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1. Introduction 

The SoftLab project strives to treat both education and research in computer science as in 

natural sciences. Natural sciences and computer science differ primarily in the experimentation 

area. Physics, for example, relies heavily on laboratory use for both education and research. Over 

the years physicists have developed many special tools to support these experiments. There are now 

some laboratory courses in place for the hardware area of computer science. The SoftLab group set 

out to complement these by developing support for experiments in the software areas of computer 

science. 

Physicists have been developing experiment support tools for hundreds of years. It is not 

realistic to think that a small research group can develop tools to support all of the different areas 

of software research and education. We must start by providing support for experiments in a few 

particular areas, doing so with generality in mind so that we can easily extend this support, a little 

at a time, to cover a wider and wider range of experiment types. 

The selected areas for initial support are operating systems and compiler design. These choices 

led to the following major tasks: 

1. the design and implementation of a modularized compiler. 

2. the design and implementation of a family of modularized operating systems. 

3. the design and implementation of an environment to support compiler and operating systems 

experiments. 

As part of the first task, members of the SoftLab team designed and implemented the Interface 

Description Language(IDL) [18]. This language is a general purpose interface description tool that 

is especially suited to aid in building compilers with multiple passes. As part of task two, other 

Soft Lab members are nearing completion on the design and implementation of two modular operating 

systems [7]. This task required additional compiler support to assure that the operating systems, 
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written in Modula-2, could run on a hardware simulator. Task three requires a number of support 

programs, e.g., a hardware simulator, to provide necessary experiment components. In addition, this 

task requires the design and implementation of a set of support tools that bring all of the experiment 

components together and perform a simply specified experiment. 

Our involvement in the above tasks was in three main areas: for task two we assisted in the 

design of the Multibatch operating system; as part of task three we were involved in modifying 

an existing hardware simulator [16] and an M-code, Modula-2 intennediate code, interpreter to 

support the SoftLab operating systems; and we designed and implemented the support tools for 

aiding experiment specification, synthesis, execution and evaluation. 

For this thesis a set of tools, which comprises an Integrated Instrumentation Environment {liE) 

for architectures and operating systems, will be designed and implemented. This liE will assist users 

with a wide range of experiments relating to both hardware and software configuration. As part of 

this effort a language will be designed for the purpose of specifying valid experiments. 

Chapter 2 describes the problems involved with experiments in general and goes on to show the 

particular problems related to software system experimentation. 

Chapter 3 presents the SoftLab approach to software system experimentation and a brief de

scription of the present SoftLab tool set. 

Chapter 4 contains the User Manual for the Soft Lab Integrated Instrumentation Environment. 

The design and implementation of SoftLab's Integrated Instrumentation Environment is the 

subject of chapters 5 and 6. We discuss design and implementation decisions as well as the value of 

capitalizing on the UNIX toolset to do rapid prototyping. 

In the conclusion, we argue both the generality and utility of SoftLab's liE and present some 

of the work to be done to extend its present capabilities and enhance its structure. 
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2. Experiments 

Scientific experimentation is generally a very complex and lengthy endeavor. IT an experimenter 

is to draw reasonable conclusions at the end of an experiment he must know the state of the 

experiment initially, while in progress, and at termination. For example, a particular experiment in 

the field of Chemistry may require temperature, humidity, and barometric pressure readings while 

in progress. A chemist may wish to rerun such an experiment with the same ambient temperature 

and humidity but with a different barometric pressure; then, at some future date he may wish to 

repeat the original experiment. Experimental chemists have designed special tools over the years 

to aid them in this kind of control process. These special tools encourage many experiments, and 

series of experiments, that would otherwise be too difficult. 

2.1 Software Systems Experiments 

The problems involved in experimentation in Computer Science are similar to those of other 

sciences like Chemistry. They are the problems related to repeatability, control, and modification 

of experimental parameters. All of these issues are important in the area of operating systems 

experimentation. An operating systems experiment generally consists of four main parts: a set of 

connected hardware devices (e.g., line printer, cpu, card reader); one or more user programs (the 

workload); an operating system; and a mechanism or set of mechanisms to collect data concerning 

the state of the experiment. Each aspect carries with it a set of problems which complicate exper-

imentation. The particular problems related to each of these four areas, as well as some others, 

are mentioned below. For the remainder of this section 'experiment' refers to 'operating systems 

experiment'. 

• In most cases an experiment requires the dedicated use of the hardware devices while in progress. 
H particular modifications to the hardware are required as part of a set of experiments, these 
devices cannot generally be shared. Hardware may have to be acquired if it is necessary to test 
the operation of an operating system over a range of equipment -which makes many operating 
systems experiments too costly to perform. 
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• It is not easy to specify workloads for experiments. A program, or set of programs, must be 
carefully written so that it possesses the characteristics required for the correct evaluation of a 
particular experiment. If any of the workload characteristics must vary over a set of experimental 
runs, different workloads with the correct variations in characteristics must be composed. 

• Operating systems that are currently in use are generally very large and complex. Even the 
simpler operating systems such as UNIX are composed of more than 10,000 lines of code. Since 
efficiency is of paramount importance if an operating system is to be useful, the code is often 
very dense and hard to understand. 

• The evaluation of most operating system experiments requires the collection of data during 
the experimental run. The data collection mechanism must have no substantive effect on the 
experiment. This mechanism may well involve modifying existing hardware to provide certain 
information. The data collected during an average experiment may also be voluminous. For 
example, information concerning the number of memory references during the execution of a 
large program may be required. The data collection mechanism should then contain some means 
to filter or process this data as it is being collected. H the mechanism does not provide such 
means then the processing of the data after the experiment will be a major task in itself. 

• Experiments which involve classroom assignments can lead to special problems. Many students 
may have to carry out the same experiment in roughly the same time frame. Protection issues 
become difficult to handle when many students are sharing a large number of files. 

It is evident that the problems encountered in experimentation render it too costly in many 

of the situations where it would be useful. Very few universities have the resources that would 

allow students the kind of opportunities to experiment with operating system design and evaluation 

that many educators and the SoftLab group feel they should have. We may be able to solve this 

difficulty by developing tools for the express purpose of supporting experiments just as others in the 

sciences have done in their respective fields. One advantage that we have is that software systems 

experiments can be controlled by the same mechanisms (i.e., software) that are being controlled. 

This allows us a unique opportunity to study the properties of this interaction. 

2.2 Previous Work in Software Systems Experiments 

At this time there has been no project or proposed project that folly addresses the issues 

and associated problema with software system experimentation laid out in the previous section. 

There have been proposals that address laboratories and experiments in regard to specific topics, 

e.g., operating system or compiler design[1, 2, 11, 12, 19]. Only two proposals, however, address 

experimentation in more than one area of software system design. 

One system, SL230[3, 4], which has been proposed at Carnegie Mellon University, would allow 

for experimentation with regard to operating system design. This system provides a large collection 
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of component modules and a means to link them together via a message passing mechanism. A kernel 

also provides low level synchronization of the modules. The modules are written in assembly language 

to provide an efficient implementation. A user of the system can carry out experiments related to 

modular operating system design easily and efficiently if he restricts himself to modularized operating 

systems, based on a message passing paradigm, that can be synthesized from existing component 

modules. Since the modules are implemented in assembly language, implementing new modules or 

modify existing ones significantly complicates the experimentation process. These restrictions are 

clearly a problem if the intended use of the system is for sophisticated experimentation or for flexible 

pedagogical purposes. Another drawback of the system is its specific ties with operating systems. 

It does not seem to be the basis of a general purpose software system experimentation tool. 

Halstead's system[lO] proposes a laboratory for both operating system and compiler implemen· 

tation. The system includes a modularized compiler for the Pilot language, and a modularized 

operating system written in Pilot. Experiments relating to the design and construction of operating 

systems or compilers are performed by modifying one or more of the constituent modules. This 

system is intended as a pedagogical tool only. The simplicity of the included language, Pilot, and 

the requirement of a bare machine allow little flexibility in the use of the system. Its use in the 

pedagogical environment is also limited by the requirement that each student implement most of 

the operating system and compiler with only basic tools (i.e., a text editor and a compiler). 
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3. SoftLab 

The goals of the Soft Lab project are to address and to solve as far as possible the problems asso

ciated with designing and carrying out software systems experiments. Attaining this goal requires a 

rich set of experiment components (e.g., operating systems, hardware simulators, etc.) in an environ

ment which supports experiment design, execution, and control. This project involves designing and 

implementing a set of tools that comprises an Integrated Instrumentation Environment(IIE)[17]. An 

IIE supports software system experimentation in the way that a programming environment supports 

software system development. Programming environments provide programmers with the tools to 

support the design, implementation and maintenance of software systems. Some PE's provide a 

collection of tools from which the user can select [5]; others support the programmer through a 

particular phase of the software system development life cycle [6]; and still others provide support 

across the entire life of a program [8]. The IIE provides a rich set of tools when viewed from the 

point of view of the experiment designer. She can select an operating system, a compiler and a par

ticular workload as components of an experiment. The experiment performer has the tools to take 

the experiment specification and then, step-by-step, take it to a working experiment. Additional 

components of the environment allow the experiment to be modified and run repeatedly without 

any danger of unspecified inconsistencies entering into the process. 

An Integrated Instrumentation Environment will allow the various tools (e.g., machine sim

ulators, families of operating systems, etc.) to function together and assist in performing a wide 

rage of software systems experiments. The liE solves the problems of repeatability, specification, 

and control that are inherent in the experimentation process. It will also provide the interface to 

data collection and analysis tools, device simulators, and modularized software components (e.g., 

compiler passes) that are required for sophisticated experiments. 

6 



4. The liE Users Manual 

4.1 Introduction 

An Integrated Instrumentation Environment (HE) supports software system experimentation in 

the same ways that programming environments support software system development. Program~ 

ming environments provide programmers with the tools to support the design, implementation and 

maintenance of software systems. Some PE's provide a collection of tools from which the user can 

select [5); others support the programmer through a particular phase of the software system devel

opment life cycle [6); and still others provide support across the entire life of a program [8). The 

designer can select an operating system, a compiler and a particular workload a.s components of an 

experiment. The experiment performer has the tools to take the experiment specification and then, 

step-by-step, take it to a working experiment. Additional components of the environment allow the 

experiment to be modified and run again and again without any danger of unspecified inconsistencies 

entering into the process. 

The liE described in this manual is an integral part of the SoftLab environment. It provides 

the means to describe and carry out a wide range of software system experiments. We assume 

that the user is already familiar with the other SoftLab components that are a part of the planned 

experiments. In particular, we assume that the user is familiar with the SoftLab family of operating 

systems [7), the SoftLab hardware configuration simulator [16], the Modula-2 programming language 

[9, 22) and the C programming language [13). 

Section 4.2 contains a brief description of the major runtime components of the liE. Section 

4.3 describes the experiment schema that specifies how these components should interact in a par

ticular experiment. In Section 4.4 the user learns how to use the experiment preparation program 

"SchemaPrep." Section 4.5 illustrates the execution of an experiment and describes how to utilize 

pieces of an existing experiment in a related experiment. This can often save a lot of time and 
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system resources. Section 4.6 presents a description of an example experiment from start to finish. 

The last chapter describes the error handling facilities that are part of the IIE. 

4.2 Major liE Runtime Components 

The liE incorporates many sophisticated components. The major runtime components of an 

experiment are the operating system, the hardware simulator and the stimulus, or workload. We 

present the user choices for each of these components below. 

The Operating System 

The SoftLab operating system family is a set of modularized operating systems. We call this 

set a family because of the many similarities among the various operating systems. There is a 

clear progression in complexity within the set. Two of the family members are currently being 

implemented, the Unibatch operating system and the Multibatch operating system. The former 

supports one CPU, one primary memory unit, a card reader and a line printer. It handles one job 

at a time. Jobs are entered as card decks and the output of the job is printed on the line printer. 

The U nibatch operating system is useful as a model of the most primitive type of operating system; 

even though it is very simple it illustrates the basic structure of an operating system. A simple 

experiment with this system might involve adding double buffering to the card reader driver. 

The latter 0 /S supports one basic CPU, one primary memory unit, a disk drive, a card reader 

and a line printer. More than one job may reside in main memory at a given time. The jobs 

come into the system as separate card decks. The results of all of the jobs appear as hardcopy 

on the line printer. The Multibatch operating system represents the next step in complexity. The 

addition of multiple batch job processing capabilities carries with it an impressive jump in code 

size. The three level scheduling mechanism, the memory management module and the interrupt 

handler provide ample opportunity to investigate real operating system design decisions. These two 

operating systems are implemented in Modula-2. 
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The Hardware Simulator 

Dr. Satyanarayanan, at Carnegie Mellon University, designed and implemented a flexible hard

ware simulator to aid in the design and investigation of sophisticated network file servers - this tool 

was adapted for SoftLab. Each component of the hardware is specified in a device module file. This 

file contains entry and exit points for both control and data, procedures that embody the component 

simulation algorithms and special simulation directives. One of these device modules is constructed 

for each of the components of the hardware that we wish to simulate. A hierarchy description file 

contains the component interconnection specifications and component initialization directives. A 

completed simulator consists of one hierarchy description file and any number of device module files. 

The implementation language for both file types is classc, a modified version of the C language 

with classes [20, 21]. Two simulators constructed with this tool are presently in use: the Umachine, 

which supports the Unibatch operating system, and the Mmachine, which supports the Multibatch 

operating system. The Umachine contains one CPU device module, a main memory device module, 

a card readei- device module and a line printer device module. The Mmachine contains one CPU 

device module, a main memory device module, a card reader device module, a disk device module 

and a line printer device module. The main memory device module, the card reader device module 

and the line printer device module are identical in the two machines. Each CPU device module 

contains a slightly different M-code interpreter. M-code is the intermediate language for Modula-2; 

p-code is the analogous language for Pascal [15]. 

The Stimulus 

The SoftLab stimulus facility consists of a number of libraries of workload component routines. 

Programs are written that reference these routines; the appropriate library is linked at compile time. 

This facility reduces the time and difficulty involved in defining and implementing a stimulus with 

specific properties. The libraries differ in the execution time of the routines and in target type. Two 

libraries, both intended for single processor machines, may contain corresponding routines that, 

although similar in function, differ by a factor of ten in running time for example. Other libraries 

may have a multi~processor machine as the intended target. Routines that differ in running time 

9 



only have the same name by convention. The user selects workload duration at compile time by 

linking with the desired library. 

Other liE components 

The operating system family, the hardware simulator creation tool and the stimulus facility are 

integral parts of the SoftLab liE. They are also tools in their own right. Other liE components are 

more tightly bound and do not have a useful separate existence. We will discuss their features in 

the context of the experiment specification facility in the following section. 

4.3 Experiment Specification 

The components of the liE's runtime environment are powerful but complex. An additional 

facility is necessary to describe the interconnections of the components so that the user can easily 

specify and evaluate an experiment. The Express (Experiment Requirements Specification Schema) 

language provides this facility. The user writes a description of the experiment in this language. 

We call this description the exper£ment schema, hereafter known as the schema; we call the file 

that contains this description the schema file. Examples from a valid schema file example. sch are 

presented; the example file is given in the Appendix. 

A schema file contains six major parts. Each of the parts specifies part of the runtime environ· 

ment of the liE. The six sections are: 

Initialization Section 

The body of this section provides the information necessary to select various initialization op

tions of IIE runtime components. Possible initialization options are the memory size for a particular 

hardware configuration, the number of processors for a multiprocessor hardware specification and 

the per process stacksize limit for an operating system supporting multiple users. The initialization 

section is not supported in the liE implementation. 

Initialization Section from the file example. sch: 

InitSection 
Endinit 
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Stimulus Section 

The stimulus, or workload, exercises the runtime environment and is necessary for any real 

experiment to take place. It is possible to spQcify an experiment that has an empty workload, but 

outside of testing the initialization features of the hardware configuration and operating system it 

is not useful to do this. 

In the stimulus section the user may specify a SoftLab stimulus library and a stimulus program. 

The stimulus library contains routines that the stimulus program imports. The library routines 

each embody a real user workload feature such as I/O-bound code, compute-bound code or code 

exhibiting little locality. The user stimulus program must be a valid Modula-2 program. The 

program may import SoftLab stimulus routines only from the specified library. 

Stimulus Section from the file example. sch: 

StimulusSection 
Library: lowref 
File: /nnc3/nnc/drm/sl/src/Stimulus/main.mod 
EndStimulus 

The stimulus library lowref is selected along with user written driver main.mod. 

