
An Integrated Instrumentation Environment

Technical Report 86-028

1986

Richard R. Morrill

The University of North Carolina at Chapel Hill
Department of Computer Science
New West Hall 035 A
Chapel Hill. N.C. 27514

~

II I
I

1.
r I

· I' f ~ [.,
I I

AN INTEGRATED INSTRUMENTATION

ENVffiONMENT

by

Richard Raymond Morrill

A Thesis submitted to the faculty of The University of
North Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Master of Science in
the Department of Computer Science.

Chapel Hill

1986

@1986

Richard Raymond Morrill

ALL RIGHTS RESERVED

ii

Acknowledgements

The SoftLab team provided invaluable support and aid during the entire thesis project. In

particular, Rick Fisher helped with the design and implementation of the IIE features that depended

on his family of operating systems. Rick Snodgrass as both the head of SoftLab and the advisor

for this thesis was always available for help and guidance. His insight in the midst of some difficult

design decisions kept things on track. Dr. M. Satyanarayanan provided assistance in getting his

hardware simulator ported and adapted for our use in SoftLab.

Special thanks to Janice, Geoffrey, and Paul. It won't happen again.

iv

Chapter

1
2

2.1
2.2

3
4

5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.
7.1
References

Subject

Introduction
Experiments

TABLE OF CONTENTS

Software Systems Experiments
Previous Work in Software Systems Experiments
Soft Lab
The liE Users Manual
Introduction
Major liE Runtime Components
Experiment Specification
Experiment Preparation
Experiment Execution
Error Handling
The Design
Experiment Support
Experiment Specification
Experiment Component Construction
Experiment Execution
The Primary SoftLab Components
Additional Component Design
Design Evaluation
The Implementation
Major Implementation Considerations
Experiment Specification
Experiment Component Construction
Experiment Execution
Primary SoftLab Components
Additional Tool Implementation
Implementation Evaluation
Conclusion and Future Work
Future Work

Appendix A: Express Language Syntax
Appendix B: The Design and Execution of a Sample Experiment
Appendix C: Manual Pages

v

Page

1
3
3
4
6
7
7

8
10
15
16
17
19
19
20
24
25
26
27
28
30
30
31
33
34
36
37
37
39
39
41
43
45
49

1. Introduction

The SoftLab project strives to treat both education and research in computer science as in

natural sciences. Natural sciences and computer science differ primarily in the experimentation

area. Physics, for example, relies heavily on laboratory use for both education and research. Over

the years physicists have developed many special tools to support these experiments. There are now

some laboratory courses in place for the hardware area of computer science. The SoftLab group set

out to complement these by developing support for experiments in the software areas of computer

science.

Physicists have been developing experiment support tools for hundreds of years. It is not

realistic to think that a small research group can develop tools to support all of the different areas

of software research and education. We must start by providing support for experiments in a few

particular areas, doing so with generality in mind so that we can easily extend this support, a little

at a time, to cover a wider and wider range of experiment types.

The selected areas for initial support are operating systems and compiler design. These choices

led to the following major tasks:

1. the design and implementation of a modularized compiler.

2. the design and implementation of a family of modularized operating systems.

3. the design and implementation of an environment to support compiler and operating systems

experiments.

As part of the first task, members of the SoftLab team designed and implemented the Interface

Description Language(IDL) [18]. This language is a general purpose interface description tool that

is especially suited to aid in building compilers with multiple passes. As part of task two, other

Soft Lab members are nearing completion on the design and implementation of two modular operating

systems [7]. This task required additional compiler support to assure that the operating systems,

1

written in Modula-2, could run on a hardware simulator. Task three requires a number of support

programs, e.g., a hardware simulator, to provide necessary experiment components. In addition, this

task requires the design and implementation of a set of support tools that bring all of the experiment

components together and perform a simply specified experiment.

Our involvement in the above tasks was in three main areas: for task two we assisted in the

design of the Multibatch operating system; as part of task three we were involved in modifying

an existing hardware simulator [16] and an M-code, Modula-2 intennediate code, interpreter to

support the SoftLab operating systems; and we designed and implemented the support tools for

aiding experiment specification, synthesis, execution and evaluation.

For this thesis a set of tools, which comprises an Integrated Instrumentation Environment {liE)

for architectures and operating systems, will be designed and implemented. This liE will assist users

with a wide range of experiments relating to both hardware and software configuration. As part of

this effort a language will be designed for the purpose of specifying valid experiments.

Chapter 2 describes the problems involved with experiments in general and goes on to show the

particular problems related to software system experimentation.

Chapter 3 presents the SoftLab approach to software system experimentation and a brief de

scription of the present SoftLab tool set.

Chapter 4 contains the User Manual for the Soft Lab Integrated Instrumentation Environment.

The design and implementation of SoftLab's Integrated Instrumentation Environment is the

subject of chapters 5 and 6. We discuss design and implementation decisions as well as the value of

capitalizing on the UNIX toolset to do rapid prototyping.

In the conclusion, we argue both the generality and utility of SoftLab's liE and present some

of the work to be done to extend its present capabilities and enhance its structure.

2

2. Experiments

Scientific experimentation is generally a very complex and lengthy endeavor. IT an experimenter

is to draw reasonable conclusions at the end of an experiment he must know the state of the

experiment initially, while in progress, and at termination. For example, a particular experiment in

the field of Chemistry may require temperature, humidity, and barometric pressure readings while

in progress. A chemist may wish to rerun such an experiment with the same ambient temperature

and humidity but with a different barometric pressure; then, at some future date he may wish to

repeat the original experiment. Experimental chemists have designed special tools over the years

to aid them in this kind of control process. These special tools encourage many experiments, and

series of experiments, that would otherwise be too difficult.

2.1 Software Systems Experiments

The problems involved in experimentation in Computer Science are similar to those of other

sciences like Chemistry. They are the problems related to repeatability, control, and modification

of experimental parameters. All of these issues are important in the area of operating systems

experimentation. An operating systems experiment generally consists of four main parts: a set of

connected hardware devices (e.g., line printer, cpu, card reader); one or more user programs (the

workload); an operating system; and a mechanism or set of mechanisms to collect data concerning

the state of the experiment. Each aspect carries with it a set of problems which complicate exper-

imentation. The particular problems related to each of these four areas, as well as some others,

are mentioned below. For the remainder of this section 'experiment' refers to 'operating systems

experiment'.

• In most cases an experiment requires the dedicated use of the hardware devices while in progress.
H particular modifications to the hardware are required as part of a set of experiments, these
devices cannot generally be shared. Hardware may have to be acquired if it is necessary to test
the operation of an operating system over a range of equipment -which makes many operating
systems experiments too costly to perform.

3

• It is not easy to specify workloads for experiments. A program, or set of programs, must be
carefully written so that it possesses the characteristics required for the correct evaluation of a
particular experiment. If any of the workload characteristics must vary over a set of experimental
runs, different workloads with the correct variations in characteristics must be composed.

• Operating systems that are currently in use are generally very large and complex. Even the
simpler operating systems such as UNIX are composed of more than 10,000 lines of code. Since
efficiency is of paramount importance if an operating system is to be useful, the code is often
very dense and hard to understand.

• The evaluation of most operating system experiments requires the collection of data during
the experimental run. The data collection mechanism must have no substantive effect on the
experiment. This mechanism may well involve modifying existing hardware to provide certain
information. The data collected during an average experiment may also be voluminous. For
example, information concerning the number of memory references during the execution of a
large program may be required. The data collection mechanism should then contain some means
to filter or process this data as it is being collected. H the mechanism does not provide such
means then the processing of the data after the experiment will be a major task in itself.

• Experiments which involve classroom assignments can lead to special problems. Many students
may have to carry out the same experiment in roughly the same time frame. Protection issues
become difficult to handle when many students are sharing a large number of files.

It is evident that the problems encountered in experimentation render it too costly in many

of the situations where it would be useful. Very few universities have the resources that would

allow students the kind of opportunities to experiment with operating system design and evaluation

that many educators and the SoftLab group feel they should have. We may be able to solve this

difficulty by developing tools for the express purpose of supporting experiments just as others in the

sciences have done in their respective fields. One advantage that we have is that software systems

experiments can be controlled by the same mechanisms (i.e., software) that are being controlled.

This allows us a unique opportunity to study the properties of this interaction.

2.2 Previous Work in Software Systems Experiments

At this time there has been no project or proposed project that folly addresses the issues

and associated problema with software system experimentation laid out in the previous section.

There have been proposals that address laboratories and experiments in regard to specific topics,

e.g., operating system or compiler design[1, 2, 11, 12, 19]. Only two proposals, however, address

experimentation in more than one area of software system design.

One system, SL230[3, 4], which has been proposed at Carnegie Mellon University, would allow

for experimentation with regard to operating system design. This system provides a large collection

4

of component modules and a means to link them together via a message passing mechanism. A kernel

also provides low level synchronization of the modules. The modules are written in assembly language

to provide an efficient implementation. A user of the system can carry out experiments related to

modular operating system design easily and efficiently if he restricts himself to modularized operating

systems, based on a message passing paradigm, that can be synthesized from existing component

modules. Since the modules are implemented in assembly language, implementing new modules or

modify existing ones significantly complicates the experimentation process. These restrictions are

clearly a problem if the intended use of the system is for sophisticated experimentation or for flexible

pedagogical purposes. Another drawback of the system is its specific ties with operating systems.

It does not seem to be the basis of a general purpose software system experimentation tool.

Halstead's system[lO] proposes a laboratory for both operating system and compiler implemen·

tation. The system includes a modularized compiler for the Pilot language, and a modularized

operating system written in Pilot. Experiments relating to the design and construction of operating

systems or compilers are performed by modifying one or more of the constituent modules. This

system is intended as a pedagogical tool only. The simplicity of the included language, Pilot, and

the requirement of a bare machine allow little flexibility in the use of the system. Its use in the

pedagogical environment is also limited by the requirement that each student implement most of

the operating system and compiler with only basic tools (i.e., a text editor and a compiler).

5

3. SoftLab

The goals of the Soft Lab project are to address and to solve as far as possible the problems asso

ciated with designing and carrying out software systems experiments. Attaining this goal requires a

rich set of experiment components (e.g., operating systems, hardware simulators, etc.) in an environ

ment which supports experiment design, execution, and control. This project involves designing and

implementing a set of tools that comprises an Integrated Instrumentation Environment(IIE)[17]. An

IIE supports software system experimentation in the way that a programming environment supports

software system development. Programming environments provide programmers with the tools to

support the design, implementation and maintenance of software systems. Some PE's provide a

collection of tools from which the user can select [5]; others support the programmer through a

particular phase of the software system development life cycle [6]; and still others provide support

across the entire life of a program [8]. The IIE provides a rich set of tools when viewed from the

point of view of the experiment designer. She can select an operating system, a compiler and a par

ticular workload as components of an experiment. The experiment performer has the tools to take

the experiment specification and then, step-by-step, take it to a working experiment. Additional

components of the environment allow the experiment to be modified and run repeatedly without

any danger of unspecified inconsistencies entering into the process.

An Integrated Instrumentation Environment will allow the various tools (e.g., machine sim

ulators, families of operating systems, etc.) to function together and assist in performing a wide

rage of software systems experiments. The liE solves the problems of repeatability, specification,

and control that are inherent in the experimentation process. It will also provide the interface to

data collection and analysis tools, device simulators, and modularized software components (e.g.,

compiler passes) that are required for sophisticated experiments.

6

4. The liE Users Manual

4.1 Introduction

An Integrated Instrumentation Environment (HE) supports software system experimentation in

the same ways that programming environments support software system development. Program~

ming environments provide programmers with the tools to support the design, implementation and

maintenance of software systems. Some PE's provide a collection of tools from which the user can

select [5); others support the programmer through a particular phase of the software system devel

opment life cycle [6); and still others provide support across the entire life of a program [8). The

designer can select an operating system, a compiler and a particular workload a.s components of an

experiment. The experiment performer has the tools to take the experiment specification and then,

step-by-step, take it to a working experiment. Additional components of the environment allow the

experiment to be modified and run again and again without any danger of unspecified inconsistencies

entering into the process.

The liE described in this manual is an integral part of the SoftLab environment. It provides

the means to describe and carry out a wide range of software system experiments. We assume

that the user is already familiar with the other SoftLab components that are a part of the planned

experiments. In particular, we assume that the user is familiar with the SoftLab family of operating

systems [7), the SoftLab hardware configuration simulator [16], the Modula-2 programming language

[9, 22) and the C programming language [13).

Section 4.2 contains a brief description of the major runtime components of the liE. Section

4.3 describes the experiment schema that specifies how these components should interact in a par

ticular experiment. In Section 4.4 the user learns how to use the experiment preparation program

"SchemaPrep." Section 4.5 illustrates the execution of an experiment and describes how to utilize

pieces of an existing experiment in a related experiment. This can often save a lot of time and

7

system resources. Section 4.6 presents a description of an example experiment from start to finish.

The last chapter describes the error handling facilities that are part of the IIE.

4.2 Major liE Runtime Components

The liE incorporates many sophisticated components. The major runtime components of an

experiment are the operating system, the hardware simulator and the stimulus, or workload. We

present the user choices for each of these components below.

The Operating System

The SoftLab operating system family is a set of modularized operating systems. We call this

set a family because of the many similarities among the various operating systems. There is a

clear progression in complexity within the set. Two of the family members are currently being

implemented, the Unibatch operating system and the Multibatch operating system. The former

supports one CPU, one primary memory unit, a card reader and a line printer. It handles one job

at a time. Jobs are entered as card decks and the output of the job is printed on the line printer.

The U nibatch operating system is useful as a model of the most primitive type of operating system;

even though it is very simple it illustrates the basic structure of an operating system. A simple

experiment with this system might involve adding double buffering to the card reader driver.

The latter 0 /S supports one basic CPU, one primary memory unit, a disk drive, a card reader

and a line printer. More than one job may reside in main memory at a given time. The jobs

come into the system as separate card decks. The results of all of the jobs appear as hardcopy

on the line printer. The Multibatch operating system represents the next step in complexity. The

addition of multiple batch job processing capabilities carries with it an impressive jump in code

size. The three level scheduling mechanism, the memory management module and the interrupt

handler provide ample opportunity to investigate real operating system design decisions. These two

operating systems are implemented in Modula-2.

8

The Hardware Simulator

Dr. Satyanarayanan, at Carnegie Mellon University, designed and implemented a flexible hard

ware simulator to aid in the design and investigation of sophisticated network file servers - this tool

was adapted for SoftLab. Each component of the hardware is specified in a device module file. This

file contains entry and exit points for both control and data, procedures that embody the component

simulation algorithms and special simulation directives. One of these device modules is constructed

for each of the components of the hardware that we wish to simulate. A hierarchy description file

contains the component interconnection specifications and component initialization directives. A

completed simulator consists of one hierarchy description file and any number of device module files.

The implementation language for both file types is classc, a modified version of the C language

with classes [20, 21]. Two simulators constructed with this tool are presently in use: the Umachine,

which supports the Unibatch operating system, and the Mmachine, which supports the Multibatch

operating system. The Umachine contains one CPU device module, a main memory device module,

a card readei- device module and a line printer device module. The Mmachine contains one CPU

device module, a main memory device module, a card reader device module, a disk device module

and a line printer device module. The main memory device module, the card reader device module

and the line printer device module are identical in the two machines. Each CPU device module

contains a slightly different M-code interpreter. M-code is the intermediate language for Modula-2;

p-code is the analogous language for Pascal [15].

The Stimulus

The SoftLab stimulus facility consists of a number of libraries of workload component routines.

Programs are written that reference these routines; the appropriate library is linked at compile time.

This facility reduces the time and difficulty involved in defining and implementing a stimulus with

specific properties. The libraries differ in the execution time of the routines and in target type. Two

libraries, both intended for single processor machines, may contain corresponding routines that,

although similar in function, differ by a factor of ten in running time for example. Other libraries

may have a multi~processor machine as the intended target. Routines that differ in running time

9

only have the same name by convention. The user selects workload duration at compile time by

linking with the desired library.

Other liE components

The operating system family, the hardware simulator creation tool and the stimulus facility are

integral parts of the SoftLab liE. They are also tools in their own right. Other liE components are

more tightly bound and do not have a useful separate existence. We will discuss their features in

the context of the experiment specification facility in the following section.

4.3 Experiment Specification

The components of the liE's runtime environment are powerful but complex. An additional

facility is necessary to describe the interconnections of the components so that the user can easily

specify and evaluate an experiment. The Express (Experiment Requirements Specification Schema)

language provides this facility. The user writes a description of the experiment in this language.

