
Alternative Program
Representations in the FFP Machine

TR86-027

1986

David J. Middleton

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall, 083A
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

Alternative program representations
in the FFP machine

by

David John Middleton

A dissertation submitted to the faculty of the University of North

Carolina at Chapel Hill in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill, 1986

Approved by:

Advisor: Gyula Mag6

~~7~~i\ r Reader: Frederick P. Brooks, Jr.

Reader: Richard Snodgrass

DAVID JOHN MIDDLETON
Alternative program representations in the FFP machine.

(Under the direction of GYULA A. MAGO.)

Abstract

Program representation seems to be an important factor in en­
abling parallel computers to provide the high performance they
promise. Program representation, from that of the initial algo­
rithm to that of the run-time machine code, must provide enough
information that parallelism can be detected without imposing fur­
ther constraints that prevent this parallelism from being exploited.
The thesis of this research is that the efficiency of the FFP machine
is significantly affected by the choice for program representation.
The results support the conjecture above and suggest that greater
emphasis should be placed on program representation in the design
of parallel computers.

This research examines run-time program representation for
the FFP machine, a fine-grained language-directed parallel com­
puter which uses a string-reduction model of computation. Several
alternative program representations are proposed, and the result­
ing machine variants are compared.

Four characteristics are then developed which accurately pre­
dict the advantages and problems that would arise with other forms
of program representation. These characteristics can be derived
from the basic nature of the FFP machine and its model of com­
putation, so these characteristics may well be important in the
design of other parallel computers that share the basic character
of the FFP machine.

The results are organised into a procedure for choosing a rep­
resentation, based on the expected use of a particular instance of
the FFP machine. A definition of processor granularity is proposed
based on software function instead of hardware costs.

Acknowledgements

I joyfully acknowledge the love, dedication and effort that my

Father and Mother spent in raising our family. I dedicate this

dissertation to them. I want to thank my wife, Michele, for her

support and encouragement through the difficult times. I am also

grateful to the members of my Honours year, who made the study

of Computer Science especially enjoyable: Debbie Blatch, Frank

Carnovale, Paul Lorger, David Powers, John Reeves, Ros Riley,

Michael Selig and Kerry Stewart.

I have been extremely fortunate to work with Gyula Mag6. He

has demonstrated a degree of scholarship which I hope to emulate

and is very considerate to the students under his direction. Freder­

ick Brooks has taught me a great deal about computer architecture

and the framework underlying scientific exposition. Richard Snod­

grass gave generously of his time and ideas in helping me to express

the results of this research more comprehensibly. I would also like

to thank Don Stanat and Dean Brock for many interesting discus­

sions and classes.

I would like to thank John Zimmerman for many enjoyable dis­

cussions on the nature of Science in general, and Computer Science

in particular. I am grateful to Bruce Smith for the opportunity to

work on a wider range of projects. I would also like to thank the

newcomers to the project, Ed Biagioni, Lakshmi Dasari, Bill Gib­

son and Will Partain, who have took part in several interesting

discussions and pointed out at least one unnoticed error in this

·research.

I am grateful for the availability of the tools, '!EX and Mac­

Draw, which, as well as formatting this document, provided many

challenging hours of thought on the nature of text processing.

Table Of Contents

1 Program representation in parallel computers 1

1.1 The importance of program representation 1

1.2 Representing FFP programs in the FFP machine 2

1.3 Organisation of this dissertation 3

2 Related work: program representation in other parallel computers 6

2.1 Previous versions of the FFP machine 6

2.1.1 The initial proposal 7

2.1.2 A virtual computer surrounding the FFP machine 7

2.1.3 Different communication networks 7

2.1.4 Tolle's version of the FFP machine 8

2.2 Other language-directed parallel computers 9

2.2.1 SECD machines 9

2.2.2 The GMD machines 10

2.2.3 Combinator machines 11

2.2.4 Wilner's recursive machine 12

2.2.5 The ALICE graph reduction machine 13

2.2.6 · AMPS and Rediflow 13

2.2.7 Dataflow machines 14

2.2.8 Traditional multiprocessors 14

2.3 Other fine-grained parallel computers 15

2.3.1 NON-VON 15

2.3.2 The Connection Machine 16

2.4 Conclusions 17

3 A generic FFP machine 19

3.1 The FFP language and the model of computation 19

3.2 String reduction of RAs and the virtual machines to perform it 20

3.3 The L cell instruction set 23

3.3.1 Storage allocation 24

3.3.2 Communication and synchronisation 25

3.4 The physical machine 29

3.4.1 Partitioning: allocating physical resources to virtual machines 30

3.4.2 Supporting virtual machine space requests . 31

3.5 Contrasts between the physical machine and a virtual machine 32

4 Creating a benchmark for evaluating representations

4.1 Choosing the target language level for collecting operations

4.2 Collecting the idioms used to implement FFP

34

35

36

4.3 Implementations of some illustrative functions 38

4.4 A summary of measures for evaluating program representations 45

5 Some alternative program representations

5.1 Some templates and symbol registers

5.1.1 Templates containing closing braces

5.1.2 Templates containing'< A>'

5.1.3 Templates containing '<*A>*'

5.1.4 Templates containing several atoms

5.1.5 Templates containing '(*' and ')•'

5.1.6 Templates containing '{*' and '}*'

5.1.7 Summary of example templates

5.2 Restricting the candidates for program representation

6 Maintaining unique layouts during execution

6.1 The occurrence of non-unique layouts

6.2 Complications arising due to non-unique layouts

6.3 Handling non-unique layouts

6.4 A summary of uniqueness in representations

7 System operations under compressed representations

7.1 Partitioning

7.1.1 The partitioning algorithm

7.1.2 Partitioning operations in previous FFP machines

7 .1.3 Design alternatives in the partitioning operation

7.2 Address Generation

49

50

50

52

54

57

60

61

63

64

68

69

71

73

76

77

77

78

83

86

87

7.2.1 Cumulative message operations 90

7.2.2 Calculating the RLN, index, B.rstL and lastL components 91

7.2.3 Calculating directories

7.2.4 Other uses of cumulative message operations

7.3 Compaction

7.3.1 Compaction on demand

7.3.2 Compaction on scattering

92

94

94

95

96

8 Summary of results

8.1 Review of the research

8.2 Templates and their consequences

8.2.1 Classifying FFP symbols

8.2.2 Organising appropriate symbol registers

8.2.3 A catalog of templates and their consequences

8.2.3.1 '(*<*A>*)*'

8.2.3.2 '(*<* R >*'

8.2.3.3 '<* (*<"A>*)*>*'

8.2.3.4 '<* p >*'

8.2.3.s '<· c· AJ* >·'
8.2.3.6 '(*{*<*A>*}*)*'

8.2.3. 7 '(• F <* A >")*'

8.2.4 Some remarks on significant instructions

8.3 A program-related definition of fine granularity

9 Conclusions and suggestions for fui:ther work

103

103

105

105

107

108

108

109

109

110

110

Ill

111

112

113

115

Table of Figures

1. FFP functions are viewed as a manipulation of the expression tree 20
2. Address information associated with symbols in an expression tree 22

3. Implementation of the ApplyToAll function 24

4. Two equivalent virtual machines . 26
5. The two message waves used in ApplyToAll 27

6. L cell instructions for the distributed string manipulations of Figure 3 28

7. Virtual machines embedded in the physical machine 29

8. Implementation of user-defined functions 39

9. The stages in transposing matrices on the FFP machine 40

10. Expression tree manipulation for the Insert function 42

11. Various forms for the result of the Insert function . 43

12. Two implementations for variants of the Treeinsert function 44

13. A third implementation for the Treeinsert function 46

14. Implementation of the restructuring idiom is context dependent 54
15. associ can be implemented without significant instructions 56

16. Multiple atoms in an L cell complicate the implementation of transpose 58

17. Comparison of templates with previous representation 63

18. Templates with multiple symbols lead to scattering 68
19. Removing parentheses causes scattering during reduction 70
20. Scattering interferes with aligning symbols for implementing equals 72

21. Alternatives for approaching scattering . 73

22. T cell's view of the machine and the RAs it must support 78

23. The four configurations by which aT cell supports several areas 79

24. Hardware resources inside a T cell 80

25. Partitioning physical resources to create virtual machines 82
26. Partitioning in Mag6's design . 83
27. Partitioning in Danforth's design 84
28. Partitioning in Tolle's design . 85

29. Partitioning algorithm . 86
30. Possible variations on the form of expression trees 88

31. Cumulative message operations 89

32. Message processor within the T cell 91

33. The directory computation 93

34. The storage preparation algorithm 97

35. The storage preparation algorithm incorporating compaction 98

36. Compaction performed by moving braces through the tree 101

absolute level number, ALN

application parentheses

areas

attachable

braces .

capability

clones .

compact layout

compressed representation

cumulative message operation

denotation

directory

Empties

EndOfStream

execution phase

expression tree

filter

Fine granularity

fine-grained

fingers

firstL

fork

graph reduction

idioms .

index

L array

L cells

lastL

layout

Leftscraps

manipulation

mergeleft, mergeright

message processors

message wave .

Glossary

50

20

29

64, 105

. 47
113

25

69

69

88

49

21

98

28

32

20

25

114

66

12

21

25

3

35

21

29

6, 29

21

68

98

49

99

21

25

microcode segment 21

natural 64

order-preserving 65

outer brackets registers 108

packed symbol registers 107

partitioning . 30

physical machine 19, 29

place 100
program-directed . 19

reducible application, RA 6, 19

relative level number . 21
request 100

responsibility 113
Rightscraps 98
scattering . 69
SendReceive 25
sequence brackets 20
significant instructions 48
sites 21
solitary 64, 106

storage management 32

storage movement 31

string reduction 2

system phase 32

T cells 29

template 50

Vacant 99

variable granularity processors 31

view 113

virtual L cells 21

virtual machine 19

well-aligned 65

Chapter 1

Program representation in parallel computers

1.1 The importance of program representation

Parallel computers are intended to perform computations more quickly by

using many processors at the same time, each one applied to a different part of

the computation. However, several issues may arise to prevent parallel computers

from fulfilling this promise. One issue concerns the ways applications can use the

parallel computer once the hardware has been constructed. The complexities of

operations such as program decomposition,. task allocation and task scheduling,

create problems by making the process of programming parallel computers difficult

and very sensitive to minor aspects of a particular machine design. As a response to

this difficulty, language-directed design is appearing with increasing frequency as a

principal foundation of general-purpose parallel computers. Such computers have

been designed around high level languages that are based on abstract models rather

than concerns about implementation on traditional computers [Clarke et al. 80,

Glaser etal. 84, Kluge 83, Agerwala etal. 82]. These systems require much less

transformation of the programs before execution because the hardware closely

follows the model of computation of the chosen language.

A second issue in the design of general-purpose parallel computers is how pro­

grams should be represented. According to Flynn and Hennessy, "The initial rep­

resentation profoundly influences the ability [of sequential computers] to obtain a

good representation at other levels [of execution] The representation problem

is worsened with the advent of distributed computing" [Flynn and Hennessy 79].

They further suggest that the choice for program representation is important in

all general-purpose parallel computers, in order that available parallelism can be

detected, without constraining machine operation to the point where it cannot ex­

ploit that parallelism. It appears that general-purpose parallel computers may be

particularly sensitive to desigu choices related to program representation (both in

comparison with other factors in the design of general-purpose parallel computers

and with the sensitivity of general-purpose sequential computer design to program

representation).

As a first step in examining this conjecture, the thesis of this research is that

the design of the FFP machine is very sensitive to decisions abotit the run-time

Program representation in parallel computers 2

representation of programs. That the FFP machine is a language-directed design

is important for examining the conjecture because design decisions about program

representations in such computers are made explicitly, and earlier than, other de­

cisions such as the network topology or operations which might constrain them

in unexpected ways. Several variants of the FFP machine are studied that differ

in the way programs are represented. That minor variations in program repre­

sentation cause large differences in performance for the variant FFP machines is

evidence supporting the conjecture [Middleton 85]. The causes of these differences

are explained in terms of characteristics derived from the fundamental philosophy

of the FFP machine design. To the extent that a different parallel computer design

shares this philosophy, that design may be expected to be sensitive to program

representation in similar ways.

1.2 Representing FFP programs in the FFP machine

The FFP machine [Mag6 79, Mag6 80], is specifically designed to execute

Backus's Functional Programming languages [Backus 78, Backus 73]. (Formal

Functional Programming languages, or FFPs, differ from the Functional Program­

ming languages, or FPs, in providing more powerful facilities for manipulating pro­

gram expressions, but the important difference for the FFP machine is that FFP

provides a uniform syntax which simplifies automatic analysis). FP languages have

a number of properties which are attractive for parallel computer design. They

lack a global state, that is variables that can be accessed from any part of the

program. Since there is no need to support such a state, the FFP machine need

not provide multiple access paths from its many processors to the entire memory

(either global or distributed). FP languages use an evaluation rule that is simple

to support; the definition of available computations (ones which are not waiting

for other computations to complete) allows the machine to find and begin evaluat­

ing them rapidly. In comparison with the basic operations in standard imperative

languages, those of FP provide a high level of discourse and a strong modularity

because of the lack of variables.

The FFP machine evaluates FFP programs using a string reduction model of

computation. Descriptions of different models of computation can be found in

surveys by Treleaven, Hopkins and Brownbridge [Treleaven etal. 82], and by Veg­

dahl [Vegdahl 84]. In string reduction, a program consisting of both function and

data is represented as a string of symbols. Execution involves repeatedly replacing

Program representation in parallel computers 3

substrings of the program with other strings that have the same meaning. The

value of each program subexpression is independent of other program subexpres­

sions (in most such models). In contrast, graph reduction allows subexpressions in

the program to be shared (via variables). This sharing avoids the need for recom­

putation but requires the hardware to provide more general memory access. The

FFP machine holds the symbols of program strings in a large linearly-ordered ar­

ray of fine-grained processors, groups of which cooperate in replacing appropriate

substrings.

One unique aspect of the FFP machine design is that it dynamically maps the

hardware onto running software. Not only is the hardware formulated at design

time to reflect the properties of a language (that is, the set of all possible pro­

grams), but the hardware is also configured during execution to match the prop­

erties of individual programs. A separate dedicated set of processors is assigned

dynamically during execution to each available computation in the FFP machine.

In this way, the problem of program decomposition has been replaced with the

problem of hardware decomposition, that is, dividing the hardware resources into

groups that match programs' characteristics, rather than dividing programs into

tasks that match processor characteristics. Under this philosophy of mapping

hardware onto software, decisions about program representation, while still very

important for the FFP machine, may differ from those for other language-directed

computer designs.

1.3 Organisation of this dissertation

This dissertation is a systematic study of program representations that could

be used in the FFP machine. This research investigated how the representation

of programs in the FFP machine affects the requirements upon, and the abilities

of, the hardware to support the rapid evaluation of FFP programs. That is, the

program representation dictates how the hardware must represent intermediate

expressions during execution and what information is available to the processors

to direct their operation. The different representations are created by altering

the L cell's set of symbol registers, those registers that hold the part of an FFP

expression residing in a given L cell.

The results are organised as a procedure for evaluating the consequences of

various choices for program representation, rather than as a single choice of the

best representation. The design of the FFP machine must try to satisfy several

Program representation in parallel computers 4

criteria and the merits of each representation vary according to the relative impor­

tance of the criteria. Selecting the best representation requires a knowledge of the

relative effects of these criteria on the final speed and complexity of the machine,

a knowledge which is not yet sufficiently available. More importantly, as the FFP

machine is extended to support other languages and facilities (such as logic pro­

gramming or outermost evaluation), the factors affecting the choices will change.

A catalog of consequences encompassing these different goals will better serve this

development of future FFP machines. Furthermore, such a catalog is less sensitive

to the problem of representations being discarded because possible methods have

not yet been discovered to mitigate their disadvantages (such as increasing the

information or mechanisms available within the L cells). A side product of this

research has been insight into the differences between fine and coarse granularity

in parallel processors, from the point of view of aspects of computation rather

than hardware.

The considerations for program representation made in other parallel computer

designs are examined in Chapter 2. It is apparent that questions of program

representation have had little impact on the design decisions in most of these
machines.

A generic FFP machine presented in Chapter 3 demonstrates the model of

computation and provides a standard for comparing the various FFP machines

that result from different choices for program representation.

A benchmark is developed in Chapter 4 which will measure the usefulness of a

representation in terms of how easily the corresponding FFP machine supports op­

erations necessary to the model of computation. Especially since the FFP machine

is a language-directed design, the benchmark is related to aspects of implementing

the FFP language (instead of, for example, implementing specific applications).

Each representation is evaluated with respect to its effects on the time, space and

hardware complexity costs incurred by the different elements of the benchmark.

The next step is to generate candidate representations for evaluation. Several

are presented in Chapter s·that exemplify the range of consequences discovered

during this research. This research on alternative program representations was mo­

tivated by the need for a program representation that expressed closing sequence

brackets and application parentheses explicitly during execution. The consequent

Program representation in parallel computers 5

increase in the number of L cells needed to hold programs led to the search for

representations that use fewer L cells by storing more FFP symbols in each one.

From the behavior of the example templates, four constraints are developed as

being necessary for a useful candidate representation. These constraints can be

derived from properties of the FFP machine which are considered essential: that

a program should be directly expressed as a string of symbols with each processor

holding a small part of the complete expression. These constraints and motivation

delimit and fill in the set of candidate representations to be examined.

Some consequences of the representations considered here are examined in

detail. Chapter 6 describes the consequences of the fact that the representations

of FFP programs may no longer be unique. Chapter 7 examines the effects of

changes in program representation on the low-level hardware operations, those

that belong more to the machine itself than the· FFP language.

The results of the research are collected in Chapter 8. '11he steps are described

by which a particular program representation would be chosen and the conse­

quences of such choices are listed. A catalog containing some specific templates

demonstrates the interaction of various design choices concerning program repre­

sentation and shows the relative effects of these choices on the different measures

in the benchmark. The balance between fine and course granularity in processing

elements is discussed with regard to the needs of implementing functions, instead

of hardware factors, as is more co=on.

Fonts are used to emphasize specific meaning in terms: the italic font intro­

duces definitions which are listed in the glossary; the slanted font is used for FFP

functions and for system operations and variables used in the FFP machine; and

the bold font indicates FFP expressions as they are held in the FFP machine

during execution.

Chapter 2

Related work: program representation in other parallel computers

One aspect of designing any computer involves choosing the form in which

abstract programs are to be represented internally for the hardware to interpret.

Because of the severe difficulties with programming most parallel computers that

have been built so far, this choice seems especially important in such machines.

Designing parallel computers involves more numerous and diverse design choices

than designing sequential computers. Therefore, program. representations that

may be acceptable for sequential machines may not satisfy these more stringent

demands. This is borne out by problems such as synchronising and scheduling

tasks which arise when sequential languages are adapted to parallel computers.

This review will examine choices for program representation in parallel com­

puters. We begin with previous versions of the FFP machine, and then examine

other parallel computer designs that share some of the FFP machine's character­

istics, those being language-directed or fine-grained parallel computers.

2.1 Previous versions of the FFP machine

A generic FFP machine, which is described in Chapter 3, is summarised here

in order to contrast different versions of the FFP machine. The FFP machine is a

tree structured network in which the leaves are simple programmable processors

[Mag6 etal. 84]. The internal nodes contain communication processors which can

perform a small amount of processing upon messages that pass through them.

An FFP program consists of a function and an operand and is represented as a

string of symbols stored in the linear array of leaf processors, called L cells. For

parallel languages in general, an available computation is one that does not need

results from other computations; it may be evaluated immediately providing the

parallel computer has an idle processor. Each available computation in an FFP

program is completely expressed by a contiguous substring of symbols called a

reducible application, or RA. The L cells that hold an RA, together with some

of the communication resources inside the tree network, are configured as an iso­

lated subnetwork dedicated to evaluating that RA. The locality of the RA, that

is, the confinement of all the information needed by an available computation to a

contiguous region of the FFP machine, enables the FFP machine to prevent con­

tention for communication resources arising between different subnetworks. These

Related work: program representation in other parallel computers 7

subnetworks are also tree structures and, as such, do suffer from a communication

bottleneck at their own roots when their RA requires many messages to be sent

among their own L cells. An RA is reduced to its result by the combination of the

actions of the L cells in a subnetwork holding the RA, each working independently

with its own local information.

2.1.1 The initial proposal

In Mag6's proposal, the original design from which the other versions have

evolved, L cells can hold one symbol of the FFP expression [Mag6 79, Mag6 80].

His representation differs from the natural string representation of an abstract

FFP program in that some syntactic symbols, the closing sequence brackets and

application parentheses, are removed from the FFP program's run-time represen­

tation in order to save space. In order to compensate for their absence, extra

information is stored in the L cells which describes the program structure in a

different way.

2.1.2 A virtual computer surrounding the FFP machine

Frank [Frank 79] and Siddall [Frank, Siddall and Stanat 84] have investigated

schemes for embedding the FFP machine in a virtual computer that can execute

programs larger than the FFP machine can hold. Many of these alternatives

involved moving subexpressions of the program to secondary storage and leaving

pointers in their place.

The only change to the representation of FFP programs is the addition of

these pointers; otherwise the FFP machine design is the same. The pointers add

extra testing to the duties of the L cells but since they are progra=able, this is a

negligible change. The pointers also require communication paths from all of the

L cells to the secondary storage, a facility which interferes with the independence

that the individual networks had enjoyed.

2.1.3 Different communication networks

Kellman proposed an FFP machine in which the binary tree of co=unication

nodes is replaced with a sorting network [Kellman 83]. This scheme does not

exploit the opportunity for locality which RAs provide: an RA no longer has a

dedicated network isolated from those of the other RAs. Instead, all the symbols

of the FFP program reside in a single collection of processors and the sorting

network repeatedly shuffles the L cells to allow them co=unicate through nearest

Related work: program representation in other parallel computers 8

neighbor connections. Kellman's machine can accomplish storage allocation and

the permutation of symbols within an RA for FFP operations such as transpose in

asymptotically logarithmic time, in contrast to the asymptotically linear time that

the FFP machine with a tree network requires. The communication network of the

FFP machine performs simple message processing which is expensive, however, if

performed by the L cells exchanging messages. Such message processing is not

performed by the sorting network that Kellman proposed, but rather by moving

the L cells around so that they can communicate via the neighbor to neighbor

connections. While still asymptotically logarithmic in cost, this mechanism is

significantly slower than the FFP machine's use of dedicated, circuit switched,

hardware resources. Kellman estimated that, in comparison with Mag6's original

FFP machine [Mag6 79), the crossover point where the asymptotic behavior of his

design overcomes its initial complexity should occur in RAs containing operands

of around one thousand elements. More recent versions of the FFP machine are

significantly simpler and faster [Mag6 et al. 84], and this increases the size of the

operand necessary to make Kellman's machine the more effective one.

Plaisted has examined the use of two other sorting networks in supporting

certain particular mechanisms of the FFP machine: a Benes network and a delta

network [Plaisted 84a, Plaisted 84b). The rapid insertion and copying of data

provided by these richer networks are particularly necessary in term-rewriting

systems, which emphasize copying expressions more heavily than does evaluating
'

general FFP programs.

2.1.4 Tolle's version of the FFP machine

Tolle proposed a machine in which both types of nodes in the tree network

are more complex and where the majority of computation has shifted to the in­

ternal nodes leaving the leaf nodes more like smart memory cells [Tolle 81). His

L cells are able to hold a number of symbols of the FFP program within certain

constraints and the closing syntactic markers are not deleted from his representa­

tion [Tolle 81, pp. 18-22). His model for the evaluation of RAs centers on a tree

representation rather than a string representation. Significant complexity results

because these trees representing the RAs are independent of the communication

trees in the FFP machine; the tree expression for an RA must be augmented with

auxiliary nodes in order that it can be mapped into the hardware binary tree. The

FFP machines presented in this research are similar to Tolle's design in placing

Related work: program representation in other parallel computers 9

several FFP symbols in each L cell. However, they differ quite markedly in using

the string representation as opposed to the tree representation during execution;

the cells of these FFP machines remain significantly simpler than Tolle's.

2.2 Other language-directed parallel computers

Language-directed parallel computers can be classified as reduction machines,

dataflow machines or control-flow machines [Treleaven etal. 82, Vegdahl84]. Re­

duction machines, which include the FFP machine, take some representation for

both the program and the data, and repeatedly replace pieces of this expression

with equivalent pieces that are closer to the final result. Graph reduction rep­

resents a program as a graph of values and operations and evaluation consists of

replacing suitable subgraphs. Graph reduction allows for the value of an expression

to be used by several different parts of the program. String reduction represents

the program as a string of symbols and evaluates it by continually replacing sub-

. strings. The result of a computation may not be shared without explicit copying.

(The FFP machine nevertheless supports such mechanisms for sharing anyway

[Mag6 82]).

Dataflow computers model computation as a graph in which the nodes are op­

erations. Execution involves transferring values, called tokens, along the directed

arcs connecting the nodes of the graph. The dataflow graph remains basically

unchanged during execution, which distinguishes the dataflow model of compu­

tation from that of graph reduction, where execution is expressed in terms of

modifications to the graph.

Control-flow parallel computers execute conventional sequential programs in

individual nodes, and achieve parallelism by using many such nodes which com­

municate by passing messages, often through a globally shared memory.

2.2.1 SECD machines

The SECD machine is an abstract model proposed by Landin for describing

the reduction of lambda expressions [Landin 64]. The following description has

been taken from that of Glaser, Hankin and Till who present a version of the ma­

chine that supports lazy evaluation [Glaser, Hankin and Till84]. Lazy evaluation

allows expressions to be evaluated only partially before being used elsewhere in

a computation; the expressions are only fully evaluated as specific values become

required.

Related work: program representation in other parallel computers 10

The SECD machine is named for the four major data structures supporting ex­

ecution: the Stack, the Environment, the Control and the Dump. The Stack holds

partial results while an expression is being evaluated, the Environment contains

the free variables and their values and the Control holds the program expression.

When a nested subexpression is to be evaluated, the Stack, Environment and Con­

trol structures are saved in the Dump, to be retrieved after the subcomputatlon

has finished.