Hardware Configuration Section 

The user must choose one of SoftLab's hardware simulators. He must also specify the config-

uration of these components by naming a hardware configuration file. These two selections taken 

together specify a valid hardware simulator, called the base machine. Additional schema file entries 

for the hardware configuration section specify modifications to the base machine. These modifica-

tions consist of pairs of device module file names. The first file name specifies one of the device 

modules that is part of the base machine; it is assumed to be in the base machine directory. The 

second file name specifies a substitute device module and may be an arbitrary path name. The 

resulting hardware simulator consists of the base machine with the specified substitute device mod-

ules. 
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Hardware Configuration Section from the file example. sch: 

HWConfigSection 
Machine: Bmachine 
HD : Bmachine . hd 
DMSubs: 

Bmainmem.dm submem.dm 
Bcpuint.dm subcpu.dm 

EndSubs 
EndHW 

The hardware simulator Bmachine is selected along with its primary hierarchy description file 

Bmachine. hd. Other hierarchy description files for the hardware simulator Bmachine are also pos-

sible, specifying different variations of the same machine. The device module files Bmain.mem and 

Bcpuint.dm are replaced with the files submem.dm and subcpu.dm respectively. The replacement 

files are in the schema file directory since no path components are specified. 

Operating System Configuration Section 

The operating system configuration section is similar to the hardware configuration section. It 

starts with the choice of an operating system from the SoftLab family of operating systems. The 

next selection is the main module of the Modula-2 program that implements the chosen operating 

system. This main module is similar in function to the hierarchy description file for the hardware 

configuration section. The choice of different main modules specifies different variations of the same 

basic operating system. In each case the final program is built from selections from the same pool of 

modules. The user may now choose to substitute modules in the operating system. Since Modula-

2 programs incorporate both definition modules and implementation modules, the user is able to 

substitute for either module type. The resulting operating system consists of the basic operating 

system selected with the specified modules incorporated. 

Operating System Configuration Section from the file example. sch: 

OSConfigSection 
OS: unibatch 
Main: UniBatch.mod 
DefSubs: 

Loader.def /unc/drm/ms_work/Imp/test/subloader.def 
EndDefSubs 
ImpSubs: 
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EndimpSubs 
EndOS 

Loader.mod /unc/drm/ms_work/lmp/test/subloader.mod 

The unibatch operating system and its main module UniBatch. mod are selected. The definition 

module Loader. def is replaced. Notice that here the full path name of the substituted file is given. 

The implementation module Loader.mod is also replaced. 

Sensor Section 

Each of the components of the SoftLab hardware simulators, operating systems and stimulus 

libraries contain sensors. These sensors are embedded code fragments that supply information from 

the runtime system to the experiment manager. In addition, the user may define new sensors. 

These additional sensors could be found in the user stimulus program, substitute device modules 

or substitute operating system modules, Each sensor has a unique name. The experiment manager 

selects the information from the sensors that are of interest to the experimenter. The user may 

name the sensors of interest directly in this section of the schema or indirectly by naming a file that 

includes a list of the sensors after the switch -f. Multiple sensor files are acceptable but they must 

each be proceeded by -f. The documentation for specific Soft Lab components contains lists of the 

sensors for that component. The SoftLab monitor document contains the description of a sensor 

code fragment. 

Sensor Section from the file example. sch: 

SensorSection 
SensorList: 

EndSensorList 
EndS ens or 

1 5 8 
-f senslist 
45 

The sensors 1, 5, 8 and 45 are selected explicitly in this section. The sensors listed in the file 

senslist in the schema file directory are also selected. An arbitrary pathname could have been 

used for the sensor file. 
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Directives Section 

This section specifies the number of runs of the simulation system that are to take place in the 

experiment as well as the variations for each run. The only per run variation that we allow at this 

time is the choice of stimulus. Thus, for example, the user may direct the experiment manager to 

execute the simulation system three times with a different stimulus for each run via three separate 

run-tuples. Each stimulus is a selection from the stimuli built in the stimulus section. The five 

elements in each run-tuple are: first, the base machine; second, the executable operating system file 

name; third, the executable stimulus file name; fourth, the constructed sensor list file name; fifth, 

the output file name. 

Directives Section from the file example. sch: 

DirectivesSection 
RunList: 

EndRunList 
EndDirectives 

("Bmachine", "UniBatch. out", "main. out", "sensors'', "out!") 
("Bmachine" 1 "UniBatch.out" 1 "main. out 11 , "sensors'', "out2 11

) 

Two runs of the simulator are specified in this section. At present the only possible variation 

in these run-tuples is different names for the run output files. In this case the file out 1 will contain 

the output from the first run and the file out2 will contain that of the second. In the future any 

of the run components listed in the run-tuple, the simulator, the operating system, the stimulus, 

the sensors and the output file may change from run to run. The corresponding sections of the 

schema file will also change to allow more than one run component, e.g., two operating systems, to 

be specified. 

Summary 

The schema file contains a complete specification of a SoftLab software experiment running 

under the IIE. Modifications to a schema file represent new experiments. These modified schemas, 

however, make the differences in each experiment clear, and provide an easy means for the user to 

specify a series of experiments in a controlled manner with small variations at each step. The next 

chapter contains a description of the tool that interprets a schema file and prepares the components 

of the experiment for execution. The Appendix contains the description of a valid schema file. 
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4.4 Experiment Preparation 

A schema file describes an experiment by specifying each of the major components of the 

HE runtime system and also by issuing directives of which the experiment manager will take note 

during experiment execution. The program SchemaPrep (see SchemaPrep man page in Appendix C) 

takes this schema file as input and prepares the experiment components for execution. In addition 

to naming the schema file the user may also set command line switches. Setting a switch causes 

SchemaPrep to process the associated section of the schema. IT no switch is set the program processes 

all sections of the schema. Sections of the schema that SchemaPrep ignores, due to switch settings, 

must still contain the correct delimiting keywords. The experimenter invokes SchemaPrep as follows: 

SchemaPrep [ -dhimow] schema file 

The switches have the following meanings: 

-d Interpret the directives section 

-h Interpret the hardware configuration section 

-i Interpret the initialization section 

-m Interpret the sensor section (for monitoring) 

-o Interpret the operating system section 

-w Interpret the stimulus section (the workload) 

The user must also include the directory /usr/softlab/bin in the environment variable PATH 

string. See the Unix manual entry on csh to find out how to do this. 

The SchemaPrep program reports its progress on interpreting the schema to both standard 

output and the file SchemaPrep .log in the current directory. When the program encounters errors 

in a schema file section it reports the difficulty and attempts to parse subsequent sections of the 

schema. The user may call SchemaPrep with the appropriate switches set to parse sections that 

were incorrect on a previous execution. If the file SchemaPrep .log is present SchemaPrep appends 

any new messages to the end of the file. This provides a complete account of the preparatory phase 

of the experiment. 
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If the user first executes SchemaPrep in a directory containing only the schema file, the result 

of a successful parse of the schema is the creation of a number of new sub-directories and files. For 

example, if we started in a directory containing the following files: 

example.sch senslist subcpu.dm submem.dm 

and invoked SchemaPrep on the example described in Chapter 3, a successful parse of the schema 

file would leave us with the following additional files 

SchemaPrep.lownakefile 

and subdirectories 

. exp.Jilgr: 

.hwconfig: 

.osconfig: 

.stimulus: 

senslist 

each containing a makefile and other files. 

suhcpu.dm submem.dm 

Executing the makefile in the schema file directory will cause each of the subdirectory make-

files to execute in turn. If errors cause any of the makefiles to stop before making the associated 

component, the user can correct the problem and then run SchemaPrep on the problem section. The 

higher level makefile will remain, and execution of the makefile will continue with the problem 

subdirectory. When the upper level makefile completes its execution it produces an executable file 

expJngr in the schema file directory. This program executes the experiment as specified in the 

schema. The appendix shows this process in more detail. 

4.5 Experiment Execution 

The user executes the experiment specified in the schema file by executing the program exp..mgr 

( see exp..mgr man page Appendix C ) in the schema file home directory. The experiment will then 

run until all of the requested runs complete. The results of the experiment are written to the files 

named in the run-tuples in the associated schema. In addition to the results files, exp.Jilgr produces 

a file containing a log of the experiment in the same directory. This file is named exp..mgr .log. 

The log file contains information on the experiment specifications, the time the experiment was run 
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and any warning or error messages produced as a result of the execution. The logging mechanism 

is not currently implemented. The user can obtain the same information from the other log file, 

SchemaPrep .log, and from what is printed to standard output during the experiment run. The 

results file contains the formatted output of the experiment with the information requested in the 

sensor section of the schema. In the example execution (see Appendix B) two runs are carried out 

with the names of the output files the only difference. 

The files out 1 and out2 contain the following information: 

• the sensor id; 

• the first time the sensor was reached, in simulation time units; 

• the last time the sensor was reached, in simulation time units; 

• the average time between sensor events; 

• and the number of times the sensor was reached. 

Any execution of an exp_mgr program derived from the same schema will produce the exact 

same result and log files. The only obvious exception is the experiment time information in the log 

file. 

The user may modify a schema file after executing an experiment. SchemaPrep switches are set 

to select the modified sections of the schema for processing. The SchemaPrep .log file will contain the 

new experiment preparation log information in addition to the previous contents. The user should 

delete this file before running SchemaPrep if she wants it to contain just the new information. The 

new exp_mgr program and the files resulting from its execution will overwrite the previous files. A 

user wishing to run more than one experiment using modified versions of the same schema file in the 

same directory should copy each set of log and result files before the next experiment. A full example 

of an experiment from the preparatory phase to completion is in Appendix B of this manual. 

4.6 Error Handling 

SchemaPrep and exp_mgr can produce three types of errors. The steps for the user to take 

are evident from the initial message: she shonld consult the appropriate language manuals, SoftLab 

manuals, or local experts for help. 
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Configuration Errors 

These errors are the result of naming files in the schema that do not exist or do not have the 

appropriate permissions. This includes naming non-existent SoftLab components. Configuration 

errors produce clear messages that pinpoint the difficulty. 

Syntax Errors 

These errors result from incorrect syntax in user written experiment components such as sub

stitute device modules or a stimulus program, and from syntactic errors in the schema file. Syntax 

errors in the schema file may lead to additional error messages associated with subsequent schema 

sections that are correct. The user should correct the schema file at the place where the first error 

occurred and then run SchemaPrep again before attempting any other modifications. 

Runtime Errors 

These are the result of a variety of errors in the user written Modula-2 routines or C language 

routines. 
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5. The Design 

This chapter presents the overall design of the IIE introduced in Chapter 4. We include herein 

materials on the design of the tools for specifying and managing an experiment, the modification 

and incorporation of the main components presented in Chapter 3, and the design of the stimulus 

and monitoring facilities. We assume the reader is familiar with the definitions and terminology 

presented in the previous chapter. 

5.1 Experiment Support 

The IIE requires tools to support experiment specification and management, in addition to a 

set of experiment components (e.g., hardware simulators). The framework for the design of these 

support tools (including those for the contents of the schema file) derives from the work of Segall, 

et a!, at Carnegie Mellon University on the design of an liE [17]. 

The experiment process seems to fall naturally into five main steps: 1) the specification of the 

experiment; 2) the preparation and testing of the specified experiment components; 3) the construe~ 

tion of the experiment components; 4) the execution of the experiment; and 5) the presentation of 

the experiment results. We now discuss each step in more detail. 

• The first step involves analyzing the requirements of an experiment and then writing the ap
propriate specification. The specification of the experiment, termed the experiment schema, is 
written in the Express language. 

• In the second step, component specifications are checked, and necessary preparation for com
ponent construction (e.g., moving files to a particular directory) takes place. The SchemaPrep 
program carries out the duties for step two. 

• During the third step, the actual construction of each component occurs. The UNIX make 
utility provides the function for this step, including the conditional processing necessary to 
avoid repeating the checking and preparation of all components when only one requires it. 
Handling the experiment preparation phase in this way supports a batch oriented approach 
to each stage of the experiment process, and is vital if fifty students will carry out the same 
experiment over the period of a week or two. 

• Managing an experiment requires experiment initialization, execution and run-time control. 
These tasks are well suited to an implementation with multiple processes, each with separate 
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duties. The incorporation of inter-process communication into the design is beyond the scope 
of this thesis and must be left for future work. For this reason, the design for the experiment 
manager program exp..mgr should admit a straightforward uni-process implementation. 

• The data collected during an experiment execution may require significant post-processing to be 
comprehensible, and depend on a sophisticated data storage mechanism along with a powerful 
data processing tool. The design and implementation of such tools is beyond the scope of 
this thesis. The analysis and presentation of data in this design is simple enough to require a 
minimum of implementation effort, though still support real experiments. 

5.2 Experiment Specification 

Schema Design Gonsz"derations 

The design of the schema was directed by three primary considerations, namely: 

• that it support the specification of a wide range of 0 JS experiments; 

• that it allow easy extension to encompass new experiment components; and 

• that it be readable and self-explanatory. 

The Schema Contents 

The specification of an 0 JS experiment starts with the selection of the experiment components. 

The operating system, hardware simulator, and stimulus are the primary elements and require 

attention in the schema. The schema must also provide the means to direct the monitor to collect 

the necessary data during an experiment run. Real experiments may consist of related sets of 

runs; therefore, the schema should enable a user to specify multiple runs of an experiment, where 

each run may contain different selected components. Particular components of an experiment may 

include instantiation parameters, allowing, for example, the selection of the number of processors in 

a multi-processor configuration or the per-process stack size limit in a multi-user operating system. 

Separate sections in an experiment schema distiguish experiment configuration, data collection, 

and management specifications. Breaking the schema into distinct sections provides easy extension; 

we can add a new section without interfering with the contents of the others. 
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Initialization Section 

Within this section we are able to set instantiation parameters. The design does not provide 

more than the existence of this section at this time. Design decisions of greater detail should await 

additional component specifications. It is too difficult at this time to gauge the range of possible 

instantiation directives. 

Stimulus Section 

The selection of a SoftLab stimulus library and a particular file that uses routines from the 

library constitutes the specification of a give workload. The stimulus library designers can provide 

as extensive a set of individual routines as they see fit. It seems more appropriate to keep this 

section simple and leave the workload complexity issues to stimulus writers. The design can easily 

encompass modifications to allow the specification of more than one workload through minor changes 

to the Express language and SchemaPrep. 

Hardware Configuration Section 

The Soft Lab approach for 0 /S experiments includes the notion of a set of hardware simulators 

from which the experimenter selects. Since there may exist more than one hierarchy description file 

for a particular simulator, this section includes the selection of this file in addition to the particular 

machine. A list of device module substitutions in this section allows the selection of a machine vari~ 

ant. This section along with possible instantiation parameter settings should provide the necessary 

range of hardware selection. 

Operating System Configuration Section 

The content of this section follows from the structure and intended use of the Soft Lab family of 

operating systems. We allow the selection of an operating system by name, followed by the selection 

of a main module, since more than one may exist. Modula·2 programs contain both definition and 

implementation modules; this calls for a section for each type of module substitution. Additional 

selection specifications do not seem necessary. 
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Sensor Section 

We include sensor files in the sensor list for experiments requiring the enabling of a common 

subset of sensors. A simple extension will allow for the construction of more than one sensor list. 

Future designs may also include the ability to enable and disable sensors while a run is in progress. 

The design of such a feature is beyond the scope of this thesis, since it involves complex interactions 

among the components during a run. 

Directives Section 

This section was the most difficult to design. The choice to compose a list of run-tuples spec

ifying the experiment components wa.s due in part to ease of implementation. This design does not 

require any re-building of components or inter-process communication to provide different experi

ment characteristics for each run. Minor changes in the design of the earlier sections of the schema 

can allow for multiple instances of each component. The individual entries in each run-tuple will be 

selections from pools of each component type. The consistency checking that one would like among 

multiple runs with different components is not supported. 

The Schema Language {Express} 

The Express language is a minor component in the overall liE design. Its features support the 

above specified schema contents, as well as a simple implementation. Designing a formal language for 

software systems experiment design constitutes a dissertation, not a thesis component. The schema 

design will certainly change, due to tool use and further SoftLab tool design; hence the language 

will also change. This provides further motivation for expending a minimum of effort on the design 

of Express. 

