAX SENSORS) {
fprintf (stdout,
"Invalid sensor \"¥d* read from sensor file ¥s.\n",
nevid, sens);
continue;

arr[nevid] . id = newid;
ary [newld] . first = €.0;
arr (newid].last = 0.0;

arr [(newid] .avyg

arr [newid] .count
} /% end vhile */

fprintf (stdout, "Reading from sim:laticn sensor file \"¥s\"\n","sens.out"):
Ik

* Process sensor information.
*

vhile (facanf(ofp, "Xd, X%f", &inst, &stime) != EOF) {

Apr 21 20:13 1986 output.c Page 3

if (inst >= MAX_SENSORS) {
fprintf (stdout,
"Invalid sensor \"¥d\" read from simulator log file ¥s.\n",

inat, “sens.out");
continue;

it (srriinst).count == Q)

arriinat] . first = stime;

arr[inat].count += 1;

arr[inat}.last = stimm;

arrinat] .avg = (atime - arr{inst].first) / arr[inst)].count;
} /* end vhile */

fprintf{stdoyt, "Writing cutput file \"¥s\"\n", out};
torintf (xfp, "Sensmor First Last Average Count\n"):
tprintf (xfp, \n\n®) g

L]

* Write out enablad gensor
* information.
*
for (1=0; 1<MAX_SENSORS, it+) {
if (mrr[i].id 1= -1)
fprintf(xfp.
L ¥6.2¢t ¥6.2¢ X6.2¢ ydi\n\n*,
i, arrfi].first, arr([i].last, arr(i].avg, arr{i].count);
} /% and for %/

fclose (ofp) ;
fclose (sfp) ;
fclose (xfp) ;

Apr 22 20:19 1986 ILnDirFile.sh Page 1 Apr 22 20:21 1986 LnFile.sh Page 1

#! /bin/csh - #! /bin/csh -t

Exocute the shell script 'LnFile.sh' on all

Change to the directory selacted by
the directories under the current directory, # argumsnts 3 and 1, snd create symbolic
% vith each directory, the first command line argument, sand # links to all flles under 2/1.
tha current working directory as srguments.
chdir $3/81
sat ourh = * /bin/pwd" In ~s $2/91/% ,

find . -type d -exec LnFile.sh {} ¢1 #ourh \;

Apr 23 20:21 1996 OSm2path Page 1

#! /bin/cah -

setenv MIPATH *\bin\pwd" :0SDIR: /usr/lib/local/modulal

Apr 22 20:21 1986 OSmake.sh Page 1

#! /bin/csh -¢

Make the .osconfig directory the current
working directory, set the M2PATH varisble
% and croate the Modula-2 make file.

chdir */bin/pwd*/.osconfig
source wm2path
mm2m 41

Nov 6 20:17 1985 GStimm2path Page 1 Apr 22 20:23 1986 Stimmake.sh Page 1

#! /bin/csh -f #!/bin/csh -¢£
setanv MIPATH .:STIMDIR: /usr/lib/locsal /module2 # Make the .stlmulus dlrectory the current
working directory, set the MZPATH variable
and create the Modula-2 malke file.

chdir */bin/pwd’ /.atimulus
source mipath
omZm 1

Apr 23 20:24 1986 filesubs Page 1

#! /bin/csh -f

Find all occurences of the first argument

in the flle named by the third argument:.

In the selected file replaca all occurrences
of arqument one with arguttent two.

sed -e "/$1/8741782?7" 43 >! temp
cp temp #3
/bin/rm temp

Nov 6 20:17 1985 mipath Page 1

#l /bin/csh -t

setenv MIPATH

. :OSDIR: /usr/lib/local /modulal

Apr 22 20:15 1586 makeexpmgr.sh Page 1

#!/bin/cah -£

Exucute male in the ,exp_mgr subdirectory and
append the output to Male.log in the current
% directory.

cd .eaxp mgr; maks >>& ../Make.log

Apr 22 20:27 1986 makehw.sh Page 1

#!/bin/csh -£

Execute the make program in the .hwconflg subdirectory
and sppend the output to file Make.log in the current

directory.

cd .hvconflg: make "HOME = /usr/scftlab" >>&

. «./Malm.log

Apr 22 20:18 1986 makecs.sh Page 1

#1/bin/cah -£

Exacute make in the .osconflg subdirectory and append

the ocutput to the file Maks.log in the current

directory.

