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ABSTRACT 
Medical imaging has long needed a good method of shape description. 
both to quantitate shape and as a step toward object recognition . 
Despite this need none of the shape description methods to date have 
been sufficiently general , natural. and noise-insensitive to be 
useful . We have developed a method that is automatic and appears to 
have great hope in describing the shape of biological objects in both 
2D and 3D. 
The method produces a shape description in the form of a hierarchy by 
scale of simple symmetric axis segments . An axis segment that is a 
child of another has smaller scale and is seen as a branch of of ita 
parent . The scale value and parent-child relationship are induced by 
following the symmetric axis under successive reduction of resolution . 
The result is a figure- rather than boundary-oriented shape 
description that has natural segments and is insensitive to noise in 
the object description . 
We extend this method to the description of grey-scale images. Thus, 
model-directed pattern recognition will not require pre-segmentation 
followed by shape matching but rather will allow shape properties to 
be included in the segmentation itself . 
The approach on which this method is baaed is generally applicable to 
producing hierarchies by scale. It involves following a relevant 
feature to annihilation as resolution is reduced, defining the 
component that is annihilating as a basic subobject, and letting the 
component into which annihilation takes place become ita parent in the 
hierarchy . 

1. OBJECT DEFINITION VIA HIERARCHICAL SHAPE DESCRIP­
TION 

A common task in medic.al image processing and display is the definition 
of the pixels or voxels making up a particular anatomic object. With such 
a definition the object can then be displayed or analyzed, full scene anal­
ysis can begin. or parameters of image processing on the object or its im­
age region can be chosen . The weaknesses of common methods of object def­
inition are well known . Image noise has major effects on the object def­
inition. Sepa.rate objects are inadvertently connected when they have sim­
ilar properties . And the global variation of such features as image in­
tensity across an object undermines definitions baaed on these features. 
These weaknesses follow from the locality of decisions on boundary or re­
gion specification, and the inability of the methods to take into account 
global expectations about the objects being defined . Thus. detail due to 
noise or normal variations interferes with the determinat i on of an object's 



global properties, and global information cannot be brought to bear un­
til after a tentative segmentation (definition of an object or aubobject) 
haa occurred. 

To avoid these weaknesses, we are developing methods that 

1. model expected objects hierarchically by scale so that detail is 
seen aa a property of a aubobject that does not destroy the descrip­
tion of the object at a larger scale , 

2. use descriptors that capture global object properties that com­
monly go under the name 1hape, but at the aame time can capture typ­
ical intensity properties such as level and profile, and 

3 . operate in a way that does not require finding the object before 
it can be described. 

In our approach, shape is described using the symmetric axis transform (SAT) . 
a descriptor that is global by depending not on the object boundary but 
on the figure (included pixels or voxela) and that together with a mul­
tiresolution approach induces a hierarchical subdivision of an object into 
meaningful objects and aubobjects . Furthermore, we suggest a form of this 
approach that allows ''intensity shape•• to be captured as well . Thus, 
a.n object is defined by computing a description of an image or image re­
gion and matching that description against a predefined description of the 
object, possibly together with ita environment. 

We begin by facing the problem of creating an adequate shape description 
of an object whose boundary has already been defined and then go on to see 
how the method can be extended to describe images or image regions defined 
only by the intensity values of their pixels or voxels . In all cases the 
method is discussed in two dimensions but applies directly to three di­
mensions, not alice by alice, but by replacing two dimensional elements 
(pixels) by three dimensional elements (voxels) and two dimensional dis­
tance by three dimensional distance. 

After reviewing other work on shape description in Section 2, we review 
the symmetric axis transform and its properties in Section 3 . Then in Sec­
tion 4 a general approach for generating hierarchies by scale using mul­
tiple resolutions is presented, and it is applied to the symmetric axis 
to produce a hierarchical description of shape . Section 5 covers details 
of the multiresolution symmetric axis transform approach such as the means 
of reducing resolution and of following the axis as resolution is reduced . 
In Section 6 the relation between the proposed shape description and other 
methods is discussed, and extensions are suggested. Finally, in Section 
7 a method applicable to grey-scale images is presented. 