The keyword approach makes for very simple parsing in the implementation. It also supports 

the ease of extension that is useful in a prototype design and implementation. One :H.aw in the design 

lies in its not supporting comments. 
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SchemaPrep 

The SchemaPrep program reads the schema file and prepares for the construction of each of the 

experiment components. The idea for a separate program to prepare for component construction 

comes from Dr. Satyanarayanan's hardware simulator construction tool [16]. The program processes 

each section of the schema file separately. When an error occurs in one section of the schema the 

program may continue, depending on the nature of the error, to process the remaining schema 

sections, thereby isolating the parsing of as much of the schema as possible. Command line switches 

explicitly direct the processing of only selected sections. The user avoids the repeated parsing of 

correct sections by setting the correct switches. 

The SchemaPrep program constructs hidden subdirectories under the current directory in the 

fashion of the Cambridge Modula-2 system [14[. Each subdirectory holds the files necessary for the 

preparation and construction of one run-time component. The user may ignore the contents of these 

directories. The sophisticated experimenter may make modifications in the directories contents, 

although this invalidates most of the consistency checking the liE tools currently provide. We felt 

that the user should have easy access to the component files, during early use of this tool, for error 

checking and modification suggestions. 

The execution of SchemaPrep causes the files makefile and SchemaPrep.log to appear in 

the current directory. The makefile supports the actual component construction stage of the 

experiment. The SchemaPrep .log file contains a log of the SchemaPrep program execution. This 

log provides useful documentation and supports a batch oriented execution. The contents of the 

sub-directories follow in the next sections. 

The .exp_mgr Directory 

The expJilgr program carries out monitoring directives. The file sensor in the .exp_mgr subdi

rectory contains the enabled sensor list. A change in the design will allow multiple lists in the one file 

or multiple sensor list files with appropriate names. The file main. c contains the schema run-tuple 

information and permits an easy implementation of the multiple runs per-experiment feature. The 

file makefile supports the UNIX make utility used in the next stage of component construction. 
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The .hwconfig Directory 

After running SchemaPrep this directory contains a copy of the selected hierarchy description 

file, a . c file related to the hierarchy description file, symbolic links to each of the device module 

files for the selected simulator, and a makefile to construct the simulator. The hierarchy descriptor 

file is a copy since device module substitutions require changes in its contents. The use of symbolic 

links for the device module files supports efficient use of the file system. The makefile and the . c 

file are the result of a component in the hardware simulator tool set. Their creation is not explicit 

in the design. 

The .osconfig Directory 

Symbolic links associate all of the components of a particular operating system with the . os

config directory, with the exception of the main module. We use a copy of the main module to 

keep the design parallel with that for the simulator. The final specification for the contents of the 

main module was not known at the time of this design; it may permit, or perhaps require, useful 

modifications when making substitutions for the other modules. The parallel design of the compo

nent construction phase for both the simulator and operating system will aid in understanding and 

ease of implementation. A Modula-2 utility program requires the presence of the m2path file and 

constructs the makefile. 

The .stimulus Directory 

A copy of the user main module file resides here, as well as the supporting m2path file and 

makefile. A set of subdirectories under the . stimulus directory could easily support multiple 

workloads. 

5.3 Experiment Component Construction 

A successful execution of the program SchemaPrep places all of the necessary files, or links to 

them, in the appropriate sub-directory for each tool component. In addition, a makefile is in place 

in the experiment directory and in each sub-directory. The invocation of the main makefile in 
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the experiment directory with the UNIX make utility program will result in the invocation of the 

makefiles in each of the sub-directories. 

The top-level makefile provides the main control facility for component construction. Execut~ 

ing make with no arguments causes make to execute in each of the sub-directories. A file Make .log 

collects the output of the make programs and provides documentation on the component construc

tion process. This file also supports batch oriented component construction. The user can invoke 

the make program and put it in the background to execute. At some later point, she can examine 

the contents of the Make .log file to ascertain which components were successfully constructed and 

which components contain errors that prevent their construction. 

The execution of the make utility in a sub-directory will cause the re-construction of the associ

ated component only if a change occurs in a depending file. This conditional execution is a feature 

of the make utility and its associated makefile. There is no need to provide any additional facility 

to support efficient component construction. Although the casual user should not tamper with the 

makefiles, these files do provide additional control to the sophisticated user to make modifications 

to experiment components that are not supported in the current implementation. 

The exp..mgr is the only component that does not reside in its sub-directory. The top level 

makefile causes it to move to the experiment directory since its invocation actually executes an 

experiment. The other components are all manipulated by this program. 

5.4 Experiment Execution 

The experiment execution facility was the most difficult to design. The ideal facility would 

provide control over all parts of the simulation and all simulation components. To implement this 

requires an extensively instrumented hardware simulator, operating system, stimulus, and monitor. 

The design of such components and the means of their manipulation is far beyond the scope of this 

thesis. The experiment execution facility was therefore restricted to have no control at all during an 

individual run of an experiment. This decision allowed the current SoftLab hardware simulator to 

be used with only minor modifications and permitted an execution to take place without requiring 

inter-process communication. 
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After this decision, it was necessary to decide what kind of inter-run control should be provided. 

Section 5.2.8 presents the main reasons for the chosen approach. 

Exp_mgr 

The exp_mgr program executes an experiment. It first creates symbolic links in the experiment 

directory to the stimulus and operating system M-code files. These links can change between each 

run if the corresponding run-tuples in the schema file contain different operating system or stimulus 

selections. These links, along with the other configuration information contained in the current 

associated run-tuple, provide all of the information that is necessary for the start of the current 

simulation. The simulation now runs to completion. The file sens. out contains the record of 

the sensor invocations. The contents of this file are now interpreted by the exp_mgr program to 

produce the output for the current experiment run. The output is written to a file named in the 

associated run-tuple for the current run. The use of the file sens. out provides great flexibility for 

the implementation of the data analysis and presentation phase of the experiment. 

5.5 The Primary SoftLab Components 

The current SoftLab operating system and hardware simulator required minor modification to 

permit their integration in the liE. For the most part, these modifications were driven by the selected 

embedded sensor design. 

The Operating System 

The SoftLab family of operating systems was designed with the SoftLab hardware simulator 

tool in mind. The design of the other run-time components, e.g., the monitor, was not complete at 

the time the operating systems were designed. This leads to minor modifications to the two current 

operating systems, Unibatch and Multibatch. Sensors, short Modula-2 code fragments, installed in 

the source code for the operating systems, will support the appropriate collection of data. Using 

code fragments provides easy modification or addition of sensors to support particular experiments. 

A standard set of sensors, with unique identifiers, for the operating systems has not been determined 

at this point. 
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The Hardware Simulator 

The hardware simulator contained an internal monitor mechanism when received from Dr. 

Satyanarayanan. The modification of this mechanism should drive the design of the sensor facility 

in the simulator. The current design, for reasons of time, ignored this mechanism and relied on the 

addition of C code fragments for sensors. This provides the same ease of modification and addition 

as in the operating systems. 

5.6 Additional Component Design 

The Workload 

The design of a full workload facility encompassing a family of operating systems and related 

hardware simulators is beyond the scope of this thesis. The properties of each of the run·time 

components, as well as the current SoftLab M-eade interpreters in the hardware simulators, would 

have to be carefully studied to ensure that particular M-code stimulus routines had the desired 

characteristics. The current design concentrated on the stimulus selection mechanism rather than 

on the content of the stimulus routines. For this reason, the design specified Modula·2 routines as 

the building blocks for the stimulus libraries and supported the compilation of a Modula-2 workload. 

The main components of the schema interface to the stimulus facility were designed to support a 

smooth transition to M-code library routines. The user will still provide the control skeleton for the 

workload and select library routines with particular characteristics. 

The Monitor 

During the design of the monitor we encountered many of the same issues as we did during the 

design of the experiment manager. The monitor will collect information from experiment components 

implemented in different languages. Ideally, different kinds of data, i.e., data from different sensors, 

should be accessible at different times during the same experiment run. A valuable feature of a 

monitor in this experiment environment would support selection of data from particular sensors 

based on the current data being received. These issues led to design difficulties that could not be 

easily overcome within the constraints of the current thesis. The current design permits the selection 

27 



of different sensors on a per-run basis. A design extension involving extensions to the schema and 

the monitor should be possible to allow selection of different sensors during the course of the same 

run. An extension to support sensor selection based on current data does not seem possible with 

the present approach. An overall design that supported a multiple process design with inter-process 

communication would be necessary to efficiently provide this extension. Section 6.6 in Chapter 6 

looks at the implementation issues that affected the design of this component. 

5. 7 Design Evaluation 

The design supports a workable implementation and provides an environment in which real 

experiments may be carried out, thereby meeting the primary goals set forth in the associated thesis 

proposal. A more ambitious design that addresses many of the problems pointed out in this chapter 

was originally intended. However, the necessity of a more focused design soon became apparent. 

Therefore, the overall mechanism of the liE became the primary focus of the thesis. 

Overall the design meets the requirements set out in Chapter 2. An experimenter has the tools 

at hand to 

• specify an experiment: SchemaPrep; Express Language. 

• coD.struct an executable simulator: 0/8 family; Hardware Simulator; Workload Libraries. 

• perform and evaluate an experiment: Monitor; exp_mgr. 

In addition we used the UNIX makefile utility and options to SchemaPrep to easily modify and 

rerun existing experiments. 

D<Bign Strengths 

The modular structure of the liE components is the greatest strength, since it supports compo

nent extension and enhancement. Progress in extending or enhancing the design would be very slow 

if minor changes led to modifications in each of the components. We expect the design to grow and 

change as new SoftLab tools become available. Experiments that require multi-processor simulators 

and process oriented operating systems are a natural outgrowth of the modular design. 

A second strength of the design also follows from the modularity. The modular design supports 

easy debugging and quick turn around time when synthesizing a particular simulator. If the user 
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had to remake each of the HE components each time she encountered errors in a component or 

component interface, very little experimentation could take place. For the student, the task would 

be to get the simulator running. The evaluation of the experiment and the lessons it might hold 

would become secondary. 

Design Weaknesses 

The inability of the experiment manager to influence the run-time components during a run 

is the major weakness in the design. The ability to effect changes in the simulator as a result of 

data received by the monitor is desirable. Experiments related to run-time tuning of component 

function are then possible. Experiment variations on a per·run basis can be too coarse for complex 

experiments involving many parameters. We feel that this weakness will become more problematic 

as the components grow in sophistication. 

Another weakness that contributes to the problems with the exp.JIIgr mentioned above stems 

from allowing major liE components to be specified in different high-level languages. On a superfi

cial level portability is clearly an issue. On a more fundamental level interprocess communication is 

very difficult when the processes involved are written in different languages. An inter-process com

munication facility of some type will surely be necessary to provide intra-run modification supports. 
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6. The Implementation 

The design of the liE focuses on the experimental specification and execution process rather 

than on the function of the particular components of the experiment. Restricting the focus in this 

way allows for the completion of the design within the framework of this thesis. A similar restriction 

applies to this first implementation of the liE. In this chapter, we present the major implementation 

decisions, as well as implementation details for each of the experiment components. Code fragments 

are often appropriate as part of the detailed exposition of the implementation. Those fragments 

included in subsequent sections of this chapter do not contain all of the comments and error handling 

statements that are in the actual implementation. We will evaluate the current implementation in 

the last section of this chapter. 

6.1 Major Implementation Considerations 

The completion ofthe Soft Lab M-code compiler, the UniBatch operating system, and the Bma

chine will produce the first fully working implementation of the SoftLab liE. The first implemen

tation of the SoftLab liE contains sufficient function to be useful to both researchers and teachers. 

Extensive use by these two groups during the IIE development will lead to early detection of design 

flaws and critical implementation requirements. We felt that it was more important to implement 

a prototype liE than to refine the liE design, or extend its domain. A partial implementation is 

presently operational and was the basis of the experiment example in Appendix B of the liE User 

Manual presented in Chapter 4 of this paper. 

The UNIX program design philosophy calls for making use of existing tools to design new ones. 

In ths spirit, we incorporated numerous UNIX utilities, e.g., sed and make, into small C programs 

for quick implementation of the liE. In addition to speed, this approach provides a very flexible · 

framework for future modification. Future SoftLab designers and implementers c·an use the present 

implementation as both the model for a production level implementation and also as a base for 
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liE design modifications and extension evaluation. The modular character of the implementation 

supports quick and easy incorporation of different implementations of particular functions and/or 

components. 

The potential use of the IIE by whole classes of students requires that it work efficiently iu 

both space and time. Symbolic links, a feature of the UNIX BSD4.2 file system, provide a simple 

mechanism to share files and avoid unnecessary copying. The use of these links, along with minimal 

use of intermediate support files, keeps disk resource use to a minimum. Design decisions regarding 

the splitting of the experiment process into preparation, integration and execution phases, as well as 

the selective nature of the SchemaPrep and make programs, lead to a time efficient implementation. 

The three primary support tools may all be run iu the background, and hence may be scheduled 

to run during nighttime hours. Once an experiment begins execution, the overhead of the exp...mgr 

program is negligible in comparison to that of the operating system or hardware simulator. 

The judicious use of symbolic links helps prevent the occurrence of potential security and 

inconsistency problems. Access to files via symbolic links falls under the same access permission 

restrictions as the origiual file iustance. The possibilities of accidently modifyiug a file required by 

others or picking up the wrong version of a file are reduced substantially. 

This implementation is flexible, easily modifiable, quite efficient in use of resources, and rea

sonably secure. These criteria were applied to select the proper path to take at each phase in the 

implementation process. 

6.2 Experiment Specification 

The program SchemaPrep reads the schema file a string at a time, where a string is any sequence 

of characters bounded by white space (see Appendix A of the SoftLab IIE User Manual for a 

description of white space). Express language keywords provide the structure necessary for parsiug 

the iuput. 

The keystruct structure contains: the bounding keywords for each main section in the schema, 

a pointer to the function responsible for processing that section, the associated command line switch, 

and a descriptive string for messages. An array of keystruct structures, keylist, is defined in the 
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header file schemaprep. h. 

struct keystruct { 
char *keyword; 
char *delimit; 
int (•keyfunc)(); 
char sw _char ; 
char *desc; 

I• Section Start Keyword •I 
I• Section End Keyword •I 
I• Associated Procedure •I 
I• Associated Command Line Switch •I 
I• Descriptive String •I 

} key list[] = { 

} ; 

"BeginSchema", NUll., BeginProc, NULL, NULL, 
11 InitSection11 , 11 End!nit", InitProc, 'i', 11 initial 11 , 

"StimulusSection", "EndStimulus'', StimProc, 'w', "stimulus 11 , 

"HWConfigSection", "EndHW", HVICProc, 'h •, "hardware 11 , 

11 0SConfigSection 11 , "EndOS", OSCProc, "o •, ''operating system", 
"SensorSection'', "EndSensor", SensProc, 'm', "sensor", 
"DirectivesSection", "EndDirectives", DirProc, 'd •, "directives 11 , 

"EndScherna", NULL, EndProc, NULL, NULL 

The entry for the hardware section of the schema contains the beginning keyword HWConfigSection 

and the ending keyword EndHw. The procedure HWCProc processes the body of the hardware 

configuration section. 

HVICProc() 
{ 

} 

I• Create the hidden directory for the hardware component •I 
mkdir(" .hwconfig" ,0755); 
fprintf (stdout, "In HWCProc \n"); 
fprintf(lfp, "In HWCProc \n"); 

I• Process the body of the section •I 
hwcprep(sfp,lfp); 

Actions that are part of the section processing but do not rely on the content of the section are 

performed first. The creation of the hidden directory is the only such action for the hardware 

component. The procedure hwcprep(), which processes the body of the section, has as parameters 

pointers to the schema file, sfp, and the log file, lfp. The procedures for the other sections of the 

schema are similar to HWCProc and hwcprep. 

The UNIX system routine supplies the actions required for the main body processing for each 

schema section. The following code fragment is part of hwcprep () from the file hwcprep. c. 

strcpy(command."filesubs 11 ); 

strcat(comrnand,buffer); 
strcat(command," 11); 
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strcat(command,buffer3)i 
strcat (command," "); 
strcat (command, 11 .hwconfig"); 
strcat (command, 11

/
11

) i 

strcat(command,hdfile); 
system(command); 

Invoking system() executes the program filesubs that modifies the hierarchy description file 

in the hidden directory .hwconfig. The modification consists of substituting one device module 

name for another as specified in the schema. The program file subs is a shell script that makes use 

of another UNIX utility, sed, to actually make the substitution. The body of file subs follows. 