The SECD-M machine adds multiprogramming facilities to the lazy SECD

machine with the intent of being able to build operating systems in a functional

language [Abramsky and Sykes 85]. The extensions consist of a fair merge op­

eration for combining lists and a fair scheduler for executing different processes

concurrently. The main change to the machine is a new data structure to hold

circular lists of processes. Processes can be created dynamically with a SPLIT

instruction and a process may depend on the results from a number of other pro­

cesses, these results being combined using the fair merge operation. Abramsky and

Sykes concentrate on the manipulations to the RQ, the ready queue of processes,

necessary to achieve multiprocessing with cooperating processes and to model the

behavior of different types of 1/0 devices. An interesting characteristic of the com­

piled code is that there are no critical sections to be protected from the scheduler's

interruption and it appears that this system should be able to exploit a computer

which contained more than one SECD machine. It may happen, however, that

extensive sharing of the S, E, C, D and RQ structures seriously inhibits the po­

tential for parallelism. Like the SECD machine, the SECD-M machine shows a

strong similarity to the traditional sequential computer and operating system; it

has, in fact, been implemented on the Pascal virtual machine microprogrammed
' on the Perq computer.

2.2.2 The GMD machines

Berkling designed a sequential reduction machine based on the lambda calculus

[Berkling 75, Berkling 78]. It has been used as the basis node of a parallel reduction

machine proposed by Kluge [Kluge 83].

Berkling's proposal represents the abstract program, a hierarchical expression,

as a string of characters representing the preorder scan of the expression tree.

These programs are manipulated while moving backwards and forwards across

three stacks. (These stacks differ from the S, E, C and D structures of Landin in

Related work: program representation in other parallel computers 11

being much more purely LIFO structures and the machine is more purely reduc­

tion based). Kluge develops a model of parallelism in these lambda. expressions

which involves evaluating subexpressions in a demand driven, or top-down, fash­

ion. Kluge implements this model of computation with a network of Berkling's

machines. The network topology is not a fundamental design choice: it is not

required to match the hierarchy of the expression structure. Kluge concentrates

on questions of task allocation using localised decision processes that must avoid

deadlock or starvation while achieving reasonable utilisation of the reduction ma­

chines. Little distinction is made between an abstract lambda expression and its

concrete representation in the machine; evaluating a primitive application in a

reduction machine node of his multiprocessor is an atomic operation that does not

use any parallelism.

2.2.3 Combinator machines

Turner describes the use of the combinatory calculus as a model of computa­

tion and presents a valuable overview of combinator-based machines [Turner 84].

Applicative languages can be compiled to combinators which form the machine

code to be executed. Such a combinator expression will have had all variables re­

placed by references to the input arguments which are constants. While the use of

combinators is most naturally described in terms of string reduction, parallel com­

puter designs based on combinators typically use graph reduction in order that

subexpressions, which would be copied frequently in the abstract model, might

instead be shared, in order to reduce communication costs.

The SKIM machine was an early implementation of a computer based on

a combinator model of computation [Clarke etal. 80]. The philosophy of the

design is that of a machine, implemented in microcode, which interprets a tree

structured combinator expression. The specialisation of the microcode for this

machine involves dividing memory into a Head bank and a Tail bank. Parallel

versions of the SKIM machine are being investigated [Clark 82, Stoye et al. 84].

Hudak and Goldberg introduced the concept of serial combinators [Hudak and

Goldberg 85, Goldberg and Hudak 85]. Serial combinators are derived from a.

particular program as it is being translated into the combinator expression to

be reduced. They are the largest combinators available that result in fully lazy

evaluation and that have no concurrent substructure. (The combinator definitions

are represented as conventional compiled straight-line code). They describe a

Related work: program representation in other parallel computers 12

system that uses heuristics to choose when to distribute expressions to remote

processors. Their approach is reminiscent of Kluge's; the heuristics will estimate

the comparative costs of distributing the operation as opposed to performing it

locally and of accessing a shared value over the communication network as opposed

to recomputing it locally. Processing elements are associated with one segment of

the global address space and parallelism arises from the available reductions being

spread through that memory. A diffusion scheduler distributes expanding parts of

the combinator graph evenly to the separate processors.

2.2.4 Wilner's recursive machine

Wilner proposed Recursive Machines based on recursively constructing com­

plex computing systems from simpler ones [Wilner 78, Wilner 80]. A Recursive

Machine consists of a single processing element or a network of Recursive Machines

connected in a way that provides the same interface. The memory of a Recur­

sive Machine is organised to accommodate the dynamic variation of recursive data

structures. Information is stored in fields where a field is either a character or a

bracketed sequence of fields. Inserting new information into this memory organi­

sation is simplified by the absence of fixed addresses associated with elements of

the data structure. Instead, logical addresses are used which describe fields with

respect to the structure given by the punctuation brackets. The memory of a Re­

cursive Machine is distributed through the processing elements as a linear string

of storage locations which hold the fields as a string. Each processing element

contains pointers called fingers that refer to subfi.elds contained in that processor.

There are instructions to move the fingers to an adjacent field, to a subfield, or to

an outer, enclosing, field. The processing elements can perform serial computa­

tions on fields as their fingers scan over them. According to Wilner, "With respect

to execution, a Recursive Machine can be thought of as a rewriting system", that

is, some fields may become active during execution, and be overwritten with the

result of the computation they describe.

There are many similarities between the FFP machine and Recursive Ma­

chines, despite the design of the Recursive Machines not having been derived from

language considerations. The FFP machine has a similar hierarchical structure,

differing in that a second type of node, the internal communication node, has been

created for connecting sub-machines. In both machines, a microcode language in

the processing elements is used to implement higher level languages. In the FFP

Related work: program representation in other parallel computers 13

machine, the processing elements are smaller, containing less than a kilobyte of

memory, principally to store microcode, in contrast to the eight kilobytes of data

storage in a Recursive Machine element, and FFP functions are implemented in

the FFP machine by several processors running concurrent microprograms. The

RAs of the FFP machine exactly correspond to the active fields of the Recursive

Machines. Whereas the essence of computation in the Recursive Machines depends

on the placement and manipulation of fingers to allow sequential access to fields,

addressing in the FFP machine allows random access within the top few levels of

the structure of an RA.

2.2.5 The ALICE graph reduction machine

The ALICE machine useS a graph reduction model of computation to support

applicative languages [Darlington and Reeve 81]. Each node in a program graph is

a packet containing the name of the function to be applied, reference to the argu­

ments and flags to indicate lazy or eager evaluation and the status of the process.

Execution involves selecting a packet, determining whether it is reducible and if

so, replacing it with other packets according to the rewrite rules of its definition.

The hardware implementation involves small groups of agents which can rewrite

the reducible packets which are stored in a shared memory; higher performance

machines might be constructed by connecting thousands of such groups by a delta

network.

2.2.6 AMPS and RediBow

The Applicative Multiprocessing System consists of about a thousand reason­

ably powerful processors with parts of the global memory at the leaves of tree

of co=unication and load balancing nodes [Keller, Lindstrom and Patil 79]. It

uses a demand driven form of graph reduction to execute programs written in

FGL, a derivative of LISP. Each leaf processor maintains a list of available tasks,

which correspond to the functions defined by the progra=er. The tree network

provides access to the full memory for a given task and allows tasks to be moved

between the lists to balance the loads of the different processors. The Redifiow

computer evolved from the AMPS project [Keller and Lin 84]. The network has

changed to a more densely connected one in which each node combines processing,

co=unication and load balancing and contains part of the global memory.

Related work: program representation in other parallel computers 14

2.2. 7 Dataflow machines

A large number of dataflow machines have been proposed [Agerwala and

Arvind 82, Srini 86]. The dataflow computation model differs from that of re­

duction in that the program expression is not modified as the fundamental basis

of execution. Dataflow languages minimise the side-effects of program statements,

for example, disallowing the value of a variable to be changed, and this allows

dataflow programs to be compiled into dataflow graphs. The nodes in these graphs

contain the operator to be performed by the node, pointers to the nodes that are

to receive a result token and space for storing the input tokens received from other

nodes. A node may fire when all its inputs are available and, in firing, provides

further inputs to other nodes. A dataflow computer achieves fine grain parallelism

by distributing fireable nodes over many processors, provided that the nodes are

allocated to processors in a balanced way and that there is sufficient co=u­

nication between the processors to transfer data packets between nodes. Static

dataflow machines use a static graph in which nodes cannot be created during

execution, which prevents the use of recursion. Dynamic dataflow machines allow

new instances of a node to be created during execution. This requires that tokens

indicate which instance of a node is to receive them.

Dennis has proposed a static dataflow computer in which several memory

units and several processors co=unicate through routing networks [Dennis,

Boughton, and Leung 80]. The memory units select fireable nodes, called enabled

cell blocks, and send them to the processors through a routing network. The

processors transfer the resulting tokens back to the memory units, using pointers

contained in the cell blocks.

Gurd and Watson have proposed a dynamic dataflow computer in which there

may be several instances of each program node and tokens contain a field to identify

among these instances. A matching unit stores tokens until they can be matched

for the identical instance of a node in the dataflow graph [Gurd, Kirkham and

Watson 85].

2.2.8 Traditional multiprocessors

Many parallel computer designs involve a number of reasonably complex pro­

cessors (with the abilities of a typical microprocessor) which co=unicate through

an nxlg n switching network either to a shared memory or to the other processors.

This group includes the Ultracomputer [Gottlieb etal. 83], the PASM computer

Related work: program representation in other parallel computers 15

[Kuehn etal. 85] and the Cosmic cube [Seitz 85]. The Cedar system will be pre­

sented since it is based on research in extracting parallelism from FORTRAN

programs and so is closest to a language-directed design [Gajski et al. 83].

The Cedar system follows from the Parafrase project [Kuck etal. 81] which

analyses FORTRAN programs to find and exploit parallelism. Programs are trans­

formed into a macro-dataflow form: computation at the low-level is expressed in

traditional instruction sequences for which efficient hardware is well understood,

and, at a high level, such computation blocks are scheduled using a dataflow

scheme which expresses parallelism more naturally. The Cedar computer consists

of up to 128 Processor Clusters connected to a similar number of global memory

modules through an Omega network. A Global Control Unit assigns Computation

blocks to the different clusters. Each Cluster consists of eight or sixteen proces­

sors and a similar number of cluster memory modules connected through a fast

network and controlled by a Cluster Control Unit. Compiler analysis allows ob­

jects to be cached at appropriate points in the memory hierarchy. Program and

data representation follow from the traditional nature of the processors and mem-,

ory. A significant problem for such medium or large grained systems is finding

sufficient parallelism in programs to achieve acceptable increase in the speed of

computation.

2.3 Other fine-grained parallel computers

A number of fine-grained parallel computer designs have recently been pro­

posed that intend to provide more generality than the early fine-grained designs,

such as the DAP and the MPP [Reddaway 74, Batcher 82], which were tailored

solely for specific applications. An important contributing factor in this general­

ity is whether individual processors can execute their own instructions, that is,

whether the parallel computer is SIMD or MIMD. Many of the recent proposals

are MIMD extensions of earlier SIMD proposals.

2.3.1 NON-VON

The NON-VON computer consists of a tree network of identical processors

executing a co=on stream of instructions that is broadcast from the Control

Processor at the root of the network or from Intelligent Disk Units distributed at

some lower level in the tree [Shaw 82]. Each processor contains about 70 bytes

and 8 bits of local memory, along with simple processing and co=unication facil­

ities. NON-VON was derived from a specialised processor intended for supporting

Related work: program representation in other parallel computers 16

parallel database operations. As is usual in SIMD processors, there is an enable

flag by which subsets of the processor network may be disabled from executing

parts of the instruction sequence. The DADO computer is an extension of the

NON-VON containing about a hundred thousand PEs, each with two thousand

bytes of local memory [Stolfo and Miranker 84]. (The PEs in the one thousand

cell prototype have memories of sixteen thousand bytes to allow for experimen­

tation). Each PE may work in either SIMD mode, receiving procedure calls as

its instructions from an ancestor, or in MIMD mode where it stores its program

locally and may broadcast instructions to SIMD PEs below it.

The NON-VON philosophy appears to be directly opposite that of the FFP

machine in the are of programming. Examples of programs are used to demon­

strate how the data structures of a problem may be mapped onto the NON-VON

PEs and the algorithm be performed. Different mappings of the same problem

show different time/space tradeoffs that are available; programmers are expected

to use these examples as guidelines in implementing their own problems. Program

representation is not discussed, and data representation is dictated by previously

determined hardware questions. Constraints on program layout and alignment are

fundamental to the NON-VON computer, whereas they are absent from the FFP

machine.

2.3.2 The Connection Machine

The Connection Machine has been derived from algorithms for semantic net­

works (Hillis 85, Christman 84]. It consists of up to a million PEs executing a

single instruction stream, each PE containing about three hundred bits of local

memory, sixteen flags and a one-bit ALU. A prototype with 64 thousand PEs has

been constructed. There are two communication networks: a two dimensional

grid and a boolean N-cube. The boolean cube consists of special-purpose message

routers, each serving sixteen or thirty two PEs and handling buffering. Like the

NON-VON, there are facilities for voting, for enabling subsets of the whole ma­

chine and for selecting one PE from some set of candidates. As with the report

on the NON-VON, much of Christman's report on the Connection Machine was

devoted to collecting examples of programming techniques, on which other pro­

grammers might model their own problems. The layout and alignment of data is

again fundamental to programming.

Related work: program representation in other parallel computers 17

2.4 Conclusions

It appears that there is little to be applied to the choice of program repre­

sentation in the FFP machine from this study of other parallel computer designs.

The sparsity of information about program representation suggests that decisions

about program representation were not of primary importance in those designs.

Program representation naturally plays a minor role in SIMD parallel com­

puters since they are hardware implementations of particular algorithms. That is,

design choices concerning program representation play no greater role in SIMD

parallel computers than they do for sequential computers, which may be ex­

plained by viewing SIMD computers as· executing a sequential program over a

many operands at the same time. Program representation in those machines that

evolve from SIMD designs may be expected to be strongly constrained by previous

design choices that would have become entrenched in the design history.

Similarly, program representation appears to be of minor importance in the

control-flow, or fixed program, parallel computer designs as typified by the Cedar

machine. These systems involve a number of sequential programs running concur­

rently in a number of small traditional processors and cooperating through oper­

ating system primitives that support communication and synchronisation among

them. As such, these designs will make traditional decisions about the represen­

tation of their machine code.

In a similar fashion, the SECD-M and Kluge machines concentrate on achieving

parallelism by combining several sequential machines. That the individual PEs

happen to use a reduction model of computation is coincidental: the central thrust

of their studies is to provide operating system facilities to support multiprocessing.

A principle of the FFP machine design is that the hardware should adapt it­

self to the running program. Thus, operations that transform programs to match

characteristics of a specific multiprocessor, while essential for other designs, are

unnecessary in the FFP machine. Such operations include program decomposi­

tion, task scheduling, resource management and some aspects of compilation, In

particular, each reduction is performed by a dedicated MIMD processor in the

FFP machine, in contrast with most parallel computer designs, where each com­

putation is an atomic operation performed by a single processor. Since the value

of a reducible expression is another expression, the representation of expressions

Related work: program representation in other parallel computers 18

not only affects the layout of the initial expression and so the availability of the

input operand to the processors, it also affects the layout of the result expression

and so the intended effect of those processors' operations. For these reasons, the

FFP machine, with its distributed style of execution, may be particularly sensitive

to decisions about program representation.

Since it appears that there is little to be gained from studying these other

designs, this study of program representation in the FFP machine can only be

guided by the needs and possibilities of the FFP machine itself. As Kieburtz

puts it, "Evaluators have been influenced more strongly by conventional computer

architectures than by the lan~age model that they implement. This influence has

not been restricted to the idea of using programmed control, but extends to the

mode of representation and the use of addressable memory" [Kieburtz 85].

Chapter 3

A generic FFP machine

Different parts taken from several designs that extend back to the original

proposal [Mag6 79] have been combined to form a generic FFP machine which will

serve three purposes. It provides a standard for comparing the different machines

which result from different program representations. By demonstrating the FFP

machine's style of string reduction, it shows the facilities which implement FFP

functions; the variant machines are evaluated by how effectively they support these

facilities. It shows the costs of the hardware mechanisms in the FFP machine,

indicating which are to be avoided in order to achieve fast simple operation.

3.1 The FFP language and the model of computation

A familiarity with the FFP language is assumed [Backus 78]. The evaluation

strategy in FFP is especially important for the FFP machine. Only innermost

function applications may be reduced, such ones being called reducible applica­

tions, or RAs. Each RA is a contiguous substring of the complete FFP expression

whose value depends only on its symbols and not on its context. It follows that

RAs may be evaluated in any order, including simultaneously.

Description of the FFP machine involves three independent entities: the ex­

pression tree description of an RA around which the manipulations that accom­

plish the meaning of the function are designed, the virtual machine which is cre­

ated to perform those manipulations and the physical machine which comprises

the hardware resources that support the virtual machines. It is a distinctive char­

acteristic of the FFP machine that the hardware is continually reconfigured so that

the evaluation of each RA is performed by a virtual machine, a tailor-made ded­

icated parallel processor, supported by an isolated set of processors. This design

approach might be called program-directed instead of language-directed to empha­

sise that the virtual machine is not only created at design-time around aspects of

a programming language, but is also organised at execution time to match char­

acteristics of one particular program. In contrast, the programs in conventional

parallel computers are transformed to match characteristics of the particular PEs.

A generic FFP machine 20

(<ApplyToAll <Insen +» < <12 3> <4 5> <6 7 8 9> >)

< (<lnsen +> <1 2 3>) (<Insen +> <4 5>) (<Insen +> <6 7 8 9>) >

Figure 1. FFP functions are viewed as a manipulation of the expression tree

3.2 String reduction of RAs and the virtual machines to perform it

The reduction of an RA is most easily viewed as manipulation of its e:z:pression

tree, an example of which appears in Figure 1. The leaf nodes of the expression

tree correspond to the FFP atoms. The internal nodes correspond to sequences

and applications, those corresponding to applications being distinguished by an

added arc. The sequence brackets, "<>",and application parentheses, "()",of the

FFP expressions may either be associated with separate leaves in the expression

tree, or be attached to the nearby atoms they enclose. For the manipulations

implementing a given function, most of the expression tree is viewed as subtrees

which are manipulated as single entities.

The ApplyToAII function, like the MAPCAR function in LISP, takes an ar­

bitrary function as a parameter and applies it to each element of the sequence

constituting the RA's operand. The result is a sequence of RAs which may be

evaluated in paralleL Figure 1 shows the expression tree for a general RA using

this function and one specific example; the manipulation shown on the expression

tree can be seen to yield the result of the example. Implementing ApplyToAll on

the FFP machine involves duplicating the symbols of the function parameter, !,

A generic FFP machine 21

for each member of the sequence, x;, and altering the sequence brackets and appli­

cation parentheses to reflect the new structure. String reduction, as performed by

the FFP machine, consists of manipulations which may exploit both the contents

and the structure of the RA and which are only required to generate well-formed

expressions.

A virtual machine consists of a linear array of independently programmable

processing elements, called virtual L cells, which communicate through a network

of message processors (see Figure 4). TheRA is stored from left to right in these L

cells as a string of FFP symbols, one symbol in each cell. The L cells create, delete

and modify symbols individually, on the basis of their symbols, local information,

and information they receive from other L cells. It is by their actions, taken

in concert, that the virtual machine replaces an RA with its result. The set of

instructions that an L cell performs is grouped into a program called a microcode

segment; the set of microcode segments corresponding to an FFP function describe

the manipulation of the related expression tree in a distributed fashion.

Microcode segments are associated with sites in the expression tree, these be­

ing subexpressions (subtrees) or points in its structure. Points are the edges of

subexpressions, for example, "before [x,]", or, equivalently, "after [x1]". For exam­

ple, ApplyToAll would use this information to identify where to insert copies of

the function parameter. Each L cell thus needs address information describing the

position of its symbol in the expression tree. The address information consists of

the relative level number (RLN), which is the depth of the symbol in the expression

tree, the index, which is the symbol's position in the RA when the latter is viewed

as an unstructured string, the directory, and the firstL and lastL logical tuples.

The directory describes the position of a symbol in the expression tree by a tuple

corresponding to the path from the root of the expression tree to that symbol.

For each node in this path, the corresponding element in the tuple is that node's

position among its siblings. The directory for a symbol is this tuple truncated to

some particular length that is defined for the machine; a directory of length four

has been sufficient for all the FFP functions investigated so far. The tuples firstL

and IastL, truncated to the same length as the directory, identify the first and

last L cells holding a given subexpression in the RA, that is, they identify points

in the expression tree. For a subexpression of the RA at depth i in the expression

tree, firstL[iJ and IastL[iJ are true in those L cells which are the first or last cells

respectively, containing that subexpression. The directory is insufficient for this

A generic FFP machine 22

(<ApplyToAll <Insert +>> <<1 2 3> <4 5> <6 7

directory, '0 0 0 I 1 1 1 1 1 1 1
flrstl, '0 1 1' '0 0 0 1 1 2 2 2
and lasll '0 1' '0 1 2' '0 1' '0 1 2

RLN 2 3 3 3 3 3 3 3 3 3 3
Index 0,1,2 3,4 5,6,7 8-10 11 12,13 14,15 16,17 18,19 20 21

Figure 2. Address information associated with symbols in an expression tree

purpose because it is truncated; expressions occurring at a deep enough level in

the expression tree will have identical directories for all their symbols.

Figure 2 shows the address information for the symbols of the ApplyToAll

example, along with the expression tree from which it is (mostly) derived. For

example, the symbol 6 has an address (read vertically) containing a relative level

number, or RLN, of 3, an index of 19 and a directory of (1,2,0). The tuples BrstL

and lastL are indicated by quotes attached to the directory entries. The address

of the left bracket adjacent to the symbol 6 is identical except that its index is

18 and the value of BrstL[2] is true, indicating that it is the first symbol in a

subexpression of depth two in the expression tree. The addresses of the symbols

"9> >)" differ only in their indices and their values for IastL. The indices range

from 22 in the L cell holding 9 to 25 in the L cell holding ') '. LastL[O] is true in

the L cell holding the right parenthesis, JastL[1] is true in the L cell holding the

second bracket, JastL[2] is true in the L cell holding the first and JastL[3] is true

in the L cell holding the atom, 9.

9»)

1'
2'
3'

3
22-25

A generic FFP machine 23

The virtual machine that has been created for an RA begins evaluation with

each L cell performing a standard prologue to determine the controlling function

of the whole RA (ApplyToAll in this example) and the address information of its

own symbol. The microcode segments, which are stored in an external library and

broadcast into the FFP machine on demand, are labeled with an FFP function

name and a directory pattern describing the parts of the RA where they should be

executed. Each L cell uses its directory and function symbol during the prologue

to select and load the appropriate microcode segment.

Figure 3a describes one implementation of the ApplyToAll function in a global

fashion and shows the corresponding sequence of changes that occur to the symbols

of the RA. Figure 3b shows the same algorithm refined to the distributed form

performed by the set of microcode segments residing in the separate L cells. For

this implementation of ApplyToAII, there are two microcode segments: each L cell

holding part of the RA's operand executes a copy of one and each L cell holding

part of the RA's function executes a copy of the other. The L cells are labeled

to indicate which ones perform each of the conditional actions that constitute the

microcode segments. For example, in the eighteen cells performing a copy of the

second segment, the last condition only holds in the two marked with an 'H'. In

general, manipulations of the kind shown in Figure 3a can require the cooperation

of several L cells; for example, the cells receiving the symbols of the parameter

function need the cooperation of the cells holding that subexpression.

3.3 The L cell instruction set

The microcode language has the usual set of logical, bit manipulating and

counting instructions that would be found in conventional microcode languages.

The contribution of these instructions to the costs of FFP machine operation is

ignored because they are very simple and only play a minor part in the construction

and execution of the microcode segments. The important instructions are the

ones whose effects extend beyond an individual L cell: the storage allocation

and communication instructions. These instructions dominate the costs of time,

hardware complexity and microcode storage space in the design of the L cells.

This is because they are implemented using many simple instructions and their

operation involves the coordination of many separate cells in the FFP machine, L

cells for storage allocation and T cells for communication [Danforth 83].

A generic FFP machine 24

(< AA f > < xl x2 xn >)

f xi x2 xn

f xl f x2 f xn

< (f xi) (f x2) ... (f xn) >

a) Erase top level parentheses (I pair), top level brackets (2 pairs) and ApplyToAll symbol.

Duplicate expression f before expressions x2 through xn.

Create parentheses (n pairs) and enclose in brackets.

b)

0 @@@@@@® @ @ ®@
I (I < IAAI < lrns I + I > I > I < I < 11 12 13 I> I < 14 Is I > I < 16 17 I 8 1 9 1 > I > I l I

AilS L cells perform this program.

@

®
@

@)

If symbol is '('
erase symbol.

If symbol is 'ApplyToAll'
symbol := '('.

If symbol is last '>'
erase symbol.

If symbol is in f
begin
determine and broadcast

the size of f.

broadcast symbols of f.
end.

All18 L cells perform this program.

®
®
@

®

If symbol is first '<'
erase symbol.

If symbol is last '>'
symbol := ')'.

If symbol is ')'
symbol := '> '.

If symbol is first in xi, (2 ~ i ~ n)
begin
receive size of f.
create (size+2) new cells.
place ')'and '('in the first two.
receive symbols of fin others.
end.

The notation@ associates particular statements with those L cells in which the condition holds.

'AA' stands for ApplyToAII and 'Ins' for Insert.

Figure 3. Implementation of the ApplyToAll function

A generic FFP machine

3.3.1 Storage allocation

25

The result of an RA may be larger than the original RA expression, as is

the case in the ApplyToAll example. Extra virtual L cells must be allocated to

a virtual machine in order to hold the FFP text to be created. Since these L

cells must participate in creating their new symbol contents, they must contain a

suitable microcode segment. By executing the fork(n) instruction, a virtual L cell

creates n duplicates of itself, both its data and its microcode. The resulting group

of virtual L cells, called clones, is then available to hold the new symbols, usually

receiving them from another part of the virtual machine. The single distinction

between these clones, in order that they can behave differently, is the value in the

variable clone-id, which labels the clones from 0 to n.