2. SHAPE DESCRIPTIONS 

Many methods of shape description have been previously proposed, among t hem 
many focusing on the description of boundary curvature [Koenderink, 1985; 
Zahn and Roskies, 1972 ; Richards and Hoffman, 1985], some based on a list 
of somewhat ad hoc features, some focusing on descri ption of deformation 
from a primordial shape such as an oval [Bookstein, et al., 1985; Layton, 
1984; Leyton, 1986b], some focusing on description of the object figure, 



i . e . • the area (or volume in 3D) of the object [Blua and Nagel, 1978; Nack-
11Wl and Pizer . 1986] • and some focusing on both boundary and figure [Brady 
and Aaada. 1984]. All except those baaed on the feature list have dif­
ficulty with the effects of noise in the figure or boundary definition and 
with separating detail from more essential shape characteristics, and some , 
e.g . • the symmetric axis transform . have especial difficulties in this re­
gard . Many produce descriptions of questionable naturalness . 

To handle detail and noise naturally. one ia led to a representation of 
the object aa a hierarchy of segments at successively smaller levels of 
scale. For example . a human face might be described in terma of regions 
and subregions aa in Figure 1 . An advantage of this approach is that de­
tail that may be noise is relegated to the lower parts of the hierarchy , 
and if it is to be seen as noise rather than important detail . it can be 
ignored without disturbing the description at higher levels of scale. An­
other advantage is that it allows top-down (large scale subobjects first ) 
matching of models and descriptions of data objects. This approach of pro­
ducing and using a hierarchical description has been taken with attrac-
tive results in regard to grey-scale image description by multiresolution 
methods which focus on intensity extrema [Crowley and Sanderson. 1984 ; Pizer , 
et al. • 1986] . 
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Figure 1. A Hierarchical Description of the Human Face 

The symmetric (or medial) axis transform (SAT) [7] has elegant proper-
ties in inducing segmentation of shapes into natural components, but its 
major flaw has been ita sensitivity to noise in the boundary or figure spec­
ification. A related problem has been that no measure of the closeness 
of shapes fell out from the SAT. because there was no way to discern how 
to group parts of the axis into major components or how to measure the im­
portance of a component. In this paper we show how the multiresolution 
and symmetric axis transform approaches can be married. producing a noise -
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insensitive hierarchical shape description with the natural segments that 
had been the original promise of the symmetric axis transform . 

· 3. THE SYMMETRIC AXIS TRANSFORM 

The symmetric or medial axis (SA) of a 2D object is intuitively the set 
of points within the object figure that are aedial between the boundaries . 
More precisely. the SA is the locus of the centers of all maximal disks 
in the object. where a maximal disk is a disk entirely contained within 
the object figure but which is not contained by any other such disk. Fig­
ure 2 shows an example . 

~~ 
~ ] 

Figure 2. Maximal Disks in Simple Objects and the Corresponding Symmet­
ric Axis 

The SA forma a graph (a tree if the object has no holes) . Segmenting the 
SA at branch points produces so-called simplified segments . Associated 
with each simplified segment is a part of the object figure made up of the 
union of the maximal disks of the points on the simplified segment . The 
object segmentation thus induced is frequently very natural. For exam­
ple. in Figure 2 the bone shape is segmented into a rod and four knobs . 

Associated with each point on a simplified segment is the radius of the 
maximal disk at that point. The SA together with this radius function of 
position on the axis is called the •vmmetn·c azis transform {SAT}. The ra­
dius function can be analyzed in terms of curvature properties [Blum and 
Nagel. 1978] which characterize the behavior of the width of the object 
at that point. e.g . . as flaring or cupping. One of the attractive prop­
erties of the SAT is that it separates these width properties from the cur-
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vature properties of the axia. Theae two aeta of curvature properties can 
be uaed to further segment the SA and thua the object . 