# Substitute string $2 for string $1 in file $3. 
sed -e "/$1/s?$1?$2?" $3 >! temp 
cp temp $3 
/bin/rm temp 

The procedures, programs, and code fragments listed above illustrate the rapid prototyping 

approach taken in implementing the SchemaPrep tool, based on existing UNIX utilities. 

6.3 Experiment Component Construction 

Along with the related makefiles, the UNIX make utility program supports the implementation 

for the component construction phase of the liE. The schema directory level makefile actually 

invokes each component makefile via a shell script. The scripts redirect the output of the component 

make invocations to the file Make .log in the schema directory. The contents of the main makefile 

and the shell script that invoke make in the hardware hidden directory follow. 

Main makefile 

all: 

clean: 

touch Make.log # Create the log 
makehw.sh # Invoke make 
makeos. sh # Invoke 
makestim. sh # Invoke 
makeexpmgr. sh # Invoke 

/bin/rm -f -r . exp...mgr 
/bin/rm -f -r .hwconfig 
/bin/rm -f -r .osconfig 
/bin/rm -f -r .stimulus 
/bin/rm -f Make.log 

make 
make 
make 

/bin/rm -f OS.mcd Stimulus.mcd 
/bin/rm -f sens.out sim.log 
/bin/rm -f exp...mgr 
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Shell Script makehw .sh 

cd .hwconfig; make "HOME /usr/softlab" »II: .. /Make.log 

6.4 Experiment Execution 

Main Program Module 

The experiment manager directives section of the schema contains part of the entry procedure 

call to the supporting library routines. The run-tuples in the DirectiveSection section of the 

schema are the actual parameter lists to a procedure. The SchemaPrep program concatenates 

the string Do Run with each run -tuple, and writes the resulting string to the file main. c in the 

experiment manager hidden directory . exp..mgr. The following is an example of the contents of the 

main. c file following an execution of SchemaPrep. 

main() 
{ 
DoRun( 11 Bmachine 11 , 11 UniBatch.out 11 , 11 main. out", 11 sensors 11 , "outl"); 
DoRun( 11 Bmachine 11 , "UniBatch.out", "main. out", "sensors", 11 out2 11 ) i 

} 

Running make in the .expJilgr directory causes the compiling of the file main.c and the linking 

with the experiment manager library to produce the executable file . expJilgr. The makefile below 

contains all that is necessary to produce . exp...mgr in the schema directory. 

LIB= /unc/drm/sl/lib/libexpcmgr.a 

install: main.o $(LIB) 
cc main.o -o expJilgr $(LIB) 
mv exp...mgr .. 

Library Routines 

The library entry routine, Do Run, contains three main sections, accomplishing simulation prepa-

ration, simulator invocation, and simulation output processing. 

• The preparation section links the files containing the M-code for the operating system and the 
stimulus to files in the schema directory. Symbolic links to files in the schema directory hide 
the hidden directory structure from the simulator so that changes in the directory structure 
will not cause modifications in the simulator. 

strcpy(buffer, 11 .osconfig/ 11 ); 

strcat(buffer, os); 
symlink(buffer, 11 0S.mcd 11 ) i 

34 



strcpy(buffer, 11 ,stimulus/ 11 ); 

strcat(buffer, stim); 
symlink(buffer, 11 Stimulus.mcd11 ); 

The main memory device module in the simulator expects to find OS.mcd and Stimulus.mcd in 
the current directory. The schema directory must be the current directory when the simulator 
executes. 

• The experiment manager forks off a process to do the simulation. The experiment manager 
then waits until the process is complete before attempting to process the output. 

pid = fork(); 

if (pid == 0) { 

I• in child •/ 
execl(simbuf, simbuf, 11 -d11 , 11 10011 , 0); 

} 
else { 

} 

if (wait(O) != pid) 
else { 

ProcessOutput(out, sensbuf); 
} 

The system utility execl overlays the current text segment in the newly forked process with 
the executable code in the process indicated by the contents of simbuf. The string in simbuf 
contains the full path to the executable hardware simulator in the hidden directory . hwconfig. 

• The procedure ProcessOutput reads in the sensor information and prints out a processed sensor 
report. The active sensor list is read from the sensor file in the . exp...mgr directory. 

for (i=O; i<MAX_SENSORS; i++) 
arr[i].id = -1; 

while (fscanf(sfp, "%d", !mewid) != EOF) { 

if (newid >= MAXJlENSORS) { 
continue; 

} 

arr[newid] .id = newid; 
arr[newid] .first = 0.0; 
arr[newid].last = 0.0; 
arr[newid] .avg = 0.0; 
arr[newid] .count = 0; 

} /• end while •/ 

Each arr array entry contains a structure for the information collected from one sensor. The 
id field of the structure distinguishes between sensors selected in the active sensor file, pointed 
to by sfp, and those not selected, i.e., those with an id set to negative one. 

while (fscanf(ofp, "%d,%f", kinst, kstime) != EOF) { 
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if (inst >= MAX_5ENSORS) { 
continue; 

} 

if (arr[inst].count == 0) 
arr[inst].first = stimej 

arr[inst].count += li 
arr[inst] .last = stime; 
arr[inst] .avg = (stime - arr[inst] .first) I arr[inst] .count; 

} /• end while •/ 

The sensor output of the simulation is in the file pointed to by ofp. Each valid sensor record, i.e., 
the value of the sensor identifier is less than MAX..SENSORS, causes an update to the appropriate 
sensor structure. The active sensor list has no bearing on the processing of sensor information 
in the sensor output file. The output report code prints the sensor information only for those 
structures with an id field not equal to negative one. Processing all sensor information supports 
different implementations where information from the sensors loads directly into a database. 
The resultant queries to collect output report information would result from the contents of the 
active sensor list. 

6.5 Primary SoftLab Components 

The Hardware Simulator 

The hardware section of the schema specifies a base machine selected from the SoftLab rna-

chine collection, and possible device module substitutions. The associated implementation task is to 

build an executable simulator from the proper components. Creating symbolic links in the hidden 

directory .hwconfig to the correct device module and hierarchy description files provides all of the 

components. The CPU module must contain the proper interpreter for the specified workload and 

operating system. As the user is responsible for specifying the correct components in the schema, 

the implementation contains no consistency checking mechanism. The main memory modules must 

contain the correct memory configuration and also the correct paths to the workload and oper· 

ating system M-code files. Section 6.4 presents the solution to the main memory and M-code file 

consistency problem. Section 6.6 discusses the current handling of sensors in the hardware simulator. 

The Operating Systems 

There is currently no facility to insert sensors into the operating system. We felt that such 

a decision could better be made with a Modula-2 to M-code compiler in hand. To be amenable 

to the IIE implementation, the operating system does not require any additional modification. As 
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mentioned in section 6.6, the user is responsible for specifying an operating system that is compatible 

with the other selected run-time components. 

6.6 Additional Tool Implementation 

Workload Library 

The workload library must consist of M-code routines in order to behave in accordance with 

performance requirements. A library of Modula-2 routines would have performance characteristics 

that are dependent on the current Modula-2 toM-code compiler. It is probable that desired workload 

characteristics would not be attainable given a particular compiler. To generate a full library in 

M-code that contains routines covering the range of necessary performance characteristics would 

comprise a Master's Thesis in itself. The current implementation contains Modula-2 routines simply 

to demonstrate that the mechanism works. An additional file contains M-code instructions to exercise 

the sensor handling function of the M-code interpreter in the CPU module. 

The Monitor Facility 

The current implementation prints time-stamped information to a file for each sensor that the 

simulation reaches. The print statements are built into the simulator code. An M-code instruction 

will be modified and used for the sensor entries in the workload and in the compiled operating 

system. The SoftLab operating systems will require the incorporation of the necessary sensors, and 

the Modula-2 compiler must also change so as to recognize a Modula-2 sensor instruction. 

6.7 Implementation Evaluation 

Implementation Strengths 

The flexibility of the implementation is its main strength. The implementer may easily sub

stitute shell scripts, C code, or UNIX utilities for existing components. A flexible implementation 

is very important since we expect the implementation to change as new SoftLab tools come into 

being and the IIE takes on a wider range of uses. The modular structure of all the IIE components 

supports the ease of modification. The rapid prototyping approach that we took also led to a less 

rigid design since it resulted in a large number of external procedure calls. 
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The current implementation also supports easy extension. As more and more users experiment 

with the system, future implementers can promote more segments of the implementation to well~ 

tuned C code. The overhead associated with calling the system utility and invoking shell scripts 

will then disappear. 

Implementation Weaknesses 

The component tool modification mechanisms are not sufficiently general. Various mechanisms 

are necessary for each component, and keeping modifications consistent is not easy. For example, 

sensors having the same identifier may be added to different components. No mechanism is in place 

that can check the current sensor set for conflicts. This in not a major weakness but may cause 

unnecessary confusion. 

There is also no consistency checking mechanism to ensure that the workload, operating system, 

simulator, and sensors actually correspond to each other. This particular weakness will become 

more important as users start running experiments that entail a large number of different runs with 

differing components. 

The current SoftLab Modula-2 to M-eade compiler is not yet in place. A full test of the 

implementation is not possible without a working compiler, so that an operating system and workload 

can actually run on the simulator. The first full test may bring to light further inadequacies in the 

implementation that are currently hidden. 
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7. Conclusion and Future Work 

We set out to design and implement a set of tools that comprises an Integrated Instrumentation 

Environment. We have successfully completed this task. Chapter 5 presents the design of the IIE 

and Chapter 6 presents the implementation. Chapter 4 illustrates the possible uses of the IIE in 

the sections describing the contents of the schema file. The various run-time systems, together with 

the possible monitor and experiment manager directives, that may be selected in a schema support 

a wide range of software and hardware configuration experiments. We developed EXPRESS as the 

experiment schema specification language to assist the user in experiment design. 

The prototype of the IIE meets the functional requirements set forth in Chapter 2, as evidenced 

in the sample experiment run in Appendix B. Even though the M-code for the operating system 

and the stimulus were not available, a simple substitution of another M-code file allowed the sample 

experiment to complete. The ease of the substitution itself illustrates the flexibility of the implemen

tation. Besides being useful in its own right the current liE is a valuable tool for evaluation of future 

IIE's for SoftLab. The modular and flexible IIE permits modifications to design or implementation 

elements to test new ideas. The final sections of chapters 5 and 6 evaluate the implementation in 

more detail. 

7.1 Future Work 

We designed this IIE with operating systems experiments as the primary focus. However, we 

had other software system experiments in mind - most notably those related to compiler design. 

A valuable extension would tie the code generation phase of a compiler to the specification of the 

M-code interpreter on the target simulator. A new section in the schema containing interpreter 

directives, together with a modified SchemaPrep program, would then effect the appropriate modi

fications to the interpreter in the CPU device module of the selected hardware simulator. 
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Two functions currently relegated to the expJilgr program are to process and present experiment 

data to the user. A new, more powerful program, taking over these functions, would take data and 

processing directives from the exp..mgr and provide sophisticated processing and result presentation. 

The schema would contain processing directives in the sensor directives section. No other component 

of the liE would need to be changed. 

Selected operating systems, simulators, and workloads must correspond if they are to work 

correctly together. The IIE user would like to know that the current set of sensors is consistent. 

The addition of consistency checking to the implementation could prevent many potential problems 

from Occuring. We expect additional consistency problems to arise as the liE grows to comprise 

more components. 

A multi-process implementation of the exp..mgr program with inter-process communication 

support would provide access to the run-time components during an experiment run. A wide range 

of design decisions related to experiment control would arise if such an implementation existed. 

The above modifications would extend the utility and the function of the liE. However, none 

of these modifications are necessary to make the current liE useful or efficient. The SoftLab liE is 

a powerlul and usable tool in its current form for both educational and research applications. 
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Appendix A 

Express Language Syntax 

This appendix provides the syntax for the Express language, a description of valid file contents 

for required files and valid file names. Terminals are in bold and italics. The terminals in italics are 

defined informally at the end of the listing, e.g., slstimlib. Those in bold are reserved keywords in 

the language, e.g., BeginSchema. The remaining strings are non~terminals, e.g., stimlib. 

schemafile 

initsect 

stimsect 

hwsect 

ossect 

sensect 

dirsect 

stimlib 

stimfile 

hw 

hwhd 

hwdmsubs 

OS 

osmain 

osdefsubs 

osimpsubs 

senslist 

runlist 

dmsub 

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

BeginSchema initsect stimsect hwsect ossect sensect 

dirsect EndSchema 

InitSection Endlnit 

StimulusSection stimlib stimfile EndStimulus 

HWCon.figSection hw hwhd hwdmsubs hwmodsubs EndHW 

OSCon.figSection os osmain osdefsubs osimpsubs End OS 

SensorSection senslist EndSensor 

DirectivesSection runlist EndDirectives 

Library: slstimlib 

File: userfile 

Machine: slmachine 

HD: slmachinehd 

DMSubs: dmsub* EndSubs 

OS: s/os 

Main: slosmain 

DefSubs: osdefsub* EndDefSubs 

lmpSubs: osimpsub* EndlmpSubs 

Sensor List sensentry* EndSensor List 

RunList runentry* EndRunList 

devicemodule userfile 
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osdefsub .. - definitionfile userfile 

osimpsub .. - impfile userfile 

sensentry .. - slist I sfile 

run entry .. - ( "slmachine", "slosmain", "sensin", "userfile") 

slist .. - number* 

Terminals: 

slmachine 

slmachinehd 

devicemodule 

slos 

slosmain 

definitionfile 

imp file 

sfile 

slstimlib 

user file 

number 

The name of one of the SoftLab simulators. 

The name of a hierarchy description file for the selected simulator. 

The name of a device module for the selected simulator. 

The name of a SoftLab operating systems. 

The name of a main module for the selected operating system. 

The name of a definition module for the selected operating system. 

The name of an implementation module for the selected operating system. 

The name of a file containing an slist. 

The name of one of the SoftLab stimulus libraries. 

The name of a user supplied file. 

A number is an unsigned integer. 

White space consists of blanks, tabs and new lines. The name of a file can be an arbitrary 

path in the file system and is not to be quoted. Relative path names are relative to the directory 

containing the schema file. Names, not specifically file names, are identifiers of SoftLab components. 
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Appendix B 

The Design and Execution of a Sample Experiment 

The following example experiment contains two separate runs that differ only in the names of 

the output files that they produce. In this typescript, the followiug steps are performed: 

• the current contents of the schema file directory are listed 

• the contents of file senslist is printed 

• the contents of the schema file, example. sch, is priuted 

• the program SchemaPrep is executed 

• the new contents of the schema file directory are listed 

• make is executed 

• the new contents of the schema file directory are listed 

• the exp...mgr is executed 

• the final contents of the directory are listed 

• the contents of the two experiment output files are listed 

In this script, text typed by the user is bold italics. 