We call this description the exper£ment schema, hereafter known as the schema; we call the file

that contains this description the schema file. Examples from a valid schema file example. sch are

presented; the example file is given in the Appendix.

A schema file contains six major parts. Each of the parts specifies part of the runtime environ·

ment of the liE. The six sections are:

Initialization Section

The body of this section provides the information necessary to select various initialization op

tions of IIE runtime components. Possible initialization options are the memory size for a particular

hardware configuration, the number of processors for a multiprocessor hardware specification and

the per process stacksize limit for an operating system supporting multiple users. The initialization

section is not supported in the liE implementation.

Initialization Section from the file example. sch:

InitSection
Endinit

10

Stimulus Section

The stimulus, or workload, exercises the runtime environment and is necessary for any real

experiment to take place. It is possible to spQcify an experiment that has an empty workload, but

outside of testing the initialization features of the hardware configuration and operating system it

is not useful to do this.

In the stimulus section the user may specify a SoftLab stimulus library and a stimulus program.

The stimulus library contains routines that the stimulus program imports. The library routines

each embody a real user workload feature such as I/O-bound code, compute-bound code or code

exhibiting little locality. The user stimulus program must be a valid Modula-2 program. The

program may import SoftLab stimulus routines only from the specified library.

Stimulus Section from the file example. sch:

StimulusSection
Library: lowref
File: /nnc3/nnc/drm/sl/src/Stimulus/main.mod
EndStimulus

The stimulus library lowref is selected along with user written driver main.mod.

Hardware Configuration Section

The user must choose one of SoftLab's hardware simulators. He must also specify the config-

uration of these components by naming a hardware configuration file. These two selections taken

together specify a valid hardware simulator, called the base machine. Additional schema file entries

for the hardware configuration section specify modifications to the base machine. These modifica-

tions consist of pairs of device module file names. The first file name specifies one of the device

modules that is part of the base machine; it is assumed to be in the base machine directory. The

second file name specifies a substitute device module and may be an arbitrary path name. The

resulting hardware simulator consists of the base machine with the specified substitute device mod-

ules.

11

Hardware Configuration Section from the file example. sch:

HWConfigSection
Machine: Bmachine
HD : Bmachine . hd
DMSubs:

Bmainmem.dm submem.dm
Bcpuint.dm subcpu.dm

EndSubs
EndHW

The hardware simulator Bmachine is selected along with its primary hierarchy description file

Bmachine. hd. Other hierarchy description files for the hardware simulator Bmachine are also pos-

sible, specifying different variations of the same machine. The device module files Bmain.mem and

Bcpuint.dm are replaced with the files submem.dm and subcpu.dm respectively. The replacement

files are in the schema file directory since no path components are specified.

Operating System Configuration Section

The operating system configuration section is similar to the hardware configuration section. It

starts with the choice of an operating system from the SoftLab family of operating systems. The

next selection is the main module of the Modula-2 program that implements the chosen operating

system. This main module is similar in function to the hierarchy description file for the hardware

configuration section. The choice of different main modules specifies different variations of the same

basic operating system. In each case the final program is built from selections from the same pool of

modules. The user may now choose to substitute modules in the operating system. Since Modula-

2 programs incorporate both definition modules and implementation modules, the user is able to

substitute for either module type. The resulting operating system consists of the basic operating

system selected with the specified modules incorporated.

Operating System Configuration Section from the file example. sch:

OSConfigSection
OS: unibatch
Main: UniBatch.mod
DefSubs:

Loader.def /unc/drm/ms_work/Imp/test/subloader.def
EndDefSubs
ImpSubs:

12

EndimpSubs
EndOS

Loader.mod /unc/drm/ms_work/lmp/test/subloader.mod

The unibatch operating system and its main module UniBatch. mod are selected. The definition

module Loader. def is replaced. Notice that here the full path name of the substituted file is given.

The implementation module Loader.mod is also replaced.

Sensor Section

Each of the components of the SoftLab hardware simulators, operating systems and stimulus

libraries contain sensors. These sensors are embedded code fragments that supply information from

the runtime system to the experiment manager. In addition, the user may define new sensors.

These additional sensors could be found in the user stimulus program, substitute device modules

or substitute operating system modules, Each sensor has a unique name. The experiment manager

selects the information from the sensors that are of interest to the experimenter. The user may

name the sensors of interest directly in this section of the schema or indirectly by naming a file that

includes a list of the sensors after the switch -f. Multiple sensor files are acceptable but they must

each be proceeded by -f. The documentation for specific Soft Lab components contains lists of the

sensors for that component. The SoftLab monitor document contains the description of a sensor

code fragment.

Sensor Section from the file example. sch:

SensorSection
SensorList:

EndSensorList
EndS ens or

1 5 8
-f senslist
45

The sensors 1, 5, 8 and 45 are selected explicitly in this section. The sensors listed in the file

senslist in the schema file directory are also selected. An arbitrary pathname could have been

used for the sensor file.

13

Directives Section

This section specifies the number of runs of the simulation system that are to take place in the

experiment as well as the variations for each run. The only per run variation that we allow at this

time is the choice of stimulus. Thus, for example, the user may direct the experiment manager to

execute the simulation system three times with a different stimulus for each run via three separate

run-tuples. Each stimulus is a selection from the stimuli built in the stimulus section. The five

elements in each run-tuple are: first, the base machine; second, the executable operating system file

name; third, the executable stimulus file name; fourth, the constructed sensor list file name; fifth,

the output file name.

Directives Section from the file example. sch:

DirectivesSection
RunList:

EndRunList
EndDirectives

("Bmachine", "UniBatch. out", "main. out", "sensors'', "out!")
("Bmachine" 1 "UniBatch.out" 1 "main. out 11 , "sensors'', "out2 11

)

Two runs of the simulator are specified in this section. At present the only possible variation

in these run-tuples is different names for the run output files. In this case the file out 1 will contain

the output from the first run and the file out2 will contain that of the second. In the future any

of the run components listed in the run-tuple, the simulator, the operating system, the stimulus,

the sensors and the output file may change from run to run. The corresponding sections of the

schema file will also change to allow more than one run component, e.g., two operating systems, to

be specified.

Summary

The schema file contains a complete specification of a SoftLab software experiment running

under the IIE. Modifications to a schema file represent new experiments. These modified schemas,

however, make the differences in each experiment clear, and provide an easy means for the user to

specify a series of experiments in a controlled manner with small variations at each step. The next

chapter contains a description of the tool that interprets a schema file and prepares the components

of the experiment for execution. The Appendix contains the description of a valid schema file.

14

4.4 Experiment Preparation

A schema file describes an experiment by specifying each of the major components of the

HE runtime system and also by issuing directives of which the experiment manager will take note

during experiment execution. The program SchemaPrep (see SchemaPrep man page in Appendix C)

takes this schema file as input and prepares the experiment components for execution. In addition

to naming the schema file the user may also set command line switches. Setting a switch causes

SchemaPrep to process the associated section of the schema. IT no switch is set the program processes

all sections of the schema. Sections of the schema that SchemaPrep ignores, due to switch settings,

must still contain the correct delimiting keywords. The experimenter invokes SchemaPrep as follows:

SchemaPrep [-dhimow] schema file

The switches have the following meanings:

-d Interpret the directives section

-h Interpret the hardware configuration section

-i Interpret the initialization section

-m Interpret the sensor section (for monitoring)

-o Interpret the operating system section

-w Interpret the stimulus section (the workload)

The user must also include the directory /usr/softlab/bin in the environment variable PATH

string. See the Unix manual entry on csh to find out how to do this.

The SchemaPrep program reports its progress on interpreting the schema to both standard

output and the file SchemaPrep .log in the current directory. When the program encounters errors

in a schema file section it reports the difficulty and attempts to parse subsequent sections of the

schema. The user may call SchemaPrep with the appropriate switches set to parse sections that

were incorrect on a previous execution. If the file SchemaPrep .log is present SchemaPrep appends

any new messages to the end of the file. This provides a complete account of the preparatory phase

of the experiment.

15

If the user first executes SchemaPrep in a directory containing only the schema file, the result

of a successful parse of the schema is the creation of a number of new sub-directories and files. For

example, if we started in a directory containing the following files:

example.sch senslist subcpu.dm submem.dm

and invoked SchemaPrep on the example described in Chapter 3, a successful parse of the schema

file would leave us with the following additional files

SchemaPrep.lownakefile

and subdirectories

. exp.Jilgr:

.hwconfig:

.osconfig:

.stimulus:

senslist

each containing a makefile and other files.

suhcpu.dm submem.dm

Executing the makefile in the schema file directory will cause each of the subdirectory make-

files to execute in turn. If errors cause any of the makefiles to stop before making the associated

component, the user can correct the problem and then run SchemaPrep on the problem section. The

higher level makefile will remain, and execution of the makefile will continue with the problem

subdirectory. When the upper level makefile completes its execution it produces an executable file

expJngr in the schema file directory. This program executes the experiment as specified in the

schema. The appendix shows this process in more detail.

4.5 Experiment Execution

The user executes the experiment specified in the schema file by executing the program exp..mgr

(see exp..mgr man page Appendix C) in the schema file home directory. The experiment will then

run until all of the requested runs complete. The results of the experiment are written to the files

named in the run-tuples in the associated schema. In addition to the results files, exp.Jilgr produces

a file containing a log of the experiment in the same directory. This file is named exp..mgr .log.

The log file contains information on the experiment specifications, the time the experiment was run

16

and any warning or error messages produced as a result of the execution. The logging mechanism

is not currently implemented. The user can obtain the same information from the other log file,

SchemaPrep .log, and from what is printed to standard output during the experiment run. The

results file contains the formatted output of the experiment with the information requested in the

sensor section of the schema. In the example execution (see Appendix B) two runs are carried out

with the names of the output files the only difference.

The files out 1 and out2 contain the following information:

• the sensor id;

• the first time the sensor was reached, in simulation time units;

• the last time the sensor was reached, in simulation time units;

• the average time between sensor events;

• and the number of times the sensor was reached.

Any execution of an exp_mgr program derived from the same schema will produce the exact

same result and log files. The only obvious exception is the experiment time information in the log

file.

The user may modify a schema file after executing an experiment. SchemaPrep switches are set

to select the modified sections of the schema for processing. The SchemaPrep .log file will contain the

new experiment preparation log information in addition to the previous contents. The user should

delete this file before running SchemaPrep if she wants it to contain just the new information. The

new exp_mgr program and the files resulting from its execution will overwrite the previous files. A

user wishing to run more than one experiment using modified versions of the same schema file in the

same directory should copy each set of log and result files before the next experiment. A full example

of an experiment from the preparatory phase to completion is in Appendix B of this manual.

4.6 Error Handling

SchemaPrep and exp_mgr can produce three types of errors. The steps for the user to take

are evident from the initial message: she shonld consult the appropriate language manuals, SoftLab

manuals, or local experts for help.

17

Configuration Errors

These errors are the result of naming files in the schema that do not exist or do not have the

appropriate permissions. This includes naming non-existent SoftLab components. Configuration

errors produce clear messages that pinpoint the difficulty.

Syntax Errors

These errors result from incorrect syntax in user written experiment components such as sub

stitute device modules or a stimulus program, and from syntactic errors in the schema file. Syntax

errors in the schema file may lead to additional error messages associated with subsequent schema

sections that are correct. The user should correct the schema file at the place where the first error

occurred and then run SchemaPrep again before attempting any other modifications.

Runtime Errors

These are the result of a variety of errors in the user written Modula-2 routines or C language

routines.

18

5. The Design

This chapter presents the overall design of the IIE introduced in Chapter 4. We include herein

materials on the design of the tools for specifying and managing an experiment, the modification

and incorporation of the main components presented in Chapter 3, and the design of the stimulus

and monitoring facilities. We assume the reader is familiar with the definitions and terminology

presented in the previous chapter.

5.1 Experiment Support

The IIE requires tools to support experiment specification and management, in addition to a

set of experiment components (e.g., hardware simulators). The framework for the design of these

support tools (including those for the contents of the schema file) derives from the work of Segall,

et a!, at Carnegie Mellon University on the design of an liE [17].

The experiment process seems to fall naturally into five main steps: 1) the specification of the

experiment; 2) the preparation and testing of the specified experiment components; 3) the construe~

tion of the experiment components; 4) the execution of the experiment; and 5) the presentation of

the experiment results. We now discuss each step in more detail.

• The first step involves analyzing the requirements of an experiment and then writing the ap
propriate specification. The specification of the experiment, termed the experiment schema, is
written in the Express language.

• In the second step, component specifications are checked, and necessary preparation for com
ponent construction (e.g., moving files to a particular directory) takes place. The SchemaPrep
program carries out the duties for step two.

• During the third step, the actual construction of each component occurs. The UNIX make
utility provides the function for this step, including the conditional processing necessary to
avoid repeating the checking and preparation of all components when only one requires it.
Handling the experiment preparation phase in this way supports a batch oriented approach
to each stage of the experiment process, and is vital if fifty students will carry out the same
experiment over the period of a week or two.

• Managing an experiment requires experiment initialization, execution and run-time control.
These tasks are well suited to an implementation with multiple processes, each with separate

19

duties. The incorporation of inter-process communication into the design is beyond the scope
of this thesis and must be left for future work. For this reason, the design for the experiment
manager program exp..mgr should admit a straightforward uni-process implementation.

• The data collected during an experiment execution may require significant post-processing to be
comprehensible, and depend on a sophisticated data storage mechanism along with a powerful
data processing tool. The design and implementation of such tools is beyond the scope of
this thesis. The analysis and presentation of data in this design is simple enough to require a
minimum of implementation effort, though still support real experiments.

5.2 Experiment Specification

Schema Design Gonsz"derations

The design of the schema was directed by three primary considerations, namely:

• that it support the specification of a wide range of 0 JS experiments;

• that it allow easy extension to encompass new experiment components; and

• that it be readable and self-explanatory.

The Schema Contents

The specification of an 0 JS experiment starts with the selection of the experiment components.

The operating system, hardware simulator, and stimulus are the primary elements and require

attention in the schema. The schema must also provide the means to direct the monitor to collect

the necessary data during an experiment run. Real experiments may consist of related sets of

runs; therefore, the schema should enable a user to specify multiple runs of an experiment, where

each run may contain different selected components. Particular components of an experiment may

include instantiation parameters, allowing, for example, the selection of the number of processors in

a multi-processor configuration or the per-process stack size limit in a multi-user operating system.

Separate sections in an experiment schema distiguish experiment configuration, data collection,

and management specifications. Breaking the schema into distinct sections provides easy extension;

we can add a new section without interfering with the contents of the others.

20

Initialization Section

Within this section we are able to set instantiation parameters. The design does not provide

more than the existence of this section at this time. Design decisions of greater detail should await

additional component specifications. It is too difficult at this time to gauge the range of possible

instantiation directives.

Stimulus Section

The selection of a SoftLab stimulus library and a particular file that uses routines from the

library constitutes the specification of a give workload. The stimulus library designers can provide

as extensive a set of individual routines as they see fit. It seems more appropriate to keep this

section simple and leave the workload complexity issues to stimulus writers. The design can easily

encompass modifications to allow the specification of more than one workload through minor changes

to the Express language and SchemaPrep.

Hardware Configuration Section

The Soft Lab approach for 0 /S experiments includes the notion of a set of hardware simulators

from which the experimenter selects. Since there may exist more than one hierarchy description file

for a particular simulator, this section includes the selection of this file in addition to the particular

machine. A list of device module substitutions in this section allows the selection of a machine vari~

ant. This section along with possible instantiation parameter settings should provide the necessary

range of hardware selection.

Operating System Configuration Section

The content of this section follows from the structure and intended use of the Soft Lab family of

operating systems. We allow the selection of an operating system by name, followed by the selection

of a main module, since more than one may exist. Modula·2 programs contain both definition and

implementation modules; this calls for a section for each type of module substitution. Additional

selection specifications do not seem necessary.

21

Sensor Section

We include sensor files in the sensor list for experiments requiring the enabling of a common

subset of sensors. A simple extension will allow for the construction of more than one sensor list.

Future designs may also include the ability to enable and disable sensors while a run is in progress.

The design of such a feature is beyond the scope of this thesis, since it involves complex interactions

among the components during a run.

Directives Section

This section was the most difficult to design. The choice to compose a list of run-tuples spec

ifying the experiment components wa.s due in part to ease of implementation. This design does not

require any re-building of components or inter-process communication to provide different experi

ment characteristics for each run. Minor changes in the design of the earlier sections of the schema

can allow for multiple instances of each component. The individual entries in each run-tuple will be

selections from pools of each component type. The consistency checking that one would like among

multiple runs with different components is not supported.