3.3.2 Communication and synchronisation

The other microcode instruction whose effects extend beyond the individual

L cell is the SendReceive instruction. It invokes the facilities of the virtual ma­

chine's communication network in a group operation called a message wave. The

SendReceive instruction specifies the message to be sent and a filter which is per­

formed for each message that is received back from the network. The filter is a

block of microcode instructions, excluding fork and SendReceive; it extracts and

aggregates information from the incoming messages on the basis of their contents

and their position in the sequence of messages.

The message processors of the virtual machine network are organised as a bi­

nary tree which, while not balanced, is typically of logarithmic depth. The specific

binary tree structure of the virtual machine's network does not affect its operation,

so that, for example, the two virtual machines shown in Figure 4 are considered

identical. Each message processor merges the two streams of messages that it re­

ceives from its children into one stream that it sends to its parent. The stream that

emerges from the message processor at the root of the virtual machine is broad­

cast back to all L cells. Upward traveling message streams are merged by sorting

messages according to keys they contain. While the most frequent use for the

keys is to keep symbols separate during copying operations, they also support the

permutations needed to implement FFP functions such as transpose. In the case

of collisions, messages are combined according to operators they contain, which

must be associative since the stru~ture of the tree is unpredictable (and, as will

A generic FFP machine

virtual machine
network

virtual L cell processors

88 GJG
Figure 4. Two equivalent virtual machines

virtual machine
network

26

be seen later, can change in midstream during the virtual machine's operation).

In practice, the operators addition and maximum appear to be sufficient.

The ApplyToAII example uses two message waves, as shown in Figure 5. The

first calculates and broadcasts the size of the function to be copied and the second

broadcasts the symbols of the function. In the first message wave, each L cell

holding a symbol in the function parameter sends a message with 1 as the value,

+ as the operator and 0 as the key. The other L cells send no messages. The

co=on key causes the values of the messages to be added together. The single

message that is broadcast from the top of the virtual machine contains in its value

field the size of the function parameter, measured by the number of L cells needed

to hold it. The filter executed by L cells which are to insert the function parameter

saves this value from the message for later use by a fork instruction.

A generic FFP machine

i
key: c

key: c
op: +
value: 4

virtual network

i i
key: key:

key: 3
value:<

i
c key: 0 key:

27

key: 4 key: 5 key: 6
value: In; value:+ value:>

virtual network

3 key: 4 key: 5 key: 6
op: + op: + op: + op: + value:< value: In value:+ value:>
value: 1 value: 1 value: 1 value: 1

Figure 5. The two message waves used in ApplyToAII

A second message wave is used to broadcast the function parameter to the

clones (the newly created virtual L cells). Each L cell containing part of the

function parameter sends a message containing that cell's symbol as its value and

the cell's index as its key. The unique keys prevent the messages from being

combined, so the function parameter is broadcast serially from the root of the

virtual machine. Each clone contains a filter which selects and keeps one symbol

from the message stream on the basis of the cell's clone-id.

Synchronisation is an important facility for parallel computers. In the FFP

machine, synchronisation is necessary so that an RA can be replaced by its re­

sult in a single step, since the distributed nature of machine operation requires

that the program be in a consistent state at all times. Synchronisation is also

needed in the ApplyToAll example to ensure that new L cells have been created

before the function symbols they are to hold are broadcast to them. In the FFP

machine, synchronisation is accomplished by the SendReceive instruction. Since

A generic FFP machine 28

message streams are of a variable length, they require an explicit endmarker, called

the EndO/Stream message. All L cells in a virtual machine, including those not

contributing any messages, send one of these endmarkers. No message processor

transmits a message until it has received at least one message from both children,

so no message is broadcast downwards until all the L cells in a virtual machine

have transmitted at least one message and so are in the middle of a SendReceive

instruction. EndOfStream is the final downward message and no L cell finishes

the SendReceive instruction until this message has been received. L cells that

are suspended awaiting a fork instruction to be satisfied will prevent subsequent

message waves from starting by not beginning their next SendReceive instruction.

ApplyToAl/.0.-.-.-:

if firstL[O]
then erase symbol ;

if symbol= 'ApplyToAll'
and directory[l] = 0

then symbol:= '(';
if lastL[I]

then erase symbol ;
if directory{ I] = I

then begin
SendReceive (key = 0,

op= +,
value= 1)

{};

SendReceive (key = index,
value = symbol)

{};
end

ApplyToAll.I.-.-.-:

if firstL[I 1
then erase symbol ;

if lastL[l]
then symbol:= ')';

if lastL[O]
then symbol := '>' ;

if firstL[2] and directory[I]> 0
then begin

SendReceive ()
{size := value ; } ;

fork (size+2);
if clone-id = 0

then symbol := ')'
elseif clone-id = I

then symbol := '('
else begin

count:= 2;
SendReceive ()

end
end

{If count = clone-id
then symbol:= value ;

increment count ;
} ;

Figure 6. L cell instructions for the distributed string manipulations of Figure 3

A generic FFP machine 29

The microcode which was described in Figure 3b is shown in Figure 6, in

the final form that the L cells would execute. Each segment is labeled with the

FFP function name, ApplyToAll, and a directory pattern specifying a part of the

expression tree. The directory pattern "0.-.-.-" matches any directory that begins

with 0 which is the case for the symbols in the function half of the RA's expression

tree.

binary tree of
T cells

Linear array of L cells

Figure 'T. Virtual machines embedded in the physical machine

3.4 The physical machine

The physical machine consists of a linear array of independently programmable

processing elements, called the L array of (physical) L cells, which are connected

through the leaves of a binary tree of co=unication resources, called the T cells.

These physical cells provide hardware resources which are organised into disjoint

groups, called areas, during execution. Each area supports a single virtual ma­

chine. A physical L cell supports one virtual L cell, while a T cell simultaneously

A generic FFP machine 30

supports the communication networks of up to three virtual machines. (This limit

results from the locality of RAs. Since an RA contains all the information needed

for its evaluation, it needs no communication with symbols beyond its boundaries).

A T cell need provide only one of these networks with a message processor; the

other two networks only require that messages be relayed. Figure 7 shows, in solid

lines, a binary tree of sixteen physical L cells connected to each other and to the

tree of the T cells. Virtual L cells and message processors are shown embedded in

the physical structure with shaded lines. The physical resources are partitioned

into two areas corresponding to the two virtual machines shown in Figure 4.

3.4.1 Partitioning: allocating physical resources to virtual machines

Partitioning, which is described in detail in Section 7.1, is the process whereby

the physical resources are grouped into areas to match the occurrence of RAs in

the FFP program. The unbalanced nature of the two trees shown in Figure 4 can

be seen to derive from the placement of the RAs within the physical machine.

Virtual machine operation is designed to be independent of the network structure,

in order that there is no constraint on the placement of RAs in the FFP machine.

The left to right order of the virtual L cells holding FFP symbols is maintained

in the physical L cells supporting them. Empty physical cells may occur within

the L array without affecting the operation of the virtual machines. This con­

cept of partitioning allows virtual machines of arbitrary size and placement to be

supported within the FFP machine without incurring problems of alignment or

fragmentation associated with the physical structure of the resources.

As FFP programs are evaluated, virtual machines are created, altered and

deleted. The physical machine continually performs partitioning to regroup the

hardware resources to match these changes. A ~irtual machine evaluating an RA

that is copying a large expression may take a long time since all messages must

pass through the root of the virtual machine. (Communication systems have been

proposed to relieve this congestion [Kehs 78, Kellman 83, Plaisted 84a, Pargas and

Presnell 82, Presnell 86]). These slow virtual machines may need to be moved in

the physical machine to satisfy space requests in adjacent virtual machines. For

this reason, a virtual machine may be supported by a sequence of different areas

and a message wave transferring many messages may be supported by a sequence

of different message processor networks (each having a different binary structure).

A generic FFP machine 31

Partitioning is of fundamental importance to the FFP machine. Most machine

designs, especially at execution time, subordinate the programs to the constraints

of the hardware. This can be seen in the extent to which programs are modified to

match the hardware, leading to the existence of a suite of control programs such as

compilers, task schedulers and resource allocators. Such machine designs are faced

with problems of program decomposition, that is, fitting the running program to

the static structure of the hardware. Program decomposition is difficult because,

while the structure of hardware is fixed, the structure and size of programs vary

greatly even between different stages in the same program's execution, leading

at some stage to possibly severe mismatch. The FFP machine has replaced the

problem of program decomposition with that of hardware decomposition. The

hardware has been designed to delay configuration choices until run-time: the

hardware resources in the binary tree are continually reconfigured to adapt to the

needs of the changing virtual machines. Each RA is evaluated by a dedicated

MIMD processor, namely, the virtual machine supported by a sequence of areas,

whose size is proportional to that of the RA. In some sense, the FFP machine

can be viewed as having variable granularity processors which are constructed

during execution from smaller entities, the L cells and parts of T cells, on an

individual. basis for each task. The term MSIMD has been used to describe an

hierarchical machine consisting of multiple SIMD processors executing in parallel

[Siegel etal. 84]; in this context, the FFP machine could be called an MMIMD

processor since it consists of multiple MIMD processors executing in parallel.

3.4.2 Supporting virtual machine space requests

New virtual L cells are created when a virtual L cell executes a fork instruction.

These virtual L cells must be supported by physical L cells at this specific point in

the L array, so it is necessary for the adjacent virtual L cells, defined as a symbol,

a partially executed microcode segment and any intermediate values, must shift

sideways in order to make space available. These virtual L cells will shift until

they arrive in already empty physical L cells. Because the linear form of the FFP

program expression must be maintained, these shifting virtual L cells may not

overtake each other, but must rather move in groups towards empty L cells. If

there are sufficient empty cells between all the fork requests, the cost of this storage

movement is merely the largest single request. If there are no empty cells between

those cells requesting space, then the requests interfere and to satisfy them all,

some virtual cells must move a distance equal to the sum of the requests. In order

A generic FFP machine 32

to avoid rejecting space requests when there are too few empty physical L cells,

the ends of the L array are connected to two stacks into which the excess virtual

L cells can be shifted.

This movement of virtual L cells invalidates the current set of areas for sup­

porting the virtual machines, so partitioning must be repeated. This shifting is

the only interference between different RAs, which otherwise execute completely

independently.

For a virtual machine to be remapped onto the physical resources dynamically,

it is necessary that any intermediate state of the partial computation residing in

the message processors can be stored in the virtual L cells. In designs where infor­

mation that is expensive to regenerate resides in the message processors, such as

in those of Tolle and Presnell [Tolle 81, Presnell86], the shifting may be restricted

to prevent or limit invalidating currently active areas. The flexibility of being able

to support virtual machines with a sequence of areas is very useful, but also incurs

some costs. In particular, this shifting interferes with communication operations

by invalidating the underlying network. Message waves must be designed to re­

sume rather than restart, in order for a long message wave to make progress in the

presence of interruptions caused by space requests in adjacent virtual machines.

3.5 Contrasts between the physical machine and a virtual machine

While the virtual and physical machines appear somewhat similar, they are

quite independent, as can be seen by considering their nature in more detail.

The physical machine cycle can be divided into three phases: partitioning, ex­

ecution and storage management. During partitioning, the hardware decomposes

itself into the areas to support the current virtual machines. During execution,

these areas proceed independently with their computations and individual areas

may pause, awaiting the allocation of extra L cells. During storage management,

the physical machine shifts the contents of the L cells to satisfy these space requests

while maintaining the left to right order, and the cycle repeats. A better view is

that the physical machine alternates between a system phase where a single ma­

chine satisfies space requests and then builds new areas around the repositioned

virtual machines, and an execution phase where a set of disjoint areas perform

individual computations.

A generic FFP machine 33

A virtual machine begins operation as a set of virtual L cel!s holding just the

symbols of the given RA. Each virtual L cell acquires address information for its

symbol, the function symbol for the RA and its microcode segment, and begins

executing that segment. A virtual L cell corresponds to the microcode segment, the

symbol and the internal state; this collection of information resides in a particular

physical L cell during the execution phase, but may move to a different physical L

cell during storage management. A virtual machine may exist over many physical

machine cycles with its operation being interrupted to allow the storage movement

to be performed that is required for global storage management. In each successive

physical machine cycle, the virtual machine's communication network may be a

differently shaped binary tree, as the RA moves in relation to the physical tree.

The physical machine cycle is transparent to the virtual machines.

Chapter 4

Creating a benchmark for evaluating representations

A benchmark is a set of measures which characterise the expected use of a

computer, thereby forming a target for the design and implementation of that

computer to optimise. For a conventional computer, the measures are often pro­

gram fragments that reflect parts of a language, rather than, for example, specific

algorithms. Being a language-directed design, the FFP machine should also be

evaluated with regards to executing general programs, rather than implementing

particular algorithms. The program fragments may range in level from individual

instructions to entire programs. A particular machine is evaluated by the costs,

such as time or space, which are incurred in supporting one of the measures.

For this research, a benchmark is needed to evaluate the variant FFP ma­

chines resulting from different representations. Since this research was motivated

by the need to reduce the space requirements of FFP programs, one important

measure for evaluating a representation, the space measure, is the number of L

cells needed to hold FFP expressions as they are being reduced. The remaining

measures in the benchmark reflect the needs of an FFP machine in implementing

FFP functions and the underlying system operations. The operation of the FFP

machine involves several levels of languages, ranging from the L cell microcode in­

structions to complete FFP programs. Section 4.1 examines which language level

is appropriate for selecting the operations to form the benchmark and Section 4.2

collects those operations.

Choices about program representation are evaluated by their effect on the

efficiency of implementing these operations, measured by the time and hardware

complexity costs incurred by an FFP machine using that representation. The

hardware complexity, which predicts the size of an L cell, is the complexity of

the microcode instructions and the physical L cell facilities for supporting virtual

machines, and the amount of memory needed by the L cell to hold data and

instructions.

Creating a benchmark for evaluating representations 35

4.1 Choosing the target language level for collecting operations

There are several levels of languages in the FFP machine from which oper­

ations might be collected for a benchmark. The lowest level, that of the mi­

crocode instructions, is inappropriate for measuring the usefulness of different

representations, because those instructions should follow from the requirements

of implementing FFP, which require that the program representation already be

determined. The highest level, that of complete FFP programs, will be avoided.

It would be a major task since there is no large body of applicative programs

written towards the goal of efficient execution, and, in particular, efficient execu­

tion using the FFP machine's model of parallel computation. It is fortunate that

complete FFP programs are likely to provide little information beyond that pro­

vided by individual FFP functions. Complete programs are used in benchmarks of

conventional machine because they expose the effects of context on the operation

of instructions. The implementation of a given instruction is affected by that of

preceding instructions in the program through run-time information in the form of

status bits and other side effects, and compile-time information in terms of where

a value is stored (such as a register, a stack or general memory). In this way,

the possible choices to be made for a given instruction are affected by the design

choices made for the preceding instructions. The interface between primitive FFP

functions, whiCh are the basic instructions of FFP, and the rest of an FFP program

consists entirely of passing a single value expressed using the sequence constructor.

The FFP machine retains this modularity from the language and this isolates the

implementations of FFP functions from each other. For these reasons, individual

FFP functions are as effective as, and simpler than, complete FFP programs for

evaluating different program representations.

Since an FFP language may contain arbitrary primitive functions, the mea­

sures can not be specific primitives, but rather, should reflect aspects common

to all primitives, including ones not yet proposed. Individual functions are im­

plemented as a group of manipulations performed on their expression trees. A

common set of manipulations recur in implementing all FFP functions and it is

these manipulations, along with the space measure, that constitute the measures

of the benchmark.

These mechanisms that manipulate expression trees are termed idioms because

they are accomplished by standard phrases of microcode instructions. Idioms cor­

respond to the level of description of the ApplyToAII function shown in Figure 3b;

Creating a benchmark for evaluating representations 36

they are distinct from the L cell microcode instructions (such as those shown in

Figure 6) that perform them. Idioms relate to expression trees and are indepen­

dent of the representation*, whereas the microcode instructions that implement

idioms change as the choice of representation changes. No relative frequencies for

the use of idioms are available, but, in the same way that the actions of instruction

fetching and address decoding are common to most instructions in conventional

instruction sets, the actions described by the idioms are sufficiently frequent that

they may be assumed to be equally important. The results of this research are

reasonably insensitive to this assumption.

Idioms are the appropriate level for elements of the benchmark because of their

general utility for implementing the FFP language as well as for implementing new

facilities such as non-innermost evaluation rules and new languages such as Prolog

and Scheme [Smith 84, Dybvig 86, Middleton and Smith 86]. While the emphasis

is on the FFP language for historical reasons, the style of execution in the FFP

machine is more general, and research into alternative representations should not

ignore this generality.

4.2 Collecting the idioms used to implement FFP

The next step is to collect the idioms necessary to implement FFP by exam­

ining many FFP functions. Since FFP languages may be defined to include any

functions as primitives, it is not possible to examine all FFP functions. Instead,

the structure of the FFP language is organised to direct the search for those func­

tions that are likely to demand the most from the FFP machine, and functions

proposed in the future may need to be excluded from the language executed by the

FFP machine if they require idioms that are too much more complex to implement

than the ones discovered here.

The FFP language distinguishes between primitive functions, functional forms

and user-defined functions [Backus 78]. For this research, these are all grouped

together as FFP functions because they are all implemented with the same set of

idioms (just as different conventional programs compile to similar machine code)

* This distinction is useful, but overly simple: Chapter 6 introduces some idioms nec­

essary for controlling the mapping of FFP symbols into the L array. Those idioms have

no effect on the expression trees and do depend on the choice of representation.

Creating a benchmark for evaluating representations 37

and because the FFP language distinction does not relate to the cost of imple­

menting an FFP function in the machine. For example, the implementation of the

ApplyToAll functional form is very similar to that of the distl primitive and the

implementation of the transpose primitive is much more complex and expensive

than that of the Compose functional form. FFP functions are better categorised

by the need in their implementation for storage allocation and communication

facilities.

Certain FFP functions use neither facility. Their result is either a substring

of the RA, or can be constructed from it by simple local operations in the L cells.

Examples include the Constant functional form, and primitive functions such as

identity, tail, append] and appendr. Various FFP functions almost belong in this

category, requiring one or other facility in a small fixed amount that is independent

of the operand. For example, associ and assocr create a new pair of brackets which

requires two new virtual L cells. The maximum function uses a message wave with

one message, independent of the size of the operand.

The second category of FFP functions use only storage allocation. The ma­

jority of these are the user-defined functions (functions constructed from other

functions), but this group would also include an iota function like that in APL

[Gilman and Rose 84, p. 103].

The third category of FFP functions use only the co=unication facilities.

These functions, such as reverse, usually reorganise symbols that are already

present to produce their result.

The final category of FFP functions use both co=unication and storage

allocation to a significant extent. The fork and SendReceive instructions are

often combined to support the idiom of duplicating FFP objects within the RA.

ApplyToAII has already been seen as one example of this. The transpose function

lies in this category because it requires co=unication to permute the matrix

elements and storage allocation to create space for extra sequence brackets when

the operand is not a square homogeneous matrix.

This organization suggests that the last category will be the richest source of

idioms and that the consequences of different representations are most evident in

implementing FFP functions from that category.

Creating a benchmark for evaluating representations 38

4.3 Implementations of some illustrative functions

A collection of FFP functions that the FFP machine should implement would

begin with those defined by Backus [Backus 78, Backus 73] extended with various

operations, (primitive functions, functional forms, and general language capabil­

ities that lie outside FFP), that have arisen from investigations into the FFP

machine [Chen 81, Dybvig 86, Mag6 81, Mag6 82, Middleton and Smith 86,

Williams 81]. The FFP functions Compose, transpose, ApplyToAll, Insert, equals

and the implementation of user-defined functions are discussed here since they

demonstrate the idioms the FFP machine uses to support FFP functions in gen­

eral.

The descriptions of the implementations are kept at the level of expression

tree manipulations to be independent of choices for program representation. No

implementation should constrain the generality of the FFP function, that is, it

must not restrict the operands beyond that in the definition of the FFP function.

The notation [x] stands for a general FFP expression, x: it may be either an atom

residing in a single virtual L cell or a structure residing in several adjacent virtual

L cells. Questions of error handling are largely ignored in these descriptions be­

cause they place no new requirements on FFP machine operation and while many

different errors might be possible, assumptions can be made about the correct­

ness of operands that are the results of other function applications. When an RA

yields an error, the result contains an error flag which modifies the mechanism

for determining the function symbol in an RA so that a different set of microcode

segments is loaded to handle the error in enclosing applications.

The Compose function transforms the RA "(< Compose [f 1] [f2] ••• [f nl > [x))"

into "([f1] ([f2 J ... ([fn][x]) ...))". The two original parentheses, the brackets enclos­

ing the function expression, and the Compose symbol are erased and n pairs of

parentheses are created, one opening parenthesis before each [fi], and n closing

parentheses after the operand, [x].

A programmer may define any function by combining simpler FFP functions

using the functional forms. Such a function definition equates a single symbol

with an expression describing that combination. When that symbol is applied

to an operand in an RA, it is replaced by the function expression, as shown in

Figure 8. For the FFP machine, such a definition is converted into a microcode

segment which includes the function expression as data, and is targeted for the L

Creating a benchmark for evaluating representations 39

cell holding the function symbol. (The other symbols of the RA execute microcode

segments that do nothing). That segment requests space to hold the expression,

and the resulting clones, each with a copy of the definition, use their clone-id to

select one symbol from the expression as their own.

Mean = + o [Sum , Length]

= < Compose ..,.. < Construct Sum Length > >

Mean < 24 49 60 35 >)

(< Compose ..,... < Construct Sum Length > > < 24 49 60 35 >)

Figure 8. Implementation of user-defined functions

The transpose function transforms an n x m matrix, that is, a sequence of se-

quences of the form"<< [x1 ,1] ... [x1,ml > < [x,.,1] ... [x,.,ml >>" into an mxn

matrix of the form "< < [x1, 1] ••• [x,.,1] > . . . < [x1,ml ... [x,.,ml > >". The permu-

tation of the symbols is accomplished by sorting them in a message wave in such

a way that the matrix is broadcast in column major order from the top of the

area. These symbols are stored from left to right in the L cells, yielding the trans­

pose of the matrix operand, by the process of each L cell comparing the position

of a message in the stream with its own position in the RA given by its index.

For matrices of atoms, the sorting can be done by using as keys directory[2] and

directory[!], which are the column and row indices of the matrix. For matrices

with more complex entries, the symbols of the matrix need to be permuted within

the L array in such a way that the symbols of each [X.,,; I are kept together while

the different [xi,,;J's are transposed. The symbols of [xi,.il share directory[2] and

directory[!] values which would cause messages using them as keys to be merged.

(inFP)

(inFFP)

Creating a benchmark for evaluating representations

B

<3 45>

initial matrix .

c
<6> (

A
B
c
D

<12> J <345>
<6>

<7 8>

-000000111111111111111111
0123--0000111112223333-

40

directory(1]
directory(2]
irnex 2 4 6 8 10 12 14 16 18 20 22 24 26

old structure removed

symbols transposed

new structure
added

<< >< >< ><

Figure 9. The stages in transposing matrices on the FFP machine

»

Using directozy[2] and the index as the two sorting keys performs the correct

permutation while ensuring that each message has unique keys.

To build the correct structure around the permuted [x;,3-]'s, it is necessary to

create the pairs of brackets to delimit the new rows (corresponding to the old

columns), and to delete the pairs of brackets that delimit the old rows (as well

as deleting the parentheses and the 'transpose' symbol). Since it is not necessary

that m equal n, nor that the individual [x;.i)'s be of the same size, brackets appear

and disappear at different points in the operand and there may be no apparent

Creating a benchmark for evaluating representations 41

pattern to the movement of symbols, as for the case shown in Figure 9. The

old brackets occur in L cells in which .firstL[2] or JastL[2] are true. An opening

bracket, "<", should be created before each [x1.ij and a closing bracket, ">",
should be created after each [xm,;l· IT these are created before the permutation is

performed, the duplicated index values created by the fork instructions interfere

with the counting in the filters. IT these brackets are to be created after the

permutation, their position can be inferred from discontinuities in the messages'

first keys which are the column numbers of the symbols.

The transpose function uses communication and storage allocation in non­

trivial amounts; communication to permute the symbols and storage allocation to

create new brackets. The two interfere: the needs of the communication operation

limit when the brackets may be created and to perform the storage allocation

increases the work performed by the communication system (to note the divisions

between columns). The communication method places the transposed symbols in

adjacent cells which causes the storage movement associated with the different

fork operations to accumulate.

The implementation for an RA using the ApplyToAII function in the form

of "(< ApplyToAll [f] > < [x1] ••• [x,.] >)", has been described in detail in Sec­

tion 3.2. Conceptually, the original parentheses and the function expression,

"(< ApplyToAll [f] >)", are erased, the function [f] is duplicated in front

of each [x1] of the sequence operand and each [f][x;] pair is enclosed in applica­

tion parentheses. In general, the implementations of FFP functions may reuse L

cells, such as those holding the original [f] here, to reduce (slightly) the amount of

storage allocation.

The Insert function is APL's reduction operator [Gilman and Rose 84, p. 34],

extended to allow user-defined functions as the parameter. Insert, denoted in

both languages by the symbol '/',repeatedly uses the binary function given as

the parameter to combine a sequence of values into one, starting from the right

end. An RA of the form "(<Insert [f] > < [x1] ••• [x,.] >)" generates a result of the

form "([f] < [x1] ••• ([f] < [x,._2] ([f] < [x,._1][x,.] >) >) ... >)". Figure 10 shows

the transformation of the expression tree, the insertions and deletions of FFP

symbols, that perform this transformation and an abbreviated, dataflow graph,

form for the result which shows more clearly that only a single application of [f] is

being evaluated at a time. The parentheses, the function expression < Insert [f] >

Creating a benchmark for evaluating representations

manipulation of the expression tree form of the RA

a)

(<Insert [f]> < [x1] [x2] [x3] [x4] .. [xn-1] [xn] >)

d)
manipulation of the string form of the RA

(<Insert [f]> < [x1] [x2] [x3] [x4] .. [xn-1] [xn] >)

u
[f] [x1] [x2] [x3] [x4] .. [xn-1] [xn]

u
([f]< [x1] ([f]< [x2] ([f]< [x3] ([f]< [x4] .. ([f]< [xn-1] [xn] >) .. >) >) >) >)

Figure 10. Expression tree manipulation for the Insert function

42

data-flow graph of result

c)
[f]

j\
[x1] [f]

/\f]
[x2] j\

[x3] ~~·­
[x4] [f]

/\
[xn-1] [xn]

[x4~

[xn-1] [xn]

and the sequence brackets enclosing the operand are erased. The string "([f] <" is

duplicated in front of the first n- 1 elements of the operand, and the string ">)"
is duplicated n - 1 times at the end.