cd .osconfig; source mipath ; maloe >>&

../Meke.laog

Apr 22 20:29 1986 malcestim.sh Page 1

#!/bin/csh -t

Exscute the make preogram in the .stimilus subdirectory

and append the output to the tile Make.log in ths current
working directory. GSet the M2PATH varisble since this is
a Module-2 make,

cd .stimilus; scurce mipath ; make >>& ../Make.log

Apr 22 20:30 19686 zm2w.sh Page 1

#!/bin/can -£

Set up the MIPATH variable in the .osconfig
subdirectory and create the associated make file.

chdir */bin/pwd”/.cscontiyg
source mlpath
omlm 41

Apr 18 13:58 1986 exp_mgr.h Page 1 Apr 18 13:55 1986 dorun.c Page 1

/* /

FILE: exp_ngr.h FILE: dorun.c

CONTENTS: DoRun - Entry routine to the exp_mgr run-time library (libexp.a}.

HISTORY: Written by Bichard Morrill for SoftLab, UNC-CH, 1/1/86.
/

/* Maximum rumber of sensoras allowed.
*

#
*
* CONTENTS: Definitions and constants used by the libexp.a routines.
L]
*
#

PP Y

HISTORY: Written by Richard Morrill tor SoftLab, UNC-CH, 1/1/86
*/

#include <stdic.h>
#define MAX_SENSORS 100

static int count = 1; /* sxperiment number */
/*
* PURPOSE:
* Executes cne full run of an experiment including the cutput
* file processing.
*
* BETURN CODES:
* Nona,
*
¢ RESTRICTIONS /ASSUMPTIONS:
* No validity checking ls done for the experiment components.
*/
DoRun (aim, os, stim, sens, out)
char *gim: /* IN - executable simulator file */
cher *os; /* IN - os mcode file %/
char *stim; /% IN - stimulus mcode £ile */
char *sens; /%t IN - enabled sensors file %/
char *out; /% IN - simulater cutput results file */
{
int pid; /* process id returned from fork() */
char senzbuf[128+1}; /* full path to the senscr file */
char simbuf[128+1]; /% full path to the simulator */

fprintf (stdout, “Beginning experiment run number ¥d\n", count);

/% Link the stimilys and os f£iles to the names
* axpected in the mpain memory module.
*

InitFilesa (os,stim);

/* Build relative paths in.
*/

strepy (simbuf, " . hweonfig/"):

atrcat(simbuf, sim);

strcat (simbuf, ".saim");

strcpy (sensbuf, ", exp_mgr/"):

strcat (sensbuf, sens):
/* printf (" forking\n"); */

pid = fork():

Apr 18 13:55 1986 dorun.c Page 2 Apr 22 20:03 1986 Iinit.c Page 1

/*
/% printf("pid = Yd\n",pld); */ * FILE: init.c
L]
12 (pid == 0} { * CONTENTS: Initialization routins for the libaxp.a routine)library.
*
/* In the child. * HISTORY: Written by Rlchard Morrill for SoftLab, UNC-CH, 1/1/86.
*

./
fprintf{stdout, "Invoking simulator \“XsXsXs \"\n". ".hwcontig/", sim,
", sin") ;

#include <stdle.h>
execl (simbuf, simbyf, *-d%, "100", 0);

S
alse { * PURPOSE:
* Set up linka in the achema directory for the 0/5 and
/* In the parent. * stimilus M-code filea.
* *
if (wait(0) 1= pid) * RETURN CODES:
fprintf {stdout, * None.
“Error In simulator invocatien\n“): *
alse { * RESTRICTIONS/ASSUMPTIONS:
fprintf(stdout, "Experimsnt run nusber Yd completed\n",count); * Assumoes that the simulator is locking for the files as named
count++; ' * in the current working directory.
ProcessCutput (out, senabuf); *
} ‘InitFiles (os. stim)
} ¥ char *os; /% IN --- 0/8 M-code file */
char *stim; /% IN --- stimulus M-code £ile */

char buffer[128+1]:

tprintf(stdout, "Linking \"¥s\" to \"Xs¥s\"\n", "0S.mcd", ".oscontig/",
os);

stropy (buffer, “.osconfig/");
streat (buffer, os);
synlink(buffer, "0S.mcad");

fprintf (atdout, "Linking \"¥s\" to \"Ya¥s\"\n", "Stimulus.mcd", ".stimulus/"
stim) ;

strepy (buffer, ".stimulus/");
, streat (buffer, stim):
symlink(buffer, "Stimulus.med"):