The Schema Language {Express}

The Express language is a minor component in the overall liE design. Its features support the

above specified schema contents, as well as a simple implementation. Designing a formal language for

software systems experiment design constitutes a dissertation, not a thesis component. The schema

design will certainly change, due to tool use and further SoftLab tool design; hence the language

will also change. This provides further motivation for expending a minimum of effort on the design

of Express.

The keyword approach makes for very simple parsing in the implementation. It also supports

the ease of extension that is useful in a prototype design and implementation. One :H.aw in the design

lies in its not supporting comments.

22

SchemaPrep

The SchemaPrep program reads the schema file and prepares for the construction of each of the

experiment components. The idea for a separate program to prepare for component construction

comes from Dr. Satyanarayanan's hardware simulator construction tool [16]. The program processes

each section of the schema file separately. When an error occurs in one section of the schema the

program may continue, depending on the nature of the error, to process the remaining schema

sections, thereby isolating the parsing of as much of the schema as possible. Command line switches

explicitly direct the processing of only selected sections. The user avoids the repeated parsing of

correct sections by setting the correct switches.

The SchemaPrep program constructs hidden subdirectories under the current directory in the

fashion of the Cambridge Modula-2 system [14[. Each subdirectory holds the files necessary for the

preparation and construction of one run-time component. The user may ignore the contents of these

directories. The sophisticated experimenter may make modifications in the directories contents,

although this invalidates most of the consistency checking the liE tools currently provide. We felt

that the user should have easy access to the component files, during early use of this tool, for error

checking and modification suggestions.

The execution of SchemaPrep causes the files makefile and SchemaPrep.log to appear in

the current directory. The makefile supports the actual component construction stage of the

experiment. The SchemaPrep .log file contains a log of the SchemaPrep program execution. This

log provides useful documentation and supports a batch oriented execution. The contents of the

sub-directories follow in the next sections.

The .exp_mgr Directory

The expJilgr program carries out monitoring directives. The file sensor in the .exp_mgr subdi

rectory contains the enabled sensor list. A change in the design will allow multiple lists in the one file

or multiple sensor list files with appropriate names. The file main. c contains the schema run-tuple

information and permits an easy implementation of the multiple runs per-experiment feature. The

file makefile supports the UNIX make utility used in the next stage of component construction.

23

The .hwconfig Directory

After running SchemaPrep this directory contains a copy of the selected hierarchy description

file, a . c file related to the hierarchy description file, symbolic links to each of the device module

files for the selected simulator, and a makefile to construct the simulator. The hierarchy descriptor

file is a copy since device module substitutions require changes in its contents. The use of symbolic

links for the device module files supports efficient use of the file system. The makefile and the . c

file are the result of a component in the hardware simulator tool set. Their creation is not explicit

in the design.

The .osconfig Directory

Symbolic links associate all of the components of a particular operating system with the . os

config directory, with the exception of the main module. We use a copy of the main module to

keep the design parallel with that for the simulator. The final specification for the contents of the

main module was not known at the time of this design; it may permit, or perhaps require, useful

modifications when making substitutions for the other modules. The parallel design of the compo

nent construction phase for both the simulator and operating system will aid in understanding and

ease of implementation. A Modula-2 utility program requires the presence of the m2path file and

constructs the makefile.

The .stimulus Directory

A copy of the user main module file resides here, as well as the supporting m2path file and

makefile. A set of subdirectories under the . stimulus directory could easily support multiple

workloads.

5.3 Experiment Component Construction

A successful execution of the program SchemaPrep places all of the necessary files, or links to

them, in the appropriate sub-directory for each tool component. In addition, a makefile is in place

in the experiment directory and in each sub-directory. The invocation of the main makefile in

24

the experiment directory with the UNIX make utility program will result in the invocation of the

makefiles in each of the sub-directories.

The top-level makefile provides the main control facility for component construction. Execut~

ing make with no arguments causes make to execute in each of the sub-directories. A file Make .log

collects the output of the make programs and provides documentation on the component construc

tion process. This file also supports batch oriented component construction. The user can invoke

the make program and put it in the background to execute. At some later point, she can examine

the contents of the Make .log file to ascertain which components were successfully constructed and

which components contain errors that prevent their construction.

The execution of the make utility in a sub-directory will cause the re-construction of the associ

ated component only if a change occurs in a depending file. This conditional execution is a feature

of the make utility and its associated makefile. There is no need to provide any additional facility

to support efficient component construction. Although the casual user should not tamper with the

makefiles, these files do provide additional control to the sophisticated user to make modifications

to experiment components that are not supported in the current implementation.

The exp..mgr is the only component that does not reside in its sub-directory. The top level

makefile causes it to move to the experiment directory since its invocation actually executes an

experiment. The other components are all manipulated by this program.

5.4 Experiment Execution

The experiment execution facility was the most difficult to design. The ideal facility would

provide control over all parts of the simulation and all simulation components. To implement this

requires an extensively instrumented hardware simulator, operating system, stimulus, and monitor.

The design of such components and the means of their manipulation is far beyond the scope of this

thesis. The experiment execution facility was therefore restricted to have no control at all during an

individual run of an experiment. This decision allowed the current SoftLab hardware simulator to

be used with only minor modifications and permitted an execution to take place without requiring

inter-process communication.

25

After this decision, it was necessary to decide what kind of inter-run control should be provided.

Section 5.2.8 presents the main reasons for the chosen approach.

Exp_mgr

The exp_mgr program executes an experiment. It first creates symbolic links in the experiment

directory to the stimulus and operating system M-code files. These links can change between each

run if the corresponding run-tuples in the schema file contain different operating system or stimulus

selections. These links, along with the other configuration information contained in the current

associated run-tuple, provide all of the information that is necessary for the start of the current

simulation. The simulation now runs to completion. The file sens. out contains the record of

the sensor invocations. The contents of this file are now interpreted by the exp_mgr program to

produce the output for the current experiment run. The output is written to a file named in the

associated run-tuple for the current run. The use of the file sens. out provides great flexibility for

the implementation of the data analysis and presentation phase of the experiment.

5.5 The Primary SoftLab Components

The current SoftLab operating system and hardware simulator required minor modification to

permit their integration in the liE. For the most part, these modifications were driven by the selected

embedded sensor design.

The Operating System

The SoftLab family of operating systems was designed with the SoftLab hardware simulator

tool in mind. The design of the other run-time components, e.g., the monitor, was not complete at

the time the operating systems were designed. This leads to minor modifications to the two current

operating systems, Unibatch and Multibatch. Sensors, short Modula-2 code fragments, installed in

the source code for the operating systems, will support the appropriate collection of data. Using

code fragments provides easy modification or addition of sensors to support particular experiments.

A standard set of sensors, with unique identifiers, for the operating systems has not been determined

at this point.

26

The Hardware Simulator

The hardware simulator contained an internal monitor mechanism when received from Dr.

Satyanarayanan. The modification of this mechanism should drive the design of the sensor facility

in the simulator. The current design, for reasons of time, ignored this mechanism and relied on the

addition of C code fragments for sensors. This provides the same ease of modification and addition

as in the operating systems.

5.6 Additional Component Design

The Workload

The design of a full workload facility encompassing a family of operating systems and related

hardware simulators is beyond the scope of this thesis. The properties of each of the run·time

components, as well as the current SoftLab M-eade interpreters in the hardware simulators, would

have to be carefully studied to ensure that particular M-code stimulus routines had the desired

characteristics. The current design concentrated on the stimulus selection mechanism rather than

on the content of the stimulus routines. For this reason, the design specified Modula·2 routines as

the building blocks for the stimulus libraries and supported the compilation of a Modula-2 workload.

The main components of the schema interface to the stimulus facility were designed to support a

smooth transition to M-code library routines. The user will still provide the control skeleton for the

workload and select library routines with particular characteristics.

The Monitor

During the design of the monitor we encountered many of the same issues as we did during the

design of the experiment manager. The monitor will collect information from experiment components

implemented in different languages. Ideally, different kinds of data, i.e., data from different sensors,

should be accessible at different times during the same experiment run. A valuable feature of a

monitor in this experiment environment would support selection of data from particular sensors

based on the current data being received. These issues led to design difficulties that could not be

easily overcome within the constraints of the current thesis. The current design permits the selection

27

of different sensors on a per-run basis. A design extension involving extensions to the schema and

the monitor should be possible to allow selection of different sensors during the course of the same

run. An extension to support sensor selection based on current data does not seem possible with

the present approach. An overall design that supported a multiple process design with inter-process

communication would be necessary to efficiently provide this extension. Section 6.6 in Chapter 6

looks at the implementation issues that affected the design of this component.

5. 7 Design Evaluation

The design supports a workable implementation and provides an environment in which real

experiments may be carried out, thereby meeting the primary goals set forth in the associated thesis

proposal. A more ambitious design that addresses many of the problems pointed out in this chapter

was originally intended. However, the necessity of a more focused design soon became apparent.

Therefore, the overall mechanism of the liE became the primary focus of the thesis.

Overall the design meets the requirements set out in Chapter 2. An experimenter has the tools

at hand to

• specify an experiment: SchemaPrep; Express Language.

• coD.struct an executable simulator: 0/8 family; Hardware Simulator; Workload Libraries.

• perform and evaluate an experiment: Monitor; exp_mgr.

In addition we used the UNIX makefile utility and options to SchemaPrep to easily modify and

rerun existing experiments.

D<Bign Strengths

The modular structure of the liE components is the greatest strength, since it supports compo

nent extension and enhancement. Progress in extending or enhancing the design would be very slow

if minor changes led to modifications in each of the components. We expect the design to grow and

change as new SoftLab tools become available. Experiments that require multi-processor simulators

and process oriented operating systems are a natural outgrowth of the modular design.

A second strength of the design also follows from the modularity. The modular design supports

easy debugging and quick turn around time when synthesizing a particular simulator. If the user

28

had to remake each of the HE components each time she encountered errors in a component or

component interface, very little experimentation could take place. For the student, the task would

be to get the simulator running. The evaluation of the experiment and the lessons it might hold

would become secondary.

Design Weaknesses

The inability of the experiment manager to influence the run-time components during a run

is the major weakness in the design. The ability to effect changes in the simulator as a result of

data received by the monitor is desirable. Experiments related to run-time tuning of component

function are then possible. Experiment variations on a per·run basis can be too coarse for complex

experiments involving many parameters. We feel that this weakness will become more problematic

as the components grow in sophistication.

Another weakness that contributes to the problems with the exp.JIIgr mentioned above stems

from allowing major liE components to be specified in different high-level languages. On a superfi

cial level portability is clearly an issue. On a more fundamental level interprocess communication is

very difficult when the processes involved are written in different languages. An inter-process com

munication facility of some type will surely be necessary to provide intra-run modification supports.

29

6. The Implementation

The design of the liE focuses on the experimental specification and execution process rather

than on the function of the particular components of the experiment. Restricting the focus in this

way allows for the completion of the design within the framework of this thesis. A similar restriction

applies to this first implementation of the liE. In this chapter, we present the major implementation

decisions, as well as implementation details for each of the experiment components. Code fragments

are often appropriate as part of the detailed exposition of the implementation. Those fragments

included in subsequent sections of this chapter do not contain all of the comments and error handling

statements that are in the actual implementation. We will evaluate the current implementation in

the last section of this chapter.

6.1 Major Implementation Considerations

The completion ofthe Soft Lab M-code compiler, the UniBatch operating system, and the Bma

chine will produce the first fully working implementation of the SoftLab liE. The first implemen

tation of the SoftLab liE contains sufficient function to be useful to both researchers and teachers.

Extensive use by these two groups during the IIE development will lead to early detection of design

flaws and critical implementation requirements. We felt that it was more important to implement

a prototype liE than to refine the liE design, or extend its domain. A partial implementation is

presently operational and was the basis of the experiment example in Appendix B of the liE User

Manual presented in Chapter 4 of this paper.

The UNIX program design philosophy calls for making use of existing tools to design new ones.

In ths spirit, we incorporated numerous UNIX utilities, e.g., sed and make, into small C programs

for quick implementation of the liE. In addition to speed, this approach provides a very flexible ·

framework for future modification. Future SoftLab designers and implementers c·an use the present

implementation as both the model for a production level implementation and also as a base for

30

liE design modifications and extension evaluation. The modular character of the implementation

supports quick and easy incorporation of different implementations of particular functions and/or

components.

The potential use of the IIE by whole classes of students requires that it work efficiently iu

both space and time. Symbolic links, a feature of the UNIX BSD4.2 file system, provide a simple

mechanism to share files and avoid unnecessary copying. The use of these links, along with minimal

use of intermediate support files, keeps disk resource use to a minimum. Design decisions regarding

the splitting of the experiment process into preparation, integration and execution phases, as well as

the selective nature of the SchemaPrep and make programs, lead to a time efficient implementation.

The three primary support tools may all be run iu the background, and hence may be scheduled

to run during nighttime hours. Once an experiment begins execution, the overhead of the exp...mgr

program is negligible in comparison to that of the operating system or hardware simulator.

The judicious use of symbolic links helps prevent the occurrence of potential security and

inconsistency problems. Access to files via symbolic links falls under the same access permission

restrictions as the origiual file iustance. The possibilities of accidently modifyiug a file required by

others or picking up the wrong version of a file are reduced substantially.

This implementation is flexible, easily modifiable, quite efficient in use of resources, and rea

sonably secure. These criteria were applied to select the proper path to take at each phase in the

implementation process.

6.2 Experiment Specification

The program SchemaPrep reads the schema file a string at a time, where a string is any sequence

of characters bounded by white space (see Appendix A of the SoftLab IIE User Manual for a

description of white space). Express language keywords provide the structure necessary for parsiug

the iuput.

The keystruct structure contains: the bounding keywords for each main section in the schema,

a pointer to the function responsible for processing that section, the associated command line switch,

and a descriptive string for messages. An array of keystruct structures, keylist, is defined in the

31

header file schemaprep. h.

struct keystruct {
char *keyword;
char *delimit;
int (•keyfunc)();
char sw _char ;
char *desc;

I• Section Start Keyword •I
I• Section End Keyword •I
I• Associated Procedure •I
I• Associated Command Line Switch •I
I• Descriptive String •I

} key list[] = {

} ;

"BeginSchema", NUll., BeginProc, NULL, NULL,
11 InitSection11 , 11 End!nit", InitProc, 'i', 11 initial 11 ,

"StimulusSection", "EndStimulus'', StimProc, 'w', "stimulus 11 ,

"HWConfigSection", "EndHW", HVICProc, 'h •, "hardware 11 ,

11 0SConfigSection 11 , "EndOS", OSCProc, "o •, ''operating system",
"SensorSection'', "EndSensor", SensProc, 'm', "sensor",
"DirectivesSection", "EndDirectives", DirProc, 'd •, "directives 11 ,

"EndScherna", NULL, EndProc, NULL, NULL

The entry for the hardware section of the schema contains the beginning keyword HWConfigSection

and the ending keyword EndHw. The procedure HWCProc processes the body of the hardware

configuration section.

HVICProc()
{

}

I• Create the hidden directory for the hardware component •I
mkdir(" .hwconfig" ,0755);
fprintf (stdout, "In HWCProc \n");
fprintf(lfp, "In HWCProc \n");

I• Process the body of the section •I
hwcprep(sfp,lfp);

Actions that are part of the section processing but do not rely on the content of the section are

performed first. The creation of the hidden directory is the only such action for the hardware

component. The procedure hwcprep(), which processes the body of the section, has as parameters

pointers to the schema file, sfp, and the log file, lfp. The procedures for the other sections of the

schema are similar to HWCProc and hwcprep.

The UNIX system routine supplies the actions required for the main body processing for each

schema section. The following code fragment is part of hwcprep () from the file hwcprep. c.

strcpy(command."filesubs 11);

strcat(comrnand,buffer);
strcat(command," 11);

32

strcat(command,buffer3)i
strcat (command," ");
strcat (command, 11 .hwconfig");
strcat (command, 11

/
11

) i

strcat(command,hdfile);
system(command);

Invoking system() executes the program filesubs that modifies the hierarchy description file

in the hidden directory .hwconfig. The modification consists of substituting one device module

name for another as specified in the schema. The program file subs is a shell script that makes use

of another UNIX utility, sed, to actually make the substitution. The body of file subs follows.

Substitute string $2 for string $1 in file $3.
sed -e "/$1/s?$1?$2?" $3 >! temp
cp temp $3
/bin/rm temp

The procedures, programs, and code fragments listed above illustrate the rapid prototyping

approach taken in implementing the SchemaPrep tool, based on existing UNIX utilities.