Hackman [1986] baa ahown how the ideaa of the SAT and the aaaociated width 
and axia curvatures generalize to three dimenaiona . The • • axia • • becomes 
a locua of the centers of maximal balla. which in general ia a branching 
surface . Thia surface can be subdivided into aimplified aegmenta at the 
branch curvea. and again a natural aubdiviaion ia frequently produced . 

Figure 3. Sensitivity of the SA to Figure Noise in an image of a glomeru­
lus. Note. for example. the large ratio of boundary to axis arc length 
in the region marked in bold. 

The major weakness of the SAT is its aensitivity to properties of the de­
tail of the object boundary . That is. changes in the figure or its bound­
ary that are amall in terma of distance can produce major changes in the 
SA {see Figure 3) . A boundary feature that baa a short arc length may re­
sult in a long aymmetric axis branch. which moreover distorts the branch 
to which it ia connected. The result ia not only that branches that de­
scribe only detail are difficult to diacern as such but also that major 
branches are aplit in such a way that a portion of axis that should nat ­
urally be viewed as a unit (a limb of the SA tree) is broken into unas­
sociable portions. This weakness of the SAT has been so great as to de­
stroy interest in it despite ita otherwise elegant properties . Attempts 
to ameliorate it by pre-smoothing the boundary or by analysi s. after SAT 
calculation. of properties such as axis arc length to boundary arc length 
ratios have foundered on the arbitrary thresholds that had to be imposed 
(• •one man's noise is another man's detail . ••) . However. we suggest that 
the imposition of a scale-baaed hierarchy on the symmetric axis segments 
solves these problems and thus allows one to take full advantage of the 
attractive properties of the SAT of inducing segmentation strongly related 
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to our sense of shape and of separating width curvature from ~is curva­
ture. 

4. THE SYMMETRIC AXIS BRANCH HIERARCHY 

A useful paradigm for creating scale-baaed hierarchies for describing a 
complex distribution of components. such as an image or image object. is 
to find an important component feature that smoothly changes as the un­
derlying distribution is blurred and that annihilates after an appropri­
ate amount of blurring. then becoming part of another component . This ap­
proach has been fruitful with grey- level images . where. in a generaliza­
tion of the pyramid approach. Koenderink [1984] and Pizer [1986] have sug­
gested following intensity extrema under blurring until they annihilate . 
There. the amount of blurring necessary for a particular extremum to an­
nihilate is taken as the scale of the extremum; in the process a regi on 
surroundinJ the extremum is associated with the extremum . producing its 
e~remalre~on; in addition. when upon annihilation an extremum melts into 
another. the former is associated with the latter as ita child in the hi­
erarchy . The result is that the image is described by a tree of extremal 
regions. each labeled with a scale. where larger scale regions have tree 
descendants that are smaller scale regions contained by it. 

We can apply this paradigm to the problem of describing object shape by 
focusing on the branches of the symmetric ~is . We have found empirically 
that reasonable methods of saoothing of the object boundary cause the branches 
of the symmetric axis to change smoothly. such that at certain levels of 
smoothing a branch will disappear (see Figure 4) . According to the gen-
eral approach laid out above. we associate with the branch . as a measure 
of ita scale. the amount of resolution reduction necessary to achieve an­
nihilation . and we say that the annihilating branch is a aubobject of the 
branch into which it disappears . This process is continued until only a 
branch-free SA remains. 

Every annihilating branch can be traced back to the part of the SA of the 
original. unblurred object from which it was smoothly generated . In t he 
case of all but the branches at the frontier of the tree . these SA parts 
consist of a limb of the original SA. i.e . • a sequence of simplified seg­
ments from which twigs have been removed at the one or more branch points 
where smaller scale branches that annihilated earlier were attached . The 
result is that the method has the property of defining naturally associ­
ated ~is components from the associated segments in the sequence. 