Apr 22 20:13 1986 output.c Page 3

it (inst >= MAX_SENSORS) {
fprintf (atdout,
“Invalid sensor \"Xd\" read fraom simulator log file Xs.\n",
inst, “sons.out"):
continue;

it (wrr{inst).count == Q)

arr[inst] . first = stime;

arriinst].count += 1;

awrr{inst].lest = stimes;

arr [inst) .avg = (stime - arr(inst].first) / wrr[inst].count;
} /* end vhile */

fprintf (stdout, *Writing cutput file \"¥s\"\n",out);

tprintf (xfp, "Sensor First Laat Average Count\n"“);
fprintf(xtp, " AYAV: b I
"

* Write out ensbled sensor
* Informaticen.

>y

for (1=0; L<MAX_SENSORS; i++) {
1f {arr[i].1d 1= -1)
fprintf (xfp,

" x2d 6.2t x6.21 X6.at Td\n\n*,
i, arr[i].tirst, arr{i].last, arr{l).avg, arr(i].count):
} /% sod for v/

tclose(afp) ;
fclose(afp);
tclose (xfp);

Apr 23 30:19 1986 LnDirFile.sh Page 1

#! /bin/csh -£

Execute the shell script 'LnFile.sh' on all

the directories under the current directoery,

wvith esch directory, the first command line mrgumesnt, snd
the current working directory as arguments.

set ourh = */bin/pwd"

tind . -type d -axec LnFile.sh {} ¢1 #ourh \;

Apr 11 20:11 1986 [nflle.sh Page 1

#! /bin/csh -f

Change to the directory selected by
argumants J and 1, and creats symbolic
links to all files under I/1.

chdlr ¢3/e1
In -8 #2/01/% .

Apr 21 30:21 1986 Ofmipath Page 1

#1 /bin/csh -£

ssteny M2PATH “‘\bhin\pwd" ;05DIR: /usr/lib/local /modulal

Apr 21 20:11 1986 OSmakw.sh Page 1

#1/bin/cash -t

Make the ,osconfig directory the current
working directory, set the MIPATH variable
and creste the Modula-1 make file.

chdir */bin/pvd"/.osconflyg
source mZpath
mmdm 91

Nov 6 20:17 1985 Stimmipsth Page 1

#! /bin/csh -t

setanv MIPATH

. :ETIMDIR: /usr/1ib/locul /mackiled

Apr 22 20:33 1986 Stimmaice.sh Page 1

#!/bin/csh -£

Make the .stimulus directory the current
working directory, set the MIPATH variable
and create the Modula-21 make file.

chdir */bin/pvd”/.stimilus
sources mipath
wmim 41

Apr 22 30:24 1986 fi{lesubs Page 1

#! /bin/csh -f

% Find all occurences of the first srgument

in the file named by the third mrgument.

In the salected flle replace all occurrences
% of argqument one with argument two,

sod -e "/01/a?81202%" $3 >| temp
cp temp ¢3
/bin/ron temwp

Nov 6 20:17 1985 mlpath Page 1

#! /bin/csh -¢#

setenv MIPATH .:05DIR: /usr/lib/locsl /wsodulel

Apr 22 20:25 1986 makeaxpmgr.sh Page 1

#t/bin/csh -¢

Exucute mals in the .sxp_mgr subdirectory and
sppand the cutput to Males.log in the current
% directory.

cd .exp_mgr; malm >>& .. /Male. log

Apr 23 10:17 1986 makehv.sh Puge 1

#!/bin/csh -f

Execute the male program in the .hwcontig su.b&.l.rcctory
and sppend the output to file Make.log in the current

directory.

cd .hwconflg; male "HOME = Jusr/saftlsh" >>&

.« /Make.log

Apr 22 20:18 1986 wmakeos.sh Page 1

#1/bin/csh -

Exacute make in the .osconflg subdirectory and appand

the output to the file Make.log in the current

¥ directory.

cd .osconfig; source mlpath ;| malm >>&

.. /Make.log

Apr 12 20:29 1986 melonstin.sh Page 1

#t/bin/csh -t

Execute the mske program in the .stimilus subdirectory

and append the output to the file Make.log in the current
working directory. Get the MIPATH variable since this is
» Module-2 make.