6.3 Experiment Component Construction

Along with the related makefiles, the UNIX make utility program supports the implementation

for the component construction phase of the liE. The schema directory level makefile actually

invokes each component makefile via a shell script. The scripts redirect the output of the component

make invocations to the file Make .log in the schema directory. The contents of the main makefile

and the shell script that invoke make in the hardware hidden directory follow.

Main makefile

all:

clean:

touch Make.log # Create the log
makehw.sh # Invoke make
makeos. sh # Invoke
makestim. sh # Invoke
makeexpmgr. sh # Invoke

/bin/rm -f -r . exp...mgr
/bin/rm -f -r .hwconfig
/bin/rm -f -r .osconfig
/bin/rm -f -r .stimulus
/bin/rm -f Make.log

make
make
make

/bin/rm -f OS.mcd Stimulus.mcd
/bin/rm -f sens.out sim.log
/bin/rm -f exp...mgr

33

in
in
in
in

file
.hwconfig
.osconfig
. stimulus
.exp...mgr

Shell Script makehw .sh

cd .hwconfig; make "HOME /usr/softlab" »II: .. /Make.log

6.4 Experiment Execution

Main Program Module

The experiment manager directives section of the schema contains part of the entry procedure

call to the supporting library routines. The run-tuples in the DirectiveSection section of the

schema are the actual parameter lists to a procedure. The SchemaPrep program concatenates

the string Do Run with each run -tuple, and writes the resulting string to the file main. c in the

experiment manager hidden directory . exp..mgr. The following is an example of the contents of the

main. c file following an execution of SchemaPrep.

main()
{
DoRun(11 Bmachine 11 , 11 UniBatch.out 11 , 11 main. out", 11 sensors 11 , "outl");
DoRun(11 Bmachine 11 , "UniBatch.out", "main. out", "sensors", 11 out2 11) i

}

Running make in the .expJilgr directory causes the compiling of the file main.c and the linking

with the experiment manager library to produce the executable file . expJilgr. The makefile below

contains all that is necessary to produce . exp...mgr in the schema directory.

LIB= /unc/drm/sl/lib/libexpcmgr.a

install: main.o $(LIB)
cc main.o -o expJilgr $(LIB)
mv exp...mgr ..

Library Routines

The library entry routine, Do Run, contains three main sections, accomplishing simulation prepa-

ration, simulator invocation, and simulation output processing.

• The preparation section links the files containing the M-code for the operating system and the
stimulus to files in the schema directory. Symbolic links to files in the schema directory hide
the hidden directory structure from the simulator so that changes in the directory structure
will not cause modifications in the simulator.

strcpy(buffer, 11 .osconfig/ 11);

strcat(buffer, os);
symlink(buffer, 11 0S.mcd 11) i

34

strcpy(buffer, 11 ,stimulus/ 11);

strcat(buffer, stim);
symlink(buffer, 11 Stimulus.mcd11);

The main memory device module in the simulator expects to find OS.mcd and Stimulus.mcd in
the current directory. The schema directory must be the current directory when the simulator
executes.

• The experiment manager forks off a process to do the simulation. The experiment manager
then waits until the process is complete before attempting to process the output.

pid = fork();

if (pid == 0) {

I• in child •/
execl(simbuf, simbuf, 11 -d11 , 11 10011 , 0);

}
else {

}

if (wait(O) != pid)
else {

ProcessOutput(out, sensbuf);
}

The system utility execl overlays the current text segment in the newly forked process with
the executable code in the process indicated by the contents of simbuf. The string in simbuf
contains the full path to the executable hardware simulator in the hidden directory . hwconfig.

• The procedure ProcessOutput reads in the sensor information and prints out a processed sensor
report. The active sensor list is read from the sensor file in the . exp...mgr directory.

for (i=O; i<MAX_SENSORS; i++)
arr[i].id = -1;

while (fscanf(sfp, "%d", !mewid) != EOF) {

if (newid >= MAXJlENSORS) {
continue;

}

arr[newid] .id = newid;
arr[newid] .first = 0.0;
arr[newid].last = 0.0;
arr[newid] .avg = 0.0;
arr[newid] .count = 0;

} /• end while •/

Each arr array entry contains a structure for the information collected from one sensor. The
id field of the structure distinguishes between sensors selected in the active sensor file, pointed
to by sfp, and those not selected, i.e., those with an id set to negative one.

while (fscanf(ofp, "%d,%f", kinst, kstime) != EOF) {

35

if (inst >= MAX_5ENSORS) {
continue;

}

if (arr[inst].count == 0)
arr[inst].first = stimej

arr[inst].count += li
arr[inst] .last = stime;
arr[inst] .avg = (stime - arr[inst] .first) I arr[inst] .count;

} /• end while •/

The sensor output of the simulation is in the file pointed to by ofp. Each valid sensor record, i.e.,
the value of the sensor identifier is less than MAX..SENSORS, causes an update to the appropriate
sensor structure. The active sensor list has no bearing on the processing of sensor information
in the sensor output file. The output report code prints the sensor information only for those
structures with an id field not equal to negative one. Processing all sensor information supports
different implementations where information from the sensors loads directly into a database.
The resultant queries to collect output report information would result from the contents of the
active sensor list.

6.5 Primary SoftLab Components

The Hardware Simulator

The hardware section of the schema specifies a base machine selected from the SoftLab rna-

chine collection, and possible device module substitutions. The associated implementation task is to

build an executable simulator from the proper components. Creating symbolic links in the hidden

directory .hwconfig to the correct device module and hierarchy description files provides all of the

components. The CPU module must contain the proper interpreter for the specified workload and

operating system. As the user is responsible for specifying the correct components in the schema,

the implementation contains no consistency checking mechanism. The main memory modules must

contain the correct memory configuration and also the correct paths to the workload and oper·

ating system M-code files. Section 6.4 presents the solution to the main memory and M-code file

consistency problem. Section 6.6 discusses the current handling of sensors in the hardware simulator.

The Operating Systems

There is currently no facility to insert sensors into the operating system. We felt that such

a decision could better be made with a Modula-2 to M-code compiler in hand. To be amenable

to the IIE implementation, the operating system does not require any additional modification. As

36

mentioned in section 6.6, the user is responsible for specifying an operating system that is compatible

with the other selected run-time components.

6.6 Additional Tool Implementation

Workload Library

The workload library must consist of M-code routines in order to behave in accordance with

performance requirements. A library of Modula-2 routines would have performance characteristics

that are dependent on the current Modula-2 toM-code compiler. It is probable that desired workload

characteristics would not be attainable given a particular compiler. To generate a full library in

M-code that contains routines covering the range of necessary performance characteristics would

comprise a Master's Thesis in itself. The current implementation contains Modula-2 routines simply

to demonstrate that the mechanism works. An additional file contains M-code instructions to exercise

the sensor handling function of the M-code interpreter in the CPU module.

The Monitor Facility

The current implementation prints time-stamped information to a file for each sensor that the

simulation reaches. The print statements are built into the simulator code. An M-code instruction

will be modified and used for the sensor entries in the workload and in the compiled operating

system. The SoftLab operating systems will require the incorporation of the necessary sensors, and

the Modula-2 compiler must also change so as to recognize a Modula-2 sensor instruction.

6.7 Implementation Evaluation

Implementation Strengths

The flexibility of the implementation is its main strength. The implementer may easily sub

stitute shell scripts, C code, or UNIX utilities for existing components. A flexible implementation

is very important since we expect the implementation to change as new SoftLab tools come into

being and the IIE takes on a wider range of uses. The modular structure of all the IIE components

supports the ease of modification. The rapid prototyping approach that we took also led to a less

rigid design since it resulted in a large number of external procedure calls.

37

The current implementation also supports easy extension. As more and more users experiment

with the system, future implementers can promote more segments of the implementation to well~

tuned C code. The overhead associated with calling the system utility and invoking shell scripts

will then disappear.

Implementation Weaknesses

The component tool modification mechanisms are not sufficiently general. Various mechanisms

are necessary for each component, and keeping modifications consistent is not easy. For example,

sensors having the same identifier may be added to different components. No mechanism is in place

that can check the current sensor set for conflicts. This in not a major weakness but may cause

unnecessary confusion.

There is also no consistency checking mechanism to ensure that the workload, operating system,

simulator, and sensors actually correspond to each other. This particular weakness will become

more important as users start running experiments that entail a large number of different runs with

differing components.

The current SoftLab Modula-2 to M-eade compiler is not yet in place. A full test of the

implementation is not possible without a working compiler, so that an operating system and workload

can actually run on the simulator. The first full test may bring to light further inadequacies in the

implementation that are currently hidden.

38

7. Conclusion and Future Work

We set out to design and implement a set of tools that comprises an Integrated Instrumentation

Environment. We have successfully completed this task. Chapter 5 presents the design of the IIE

and Chapter 6 presents the implementation. Chapter 4 illustrates the possible uses of the IIE in

the sections describing the contents of the schema file. The various run-time systems, together with

the possible monitor and experiment manager directives, that may be selected in a schema support

a wide range of software and hardware configuration experiments. We developed EXPRESS as the

experiment schema specification language to assist the user in experiment design.

The prototype of the IIE meets the functional requirements set forth in Chapter 2, as evidenced

in the sample experiment run in Appendix B. Even though the M-code for the operating system

and the stimulus were not available, a simple substitution of another M-code file allowed the sample

experiment to complete. The ease of the substitution itself illustrates the flexibility of the implemen

tation. Besides being useful in its own right the current liE is a valuable tool for evaluation of future

IIE's for SoftLab. The modular and flexible IIE permits modifications to design or implementation

elements to test new ideas. The final sections of chapters 5 and 6 evaluate the implementation in

more detail.

7.1 Future Work

We designed this IIE with operating systems experiments as the primary focus. However, we

had other software system experiments in mind - most notably those related to compiler design.

A valuable extension would tie the code generation phase of a compiler to the specification of the

M-code interpreter on the target simulator. A new section in the schema containing interpreter

directives, together with a modified SchemaPrep program, would then effect the appropriate modi

fications to the interpreter in the CPU device module of the selected hardware simulator.

39

Two functions currently relegated to the expJilgr program are to process and present experiment

data to the user. A new, more powerful program, taking over these functions, would take data and

processing directives from the exp..mgr and provide sophisticated processing and result presentation.

The schema would contain processing directives in the sensor directives section. No other component

of the liE would need to be changed.

Selected operating systems, simulators, and workloads must correspond if they are to work

correctly together. The IIE user would like to know that the current set of sensors is consistent.

The addition of consistency checking to the implementation could prevent many potential problems

from Occuring. We expect additional consistency problems to arise as the liE grows to comprise

more components.

A multi-process implementation of the exp..mgr program with inter-process communication

support would provide access to the run-time components during an experiment run. A wide range

of design decisions related to experiment control would arise if such an implementation existed.

The above modifications would extend the utility and the function of the liE. However, none

of these modifications are necessary to make the current liE useful or efficient. The SoftLab liE is

a powerlul and usable tool in its current form for both educational and research applications.

40

References

1. Ben-Ari, M. Pr£nciples of Concurrent Programming. Prentice-Hall, Inc., Englewood Cliffs, N.J.

(1982).

2. Comer, D. Operating System Design, the Xinu Approach. Prentice-Hall, Inc., Englewood Cliffs,

New Jersey (1984).

3. Corbin, K., Corwin, W., Goodman, R., Hyde, E., Kramer, K., Werme, E, Wulf, W. A Software

Laboratory, Preliminary Report. 71-104, Computer Science Department, Carnegie-Mellon Uni

versity (August 1971).

4. Corwin, W., Wulf, W. SL230-A Software Laboratory, Intermediate Report. Computer

Science Department, Carnegie-Mellon University (May 1972).

5. Dolotta, T.A., Haight, R.C., Mashey, J.R. Unix Time-Sharing System: The Programmer's

Workbench. Bell System Technical Journal 57, 6 (1978), 2177-2200.

6. Feiler, P.H., Medina-Mora R. An Incremental Programming Environment. IEEE Transactions

on Software Engineering 7.SE-7, 5 (Sept. 1981), 472.

1. Fisher, F. A. A Family of Operating Systems in a Software Laboratory. Master's Thesis,

Computer Science Department, University of North Carolina at Chapel Hill (April 1986).

8. Goodwin, J. W. Why Programming Environments Need Dynamic Data Types. IEEE Transactions

on Software Engineering 7.SE-1, 5 (Sept. 1981), 451.

9. Gutknecht, J. Tutorial on Modula-2. Byte (August 1984), 157-176.

10. Halstead, M.H. A Laboratory Manual for Compiler and Operating System Implementation.

American Elsevier, New York, NY (1974).

11. Heindel, L.E., Roberto, J.J. LANG-PAK-An Interactive Language Design System, vol. 13.

American Elsevier Pub. Co., New York, N.Y. (1975).

12. Holt, R.C., Graham, G.S., Lazowska, E.D., Scott, M.A. Structured Concurrent Programming

with Operating System Applications. Addison-Wesley Pub. Co., Reading, M.A. (1978).

41

13. Kernighan, B.W., Ritchie, D.M. The C Programming Language. Prentice-Hall, Englewood

Cliffs, N.J. (1978).

14. Cambridge University Computer LaboratoryCambridge Modula-2 Manual Pages. Cam

bridge University, Cambridge, England (1985).

15. Ohran, R. Lilith and Modula-2. Byte 9, 8 (August 1984), 181-192.

16. Satyanarayanan, M. A Modularized Architectural Shnulator. (SoftLab Internal Working

Document No. 2), Computer Science Department, University of North Carolina at Chapel Hill

(April1985).

17. Segall, Z., Singh, A., Snodgrass, R., Jones, A. J., Siewiorek, D.P. An Integrated Instrumentation

Environment for Multiprocessors. IEEE Transactions on Computers C-32 (January 1983), 4-14.

18. Shannon, K. idle Users Manual, (Version 2.0). (SoftLab Document No. 8), Computer

Science Department, University of North Carolina at Chapel Hill (December 1985).

19. Shaw, A. Operating Systems (The Series in Automatic Computation). Prentice-Hall, Inc.,

Englewood Cliffs, N.J. (1974).

20. Stroustrup, B. A Set of C Classes for Co-Routine Style Programming. Computing

Science Technical Report No. 90, Bell Laboratories (November 1980).

21. Stroustrup, B. Classes: An Abstract Data Type Facility for the C Language. Com

puting Science Technical Report No. 84, Bell Laboratories (August 1981).

22. Wirth, N. History and Goals of Modula-2. Byte (August 1984), 145-152.

42

Appendix A

Express Language Syntax

This appendix provides the syntax for the Express language, a description of valid file contents

for required files and valid file names. Terminals are in bold and italics. The terminals in italics are

defined informally at the end of the listing, e.g., slstimlib. Those in bold are reserved keywords in

the language, e.g., BeginSchema. The remaining strings are non~terminals, e.g., stimlib.

schemafile

initsect

stimsect

hwsect

ossect

sensect

dirsect

stimlib

stimfile

hw

hwhd

hwdmsubs

OS

osmain

osdefsubs

osimpsubs

senslist

runlist

dmsub

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

BeginSchema initsect stimsect hwsect ossect sensect

dirsect EndSchema

InitSection Endlnit

StimulusSection stimlib stimfile EndStimulus

HWCon.figSection hw hwhd hwdmsubs hwmodsubs EndHW

OSCon.figSection os osmain osdefsubs osimpsubs End OS

SensorSection senslist EndSensor

DirectivesSection runlist EndDirectives

Library: slstimlib

File: userfile

Machine: slmachine

HD: slmachinehd

DMSubs: dmsub* EndSubs

OS: s/os

Main: slosmain

DefSubs: osdefsub* EndDefSubs

lmpSubs: osimpsub* EndlmpSubs

Sensor List sensentry* EndSensor List

RunList runentry* EndRunList

devicemodule userfile

43

osdefsub .. - definitionfile userfile

osimpsub .. - impfile userfile

sensentry .. - slist I sfile

run entry .. - ("slmachine", "slosmain", "sensin", "userfile")

slist .. - number*

Terminals:

slmachine

slmachinehd

devicemodule

slos

slosmain

definitionfile

imp file

sfile

slstimlib

user file

number

The name of one of the SoftLab simulators.

The name of a hierarchy description file for the selected simulator.

The name of a device module for the selected simulator.

The name of a SoftLab operating systems.

The name of a main module for the selected operating system.

The name of a definition module for the selected operating system.

The name of an implementation module for the selected operating system.

The name of a file containing an slist.

The name of one of the SoftLab stimulus libraries.