The complete multireaolution process defines a tree (hierarchy) of limbs 
and twigs (axis portions) in the original SA. The root is the portion of 
the axis to which the final branch-free SA traces back . and descendants 
of the ~is portion at any node are the portions of axis which anni hilated 
into that ~is portion . The ~is portion at each node is either a sin­
gle SA simplified segment or a limb made up of a sequence (without branch­
ing) of simplified segments. 

With every ~is portion in the SA tree there is the original radius f unc ­
tion on that ~is portion. The union of the m~imal disks centered at each 
point on the ~is portion and with radii given by the respective radius 
function value is a subobject associated with the ~is portion . The de­
scription tree can then be thought of as a tree of subobjects. of decreas-
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Figure 4 . The SA Hierarchy based on B-spline Boundary Smoothing a ) stack 
of boundaries , b) stack of SA's, c ) induced descript i on . 

ing scale (but not necessarily area or volume) as you move down the t ree . 
Each node in the tree (subobject) can be labeled by its scale t ogether with 
properties describing the width (radius function) curvature and the axis 
curvature . 

These ideas generalize straightforwardly to three di mensions. The axis 

7 



---::::::~==:::------\ 
--- -----. /'·, 

\ 
( 
' ....... ... 

( 
I _ _) 

a . 
/ 

.. -·- ... ... 

( \ 
' I . 

·~ 

b. 

\ \ 

\ ···-·' 

\ 
I 

-----.. 
'\ 

\ 
) 

Figure 6 . Shape Descriptions Produced by the SA Hierarchy. The descrip­
tions above are lateral views of two different human skulls. Each node 
of a description tree shows a component of the SA and shows in bold the 
part of the boundary corresponding to that component . The leftmost child 
of a node is its principal component axis. The other children of that node 
represent axis complexes branching from the principal component . arranged 
in order of decreasing scale . 

components at nodes in the tree are simple surfaces. and the subobjects 
associated with a node are corresponding unions of maximal balls . Axis 
curvature and width curvature properties. as described by Nackman [1985] . 
as well as scale. label each node . 

Examples given in Figure 6 suggest that this method produces natural de­
scriptions. Furthermore . our experience is that objects that we see as 

8 



: 

• 

similar, aueh as outlined human skulls viewed laterally , produce similar 
descriptions . Problema with this description arise from four facta. First, 
with some types of resolution reduction the topology of the figure and of 
the axis is not maintained : for example, a simplified segment of SA ean 
split into two, or two ean join into one. Second, shape features related 
to boundary concavities are not directly represented by this approach . In 
Section 4, where types of resolution reduction are discussed, we show how 
including other axes of symmetry in the representation seems to handle both 
of these problema. 

The third problem is that the sensitivity of the symmetric axis to small 
changes in the boundary ean cause implementation difficulties in axis seg­
ment following . In particular. axis segments that do not exist at one res­
olution level ean be artifaetually created, or those that decrease smoothly 
in size for an underlying smooth boundary are artifaetually removed at some 
resolution levels, only to reappear at later levels. Therefore, follow­
ing the axis segments across steps is made difficult. This problem is dis­
cussed in Section 6. 

Finally, there is one case in which similar objects have dissimilar de­
scriptions. When the two branches emanating from a branch point are sim­
ilar in scale in that when one annihilates the other is also almost gone, 
a small change in the seale (length or width) of one of the branches can 
change which of these two branches annihilates first and thus change which 
is considered part of the limb and which the attached twig. The tree changes 
that result from such small object changes are predictable and are dis­
cussed further in Section 6. 

5. RESOLUTION REDUCTION AND SYMMETRIC AXIS FOLLOW­
ING 

What method should be used to continuously reduce the object resolution 
to produce the multiresolution stack of symmetric axes that induce the SAT 
hierarchy? The natural first thought is to focus on the boundary of the 
object to be described by applying some smoothing operator to its curva­
ture. The result of aueh an approach, in which boundary points at one leve l 
of resolution were used as control points for a B-spline which forms the 
boundary at the next level, is shown in Figure 4. Koenderink [1986] dis­
cusses why it is preferable to focus on first blurring the figure and then 
computing a consequently smoother boundary from the result, rather than 
directly to smooth the boundary. In essence the argument is that figure 
properties better capture the global relationships which we call shape than 
do boundary properties, which are too local. This very argument is the 
basis of the appeal of the symmetric axis method of shape description over 
methods baaed on describing boundary curvature. 