ed .stimulus; source mipath ; maloa >>& .. /Make.log

Apr 21 20:30 1986 wmmlm.sh Page 1

#1/bin/esh -t

% Set up the MIPATH variable in the .osconflig
subdiractory and create the associsted make file.

chdir */bin/pwd”/.osconfig
source mZpath
wmin 91

Apr 1B 13:58 1986 exp_mgr.h Page 1

/l

* FILE: eaxp_mgr.h

®

* CONTENTS: Definitions and constants used by the libexp.m routines.
*

* HISTOBRY: Written by Richard Morrill for ScftLab, UNC-CH, 1/1/86.
*/
/* Maximum number of sensors &llowed.

*/
#define MAX_SENSORS 100

Apr 18 13:55 1986 dorun.c Page 1

/i

-+ F F B B

/

FILE: dorun.c

#include <stdio.h>

static int count

s
»*

L S R B R

./

PURPOSE :

1

CONTENTIS: DoRun - Entry routine to the exp _mgr run-time librery (libexp.a).
HISTORY: Written by Richerd Morrill for SoftLab, UNC-CH, 1/1/86

/* experiment number */

Executes ona full run of sn experiment including the output

fils processing.

RETURN CODES:
None.

RESTRICTIONS /ASSUMPTICNS :

No wvalidity checking is done for the sxperimant components.

DeRun(sim, os, stim, sens, out}

char
char
char
char
char
{

talm;
*“as;
dgtim;
tgens;
kout;

int pid;
char sensbuf[128+1]:
char simbuf[128+1};

/i
/t
/t
/t
/i

IN
IN
IN
IN
IN

axecutable sigulator file %/

os mcode file #/

stimilus mcode file */

enabled sensors file %/
simulator output results file */

/% process id returned from tork(} */
/% full path to the sensor file */
/% tull path to the simmlator */

fprintf (stdout, "Beginning experiment run number Yd\n",count);

/* Link the stimilus and os files to the names
* expscted in the main memcry modula.

InitFiles {os, stim);

/* Build relative paths in,
*/

strepy (aimbuf, “.hweconfig/"):

strcat (simbut, eim);

strcat (simbuf, “.eim");
strcpy (sensbuf, " . exp_mgr/");

strcat (sensbuf, sens):

/% printf("torking\n"); #*/

pid = tork():

Apr 18 13:55 1986 dorun.c Page 2 Apr 22 20:03 1986 init.c Page 1

/% printf ("pid = Xd\n",pid); #/
1f (pid == 0) {

FILE: init.=

CONTENIS: Initializetion routine for the libexp.s routine librery.

» * % ¥ B

/* In tha child. HISTORY: Written by Richard Morrill for SoftLab, UNC-CH, 1/1/86.
* */

#include <stdio.h>

fprintf (stdout, "Invoking simulator \"Ya¥s¥s\"\n", ".hwconfig/", sim,
L] . .mll) ‘.

axocl (sixbuf, simbuf, “-4", “100", 0):

} yz
wlse { * PURPOSE:
* Set up links in the schema directory for the 0/8 and
/* In the parent. * stlmulus M-cods files. \
- *
it (walt{0) = pid) * RETURN CODES:
tprintf (stdout, & None.
"Error in simulator invocatlon\n"): * :
olses { * RESTRICTIONS /ASSUMPTIONS:
tprintf (stdout, “Experiment run humber Y¥d completed\n®,count); * Assumes that the simulator is looking for the files as named
count++; * in the current working directory.
ProcessOutput (cut, senabaf); ks
} InitFfiles{os. stim)
}
} char %os; /% IN --- 0/8 M-code files */
char *gtim; /* IN ~-- stimulus M-code fila ¢/
{

char buffer{liB+l];

fprintf (stdout, "Linking \"¥s\" to \"Ys¥s\"\n",“08.mcd", “.cscontig/",
os) ;

strepy (butfer, ".osconlig/");
streat (buffer, os):;
symlink (buffer, “0S.mcd");

fprintt {stdout, "Linking \"¥s\" to *Ys¥s\"\n"."Stimulus.ocd", “.stimulus/*
stim);

stropy (bufter, “.stimulus/");
strcat (buffer, stim);
symlink (bufter, "Stimlus.mcd™);