%Is -a 
senslist 

% cat senslist 

12 
24 

% cat ezample.sch 

BeginSchema 

InitSection 
Endinit 

StimulusSection 

subcpu.dm 

Library: lowref 

submem.dm example. sch 

File: /unc3/unc/drm/sl/src/Stimulus/main.mod 
EndStimulus 

HWConfigSection 
Machine: Bmachine 
HD : Bmachine . hd 
DMSubs: 
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EndSubs 
EndHW 

OSConfigSection 

Bmainmem.dm submem.dm 
Bcpuint.dm subcpu.dm 

OS: unibatch 
Main: UniBatch.mod 
DefSubs: 

Loader.def /usr/softlab/src/OS/unibatch/Loader.def 
EndDefSubs 
ImpSubs: 

Loader.mod /usr/softlab/src/OS/unibatch/Loader.mod 
EndimpSubs 
End OS 

SensorSection 
SensorList: 

EndSensorList 
EndS ens or 

DirectivesSection 

1 5 8 
-f senslist 
45 

RunList: ("Bmachine", 11 UniBatch. outn, "main. out 11 , "sensors 11 , "out1 11 ) 

( 11 Bmachine 11 , "UniBatch.out 11 , 11 main. out", 11 sensors11 , 11 out2") 
EndRunList 
End.Directives 

End.Schema 

% SehemaPrep ezample.B<h 

In BeginProc 
In InitProc 
In StimProc 

Using Stimulus Library "/unc3/unc/drm/sl/src/Stimulus/lowref" 
Using Stimulus File "/unc3/unc/drm/sl/src/Stimulus/main.mod" 

No match. 
In IIWCProc 

Using Machine "/unc3/unc/drm/sl/src/machine/Bmachine" 
Using Hierarchy Description File "Bmachine.hd" 
Substituting Device Module 11 submem.dm" 

for Device Module 11 Bmainmem.dm" 
Substituting Device Module "subcpu.dm" 

for Device Module "Bcpuint.dm11 

In OSCProc 
Using Operating System "/unc3/unc/drm/sl/src/OS/unibatch" 
Using Main Module File "/unc3/unc/drm/sl/src/OS/unibatch/UniBatch.mod" 
Substituting Definition Module "/usr/softlab/src/OS/unibatch/Loader.def" 

for Definition Module "Loader.def" 
Substituting Implementation Module 

"/usr/softlab/src/OS/unibatch/Loader.mod" 
for Implementation Module "Loader.mod11 

In SensProc 
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Using Sensor "1'' 
Using Sensor 11511 

Using Sensor ngn 

Using Sensor File 11 senslist 11 

Using Sensor "12 11 

Using Sensor 11 24 11 

Using Sensor "45" 
In DirProc 
Adding run tuple ("Bmachine", "UniBatch.out", "main. out", "sensors", "outl") 
Adding run tuple ("Bmachine11 , "UniBatch.out" , 11 main. out", "sensors", 11 out2") 
In End.Proc 

%Is -a 
total 50 
.exp..mgr 
SchemaPrep.log 
subcpu.dm 

%make 

.hwconfig 
example. sch 
submem.dm 

Making hardware simulator. 
Making operating system. 
Making stimulus. 
Making experiment manager. 

.osconfig 
makefile 

Experiment components successfully created. 
Executable file is "exp.Jllgr". 

%Is -a 

.exp..mgr 
Make.log 
makefile 

% e:z:p_mgr 

.hwconfig 
SchemaPrep.log 
senslist 

Begining experiment 
Begining experiment run number 1 

.osconfig 
example.sch 
subcpu.dm 

.stimulus 
senslist 

.stimulus 
exp..mgr 
submem.dm 

Linking "OS.mcd" to 11 .osconfig/Unibatch.out 11 

Linking "Stimulus .mcd'' to ". stimulus/main.out 11 

Invoking simulator ".hwconfig/Bmachine.sim" 
Reading from enabled sensor file 11 .exp..mgr/sensors" 
Reading from simulation sensor file 11 sens.out" 
Processing sensor statistics 
Writing output file 11 out1'1 

Experiment run number 1 completed 
Begining experiment run number 2 
Linking "OS.mcd" to ".osconfig/Unibatch.out" 
Linking "Stirnulus.rncd" to ".stimulus/main.out" 
Invoking simulator 11 .hwconfig/Bmachine. sim11 

Reading from enabled sensor file 11
• exp..mgr/sensors 11 

Reading from simulation sensor file 11 sens.out" 
Writing output file nout2" 
Experiment run number 2 completed 
Ending experiment 

%Is -a 

.exp..mgr .hwconfig .osconfig .stimulus 
Make.log OS.mcd SchemaPrep.Log Stimulus.mcd 
example.sch exp_mgr makefile out! 
out2 sens.out senslist subcpu.dm 
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submem.dm 

%cat outl 

Sensor First Last Average Count 
============--============================= 

1 340.00 340.00 1 
5 40.00 320.00 93.33 4 
8 0.00 0.00 0 

12 100.00 260.00 32.00 6 
24 160.00 160.00 1 
45 20.00 360.00 48.57 8 

%cat out. 

Sensor First Last Average Count 
=============-============================= 

1 340.00 340.00 1 
5 40.00 320.00 93.33 4 
8 0.00 0.00 0 

12 100.00 260.00 32.00 6 
24 160.00 160.00 1 
45 20.00 360.00 48.57 8 
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Appendix C 

Manual Pages 
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SCHEMAPREP(l) UNIX Programmer's Manual SCHEMAPREP(l) 

NAME 
SchemaPrep - liE component preparation program 

SYNOPSIS 
SchemaPrep [ -dhimow J schemafile 

DESCRIPTION 
A schema file describes an experiment by specifying each of the major components of the IIE 
run-time system and also by issuing directives that the experiment manager will take note 
of during experiment execution. The program SchemaPrep takes this schema file as input 
and prepares the experiment components for execution. A subdirectory for each component 
is created in the current directory along with a log of the component preparation process in 
the file SchemaPrep.log in the current directory. In addition, the file Make file is created in the 
current directory. This file contains the UNIX make utility directives to construct the executable 
experiment manager program exp_mgr. 

In addition to naming the schema file the user may also set command line switches. Setting a 
switch causes SchemaPrep to process the associated section of the schema. If no switch is set 
the program processes all sections of the schema. The switches have the following meanings: 

-d Interpret the directives section 

-h Interpret the hardware configuration section 

-i Interpret the initialization section 

-m Interpret the sensor section (for monitoring) 

-o Interpret the operating system section 

-w Interpret the stimulus section (the workload) 

EXAMPLES 
SchemaPrep schemafile 

#processes the entire schema in file schemafile and prepares all of the components. 

SchemaPrep -dm schemafile 
#processes the directives and sensor sections of the schema in file schemafile 
#and prepares only the experiment manager component. 

FILES 
.f.expJngr 
./.stimulus 
.j.hwconfig 
.f.osconfig 
.fmakefile 

/* experiment manager subdirectory * / 
/* workload subdirectory * / 
/* hardware simulator subdirectory * / 
/* operating system subdirectory * / 
/* experiment construction makefile * / 

SEE ALSO 
expJngr(l), make(!) 
liE Users Manual, by R. Morrill 

RESTRICTIONS 
The current working directory must contain the schema file. The log file is always appended 
and must be explicitly removed if its current contents are no longer useful. 

ERRORS 
The error messages are intended to be self explanatory. 

AUTHOR 
Richard Morrill 
University of North Carolina at Chapel Hill 

Printed 4/20/86 local 1 



EXP_MGR(l) UNIX Programmer's Manual 

NAME 
expJngr - liE experiment execution program 

SYNOPSIS 
expJngr 

DESCRIPTION 

EXP..MGR(l) 

The user executes an liE experiment by executing the program exp...mgr in the schema file home 
directory. The experiment will then run until all of the requested runs complete. The results of 
the experiment are written to the files specified in the run-tuples of the associated schema file. In 
addition to the results file, exp...mgr produces a file containing a log of the experiment in the same 
directory. This file is named exp..lllgr .log. The log file contains information on the experiment 
specifications, the time the experiment was run and any warning or error messages produced as a 
result of the execution. 

FILES 
.jexpJllgr.log /* experiment manager log * / 

SEE ALSO 
SchemaPrep(l), make(l) 
liE Users Manual, by R. Morrill 

RESTRICTIONS 
The logging mechanism is not implemented. 

ERRORS 
The error messages are intended to be Self explanatory. 

AUTHOR 
Richard Morrill 
University of North Carolina at Chapel Hill 

Printed 4/20/86 local 1 



Apr 12 09:27 1986 achemaprep.h Page 1 

atruct keyatruct { 
char "'keyword; 
char "'delimit; 
int ('l<eytunc) () ; 
char aw_dlar; 
char 11 deac; 

} l<eyliat [] = { 

}; 

MBeginSchemaM, NULL, BeginProc, NULL, NULL, 
MinitSectionM, "Endinit'', InitProc, • 1 1

• "initial". 
MStimuluaSection", "EndStimulus". StimProc, 'v'. "atimulua", 
"HWConfiqSection". "EndHW"'. HWCProc. 1 h'. "hardvaro". 
MOSConfiqSec:tion". "End.OS". OSCProc. 1 a 1

• 
11 operatinCJ syatem". 

"'Sen.orSeetion .. , "End.Senaor". SenaProc, 'm'. "•enaor"'. 
•nirectiveaSection". 11EndDirectivea", DirProc, 'd' • "directivea", 
11End.Scheaa". NULL. EndProc, NULL. NULL 

tide tina KAXSWI l.'CI 6 
ldefirw LOGFILE: •seheu.Prep.log" 

Apr ~2 ~1:08 1986 Scheu.Prep.c Pag. l 

I' 
w FILE: Schem.aPrep.c 
• 
11 CONTENTS: 
• main 
* 11Proc 

Driver for the !IE achetu. preparation pro9f'aa. 
Section proceaaing routine•. 

* SvitchOn Section av itch on detector. 
* Invalid.Svitch Invalid avitch detector. 
11 SvitchError Switch error help routine. 
* !CjJilOre Section ignor•. by consuming, routine. 
• 
* HISTORY: 
• 
'I 

linclude <atdio.h> 
iinclude 11 achema.h" 
linclude "achemaprep.h• 

I* s~ proqraa deUnitiona and conatanta *I 
I"' Driver definitions and conatanta 11 I 

atatic FILE: 11 atp; 
atatic FILE *lf!p; 
atatic char avitchea [HAXSWI!Ql + 1] ; 
atatic char rcaid[] = "•t .. ; 

I' * PURPOSE: 

I* Schema file pointer *I 
I"' Scheaa log til• pointer 11 I 
111 Switch array 11 I 
I* Res !dent atring *I 

• Driv.r for the IIE achema preparation prograa . 
• 
* RETURN CODES: 
* None • 
• 
• llESTRICTIONSIASSUMP7IONS: 
* None. 
'I 

main (argc. argv) 
int argc; 
char *arqv(]; 
{ 

char temp [MAXARGLEN+l] ; 
char achematile [HaxFileName + 1); 
boolean fileflag; 
boolean avitchflaCJ; 
int i; 
char avitchte:mp [LINELENGTH + 1] ; 
char butter [MAXKEYLEN + 1] ; 

I' 
* Initialize. 
'I 

filef!lag = FALSE; 
avitch!lag = FALSE; 

I' * Command line pardng. 

I* Input buffer *I 
I* Fil• nam. buffer *I 
I* File name read flag *I 
I* Switch read flag *I 
I* Loop index *I 
I* Svitchea read buffer *I 
I* Section Qyvord buffer *I 



Apr 22 21:08 1986 Sch.emaPrep.c Pa9e 2 

'I 
for (1=1; !<ar90; !++) { 

aacanf(*++argv,"X•",temp); 
H (latrncmp(t-."-",1)) { 

if (avitchflaq == TRUE) { 
fprintf (atderr, 

} 

"Warning~ icplOring additional avitchea %•\n11 ,temp); 
} 
ebe { 

} 

aaeant(&teap[1J,•X•".•vitchtemp); 

H (str1en(svitcht-) > IIAXSWITCH) { 

} 

tprintf (atderr, "Error: too many avi'tclwa \ "%•\ "\n\n'', 
avitchtemp) ; 

SvitchError () ; 
exit(1); 

el .. if (InvalidSvitch(avitchtemp)) { 

} 

tprJntt (atderr, "Error: invalid IIVitch(e•) \ "X•\ "\n\n", 
avitc:htemp) ; 

Sviteh.Error (); 
exit(1); 

atrcpy(avitchell, avitchtemp); 
avitchflaq = TRUE; 

•h• { 

} 

it (tiletlag == TRUE) { 
tprintf(atderr, "Warning: ignoring additional file Xa\n", tup); 

} 
el .. { 

••canf(temp,"X•",achemafile); 
filetlaq = TRUE; 

} 

} /* end for */ 

I' * No ach.aa file name in coJIUU.nd line. 
'I 

it (lfiletlag) { 

} 

tprintf (atderr, "Error: input file required\n"); 
exit (1); 

H (I (atp = topen(schemafilo,"r"))) { 

} 

fprintf (atderr, "Error: cannot open file X•\n", achemafile); 
exit (1); 
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} 

it (l(ltp = topen(LOGFILE,"a"))) { 

} 

tprintf(atderr,"Error: cannot open or create file X•\n". 
LOGFILE); 

exit (1); 

I' 
* No avitehea set ao 
* select all achema aectians. 
'I 

if (lsvitchflag) { 
tor (i=O; i<~TCH; !++) { 

avitchea(i] = kayliat[i+l].ov-<har; 
} 

} 

I' 
* Attempt to proee•a all 
* eight aections. 
'I 

for (1=0 ;1<8 ;i++) { 
f•canf(atp."X•".buffer); 

} 

H (I (atrcmp(butfer,kayliat[i].kayvord))) { 

} 

I' 
* Invoke the aection proeeaainq rout.tn. 
* tor tn. current aection. 
'I 

if (SvitchOn(avitchea,kayliat[i].av-<har)) 
('kayliat (i] .kay tunc) () ; 

I' 
* Conaw. the current aection aince 
* it vaa not aelected for proce•aing. 
'I 

elae { 

} 

tprintt(atdout,"Ignorin; \"X•\" aection\n", kayliat[i].deoe); 
tprJntf(lfp, "Ignoring \"X•\ • aection\n". Uyliat[i] .deac); 
Ignore(kaylist[i] .delimit); 

•la• { 

} 

tprintf(•tdout,"no match: X•. byword X•\n",buffer, 
kayliat[i] .kayvord); 

tprintf(ltp, "no -tch: X•. keyword X•\n",buffer. 
kayliat[i].kayvord); 

close(afp); 
close(lfp); 

BeqinProc () 
{ 
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} 

tprintt(atdout,"In BeginProc \n"); 
~rintt(ltp,"In BeginProc \n"); 

InitProc() 
{ 

} 

mkdir(".exp-=qr",0755); 
tprintt(•tdout,"In InitProc \n"); 
fprintt(ltp, 11 In InitProc \n''); 
initprep(ofp,lfp); 

Stiml'roe () 
{ 

} 

lllkdJ.r ( 11 .atiaulua11 ,0755) ; 
tprintt(atdout,"In StimProc \n11

); 

tprintt (ltp, "In StiJIProc \n"); 
otimprep(ofp,lfp); 

l!WCProe () 
{ 

} 

~(".bvconfig11 ,075S); 
~rlntf (atdout. "In HWC:Proc \n"); 
fprlntf (lfp, 11In HWCProc \n"); 
hveprep(ofp,ltp); 

OSCProe () 
{ 

} 

~(".oaconfig11 ,07SS); 
tprintf(atdout,"In OSCProc \n"); 
fprintf(ltp, "In OSCProc \n"); 
ooeprop(otp,lfp); 

SensProc() 
{ 

} 

fprintf(atdout,"In SanaProc \n"); 
fprlntf (lfp, "In SanaProc \n"); 
senaprep(afp,lfp); 

DirProc () 
{ 

} 

I' 

tprintf (atdout. "In DirProc \n"); 
tpr.intf (ltp, "In DlrProc \n"); 
dirp'rep (afp,lfp); 
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* Used tor testing purpoa•a. 
* Replace any processing function entry 
• in •chemaprep.h vlth thia call. 
'I 

DummyProe () 
{ 

} 

tprintf (atdout, "In t>ummyProc \n"); 
fprintt(lfp,"In DwamyProc \n"); 

Enc!Proe () 
{ 

} 

tprintf(atdout, "In EndProc \n"); 
fprintt(ltp,"In EndProc \n11

); 

I' * PURPOSE: 
• Consume ~ contents of the aehema tile 
• • 
• 

from the current position up to and including 
t:lut atring 'string' . 

* RE'l'URN CODES : 
• Non.. 
• 
' RESTRICTIONS/ASSUMPTIONS: 
* Non.. 
'I 

Ignore(string) 
char *atring; /* IN --- section cloainq keyvork */ 
{ 

} 

char buf[128+1]; 
int eof_flag; 

eof_flaq = t'R.U!; 
while (facanf(afp, "Xa 11

, buf) I= EOF) 
H (lotremp(but,otring)) { 

eof_flag = FALSE; 
br•ak; 

} 

if (eof_flag) 
fprintf(atdout."ERB.OR: Miaaing keyvord \"Xa\11 \n", string); 
fprintf(ltp,"ERROR: Miaaing keyword \"%•\" \n", string); 

I' 
• PURPOSE: 
• 
• 
• 

Pr lnt the current 
and the log file. 