The name of a user supplied file.

A number is an unsigned integer.

White space consists of blanks, tabs and new lines. The name of a file can be an arbitrary

path in the file system and is not to be quoted. Relative path names are relative to the directory

containing the schema file. Names, not specifically file names, are identifiers of SoftLab components.

44

Appendix B

The Design and Execution of a Sample Experiment

The following example experiment contains two separate runs that differ only in the names of

the output files that they produce. In this typescript, the followiug steps are performed:

• the current contents of the schema file directory are listed

• the contents of file senslist is printed

• the contents of the schema file, example. sch, is priuted

• the program SchemaPrep is executed

• the new contents of the schema file directory are listed

• make is executed

• the new contents of the schema file directory are listed

• the exp...mgr is executed

• the final contents of the directory are listed

• the contents of the two experiment output files are listed

In this script, text typed by the user is bold italics.

%Is -a
senslist

% cat senslist

12
24

% cat ezample.sch

BeginSchema

InitSection
Endinit

StimulusSection

subcpu.dm

Library: lowref

submem.dm example. sch

File: /unc3/unc/drm/sl/src/Stimulus/main.mod
EndStimulus

HWConfigSection
Machine: Bmachine
HD : Bmachine . hd
DMSubs:

45

EndSubs
EndHW

OSConfigSection

Bmainmem.dm submem.dm
Bcpuint.dm subcpu.dm

OS: unibatch
Main: UniBatch.mod
DefSubs:

Loader.def /usr/softlab/src/OS/unibatch/Loader.def
EndDefSubs
ImpSubs:

Loader.mod /usr/softlab/src/OS/unibatch/Loader.mod
EndimpSubs
End OS

SensorSection
SensorList:

EndSensorList
EndS ens or

DirectivesSection

1 5 8
-f senslist
45

RunList: ("Bmachine", 11 UniBatch. outn, "main. out 11 , "sensors 11 , "out1 11)

(11 Bmachine 11 , "UniBatch.out 11 , 11 main. out", 11 sensors11 , 11 out2")
EndRunList
End.Directives

End.Schema

% SehemaPrep ezample.B<h

In BeginProc
In InitProc
In StimProc

Using Stimulus Library "/unc3/unc/drm/sl/src/Stimulus/lowref"
Using Stimulus File "/unc3/unc/drm/sl/src/Stimulus/main.mod"

No match.
In IIWCProc

Using Machine "/unc3/unc/drm/sl/src/machine/Bmachine"
Using Hierarchy Description File "Bmachine.hd"
Substituting Device Module 11 submem.dm"

for Device Module 11 Bmainmem.dm"
Substituting Device Module "subcpu.dm"

for Device Module "Bcpuint.dm11

In OSCProc
Using Operating System "/unc3/unc/drm/sl/src/OS/unibatch"
Using Main Module File "/unc3/unc/drm/sl/src/OS/unibatch/UniBatch.mod"
Substituting Definition Module "/usr/softlab/src/OS/unibatch/Loader.def"

for Definition Module "Loader.def"
Substituting Implementation Module

"/usr/softlab/src/OS/unibatch/Loader.mod"
for Implementation Module "Loader.mod11

In SensProc

46

Using Sensor "1''
Using Sensor 11511

Using Sensor ngn

Using Sensor File 11 senslist 11

Using Sensor "12 11

Using Sensor 11 24 11

Using Sensor "45"
In DirProc
Adding run tuple ("Bmachine", "UniBatch.out", "main. out", "sensors", "outl")
Adding run tuple ("Bmachine11 , "UniBatch.out" , 11 main. out", "sensors", 11 out2")
In End.Proc

%Is -a
total 50
.exp..mgr
SchemaPrep.log
subcpu.dm

%make

.hwconfig
example. sch
submem.dm

Making hardware simulator.
Making operating system.
Making stimulus.
Making experiment manager.

.osconfig
makefile

Experiment components successfully created.
Executable file is "exp.Jllgr".

%Is -a

.exp..mgr
Make.log
makefile

% e:z:p_mgr

.hwconfig
SchemaPrep.log
senslist

Begining experiment
Begining experiment run number 1

.osconfig
example.sch
subcpu.dm

.stimulus
senslist

.stimulus
exp..mgr
submem.dm

Linking "OS.mcd" to 11 .osconfig/Unibatch.out 11

Linking "Stimulus .mcd'' to ". stimulus/main.out 11

Invoking simulator ".hwconfig/Bmachine.sim"
Reading from enabled sensor file 11 .exp..mgr/sensors"
Reading from simulation sensor file 11 sens.out"
Processing sensor statistics
Writing output file 11 out1'1

Experiment run number 1 completed
Begining experiment run number 2
Linking "OS.mcd" to ".osconfig/Unibatch.out"
Linking "Stirnulus.rncd" to ".stimulus/main.out"
Invoking simulator 11 .hwconfig/Bmachine. sim11

Reading from enabled sensor file 11
• exp..mgr/sensors 11

Reading from simulation sensor file 11 sens.out"
Writing output file nout2"
Experiment run number 2 completed
Ending experiment

%Is -a

.exp..mgr .hwconfig .osconfig .stimulus
Make.log OS.mcd SchemaPrep.Log Stimulus.mcd
example.sch exp_mgr makefile out!
out2 sens.out senslist subcpu.dm

47

submem.dm

%cat outl

Sensor First Last Average Count
============--=============================

1 340.00 340.00 1
5 40.00 320.00 93.33 4
8 0.00 0.00 0

12 100.00 260.00 32.00 6
24 160.00 160.00 1
45 20.00 360.00 48.57 8

%cat out.

Sensor First Last Average Count
=============-=============================

1 340.00 340.00 1
5 40.00 320.00 93.33 4
8 0.00 0.00 0

12 100.00 260.00 32.00 6
24 160.00 160.00 1
45 20.00 360.00 48.57 8

48

Appendix C

Manual Pages

49

SCHEMAPREP(l) UNIX Programmer's Manual SCHEMAPREP(l)

NAME
SchemaPrep - liE component preparation program

SYNOPSIS
SchemaPrep [-dhimow J schemafile

DESCRIPTION
A schema file describes an experiment by specifying each of the major components of the IIE
run-time system and also by issuing directives that the experiment manager will take note
of during experiment execution. The program SchemaPrep takes this schema file as input
and prepares the experiment components for execution. A subdirectory for each component
is created in the current directory along with a log of the component preparation process in
the file SchemaPrep.log in the current directory. In addition, the file Make file is created in the
current directory. This file contains the UNIX make utility directives to construct the executable
experiment manager program exp_mgr.

In addition to naming the schema file the user may also set command line switches. Setting a
switch causes SchemaPrep to process the associated section of the schema. If no switch is set
the program processes all sections of the schema. The switches have the following meanings:

-d Interpret the directives section

-h Interpret the hardware configuration section

-i Interpret the initialization section

-m Interpret the sensor section (for monitoring)

-o Interpret the operating system section

-w Interpret the stimulus section (the workload)

EXAMPLES
SchemaPrep schemafile

#processes the entire schema in file schemafile and prepares all of the components.

SchemaPrep -dm schemafile
#processes the directives and sensor sections of the schema in file schemafile
#and prepares only the experiment manager component.

FILES
.f.expJngr
./.stimulus
.j.hwconfig
.f.osconfig
.fmakefile

/* experiment manager subdirectory * /
/* workload subdirectory * /
/* hardware simulator subdirectory * /
/* operating system subdirectory * /
/* experiment construction makefile * /

SEE ALSO
expJngr(l), make(!)
liE Users Manual, by R. Morrill

RESTRICTIONS
The current working directory must contain the schema file. The log file is always appended
and must be explicitly removed if its current contents are no longer useful.

ERRORS
The error messages are intended to be self explanatory.

AUTHOR
Richard Morrill
University of North Carolina at Chapel Hill

Printed 4/20/86 local 1

EXP_MGR(l) UNIX Programmer's Manual

NAME
expJngr - liE experiment execution program

SYNOPSIS
expJngr

DESCRIPTION

EXP..MGR(l)

The user executes an liE experiment by executing the program exp...mgr in the schema file home
directory. The experiment will then run until all of the requested runs complete. The results of
the experiment are written to the files specified in the run-tuples of the associated schema file. In
addition to the results file, exp...mgr produces a file containing a log of the experiment in the same
directory. This file is named exp..lllgr .log. The log file contains information on the experiment
specifications, the time the experiment was run and any warning or error messages produced as a
result of the execution.

FILES
.jexpJllgr.log /* experiment manager log * /

SEE ALSO
SchemaPrep(l), make(l)
liE Users Manual, by R. Morrill

RESTRICTIONS
The logging mechanism is not implemented.

ERRORS
The error messages are intended to be Self explanatory.

AUTHOR
Richard Morrill
University of North Carolina at Chapel Hill

Printed 4/20/86 local 1

Apr 12 09:27 1986 achemaprep.h Page 1

atruct keyatruct {
char "'keyword;
char "'delimit;
int ('l<eytunc) () ;
char aw_dlar;
char 11 deac;

} l<eyliat [] = {

};

MBeginSchemaM, NULL, BeginProc, NULL, NULL,
MinitSectionM, "Endinit'', InitProc, • 1 1

• "initial".
MStimuluaSection", "EndStimulus". StimProc, 'v'. "atimulua",
"HWConfiqSection". "EndHW"'. HWCProc. 1 h'. "hardvaro".
MOSConfiqSec:tion". "End.OS". OSCProc. 1 a 1

•
11 operatinCJ syatem".

"'Sen.orSeetion .. , "End.Senaor". SenaProc, 'm'. "•enaor"'.
•nirectiveaSection". 11EndDirectivea", DirProc, 'd' • "directivea",
11End.Scheaa". NULL. EndProc, NULL. NULL

tide tina KAXSWI l.'CI 6
ldefirw LOGFILE: •seheu.Prep.log"

Apr ~2 ~1:08 1986 Scheu.Prep.c Pag. l

I'
w FILE: Schem.aPrep.c
•
11 CONTENTS:
• main
* 11Proc

Driver for the !IE achetu. preparation pro9f'aa.
Section proceaaing routine•.

* SvitchOn Section av itch on detector.
* Invalid.Svitch Invalid avitch detector.
11 SvitchError Switch error help routine.
* !CjJilOre Section ignor•. by consuming, routine.
•
* HISTORY:
•
'I

linclude <atdio.h>
iinclude 11 achema.h"
linclude "achemaprep.h•

I* s~ proqraa deUnitiona and conatanta *I
I"' Driver definitions and conatanta 11 I

atatic FILE: 11 atp;
atatic FILE *lf!p;
atatic char avitchea [HAXSWI!Ql + 1] ;
atatic char rcaid[] = "•t .. ;

I' * PURPOSE:

I* Schema file pointer *I
I"' Scheaa log til• pointer 11 I
111 Switch array 11 I
I* Res !dent atring *I

• Driv.r for the IIE achema preparation prograa .
•
* RETURN CODES:
* None •
•
• llESTRICTIONSIASSUMP7IONS:
* None.
'I

main (argc. argv)
int argc;
char *arqv(];
{

char temp [MAXARGLEN+l] ;
char achematile [HaxFileName + 1);
boolean fileflag;
boolean avitchflaCJ;
int i;
char avitchte:mp [LINELENGTH + 1] ;
char butter [MAXKEYLEN + 1] ;

I'
* Initialize.
'I

filef!lag = FALSE;
avitch!lag = FALSE;

I' * Command line pardng.

I* Input buffer *I
I* Fil• nam. buffer *I
I* File name read flag *I
I* Switch read flag *I
I* Loop index *I
I* Svitchea read buffer *I
I* Section Qyvord buffer *I

Apr 22 21:08 1986 Sch.emaPrep.c Pa9e 2

'I
for (1=1; !<ar90; !++) {

aacanf(*++argv,"X•",temp);
H (latrncmp(t-."-",1)) {

if (avitchflaq == TRUE) {
fprintf (atderr,

}

"Warning~ icplOring additional avitchea %•\n11 ,temp);
}
ebe {

}

aaeant(&teap[1J,•X•".•vitchtemp);

H (str1en(svitcht-) > IIAXSWITCH) {

}

tprintf (atderr, "Error: too many avi'tclwa \ "%•\ "\n\n'',
avitchtemp) ;

SvitchError () ;
exit(1);

el .. if (InvalidSvitch(avitchtemp)) {

}

tprJntt (atderr, "Error: invalid IIVitch(e•) \ "X•\ "\n\n",
avitc:htemp) ;

Sviteh.Error ();
exit(1);

atrcpy(avitchell, avitchtemp);
avitchflaq = TRUE;

•h• {

}

it (tiletlag == TRUE) {
tprintf(atderr, "Warning: ignoring additional file Xa\n", tup);

}
el .. {

••canf(temp,"X•",achemafile);
filetlaq = TRUE;

}

} /* end for */

I' * No ach.aa file name in coJIUU.nd line.
'I

it (lfiletlag) {

}

tprintf (atderr, "Error: input file required\n");
exit (1);

H (I (atp = topen(schemafilo,"r"))) {

}

fprintf (atderr, "Error: cannot open file X•\n", achemafile);
exit (1);

Apr 22 21:08 1986 SchemaPrep.c Page 3

}

it (l(ltp = topen(LOGFILE,"a"))) {

}

tprintf(atderr,"Error: cannot open or create file X•\n".
LOGFILE);

exit (1);

I'
* No avitehea set ao
* select all achema aectians.
'I

if (lsvitchflag) {
tor (i=O; i<~TCH; !++) {

avitchea(i] = kayliat[i+l].ov-<har;
}

}

I'
* Attempt to proee•a all
* eight aections.
'I

for (1=0 ;1<8 ;i++) {
f•canf(atp."X•".buffer);

}

H (I (atrcmp(butfer,kayliat[i].kayvord))) {

}

I'
* Invoke the aection proeeaainq rout.tn.
* tor tn. current aection.
'I

if (SvitchOn(avitchea,kayliat[i].av-<har))
('kayliat (i] .kay tunc) () ;

I'
* Conaw. the current aection aince
* it vaa not aelected for proce•aing.
'I

elae {

}

tprintt(atdout,"Ignorin; \"X•\" aection\n", kayliat[i].deoe);
tprJntf(lfp, "Ignoring \"X•\ • aection\n". Uyliat[i] .deac);
Ignore(kaylist[i] .delimit);

•la• {

}

tprintf(•tdout,"no match: X•. byword X•\n",buffer,
kayliat[i] .kayvord);

tprintf(ltp, "no -tch: X•. keyword X•\n",buffer.
kayliat[i].kayvord);

close(afp);
close(lfp);

BeqinProc ()
{

Apr 2l ll: 08 1986 BchemaPrep. c Pac;r. 4

}

tprintt(atdout,"In BeginProc \n");
~rintt(ltp,"In BeginProc \n");

InitProc()
{

}

mkdir(".exp-=qr",0755);
tprintt(•tdout,"In InitProc \n");
fprintt(ltp, 11 In InitProc \n'');
initprep(ofp,lfp);

Stiml'roe ()
{

}

lllkdJ.r (11 .atiaulua11 ,0755) ;
tprintt(atdout,"In StimProc \n11

);

tprintt (ltp, "In StiJIProc \n");
otimprep(ofp,lfp);

l!WCProe ()
{

}

~(".bvconfig11 ,075S);
~rlntf (atdout. "In HWC:Proc \n");
fprlntf (lfp, 11In HWCProc \n");
hveprep(ofp,ltp);

OSCProe ()
{

}

~(".oaconfig11 ,07SS);
tprintf(atdout,"In OSCProc \n");
fprintf(ltp, "In OSCProc \n");
ooeprop(otp,lfp);

SensProc()
{

}

fprintf(atdout,"In SanaProc \n");
fprlntf (lfp, "In SanaProc \n");
senaprep(afp,lfp);

DirProc ()
{

}

I'

tprintf (atdout. "In DirProc \n");
tpr.intf (ltp, "In DlrProc \n");
dirp'rep (afp,lfp);

Apr 2l 21:08 1986 SchemaPrep.c Page 5

* Used tor testing purpoa•a.
* Replace any processing function entry
• in •chemaprep.h vlth thia call.
'I

DummyProe ()
{

}

tprintf (atdout, "In t>ummyProc \n");
fprintt(lfp,"In DwamyProc \n");

Enc!Proe ()
{

}

tprintf(atdout, "In EndProc \n");
fprintt(ltp,"In EndProc \n11

);

I' * PURPOSE:
• Consume ~ contents of the aehema tile
• •
•

from the current position up to and including
t:lut atring 'string' .