This function is interesting because variations of it probe the appropriate lim­

its for the complexity of L cells. The Insert function creates a deeply nested

program expression tree, as shown in Figure 10. Since only one application is

innermost, and so reducible, at any time, execution time is linearly proportional

to the length of the operand sequence. A natural alternative, which may be used

when the function, [f], is associative, is a Treelnsert function [Williams 82, p. 80],

which, instead of the linear shaped dataflow graph of Insert, would generate a tree

shaped one, as shown in Figure 11 The different data flow graph demonstrates

Creating a benchmark for evaluating representations

a)

[f]

/)f]

[xO]/\

[f]

[xl]/\
[f]

[x2]/\
[f]

[x3]/\

[f]
[x4]j\

[f]
[x5]f\

[f]
[x6]j\

[f]

[x7]/\
[f]

[x8] /\

[x9] [xlO]

b) _-rfl........._
[f]-- [f]

/'\ /'\
[f] [f] [f] [f]

1\ 1\ 1\ 1\
[f] [x2] [f] [x5] [f] [x8] [x9][x10]

1\ 1\ 1\
[xO] [xl] [x3] [x4] [x6] [x7]

[f]

c) [fl _......- [t]

/" /\
[f] [f] [f] [xlO]

/\ 1\ 1\
[f] [f] [f] [f] [x8] [x9]

1\ 1\ /\ 1\
[xO] [xl] [x2] [x3] [x4] [x5] [x6] [x7]

Figure 11. Various forms for the result of the Insert function

43

how the execution time becomes logarithmically proportional to the length of the

operand sequence. There are several ways in which the Treelnsert function might

be implemented, given that any approximately balanced tree of reductions will sig­

nificantly improve execution. Two simple ways to generate the FFP expressions

corresponding to Figures llb and llc are shown in Figure 12a and b, respectively.

Figure llb shows a top-down method which splits the operand into two lists of

similar size, applies the function "< Treeinsert [f] >" to each and combines the

two results with the function [f]. This recursively creates an expression of the same

size (in the number of symbols) as Insert would create but it requires a logarithmic

number of housekeeping reductions (that is, applications of Treelnsert) to prepare

for actual computation. Figure llc shows a bottom-up method which inserts the

strings "([f] <" and ">)" around pairs of operand elements; these applications of

[f] reduce in parallel to leave a sequence which has been halved in length. Both

.
Creating a benchmark for evaluating representations 44

of these methods are simple to implement and reduce the overall execution time

from linear to logarithmic. The bottom-up method has the further advantage that

only those copies of [f] that are immediately reducible are created; it incurs only

half the storage allocation costs that the top-down method (Figures llb) or the

original method (Figure 10) need. Both of these methods involve a logarithmic

number of applications of Treelnsert, which perform no useful computation, in

comparison with the single such application for the Insert function.

a) (<11 [fJ> <[xO] [xj] [xj+ 1] [xn] >)

([fJ< (<11 [fJ> <[xO] .. [xj] >)(<11 [f]>< [xj+ 1] [xn] >) >)

b)

(<11 [f]>

(<TI [f]>

Detennine n, and from that,j=n/2

Insen the symbols ">)(<TI [f]><" before {xj+l]

Insert the symbols "([f]<" before thefirstL cell

Insen the symbols ">)" after the last L cell.

< [xO] [xl] [x2] [x3]

,IJ.

[xn-1] [xn] >)

< ([f]< [xO] [x1] >) ([f]< [x2] [x3] >) .. ([f]< [xn-1] [xn] >) >)

Determine n (in case the sequence has an odd number of elements)

Insert the symbols "([f]<" before the first L cell in each even operand element
({xO], [x2], .. .)

Insert the symbols ">)" after the last L cell in each odd operand element
({xl], [x3], .. .).

Figure 12. Two implementations for variants of the Treeinsert function

Creating a benchmark for evaluating representations 45

Figure 13 shows an algorithm which creates the same (top-down) expression as

Figure lib, but in a single application. (Once again, copies of [f] are created that

are not immediately used). The L ceU actions to accomplish this are somewhat

lengthy and oppose the assumption that the costs of local L ceU instructions can

be ignored; this is the first implementation of an FFP function that has required

iteration. The value 'left' is the depth of the deepest tree (in Figure lib) of which

[x;] is the leftmost element. The result expression corresponding to that dataflow

graph must have 'left' copies of "([f] <" created immediately before [x,]. Similarly,

'right' copies of">)" should be inserted foUowing [xi]·

The equals function compares two arbitrary FFP objects. In an RA of the form

"(equals< [x1] [x,] >)";the symbols of [x,] are broadcast to the L cells holding [x1].

Each of these L ceUs must identify the appropriate symbol in that message stream

and compare that symbols with its own. In a second message wave containing one

message, these L cells vote on the equality of the complete structure by indicating

whether their own parts matched. Equality is indicated by a unanimous vote

which might be accomplished by indicating yes with zero, no with one, and taking

the maximum value. The difficult part of this function lies in the L cells holding

[x1] recognising the matching part of [x2] arriving serially in the message stream.

For the generic FFP machine described above, the recognition could be done using

the index which will have the value 2 in the leftmost ceU holding [x1]; an L cell

with index i- 1 compares its symbol with that in the ith message.

4.4 A summary of measures for evaluating program representations

A representation is evaluated by the time, L ceU complexity and space costs

incurred as the corresponding FFP machine executes FFP programs. The space

cost is the number of L cells used to hold FFP expressions. The time and com­

plexity costs quantify the ease with which an FFP machine can implement the

low-level system operations and the idioms.

Idioms describe the manipulations to be performed on the expression tree of an

RA to implement the associated FFP function. Groups of idioms are distributed

to different sites in the expression tree; they are implemented by instructions

executed in L cells holding symbols at those sites. The frequently used idioms

are: erase symbols from the expression; restructure the expression by creating

and deleting brackets and parentheses; and, duplicate a subexpression at another

point in the RA.

Creating a benchmark for evaluating representations 46

a) Erase parentheses, <Tl [fJ> and top-level operand brackets
Determine 'left' and 'right' as shown below
The first L cell of each [xi] inserts 'left' copies of "([fj<"
The last L cell of each [xi] inserts 'right' copies of">)".

b) left:= 0 ; right:= 0; i :=directory[I] ;
while n>O begin

if i=O then increment left ;
if i=n then increment right ;
n' := n+2 ,
if i>n'

then begin i := i - n' - 1 ; n := n- n'- 1 ; end
else n :=n' ;

end

c) i 0 1 2 3 4 5 6 7 8 9 10
n 10 10 10 10 10 10 10 10 10 10 10
n' 5 5 5 5 5 5 5 5 5 5 5
i 0 1 2 3 4 5 0 1 2 3 4
n 5 5 5 5 5 5 4 4 4 4 4
n' 2 2 2 2 2 2 2 2 2 2 2
i 0 1 2 0 1 2 0 1 2 0 1
n 2 2 2 2 2 2 2 2 2 1 1
n' 1 1 1 1 1 1 1 1 1 0 0
i 0 1 0 0 1 0 0 1 0 0 0
n 1 1 0 1 1 0 1 1 0 0 0
n' 0 0 0 0 0 0
i 0 0 0 0 0 0
n 0 0 0 0 0 0

left 4 2 3 1
right 1 1 1 2 1 1 3

d)
(<TI +> <[xO] [xl] [x2] [x3] [x4] [x5] [x6] [x7] [x8] [x9] [xlO]>)

(+<
jJ.

>)
(+< >)(+< >)

(+< >)(+< >) (+< >)(+< >)
(+< >) (+< >) (+< >)

[xO][xl] [x2] [x3][x4] [x5] [x6][x7] [x8] [x9][x10]

Figure 13. A third implementation for the Treeinsert function

Creating a benchmark for evaluating representations 47

FFP functions usually erase the function and the two parentheses associated

with an RA. (The exceptions are restricted to functional forms in the FFP lan­

guage, which contain parentheses in their result and, when implemented recur­

sively, include the function symbol again. In these cases, it may be possible to

reuse symbols instead of erasing them and creating another copy). Erasing sym­

bols can be accomplished by the appropriate L cell clearing its symbol registers;

this idiom is performed locally in the L cells with instructions of negligible cost.

One of the most prevalent idioms used in the FFP machine is restructuring.

Once the symbols of the result have been moved into position, the correct struc­

ture must be built around them to yield the final result. Restructuring involves

erasing and creating braces, that is, application parentheses and sequence brack­

ets. Braces carry the syntactic, or structuring, information in an FFP program,

in contrast to the atoms which carry the semantic information. Primitive FFP

functions need only create groups of brackets since their results are constant FFP

expressions. FFP functional forms require more complex abilities of the L cell

to create parentheses and brackets in particular patterns. ApplyToAII and· Con­

struct create '<(' and ')>' at the ends of the result and create ')(' at points in

between. Insert and Treelnsert generate sequences of'>)' following elements of

the operarid sequence and copies of the function parameter enclosed between '('

and '<', preceding.elements of the operand. The idiom of erasing braces is per­

formed by a local instruction in the L cells, but creating braces implies the use of

storage allocation, which is costly.

Another prevalent idiom is copying some FFP subexpression to another part

of a virtual machine. This idiom is accomplished through the cooperation of a

number of instructions executed in different L cells. At the destination site, a

particular L cell receives the size of the subexpression during one message wave,

requests this number of L cells with a fork instruction and then the resulting

clones create a copy of the subexpression when it is broadcast through the vir­

tual machine's co=unication network. At the source, the L cells holding the

subexpression participate in two message waves; the first determines the size of

the subexpression, and the second broadcasts the subexpression for the clones to

receive.

Further idioms are more specific to individual FFP functions and harder to

distinguish from the instructions that implement them. These include aggregating

Creating a benchmark for evaluating representations 48

information from L cells as happens in the voting process for equals, permuting

values from L cells, as happens in implementing transpose, allocating space to cre­

ate new symbols other than as part of the copy idiom as happens in implementing

FFP function definitions and performing local computations, such as preparing

sorting keys prior to a message wave.

These idioms provide a language for implementing the FFP functions and are

in turn implemented by the L cell instructions. The communication and storage

allocation instructions alone are considered to contribute to the time and size

complexity, because they require cooperation and aynchronisation among different

parts of the FFP machine. Other L cell instructions, while just as frequent and

important, are simple to implement and operate entirely within a single processor

and so are considered of negligible cost. The former set of instructions, the ones

considered expensive, are termed significant instructions. They are important

for evaluating alternative representations in the FFP machine because the choice

of representation affects whether particular idioms, both for generating control

information and for creating a final result, need significant instructions for their

implementation. One goal of a representation is to minimise the use of these

instructions and the overall size of the microcode segment.

Chapter 5

Some alternative program representations

The previous two chapters provide the context for evaluating program rep­

resentations. The generic FFP machine provides two things. It demonstrates a

model of computation that remains unchanged across the variant machines, that

of FFP functions being implemented by sets of distributed expression tree manip­

ulations. The generic FFP machine also indicates that L cell instructions other

than communication and storage allocation can be ignored in measuring costs.

The benchmark provides specific measures by which variant FFP machines can be

evaluated. The choice for a program representation involves several factors, each

affecting different parts of the benchmark. This chapter demonstrates some of

these factors to show typical consequences of altering the program representation.

The next two chapters look in more detail at particular effects. The representations

that are introduced allow FFP expressions to have multiple denotations; this is a

new situation that has diverse and far-reaching consequences. The representations

also strongly affect implementing the low-level system operations of the FFP ma­

chine, and these are examined in Chapter 7. Chapter 8 presents a more complete

list of the consequences of design choices relating to program representation.

At this stage, we present some candidate representations to demonstrate the

range of consequences that can result from different choices of program represen­

tation. These examples also demonstrate that certain choices can interfere with

certain properties of the FFP machine that are considered essential. A set of

constraints is developed which, if satisfied by a candidate representation, appear

to ensure that these beneficial properties are maintained. In the light of these

examples, the search for good representations involves satisfying the constraints

while pursuing other goals, such as increasing the number of symbols an L cell can

hold.

There are two considerations about program representation in the FFP ma­

chine, manipulation which covers the operations by which the L cells can indi­

vidually alter their symbols to achieve, in concert, the reduction of the RA, and

denotation which covers the concrete form a given abstract program takes during

execution and the way L cells are organised for holding such an internal form as

it changes with execution.

Some alternative program representations 50

The template is the set of symbol registers in the L cell that hold the part of

an FFP expression residing in that cell. Template design, which involves choices

about the number of symbol registers and the restrictions on their contents, is the

principal fabric of this research.

5.1 Some templates and symbol registers

A template will be denoted by the (not necessarily legal) FFP string obtained

by filling all the symbol registers. For example, if B can be an atom or a bracket,

the term '(B)', which is not a legal FFP expression, represents a template with

three symbol registers: the first can hold a left parenthesis, the second can hold an

atom or bracket and the third can hold a right parenthesis. There is an implicit

positional ordering among the registers which reflects the order of the symbols

they hold in the complete FFP expression. Any symbol in the B register follows

a. left parenthesis held in the '(' register and precedes a right parenthesis held in

the ')' register.

5.1.1 Templates containing closing braces

In previous FFP machine designs, the closing braces (sequence brackets or

application parentheses) were removed from the program representation in order to

reduce the"number of L cells used [Mag6 79]. The absolute level number, or ALN,

was added as a tag to the L cell's symbol to compensate for this lost information.

The absolute level number of a symbol describes its depth in the expression tree

of the entire program. It is generated during the same preprocessing operation in

which the closing braces are removed and it must be maintained by every L cell

during the execution of all functions. The end of any FFP expression, whether a

sequence or application, is now detected by the presence of an ALN smaller than

any inside the expression, that ALN being the one associated with the first symbol

beyond the expression.

This overlapping of structure information between adjacent expressions adds

complexity to the microcode segments and the low-level system operations. Gener­

ating or copying FFP symbols now requires generating or copying (and modifying)

ALNs. Maintaining and using ALNs is awkward; in particular, modifying them

to reflect new structure may be complex even if only a few sequence nodes in the

expression tree are altered. The lastL component of a symbol's address was not

Some alternative program representations 51

available in the FFP machines that used ALNs; computing it requires added com­

munication in such machines. This reduced the available choices for implementing

FFP functions.

Partitioning demonstrates the complexity incurred when an expression's ex­

tent must be determined from subsequent symbols.

The major differences between the partitioning mechanism described in Sec­

tion 7.1 and those used in other FFP machines are su=arised here to demonstrate

the advantages of explicit sequence markers for machine operation. The method

described in Section 7.1 uses messages of three bits to reconfigure a T cell contain­

ing one message processor and three switches. Furthermore, it configures the T

cells immediately, allowing virtual machines to use their network (in a pipelined

fashion) after a small constant delay. Mag6's design, as implemented by Danforth,

involved T cells with four message processors which could be configured in eight

different ways, using messages containing several numeric fields. That method

required information to travel from the L cells to the root of the physical machine

and back, which incurred a delay logarithmically proportional to the size of the

machine. In Tolle's design, partitioning configured many progra=able message

processorsper T cell (which would likely have to share physical resources) using

an iterative procedure in every cell; each T cell could be in one of sixty-four states.

Another example of the complexity incurred by the lack of explicit endmarkers

exists with storage management. When an RA extends from the L array into a

stack, as described in Section 3.4.2, its virtual machine must remain inactive.

The lack of closing parentheses to mark the end of an RA in previous machines

prevented connecting a stack to the right end of the L array. Having two stacks

(one at each end of the L array), which explicit closing parentheses make possible,

makes the storage management process simpler to perform and more effective in

its results (since it provides a second 1/0 port to secondary memory [Stanat and

Mag6 81]). This was the original motivation for this research into alternative forms

for program representation.

In summary, a number of advantages can be realised by not removing closing

braces from the denotation of programs: a second virtual memory stack can be

added to the L array, and the system operations are significantly simpler using

closing braces instead of absolute level numbers (which can, consequently, be dis­

carded). In particular, the partitioning operation can be significantly simplified,

Some alternative program representations 52

so that the virtual machines may now be considered for tasks below the level of

RAs [Middleton and Smith 86]. Most improvements found by this research have

appeared as better implementations of idioms. The improvements appearing in

the low-level system operations, such as partitioning, are uncommon, and result

from changing the representation from that of previous machines to one which

more closely follows the abstract form of an expression. Within the restrictions

given in Section 5.2, the implementation of the system operations is insensitive to

the choice of representation.

While time costs and the L cell's complexity have been reduced, replacing

the closing braces in the denotation of the FFP program increases the number

of L cells needed to hold an expression. The number of extra cells depends on

the structure of the expression, which depends in turn on the kind of program

being run. The expression tree is used to analyse the space requirements for

particular expressions. Every atom in an expression corresponds to a leaf in the

expression tree and every sequence or application constructed from other FFP

expressions corresponds to an internal node. Returning closing braces to the

denotation associates two braces instead of one with each internal node of the

expression tree, implying that an FFP expression requires an extra L cell for each

. sequence or application. Shallow structures such as lists or matrices of atoms

suffer negligible increases in the number of L cells needed to hold them: one more

for a list, and m + 1 more for an m x n matrix. The space used by closing brackets

in more complex structures may be large. For a binary tree with atoms only at the

leaves, since there are about as many internal nodes as there are leaves, returning

closing brackets increases the number of L cells needed by a factor of 1.5.

The remainder of this work attempts to recover this lost space by compressing

the FFP expressions into fewer L cells, ones with templates that contain additional

symbol registers. The success of this compression depends on how well the given

choice of template allows the denotations of particular expressions to collapse.

5.1.2 Templates containing '<A >'

Templates with symbol registers that can hold a single bracket can recover

about as many L cells as are lost by denoting closing braces explicitly. For such

templates, separate L cells are not required for the brackets associated, in the

expression tree, with sequence nodes that are the parents of atom nodes. (More

Some alternative program representations 53

accurately, a left or right bracket uses an extra L cell if and only if the correspond­

ing sequence node's first or last child, respectively, is not an atom). On shallow

structures such as matrices of atoms, most brackets in an expression can be stored

without using extra L cells. The removal of closing brackets from the denota­

tion in previous representations saved only half of these L cells. In deeply nested

structures, such as binary trees, the brackets of the lowest level sequence nodes

are stored for free, and, since half the nodes of a tree are at the lowest level, the

L cells freed from holding opening brackets balance the L cells spent holding the

added closing brackets. Only deep narrow FFP expressions require more L cells

under this representation than they require under previous representations; for

example, the denotation of"<<< a>>>" would now use five L cells ("<a>" in

one cell and a single bracket in each of the others) instead of the four cells needed

to hold the original denotation for this expression, "<<<a".

These templates provide improvements under the space measure, but they

provide little if any savings for the time and hardware complexity incurred in

implementing idioms. For example, a left bracket can only be created in the same

L cell as the FFP expression it is to precede when that expression is an atom;

storage allocation is not avoided when the expression is a sequence or application.

For these templates, the idiom for creating brackets is implemented by different

instructions depending on the context of the surrounding symbols. For example,

the tail function, having deleted the first element of its operand, should move

the outermost left bracket to the second element exactly when that element is an

atom. The microcode segments grow in order to contain all the instructions that

might apply in different situations as well as the instructions to choose among

them. For the L cell initially holding that bracket to decide whether to erase it,

it must communicate with an L cell holding the second element. In contrast, the

tail function can be implemented on the generic FFP machine without any use of

significant actions. The transpose function, in which brackets must be created for

each of the new rows in the result provides another example. Whether this can be

done internally by L cells or requires storage allocation depends on whether the

matrix entries in the first and last rows are atoms. Figure 14 shows transposing

an example matrix using such templates; a bracket can be inserted in the same

L cell as the symbol "B", whereas a new L cell must be allocated to hold the

bracket to be inserted before the symbols "<1". As with its implementation on

the generic FFP machine, transpose stiii requires L cells to perform more than

Some alternative program representations 54

.tJ, delete old row brackets

.tJ, create new row brackets

.tJ, permute symbols

Figure 14. Implementation of the restructuring idiom is context dependent

one idiom involving significant instructions. These templates have complicated

the implementation since there are different alternatives to be detected, and this

increases the amount of microcode that an L cell must be able to contain.

5.1.3 Templates containing '<• A >*'

Consider a template that includes the three symbol registers'<* A>*', where

'A' may hold an atom and'<*' is a register which may hold a string of consecutive

left brackets, enough so that overflow may be considered a program error. If this

brackets register can hold 220 brackets, then the resulting FFP machine is no more

restrictive in the programs it can represent than an FFP machine of the previous

design that has 220 L cells, each with a template that can hold one symbol. Many

registers in the L cell are already of this size and so such a template is more

uniform than a template such as '(< A >)', where four of the symbol registers

consist of one bit indicating the presence of their particular type of brace.

These templates allow all brackets that are associated with sequence nodes

having atoms or sequences as their first and last children, to be stored for free.

Some alternative program representations 55

This includes all brackets within RAs. The need for L cells to hold other brackets

(ones associated with sequence nodes that have application nodes as their first

or last children) will depend on other parts of the template. As with templates

containing '< A >', these templates recover the L cells formerly used to store

the brackets of shallow expressions. Furthermore, for deep expressions such as

trees, these brackets registers,'<*' and'>*', recover all the L cells used for storing

brackets. This is twice as many L cells as were saved in previous FFP machines

by omitting closing brackets from the denotations of expressions. These templates

turn out to be almost optimal with respect to the space costs incurred in denoting

FFP expressions.

A major, unexpected, advantage of these templates is that many FFP functions

become significantly easier to implement than under previous templates. This can

be seen by considering the transpose function. For these templates, a matrix and

its transpose use identical amounts of space since their brackets are stored for

free and they contain the same atoms (albeit permuted). The idiom which creates

brackets for the rows of the result can now be implemented by incrementing -• <*' or

'>*' registers, an action of negligible cost in comparison with the storage allocation

that previous templates required be used. Also, since implementing the idiom for

creating brackets does not depend on the context, the code implementing the

idiom remains short. A consequence with all compressed representations is that

the size of a message increases when it is transferring the symbol contents of an

L cell. This is balanced by the number of messages decreasing in proportion to

the reduction in the number of L cells. The total volume of traffic is reduced by

the grouping of consecutive brackets. Given this, the newly created brackets for

the transpose function are carried along with whatever brackets exist within the

matrix entries, during the message wave that performs the permutation. For these

templates, the manipulations of brackets needed to implement transpose can be

performed without storage allocation and the corresponding code fits easily with

the code permuting the symbols.

Many simple functions that originally needed small amounts of storage al­

location can now be implemented in a single machine cycle without significant

instructions. Figure 15 shows the microcode segments for implementing assocJ

under these templates. Including brackets registers in the template has altered

Some alternative program representations

assoc/.0.-.-.-:

erase symbol ;
decrement left;parentheses ;

assocl.l.l.O.-:

if firstL£2 1
decrement left.brackets ;

if lastL[2]
increment right.brackets ;

56

assoc/.1.-.-.-:

if firstL[I 1
increment left.brackets ;

if lastL[l1
begin
decrement right.brackets ;
decrement right.parentheses ;
end

Figure 15. associ can be implemented without significant instructions

the denotation of expressions to a form which makes it simpler for microcode seg­

. ments to create the result of their RA. A secondary advantage of such templates

is that simplified microcode segments are easier to design correctly.

The distinctive advantage of these templates is that they allow restructuring

idioms to be implemented without recourse to the significant action of storage

allocation,· because brackets can be created by local instructions in the L cells.

Storage allocation causes a virtual machine to exist through at least two physical

machine cycles, so removing storage allocation from simple functions that have no

other significant instructions doubles their execution speed. (Danforth provided

a variant of the fork instruction, the forkc or constant fork [Danforth 83,p62],

which allows an L cell already holding the FFP text to be created, to allocate

space and insert the new FFP text before the next physical cycle. Forkc, with

necessary extensions, would still be less effective than these brackets registers for

implementing FFP functions).

Templates that include groups of closing brackets incur the costs of maintaining

them, such as larger messages, more microcode (due to the merging of separate

microcode segments) and the extra symbol registers. These costs turn out to be

small in comparison to the savings in the number L cells and the reductions in

microcode for other parts of machine operation. The major advantage of these

templates lies in the simplified implementation of restructuring idioms and does

not occur with the previous templates considered. Thus, where compressing '<'
and '>' registers around an atom register in one template causes the collision of

Some alternative program representations 57

different segments containing significant instructions, compressing '<*' and '>*'
registers around an atom register in one template merges segments most of whose

instructions are no longer significant.

5.1.4 Templates containing several atoms

Consider a template which includes a sequence of atom registers (that is, reg­

isters constrained to hold atoms). The number of L cells saved by these templates

depends on the particular FFP expressions being represented; such a template

does little to reduce the space used to hold sequences shorter than the number

of atom registers. This possibility of low utilisation of the templates presages the

problem of scattering examined in Chapter 6; using some templates to their full

extent may be impossible (as is the case here) or difficult and costly (as is the case

with scattering). Low utilisation of L cells in the L array is accepted in the FFP

machine since it simplifies storage management and reflects the fine-grained phi­

losophy which prevents alignment problems between programs and the hardware

from arising. There is no corresponding advantage to the low utilisation of the

template inside the L cell and these templates introduce a number of difficulties.

Some of these difficulties are demonstrated by an RA involving transpose.