* RETURN CODES: 
* None. 
• 

avitchea to standard out 

* RESTRICTIONS/ASSUMPTIONS: 
• None. 
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'I 
SvitchError() 
{ 

} 

int i; /* loop index */ 

fprintt(atdout, 11Valid avitchea are:\n11
); 

fprintf (ltp,. "Valid avitchea a.re:\n"); 
for (1=1; i<=MAXSWITO:t; i++) 

tprintt (atdout, "\t\t\t\"Xc\"---Xa\n"; 
keyliot[i].ov~, keyliot(i].deac); 

tprintt (lfp,"\t\t\t\"Xc\"---Xa\n". 
kayliat[i].av~. ke¥liat[i] .deac); 

I' * PURPOSE: 
* a.clc ~ a 1 to a .. if it contain8 only valid avitchea. 
• 
* RETURN CODES: 
* TRUE it 1 a 1 containa an invalid avitch apecitication; 
* FALSE otherwise. 
• 
* RES'tRIC7IONSIASSUMPtiONS: 
* Aaaume the 1

11 
1 ia not longer that MAXSWITCI characters. 

'I 
boolean InvalidSviteh(a) 
char *a; /* IN --- avitch array */ 
{ 

} 

int i; I* Array index *I 
int avitcheount; 
boolean invalid; 

/* Valid avitch in avitch array count *I 
/* Return code *I 

avitchcount = 0; 

I' 
* Increment 1 avitchcount 1 for .very valid 
* avitch op«:ified in 1 a 1

• 

'I 
for(i=1; i<=~TCH; i++) { 

} 

if (indox(a,keyliot[i].sv_ohar)) { 
avitchcount += 1; 

} 

I' 
* It all the avitchea are valid the 
* value of avitchcount should be equal 
* to the number of eharactera in 1 a 1

• 

'I 
invalid = (avitchcount I= etrlen(s)); 
return(invalid); 

I' 
* PURPOSE: 
* Outck to aee if 1c 1 ia NULL or in the character array 1 11 1

• 

Apr 22 21:08 1986 SchemaPrep.c Page 7 

• 
* RErtmN CODES: 
* TRUE it 'c' ia NULL or in character array 1 a 1

; 

* FALSE otherviae. 
• 
* RESTRICTIONS/ASSUMPTIONS: 
* None. 
'I 

SvitchOn(a,c) 
char *a; 
char c; 
{ 

int on; 

/* IN --- aviteh array */ 
/* IN --- current section avitch or NULL */ 

/* Return c~ */ 

H (c =NULL) 
on = TRUE; 

} 

•1•• 
on = (index(a,c) I= 0); 

return(on); 
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I' 
"' FILE: init.c 
• * CONTENTS: IXE achema initialization aection preparation routine. 
• * HISTORY: Written by Richard Morrill for SoftLab, UNC-CH, 1/1/86. 
• 
'I 

tinclude <atdio.h> 
tinclude "achema .h" 

I' 
"' PURPOSE: 

Proceao the initialization a.ctlon of a ac:heaa. 
• 
"' RErtJRH CODES: 
"' None. 
• * R!SD.ICTIONS/ASSUMPTIONS: 

!lone. 
'I 

initprop(ofp.lfp) 
FILE "'alp; !"' IN --- achema file */ 
FILE "'ltp; !"' IN --- achema log file "'/ 
{ 

} 

char bufter(128+1]; 
char caaaand[lZB+l]; 

I' 

!"' String building butter *I 
!"' Sya~ command building butter */ 

* Create a link to the experi.JIIent manager 
"' ....a tile in the .exp...mgr directory. 
'I 

atrcpy (command, "ln -a ") ; 
atrcat (coaaand., EJttoiAXEFILE) ; 
atrcat(cammand, • .exp~/~file"); 
oyotea(c""""""); 

I' *' Create 11 link to the main exper!JDent 
* make file in the schema directory. 
'I 

atrcpy(coanand, "ln -a 11); 
atrcat (command, MAINMAXEFILE) ; 
atrcat (command, 11 makellle"); 
oyotea(c""""""); 

lacant(a!p, "X•" ,buffer); 
if (otrcmp (buffer. "Endinit")) { 

} 

fprintf(atdout,"X:eyvord \"Endinit\ 11 expected--- read \"Xs\"\n11
, 

but fer); 
tprintf(lfp,"Xeyvor4 \ 11Endlnit\" ~ted--- read \"%•\"\n11

, 

buffer); ' 
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llnclude <atdlo.h> 
finclude 11 schema.h" 

otimprop (otp.Hp) 
FILE *afp; 
FILE "'ltp; 
{ 

char buffer(128+1); 
char atimlib[l28+1]; 
char libpath[l29+1]; 
char atimfile[l28+1]; 
char atimpath[l2B+l]; 

char coiiiiiiiU'Id[300]; 

facant(atp,•%•".butfer); 
ir (otrcmp{buffer,"Librory:")) { 

tprintf (atdout, 

} 

"Xeyvord \"Library:\" expected --- read \ "Xa\11 \n 11
, 

buffer); 
fprintt {lfp. 

"Eeyvord \"Library:\" expected --- read \"%•\"\n", 
butter); 

eh8 { 
facant(atp,"X•"·•tLmlib); 
atrcpy(libpath,SLatlmpath); 
atrcat(libpath, 11 /M); 
atrcat(libpath,atimllb); 

} 

fprintf (atdout, 11 \tUaing Stimulua Library \ "X•\ "\n" ,libpath); 
fprintf (lfp, 11 \tUaing Stimulua Library \ "%•\ "'\n" ,libpath); 

tacanf (afp, "%•" ,buffer); 
if (atrcmp(burter, 11File:")) { 

} 

tprintf(atd.out,"Xeyvard \"File:\" expected --- read \"X•\"\n". 
buffer); 

fprintf(ltp,"Xeyvord \"Fil•:\" expected--- read \"%•\"\n", 
buffer): 

elae { 
fseant(atp,"X•",atiatile); 

} 

tprintf (atdout, 11\tUaing Stilaulua Fil• \ "%•\ "\n" ,atlm.Ule); 
tprintf (l!p, "\tUaing Stimulua Fil• \"X•\"\n" ,atimtile); 

atrcpy (command, "ln ") ; 
atrcat(command,atimfile); 
atrcat(command, 11 .atimulua/main.mod"); 
.ystem(command); 

fscanf(afp, "%•",buffer); 
it (atrcmp(buffer. "EndStimulua")) { 

!printf(stdout, 
"Keyword \"EndStimulus\" expected --- read \ "%•\''\n". 
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} 

} 

butter); 
fpr intf( lfp, 

"XAryvord \ "!nd.Sti.Jaulua\ 11 expected --- read \ "X•\ "\n''. 
butter); 

elae { 

} 

atrcpy(command, "cd. . atlallua; m2hdir"); 
oyatom(command); 

atrcpy(command, "cp /unc3junc/drm/sl/bin/Stimm2path .atlmulua/m2path"); 
oyatom(command); 

atrcpy (command. •• tilesuba STIMDIR 1
') ; 

atreat(eommand, SLatimpath); 
a treat (command. 11 

• atimulua/m2path") ; 
oyatom(command); 

atrcpy(command.. "Sti.mmake.ah main.mad11
); 

ayat-(co:aa.and); 
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I' 
• FILE: hvcprep.c 
• * CONTENTS: II! hardware aection proceaaing rout!n.. 
• 
* taSTORY: Written by Richard Morrill tor SoftLab, UNC-01. 1/1/86. 
'I 

linclude <atdio.h> 
linclude "achema.h" 

I' * PURPOSE: 
• Proceaa the hardware eonfi9Uration aection of the achema tile. 
• * R.ErtJRN CODES: 
* Nona • 
• 
"' RESTRICTIONS/ASSUMPTIONS: 
"' None. 
'I 

hvcprep(ofp,lfp) 
FILE *atp: /* IN --- Scheaa file "'/ 
FILE *ltp; 
{ 

int len; 
char buffer[128+1]; 
char buffer2[128+1] 
char bufter3[128+l] 
char II&Chdir [128+1] 
char dirpath[12B+1] 
char hdfile[l28+l]; 
char hdpath[128+1]; 

char command [ 300] ; 

!"' IN --- Scbeaa lo9 file */ 

!"' hierarchy description tile n.ame lca.gth */ 
!"' atringo building butter */ 
/* atrin9 buildln9 buffer */ 
I"' atrin9 buildin9 buffer •; 
;• aelected machine aubdirectory '1 
;• path to SoftLab -chine directory •; 
;• hierarchy description file nama •; 
;• path to the hierarchy deacription tile */ 

/* ayatem cOlllllland. butter */ 

tacant (atp, "X•" ,buffer); 
H (otrc:mp(butfor,"Machine:")) { 

} 

tprintf(stdout,"JCeyvord \"Machine:\" expected--- read \"X•\"\n•, 
buffer); 

fprintt(lfp,"Xeyvord \"Machi.ne:\• expected--- read \uX•\"\n", 
butter); 

I' * Select machine. 
'I 

elae { 
beanf(stp."X•",machdir); 
atrcpy(dirpath,SLmaehpath); 
atrcat(dirpath,"/"); 
atrcat(dLrpath,machdir); 

} 

fprintt (atdout, "\tUsing Machine \ "Xa\ 11\n" ,dirpath); 
tprintt(lfp,"\tUsing Machine \"X•\"\n",dirpath); 
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bcanf (atp, "%•" ,butter); 
if (otrcmp (buffer, "liD:")) { 

} 

tprintf(atdout,''Keyvord \"HD:\11 expected--- read \"X•\"\n", 
buffer); 

tprintf(l!p, 111Ayvord \"HD:\11 expected--- read \"Xa\ 11\n", 
buffer); 

;• 
• Create n link in the .hvconti9 directory 
* to the aelected. hierarchy description file. 
•; 

elae { 

} 

bean! (s!p, "%•" ,hdHle); 
tprintf(atdout,"\tUainCJ Hierarchy Description File \"X•\"\n",hd!ile); 
tprintf(lfp,"\tUainCJ Hierarchy Description File \"X•\ "\n" ,hd.Ule); 

atrcpy (hdpath, d.lrpath) ; 
atrcat (hdpath, 11 

/
11
); 

atrcat(hdpath,hd!ile); 
atrcpy(command,"ln -a 11); 

atrcat(command,~ath); 
a treat (coiiiiUild," .hvcontlg"); 
oyotea(co-); 

bean! (afp, "X•" ,buffer); 
if (otrcmp(buftor,"IJHSubo:")) { 

} 

tprintf(atdout,"Xeyvord \"IImuba:\" expected ---read \"X•\"\n11 
.. 

buffer); 
tprlntf(lfp, 11Iayvord \"OHSuha:\11 expected--- read \"X•\"\n", 

buffer); 

;• 
• Nab thll epecifled. aubatitutiana in the simulator 
• by linking to alternate ct.vice aod:ule files, 
•; 

elee { 
While (!acanf(atp."X•" .. buf!er) I= EOF) { 

if {latrczap(bu!!er,"!ndSuba11
)) 

break; 

bean! (afp, •xa• ,bu!fer2); 
~intf(atdout, 11\tSubatitutlng Device Module \"Xa\11 \n11 ,bu!fer2); 
tprintf(lfp, "\tSubatituting Device Module \"Xa\"\n" ,buft'er2); 
tprint! (atdout, "\t for Device Module \ "%a\"\n" ,buffer); 
fprint!{lfp,"\t for Device Module \"Xs\"\n" .. buffer); 

if (atrn.cmp(bufferl,"/".1)) { 
atrcpy(butfer3," .. /"); 
a treat (buf!er3,buffer2); 

} 
elae 

otrcpy(buffor3,bufter2); 
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atrcpy(command, 11 ln -a 11
); 

atrcat(command,buf!er3); 
atrcat(command," .hvconfiCJ/11

); 

atrcat(command,buffer); 
ayatam(command); 

/* Take care of relative path names 
in the hierarchy description file 
device lllOdule replacement implementation. 

} 
} 

if (otrru:mp(bufferl,"/",1)) { 
atrcpy(bufter3," .. /"); 
atrcat(buffer3,buffer3); 

} 
elae 

atrcpy(butfer3,buffer3); 

atrcpy(cammand, 11 fileauba "); 
atrcat(command,buffer); 
atrcat(cammand, 11 

"); 

atrcat(eammand,buffer3); 
atrcat(command," M); 
atrcat(cammand,".hvconfi9"); 
atrcat(cammand,"/M); 
atrcat(cammand,hdfile); 
oyotea(c~); •; 

faeanf (afp, "%•" ,buffer); 
if (atrczap (buffer, •EndHW")) { 

} 

fprintf(atdout, 111eyvard \"En.dHW\11 ~ted--- read \"%•\"\n", 
buffer); 

fprintf!(ltp,•~rd \"EndHW\" expec:t.d. ---read \•Xa\"\n", 
buffer); 

elae { 

;• 
• link in the reat of the .dm. fllea 
•; 

atrcpy(command, "ehdir .hvccntig; LnDHFile.ah 11
); 

atreat(cammand,dirpath); 
oyotom(c~); 

;• 
• atrip ".hd" auftix from hierarChy description file 
•; 

len = atrlen (hdt'ile); 
atrncpy(buffer, hdfile, len-3); 
atrcpy(&buffer[len-3], ""); 

;• 
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} 
} 

• !.xeeute the cOIIIIIland to prepare 
* the hierarchy description file 
* and create the ma.ke file tor the 
* aelctCted. device JIOdulea, 
'I 

atrepy(eammand,"cd .hvconfig;"); 
a treat (command, "hdprep ") ; 
atrcat(command,buffer); 
oyatem(command); 
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I' 
• FILE: oacprep.c 
• 
* CONTENTS: II! operatin9 .yatem actwma aection preparation routine • 
• * HISTOB.Y: Written by Richard Morrill for SoftLab, UNC-01, 1/1/86. 
'I 

*include <atdio.h> 
llnclude "achema.h" 

I' 
• PURPOSE: 
• 
* RErtJRN CODES: 
• 
• REStRICTIONS/ASSUMPTIONS: 
'I 

oacprep(atp,lfp) 
FILE *afp; /* IN --- a~ file "/ 
FILE *lfp; /* IN --- achema loq fJ.le "/ 
{ 

char butter [139+1]; 
char bu!ter2 [128+1]; 
char oadir(12B+1]; 
char dirpath[l28+1]; 
char mainfile[l28+1.}; 
char mainpath[l28+1]; 

/* atr ing building butter * 1 
!* atr ing building buffer * 1 
/* aelected operating qatelll aubd.irectory *I 
/* SoftLab operating IIYII't4a clirectory •; 
;• .. in moclule file tor aelected o;s • 1 
;• -in module tile path * 1 

char ~[300]; /* .yatem command butter *I 

fac.nf(stp,•Xa",buffer); 
if (strcmp(buffer .. "OS:")) ( 

} 

tprintf(atdout,"Keyvord \"OS:\" ~ted--- read \"%•\"\n• .. 
butter); 

fprintf(lfp,"E8yvord \"OS:\• axpected ---read \"%•\"\n", 
buffer): 

I' 
" Select operating system. 
'I 

ebe { 

} 

facanf(atp .. "X•".oadir); 
atrcpy(dirpath,SLoepath); 
a treat (d.irpath, 11 

/") ; 

atrcat(dirpath,oadir); 
tprintf (atdout, 11

\ tUainq Operating System \ "%•\ 11\n11
• dirpath) ; 

tprintf(Hp .. 11 \tUsinq Operating System \ "X•\ "\n11 ,dirpath); 

facanf(atp,"X•".buffer); 
if (strcmp (buffer, "Main: 11

)) ( 

tprintf(atdout, 11Lryvord \"Main:\ 11 expected--- read \"%•\•\n" .. 
buffer); 

tpr !nt t ( 1 fp .. 111eyvord \"Main:\ •• expected --- read \ 11%• \ "\n •, 
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buffer); 
} 

I' 
• Select operating' .y.~ aain module. 
'I •b• { 

} 

facanf(atp,"X•" ... intile); 
otrcpy(mai.npath,dirpath); 
atrcat(malnpath, 11

/"); 

atrcat (mainpath,maintile) ; 
fprintf (atdout, "\tUaing Main Module File \ "X•\ 11\n" .malnpath); 
fprintf (ltp, 11 \tUalnq Main Module File \ •xa\ "\n" ,mainpath); 

facant(atp. "%•" ,buffer); 
if (atrCIIp (buffer. "DefSuba: ") t { 

fprintf(atdout,"l8yvord \ O.fSuba:\" expected -- read \"%•\"\n11
, 

buffer); 

} 

tprintf(lfp,"X.yvord \"O.fSuba:\" expected-- read \"X•\"\n". 
buffer); 