* RE'l'URN CODES :
• Non..
•
' RESTRICTIONS/ASSUMPTIONS:
* Non..
'I

Ignore(string)
char *atring; /* IN --- section cloainq keyvork */
{

}

char buf[128+1];
int eof_flag;

eof_flaq = t'R.U!;
while (facanf(afp, "Xa 11

, buf) I= EOF)
H (lotremp(but,otring)) {

eof_flag = FALSE;
br•ak;

}

if (eof_flag)
fprintf(atdout."ERB.OR: Miaaing keyvord \"Xa\11 \n", string);
fprintf(ltp,"ERROR: Miaaing keyword \"%•\" \n", string);

I'
• PURPOSE:
•
•
•

Pr lnt the current
and the log file.

* RETURN CODES:
* None.
•

avitchea to standard out

* RESTRICTIONS/ASSUMPTIONS:
• None.

Apr 22 21:08 1986 SchamaPrep.c Page 6

'I
SvitchError()
{

}

int i; /* loop index */

fprintt(atdout, 11Valid avitchea are:\n11
);

fprintf (ltp,. "Valid avitchea a.re:\n");
for (1=1; i<=MAXSWITO:t; i++)

tprintt (atdout, "\t\t\t\"Xc\"---Xa\n";
keyliot[i].ov~, keyliot(i].deac);

tprintt (lfp,"\t\t\t\"Xc\"---Xa\n".
kayliat[i].av~. ke¥liat[i] .deac);

I' * PURPOSE:
* a.clc ~ a 1 to a .. if it contain8 only valid avitchea.
•
* RETURN CODES:
* TRUE it 1 a 1 containa an invalid avitch apecitication;
* FALSE otherwise.
•
* RES'tRIC7IONSIASSUMPtiONS:
* Aaaume the 1

11
1 ia not longer that MAXSWITCI characters.

'I
boolean InvalidSviteh(a)
char *a; /* IN --- avitch array */
{

}

int i; I* Array index *I
int avitcheount;
boolean invalid;

/* Valid avitch in avitch array count *I
/* Return code *I

avitchcount = 0;

I'
* Increment 1 avitchcount 1 for .very valid
* avitch op«:ified in 1 a 1

•

'I
for(i=1; i<=~TCH; i++) {

}

if (indox(a,keyliot[i].sv_ohar)) {
avitchcount += 1;

}

I'
* It all the avitchea are valid the
* value of avitchcount should be equal
* to the number of eharactera in 1 a 1

•

'I
invalid = (avitchcount I= etrlen(s));
return(invalid);

I'
* PURPOSE:
* Outck to aee if 1c 1 ia NULL or in the character array 1 11 1

•

Apr 22 21:08 1986 SchemaPrep.c Page 7

•
* RErtmN CODES:
* TRUE it 'c' ia NULL or in character array 1 a 1

;

* FALSE otherviae.
•
* RESTRICTIONS/ASSUMPTIONS:
* None.
'I

SvitchOn(a,c)
char *a;
char c;
{

int on;

/* IN --- aviteh array */
/* IN --- current section avitch or NULL */

/* Return c~ */

H (c =NULL)
on = TRUE;

}

•1••
on = (index(a,c) I= 0);

return(on);

Apr 22 21:33 1986 initprep.c Page 1

I'
"' FILE: init.c
• * CONTENTS: IXE achema initialization aection preparation routine.
• * HISTORY: Written by Richard Morrill for SoftLab, UNC-CH, 1/1/86.
•
'I

tinclude <atdio.h>
tinclude "achema .h"

I'
"' PURPOSE:

Proceao the initialization a.ctlon of a ac:heaa.
•
"' RErtJRH CODES:
"' None.
• * R!SD.ICTIONS/ASSUMPTIONS:

!lone.
'I

initprop(ofp.lfp)
FILE "'alp; !"' IN --- achema file */
FILE "'ltp; !"' IN --- achema log file "'/
{

}

char bufter(128+1];
char caaaand[lZB+l];

I'

!"' String building butter *I
!"' Sya~ command building butter */

* Create a link to the experi.JIIent manager
"'a tile in the .exp...mgr directory.
'I

atrcpy (command, "ln -a ") ;
atrcat (coaaand., EJttoiAXEFILE) ;
atrcat(cammand, • .exp~/~file");
oyotea(c"""""");

I' *' Create 11 link to the main exper!JDent
* make file in the schema directory.
'I

atrcpy(coanand, "ln -a 11);
atrcat (command, MAINMAXEFILE) ;
atrcat (command, 11 makellle");
oyotea(c"""""");

lacant(a!p, "X•" ,buffer);
if (otrcmp (buffer. "Endinit")) {

}

fprintf(atdout,"X:eyvord \"Endinit\ 11 expected--- read \"Xs\"\n11
,

but fer);
tprintf(lfp,"Xeyvor4 \ 11Endlnit\" ~ted--- read \"%•\"\n11

,

buffer); '

Jan 19 12:01 1986 atimprep.c Page 1

llnclude <atdlo.h>
finclude 11 schema.h"

otimprop (otp.Hp)
FILE *afp;
FILE "'ltp;
{

char buffer(128+1);
char atimlib[l28+1];
char libpath[l29+1];
char atimfile[l28+1];
char atimpath[l2B+l];

char coiiiiiiiU'Id[300];

facant(atp,•%•".butfer);
ir (otrcmp{buffer,"Librory:")) {

tprintf (atdout,

}

"Xeyvord \"Library:\" expected --- read \ "Xa\11 \n 11
,

buffer);
fprintt {lfp.

"Eeyvord \"Library:\" expected --- read \"%•\"\n",
butter);

eh8 {
facant(atp,"X•"·•tLmlib);
atrcpy(libpath,SLatlmpath);
atrcat(libpath, 11 /M);
atrcat(libpath,atimllb);

}

fprintf (atdout, 11 \tUaing Stimulua Library \ "X•\ "\n" ,libpath);
fprintf (lfp, 11 \tUaing Stimulua Library \ "%•\ "'\n" ,libpath);

tacanf (afp, "%•" ,buffer);
if (atrcmp(burter, 11File:")) {

}

tprintf(atd.out,"Xeyvard \"File:\" expected --- read \"X•\"\n".
buffer);

fprintf(ltp,"Xeyvord \"Fil•:\" expected--- read \"%•\"\n",
buffer):

elae {
fseant(atp,"X•",atiatile);

}

tprintf (atdout, 11\tUaing Stilaulua Fil• \ "%•\ "\n" ,atlm.Ule);
tprintf (l!p, "\tUaing Stimulua Fil• \"X•\"\n" ,atimtile);

atrcpy (command, "ln ") ;
atrcat(command,atimfile);
atrcat(command, 11 .atimulua/main.mod");
.ystem(command);

fscanf(afp, "%•",buffer);
it (atrcmp(buffer. "EndStimulua")) {

!printf(stdout,
"Keyword \"EndStimulus\" expected --- read \ "%•\''\n".

Jan 19 12:01 1986 atimprep.c Paga 2

}

}

butter);
fpr intf(lfp,

"XAryvord \ "!nd.Sti.Jaulua\ 11 expected --- read \ "X•\ "\n''.
butter);

elae {

}

atrcpy(command, "cd. . atlallua; m2hdir");
oyatom(command);

atrcpy(command, "cp /unc3junc/drm/sl/bin/Stimm2path .atlmulua/m2path");
oyatom(command);

atrcpy (command. •• tilesuba STIMDIR 1
') ;

atreat(eommand, SLatimpath);
a treat (command. 11

• atimulua/m2path") ;
oyatom(command);

atrcpy(command.. "Sti.mmake.ah main.mad11
);

ayat-(co:aa.and);

Apr 22 21:29 1986 bvcprep.c Paga 1

I'
• FILE: hvcprep.c
• * CONTENTS: II! hardware aection proceaaing rout!n..
•
* taSTORY: Written by Richard Morrill tor SoftLab, UNC-01. 1/1/86.
'I

linclude <atdio.h>
linclude "achema.h"

I' * PURPOSE:
• Proceaa the hardware eonfi9Uration aection of the achema tile.
• * R.ErtJRN CODES:
* Nona •
•
"' RESTRICTIONS/ASSUMPTIONS:
"' None.
'I

hvcprep(ofp,lfp)
FILE *atp: /* IN --- Scheaa file "'/
FILE *ltp;
{

int len;
char buffer[128+1];
char buffer2[128+1]
char bufter3[128+l]
char II&Chdir [128+1]
char dirpath[12B+1]
char hdfile[l28+l];
char hdpath[128+1];

char command [300] ;

!"' IN --- Scbeaa lo9 file */

!"' hierarchy description tile n.ame lca.gth */
!"' atringo building butter */
/* atrin9 buildln9 buffer */
I"' atrin9 buildin9 buffer •;
;• aelected machine aubdirectory '1
;• path to SoftLab -chine directory •;
;• hierarchy description file nama •;
;• path to the hierarchy deacription tile */

/* ayatem cOlllllland. butter */

tacant (atp, "X•" ,buffer);
H (otrc:mp(butfor,"Machine:")) {

}

tprintf(stdout,"JCeyvord \"Machine:\" expected--- read \"X•\"\n•,
buffer);

fprintt(lfp,"Xeyvord \"Machi.ne:\• expected--- read \uX•\"\n",
butter);

I' * Select machine.
'I

elae {
beanf(stp."X•",machdir);
atrcpy(dirpath,SLmaehpath);
atrcat(dirpath,"/");
atrcat(dLrpath,machdir);

}

fprintt (atdout, "\tUsing Machine \ "Xa\ 11\n" ,dirpath);
tprintt(lfp,"\tUsing Machine \"X•\"\n",dirpath);

Apr 22 2l:l9 1986 hvcprep.c PaP' l

bcanf (atp, "%•" ,butter);
if (otrcmp (buffer, "liD:")) {

}

tprintf(atdout,''Keyvord \"HD:\11 expected--- read \"X•\"\n",
buffer);

tprintf(l!p, 111Ayvord \"HD:\11 expected--- read \"Xa\ 11\n",
buffer);

;•
• Create n link in the .hvconti9 directory
* to the aelected. hierarchy description file.
•;

elae {

}

bean! (s!p, "%•" ,hdHle);
tprintf(atdout,"\tUainCJ Hierarchy Description File \"X•\"\n",hd!ile);
tprintf(lfp,"\tUainCJ Hierarchy Description File \"X•\ "\n" ,hd.Ule);

atrcpy (hdpath, d.lrpath) ;
atrcat (hdpath, 11

/
11
);

atrcat(hdpath,hd!ile);
atrcpy(command,"ln -a 11);

atrcat(command,~ath);
a treat (coiiiiUild," .hvcontlg");
oyotea(co-);

bean! (afp, "X•" ,buffer);
if (otrcmp(buftor,"IJHSubo:")) {

}

tprintf(atdout,"Xeyvord \"IImuba:\" expected ---read \"X•\"\n11
..

buffer);
tprlntf(lfp, 11Iayvord \"OHSuha:\11 expected--- read \"X•\"\n",

buffer);

;•
• Nab thll epecifled. aubatitutiana in the simulator
• by linking to alternate ct.vice aod:ule files,
•;

elee {
While (!acanf(atp."X•" .. buf!er) I= EOF) {

if {latrczap(bu!!er,"!ndSuba11
))

break;

bean! (afp, •xa• ,bu!fer2);
~intf(atdout, 11\tSubatitutlng Device Module \"Xa\11 \n11 ,bu!fer2);
tprintf(lfp, "\tSubatituting Device Module \"Xa\"\n" ,buft'er2);
tprint! (atdout, "\t for Device Module \ "%a\"\n" ,buffer);
fprint!{lfp,"\t for Device Module \"Xs\"\n" .. buffer);

if (atrn.cmp(bufferl,"/".1)) {
atrcpy(butfer3," .. /");
a treat (buf!er3,buffer2);

}
elae

otrcpy(buffor3,bufter2);

Apr 23 21:39 1986 hvcprep.c Page 3

atrcpy(command, 11 ln -a 11
);

atrcat(command,buf!er3);
atrcat(command," .hvconfiCJ/11

);

atrcat(command,buffer);
ayatam(command);

/* Take care of relative path names
in the hierarchy description file
device lllOdule replacement implementation.

}
}

if (otrru:mp(bufferl,"/",1)) {
atrcpy(bufter3," .. /");
atrcat(buffer3,buffer3);

}
elae

atrcpy(butfer3,buffer3);

atrcpy(cammand, 11 fileauba ");
atrcat(command,buffer);
atrcat(cammand, 11

");

atrcat(eammand,buffer3);
atrcat(command," M);
atrcat(cammand,".hvconfi9");
atrcat(cammand,"/M);
atrcat(cammand,hdfile);
oyotea(c~); •;

faeanf (afp, "%•" ,buffer);
if (atrczap (buffer, •EndHW")) {

}

fprintf(atdout, 111eyvard \"En.dHW\11 ~ted--- read \"%•\"\n",
buffer);

fprintf!(ltp,•~rd \"EndHW\" expec:t.d. ---read \•Xa\"\n",
buffer);

elae {

;•
• link in the reat of the .dm. fllea
•;

atrcpy(command, "ehdir .hvccntig; LnDHFile.ah 11
);

atreat(cammand,dirpath);
oyotom(c~);

;•
• atrip ".hd" auftix from hierarChy description file
•;

len = atrlen (hdt'ile);
atrncpy(buffer, hdfile, len-3);
atrcpy(&buffer[len-3], "");

;•

Apr 33 31:39 1986 hvcprep.c hgo~ 4

}
}

• !.xeeute the cOIIIIIland to prepare
* the hierarchy description file
* and create the ma.ke file tor the
* aelctCted. device JIOdulea,
'I

atrepy(eammand,"cd .hvconfig;");
a treat (command, "hdprep ") ;
atrcat(command,buffer);
oyatem(command);

Apr ll 21:43 1986 oacprep.c Pag. 1

I'
• FILE: oacprep.c
•
* CONTENTS: II! operatin9 .yatem actwma aection preparation routine •
• * HISTOB.Y: Written by Richard Morrill for SoftLab, UNC-01, 1/1/86.
'I

*include <atdio.h>
llnclude "achema.h"

I'
• PURPOSE:
•
* RErtJRN CODES:
•
• REStRICTIONS/ASSUMPTIONS:
'I

oacprep(atp,lfp)
FILE *afp; /* IN --- a~ file "/
FILE *lfp; /* IN --- achema loq fJ.le "/
{

char butter [139+1];
char bu!ter2 [128+1];
char oadir(12B+1];
char dirpath[l28+1];
char mainfile[l28+1.};
char mainpath[l28+1];

/* atr ing building butter * 1
!* atr ing building buffer * 1
/* aelected operating qatelll aubd.irectory *I
/* SoftLab operating IIYII't4a clirectory •;
;• .. in moclule file tor aelected o;s • 1
;• -in module tile path * 1

char ~[300]; /* .yatem command butter *I

fac.nf(stp,•Xa",buffer);
if (strcmp(buffer .. "OS:")) (

}

tprintf(atdout,"Keyvord \"OS:\" ~ted--- read \"%•\"\n• ..
butter);

fprintf(lfp,"E8yvord \"OS:\• axpected ---read \"%•\"\n",
buffer):

I'
" Select operating system.
'I

ebe {

}

facanf(atp .. "X•".oadir);
atrcpy(dirpath,SLoepath);
a treat (d.irpath, 11

/") ;

atrcat(dirpath,oadir);
tprintf (atdout, 11

\ tUainq Operating System \ "%•\ 11\n11
• dirpath) ;

tprintf(Hp .. 11 \tUsinq Operating System \ "X•\ "\n11 ,dirpath);

facanf(atp,"X•".buffer);
if (strcmp (buffer, "Main: 11

)) (

tprintf(atdout, 11Lryvord \"Main:\ 11 expected--- read \"%•\•\n" ..
buffer);

tpr !nt t (1 fp .. 111eyvord \"Main:\ •• expected --- read \ 11%• \ "\n •,

Apr 33 31:43 1986 oacprep.c Paga 3

buffer);
}

I'
• Select operating' .y.~ aain module.
'I •b• {

}

facanf(atp,"X•" ... intile);
otrcpy(mai.npath,dirpath);
atrcat(malnpath, 11

/");

atrcat (mainpath,maintile) ;
fprintf (atdout, "\tUaing Main Module File \ "X•\ 11\n" .malnpath);
fprintf (ltp, 11 \tUalnq Main Module File \ •xa\ "\n" ,mainpath);

facant(atp. "%•" ,buffer);
if (atrCIIp (buffer. "DefSuba: ") t {

fprintf(atdout,"l8yvord \ O.fSuba:\" expected -- read \"%•\"\n11
,

buffer);