Koenderink's suggestion [1986] of the means for figure-oriented resolu­
tion reduction starts by treating the figure as a characteristic function. 
i.e., an image which ia 0 outside the figure and 1 inside. He then would 
convolve the result with an appropriate Gaussian and compute a new fig­
ure boundary as a level curve in the result. Koenderink suggests that the 
level curve be taken at some fixed intensity, but this requires the choice 
of some arbitrary intensity, and the ehoiee affects the shape deser1ption. 
Moreover, the approach of choosing a fixed intensity level causes the fig­
ure to shrink as resolution is reduced, so that after some amount of res-



olution reduction the figure diaappeara entirely. While there a.re many 
meana of level choice that avoid thia disappearance. we take our cue from 
the accepted definition of ahape that it ia what ia left after normaliza­
tion for aize and orientation . Thua. we normalize to constant aize at each 
amount of resolution reduction. choosing the figure-defining level such 
that the area (in 20. volume in 3D) of the figure remains constant . 

Resolution reduction baaed on figure blurring doea indeed behave more in­
tuitively correctly than direct boundary smoothing . Furthermore. it does 
have the additional advantage that it is in principle directly applica-
ble to grey--scale object representations and not juat characteristic func­
tion representations. However. there are two difficulties with this type 
of resolution reduction . First, topology is not maintained : connected 
components can split under blurring, disconnected components can join , i n ­
dentations in the figure can turn into holes and vice-versa. and holes can 
disappear (see Figure 6). Second . with an implementation using a piece­
wise linear boundary the smoothness of the SA branch disappearance is more 
affected than with direct boundary smoothing . Let us discuss each of these 
difficulties in turn . 

a. 

6. 

Figure 6 . a ) Splitting . and b) Joining of the SA under Resolution Reduc­
tion 

From the point of view that the figure is essential and the boundary i s 
derivative, the non-maintenance of topology is no problem at all . It is 
easy to argue that the object figures shown in Figure 6a are indeed close 
and that it is natural that a decrease in resolution should cause the isth­
mus between the two disks to be broken (eventually to be rejoined at yet 
lower resolution) . Similarly. the object figures in Figure 6b should nat­
urally combine as the resolution is lowered; other natural transitions are 
the closing of two nearby points of land around a bay to form a lake, the 
melting of a narrow strip between a lake and the sea to form a bay, and 
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the drying up of a lake. We see it as unnatural to insist that topology 
be maintained under resolution reduction: instead. we must arrange our shape 
description not to be too sensitive to topology. 

On the other hand. ·we are more disturbed by nonsmooth appearances or dis­
appearances of large pieces of the SA. These appear to happen under some 
of the chang•• in topology listed above. For example. when two ellipaes. 
each with a horizontal major axis and one just above the other. are blurred, 
a vertical segment of SA will appear nonsmoothly as the two ellipses join 
(••• Figure 7a) . We can avert many of th••• difficulties by including the 
external symmetric axis or the global SA as part of the SA . 