Figure 16 shows the contrast from the simple implementation possible with the

previous template. A template containing '<• A A A A >*' is assumed; '.'

represents an empty atom register. The first two rows of L cells show the initial and

final forms of the matrix; the last two rows of L cells show the intermediate forms

when the new brackets are created before or after, respectively, the permutation

is performed. There are several possible initial placements for one matrix. For the

particular matrix shown, each sequence of six atoms can be placed in two L cells in

three ways; this effect will arise in different ways for different matrix operands. The

implementation of transpose must perform the correct permutation, independent

of this placement, which suggests that each matrix symbol be sent in a separate

message; until now, the SendReceive instruction sent only one message. The filter

of the SendReceive instruction must now choose and combine several messages to

assemble the final contents of its L cell. There is no longer the simple method for

selecting messages by counting their position in the downward message stream.

In this example, the result requires six L cells, in contrast to the four L cells

required by the input operand. The difference arises despite both expressions

containing the same number of atoms because the denotation of the result does

Some alternative program representations 58

initial matrix

I<< abc d ef .. >, <gh ..

transposed result .U.

l«ag .. >,<bh .. >,<ci .. > l<d .. > l<ek .. >,<fl .. »

intermediate form: restructuring performed before transposition

l«a ... , <b ... , <C ... , <d ... , <e ... , <f ... , ... g> , ... h> I ... i> ... j> I ... k>, .. .l» I
intermediate form: restructuring performed before transposition

c i d j

A period indicates an empty atom register

Figure 16. Multiple atoms in an L cell complicate the implementation of transpose'

not fit the template as well. The brackets belonging to the new rows must be

created either before or after the permutation, and whenever brackets are inserted

among the atoms, new L cells must be allocated to hold the atoms thus separated.

Determining the amount of expansion and where to insert the new L cells is more

complicated with this representation and depends on the specific matrix operand.

All function implementations must attempt to pack atoms, since otherwise, after

several reductions, each atom of an expression might reside in a separate L cell

and there would have been no advantage to having several atom registers in the

template.

In general, functions require storage allocation under these representations

when braces are inserted between atoms. "(<Compose f g h > x)", which needs

two cells, becomes "(f (g (h x)))", which needs three. Furthermore, the first of

the two original L cells requests two extra L cells while the symbol 'h' should

be merged into the L cell holding 'x' when the brackets disappear. This storage

Some alternative program representations 59

allocation could be avoided if templates with several atom registers also contained

registers to hold intervening braces.

The presence of parentheses between the atoms would allow the L cell to be

part of two independent virtual machines. In disallowing parentheses to be placed

between the atoms, storage allocation again becomes necessary to implement Com­

pose with these templates. (Registers that can hold intervening braces except right

parentheses are not considered, being excessively asymmetrical). The presence of

brackets between the atoms increases the possible distance in the expression tree

between two atoms that reside in the same L cell. This increases the likelihood

that one L cell will contain several sites for manipulations and so that more than

one group of idioms will have to be performed by that cell. As was seen above

for transpose, idioms involving significant instructions interfere with each other;

the cell may have to perform more than one fork instruction or it may contain

several sources and destinations for copying operations. Either a single microcode

segment must handle interleaving the groups of idioms or an L cell must be able

to handle several microcode segments at once, but in either case, the L cell is ef­

fectively simulating a small subtree of L cells and T cells, (or L cells and message

processors if the template may not hold intervening parentheses).

For templates that contain multiple atom registers, the space savings are offset

by a number of complications in implementing FFP functions. These complica­

tions increase the size of microcode segments which the L cell must be able to

hold. Any idiom that inserts atoms in an L cell sometimes require storage allo­

cation depending on whether the number of atoms to be inserted is greater than

the number of empty atom registers. Finding an atom by its position in the RA

may require checking whether several registers are empty. Creating brackets to

support restructuring idioms may require the symbols in an L cell be moved to

new L cells, incurring storage allocation costs. Where the context of an idiom may

determine which of several instructions implement it, the segment must include

the code for each as well as the code to choose among them.

It appears that any approach to these problems introduces further difficulties.

Templates that include several atom registers cause large increases in the hardware

complexity of the L cell. The L cell is increasing in size and the system operations

are increasing in complexity at a greater rate than the number of L cells used to

hold an RA is decreasing. This suggests that the loss of fine granularity manifests

Some alternative program representations 60

itself in an actual loss in effectiveness of the hardware use. The time costs increase

because the L cells are larger, the idioms are now performed by fewer L cells which

reduces the parallelism, and tests are introduced to determine from the context

the correct instructions needed to implement an idiom.

The difficulties with repacking symbols and context dependent instructions

were evident to a lesser extent with templates containing'< A>'. In both cases,

there is the possibility of overflow from the template that must be handled. From

an aesthetic point of view, packing symbols together appears to be decomposing

the program to fit the hardware, the inverse of the design philosophy that the

hardware should be configured to fit the program expression. Templates containing

'<• A>*' avoid many of these problems. Creating a bracket by incrementing a

brackets register does not require the specific positioning required to insert an

atom in a template such as'<* A A A A>*'.

Comparing the three kinds of templates proposed above suggests that an L

cell should be prevented from holding a string of symbols where those symbols

are located at different sites with which are associated idioms requiring significant

instructions. Fine granularity is not simply minimising the number of symbols in

a cell; that would suggest that '<* A >*' were a worse template than '< A >'

because it could hold more symbols. This difficulty with one L cell simulating

several also suggests that mapping trees of processes onto trees of hardware is

not profitable; in both cases, the physical nodes must simulate several virtual

nodes (in the case of tree reduction, in order to avoid alignment constraints). The

partitioning diagrams for Tolle's machine design, shown in Figure 28, demonstrate

this situation [Tolle 81, Figures 5.2, 5.4 and 5.16].

5.1.5 Templates containing '(*' and ')*'

FFP programs often contain sequences of adjacent (right) parentheses, arising

from the use of the Compose function which formed thirty percent of all reductions

in some studies of FFP programs [Pozefsky 77]. Compose is implemented entirely

with restructuring idioms which create several pairs of parentheses. The closing

parentheses, one for each of the functions being composed, are inserted together

after the operand.

This suggests that one of the symbol registers in the template should be ')*'.

Adding '(*'for sy=etry allows the left parentheses to be created as easily and

Some alternative program representations 61

yields templates like'(*<* A>*)*'. These templates allow the idioms implementing

Compose to be supported without using storage allocation. The only significant

instruction needed is a single message wave containing one message that counts

the number of functions, to determine the number of parentheses to be created.

Assuming that such a message wave would complete in a single machine cycle,

these templates halve the execution time of the third of the reductions that perform

function composition.

These parentheses registers can interfere with implementing FFP functions

that need to create symbols outside the original parentheses. Such functions in­

clude the functional forms, ApplyToAII (Figure 1), Construct and Insert (Fig­

ure 10), which, in building results that are sequences of applications, need to

create brackets outside the initial parentheses of the RA. This process may sep­

arate a group of adjacent right parentheses into distinct L cells, and so require

storage allocation. Selecting the instructions to perform the restructuring idioms

for these functional forms depends on the other symbols in the L cell, specifically,

whether the right parenthesis register holds more than one parenthesis.

The advantages of parentheses registers are the number of L cells saved for

the quite frequent pattern of ")n" (where n is relatively small) and the simpler

implementation of Compose. The disadvantages are the added complexity for

implementing other functional forms, the low utilisation of the five registers in the

template, '(*<*A>*)*', and the unappealing property that the L cells now have

access to symbols outside their RA.

5.1.6 Templates containing '{*'and '}*'

Parentheses registers cause difficulties in implementing some of the functional

forms. These difficulties might disappear for templates containing '{*A}*', where

'{*' is a register that can hold any sequence of left braces (brackets and paren­

theses). Since the order of brackets and parentheses is important, such a symbol

register is capable of holding far fewer symbols than '(*' or '<*'. For this rea­

son, template overflow can not be assumed to be program error for templates

containing such braces registers; it must instead be checked for and handled by

the microcode segments. Braces registers allow the restructuring involved with

creating and rearranging brackets and parentheses to be performed without using

significant instructions. These registers also eliminate all space costs associated

Some alternative program representations 62

with application and sequence nodes in the expression tree. They are optimal for

space cost under the restriction that L cells hold no more than one atom.

These reductions in time and space costs are balanced by difficulties in encod­

ing and decoding the strings of braces. Restructuring idioms involve creating and

deleting brackets and parentheses. When the brackets and parentheses are com­

bined in a single register the representation of parentheses likely depends on the

presence of brackets and so changes when the brackets are altered. Instructions

associated with parentheses, either encoding them, for example, creating paren­

theses, or decoding them, for example, counting them, must now also consider the

number of brackets in the L cell. Having the L cells perform complicated calcu­

lations such as these conflicts with the assumption that the cost of local L cell

instructions is negligible.

There are a number of ways that the '{*' and '}*' registers might be imple­

mented. A straightforward encoding of braces with one bit for each appears waste­

ful of storage in the L cell. A more compact encoding of the braces is needed, and

can be achieved by exploiting common patterns in FFP expressions. Patterns that

frequently arise in FFP programs are"<"" and">"" in deeply nested expressions,

")""in reductions that involve Compose, "<(" and ")>" in reductions that involve

ApplyToAll or Construct and ")>"" in the variants of Insert.

These frequent patterns might suggest a template with a series of registers '(<*'

'(<*' '(<*' .. 'A' .. '>*)' '>*)' '>*)',where the braces register '(<*' contains

a count of the number of adjacent left brackets and an implicit left parenthesis

preceding them (that is, outside them in the FFP string, or above them in the

expression tree). Expressions with frequent parentheses, such as those created

by Compose and Insert, utilise these registers poorly. A braces register might

be designed to hold different alternatives, such as ">"i or "l"i or ">)"'· Such a

register would consist of a counter to hold i and an accompanying tag to distinguish

among the cases.

Braces registers can easily cause expressions to have several different denota­

tions. For example, the symbols ">)" could be stored in one register as '>) '1 , or

two as '>'1 ')'1 , requiring the microcode to test for the different possibilities.

The increased complexity in manipulating braces that is incurred with the

various '{*' and '}*' registers examined here seems to outweigh the advantages of

Some alternative program representations 63

such templates, which are the number of L cells saved and the reduced conflict

between the implementations of ApplyToAll, Construct and Insert and that of

Compose.

5.1. 7 Summary of example templates

Figure 17 summarises the behavior of the partial templates described above.

Each column compares templates containing the indicated symbol registers with

the representation used in previous versions of the FFP machine, for which right

braces are removed and other symbols are held in individual L cells. Advantages

are indicated by '+', corresponding to a decrease in the factor being considered.

The factors considered correspond to the principal costs of operation in the FFP

machine: the absolute size of expressions, the amount of storage allocation, the

amount of co=unication, and the complexity of the L cell, measured principally

by the amount of storage needed to hold microcode segments. The entry for the

system operations emphasizes that these representations provide major improve­

ments in other parts of the machine operation.

Measure Partial template

s .. <A> <*A>*AA .. (* ..)* {* .. }*
number of L cells

shallow expref!sions + + ++
deep expressions = ++ +

fork
create brackets + ++
create parentheses + +
restructure symbols

message waves = = = =

microcode storage = = =

system operations ++ ++ ++ ++ ++ ++

Figure 17. Comparison of templates with previous representation

An unexpected result occurred with the brackets and parentheses registers,

'<*', '>*', '(*' and ')*'. L cells using such templates can now perform what used

to be costly restructuring idioms, that is, the ones that create braces, (usually)

without the use of significant instructions. Although fine granularity prohibits

Some alternative program representations 64

compressing symbols to the point where different idioms using significant instruc­

tions occur in the same L cell, these registers, at the same time as they compress

symbols in that way, also simplify the implementations of those idioms enough to

dispense with the use of significant instructions.

It appears that FFP symbols can be divided into two classes on the basis

of whether significant instructions are attached to them in implementing FFP

functions. FFP symbols which may have significant instructions associated with

them are termed solitary and cannot occupy the same L cell without causing the

L cell to become more complex, that is, require larger programs. Attachable FFP

symbols can reside in the same L cell as other symbols without increasing its

complexity. In representations where the L cell contains more symbols, it can

profitably exploit both the extra information and the possibility of creating FFP

symbols without resorting to storage allocation.

5.2 Restricting the candidates for program representation

In the previous section, we proposed several partial templates, that is groups

of symbol registers that might be included in the complete template. In this

section, we propose four qualities that. seem necessary in a good template, as

suggested by the behavior of these partial templates. We derive reasons justifying

the "importance of these qualities from basic characteristics of the FFP machine.

To the extent that these characteristics are shared by other parallel computers, we

may expect that the four qualities may usefully direct choices about representation

of programs in those machines, too.

A principal aspect of the FFP machine is that the hardware is reconfigured

during execution to match the running programs. As a consequence and because

computations can occur in an almost continuous range of sizes, the individual hard­

ware constituents should be small, in order for the FFP machine to construct areas

in a similar range of sizes. These two basic characteristics of the FFP machine,

that it uses fine-grained processors and that it performs hardware decomposition

rather than program decomposition, lead to the need for representations to be

natural, order-preserving, well-aligned and fine-grained.

A natural representation is one in which the denotation of an FFP expression

corresponds directly, without translation, to that abstract expression's string form.

Previous versions of the machine left symbols out of the denotation to save space

Some alternative program representations 65

or included the expression tree structure in the denotation to extend the set of pos­

sible manipulations. Hardware decomposition, the process by which the hardware

is reconfigured to match the structure of the expression, rapidly becomes complex

if natural representations are not used. Mapping a string of processors onto a

string of symbols is easier than mapping a tree of processors onto an independent

tree of expressions and explicitly representing all symbols obviates reconstructing

the information they hold.

An order-preserving representation maintains the left to right order of symbols

from the abstract expression to its denotation. With such representations, the FFP

machine can exploit the locality of RAs (RAs require no information about their

environment, that is, their context), to limit the communication contention among

groups of L cells and so be able to support each virtual network with dedicated

disjoint hardware. Various schemes have been examined for embedding the FFP

machine in a larger virtual computer that could execute programs larger than

would fit in the FFP machine [Frank etal. 84]. Some of these schemes involve

replacing FFP expressions with pointers to secondary memory where they are

stored. Such schemes are not order-preserving; they incur large costs for the FFP

machine which must provide rapid access from all RAs to this secondary memory.

Kellman's ·proposal, in repeatedly shuffling the virtual L cells so that they could

communicate through the nearest neighbor connections, is not an order-preserving

representation; that machine required a rich interconnection network to provide

the necessary increase in communication bandwidth.

A well-aligned representation is one that forces expressions to be distributed

in the L array in such a way that disjoint subexpressions do not share L cells. Con­

sider storing the expression "(< ApplyToAll <Insert + >><<1 2><3 4>>)" in

L cells with the template'<* A>*<*'. The brackets immediately preceding the 1

may be stored in the same L cell as either the 1 or the +; such diversity complicates

implementing the idioms in the L cells. Moreover, an L cell holding "+ >><<"

contains two sites for idioms that use significant instructions to implement the

ApplyToAII function. The idiom which transmits the parameter function is at­

tached to a site that includes the symbols "+ >" and the idiom which inserts the

parameter function is attached to the site of the second left bracket. Interleaving

the concurrent execution of significant instructions in the same L cell, such as

occurs with the two SendReceive instructions in this case, greatly increases the

Some alternative program representations 66

complexity of those parts of the L cell that implement the significant instructions

and this conflicts with the fine granularity of the L cells.

A fine-grained representation is one that allows the L cells to remain fine­

grained processors. Fine granularity is typically defined in terms of hardware

measures, such as the area of, or the number of transistors in, a VLSI circuit. A

more appropriate definition for language-directed designs would involve language

characteristics and such a definition is attempted in Section 8.3. For the moment,

let us define fine granularity as the attempt to reduce the hardware complexity of

the L cell while still allowing it to perform the idioms associated with the symbols

it may contain. Hardware complexity is measured by the storage for microcode

segments and data and the complexity of implementing the microcode instructions

and system facilities.

Increasing the number of symbols held in an L cell, the main thrust of this

research, directly conflicts with maintaining the fine granularity of the L cells. As

a representation packs symbols into one L cell, that cell acquires further work in

the form of the idioms associated with the added symbols. As symbols are pro­

gressively packed together, the microcode segments take on the character of being

many independent segments interleaved together with added conditional state­

ments to control the combination. L cells are effectively acquiring task switching

operations and this contravenes the philosophy that the hardware is to be fit­

ted to the running program. It appears sufficient to avoid interleaving significant

instructions or allowing multiple cases to arise.

Interleaving significant instructions is complex, and is to be avoided because

this complexity is manifested as a relatively large amount of extra microcode. The

difficulties of interleaving significant instructions do not arise for the copying idiom

which uses two SendReceive instructions and a fork because these instructions

have an obvious sequential order. An L cell performing more than one group of

idioms must interleave the corresponding instructions in some way. For an L cell

to perform two SendReceive instructions (in the same message wave), it must

sort the messages they send, and perform both filters on the incoming messages.

For an L cell to perform two fork instructions, it must divide the resulting range

of clone-ids to share between the two requests. Serialising unrelated fork and

SendReceive instructions causes unnecessary synchronisation. It appears that only

the significant instructions are difficult and so expensive to interleave, since they

Some alternative program representations 67

involve the cooperation of many 1 cells; the local 1 cell instructions do not suffer

the same concurrency constraints as the significant instructions do, so they can be

performed in any order.

A fifth quality, that of high utilisation of the processing elements, while a

co=on goal for parallel computers, is deliberately not used to constrain program

representation in this research. The utilisation of processors in a fine-grained par­

allel computer is ignored in much the same way that memory utilisation is ignored

in conventional computers; memory is added without regard to the amount that

is idle at a given moment. To accomplish high utilisation in a parallel computer,

the processing elements gain responsibilities like those in a multitasking operating

system, and care is needed in the progra=ing and compilation stages to ensure

(by transforming them as necessary) that the programs conform to the hardware.

These extra system operations increase the complexity of the processing elements,

opposing their fine granularity, and considerations for the multitasking process

lead to an attitude of mapping the program onto the hardware rather than map­

ping the hardware onto the program. Because fine granularity takes precedence,

1 cell utilisation is not a primary concern in the FFP machine, although it may

be considered if other factors are equal.

Chapter 6

Maintaining unique layouts during execution

In the previous chapter, we discussed design-time decisions regarding the selec­

tion of symbol registers for the L cell. In this chapter, we examine some run-time

aspects of representation, namely, the ways in which programs are able to use the

symbol registers that have been made available to them. The layout of an FFP

expression is the particular placement of the symbols in that expression's denota­

tion, within the virtual L cells. Layout is distinct from, although constrained by,

other aspects of program representation, such as template design. The choice of

template provides the possibility for saving space; layout realises this potential.

(f <1 (g f«2>~ 3 1 4>> I >)
(f <1 (g << 1<2>1 > 3 4> >)
(f <1 (g < << 2 >> 3 4 >) >)
(f <1 (g < < < 2 > > 3 4 > >)

(f I < I 1 (g 1<1<1<1 2 I> I> lsi 4 I> I) I> I l I
(f I< I 1 g I< I I< I< !2 I I> I> I 3 I 4 I> I l I> I l I

Figure 18. Templates with multiple symbols lead to scattering

The use of compressed representations raises several questions about unique­

ness of layout which did not arise for previous versions of the FFP machine. If the

layout for an expression is not unique, a number of complications may arise in the

manipulation process since the microcode segments must recognise and handle the

different possibilities. The first four layouts in Figure 18 show how templates like

'(*<*A>*)*' allow the same expression to have many layouts. Similar complica­

tions could arise as easily in aspects of machine operation other than designing

the manipulations of the expression trees. In proposing the use of compressed rep­

resentations, it is necessary to investigate how non-unique layouts of expressions

Maintaining unique layouts during execution 69

can arise and vanish during execution, what problems such layouts may cause, and

what responses are available to the problem. A compressed representation is one

in which the L cell can hold more than one FFP symbol. A compact layout is a

mapping of symbols into the fewest necessary L cells.

6.1 The occurrence of non-unique layouts

For previous versions of the FFP machine, uniqueness of layout is guaranteed

because L cells could hold only one symbol. (The machine is designed so that

the presence of empty physical L cells among those supporting virtual L cells has

no effect on microcode segments or system operations). The. last two layouts in

Figure 18 show this situation for comparison. Tolle's design is an exception in

that it also allows several symbols to reside in an L cell, and so the possibility of

non-unique layouts also exists for that machine. However, what correspond in that

design to the virtual machines are tree structures matching the expression trees

of resident programs. The manipulations in that design center around this tree

denotation rather than a string denotation and the only consequence of multiple

layouts is wasted space.

For representations that satisfy the constraints described in Section 5.2, a

compact layout is unique. This can be seen by considering the following method

for placing symbols in virtual L cells. Each atom is placed in a distinct L cell;

the templates considered in this research may contain several symbols, but the

well-aligned and fine-grained constraints both require that only one may be an

atom. Each brace that is adjacent to a symbol already in a virtual L cell is placed

in that cell if the template allows; otherwise, it is placed in a new virtual cell.

Given the structure of FFP expressions and the templates being considered, this

process has no opportunity for creating different layouts. For representations that

do not satisfy the constraints, layouts may be compact and still not be unique.

For example, if the template contains three atom registers, seven adjacent atoms

can be laid out in six different ways, all using the minimum number of L cells,

namely three.

Since compactness and uniqueness are equivalent for the representations being

considered, non-unique layouts are only caused by scattering, which is the situation

of a layout developing that uses more L cells than necessary. Figure 19 shows

such a development occurring. The expression "< / id >" represents the Insert

functional form with the identity function as a parameter. The term is also used

Maintaining unique layouts during execution 70

to describe the process by which scattering comes about. Scattering can always

occur in an FFP machine whose templates can hold more than one FFP symbol,

since the expressions that can be denoted in a compact form can also be laid out

with one symbol in each L cell. Furthermore, such scattering occurs quite readily

in practise.

< I (<I I id> <1 2 3 4>) >

< (id <1 (id <2 (id <3 4>) >) >) >

< (id <1 (id <2 <3 4> >) >) >

< (id <1 <2 <3 4> > >) >

< <1 <2 <3 4> > > >

1
<<1 <2 I <3 ~»»I

Figure 19. Removing parentheses causes scattering during reduction

Some scattering arises as a result of the particular implementations of FFP

functions. If an implementation of tail simply deletes the first element of the

operand, the opening bracket delimiting the operand becomes separated from the

first element of the result sequence. For tail, a better implementation can be

constructed cheaply and easily, however, such better implementations may be more

difficult for complex functions, and in particular for data dependent functions such

as ApplyToAllif [Mag6 82]. The complexity and therefore size of the microcode

devoted to recovering unique layouts for function results may require an increase in

the space in the L cell devoted to microcode storage. Once scattering has occurred,

the extra L cells may remain in the layouts of subsequent expressions, although

Maintaining unique layouts during execution 71

the implementations for some FFP functions do remove some scattering without

specific effort. For example, the transpose function generates the brackets that

delimit each row of the result compactly, and, in deleting the original brackets,

also removes any scattering associated with them.

In any case, for most of the representations considered here, scattering also

occurs at the edges of the RAs where a parenthesis that is separating brackets may

be erased. This can be seen in the Insert function of Figure 19. Thus, the problem

of uniqueness cannot be solved simply by assuming that all FFP functions can be

implemented so a8 to leave their result in a compact form. If scattering is to be

avoided in order to maintain unique layouts, some mechanism must be created by

which the result of each RA is compacted with respect to the symbols adjacent to

it.

6.2 Complications arising due to non-unique layouts

One disadvantage of non-unique layouts is that the FFP expression uses more

L cells than necessary. The increased L cell complexity associated with·the extra

symbol storage in the compressed templates has not been balanced by a reduction

in the number of required L cells. It was seen in Section 5.4 that a poor choice of

template might cause low utilisation of the template registers because few expres­

sions satisfied the template constraints; in this case, the low utilisation is a result

of the symbols not being reorganised as they are manipulated.

Another disadvantage of non-unique layouts is that certain FFP functions may

become extremely difficult to implement in the presence of scattered layouts. Im­

plementing the equals function is simple under the assumption that one argument

can be laid on top of the other allowing an L cell by L cell comparison to be made.

Where two identical expressions can be laid out in different ways, as shown in Fig­

ure 20, there is no (practical) way to ensure the registration of the two arguments.

(Address information, being truncated, is insufficient to align general expressions).

A third disadvantage with non-unique layouts is that the complexity of ma­

chine operation increases to handle the wider variety of situations. The imple­

mentation of every FFP function must allow for each set of symbols that might

appear in a single virtual L cell to be spread over several adjacent ones. A mi­

crocode segment must have the same effect whether it occurs once, in a single L

Maintaining unique layouts during execution

<<b

<

>
!

I

>

72

>

Figure 20. Scattering interferes with aligning symbols for implementing equals

cell, or a number of times, in the L cells holding the scattered symbols. A seg­
ment that deletes a single bracket in the former case, must be arranged so that

when there are several copies of it in the scattered case, all but one avoid this
deletion. Similarly, where a segment is to insert symbols, only one copy of the seg­

ment should execute the fork in the scattered case. The SendReceive instruction

must be used carefully in order that scattering does not alter the overall message

stream excessively. At the very least, scattering will cause more messages to be

sent by the copying idioms and those idioms will replicate the waste of L cells. The

templates containing several atoms demonstrated problems where the particular

instructions that implement an idiom depend on the context. The presence of

scattering is similar in the difficulties it raises.

To overcome these complications with non-unique layouts, it appears sufficient

that the initial layout of every RA be compact. Scattering that occurs with in­

termediate expressions during reduction does not appear to affect evaluation of

an RA. (This may be because each FFP function performs a conceptually atomic

operation, so the functions do not examine intermediate results to control their

execution). This means that if compaction is to be performed, it is sufficient to

compact the result of an RA, * which involves compacting both the symbols with

ea.Ch other and with the symbols surrounding the result (as all those symbols will

become a new RA). It is fortunate that compacting symbols after reduction is

sufficient since combining virtual L cells in the middle of a reduction, with all the

internal state information, is much more complex and ill-defined.

* Alternatively, compaction might be applied to applications as they become

innermost, and so reducible.