}

tprintf(lfp,"X.yvord \"O.fSuba:\" expected-- read \"X•\"\n".
buffer);

I'
• ~ the appropriate definition .adule aubatitutiona
• by creatinq linka to alternate til•• in the • oacontlq
• aubdi.rectory.
'I

•1 .. {

}

vhl.le (hcanf(ofp,'Xo",buffer) I= !OF) {
if (latrcmp(butfer,"~fSuba")) {

break;

}

}
facanf(atp,"X•".buffer3);
tprintf (atdout,

"\tSubatitutlng Definition Module \"X•\"\n",
buffer2);

(printf(ltp.•\tSubatitutlng Definition Module \"X•\"\n".
buffer2);

tpr intf (atdout,
11 \t for Definition Module \ "X•\ 11\n•.
butfer);

fprintf (ltp, "\t for O.flnltion Module \ "%&\ "\n",
buffer):

atrepy(colllll8lld,"ln -• ");
atrcat(eammand,buffer2);
atrcat(command," .oseonfig/");
otrcat(command,buffer);
oyotem(eommand);

faeant(afp, 11%s",bufter);
if (atrc:mp(butfer, 11 lmpSuba: 11)) {

fprintt(atdout,"~ord \"ImpSub•:\11 expected-- read \ .. Xa\11 \n".
buffar);

Apr 33 31:43 1986 oacprep.c Paga 3

}

I'

fprintf(lfp,"Xeyvord \"l111pSuba:\" expected-- read \"Xa\11\n",
buffer);

• Make the appropriate implementation aodule aubatitution.
• by creating llrika to alternate filea in the .oaconfiq
* aubdlrectory.
'I

elae {

}

vhlle (taeanf (afp. "X•" ,buffer) I= EOF) {

}

H (lotrcmp(bufter,"Endl""Subo")) {
break;

}

facanf(atp,"Xa",buffer2);
fprintf (otdout,

11 \tSubstitutinq I111plementation Module \•X•\"\n11
,

butfer2);
fprint< (lfp,

"\tSubatituting I~lementation Module \"%•\"\n",
buffer2);

fprintf (atdout,
.. \t for Iaplemantation Module \ "X•\ "\n".
buffer);

fprintf (lfp,
"\t for Ia1plementation Module \ "%•\ "\n".
buffer);

atrcpy(comaumd, "ln -a ");
atrcat(cammand,buffcr2);
atreat(command," .oaconflq/");
atrcat(command.buffer);
.yatea(command);

tacanf (•tp. "X•" ,but fer);
if (strc:mp (butter."End.OS")) {

}

fprintf(atdout,"~rcl \ 11 End.OS\11 expected-- read \ 11%•\"\n",
buffer);

fprintt(lfp,"l8yvord \"EndOS\" expmcted -- read \"X•\"\n".
buffer);

else {

I'
* Make the hidden Madula-2 hidden directoriea
• in the .osconfig aubdirectory.
'I

atrcpy(eommand, "chdlr .oaconfig; m2hdlr 11
);

5Y•tem(co~);

I* :
• Create linka to all definition and implementation

Apr ll 21:43 1986 oacprep.c Pa~ 4

}

}

* .adulea without current linlal in the . oaconfl'iJ
• aubdirec::tary. Only aubatituted modulea ahould
* currently hav. li.nka.
*I

atrcpy(command" "chdir .oaconfig; LnDirFile.ah ");
atrcat(ccmmand;dirpath);
oyatem(command);

!*
• Create tbe aakefile far the current operatin9
* av-t- in the . oacontig aubdirectory.
*I

atrcpy(command" 11chd.ir .oaconfig; /bin/ra aakefil• '');
wyatem(command);
atrcpy (command. "aala.. ah ") ;
atrcat (cOIIIIIUUld, .. intil•) ;
oyatem (.,.,....,.) ;

Apr 22 21:50 1986 aensprep.c Page 1

!*
* FILE: aenaprep.c
• * CONTENTS: IIE aenaor aection preparation routi.rua.
• * HISTORY: Written by Richard Morrill for SoftLab, UNC-01, 1/1/86.
*I

finclude <atdio.h>
linclude 11 achema.h11

!*
* PURPOSE:
* Proceaa the aenaor aection for the achema.
• * RETURN CODES :
• None •
•
* REStRICTIONS/ASSUMPTIONS:
* None.
*I
aenaprep(a~.l~)
FILE *atp; /* IH --- acbaaa fil• */
FILE *lfp; /* IH --- achema loq fil• */
{

char buffer[12B+l];
char a.nafile[128+1);

/* atring buildin9' buffer */
!* senaor file path buffer */

chu command [300); !* ayatea ccmaand butt'er */

tacanf (atp, ••xa• ,buffer);
it (atrcmp (buffer. "SenaorLiat: ")) {

tprintf (atdout,

}

·•~ord \'1Sen.aorLiat:V1 expected --- read \"X•\"\n11
,

buffer);
tprintr (Hp,

11~rd \"s.n.orLiat:\ 11 expected --- read \"Xa\•\n•.
buffer);

elae {

!*
* Create the aen.aor file
• in the • exp~ aubdirectory.
*I

atrepy(cammand,"touch");
atrcat(command," .axp~jaenaora");
oyatom(command);

!*
* Build the enabled aenaor Hat
* until the end o t the aection ia reach~.
*I

vhile (hcont(orp,•xa",owtile) I= Ear) {

if (latrcmp (aerwfile~ 11EndSenaorLiat11
))

Apr 22 21:50 1996 aenaprep.o Pav- 2

}

break;

I*
• Add the aenaora fro. a file.
*I

if (latrncmp(aenafile,•-•.1))
{

}

I*

faoanf(afp."%•".aenafile);
tprintf (atdout.

11\tUaing Senaor File \"Xa\ 11\n".aen.file);
fprintf(lfp.

11 \tUaing Senaor File \"Xa\11\n".aen.file);
atrcpy(oommanc!. "'oat "');

• Add indivlchlal ...wora.
*I

•1••
{

}

tprintf (atdout,
"\tUatnq &.naor \ 00Xa\11 \n".aenafile);

tprintt(ltp,
"\tUa~ Senaor \"Xa\11\n11 ,aenafile);

atrepy (ooaaand, 11eobo ") :

atrcat(cammand,aenatile);
atroat(oammand." >> .exp~/aenaora 11);
oy•tea(c........OO);

} I* end vhil• *I
} ;• end elae */

faoanf(atp,"X•".buffer);
if (a tromp (buffer • "Encls.naor")) {

tpr inU (otdout,

}

11~rd \"EndSonaor\11 expected--- read \"Xa\11 \n".
buffer);

tprintt (lfp,
"'KGyvcrd \"EndSenaor\11 expected --- read \ 11%a\ 11\n11

,

buffer);

Apr 22 21:17 1996 dirprep.o Page 1

I*
* FILE: cllrprep.o
* * CONTENTS: liE Schema directiw. aeotion prooeaaing routine.
•
• HISTORY: written by Richard Morrill for SoftLab. UNC-CH. 111196.
*I

finclude <stdio.h>
tinclude "aohema.h11

I*
* PURPOSE:
* Prooeaa the directiw. aec::tion of a •oh.ema file.
* * RETURN CODES:
• None.
* * RESTRICTIONSIASSUMPnONS:
• None.
*I
dirpr~(otp,ltp)
E'ILE *atp; I* IN --- Sohaaa til• *I
FILE *Up; !* IN ---~ loq file */
{

lnt lnltflag; 1• Run-tuple added flag • I
I* String building buffer *I
1• System cmamand. butter *I

char buffer [128+1);
char oammand[128+1];

facanf (alp, 11%•" ,buffer):
U (otrcmp(buffer,"RunLiot:")) {

}

tprintf(stdout,"&yvord \"B.unLiat:\11 expt~Cted --- read \"Xa\11\n".
butter);

fprlntf(lfp, 11r..yvord \ltJ.unLiat:\" expected--- read \"Xa\11\n".
buffer);

•la• {
lnltUac;r = 0;

I*
• Create a new main.o til• in the
* . expJD9T subdirectory.
*I

atrcpy (command, tl /binlna - r ") ;
atrcat (command, EXPMAIN);
.yatem(command);
atrepy (command, "cp 11

) ;

a treat (command, SLEXPHAIN) ;
a treat (command, • ") ;
a treat (command, EXPMAIN);
system (command) ;

Apr 22 21:17 1986 dirprep.c Page 2

I'
• Proce•• to the end of t:he aection
• or the end of tM tile;
• whichever come• tirat.
'I

vhile (facant(atp,"Xa",butfer) I= !OF) {

if (latraap(bu.tfer, "EndRunLiat"))
break;

elae {

}

if (I inittlag)
in.lttlag = l;

tprintf(atdout,"Adding run tuple X•\n", butter);
tprintt (ltp. "Addin9 run tuple X•\n". butter);

I'
• Append the current run-tuple
• to main. c in the . ell:p...JIICP"
• aubd.irectory.
'I

atrcpy(comaand. "echo\'");
a treat (comaand, litUH-PllOCEDURE) ;
atrcat (command, butter);
atrcat(cammand, ";\ 1 >> ");
atrcat (command, EXPMAilf) ;
ayat .. (camaand);

} I' ond while 'I

I'
• Cloae ott the main.c file in the
• • expJRIP" aubdirectory.
'I

atrcpy(command, "cat");
atrcat(command, St~HEND);
atrcat(command, ">> ");
•treat (command. EXPMAIN) ;
oyat .. (c.......,.,);

i< (linitflag) {
tprintt' (atd.out,
"No run tuple• vtwre added; the aimulator will not be invoked. \n") ;

fprint< (lfp,
"No run tuple• vhare added; the aimulator will not be invoked.\n");

}

} I' end elae •;

facanf(sfp."X•".butfer);
it (atrc=p (butter, "EndDirectivea")) {

tprintf(stdout, "Eeyvord \ 11EndDirectivea\" expected --- read \ "Xa\11\n",
buffer);

fprintf(ltp, "X.VVOrd \ "EndDir.ctivea\ 11 expected --- read \ "X•\ "\n11
,

buffer);

Apr 22 21:17 1986 dirprep.c Page 3

}
}

Oct ll 16:40 1985 ac!wma.h Pa~ l.

*"- r1ruo mUE 1
ldetl.ruo FALSE 0

t<W tl.ruo IIAXARCli.f:K lO
4kletine MaxF UeName lO
-tl.ruo IIAX1CEYLEN lO
ldetl.ruo LINELENGXH 80
~define P~L ":/uarjlib/local/modula2"
Ide U.ne R.UN.....PR.OCEDURE "OoRun'"
Ide fine EXPMAIM ".exp...J119r/main.c"
Ide fine SLEXPMAIN "/unc/drlll/aljarc/exp-Jilqr /main. e"
Ide fine SLEXPMAIN!HD • /unc/dra/ aljare/exp...Jll9l" /mainend"
~tine EMMAKEriLE "/unc/dra/al/arc/make/.mMakefile"
id.efine MAINHUEFILE 11 junc/dra/al/are/make/Ha~file"

typedef J.nt boolean;

int Be9inProc () :
int Ini tproc () ;
int StimProc () ;
int llh'a'roc () ;
int OSCProc () ;
int hnaProc () ;
int DirProc () ;
int Ou.myProc () :
int l!ndProc () :

atatlc char •SLmachpath = 11 /unc3/unc/drm/al/src/machine";
atatic char •sLoapath = 11/unc3/unc/drm/alfarc/OS";
atatic char •sLatimpath = "/unc3/une/drm/aljarc/Stimulua";

Apr ll 20:13 1986 output.c Page 1

;•
" FILE: output.c
•
* CONTENTS:
* The simulation output rout.i.Nt for the experiment manager
" library libexp.a.
•
* HISTORY: WTitten by Richard Morrill for SoftLab, UNC-CH, 111186.
•
•;
*i~clude <atdio.h>
jinclude ''expJil9r .h''

;•
* Sensor information.
•;

atruct aenaor~truct {
int id;
float first;
float last;
float avq;
int count;

};

I* Sensor id *I
I* First time the sensor vas reached *I
I* Last time the sensor vas reached *I
I* Average duration between sensor invocationa *I
I* Number of times the sensor vas reached *I

typedef atruct aenaor __struct aentype;

;•
* PURPOSE:
•
•

Calculate the appropriate sensor information from the simulator
output file and write it to the selected reaulta file, 'out' .

•
* RETt.JRN CODES:
" None .
•
* RESTRICTIONS/ASSUMPTIONS:
* None.
•;

ProceaaOutput(out, aena)

char *out;
char *aen.a;

!* IN --- experiment output results file */
/* IN --- enabled sensors file *I

{
aentype arr [MAX_SENSORS] ;
int i;
int nevid;
int inat;
float atimlt;
FILE *ofp;
FILE *xfp;
FILE *sfp;

afp = fopen(aens, "r");
if (ofp == (FILE ') NULL) {

fprintf (atderr,

I* sensor array *I
I* loop ~ex *I
I* nev sensor id *I
I* nev sensor instance from aim.loq *I
/* nev sensor time form sim.log */
/* simulator output results file *I
/* exper~t output results file *I
I* enabled sensors file *I

1'Unable to open sensor file X•. no output processed. \n", sens);

Apr ll 20:13 1986 output.c Page 2

return(-1);
}

otp = fopen("aena,out•, "r");
it (ofp == (FILE ') NULL) {

fprintf (stderr.

}

''Unable to read simulator sensor file X•. no output processed. \n11
,

fcloae(sfp);
return(-1);

"aena.out");

xtp = fopen(out, "v");
if (xfp == (FILE ') NULL) {

fpr intf (atderr,

}

"Unable to create results file X•. no output processed. \n",
out);

fclose(sfp);
fclose(ofp);
return (-1) ;

;•
* Initialize aenaor array.
•;

for (i=O; i<MAX_SENSORS; i++)
arr[i] .id = -1;

fprintf (atdout. "hading from enabled sensor file \ "X•\ "\n11 ,.aen.a);

;•
* Dlatinquish enabled aenaora .
•;

vh.lle (tacanf(afp. "Xd", &nevid) I= EOF) {

it (nevid >= I!AJLSENSORS) {

}

fprintf (atdout,
"Invalid aenaor \ •xd\" read from. aenaor file X•· \n ...

nevid, aens);
continue;

arr[nevid] .id = nevid;
arr[nevid] .first= 0.0;
arr[nevid].last = 0.0;
arr[nevid].avq = 0.0;
arr[nevid] .count= 0;

} I* end vhile *I

fprintf (stdout, "Reading from simulation 11enaor file \"%•\ "\n", "sene, out'v);

;•
* Process sensor information.
'I

vhile (fscanf(ofp, "Xd,%f", &inst, &stime) I= EOF) {

Apr ll 20:13 1986 output.c Page 3

}

H (J.nat >= IWl.)lENSORS) {
tprintf (atdout,

Mlnvalid aen.aor \ "Xd\11 read from aimulator log file X•· \n 11
•

inat. 11sena. out");
continue;
}

if (arr[tnst] .count == 0)
arr (inat). firat = a time;
arr (inat] .count += 1;
arr[inat].last ~ atime;
arr[inat).avg = (atime- arr[inat) .firat) I arr[inat] .count;

} I" end vhile "I

tprintf(atdaut,MWTitlng output file \"%•\"\n".out);
fprintf (xfp. "Senaor Firat Laat Averaqe Count\n");
tprintf(xtp. u \n\n");

I' * Wr 1 te out enabled a ens or
• infon:u:tion.
'I

for (i=O; i<MAX._SENSORS; i++) {
it (arr[i] ,id I= ~1)

fprintf (xfp.
11 %2d %6, 2f %6. 2f %6, 2f %d\n\n11

•

i, arr[i].firat. arr[i] .laet. arr[i] .avg. arr[i] .count);
} I* end for *I

fcloae(ofp)
fcloae(atp)
fclo .. (xtp)

Apr ~~ 20:19 1986 LnDirFile.ah Page 1

tl /bin/coh - r

I Execute the ahell acript 'LnFile.ah' on all
I the director!•• under the current directory,
I vith each directory. the tirat command line argument. and
I the current vcrking directory aa arCjJI.UIIetlta.

aet ourh = .. jbin/pvd"

t~ . -type d -exec LnFile.ah {} 01 tourh \;

Apr 2~ 20:21 1986 LnFile.ah Page 1

II /bin/csh -t

4t Olange to the directory aelected by
I arqumenta 3 and 1. and create aymbolic
1 1~ to all tiles under ~/1.

chdir fJ/U
ln -o f2/U/' .