The external SA of a figure is the SA of its complement . If we take the 
overall SA as the union of the internal and external SA (see Figure 7b) . 
we find first that with resolution reduction as a piece of internal SA breaks, 
a corresponding pair of external axis pieces come together. and second that 
the overall SA now reflects concavities in the figure boundary directly. 
We therefore suggest that an improved shape description can be obtained 
by following this overall SA under resolution reduction . Note that as the 
resolution is reduced the object eventually becomes ovoidal and the ex­
ternal part of the SA becomes null. 
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Figure 7. The Change Under Resolution Reduction of a) The Ordinary (---) 
and One Other (- - -) Component of the Global Symmetric Axis of Two Nearby 
Joining Figures . and b) The Internal (----) and External (- - -) SA of Two 
Splitting Figures 
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The global SA [Blum, 1Q7Q] is foraed by the locua of the centers of all 
disks tangent to two or more disconnected regions on the figure boundary. 
The ordinary (first order) SA and the external SA are subsets of the global 
SA . We have observed that when a new segment of ordinary SA appears non­
smoothly as two pieces of figure join or a hole is eliminated, it actu­
ally forma smoothly from a piece of global SA that is transformed into or­
dinary SA . On the other hand, when a hole fills in, the ordinary SA seg­
ment loop around the hole does disappear nonamoothly . Further research 
ia needed to catalogue these transitions and to deteraine the usefulness 
of computing the global SA . 

The other disadvantage of resolution reduction baaed on figure blurring , 
aa compared to direct boundary smoothing, ia that following SA branches 
to annihilation ia more difficult to implement using a piecewise linear 
boundary approximation. In our implementation the histogram of the im­
age at each level of resolution ia used to find the intensity such that 
the number of pixels with greater or equal intensity ia equal to the orig­
inal figure area (or volume) . Points on the iaointenaity contour at that 
intensity are connected by linear segments , with the points selected by 
the recursive splitting method described in Ballard [1982 , Algorithm 8.1] . 
Our SAT algorithm essentially computes the Voronoi diagram of this col­
lection of line segments and takes the SA to be the curves separating the 
regions in the Voronoi diagram , leas those separating curve segments that 
touch the object boundary . The latter are removed because they are an ar­
tifact caused by using a piecewise linear approximation to a smooth ob­
ject boundary . The result ia an SA that ia piecewise made up of linear 
and parabolic components . 

The computed axis depends on the boundary approximation . In particular , 
small pieces of SA are either artifactually added or omitted depending on 
the approximation, and the added pieces are not necessarily small compared 
to SA pieces reflecting the • •true•• boundary at the given level of res­
olution, especially since the ••true•• branches get small aa resolution 
ia reduced. The artifactual add.ition or omission of pieces that are un­
related across stages of resolution reduction complicates following t he 
SA branches to annihilation. 

This difficulty does not occur aa greatly with direct boundary smoothing, 
aa the boundary pieces at one step are related to those at the next. Nev­
ertheless. the fundamental attractiveness of resolution reduction by fig­
ure blurring leads ua to cope with ita difficulty rather than resort to 
direct boundary smoothing . We believe that we need either to develop a 
method of figure-blurring-baaed resolution reduction in which the piece­
wise linear approximation at one step has related pieces to those in the 
previous step , or to replace the piecewise linear boundary approximation 
by a smooth piecewise approximation and develop a method of calculating 
the SAT for such approximations. 

In our results to date. including those shown in Figure 5 . the matching 
of SA segments from level to level has been done by hand. though the large 
majority of the matching• can be correctly made by a straightforward al­
gorithm. 
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6. RELATIONS AND EXTENSIONS OF THE MULTm.ESOLUTION 
SAT 

Brady [1g84] has defined another form of an axis of symmetry that he calls 
Smoothed Locol Svmmetriu {SLS}. He combines boundary curvature and fig-
ural properties in his definition . We find the boundary curvature aspects 
unattractive. as they involve an arbitrary degree of boundary smoothing. 
but the SLS . defined as the set of smooth loci of centers of chords that 
have angular ay.aetry with the boundaries they touch. is a set of axes that 
have some advantages (and some disadvantages) over the SA. We note here 
only that the multireaolution approach to inducing a hierarchy on the SA 
could equal ly well be applied to the SLS (in our modified definition) . 

The hierarchical SA or SLS descriptions have a relation to shape descrip­
tions baaed on boundary curvature. such as the codona of Richards [1985] 
or the boundary deformations of Layton [1986b] . Codons describe simple 
convexities or concavities of the boundary . Layton has shown [1986a] that 
these simple boundary segments have simple SA segments. i.e .• correspond 
to the outermost branches of the overall SA. That work begins to relate 
the boundary and figure points of view. and more mathematics in this di­
rection would be valuable. 