Maintaining unique layouts during execution 73

6.3 Handling non-unique layouts

The choices available for approaching the problem of scattering (and so non­

uniqueness) are shown in Figure 21. The first choice is whether to perform com­

paction to recover a unique representation for each RA, or to allow scattering

to occur and require all system facilities and FFP functions implementations to

handle the variety of possible layouts.

Scattering

allow multiple layouts perform compaction

by user's by hybrid by machine total incremental
code method support compaction compaction

Figure 21. Alternatives for approaching scattering

While allowing scattering to occur raises several problems, it has the advantage

that it avoids the cost of compaction; no method for compaction has yet been

found that- does not incur relatively large costs for the overall machine operation.

Many FFP functions can easily be implemented in a way that avoids scattering;

some, such as transpose may incidentally remove some scattering. Programs that

only use such functions do not cause scattering even though no action is taken

to avoid it and those programs will execute more rapidly in an FFP machine

that is not performing unnecessary compaction. Potential scattering, such as the

Insert function threatens to cause, as shown in Figure 19, may be undone by

such functions. Certain computations may require an explicit garbage collection

function, either to implement functions like equals or to recover wasted space.

Two further questions arise if scattering is to be repaired by performing com­

paction. The first question, examined in detail below, is where the responsibility

for compaction lies: whether it is a system operation performed during the sys­

tem phase or an operation performed by the microcode segments during execution

phases. The second question is how much compaction is necessary. If compaction

is being maintained, there are limits to the extent of the scattering that can occur

with a single reduction, before compaction again creates a unique layout. These

limits might be used to design incremental algorithms that assumed an almost

Maintaining unique layouts during execution 74

compact initial layout and were cheaper than compaction algorithms that could

compact arbitrary layouts. Such algorithms have not been investigated in any

depth.

Viewed as a system operation, such compaction would merge the symbols

of a newly completed RA with their context (the surrounding symbols) while

they are purely FFP symbols, that is, before they become part of a new RA's

virtual machine, and acquire state information whose merging would complicate

compaction. This approach of performing compaction during the system phase

does not increase the size of the microcode segments, which must be distributed

during segment loading and storage management, but the basic physical machine

cycle is lengthened which is a significant cost.

A second approach is to make compaction the responsibility of the microcode

segments implementing the FFP functions. As a responsibility of the microcode

segments, compaction is only performed at the end of the reduction rather than

during each physical cycle. Since a single reduction can span many machine cycles

this reduces the amount of unnecessary compaction. Furthermore, each microcode

segment. can exploit properties of its particular FFP function and only repair the

specific sc11ottering to which that function is susceptible.

Scattering may occur not only within the result but also between the result and

its surrounding symbols, where the application parentheses were deleted, as shown

in Figure 19. For microcode segments to recover this scattering, they must have

access to brackets outside the RA. This access requires new brackets registers be

added to the L cell, yielding templates like '<*(*<*A>*)*>*'. (Rarely will more

than three of these seven registers be occupied in a single L cell, although such

wasted space is a small fraction of the storage in an L cell) .

This particular template, while recovering scattering associated with brackets

being incorrectly placed, still allows scattering to occur due to incorrectly placed

parentheses. Consider an FFP expression which is computing an inner product,

"(+ < (x <1 2>)(x <3 4>) >)" ~ The symbols at the end may occupy cells as "(x",

"<3", "4>) >" and ")", which become "12", " ", ">" and ")", as a result of the RA

being evaluated. The cell that deleted the single right parenthesis broadcasts the

presence of an 'outer bracket', allowing the microcode segments to generate "12>",

" ", " " and ")". The virtual machine for the RA cannot access the following right

Maintaining unique layouts during execution 75

parenthesis and so cannot create the compact result, which is "12>)", followed by

three empty L cells. The template '<* P >*' described below avoids this problem,

while including registers for holding outer brackets.

The implementations of the FFP functional forms (that is, FFP functions that

leave parentheses in their results) change slightly to accommodate this approach

to compaction. For example, the Insert function is usually viewed as using idioms

that create a number of '>)' pairs after the final parenthesis. For this approach

to scattering, Insert would use idioms that create a number of')>' pairs before

the parenthesis. This change is necessary to ensure that the result is compact and

that brackets enclosing RAs reside in the same L cells as the parentheses of those

RAs.

Making compaction the responsibility of the function implementations in this

way requires the language that supports them, that is, the set of idioms, be ex­

tended to include idioms that perform compaction with those that perform the

actual rewriting. One aspect of fine granularity has been the segregation of sig­

nificant idioms into separate L cells to increase the parallelism and, in particular,

to avoid the complexity of interleaving significant instructions. Since the idioms

for compaction require communication, a significant instruction, the segregation

suggests the compaction idioms should be performed by L cells other than those

performing the actual reduction. This can be done by classifying the parentheses

as solitary, that is, separating them from the L cells holding nearby atoms. This

classification yields a template like'<* P >*',where P stands for an atom, "("",

or ")"". Such a template suits the implementations of functions like Construct,

ApplyToAll and Insert, which already associate distinct idioms with the closing

parenthesis.

A third approach in assigning the responsibility for compaction is to distribute

different parts to the system phase and the function implementations. The mi­

crocode segments are required to create an internally compact result, for which

they can exploit the behavior of the specific function, and a system operation will

perform a simple movement of braces that may be required following the removal

of parentheses.

Various compaction algorithms are described in Chapter 7. As with many

machine operations, there are two independent issues: determining what must be

Maintaining unique layouts during execution 76

done, and doing it. Because of the property of well-alignedness, the process of

compacting is easy. The contents of the L cells can be merged entirely if they can

be merged at all; they require no splitting first, as would be the case for example,

if three pairs of atoms were to be merged in two L cells that could contain three

atoms each. The possibility of compaction is also simple to determine by examining

the contents of adjacent L cells.

6.4 A summary of uniqueness in representations

For the templates that have been considered, a compact layout, one that uses

a minimal number of L cells, is unique. Figure 21 shows a tree of design choices

covering the approaches to the problem of scattering. The first choice is between

the costs associated with performing reductions on scattered layouts, and the costs

associated with recovering compactness at the end of each reduction. If compaction

is to be performed, there are two further choices: where the responsibility for

compaction lies and how much compaction is necessary. The responsibility can be

assigned in various proportions to the microprogram segments or a system facility.

Representations that are well-aligned allow compaction to be performed easily.

Once the opportunities for compaction have been detected, it is only necessary to

merge the L cell contents, there is no need to separate symbols that are in one

cell.

Scattering appears to be the single disadvantage of the compressed represen­

tations proposed in this research. Otherwise, these compressed representations

uniformly reduce time, space and hardware complexity costs. Investigating scat­

tering is difficult because the choice of how to attack scattering affects the choice

of template, and the choice of the template affects how scattering can occur.

There appear to be links between the existence of scattering as a problem, and

the choice to perform string manipulations over tree manipulations, such as were

used by Tolle [Tolle 81]. The ability to use tree manipulations incurs complexity

elsewhere while avoiding the problems of scattering.

Chapter 7

System operations under compressed representations

System operations are those operations performed by the physical hardware

to provide the facilities used by microcode instructions, for example, partitioning,

storage management and address generation. Choices for program representation

can affect existing system operations and can require new system operations, such

as compaction, to be created. AB a corollary to studying several versions of the

FFP machine, this research has improved understanding of the system operations,

by separating their essential and surface characteristics. The results of this im­

proved understanding are reflected in the simplification of the algorithms described

below, in comparison with those of previous designs. There are two independent

aspects to the distributed algorithms that support the system operations of the

FFP machine: deciding what should be done and doing it.

The operations of partitioning, address generation and compaction are sig­

nificantly affected and so are presented in detail. Except for the compaction

part, storage management is basically unchanged, as is communication; the same

communication facilities still satisfy the new uses required by different program

representations. Since the absolute level number no longer exists as information

that must be maintained, it need not be carried around when symbols are copied;

instead, the messages which transfer symbols must carry the extra FFP symbols

of an RA that an L cell now holds, namely the brackets. Messages do not need

space for other symbols, such as parentheses or outer brackets, because the idioms

that implement FFP operations do not copy them. For the same reasons, these

symbols should also not be duplicated when an L cell containing them executes a

fork operation. Instead, they should remain in the first or last L cell in a set of

clones, as is appropriate.

7.1 Partitioning

Partitioning demonstrates the strong dependence of system operations on the

choice of representation. The algorithm allowed by the representations considered

here is presented and compared with partitioning algorithms in previous FFP ma­

chines. Partitioning also demonstrates the flexibility available in deciding how

system operation will be performed within the constraints of a given representa­

tion.

System operations under compressed representations 78

7.1.1 The partitioning algorithm

Partitioning decomposes the physical network of hardware resources into the

areas that support virtual machines. Each T cell reconfigures itself on the basis of

information received from its children, and passes similar information to its parent.

Figure 22 shows that an arbitrary T cell may be involved with at most three areas.

From the T cell's point of view, the FFP machine consists of three pieces: the two

subtrees reached through its children and the rest of the machine reached through

its parent. The locality of RAs obviates the T cell from supporting an area residing

entirely within one of these three pieces. Therefore, a T cell need only provide

hardware resources to those areas whose RAs span the boundaries between these

pieces. The four different ways that RAs can straddle the three boundaries are

shown in Figure 23.

Figure 22. T cell's view of the machine and the RAs it must support

System operations under compressed representations 79

In Figure 23a, three separate areas each cross one boundary. The middle area

requires a message processor in this T cell to merge the two streams of messages

arriving from the two subtrees. This T cell is holding the root of that area, so the

resulting message stream is directed back to the L cells; this area does not need

communication to the parent T cell. The outside areas need messages relaying,

via the parent T cell, between the L cells inside this tree and those outside. These

areas do not need message processors, because there is only one stream of messages

traveling upwards.

b) c) d)

Figure 23. The four configurations by which a T cell supports several areas

Figure 23b shows one area crossing the right and center boundaries. As be­

fore, the left area only needs a communication channel connecting the cells of the

area inside this tree with those outside. The right area is different; the message

processor merges all messages from the right subtree with those messages from

the part of that area in the left subtree. The resulting message stream is sent via

the parent to the remainder of that area, which is outside this tree. Figure 23c

shows the reverse case where one area crosses the center and left boundaries.

The fourth possibility, shown in Figure 23d, is that of a single area crossing all

three boundaries. In this case, a single message stream arrives from each of the

System operations under compressed representations

T cell

message processor

Figure 24. Hardware resources inside a T cell

tum-around
processor

80

: .. ;~:

subtrees to be merged in the message processor and the resulting message stream

is sent to the parent.

Figure 24 shows a T cell with the switches which allow it to be configured in

these four patterns. The process for setting the switches is extremely simple. The

left switch is set outwards for the T cells of Figures 23a and 23b and inwards for the

T cells of Figures 23c and 23d. The difference is that the left subtree contains at

least one parenthesis in the former case and none in the latter. In a similar fashion,

the right subtrees in Figures 23a and 23c contain at least one parenthesis, so their

right switch is set outwards, whereas the right subtrees in Figures 23b and 23d do

not contain a parenthesis so their right switch is set inwards. The middle switch

distinguishes the case of Figure 23a (where both subtrees contain parentheses),

for which the output from the message processor is redirected downwards, from

the other three cases where that output is sent to the parent T cell and a different

stream of messages, traveling downward from the parent, is broadcast.

System operations under compreBSed representations 81

The process for setting the switches of Figure 23 is as follows. Each subtree

will send a partitioning message containing one bit which means "this subtree

contains a parenthesis". The switch on each side of the T cell is set outwards if

the partitioning message from the subtree on that side is true; the center switch

is set to turn messages around if both partitioning messages are true; and the T

cells sends the logical sum of the two partitioning messages to its parent.

The actual process is slightly more complex. In the case shown in Figure 23d,

both switches in the T cell are set inwards. The message processor is connected to

both parent channels in this way exactly when the parent is only taking messages

from one channel, the inside one which is connected to the message processor.

The inside channel is on the right for T cells that are the left child of their parent,

and on the left for T cells that are the right child of their parent. The hardware

communication protocols must handle the outside channel being ignored by the

parent T cell in these cases.

An L cell must behave like any other subtree in the machine. It can eas­

ily generate the message "this subtree contains parentheses" on the basis of the

symbols it contains. Partitioning uses two partitioning bits, which mean, "this L

cell contains left parentheses" and "this L cell contains right parentheses" , respec­

tively. Since microcode segments can modify parentheses at will, but the virtual

machine derived from these parentheses must remain until all virtual L cells have

completed, these bits are only updated to reflect the parentheses in the L cell at

the end of a reduction, in synchrony with the other L cells in the virtual machine.

When a virtual L cell contains a parenthesis, the physical L cell containing it is

connected to two separate areas by the two channels to its T cell parent. The

virtual L cell belongs in the area into which its parenthesis opens; the physical L

cell determines from the parenthesis bits which channel to use for messages from

the virtual L cell.

Partitioning creates many additional areas (from otherwise unused resources)

that do not support active virtual machines. These areas contain parts of the FFP

program that are not yet innermost reductions. Partitioning divides the FFP pro­

gram in the following manner and each of the resulting substrings is allocated its

own area. The FFP expression is grouped into maximal substrings of symbols

other than parentheses. This includes null strings to separate adjacent paren­

theses. The string " .. 5 >) (+ < 6 7 >) 8 >)) 9 .. " yields " .. 5 >", an empty

System operations under compressed representations 82

Figure 25. Partitioning physical resources to create virtual machines

string, "+ < 6 7 >", "8 >", another empty string and "9 .. ". Each parenthesis,

now surrounded by two such substrings is added to the one it should enclose. Fig­

ure 25 shows a subtree of the physical machine containing this string partitioned

into six virtual machines holding the substrings " .. 5 >)", " ", "(+ < 6 1 >)",
"8 >)", ")" and "9 .. ". The two outside areas extend into the rest of the physi­

cal machine.

For FFP, an RA is any such substring that contains well balanced parentheses,

such as "(+ < 6 7 >)" (and possibly " .. 5 >)") above. No two adjacent areas

can contain RAs; these two FFP strings are separated by a null string held in

an inactive area consisting of a single message processor (and, in general, some

number of relay elements). Therefore, when an L cell is in two adjacent areas, at

least one of them is inactive.

System operations under compressed representations

1-1-1- IMI
1-1-li!MI

1-l(j(IMI
14 (I (IMI

1-1-1- IMII-1-1- IMI
1-1- j(IMI

14 (j(IMII-I(j(IMI
14 O(jMI

1-1-1 (IMI 1- 1- 1- IMI
1-1-li!MI

1-1- j(IMII-1-1-IMI
1-1-HIMI

Figure 26. Partitioning in Mag6's design

14 (I (IMII-I(j(jMj
14 (j(jMI

1-l(j(IMII-I(j(IMI
14 (j (IMI

7.1.2 Partitioning operations in previous FFP machines

83

1-1-1- IMI

1-H I(IMI

T cells in the original FFP machine design had four message processors which

could be configured in eight different ways. Figure 26 shows some of the partition­

ing diagrams of that design [Mag6 79, Section 4.6.1]. Partitioning used messages

of four main types; with one such message from each subtree, a T cell chose the

appropriate configuration from a four by four table. The processors transferred

ALNs to each other to find innermost and so reducible applications; there were

twelve different states that the processors might be in, in order to coordinate

these transfers- The partitioning message contained several fields serving different

system operations. At least two of these fields were ALNs necessary for parti­

tioning, and so the partitioning messages can be considered to contain at least

forty bits. {The word size in the FFP machine depends strongly on the number

of cells since numbers are frequently fields in addresses; an FFP machine with a

million cells leads to the word size being twenty bits). A second phase in that

System operations under compressed representations 84

~~~~ 
S , S (S , S ((S , S S( (S , S 

~~=w~ 
~W-W-W­
~~~~ 

Figure 27. Partitioning in Danforth's design

partitioning scheme involved pruning from an area those L cells holding symbols

(not parentheses) that were outside the RA.

In contrast with that method, the T cell described above can be configured

in four different ways. The message processor is not needed by the partitioning

process, which is performed by direct control of switches without using tables.

The partitioning messages create the virtual networks immediately, so there is

only a constant delay in the physical machine cycle before the virtual L cells can

start transmitting messages. The T cell having been demonstrated to need only

one message processor, Danforth was able to improve his design to that shown in

Figure 27 [Danforth 83, Figure 3.27], but partitioning remained the most compli­

cated aspect in his machine, due to the use of ALNs, and the second phase was still

required to prune unconnected symbols from the area [Danforth 83, pp. 151-168].

System operations under compressed representations

I
L

I
~

-. J

Figure 28. Partitioning in Tolle's design

i <'n~·............,

. I
I
I
l
l

.................. J

85

This complexity arises because adjacent RAs overlap; the endmarker for an RA is

the first symbol of the next area.

Tolle's design explicitly embeds the expression tree in the physical tree net­

work, during execution [Tolle 82, pp. 51-80]. To mitigate alignment constraints,

the expression tree is extended to contain nodes other than the application and

sequence nodes, as shown in Figure 28. A T cell might contain up to sixteen nodes

System operations under compressed representations 86

and sixty connections of these extended expression trees [Tolle 82, p. 88]. Each

such node might be called on to execute a stored program, which suggests the T

cells must contain complex programmable processors to be shared by the nodes.

7.1.3 Design alternatives in the partitioning operation

There are often choices in the FFP machine, between designing the machine

so that certain information is unnecessary, generating the information from data

distributed over many cells, or by storing and retransmitting the information from

the L cells. Several examples can be seen in the partitioning process.

Given (P.l,L.l,R.l) and (P.r,L.r,R.r), a T cell sends the message:

P = P.l or P.r
L = if P.l

then L.l
else L.r

R =if P.r
then R.r
else R.l

. and sets the switches:

set left switch outwards iff P.l
set right switch outwards iff P.r
set center switch down iff P.l and P.r

The cell holds the root of an active area iff

P.l and P.r and L.r and R.l

Figure 29. Partitioning algorithm

Determining whether an area is active, that is, whether it contains an RA, is

an example of information that is regenerated rather than stored. Since an RA

can move partly into a stack after it has begun reduction, the partially completed

virtual L cells remaining in the L array must suspend operation, and so each

area's ability to proceed is recomputed' after storage management in every physical

machine cycle. Two bits are added to the partitioning message which describe the

System operations under compressed representations 87

outermost parentheses in each physical subtree. Their value is ignored if the

subtree contains no parentheses, and they refer to the same parenthesis if the

subtree contains only one. The T cell of Figure 23a is the top of an area. That

area is active if it contains an RA, which is indicated by the two inside parentheses

forming a well balanced pair, that is, the rightmost parenthesis in the left subtree

is '('and the leftmost parenthesis in the right subtree is ')'. Figure 29 shows the

complete partitioning algorithm using these messages of three bits. The three bits

are labeled 'P', 'L' and 'R'; the suffices '.1' and '.r' distinguish messages from the

left and right subtrees from that to be sent to the parent.

Distinguishing between a virtual machine which is executing microcode and a

virtual machine which is generating addresses is an example of information which

can be avoided if the machine is designed to consider both cases as being sufficiently

similar. In previous FFP machines [Danforth 83, p. 125, Mag6 79, Section 4.6.2], a

virtual machine behaved sufficiently differently between generating addresses and

executing microcode that the message processors had to be informed which type

of operations to expect. Although state information can be maintained in virtual

L cells through storage management, the same is not true of state information in

the message processors, since the remapping of message processors during storage

management is much more complex than the remapping of L cells. Therefore, in

those previous FFP machines, this state information had to be retransmitted to the

T cells from the virtual L cells. In the FFP machine presented here, the message

operations used in the prologue stage are now available as general operations of the

virtual machines, so the distinction between these two stages becomes unnecessary.

Another example of these design alternatives is the handling of empty physi­

cal L cells. Either empty physical subtrees must be pruned from the virtual ma­

chine areas, which increases the size and complexity of partitioning, or else empty

physical L cells must avoid interfering with operations, such as synchronisation,

occurring in the virtual machine.

'1.2 Address Generation

Address generation is another system operation that is greatly affected by the

choice of program representation. Manipulation of FFP expressions depends on

attaching groups of idioms to different sites in the expression trees of RAs. The

address in an L cell describes the position of the symbols it holds in the expression

tree representation of the RA denoted by those symbols. The components of an

System operations under compressed representations 88

address are defined in Section 3.1. They provide information about the expression

tree that is needed, first, to resolve the structure sufficiently to deliver microcode

segment to the appropriate L cells, and second, to provide the structure infor­

mation that the segments use. In all FFP functions examined so far, two entries

in the directory suffice to identify and distinguish microcode segments, and four

entries provide enough information for those segments to operate.

(+ <17 25>) + 17 25 (+ < 17 25 >

Figure 30. Possible variations on the form of expression trees

There is some flexibility in defining the expression tree. Tolle treated the brack­

ets (corresponding to sequences nodes) beneath a certain level in the expression

tree as atoms and brackets above that level as distinct leaf nodes of the expression

tree at the same level as the elements of the sequence they enclosed. Mag6 treated

the (opening) brackets above the cutoff level as internal nodes of the expression

tree. The FFP machines using the compressed representations of this research

seem best suited by an expression tree in which only the solitary FFP symbols,

such as atoms, are leaves. The attachable symbols, such as brackets, do not have

explicit nodes in the expression tree; instead, they are attached to the appropriate

solitary symbol and share the address information of that symbol. Figure 30 shows

some possible expression trees for one RA. The choice among these forms for the

expression tree has only minor effect on FFP machine operation.

The directory, the relative level number and the index are all generated using

a mechanism called a cumulative message operation. The message processors are

)

System operations under compressed representations 89

a) downsweep

b) preceding upsweep

Figure 31. Cumulative message operations

extended to include memory in order that a different message for each individual L

cell can be generated using no more time in a message wave than a single message

would take (assuming that the speed of the message processor is unchanged).

System operations under compressed representations 90

7.2.1 Cumulative message operations

Cumulative message operations are a particular form of parallel prefix compu­

tation [Ladner and Fischer 80], in that each operand resides in a different processor

(specifically an L cell) and may only be used once. Pargas describes the use of

the tree-structured virtual network for computing solutions to recurrence relations

using cumulative message operations [Pargas 84].

Given a sequence of values, z;, stored in the L cells, L;, 1:5 i :5 k, and an

associative operator performed by the message processors, 0, the aim is to gen­

erate in each L; the value 0}:;;i Zj. (0t=l Zj is defined to be the unit value of

0). Figure 31 demonstrates the calculation that each message processor in a

virtual network must perform, in order that the combined effort implements cu­

mulative message operations. The description works backwards from the final

result. Consider the message processor that is the parent of L; and Li+t· It must

receive the value 0;.:;;~ ZJ from the rest of the virtual network, through its parent,

to send to its left child, L;. It must send to its right child the value 0;·=, xi>

which is equal to (0}:;;i x1) 0 z., that is, the value it received from its parent

combined with the value in its left child. In general, consider a message pro­

cessor whose left subtree contains Lm+, through L... This processor will receive

from its parent, the value 0J!,, Zj· It transfers this value to its left child arid

the value (0j!,1 xi) 0 (0J=m+t zi) to its right child. Therefore, in an upsweep of

messages prior to this downsweep, each message processor, on receiving the two

values 0j.!.m,+t Zj and 0J;.m,+t Zj keeps the value from its left subchild and sends

(0j!m,+t Zj) = (0j!m,+t Zj) 0 (0j!m,+l Zn) to its parent (where n, = m,). The
message processor at the root of the virtual machine requires special provision. By

its design, after the message processor sends a combined value upwards, it waits

for 0~·=1 xi before initiating the downsweep. This is most easily accomplished

by enhancing the T cell as shown in Figure 24 so that the turnaround loop now

replaces such values by the appropriate unit value for the operation, rather than

simply transmitting all messages, as was the case before.

In summary, the cumulative message operation works by extending each mes­

sage processor to retain one member of the pair of values that are combined and

sent to the parent, as shown in Figure 32. The value that the parent returns is

sent to one child directly, and combined with the stored value in an additional

ALU, before being sent to the other child.

System operations under compressed representations 91

-r-

message processor

message buffer I,

L \ \ I

,

'
,~,-

Figure 32, Message processor within the T cell

Different operators can be used to accomplish quite different effects; it is only

necessary that they be associative so that the particular tree structure of the

communication network is irrelevant. The advantage of this mechanism is its

speed, which makes it not only an attractive mechanism where it is necessary, but

also a useful alternative in a number of other situations. The presence of empty L

cells among the virtual L cells can cause difficulty for this scheme, where it did not

for ordinary message operations, because a cumulative message operation requires

a message from every L cell. Rather than returning to pruning subtrees during

partitioning, the message processors will accept a single unmatched message for

these operations, and in that case, broadcast the corresponding message returning

from the parent message processor. This choice allows for cumulative message

operations to be performed on strict subsets of the L cells in a virtual machine.

7.2.2 Calculating the RLN, index, firstL and lastL components

The relative level number, being the depth of a symbol in the expression tree,

can be measured by the number of unmatched left brackets preceding the symbol

System operations under compressed representations 92

in the RA. The value x; in L; is I<* I - 1>*1, the difference between the number

of left and right brackets which that L cell contains. 0 is addition and the unit

value is zero. Since addresses refer to the solitary symbol in an L cell, the L cell

must add 1<*1 to the value it receives because these brackets precede that symbol.

Furthermore, since the expression tree has an application node at its root, 1 should

be added to the RLN in every L cell to reflect the corresponding left parenthesis.

The index provides a consecutive numbering of the L cells of the area. The

value x; in L; is 1; 0 and the unit value are again addition and zero.

FirstL and lastL are generated locally in an L cell, in microcode segments that

use them, from the RLN and the brackets. They are truncated to the same depth

as the directory vector. These flags are easy to generate because FFP expressions

(in an RA) are atoms or are delimited by brackets, which appear explicitly in

natural representations. Since an atom is an FFP expression and the RLN is the

depth of the atom, firstL[RLN] and JastL[RLNJ are true in every L cell holding

an atom. Each left bracket in an L cell corresponds to an FFP expression of

progressively larger extent that begins in that cell. Thus, firstL[i] is defined to be

true when

RLN -1<*1 ~ i ~ RLN

and similarly, lastL[i] is defined to be true when

RLN -1>*1 ~ i ~ RLN.