Apr ll 20:21 1986 0Sa.2path Page 1

ftl /binjcah -f

aetenv IUPATH ~ \bin\pvd~ : OSDIR: /uar/lih/local/modulal

Apr 2l 20:22 1986 OSmak..ah Page 1

ftl/bin/csh -f

*Hake the .osconfi9 directory the current * working directory. aet th. H2PATH variable * and create the Modula-2 ~ file.

chdir ~/bin/pvd~;.oaconfig
source m2path
mm2m u

Hov 6 20:17 1995 Stil:l:a2path Pa9e 1

II ,lbin/coh - f

aetenv M.i:PA1'H • :SUMDIR:juarjU.b/1ocal/JDOdula.i:

Apr 2:.3 20:.33 1996 Stimmake.ah Page l

*1/bin/csh -t

* Make the . atimulua directory the current
1 working directory. set the MlPATH var labl•
I and create the Modula-2: make til•.

chdir ~ /bin/pvd'"'/. atimulua
aource 1112path
lllm2m 11

Apr 33 20:34 1986 fileauba Page 1

tl /bin/cob -f

I Find all occureneea of the firat argument * in the file n.a.med by the third ar9WMI1t.
I In the aelectec:l file replace all occurrence•
I of argument one vith argument tvo.

aed -e "/41/a?41?42?" 43 >I t.mp
cp temp '3
/bin/rm temp

Nov 6 30:17 1985 mlpath Page 1

II ,lbin/cah -f

aetenv MlPA1'H • :OSDIR:juar/lihjlocaljmodula3

Apr 22 20:25 1986 .. lceexpmgr.oh Page 1

tl/bin/coh -!

I Exucute llake in the .expJDqr aubdirectory and
I append the output to Make .log in the current
I directory.

cd. . exp.JD.9f" ; .alee »& .. /Make . 1 og

Apr 2l lO:l7 1986 ma.kehv.ah Pa~ 1

11/bin/cah -f

1 Execute the make program in the . hvcontiq aubdlrectory
I and append the output to fil• Mak..lo; in the current
I directory.

cd .hvconflg; make "HOME= /uarjaoftlab" >>& •• jHak..log

Apr 22 20:28 1986 aakeoa.ah Pa~ 1

tl/bin/cah -r

t Execute ..UC. in the . oacontig aubdirectory and append
t the output to the file Nab .log in the current
t directory.

cd . oacont:ig; aource m2path ; ..UC. »&. .. /Make. log

Apr 22 20:29 1986 makeatim.ah Page 1

11/bin/cah -t

I Execute the IIIAl«t program in the . atimu.lua aubd.ir~tory
I and append the output to the tile Hake. log in tn. current * working directory. Set the M2PATH va.r iable ainc8 th.ia ia * a Modula-2 make.

cd .atimu.lua; aource m2path ; IDilb »& .. ,!Make. log

u~
•• • ~ ... ;;. " .g ~~ !i ..

w ... ~e;: .a " 0 w

h • 0

'B
.,.

"' !}l ' 0

~~
~ ...

"' <D

" [~ ..
0 • i~ ~ 0 g
~ g~ ... !:-... :;:. .. • o!i 1 • §i ...

...
u

0

H
~ •

Apr 18 13:58 1986 .xp...Jilgr.h Page 1

I*
* FILE: oxp.Jtqr.b
• * CON'!ENTS: Del!initiona and Constanta used by the libexp.a routinea .
•
* HISTORY: Written by Richard Morrill for SoftLab, UNC-01. 1/1/86.
'I

/* Ma.x1mua number of aeru~ora allowed.
'I

- fl..ne MAX...BENSOJIS 100

Apr 18 13:55 1986 dorun.c Page 1

I*
* FILE: dorun.c
•
* CONTENTS: boRun - Entry routirua to tM exp..Jilgr run-t.U. library (libexp. a) .

* HISTORY: written by Richard Morrill for SoftLab, UNC-CH. 1/1/86
•
*I

*include <atdio.h>

static int count 1· /* experiment number */

I*
* PURPOSE:
• •
•

Executea one full
file proceaaing .

* RETURN CODES:
* None.

run of an experi.mant including the output

* RESTRICTIONS/ASSUMPTIONS:
* No validity checking b don. for the .xperiment c~ta.
'I

DoRun(sim, as. atim. aeruJ, out)

char *aim; I* IN executable simulator file */
char *as; /* IN os meade file *I
char *stim; !* IN atimulua .code file */
char *aens; I* IN anabled aenaora file */
char *out; I* IN aimulator output reaulta file */
{

int pid;
char sensbuf [128+1};
char aimbuf [128+1];

I* process id returned from fork() */
/* full path to the sensor file */
/* full path to the simulator *I

fprintf(atdout. "BeqLnninq experiment run number Xd\n".count);

I* LLnk the stimulus and os files to the name•
* expected in the main memory module.
'I

InitFiles(oa,atim);

/* Build relative paths in.
'I

atrcpy(simbuf. ".hveont'ig/11);

atrcat (simbu f, aim) ;
atrcat(aimbuf. ".aim");
atrcpy (sensbuf. ".exp...JII.IJT /") ;
atrcat(aensbuf. aena);

!* printf("forking\n"); *I

pld = fork() ;

Apr 18 13:55 1986 dorun.c Pa98 2

}

I* printr("p!cl = Xcl\n",picl): *I

u (p!cl == 0) {

}

I* In ~ child.
*I

tprintt (atdout, "Invokinq simulator V'XsXsX•\ "\n". 11 .hvcontiq/11
• aim,

".aim");
execl(dmbuf. aimbuf, •-d" ~ "100", 0);

else {

}

I* In the parent.
*I

if (vait(O) I= pid)
fprintf (std.out.

"Error 1n simulator invocation\n");
elae {

}

fprintf (stdout, "Experiment run number Xd completed.\n" ,count);
count++;
ProcesaOutput (out, aenabuf);

Apr 22 20:03 1986 init.c Page 1

!*
• FILE: init.c
•
• CONTENTS: Initialization routine for the libexp.a routine library .
•
* HISTORY: WTitten by Richard Morrill for SoftLab, UNC-CH. 1/1186.
'I

~~elude <•tdio.h>

I'
* PURPOSE:
• Set up links 1n the schema directory tor thtl DIS and
* stimulus M-code files.

* RETURN CODES:
* None.
•
* RESTRICTIONS/ASSUMPTIONS:
* Assumes that the simulator is lockinq for the files •• named
• 1n the currt~nt vorkinq directory.
'I

InitFiles(os, stim)

char *oa;
char *sti.m;

I* IN
I* IN

0/S H-code tile *I
stimulus M-code file *I

{

}

char buffer[128+1];

fprintf(stdout,"Llnkinq \"X•\" to \"X•X•\"\n","OS.IDCd", ".oaconUg/".
os);

atrcpy(buffer. 11
• osconfigl");

strcat(butfer, os);
sym.link (buffer. "OS .mcd") ;

fprintf (atdout. "Linking \"X•\" to \ "X• X•\ "\n". "Stimulua.mcd" ~ ".atJ.mu.lull/ 111
,

stim);

atrcpy(buffer. ".stimulus/");
atrcat(buffer, at~);
aymlink(buffer, "Stimulua.mcd");

Apr ll l0:13 1986 output.c Po~ 3

}

U (ina t >= MAX..$ENSORS) {
tprintf(atdout,

•Inv~lid aen.or \"Xd\" r••d froa aimulator log fll• X•-\n",
!nat, •aena. out 11

) ;

continue;
}

if (arr[inat).count == 0)
arr(inat].firat = atime;
arr(inat) .count += 1;
arr(tnat).laat = atime;
arr [!nat] .avg = (ati.JM - arr (inat]. Urat) I arr [!nat] .count;

} ;• end vhll• •;

fprintf(atdout."wrltlng output til• \"Xa\•\n",out);
fprintf(.xfp, "Senaor Firat Laat Av.ra~ Count\n");
fprintf (xtp. • \n\n");

;•
• Writ. out enabled aensor
• infonu.tion.
•;

tor (1=0; 1<HAX.J;ENSORS; 1++) {
if (arr[l] .ld I= -1)
fprintf (xfp.
" Xld X6.lt X6.H %6.U %d\n\n".

!, arr[i).firat, arr[i] .laat, arr[i) .avg, arr[iJ .count);
} ;• ~ for */

fcloae(ofp)
fcloa•(afp)
fcloa• (xfp)

Apr 22 20:19 1986 LnDirFil•.ah Page 1

II /bin/cab - t

I Execute th. ahall acrlpt 'LnFlle.ah' on all
f the director lea ~r the current directory.
I with each directory~ the tlrat command line arqument~ and
f the current working directory aa argumenta.

aet ourh = "/bin/pwd'"

rind . -type d -ex.c Lnlile.oh {} 11 ••urh \;

Apr 22 20:21 1986 LnFile.ah Pa~ 1

II /bin/coh -r

f Canqe to th. directory ••lected by
t argument• 3 and 1. and creat. aywaboUc
f llnka to all til•• under 2/1.

chdir .3/11
ln -· .J/11/'

Apr 22 20:21 1986 OSmlpath Pa~ 1

*' /bin/cllh -f

••tenv MlPA1'H ~ \bin\pvd.~ : OSDIR: /uar /l!b/local/modulal

Apr 22 20:22 1986 OS~.ah Pa~ 1

11/bin/cah -f

f Hake t:h.4l • oacontig directory the current * working directory~ aet tlw HlPATH var iabl• * and creat• the Hodula-l mak. til•.

chdir ~/bin/pvd~/.oacon!ig
source m2path
mm.2m H

Hov 6 20:17 1985 St~path Page 1

II /bin/cah -r

••t.nv MlPAXH .:STIMDIR:/uar/llb/loeal/.odulal

Apr ll lO:l3 1986 St~.ah Pa~ 1

11/bin/cah -r

I Hak. th. .atimulua directory the current
I working directory. aet th. MlPAXH variabl•
I and create th. Modula-l mak• fil•.

chd.ir "/bin/pvd" I. atimulua
aource lll.J:path
liDDlm f1

Apr l2 20:24 1986 t!l••ub• Page l

II /bin/coh -r

I find all occurCl.Cea ot the tirat argument
I in the til• na.mad by the third argum.ent.
I In the aelected. til• replac. all occurrencea
I ot arg-wDOnt one vith argument tvo.

aed -• "/.1/•?•l?.l?" •3 >I temp
cp temp tJ
/bin/rm temp

Nov 6 20:17 1985 ~path Paqe 1

II /bin/coh - r

aetenv MlPAl'H • :OSOIR:juar/lih/local/aodulal

Apr ~~ ~0:~5 1986 .. Jceexpmgr.ah Pag. 1

11/bin/coh -r

t Exucute aake in tlw .expJilgr aubdirectory and * append tlw output to Mak. .log in the current
t directory.

cd .expJilgr; aab »& .. ,!Hake.log

Apr ~l ~0:~7 1986 aak.hv.ah Pa~ 1

tl/bin/cah -f!

t Execute tlw aake provr .. in th. .hvconf!iq aubdirectory
t and append the output to f!il• Hak.. log in the current
t directory.

cd .hvcontig; aake "~«Jot! = juar ;aoftlab" >>4i •• ,IM&b.log

Apr 2l 20: l8 1986 aakeoa. ah Paqe 1

11/bin/c•h -r

1 Executa aab 1n ~ . oacontiq aubdlrectory and append
1 the output to the til• Mab. loq in the current
I directory.

cd .oacontiq; aourc. a2path ; aalol »* .. /Ha}al.loq

Apr l2 20: 29 1986 aakeatia. ah Paga 1

tf/bin/cah -t

t Execut• the make prograa in the . atlmulua aubdir.ctory
I and append the output to the fil• Hake. loq in the curr.nt * vorkinq directory. S.t the H2PAnt varlahl• aJ.nc. thia la
I a Hoduh.-2 maloa.

cd .•timulua; aource &2path; ~ >>* •• /Ha}al.loq

Apr 22 20:30 1986 -.lza.ah Pav- 1

11/bin(cah -f

I Set up the M2PATH var !able in tt. . osoontig
t aubdir.otory and create the •••ociated aake tile.

chdir "/bin/pvd" I. asconfig
source mlpath
amo2D H

Apr 18 13:58 1986 exp_agr.h Page 1

I'
* f'ILE: exp...JRgr .h
•
• CONTENtS: O.linltlona and conatanta uaed by th. U.be.xp.a routinea.
•
* HISTORY: Written by Richard Morrill for SoftLab. UNC-at. 1/1/86.
'I

/* Maxi.Jaua nwober of &Claora allowed.
'I

tdefine MIJLSENSOD.S 100

Apr 18 13:55 1986 dorun.c Pag. 1

I'
* FILE: dorun.c
•
* CONTENTS: DoRun - Entry routina to the exp...a91"' run-tJ.a. library (llbexp.a),
•
* HISTORY: Written by Richard Harrill for SoftLab, UNC-CH. 1/1/86
•
'I

linclude <atdio.h>

atatie int count = 1; /* experLment number */

I'
* PURPOSE:

• • •
Ex.cutea one tull run at an experiDint including the output
file proceaaing .

* RE'!URH CXJDI!:S:
* None.

* RESTRICTIONS/ASSUMPtiONS:
* No valid.lty ch.ck.1ng ia done for the experimclt co.ponenta.
'I

DoRun(ai.m., oa. at.lm. aen8, out)

char *aim; /* IN executabl• aimulator file */
char *oa; I* IN oa meade file • I
char •atlm; !* IN atimulua .cod. til• */
char •aen.; /* IN enabled aenaora file */
char •aut; /* IN aimulator output reaulta file */
{

lnt pid;
char aenabuf[ll8+1];
char atmbuf[llB+l);

;• proceaa id returned froa fork() *I
I* tull path to ~ aen.or file *I
I* full path to the aimulator *I

fprintf(atdout. •oeqinninq experiment run number %d\n•,count);

!* Link the atlmulua and oa filea to the name•
* expected in the main memory module.
'I

InitFilea(oa,atim);

I* Build relative patha in.
'I

atrcpy(ai.mbut, • .hvcontlg/");
atrcat(simbut, aim);
a treat (slmbut, ... aim");
atrcpy (eensbut, ... e.x:pJEl91"' I'') :
atrcat(aonsbut, aen.);

I* printt("torking\n"); *I

pid = !ork () ;

Apr 18 13:55 1986 dorun.c Paq. 2

}

I' printr("p!d = Xd\n",p!d); 'I

H (pid == 0) {

}

/ 11 In the child.
'I

tprlntt(atdout. "Invoking almulator \"X•X•X•\"\n". ".hvconflg/". aim,
".aim");

exocl(aimbuf, aimbuf, "-d". "100", 0);

alae {

}

/ 11 In the parent.
'I

if (vo!t(O) I= p!d)
tprintf (atdaut,

"Error in aimulator invocatlon\n");
ebe {

}

tprintf(atdout, "Expertm.nt run number Xd completed\n",count);
count++;
Proc.aaOutput(out, •~but);

Apr 2l 20:03 1986 lnit.c Paq• 1

I'
11 FILE: lnit.c
•
• CONTENTS: I~tialization routln8 tor the libexp.a routine library •
•
* HISTORY: WTitt~ by RiChard Morrill tor SottLab, UNC-CH, 1/1/86.
'I

•~tude <atdlo.h>

I'
11 PURPOSE::
•
•
•

Set up Unka in the ac.hema dJ.rttetory for tlw 0/S and
atimulua H-code !ilea.

• B.EttJBJf CODES:
• None.
•
11 RESTRICTIONS/ASSUMPTIONS:
11 Asaumea that the simulator ia looking tor the tilea •• nu:.ed

in the current vorkinq dJ.rectory.
•;

I~tlilea(oa, atim)

char •oa;
char •atim;

/ 11 IN
/ 11 IN

0/S M-eade tile */
atimulua M-eade file */

{

}

char bufter{1lB+1];

tprintf(atd.out,"Linking \"%•\" to \"X•X•\"\n11
,

110S.mcd", ".oac:ontiq/11
,

oa);

atrcpy(butfer. ".oacon~iq/");
atrcat(bufter, oa);
aym.Unk (butter, "OS .mcd");

fprintf (atdout, "Llnld.nq \ "X•\ • to \ •x•X•\ •\n", 11Stimulua .D:Xl", • .atUulua/111 ,

oti.m) ;

atrcpy (bu !fer, 11
• ati.muluaj") ;

atrcat(buffer, ati..m);
aymlink(bufter, "Sti.mulua.mcd");