I' 
• ~ the appropriate definition .adule aubatitutiona 
• by creatinq linka to alternate til•• in the • oacontlq 
• aubdi.rectory. 
'I 

•1 .. { 

} 

vhl.le (hcanf(ofp,'Xo",buffer) I= !OF) { 
if (latrcmp(butfer,"~fSuba")) { 

break; 

} 

} 
facanf(atp,"X•".buffer3); 
tprintf (atdout, 

"\tSubatitutlng Definition Module \"X•\"\n", 
buffer2); 

(printf(ltp.•\tSubatitutlng Definition Module \"X•\"\n". 
buffer2); 

tpr intf (atdout, 
11 \t for Definition Module \ "X•\ 11\n•. 
butfer); 

fprintf (ltp, "\t for O.flnltion Module \ "%&\ "\n", 
buffer): 

atrepy(colllll8lld,"ln -• "); 
atrcat(eammand,buffer2); 
atrcat(command," .oseonfig/"); 
otrcat(command,buffer); 
oyotem(eommand); 

faeant(afp, 11%s",bufter); 
if (atrc:mp(butfer, 11 lmpSuba: 11 )) { 

fprintt(atdout,"~ord \"ImpSub•:\11 expected-- read \ .. Xa\11 \n". 
buffar); 
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} 

I' 

fprintf(lfp,"Xeyvord \"l111pSuba:\" expected-- read \"Xa\11\n", 
buffer); 

• Make the appropriate implementation aodule aubatitution. 
• by creating llrika to alternate filea in the .oaconfiq 
* aubdlrectory. 
'I 

elae { 

} 

vhlle (taeanf (afp. "X•" ,buffer) I= EOF) { 

} 

H (lotrcmp(bufter,"Endl""Subo")) { 
break; 

} 

facanf(atp,"Xa",buffer2); 
fprintf (otdout, 

11 \tSubstitutinq I111plementation Module \•X•\"\n11
, 

butfer2); 
fprint< (lfp, 

"\tSubatituting I~lementation Module \"%•\"\n", 
buffer2); 

fprintf (atdout, 
.. \t for Iaplemantation Module \ "X•\ "\n". 
buffer); 

fprintf (lfp, 
"\t for Ia1plementation Module \ "%•\ "\n". 
buffer); 

atrcpy(comaumd, "ln -a "); 
atrcat(cammand,buffcr2); 
atreat(command," .oaconflq/"); 
atrcat(command.buffer); 
.yatea(command); 

tacanf (•tp. "X•" ,but fer); 
if (strc:mp (butter."End.OS")) { 

} 

fprintf(atdout,"~rcl \ 11 End.OS\11 expected-- read \ 11%•\"\n", 
buffer); 

fprintt(lfp,"l8yvord \"EndOS\" expmcted -- read \"X•\"\n". 
buffer); 

else { 

I' 
* Make the hidden Madula-2 hidden directoriea 
• in the .osconfig aubdirectory. 
'I 

atrcpy(eommand, "chdlr .oaconfig; m2hdlr 11
); 

5Y•tem(co~); 

I* : 
• Create linka to all definition and implementation 
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} 

} 

* .adulea without current linlal in the . oaconfl'iJ 
• aubdirec::tary. Only aubatituted modulea ahould 
* currently hav. li.nka. 
*I 

atrcpy(command" "chdir .oaconfig; LnDirFile.ah "); 
atrcat(ccmmand;dirpath); 
oyatem(command); 

!* 
• Create tbe aakefile far the current operatin9 
* av-t- in the . oacontig aubdirectory. 
*I 

atrcpy(command" 11chd.ir .oaconfig; /bin/ra aakefil• ''); 
wyatem(command); 
atrcpy (command. "aala.. ah ") ; 
atrcat (cOIIIIIUUld, .. intil•) ; 
oyatem (.,.,....,.) ; 
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!* 
* FILE: aenaprep.c 
• * CONTENTS: IIE aenaor aection preparation routi.rua. 
• * HISTORY: Written by Richard Morrill for SoftLab, UNC-01, 1/1/86. 
*I 

finclude <atdio.h> 
linclude 11 achema.h11 

!* 
* PURPOSE: 
* Proceaa the aenaor aection for the achema. 
• * RETURN CODES : 
• None • 
• 
* REStRICTIONS/ASSUMPTIONS: 
* None. 
*I 
aenaprep(a~.l~) 
FILE *atp; /* IH --- acbaaa fil• */ 
FILE *lfp; /* IH --- achema loq fil• */ 
{ 

char buffer[12B+l]; 
char a.nafile[128+1); 

/* atring buildin9' buffer */ 
!* senaor file path buffer */ 

chu command [300); !* ayatea ccmaand butt'er */ 

tacanf (atp, ••xa• ,buffer); 
it (atrcmp (buffer. "SenaorLiat: ")) { 

tprintf (atdout, 

} 

·•~ord \'1Sen.aorLiat:V1 expected --- read \"X•\"\n11
, 

buffer); 
tprintr (Hp, 

11~rd \"s.n.orLiat:\ 11 expected --- read \"Xa\•\n•. 
buffer); 

elae { 

!* 
* Create the aen.aor file 
• in the • exp~ aubdirectory. 
*I 

atrepy(cammand,"touch"); 
atrcat(command," .axp~jaenaora"); 
oyatom(command); 

!* 
* Build the enabled aenaor Hat 
* until the end o t the aection ia reach~. 
*I 

vhile (hcont(orp,•xa",owtile) I= Ear) { 

if ( latrcmp (aerwfile~ 11EndSenaorLiat11
)) 
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} 

break; 

I* 
• Add the aenaora fro. a file. 
*I 

if (latrncmp(aenafile,•-•.1)) 
{ 

} 

I* 

faoanf(afp."%•".aenafile); 
tprintf (atdout. 

11\tUaing Senaor File \"Xa\ 11\n".aen.file); 
fprintf(lfp. 

11 \tUaing Senaor File \"Xa\11\n".aen.file); 
atrcpy(oommanc!. "'oat "'); 

• Add indivlchlal ...wora. 
*I 

•1•• 
{ 

} 

tprintf (atdout, 
"\tUatnq &.naor \ 00Xa\11 \n".aenafile); 

tprintt(ltp, 
"\tUa~ Senaor \"Xa\11\n11 ,aenafile); 

atrepy (ooaaand, 11eobo ") : 

atrcat(cammand,aenatile); 
atroat(oammand." >> .exp~/aenaora 11); 
oy•tea(c........OO); 

} I* end vhil• *I 
} ;• end elae */ 

faoanf(atp,"X•".buffer); 
if (a tromp (buffer • "Encls.naor")) { 

tpr inU (otdout, 

} 

11~rd \"EndSonaor\11 expected--- read \"Xa\11 \n". 
buffer); 

tprintt (lfp, 
"'KGyvcrd \"EndSenaor\11 expected --- read \ 11%a\ 11\n11

, 

buffer); 
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I* 
* FILE: cllrprep.o 
* * CONTENTS: liE Schema directiw. aeotion prooeaaing routine. 
• 
• HISTORY: written by Richard Morrill for SoftLab. UNC-CH. 111196. 
*I 

finclude <stdio.h> 
tinclude "aohema.h11 

I* 
* PURPOSE: 
* Prooeaa the directiw. aec::tion of a •oh.ema file. 
* * RETURN CODES: 
• None. 
* * RESTRICTIONSIASSUMPnONS: 
• None. 
*I 
dirpr~(otp,ltp) 
E'ILE *atp; I* IN --- Sohaaa til• *I 
FILE *Up; !* IN ---~ loq file */ 
{ 

lnt lnltflag; 1• Run-tuple added flag • I 
I* String building buffer *I 
1• System cmamand. butter *I 

char buffer [128+1); 
char oammand[128+1]; 

facanf (alp, 11%•" ,buffer): 
U (otrcmp(buffer,"RunLiot:")) { 

} 

tprintf(stdout,"&yvord \"B.unLiat:\11 expt~Cted --- read \"Xa\11\n". 
butter); 

fprlntf(lfp, 11r..yvord \ltJ.unLiat:\" expected--- read \"Xa\11\n". 
buffer); 

•la• { 
lnltUac;r = 0; 

I* 
• Create a new main.o til• in the 
* . expJD9T subdirectory. 
*I 

atrcpy (command, tl /binlna - r ") ; 
atrcat (command, EXPMAIN); 
.yatem(command); 
atrepy (command, "cp 11

) ; 

a treat (command, SLEXPHAIN) ; 
a treat (command, • ") ; 
a treat (command, EXPMAIN); 
system (command) ; 
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I' 
• Proce•• to the end of t:he aection 
• or the end of tM tile; 
• whichever come• tirat. 
'I 

vhile (facant(atp,"Xa",butfer) I= !OF) { 

if (latraap(bu.tfer, "EndRunLiat")) 
break; 

elae { 

} 

if (I inittlag) 
in.lttlag = l; 

tprintf(atdout,"Adding run tuple X•\n", butter); 
tprintt (ltp. "Addin9 run tuple X•\n". butter); 

I' 
• Append the current run-tuple 
• to main. c in the . ell:p...JIICP" 
• aubd.irectory. 
'I 

atrcpy(comaand. "echo\'"); 
a treat (comaand, litUH-PllOCEDURE) ; 
atrcat (command, butter); 
atrcat(cammand, ";\ 1 >> "); 
atrcat (command, EXPMAilf) ; 
ayat .. (camaand); 

} I' ond while 'I 

I' 
• Cloae ott the main.c file in the 
• • expJRIP" aubdirectory. 
'I 

atrcpy(command, "cat"); 
atrcat(command, St~HEND); 
atrcat(command, ">> "); 
•treat (command. EXPMAIN) ; 
oyat .. (c.......,.,); 

i< (linitflag) { 
tprintt' (atd.out, 
"No run tuple• vtwre added; the aimulator will not be invoked. \n") ; 

fprint< (lfp, 
"No run tuple• vhare added; the aimulator will not be invoked.\n"); 

} 

} I' end elae •; 

facanf(sfp."X•".butfer); 
it (atrc=p (butter, "EndDirectivea")) { 

tprintf(stdout, "Eeyvord \ 11EndDirectivea\" expected --- read \ "Xa\11\n", 
buffer); 

fprintf(ltp, "X.VVOrd \ "EndDir.ctivea\ 11 expected --- read \ "X•\ "\n11
, 

buffer); 
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} 
} 
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*"- r1ruo mUE 1 
ldetl.ruo FALSE 0 

t<W tl.ruo IIAXARCli.f:K lO 
4kletine MaxF UeName lO 
-tl.ruo IIAX1CEYLEN lO 
ldetl.ruo LINELENGXH 80 
~define P~L ":/uarjlib/local/modula2" 
Ide U.ne R.UN.....PR.OCEDURE "OoRun'" 
Ide fine EXPMAIM ".exp...J119r/main.c" 
Ide fine SLEXPMAIN "/unc/drlll/aljarc/exp-Jilqr /main. e" 
Ide fine SLEXPMAIN!HD • /unc/dra/ aljare/exp...Jll9l" /mainend" 
~tine EMMAKEriLE "/unc/dra/al/arc/make/.mMakefile" 
id.efine MAINHUEFILE 11 junc/dra/al/are/make/Ha~file" 

typedef J.nt boolean; 

int Be9inProc () : 
int Ini tproc () ; 
int StimProc () ; 
int llh'a'roc () ; 
int OSCProc () ; 
int hnaProc () ; 
int DirProc () ; 
int Ou.myProc () : 
int l!ndProc () : 

atatlc char •SLmachpath = 11 /unc3/unc/drm/al/src/machine"; 
atatic char •sLoapath = 11/unc3/unc/drm/alfarc/OS"; 
atatic char •sLatimpath = "/unc3/une/drm/aljarc/Stimulua"; 
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;• 
" FILE: output.c 
• 
* CONTENTS: 
* The simulation output rout.i.Nt for the experiment manager 
" library libexp.a. 
• 
* HISTORY: WTitten by Richard Morrill for SoftLab, UNC-CH, 111186. 
• 
•; 
*i~clude <atdio.h> 
jinclude ''expJil9r .h'' 

;• 
* Sensor information. 
•; 

atruct aenaor~truct { 
int id; 
float first; 
float last; 
float avq; 
int count; 

}; 

I* Sensor id *I 
I* First time the sensor vas reached *I 
I* Last time the sensor vas reached *I 
I* Average duration between sensor invocationa *I 
I* Number of times the sensor vas reached *I 

typedef atruct aenaor __struct aentype; 

;• 
* PURPOSE: 
• 
• 

Calculate the appropriate sensor information from the simulator 
output file and write it to the selected reaulta file, 'out' . 

• 
* RETt.JRN CODES: 
" None . 
• 
* RESTRICTIONS/ASSUMPTIONS: 
* None. 
•; 

ProceaaOutput(out, aena) 

char *out; 
char *aen.a; 

!* IN --- experiment output results file */ 
/* IN --- enabled sensors file *I 

{ 
aentype arr [MAX_SENSORS] ; 
int i; 
int nevid; 
int inat; 
float atimlt; 
FILE *ofp; 
FILE *xfp; 
FILE *sfp; 

afp = fopen(aens, "r"); 
if (ofp == (FILE ') NULL) { 

fprintf (atderr, 

I* sensor array *I 
I* loop ~ex *I 
I* nev sensor id *I 
I* nev sensor instance from aim.loq *I 
/* nev sensor time form sim.log */ 
/* simulator output results file *I 
/* exper~t output results file *I 
I* enabled sensors file *I 

1'Unable to open sensor file X•. no output processed. \n", sens); 
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return(-1); 
} 

otp = fopen("aena,out•, "r"); 
it (ofp == (FILE ') NULL) { 

fprintf (stderr. 

} 

''Unable to read simulator sensor file X•. no output processed. \n11
, 

fcloae(sfp); 
return(-1); 

"aena.out"); 

xtp = fopen(out, "v"); 
if (xfp == (FILE ') NULL) { 

fpr intf (atderr, 

} 

"Unable to create results file X•. no output processed. \n", 
out); 

fclose(sfp); 
fclose(ofp); 
return ( -1) ; 

;• 
* Initialize aenaor array. 
•; 

for (i=O; i<MAX_SENSORS; i++) 
arr[i] .id = -1; 

fprintf (atdout. "hading from enabled sensor file \ "X•\ "\n11 ,.aen.a); 

;• 
* Dlatinquish enabled aenaora . 
•; 

vh.lle (tacanf(afp. "Xd", &nevid) I= EOF) { 

it (nevid >= I!AJLSENSORS) { 

} 

fprintf (atdout, 
"Invalid aenaor \ •xd\" read from. aenaor file X•· \n ... 

nevid, aens); 
continue; 

arr[nevid] .id = nevid; 
arr[nevid] .first= 0.0; 
arr[nevid].last = 0.0; 
arr[nevid].avq = 0.0; 
arr[nevid] .count= 0; 

} I* end vhile *I 

fprintf (stdout, "Reading from simulation 11enaor file \"%•\ "\n", "sene, out'v); 

;• 
* Process sensor information. 
'I 

vhile (fscanf(ofp, "Xd,%f", &inst, &stime) I= EOF) { 
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} 

H (J.nat >= IWl.)lENSORS) { 
tprintf (atdout, 

Mlnvalid aen.aor \ "Xd\11 read from aimulator log file X•· \n 11
• 

inat. 11sena. out"); 
continue; 
} 

if (arr[tnst] .count == 0) 
arr (inat). firat = a time; 
arr (inat] .count += 1; 
arr[inat].last ~ atime; 
arr[inat).avg = (atime- arr[inat) .firat) I arr[inat] .count; 

} I" end vhile "I 

tprintf(atdaut,MWTitlng output file \"%•\"\n".out); 
fprintf (xfp. "Senaor Firat Laat Averaqe Count\n"); 
tprintf(xtp. u \n\n"); 

I' * Wr 1 te out enabled a ens or 
• infon:u:tion. 
'I 

for (i=O; i<MAX._SENSORS; i++) { 
it (arr[i] ,id I= ~1) 

fprintf (xfp. 
11 %2d %6, 2f %6. 2f %6, 2f %d\n\n11

• 

i, arr[i].firat. arr[i] .laet. arr[i] .avg. arr[i] .count); 
} I* end for *I 

fcloae(ofp) 
fcloae(atp) 
fclo .. (xtp) 
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tl /bin/coh - r 

I Execute the ahell acript 'LnFile.ah' on all 
I the director!•• under the current directory, 
I vith each directory. the tirat command line argument. and 
I the current vcrking directory aa arCjJI.UIIetlta. 

aet ourh = .. jbin/pvd" 

t~ . -type d -exec LnFile.ah {} 01 tourh \; 
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II /bin/csh -t 

4t Olange to the directory aelected by 
I arqumenta 3 and 1. and create aymbolic 
1 1~ to all tiles under ~/1. 

chdir fJ/U 
ln -o f2/U/' . 
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ftl /binjcah -f 

aetenv IUPATH ~ \bin\pvd~ : OSDIR: /uar/lih/local/modulal 
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ftl/bin/csh -f 

*Hake the .osconfi9 directory the current * working directory. aet th. H2PATH variable * and create the Modula-2 ~ file. 

chdir ~/bin/pvd~;.oaconfig 
source m2path 
mm2m u 
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II ,lbin/coh - f 

aetenv M.i:PA1'H • :SUMDIR:juarjU.b/1ocal/JDOdula.i: 
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*1/bin/csh -t 

* Make the . atimulua directory the current 
1 working directory. set the MlPATH var labl• 
I and create the Modula-2: make til•. 

chdir ~ /bin/pvd'"'/. atimulua 
aource 1112path 
lllm2m 11 
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tl /bin/cob -f 

I Find all occureneea of the firat argument * in the file n.a.med by the third ar9WMI1t. 
I In the aelectec:l file replace all occurrence• 
I of argument one vith argument tvo. 

aed -e "/41/a?41?42?" 43 >I t.mp 
cp temp '3 
/bin/rm temp 
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II ,lbin/cah -f 

aetenv MlPA1'H • :OSDIR:juar/lihjlocaljmodula3 
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tl/bin/coh -! 