Since the RLN counts the left parenthesis, these calculations yield incorrect val­

ues for firstL[O] and JastL[O] in the very first and last L cells, respectively. The

calculation described above is simple to correct, or alternatively, the partitioning

bits can serve as firstL[O] and lastL[O].

7.2.3 Calculating directories

This description will use the associativity of the combining operator used in

the directory computation to present the operation as though it were performed

sequentially from left to right . .It assumes the template contains '<*A >*'; the

changes to handle different templates are simple.

A symbol's directory counts the number elder siblings for each node in the ex­

pression tree on the path from the root to that symbol. An elder sibling is one that

precedes the node in an in-order traversal of the expression tree. Each elder sibling

System operations under compressed representations 93

is either an atom or a sequence, so the directory operation counts the occurrence of

atoms or closing brackets at each level in the expression tree. The structure within

an elder sibling is irrelevant, so as a sequence is completed, the counting of deeper

expressions within that sequence is discarded. Figure 33 shows the combining

operator used to calculate directories. The expression(s) corresponding to first

non-zero value in the second operand terminate any preceding expressions that

are deeper in the expression tree. These preceding deeper expressions correspond

to later values in the first operand tuple; these values are therefore suppressed.

For each pair of entries in two directories, the directory operator chooses the first

value until the first occurrence of a non-zero second value, at which time it adds

the two values and subsequently chooses the second value. The unit value for the

directory operator is a vector of zeroes. The value generated by each virtual L cell

is a partial directory vector with a single one in directory[RLN-1>*1] and zeroes

elsewhere.

counting .lift := true ; 1 0
for i := 0 to directory .length - 1 3 Q9 0 => if counting .left

5 1 then directory[i] := dir1[i] + dir2[i]
else directory[i] := dir2[i] 7 2

counting .lift := counting .left and dir 1 [i] = 0 ; dirl dir2

Figure 33. The directory computation

The directory calculation demonstrates that the simplicity gained by using

natural representations is not a trivial advantage. In designs where the closing

brackets were implicit, the values to be generated by the L cells were difficult to

describe and several incorrect algorithms were proposed. The first executable di­

rectory algorithm was derived for these natural representations and then extended

to apply to the other representations. Denoting closing brackets explicitly obviates

the use of information from outside FFP expressions in determining their extent.

1
3
6
2

directory

System operations under compressed representations

7.2.4 Other uses of cumulative message operations

94

This mechanism was originally designed to implement the address generation

operations, but it also implements several other useful operations. For example, if

0 is the second selector on pairs, then 0}:i Xj is x;_1 • This cumulative operation

performs a right shift by one position of the values x,. There is no reasonable unit

value for the second operation, but if the value 0~=1 xi> that is x,., which turns

around at the root of the virtual machine is left unchanged, then this cumulative

operation rotates a sequence of values to the right by one position. Such rotation

operations have been proposed before by Pargas and Presnell [Pargas et al. 81]; this

implementation has the advantage that it does not require that stored programs

be executed in the message processors.

Cumulative message operations can be applied to proper subsets of the virtual

L array. This allows some values to be rotated while others are unmoved. It also

allows a cumulative operation that finds the relative level number with respect

to particular delimiters. This could be used to determine the scope of bound

variables in suitably represented expressions. The cumulative operation facility

naturally extends to allow similar cumulative message operations to be performed

from right to left, that is, L; receives 0~=i+l Xj·

7.3 Compaction

Three mechanisms are presented which can be used to remove scattering, de­

pending on the choices outlined in Section 6.3. A particular machine design might

use some combination of these mechanisms.

Because of the well-aligned property of the representations considered, there is

never a need to separate the contents of templates before compaction, to achieve

denser layouts. If template overflow must be considered, as would be necessary,

for example, in a template that could only hold a small number of brackets, more

complex decision processes are necessary. For example, a brackets register of four

bits can hold up to fifteen brackets. If three adjacent virtual L cells each held

ten consecutive brackets, then compaction would need to reorganise these thirty

brackets into two L cells, each holding fifteen.

System operations under compressed representations 95

7.3.1 Compaction on demand

Scattering may be allowed to accumulate, in which case, explicit compaction

would be necessary to recover space or to implement certain FFP operations,

such as equals, that require a predictable denotation for the RA. The mechanism

described here could be packaged into an FFP garbage-collector function invoked

explicitly by the programmer. Since scattering can occur at the edge of any RA,

such a function would not guarantee a unique denotation after it had completed

and its parentheses were erased. Either equals would be extended to handle the

limited scattering that might occur i=ediately following the application of such

a function, or the mechanism could be directly included in the implementation of

equals.

This mechanism generates a pseudo-index value using the cumulative message

operations. The pseudo-index differs from the index in that it counts atoms instead

of virtual L cells. (Actually, it counts solitary symbols, but for the representations

considered, the only solitary symbols in the middle of an RA are the atoms). A

virtual L cell that does not contain an atom, receives the pseudo-index for the atom

on its left as a side-effect of the implementation of cumulative message operations.

Such an L cell contains brackets that should be copied to a neighboring atom, so the

cell transmits a message, with the pseudo-index as the key, the number of brackets

as value, and + as the operator. Brackets from several cells that are destined for

the same atom will be added together when these messages meet in the virtual

network. The destination site can recognise incoming brackets by comparing its

pseudo-index with the incoming keys. The left and right brackets are handled

separately, being sent to the following and preceding atoms, respectively. Where

scattering might have caused an empty sequence to be represented as "< >" in

separate cells instead of the atom, </>, in one cell, the compaction of left and right

brackets can be performed in separate waves, and in between, the two brackets,

having met in a single L cell, can be replaced by ¢>.

This mechanism uses one message wave of one message to generate the pseudo­

indices; it then uses a second message wave containing as many messages as there

were groups of brackets that had been separated. Hence, the cost of this mecha­

nism is proportional to the amount of scattering, and independent of the total size

of the expression or the extent to which a group of brackets is dispersed. Since

this occurs within an RA, it only compacts symbols within the RA and does not

leave its result compact with the surrounding symbols.

System operations under compressed representations 96

7.3.2 Compaction on scattering

On the other hand, scattering may be undone as it occurs. In this case, it is

either done within the microcode of the individual FFP functions, or it is done

by a system operation. The following two methods would be performed as system

operations during the physical machine cycle. They should only compact symbols

that are not part of a reduction in progress, because the merging of internal data

in partially executed microcode segments depends on the meaning of each indi­

vidual value, and so could not be incorporated in a system operation. Thus, these

methods of compaction should be performed after the execution phase in which

a virtual machine finishes reduction and before partitioning in the subsequent

system phase creates new active virtual machines.

These methods have a number of disadvantages: first, they are performed

during every machine cycle on the whole FFP machine despite the possibility of

compaction only occurring where an RA has been reduced; second, no use is made

of the fact that since compaction is being maintained, the amount of scattering

that can occur is likely to be limited; and third, they fail to exploit the knowledge,

available from the implementation of the FFP functions being reduced, about the

specific forms of scattering that will have occurred.

One of these approaches to compaction is to modify the storage management

algorithm. Storage management is that part of the physical machine cycle in

which empty physical L cells are allocated to the clones of a virtual L cell created

by a fork; these empty cells are made available by shifting other virtual L cells

[Mag6 et al. 84]. Figure 34 shows how each T cell contributes to calculating the

movements. During the upsweep of information, each T cell finds out the number

of empty L cells in its two subtrees, requests for space being represented by negative

values. During the downsweep, the T cell receives a command from its parent for

its subtree to receive or send a certain number of virtual L cells at each of its

two edges. This command is in the form of a pair, arrivals and departures, which

. describe the flows at the left and right edges, respectively; for both, a positive

value indicates a flow to the right. The T cell sends similar commands to its

children by resolving its command with its knowledge of the available space in

each subtree. The command that arrives at an L cell indicates how many symbols

pass through that cell and in which direction.

System operations under compressed representations 97

4 empties

6 empties -2 empties

1

subtree has subtree has subtree takes subtree sends
8 empty cells 5 cells from the left 1 cell to the left 9 empty cells

and requests for 3 and requests for 10 and 1 cell from the right and 1 cell to the right

Figure 34. The storage preparation algorithm

In the first compaction scheme, each T cell can cause one L cell of wasted space

to be recovered by having some virtual L cells in its two subtrees merge during

storage movement. Several T cells will cooperate in the compaction when the

contents of several cells can be merged into one. Since merging is not performed

on symbols in partially reduced applications, the cells in such virtual machines

pretend to have no empty symbol registers available and so prevent merging oc­

curring. Virtual L cells that are not in this situation consider registers like '<*'
to be empty since more symbols can always be added to them. Completely empty

L cells are handled as before and so are left out of the following description. The

contents of two consecutive non-empty cells (possibly with empty cells between)

can be merged when there are more empty symbol registers between the symbols

of the two cells than there are registers in the template. This merging will create

one new empty cell. Figure 35 shows the extended storage management algo­

rithm. Each subtree transmits a quadruple that describes the symbol contents of

System operations under compressed representations

Given (V.l,L.l,R.l,E.l) and (V.r,L.r,R.r,E.r) arriving from the children,
a T cell sends to its parent the message:

V := V.l and V.r ;
L := if (not V.l) then L.l else L.r ;
R := if (not V.r) then R.r else R.l ;
E := E.l + E.r + Gen
where Gen := if (R.l + L.r ;:: registers in a template)

then 1 else 0

Given (ML,MR,Arr,Dep) arriving from the parent,
a T cell generates two messages for its children:

ML.l := ML and (not V.l or Arr S: E.l) ;
ML.r := ML and not ML.l ;
MR.r := MR and (not V.r or Dep;:: -E.r) ;
MR.l := MR and not MR.r ;

Arr.l := Arr ;
Dep.r := Dep ;
Dep.l := Arr.l - E.l - ML.l ;
Arr.r := Dep.r + E.r + MR.r ;

if Gen = 1
then if (Dep.l > 0)

then ML.r := 1
else MR.l := 1

Arr.r := Arr.r - 1 ;
Dep.l := Dep.l + 1 ;

(V,L,R,E) stands for (Vacant, Lettscraps, Rightscraps, Empty cells).
(ML,MR,Arr,Dep) stands for (Mergelett, Mergeright, Arrivals, Departures).
The suffixes '.I' and '.r' indicate the lett and right child of the T cell respectively.
'True' and 'false' have the values 1 and 0 for the purposes of performing arithmetic.

Figure 35. The storage preparation algorithm incorporating compaction

98

that subtree. Empties is the number of completely empty L cells that are avail­

able, including cells that compaction will produce within those trees. Leftscraps

is the number of consecutive empty registers on the left of the first non-empty

L cell's template. Rightscraps is the number of consecutive empty registers on

System operations under compressed representations 99

the right of the last non-empty L cell's template. For an L cell with a template

of '(•<• A>*)*' containing the symbols ">)", leftscraps is 4 and rightscraps is 1

(all registers are considered empty since all could accept more symbols). Vacant

indicates that a subtree is completely empty, which is necessary to enable a T cell

with one empty subtree to propagate to its parent the leftscraps and rightscraps

from the other subtree. The arrivals and departures of the downsweep are aug­

mented with the flags mergeleft and mergeright. Mergeleft indicates that the first

incoming template should be merged into the first non-empty L cell in the subtree.

Typically, the mergeleft flag arriving in a T cell propagates to the left subtree, and

mergeright to the right subtree. If one subtree is empty then both flags go to the

other. Any T cell which noted during the.upsweep that it could recover an L cell,

generates a new merge flag which is sent to that subtree into which symbols are

flowing. This algorithm can be reorganised to allow pipelined evaluation in the

T cells, that is, a T cell can be generating the messages for both children while

receiving the message serially from its parent, rather than needing to wait until

the entire message has been received.

Storage movement, which involves each physical L cell shifting virtual L cells

according to the command it received during this storage preparation stage, is

modified to perform merging. When a physical L cell receives one of the merge

flags, it accepts the first virtual L cell before, rather than after, sending out its

own virtual L cell. Storage movement in the L cells is extended to include the

proper merging of the two templates into one. An L cell may receive a. template

to be merged from both neighbors.

Besides the disadvantages described above, the major disadvantage with this

method is that, in order to guarantee compaction, flows must be generated that

also remove all empty L cells from the middle of the FFP expression. The cost of

storage movement, a major aspect of time delays in the FFP machine, depends on

the largest distance that any single cell moves, which is greatly reduced by inter­

spersed empty L cells as described in Section 3.4.2 and demonstrated elsewhere

[Danforth 83, pp. 240-247]. While maintaining compaction, this method severely

degrades the storage management process.

The following method for compaction avoids this disadvantage. This method

adds a new system operation to the system phase to move the braces through the

System operations under compressed representations 100

tree prior to storage management. Ea.ch T cell determines whether braces in one

subtree could be moved to an L cell already holding symbols in the other subtree.

This method varies slightly depending on the particular template; it is de­

scribed here for the template '(•<• A>")*'. For simplicity, it only compacts right

braces. Left braces could be compacted in a. distinct operation or the two opera­

tions could be combined so long a.s care were taken that separated brackets were

properly converted into tf>'s.

Each subtree sends a message consisting of a place and a request. The pla.ce

describes the contents of the rightmost non-empty L cell into which braces might

be packed. There are three kinds of places. H that non-empty L cell contains

parentheses, then it cannot accept a string of right braces that include brackets.

H that cell does not contain parentheses, it can accept a sequence of right brackets

followed by a sequence of right parentheses. The third kind of place describes a

left subtree that is empty; it may be that braces from the right subtree can be

compressed into L cells outside this physical subtree. The request consists of two

numbers describing the braces that may be moved should an appropriate place be

available. These braces are as many of the leftmost symbols in the tree that match

the pattern ">i)i". There are two kinds of requests, those with no brackets, which

are always accepted, and those with brackets, which are accepted when the place

does not contain parentheses. The request includes a flag to indicate whether its

braces are the only symbols in that tree. In those braces move for compaction,

further braces which may be sent into the tree for compaction, are no longer

destined for the right subtree.

Figure 36 demonstrates the T cells sending messages (down, as well as up)

a.s the operation progresses upwards through the levels of the tree. L cells are

shown grouped according to the physical tree structure. In each case, the request

is shown moving upwards from each group of L cells. The T cells receiving these

messages perform some compaction within their subtree and send a message to

their parent. For example, the rightmost T cell in the first row receives a request

containing one parenthesis from each of its L cells. It sends an 'Era.se' command to

the right cell, one parenthesis to the left cell and a request to take two parentheses

to its parent. The T cell next to it receives a request to take a bracket which

it cannot satisfy given the parenthesis in the other L cell. It sends 'No cha.nge'

commands to its children and propagates the request to take the parenthesis that

System operations under compressed representations 101

it received from its left child. The L cells in the second row show the effect of

the commands sent by the lowest level T cells in the first row. The L cell which

received a parenthesis receives a second command, 'Erase', from the T cell at the

second level. The final row of L cells shows the result of the overall operation.

A J;> A A}
NMN >ME NMN }ME

1'} 1'} 1'}

1 2 > >) >))

_.Q, 11.0,
1. 7- 2 >>

7»
)

7}
>))

7)}

,.6,
1 2» :-) >))

7}

1 2») >))

Figure 36. Compaction performed by moving braces through the tree

System operations under compressed representations 102

Both of these methods for performing compaction, either moving braces

through the tree or during storage movement, are extremely complex and will

significantly increase the complexity of the T cell and the period of the physical

machine cycle.

Chapter 8

Summary of results

Having described separately in previous chapters the different issues concern­

ing compressed representations, we now examine the combination of these issues

by reviewing the approach of the research as described in Chapter 1. From these

issues, a procedure for choosing a representation is derived which involves three

steps: classifying symbols on the basis of their being sites for significant idioms and

then choosing registers to hold these symbols and grouping those into a template.

A catalog of templates is presented to demonstrate this procedure, and some con­

cluding remarks are made about the use of significant instructions to direct the

design of templates. Finally, this research on alternative program representations

'has provided insight into the meaning of processor granularity in parallel comput­

ers, in terms of the amount of computation performed by the processing elements.

8.1 Review of the research

An FFP function is implemented as manipulations on the expression tree that

describes an application involving that function. The manipulations are expressed

as a set of groups of idioms, the groups being executed concurrently at different

sites in the expression tree. In the FFP machine, the groups of idioms are dis­

tributed over the L cells in such a way that each group is executed by the L cell

holding the symbol occupying the site in the expression tree with which that group

is associated. The generic FFP machine presented in Chapter 3 demonstrates this

string reduction model of computation. To a large extent, idioms are determined

by the needs of the functions, but there remains some flexibility in the particular

way they are used. For example, in implementing the ApplyToAll function, one

idiom was used to create the string ")([f]" instead of two idioms to create "([f]"

and ")" separately. The L cell design does not affect the choice of idioms, but

rather their implementation.

Examining several dozen FFP functions, of which half a dozen iiiustrative ones

were presented in Chapter 4, yielded a few idioms that are used throughout the

FFP language and beyond. Idioms used in individual FFP functions, because of

their rarity, are a minor factor in evaluating the usefulness of program represen­

tations.

Summary of results 104

The usefulness of a program representation is measured by the space costs

for holding expressions and the time and hardware complexity incurred in imple­

menting the idioms and system operations. The time and hardware complexity

costs are dominated by the use of two particular operations: co=unication and

storage allocation. These operations use a large number of microcode instructions

in each L cell, and microcode storage is the major aspect of hardware complexity.

They also require the organised cooperation of many L cells rather than being

local operations that a single cell can perform independently.

Some partial templates were presented in Chapter 5 which demonstrate the

possible advantages gained from using different representations. The compressed

representations reduce the number of L cells needed to hold FFP expressions. The

optimal savings, given that an L cell may contain no more than one atom, occur

when no brackets or parentheses require their own L cell. The packed brackets

registers recover most of this space. More importantly, the compressed representa­

tions have reduced time costs in three ways. By allowing much simpler system op­

erations, the physical machine cycle has become much·shorter. By allowing many

restructuring idioms to be performed without recourse to significant instructions,

the number of machine cycles needed by many functions has been reduced. For

example, Compose should now complete in a single cycle instead of the two it

needed in previous versions of the FFP machine. Of less importance, simpler L

cells, by requiring less circuitry, can be implemented with shorter delays. •

It was shown in Chapter 5 that the choice of template affects the ease of

designing the microcode segments. Microcode becomes simpler with the appear­

ance of typed symbol registers in templates, such as a register that can only hold

left brackets. Microcode becomes more complex if idioms require context depen­

dent implementation, such as the idiom to create a left bracket given'(< A>)'

as the template. The examples of Chapter 5 also indicate that, in order to avoid

some serious disadvantages, representations should be natural, well-aligned, order­

preserving and fine-grained.

The compressed representations allow a given FFP expression to have several

distinct denotations in the FFP machine, and this variety may cause problems.

For the representations that satisfy the constraints above, the denotations of FFP

expressions will be unique if they use a minimal number of L cells. Chapter 6

Summary of results 105

examined the choices available in approaching the problem of scattered represen­

tations. Some approaches cause registers to be added to the template (the outer

brackets registers), alter the choice of idioms to be used (the functional forms cre­

ate the string ")>" instead of">)"), and have a significant impact on the duration

of the system phase of the physical machine cycle.

Program representation affects the low-level system operations of the various

FFP machines, both in the system operations it requires be provided and in its

effect on the implementation of those operations. These effects were examined in

Chapter 7.

Care is necessary when a machine design is modified in answer to the principal

costs during operation, since those modifications may also alter how the principal

costs occur and so no longer be optimal solutions. Two examples of this effect

have been seen in this research. As the template is altered to allow solutions to

the problem of scattering, the ways in which scattering can arise change. As the

template is altered to pack multiple brackets into one L cell, idioms which had

needed significant instructions can be implemented without them. Since these

idioms would come to reside in the same L cell by the packing of the brackets,

such packing seems at first to be unacceptable; the modification to the template

alters the problem at the same time as it appears to be causing it.

8.2 Templates and their consequences

Choosing a template involves three steps: classifying FFP symbols as attach­

able or solitary, organising appropriate symbol registers, and assembling symbol

registers to form a template.

8.2.1 Classifying FFP symbols

The difference between attachable and solitary symbols arises in considering

the groups of idioms that implement a (reasonably complete) set of FFP functions.

An FFP symbol is classified as attachable if no group of idioms that may

be associated with that symbol (in the implementation of any function) requires

significant instructions for its implementation. Several such symbols may reside

in an L cell without allowing situations to arise during execution that compromise

that cell's fine granularity.

Summary of results 106

A symbol is classified as solitary if there are groups of idioms associated with

that symbol that require significant instructions in their implementation. A tem­

plate that allows two solitary symbols to reside in the same L cell may allow

situations to arise in which an L cell is required to perform more significant in­

structions than are necessary.

Significant instructions need only be associated with a symbol in the imple­

mentation of one FFP function for that symbol to be classified as solitary. This

is because the amount of microcode storage in the L cell is the maximum of the

sizes of the microcode segments needed for any function that the FFP machine

must implement. The alternative to classifying that symbol as solitary because

of a single function is to find an different implementation in which significant in­

structions are not associated with that symbol or to disallow that function as a

primitive that can be implemented directly by the FFP machine.

From the templates in Chapter 5, it is clear that atoms should be classified

as solitary, and brackets as attachable. The classification of parentheses is less

obvious.

Implementing FFP's functional forms, such as Compose and Insert, associates

idioms that require communication and storage allocation with the closing paren­

thesis. This can be seen by considering an L cell holding the symbols "5>))"

in an RA involving ApplyToAll. This L cell now executes two independent fork

instructions: one creates L cells t~ hold the parameter function to be duplicated

before the '5' and the other creates the L cell needed to insert a bracket after

the closing parenthesis. Parentheses can avoid becoming solitary because of Ap­

plyToAll if the idiom 'create the string j([f]" before [x3] through [xn]' is changed

to 'create the string j([f]" after [x1] through [x0 _ 1]'. Imposing such limitations

is likely to be acceptable for implementing FFP's functional forms, but restricts

alternate uses of the FFP machine that call for more extensive manipulations of

and around parentheses, such as might be the case, for example, in implementing

normal order execution.

If the microcode segments are to maintain compaction, they will use com­

munication to move the brackets surrounding the original RA (when there are

single parentheses which are deleted). This communication is associated with the

parentheses, and suggests they be classified as solitary.

Summary of results 107

In summary, classifying right parentheses as attachable constrains the imple­

mentation of functional forms and strongly suggests that microcode segments not

perform all compaction. The left parenthesis can be classified as attachable more

easily, since the computation, at run-time, of a function to be applied is rare.

The atom following a left parenthesis holds the function symbol of the RA. For

primitive FFP functions, this symbol is always deleted and for the functional forms

(proposed so far), care with the implementation can prevent this atom having

significant idioms associated with it. Thus, the classification of symbols is context

dependent; those atoms immediately following a left parenthesis can be classified

as attachable. This allows the significant instructions used for compaction to avoid

causing left parentheses to be classified as solitary. Templates may contain two

solitary registers in this way so long as no FFP expression places two such solitary

symbols in the same L cell.

The solitary versus attachable distinction seems to follow a semantic versus

syntactic distinction. Brackets merely supply the structure to the atoms that con­

vey the real information; parentheses, in indicating computations, fall in between.

The choice in previous FFP machines of having one symbol per L cell is modified

to having one atom per L cell, that is, a symbol that conveys value rather than

structure. It is unclear whether there is a causal relationship between the classi­

fication of FFP symbols by associated significant idioms and the classification of

FFP symbols by information content.

8.2.2 Organising appropriate symbol registers

FFP symbol registers are classified as solitary or attachable according to the

classification of the symbols they hold. Attachable symbol registers allow the

corresponding symbols to be created without storage allocation, which saves both

time and space.

Packed symbol registers can contain many identical symbols. Packed registers

must be assumed to be large enough to prevent overflow, or enough work may be

added testing for overflow and then allocating space that such registers should be

made solitary. This limits packed registers to holding various patterns of braces.

The packed brackets registers, '<*' and '>*', provide most of the space savings

found in this research. As important as the reduction in absolute space require­

ments, the reduction in the variation in space requirements during execution avoids

Summary of results 108

storage allocation costs. Packed registers (usually) obviate specifying the exact

position of the symbols being created or deleted. Incrementing or decrementing

the register adds or removes an unspecified member of the group, as can be seen in

the implementation of transpose where row brackets are deleted and created with­

out reference to any relative level numbers. Of the packed parentheses registers,

'(*'and')*', the latter one is very useful for the Compose function, which by itself

is a frequent part of FFP program expressions. The former register is suggested

for symmetry, but would be as effective if limited to a single parenthesis.

H compactness is to be maintained entirely by microcode segments, an L cell

must have access to the brackets that surround the RA. Outer brackets registers

are brackets registers placed in the template so as to hold brackets adjacent to

the parentheses (that is, brackets corresponding to sequence nodes immediately

above an application node in the expression tree). Every function, on erasing the

parentheses of the RA, checks whether either of the '(*' or ')*' registers has become

empty. H so, the symbols in the adjacent outer brackets register must be moved to

an L cell holding the result. This requires communication if that L cell differs from

the L cell holding the outer brackets, which suggests that outer brackets registers

are associated with solitary parentheses registers.

8.2.3 A catalog of templates and their consequences

Choosing a template involves assembling a sequence of symbol registers. A

template may contain one solitary symbol register and as many attachable symbol

registers as seem useful. The interactions among symbol registers can best be seen

by considering the following templates.

8.2.3.1 '(*<*A>*)*'

Parentheses have been defined as attachable, so this template favors Compose

over the functional forms like Insert, ApplyToAJI and Construct. The lack of outer

brackets registers in this template prevents microcode segments maintaining com­

pactness entirely on their own. This choice concerning compaction is appropriate

since the parentheses are attachable.

Summary of results 109

8.2.3.2 '(*<* R >*'

R may contain either an atom or ")i". Right parentheses have been reclassi­

fied as solitary, which does not favor Compose over other functional forms, such as

Insert, that may need to separate groups of consecutive parentheses. Whereas soli­

tary symbols usually require storage allocation for their creation, Compose avoids

this cost for creating closing parentheses because it creates new right parentheses

at the site of the initial one, which can use the packed nature of the R register

when that is behaving as ')* '. Compose would not avoid these costs were R defined

to contain either an atom or ")". Functions that create parentheses at sites other

than that of the initial right parenthesis do incur this added storage allocation.