I Exucute llake in the .expJDqr aubdirectory and 
I append the output to Make .log in the current 
I directory. 

cd. . exp.JD.9f" ; .alee »& .. /Make . 1 og 
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11/bin/cah -f 

1 Execute the make program in the . hvcontiq aubdlrectory 
I and append the output to fil• Mak..lo; in the current 
I directory. 

cd .hvconflg; make "HOME= /uarjaoftlab" >>& •• jHak..log 
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tl/bin/cah -r 

t Execute ..UC. in the . oacontig aubdirectory and append 
t the output to the file Nab .log in the current 
t directory. 

cd . oacont:ig; aource m2path ; ..UC. »&. .. /Make. log 
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11/bin/cah -t 

I Execute the IIIAl«t program in the . atimu.lua aubd.ir~tory 
I and append the output to the tile Hake. log in tn. current * working directory. Set the M2PATH va.r iable ainc8 th.ia ia * a Modula-2 make. 

cd .atimu.lua; aource m2path ; IDilb »& .. ,!Make. log 
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I* 
* FILE: oxp.Jtqr.b 
• * CON'!ENTS: Del!initiona and Constanta used by the libexp.a routinea . 
• 
* HISTORY: Written by Richard Morrill for SoftLab, UNC-01. 1/1/86. 
'I 

/* Ma.x1mua number of aeru~ora allowed. 
'I 

- fl..ne MAX...BENSOJIS 100 
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I* 
* FILE: dorun.c 
• 
* CONTENTS: boRun - Entry routirua to tM exp..Jilgr run-t.U. library (libexp. a) . 

* HISTORY: written by Richard Morrill for SoftLab, UNC-CH. 1/1/86 
• 
*I 

*include <atdio.h> 

static int count 1· /* experiment number */ 

I* 
* PURPOSE: 
• • 
• 

Executea one full 
file proceaaing . 

* RETURN CODES: 
* None. 

run of an experi.mant including the output 

* RESTRICTIONS/ASSUMPTIONS: 
* No validity checking b don. for the .xperiment c~ta. 
'I 

DoRun(sim, as. atim. aeruJ, out) 

char *aim; I* IN executable simulator file */ 
char *as; /* IN os meade file *I 
char *stim; !* IN atimulua .code file */ 
char *aens; I* IN anabled aenaora file */ 
char *out; I* IN aimulator output reaulta file */ 
{ 

int pid; 
char sensbuf [128+1}; 
char aimbuf [128+1]; 

I* process id returned from fork() */ 
/* full path to the sensor file */ 
/* full path to the simulator *I 

fprintf(atdout. "BeqLnninq experiment run number Xd\n".count); 

I* LLnk the stimulus and os files to the name• 
* expected in the main memory module. 
'I 

InitFiles(oa,atim); 

/* Build relative paths in. 
'I 

atrcpy(simbuf. ".hveont'ig/11); 

atrcat (simbu f, aim) ; 
atrcat(aimbuf. ".aim"); 
atrcpy (sensbuf. ".exp...JII.IJT /") ; 
atrcat(aensbuf. aena); 

!* printf("forking\n"); *I 

pld = fork() ; 
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} 

I* printr("p!cl = Xcl\n",picl): *I 

u (p!cl == 0) { 

} 

I* In ~ child. 
*I 

tprintt (atdout, "Invokinq simulator V'XsXsX•\ "\n". 11 .hvcontiq/11
• aim, 

".aim"); 
execl(dmbuf. aimbuf, •-d" ~ "100", 0); 

else { 

} 

I* In the parent. 
*I 

if (vait(O) I= pid) 
fprintf (std.out. 

"Error 1n simulator invocation\n"); 
elae { 

} 

fprintf (stdout, "Experiment run number Xd completed.\n" ,count); 
count++; 
ProcesaOutput (out, aenabuf); 
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!* 
• FILE: init.c 
• 
• CONTENTS: Initialization routine for the libexp.a routine library . 
• 
* HISTORY: WTitten by Richard Morrill for SoftLab, UNC-CH. 1/1186. 
'I 

~~elude <•tdio.h> 

I' 
* PURPOSE: 
• Set up links 1n the schema directory tor thtl DIS and 
* stimulus M-code files. 

* RETURN CODES: 
* None. 
• 
* RESTRICTIONS/ASSUMPTIONS: 
* Assumes that the simulator is lockinq for the files •• named 
• 1n the currt~nt vorkinq directory. 
'I 

InitFiles(os, stim) 

char *oa; 
char *sti.m; 

I* IN 
I* IN 

0/S H-code tile *I 
stimulus M-code file *I 

{ 

} 

char buffer[128+1]; 

fprintf(stdout,"Llnkinq \"X•\" to \"X•X•\"\n","OS.IDCd", ".oaconUg/". 
os); 

atrcpy(buffer. 11
• osconfigl"); 

strcat(butfer, os); 
sym.link (buffer. "OS .mcd") ; 

fprintf (atdout. "Linking \"X•\" to \ "X• X•\ "\n". "Stimulua.mcd" ~ ".atJ.mu.lull/ 111
, 

stim); 

atrcpy(buffer. ".stimulus/"); 
atrcat(buffer, at~); 
aymlink(buffer, "Stimulua.mcd"); 
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} 

U (ina t >= MAX..$ENSORS) { 
tprintf(atdout, 

•Inv~lid aen.or \"Xd\" r••d froa aimulator log fll• X•-\n", 
!nat, •aena. out 11

) ; 

continue; 
} 

if (arr[inat).count == 0) 
arr(inat].firat = atime; 
arr(inat) .count += 1; 
arr(tnat).laat = atime; 
arr [!nat] .avg = (ati.JM - arr (inat]. Urat) I arr [!nat] .count; 

} ;• end vhll• •; 

fprintf(atdout."wrltlng output til• \"Xa\•\n",out); 
fprintf(.xfp, "Senaor Firat Laat Av.ra~ Count\n"); 
fprintf (xtp. • \n\n"); 

;• 
• Writ. out enabled aensor 
• infonu.tion. 
•; 

tor (1=0; 1<HAX.J;ENSORS; 1++) { 
if (arr[l] .ld I= -1) 
fprintf (xfp. 
" Xld X6.lt X6.H %6.U %d\n\n". 

!, arr[i).firat, arr[i] .laat, arr[i) .avg, arr[iJ .count); 
} ;• ~ for */ 

fcloae(ofp) 
fcloa•(afp) 
fcloa• (xfp) 
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II /bin/cab - t 

I Execute th. ahall acrlpt 'LnFlle.ah' on all 
f the director lea ~r the current directory. 
I with each directory~ the tlrat command line arqument~ and 
f the current working directory aa argumenta. 

aet ourh = "/bin/pwd'" 

rind . -type d -ex.c Lnlile.oh {} 11 ••urh \; 
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II /bin/coh -r 

f Canqe to th. directory ••lected by 
t argument• 3 and 1. and creat. aywaboUc 
f llnka to all til•• under 2/1. 

chdir .3/11 
ln -· .J/11/' 
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*' /bin/cllh -f 

••tenv MlPA1'H ~ \bin\pvd.~ : OSDIR: /uar /l!b/local/modulal 
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11/bin/cah -f 

f Hake t:h.4l • oacontig directory the current * working directory~ aet tlw HlPATH var iabl• * and creat• the Hodula-l mak. til•. 

chdir ~/bin/pvd~/.oacon!ig 
source m2path 
mm.2m H 



Hov 6 20:17 1985 St~path Page 1 

II /bin/cah -r 

••t.nv MlPAXH .:STIMDIR:/uar/llb/loeal/.odulal 

Apr ll lO:l3 1986 St~.ah Pa~ 1 

11/bin/cah -r 

I Hak. th. .atimulua directory the current 
I working directory. aet th. MlPAXH variabl• 
I and create th. Modula-l mak• fil•. 

chd.ir "/bin/pvd" I. atimulua 
aource lll.J:path 
liDDlm f1 



Apr l2 20:24 1986 t!l••ub• Page l 

II /bin/coh -r 

I find all occurCl.Cea ot the tirat argument 
I in the til• na.mad by the third argum.ent. 
I In the aelected. til• replac. all occurrencea 
I ot arg-wDOnt one vith argument tvo. 

aed -• "/.1/•?•l?.l?" •3 >I temp 
cp temp tJ 
/bin/rm temp 

Nov 6 20:17 1985 ~path Paqe 1 

II /bin/coh - r 

aetenv MlPAl'H • :OSOIR:juar/lih/local/aodulal 



Apr ~~ ~0:~5 1986 .. Jceexpmgr.ah Pag. 1 

11/bin/coh -r 

t Exucute aake in tlw .expJilgr aubdirectory and * append tlw output to Mak. .log in the current 
t directory. 

cd .expJilgr; aab »& .. ,!Hake.log 

Apr ~l ~0:~7 1986 aak.hv.ah Pa~ 1 

tl/bin/cah -f! 

t Execute tlw aake provr .. in th. .hvconf!iq aubdirectory 
t and append the output to f!il• Hak.. log in the current 
t directory. 

cd .hvcontig; aake "~«Jot! = juar ;aoftlab" >>4i •• ,IM&b.log 



Apr 2l 20: l8 1986 aakeoa. ah Paqe 1 

11/bin/c•h -r 

1 Executa aab 1n ~ . oacontiq aubdlrectory and append 
1 the output to the til• Mab. loq in the current 
I directory. 

cd .oacontiq; aourc. a2path ; aalol »* .. /Ha}al.loq 

Apr l2 20: 29 1986 aakeatia. ah Paga 1 

tf/bin/cah -t 

t Execut• the make prograa in the . atlmulua aubdir.ctory 
I and append the output to the fil• Hake. loq in the curr.nt * vorkinq directory. S.t the H2PAnt varlahl• aJ.nc. thia la 
I a Hoduh.-2 maloa. 

cd .•timulua; aource &2path; ~ >>* •• /Ha}al.loq 



Apr 22 20:30 1986 -.lza.ah Pav- 1 

11/bin(cah -f 

I Set up the M2PATH var !able in tt. . osoontig 
t aubdir.otory and create the •••ociated aake tile. 

chdir "/bin/pvd" I. asconfig 
source mlpath 
amo2D H 
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I' 
* f'ILE: exp...JRgr .h 
• 
• CONTENtS: O.linltlona and conatanta uaed by th. U.be.xp.a routinea. 
• 
* HISTORY: Written by Richard Morrill for SoftLab. UNC-at. 1/1/86. 
'I 

/* Maxi.Jaua nwober of &Claora allowed. 
'I 

tdefine MIJLSENSOD.S 100 

Apr 18 13:55 1986 dorun.c Pag. 1 

I' 
* FILE: dorun.c 
• 
* CONTENTS: DoRun - Entry routina to the exp...a91"' run-tJ.a. library (llbexp.a), 
• 
* HISTORY: Written by Richard Harrill for SoftLab, UNC-CH. 1/1/86 
• 
'I 

linclude <atdio.h> 

atatie int count = 1; /* experLment number */ 

I' 
* PURPOSE: 

• • • 
Ex.cutea one tull run at an experiDint including the output 
file proceaaing . 

* RE'!URH CXJDI!:S: 
* None. 

* RESTRICTIONS/ASSUMPtiONS: 
* No valid.lty ch.ck.1ng ia done for the experimclt co.ponenta. 
'I 

DoRun(ai.m., oa. at.lm. aen8, out) 

char *aim; /* IN executabl• aimulator file */ 
char *oa; I* IN oa meade file • I 
char •atlm; !* IN atimulua .cod. til• */ 
char •aen.; /* IN enabled aenaora file */ 
char •aut; /* IN aimulator output reaulta file */ 
{ 

lnt pid; 
char aenabuf[ll8+1]; 
char atmbuf[llB+l); 

;• proceaa id returned froa fork() *I 
I* tull path to ~ aen.or file *I 
I* full path to the aimulator *I 

fprintf(atdout. •oeqinninq experiment run number %d\n•,count); 

!* Link the atlmulua and oa filea to the name• 
* expected in the main memory module. 
'I 

InitFilea(oa,atim); 

I* Build relative patha in. 
'I 

atrcpy(ai.mbut, • .hvcontlg/"); 
atrcat(simbut, aim); 
a treat (slmbut, ... aim"); 
atrcpy (eensbut, ... e.x:pJEl91"' I'') : 
atrcat(aonsbut, aen.); 

I* printt("torking\n"); *I 

pid = !ork () ; 
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} 

I' printr("p!d = Xd\n",p!d); 'I 

H (pid == 0) { 

} 

/ 11 In the child. 
'I 

tprlntt(atdout. "Invoking almulator \"X•X•X•\"\n". ".hvconflg/". aim, 
".aim"); 

exocl(aimbuf, aimbuf, "-d". "100", 0); 

alae { 

} 

/ 11 In the parent. 
'I 

if (vo!t(O) I= p!d) 
tprintf (atdaut, 

"Error in aimulator invocatlon\n"); 
ebe { 

} 

tprintf(atdout, "Expertm.nt run number Xd completed\n",count); 
count++; 
Proc.aaOutput(out, •~but); 

Apr 2l 20:03 1986 lnit.c Paq• 1 

I' 
11 FILE: lnit.c 
• 
• CONTENTS: I~tialization routln8 tor the libexp.a routine library • 
• 
* HISTORY: WTitt~ by RiChard Morrill tor SottLab, UNC-CH, 1/1/86. 
'I 

•~tude <atdlo.h> 

I' 
11 PURPOSE:: 
• 
• 
• 

Set up Unka in the ac.hema dJ.rttetory for tlw 0/S and 
atimulua H-code !ilea. 

• B.EttJBJf CODES: 
• None. 
• 
11 RESTRICTIONS/ASSUMPTIONS: 
11 Asaumea that the simulator ia looking tor the tilea •• nu:.ed 

in the current vorkinq dJ.rectory. 
•; 

I~tlilea(oa, atim) 

char •oa; 
char •atim; 

/ 11 IN 
/ 11 IN 

0/S M-eade tile */ 
atimulua M-eade file */ 

{ 

} 

char bufter{1lB+1]; 

tprintf(atd.out,"Linking \"%•\" to \"X•X•\"\n11
,

110S.mcd", ".oac:ontiq/11
, 

oa); 

atrcpy(butfer. ".oacon~iq/"); 
atrcat(bufter, oa); 
aym.Unk (butter, "OS .mcd"); 

fprintf (atdout, "Llnld.nq \ "X•\ • to \ •x•X•\ •\n", 11Stimulua .D:Xl", • .atUulua/111 , 

oti.m) ; 

atrcpy (bu !fer, 11
• ati.muluaj") ; 

atrcat(buffer, ati..m); 
aymlink(bufter, "Sti.mulua.mcd"); 