For example, ApplyToAII must allocate one more cell for each copy of ")([f]" under

this template than under the one above.

The closing brackets register is an outer brackets register in the necessary

circumstances, that is, when the R register contains a right parenthesis. Adding

another '<*' register at the left of this template yields '<* (*<* R >*' which

supports microcode segments maintaining compactness. This template avoids the

difficulty shown in Section 6.3 of unavoidable scattering occurring with incorrectly

placed parentheses, so long as the FFP program does no computation on function

expressions. That is, the function expression in every application is a constant

expression.

8.2.3.3 '<* (*<*A>*)* >*'

This template is the first one above augmented with outer brackets registers.

A minor factor for this template is that it contains seven registers, four of which

are usually vacant: the parentheses registers and outer brackets registers will be

empty in all L cells in the middle of RAs. Section 6.3 showed that microcode seg­

ments operating under this template can undo scattering associated with brackets

but not parentheses. This extension of'(*<* A>*)*', intended to allow function

implementations to perform compaction in the region of the RA's parentheses,

leads to the parentheses not being classified as attachable.

Summary of results llO

8.2.3.4 '<* p >*'

P may contain either an atom, "(i" or ")i". Only brackets have been classified

as attachable. This template, considered with those above, demonstrates the

contrasts between solitary and attachable registers. This template is relatively less

useful for Compose. Although storage allocation is not needed to create the n right

parentheses, despite their being solitary symbols, because P is a packed register

when holding parentheses, creating n left parentheses, one before each [f,], does

require storage allocation. The difference is that the right parentheses are created

at a point where a right parenthesis already occurs, so the packed parentheses

register allows subsequent parentheses to be added. The left parentheses are added

where none already exist, in the middle of the RA, and there is no attachable

parenthesis register in the template of those L cells. An RA involving the function

"< ApplyToAll + >" must allocate three times as many new cells to create copies

of ")(+" as it would under '("<*A>*)"'.

This template would be appropriate for experimenting with mechanisms where

arbitrary manipulations occurred around parentheses [Middleton and Smith 86].

Whether this template or '(*<* A >")*' is more appropriate for implementing

non-innermost reduction rules, such as normal-order evaluation, requires more

study of the specific rule being considered. For standard FFP however, the only

manipulations of parentheses (other than deletion) occur in the small fixed set

of functional forms. More than the absolute space increase used to represent

expressions with this template, its cost is the increased use of storage allocation

that was avoided by other templates in the same situation.

Both brackets registers are outside ones and the parentheses are solitary, so

this template is a good choice if microcode segments must maintain compactness.

A minor advantage of this template is that the symbol registers are often occupied.

8.2.3.5 '<* (*A)* >*'

This template contains the same registers as the first one above, but in a differ­

ent order. Whenever the function or operand of an RA is a sequence, the adjacent

parenthesis will reside in a separate L cell. This template leads to layouts that

are often identical with those resulting from the choice of'<* P >*' as template.

The extra two registers are of little advantage, demonstrating that the assembly

of the chosen symbol registers must reflect the structure of FFP expressions.

Summary of results 111

8.2.3.6 '(*{*<*A>*}*)*'

The braces register, '{*', counts consecutive occurrences of "<(". The seven

registers in this template will tend to be occupied sparsely. This appears to handle

some needs of FFP well, but may be too specialised for broader uses. This template

is particularly useful for the Insert functions which can create several consecutive

copies of ")>" by adding the number to the '}*' register, as well as simplifying

ApplyToAll and Construct. The manipulation of braces is relatively complex

in comparison with manipulation of braces in previous templates, but it is still

much simpler than the significant instructions. For example, erasing the closing

parenthesis of an RA requires first checking the'}*' register. If it is empty, the ')*'

register is decremented; otherwise, the '}*' register is decremented and the '>*'

register incremented. On the other hand, the creation of a right bracket after

the right parenthesis, an operation used by ApplyToAll among other functional

forms, is difficult if the parenthesis is in the'}' register. This suggests a template of

'("{"<" B' where 'B' may contain either "A>'" or "P}"". Implementing functional

forms, such as Insert, ApplyToAll and Construct, is likely to be.complicated by

the need to handle multiple cases.

8.2.3.7 '(* F <*A>*)*'

In light of the discussion in Section 8.2.1 about the first atom in an RA being

attachable, this template includes an attachable register for that symbol. Func­

tions should avoid placing symbols in this register unless their result involves

function applications, which restricts its use to the implementations of the func­

tional forms. The FFP functions that create RAs, that is, the functional forms,

must determine which register should contain the function symbol for the partic­

ular applications they are creating. The effects of this choice on the definition of

·expression trees are not difficult to handle.

The particular use for this template would be enabling ApplyToAll to avoid

storage allocation in certain cases, namely those in which the parameter function

is a single symbol. Large improvements can be gained if this function does not

require storage allocation, as is demonstrated by considering a Navier-Stokes com­

putation in which each element in a grid is updated to contain the average of its

four neighbors. Specially defined atoms containing four numbers are initialised to

contain the neighbors of each grid point using virtual machines in special ways

[Middleton and Smith 86]. These values can be assembled in time proportional

Summary of results 112

to the grid's width rather than the number of points. The straightforward Ap­

plyToAll implementation wastes this advantage with its storage allocation costs

likely being proportional to the number of elements in the grid. The modified Ap­

plyToAII exploiting this template can create the computations to be run in single

L cells and so achieve large improvements in this kind of situation.

8.2.4 Some remarks on significant instructions

Significant actions are an unstable criterion on which to base design decisions

about the symbol registers that constitute a template. Adding two bracket regis­

. ters to S, the template of the generic FFP machine, yields the template'< A>',

which leads to an FFP machine in which the L cells can incur more significant

idioms and so are of larger granularity. Adding further storage to the template

for brackets yields the template'<* A >•', which is more fine-grained than either

of the other two.

Even as the significance of the idioms that can be attached to them affects

what registers can be placed in the template, the types of symbol registers available

affect whether an idiom requires significant instructions in its implementation.

A similar effect occurs in the question of scattering. Even as the ways in

which scattering can occur depend on the types of registers in the template, the

approaches to scattering affect the choice of template registers.

Further study of the definition of solitary is necessary, since it fails to classify

brackets adequately. On the one hand, brackets should be attachable because such

templates displayed uniformly positive results. In particular, compressed brack­

ets removed the need for significant actions to implement some frequent idioms,

so that even as symbols were being compressed, significant actions were being

removed. On the other hand, there remain idioms, such as duplicating one expres­

sion before another, which continue to use significant actions and are associated

with the first symbol of an expression, which is often a bracket. This suggests

that a bracket should be classified as solitary by the above definition. Perhaps

there is some correlation which prevents different significant actions being associ­

ated with both a bracket and an adjacent atom, in the realm of reasonable FFP

functions, or perhaps the brackets, having allowed the firstL and JastL addresses

to be generated, are no longer important as the site of an idiom.

Summary of results 113

8.3 A program-related definition of fine granularity

This definition assumes a distributed multiprocessor model of parallel com­

puters in which each processor has its own program and private memory (there

is no global memory) and a computation consists of tasks that are performed by

different processors. For the FFP machine, this multiprocessor corresponds to the

virtual machine.

There are three factors that relate to the performance of a processor. The

responsibility of a processor is the amount of the computation that it is to per­

form. Responsibility is measured by the significant operations the processor must

perform for its task, significant operations being the ones that incur the majority

of the time and complexity costs and which usually involve cooperation with other

processors. For the FFP machine, these operations are indicated by the fork and

SendReceive instructions in the microcode segments. The view of a processor is

the amount of initial information available in its own memory; it can use this

information to fulfill its responsibility without disturbing other processors. The

initial information of an RA is just its symbols, so the view of an L cell is the FFP

symbols it contains. The capability of a processor is its ability to generate its part

of the result without affecting other processors. For example, the amount of local

storage will affect the processor's need for secondary storage to hold intermediate

results. The capability of an L cell relates to the attachable registers which allow it

to generate symbols of the result without invoking storage allocation. Similarities

exist between the view, the capability and the responsibility of processors, and

the abilities to read, to create and to modify objects in the context of operating

systems.

These three factors affect the performance of a processor in the following ways.

In order to maximise the parallelism of a computation, it should be divided into

several small tasks, that is, the responsibility of processors should be made small.

This allows the processor to become smaller and simpler. To reduce the amount

of co=unication a processor uses, the view should be made large, that is, the

processor should be given a large amount of information about the computation.

Also, the capability should be made large enough that the processor can represent

its part of intermediate and final expressions without acquiring more resources.

These three factors are interdependent. A processor is responsible for all

those tasks that use the information it contains. As it gains more information,

Summary of results 114

that is, as its view increases, so does its responsibility. For the FFP machine, the

responsibility of the L cells includes all the idioms associated with the symbols

it contains, its view, so that increasing its view and capability will increase its

responsibility. This tradeoff between maximising the view and capability and

minimising the responsibility is the basis for choosing the granularity of a parallel

computer.

Fine granularity is a property of parallel computers for which design decisions

placed more importance on minimising their responsibility than on maximising

their view or capability.

Early parallel computers suffered from serious bottlenecks in the communi­

cation between processors. It is possible that more recent designs have, as a

result, stressed maximising the view of the individual processors in order to re­

duce the communication necessary between the processors. That recent designs

often involve powerful microprocessors containing many tens of kilobytes of mem­

ory supports this conjecture. The discussion above suggests that such designs

must impose a large responsibility on the individual processors, and this might

explain the recurring difficulty that parallel computers have in achieving a high

degree of parallelism over a wide range of computations. Furthermore, since a

single computation might not use the full responsibility available in a processor,

multiprocessing is added to the processor incurring the costs of the scheduling

overhead.

Chapter 9

Conclusions and suggestions for further work

Language-directed design is an approach to building parallel computers that

emphasizes programmability. It is a response to the widespread difficulty in using

parallel computers designed for different primary goals. The FFP machine is one

such parallel computer which has furthermore been designed around the run-time

characteristics of individual programs as well the characteristics of a particular

language. Flynn and Hennessy argue that the question of program representation

becomes more important and complex with the transition from sequential com­

puters to parallel ones because of the need to provide enough information that

available parallelism can be recognised, while withholding information that over­

constrains machine operation and so limits the parallelism that can be exploited

[Flynn and Hennessy 79]. It is not surprising that language-directed parallel com­

puters in general, and the FFP machine as a program-directed parallel computer

design in particular, would be especially sensitive to the choice of program repre­

sentation.

This research has investigated different ways of representing programs in the

FFP machine. Even under constraints that restrict the possible representations to

a narrow range, the consequences of the different representations are far-reaching.

The number of machine cycles used to implement several common FFP functions

was halved, the system operations that contribute to the length of the basic ma- ·

chine cycle were greatly simplified and the size of the processors (predominantly,

their local storage) has been reduced. The performance of this parallel computer

was shown to be extremely sensitive to the choice of program representation.

This research provided advantages at several levels. At the lowest level, sev­

eral competing variants of the FFP machine were examined. Each variant FFP

machine corresponds to a different representation in which the broad needs of

machine operations may be accomplished in different ways. Individual machines

outperform others in specific aspects of machine operation. For example, machines

that include a ')*' register implement Compose better, and ApplyToAll slightly

worse, than those without such a register. Several representations were designed

in which large numbers of functions could be evaluated in fewer machine cycles; by

avoiding storage allocation, these functions can be accomplished in a single cycle

Conclusions and suggestions for further work 116

in contrast with the minimim of two cycles needed in previous FFP machines.

Representations were designed which required significantly fewer L cells to hold

program expressions, without contravening the fine-grained nature. of the L cell

design. The factors affecting performance of machines using particular represen­

tations have been organised into a procedure that can be used to aid the design

of future FFP machines.

At an intermediate level, the repeated redesign of the same fundamental ma­

chine has shown the differences between the essential and the superficial aspects

of various mechanisms supporting general machine operation. This better under­

standing is evident in improvements which have reduced the complexity of system

operations for all FFP machines (in contrast with improvements that apply to

specific variants). In particular, the T cell hardware associated with message pro­

cessing has been reduced by a factor of four, the system algorithm that performs

the partitioning operation has been significantly simplified, and the first correct

executable implementation of the directory algorithm was constructed for these

versions of the FFP machine.

This research has also suggested an approach to considering the granularity

of the processors forming a parallel computer in relation to characteristics of pro­

grams and languages rather than in relation to hardware characteristics. In a dis­

tributed computer, there is a conflict between giving individual processors a large

amount of information in order that they may perform more work autonomously

and so reduce co=unication, and giving them a small amount to increase the

parallelism being exploited. In this tradeoff, fine granularity chooses in favor of

requiring minimal responsibility of the processor at the expense of providing little

information.

A set of necessary characteristics for representations was developed that pro­

vides an accurate predictor of their utility. Being derived from the fundamental

fine-grained and reconfigurable nature of the FFP machine design, this set of

characteristics can be relied on to indicate the advantages and problems with new

representations as they are proposed. To the extent that other parallel computers

may share this nature with the FFP machine, these characteristics can also be

used to direct the design of program representation in those computers.

At the highest level, in demonstrating one general-purpose parallel computer

that is extremely sensitive to choices about program representation, this research

Conclusions and suggestions for further work 117

provides a first piece of support for the conjecture that general-purpose parallel

computer designs may be intrinsically very sensitive to choices of program repre­

sentation. This is an important issue since parallel computer designs often do not

consider the representation of programs among the initial design choices.

This research has raised several questions that form the basis for future re­

search. The constraints on the representations limited them to a narrow range.

Even over this narrow range, machine performance was shown to vary widely with

respect to changes in program representation. This sensitivity suggests that fur­

ther relaxing the constraints on allowed representations might lead to a wider

variety of language-directed parallel computers with further improvements in per­

formance.

The aspect of the research that was least amenable to investigation was that of

unique representations in general, and scattering in particular. Since this appears

to be the only potential disadvantage of these representations, the problem should

be investigated further. In particular, further work might be done on its relation to

the view, capability and responsibility of a processor and on improving algorithms

to perform compaction by exploiting characteristics of the scattering process.

The concept of significant instructions is ill-defined, relying on a coarse attempt

at quantifying costs in the FFP machine. As the factors contributing to time,

space and complexity costs become better understood for the FFP machine, the

definition of significant instructions and so in tum the concepts of responsibility

and capability should also be refined.

Bibliography

S. Abramsky and R. Sykes "Secd-m: a Virtual Machine for Applicative Pro­

gramming" Proceedings of the 1985 Conference on Functional Pro­

gramming Languages and Computer Architecture. Springer-Verlag,

LNCS 201. pp81-98. September 1985. Nancy, France.

T. Agerwala and Arvind "Data Flow Systems" IEEE Computer, Volume 15 No.

2. pp10-14. February 1982.

J. Backus "Programming language semantics and closed applicative languages"

ACM Symposium on Principles of Programming Languages. pp71-

86. October 1973. Boston.

J. Backus "Can programming be liberated from the von Neumann style? A func­

tional style and its algebra of programs" Communications of the

ACM, Volume 21 No. 8. pp613-641. August 1978.

K.E. Batcher "Bit serial parallel processing systems" IEEE Transactions on Com­

puters, Volume C31 No. 5. pp377-384. May 1982.

K.J. Berkling "Reduction Languages for Reduction Machines" Second Annual

Symposium on Computer Architecture. pp133-140. January 1975.

Houston, Texas.

K.J. Berkling "Computer Architecture for Correct Programming" Fifth Annual

Symposium on Computer Architecture. pp78-84. April 1978.

P. Chen "Implementations of FFP functions on the Mag6 Machine" Internal doc­

ument. 1981.

T.S. Clark "S-K Reduction Engine for an Applicative Language" Master's Thesis.

University of lllinois at Urbana-Champaign. 1982.

T.J. W. Clarke, P.J.S. Gladstone, C.D. MacLean and A. C. Norman "SKIM- The S,

K, I Reduction Machine" Proceedings of the 1980 LISP Conference.

pp128-139. August 1980. Palo Alto, California.

D.P. Christman "Programming the Connection Machine" Thesis, Massachusetts

Institute of Technology. April 1984.

S.H. Danforth "DOT, a distributed operating system model of a tree-structured

multiprocessor" Ph.D. Thesis, University of North Carolina at

Chapel Hill. 1983.

J. Darlington and M. Reeve "ALICE: A Multi-Processor Reduction Machine for

the Parallel Evaluation of Applicative Languages" Proceedings of

the 1981 ACM Conference on Functional Programming Languages

and Computer Architecture. pp65-76. October 1981. Portsmouth,

New Hampshire.

J.B. Dennis, G.A. Boughton and C.K. Leung "Building Blocks for Data Flow

Prototypes" Seventh Annual Symposium on Computer Architecture.

ppl-8. May 1980. France.

K.R. Dybvig (Implementing SCHEME on the FFP Machine) Ph.D. Thesis in

preparation, University of North Carolina at Chapel Hill.

M.J. Flynn and J.L.Hennessy "Parallelism and representation problems in dis­

tributed systems" First International Conference on Distributed

Computer Systems. pp124-130. October 1979. Huntsville, Al­

abama.

G.A. Frank "Virtual Memory Systems for Closed Applicative Language Inter­

preters" Ph.D. Thesis, University of North Carolina at Chapel Hill.

1979.

G.A. Frank, W.E. Siddall and D.F. Stanat "Virtual Memory Schemes for an FFP

Machine" Proceedings of the International Workshop on High-Level

Computer Architecture. pp8.37-8.45. May 1984. Los Angeles, Cali­

fornia.

D. Gajski, D.J. Kuck, D. Lawrie and A. Sameh "Cedar- a Large Scale Multipro­

cessor" Proceedings of the 1983 International Conference on Parallel

Processing. pp524-529. 1983.

L. Gilman and A.J. Rose "APL: An Interactive Approach" Third Edition, John

Wiley and Sons. 1984.

H. Glaser, C. Hankin and D. Till "Principles of Functional Programming" Pren­

tice/Hall International, 1984.

B. Goldberg and P. Hudak "Serial Combinators: Optimal Grains of Parallelism"

Proceedings of the 1985 Conference on Functional Programming

Languages and Computer Architecture. Springer-Verlag, LNCS 201.

pp382-399. September 1985. Nancy, France.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph and M. Snir

"The NYU Ultracomputer - Designing an MIMD Shared Memory

Parallel Computer" IEEE Transactions on Computers, Volume C32

No. 2. pp175-189. February 1983.

J.R. Gurd, C.C. Kirkham and I. Watson "The Manchester Prototype Dataflow

Computer" Co=unications of the ACM, Volume 28 No. 1. pp34-

52. January 1985.

W.D. Hillis "The Connection Machine" MIT Press. 1985.

P. Hudak and B. Goldberg "Distributed Execution of functional programs using

Serial Combinators" IEEE Transactions on Computers, Volume C34

No. 10. pp881-891. October 1985.

D. Kehs "A Routing Network for a Machine to Execute Reduction Languages"

Ph.D. Thesis, University of North Carolina at Chapel Hill. 1978.

R.M. Keller, G. Lindstrom and S. Patil "A loosely-coupled applicative multi­

processing system" AFIPS Conference Proceedings. pp613-622.

June 1979.

R.M. Keller and F.C.H. Lin "Simulated Performance of a Reduction-based Multi­

processor" IEEE Computer, Volume 17 No. 7. pp70-82. July 1984.

J.N. Kellman "Parallel Execution of Functional Programs" Master's Thesis. Uni­

versity of California at Los Angeles. 1983.

R.B. Kieburtz "The G Machine: A fast, graph-reduction evaluator" Proceedings

of the 1985 Conference on Functional Progra=ing Languages and

Computer Architecture. Springer-Verlag, LNCS 201. pp400-413.

September 1985. Nancy, France.

W.E. Kluge "Cooperating Reduction Machines" IEEE Transactions on Comput­

ers, Volume C32 No. 11. pp1002-1012. November 1983.

D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure and M. Wolfe "Dependence

Graphs and Compiler Optimizations" ACM Symposium on Prin­

ciples of Programming Languages. pp207-218. 1981.

J.T. Kuehn, T. Schwederski and H.J.Siegel "Design of a 1024-Processor PASM

System" First IEEE International Conference on Supercomputing

Systems. pp603-612. December 1985. St. Petersburg, Florida.

R.E. Ladner and M.J. Fischer "Parallel Prefix Computation" Journal of the ACM,

Volume 27 No. 4. pp831-838. October 1980.

P.J. Landin "The mechanical evaluation of expressions" Computer Journal6, p308.

January 1964.

G.A. Mag6 "A network of microprocessors to execute reduction languages" Inter­

national Journal of Computer and Information Sciences, Volume 8

Nos. 5 and 6. pp349-385 and 435-471. 1979.

G.A. Mag6 "A cellular computer architecture for functional programming" IEEE

COMPCON. pp179-187. Spring 1980.

G.A. Mag6 "Copying operands versus copying results: a solution to the problem of

large operands in FFP's" Proceedings of the 1981 ACM Conference

on Functional Programming Languages and Computer Architecture.

pp93-97. October 1981. Portsmouth, New Hampshire.

G.A. Mag6 "Data sharing in an FFP machine" 1982 ACM Symposium on LISP

and Functional Programming. pp201-207. August 1982. Pittsburgh,

Pennsylvania.

G.A. Mag6 and D. Middleton "The FFP Machine- A Progress Report" Proceed­

ings of the International Workshop on High-Level Computer Archi­

tecture. pp5.13-5.25. May 1984. Los Angeles, California.

D. Middleton "Alternate program representation for the FFP Machine" Eleventh

EUROMICRO Symposium on Microprocessing and Microprogram­

ming. pp85-93. September 1885. Brussels, Belgium.

D. Middleton and B.T. Smith "FFP Machine Support for Language Extension"

Nineteenth Hawaiian International Conference on System Sciences.

pp59-66. January 1986. Honolulu, Hawaii.

R.P. Pargas and H.A. Presnell "Communication along shortest paths in a tree

machine" Proceedings of the 1981 ACM Conference on Functional

Programming Languages and Computer Architecture. pp107-114.

October 1981. Portsmouth, New Hampshire.

R.P. Pargas "Parallel Solution of Recurrences on a Tree Machine" International

Journal of Computer and Information Sciences, Volume 13 No. 4.

pp251-277. 1984.

D.A. Plaisted (a) "An Architecture for Fast Data Movement in the FFP Machine"

Proceedings of the 1985 Conference on Functional Programming

Languages and Computer Architecture. Springer-Verlag, LNCS 201.

pp147-163. September 1985. Nancy, France.

D .A. Plaisted (b) "An Architecture for Functional Programming and Term Rewrit­

ing" IFIP TC10 Conference on Fifth Generation Computer Archi­

tecture. July 1985. University of Manchester.

M. Pozefsky "Programming in Reduction Languages" Ph.D. Thesis, University of

North Carolina at Chapel Hill. 1977.

H.A. Presnell (New communication mechanisms in the FFP Machine network)

Ph.D. Thesis in preparation, University of North Carolina at Chapel

Hill.

S.F. Reddaway "DAP- a distributed array processor" First Annual Symposium

on Computer Architecture. pp61-70. 1974. Florida.

C.L. Seitz "The Cosmic Cube" Communications of the ACM, Volume 28 No. 1.

pp22-33. January 1985.

D.E. Shaw "The NON-VON Supercomputer" Technical Report. Columbia Uni­

versity. August, 1982.

H.J. Siegel, T. Schwederski, N.J. Davis and J.T. Kuehn "PASM: A Reconfigurable

Parallel System for Image Processing" ACM Computer Architecture

News, Volume 12 No. 4. pp7-19. September, 1984.

B.T. Smith "Logic Programming on an FFP Machine" 1984 International Sympo­

sium on Logic Programming. pp177-186. February 1984. Atlantic

City, New Jersey.

B.T. Smith (Logic Programming on an FFP Machine) Ph.D. Thesis in preparation,

University of North Carolina at Chapel Hill.

V.P. Srini "An Architectural Comparison of Dataflow Systems" IEEE Computer,

Volume 19 No. 3. pp68-88. March 1986.

D.F. Stanat and G.A. Mag6 "Optimal Storage Management in a Cellular Com­

puter" Technical Report. University of North Carolina. 1981.

S.J. Stolfo and D.P. Miranker "DADO: A Parallel Processor for Expert Systems"

Proceedings of the 1984 International Conference on Parallel Pro­

cessing. pp74-82. August 1984.

W.R. Stoye, T.J.W. Clarke and A.C. Norman "Some Practical Methods for Rapid

Combinator Reduction" 1984 ACM Symposium on LISP and Func­

tional Programming. ppl59-166. August 1984. Austin, Texas.

D.M. Tolle "Coordination of Computation in a Binary Tree of Processors: an

Architectural Proposal" Ph.D. Thesis, University of North Carolina

at Chapel Hill. 1981.

P.C. Treleaven, D.R Brownbridge and R.P. Hopkins "Data-Driven and Demand­

Driven Computer Architecture" ACM Computing Surveys, Volume

14 No. 1. pp93-143. March 1982.

D. Turner "Combinator Reduction Machines" Proceedings of the International

Workshop on High-Level' Computer Architecture. pp5.26-5.38. May

1984. Los Angeles, California.

S.R. Vegdahl "A Survey of Proposed Architectures for the Execution of Functional

Languages" IEEE Transactions on Computers, Volume C33 No. 12.

pp1050-1071. December 1984.

E.H. Williams "Analysis of FFP Algorithms for Associative Searching" Ph.D.

Thesis, University of North Carolina at Chapel Hill. 1981.

J. Williams "Notes on the FP style of Functional Programming" in "Functional

Progranning and its Applications". Edited by J. Darlington, P.

Henderson and D.A. Turner, Cambridge University Press. pp73-

101. 1982.

W.T. Wilner "Recursive Machine Principles of Operation" Xerox Palo Alto Re­

search Center. LSI Systems Area Memo. September 1978.

W.T. Wilner "Recursive Machines" Xerox Palo Alto Research Center. Submitted

to 1980 IFIP.