Leyton'a and Richarda ' methods . as well as others. describe the boundary 
as a sequence of curvature features or deformations to obtain them. but 
they frequently have difficulty determining an order of features or de­
formations to be applied . The multiresolution SAT method described above 
could be used to induce the order by scale for these methods. if the de­
scriptions produced by latter are deemed superior to those produced by the 
multiresoluti on SAT. 

Whether the multiresolution SAT is used directly to produce a shape de­
scription or as an order-inducing auxiliary to another method of produc-
ing a shape description. ita weakness of having small changes in the im-
age produce discontinuous change in the description must be dealt with . 
Recall that this behavior results from a close decision in deciding which 
of two branches or limbs emanating from a branch point forma the branch 
and which forma part of the branching limb . This behavior can happen at 
any branch point at which the two SA branches have almost equal scale . For 
example. in Figure 6a. the axis piece corresponding to the base of the skull 
is more prominent. while in 6b. the axis piece corresponding to the back 
of the skull is more prominent . It seems to be an application-dependent 
question whether trees differing in one or more of these close decisions 
should be considered instances of the same shape or of different shapes . 
In fact. it might be decided that the ••close call'' case is a single shape . 
independent of which way the call goes. while each of the cases. in ei-
ther direction. of a ''distinct difference'' in scale between the respec­
tive branches might be called two yet different shapes. Of course. this 
decision would require an arbitrary threshold to be established between 
each of the shapes. and it also would require some means to be developed 
to define the scal e of the non-annihilating branch that becomes part of 
the limb . 

An alternative seems to be to let an annihilation cause both the anni hi­
lating branch and the ••other'' branch at the fork both to be declared as 
branches . The problem here is which of the (normally) three branches in-
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cident to a branch point to declare aa the limb and which the two branches. 
Without a means to make such a declaration, the strength of the method in 
associating axis segments into a limb ia lost. With such a means, one could 
detect when two branches are nearly equally strong and then produce al­
ternative description trees corresponding to each of these branches an­
nihilating first. Further research is needed on this question. 

'T. THE MULTffiESOLUTION SAT FOR GREY-SCALE IMAGES 

Finally, we move on to the problem of creating a shape-based description 
of intensity-varying images or objects. With a method for creating such 
a description we can avoid the preliminary step of defining the pixels in 
the object before the shape is described, so the shape description can con­
tribute to the object definition. Furthermore, the description can re­
flect the levels and ''shape' ' of changes in the intensity dimension as 
well as spatial shape . 

A common way to visualize a grey acale image is as the surface in three 
dimensions defined by the image intensity function. This haa two bene­
fits. Firat, the ' ' shape'' of the grey-scale image can be described by 
a three-dimensional shape description method. And second, the familiar 
tools of differential geometry can be used to study properties of grey scale 
images and the shape description. 

Our first idea was to describe the image surface using the 30 SAT . This 
approach has the problem that the intensity di.mension is being treated as 
commensurate with the spatial dimensions; some choice must be made as to 
what intensity change is equivalent to what spatial distance. Unfortu­
nately, two different choices may result in very different shape descrip­
tions. Thua, we must design a shape description which treats the inten­
sity and spatial dimensions separately. 

To meet this requirement, we look at the image intensity function as a col­
lection of iaointensity contours . Since the level curves for the inten­
sity function provide a complete representation of the image, the collec­
tion of SAT's of all of these level curves will also provide a complete 
representation . We describe each isointensity contour with the 20 SA of 
the region with intensity greater than or equal to that of the contour. 
Thus the whole image is described by a collection of 20 SA's obtained by 
varying the intensity defining the contour (see Figure 8). We then con­
tinuously blur the image and follow the annihilation of major components 
of this pile of SA's to induce a hierarchical description of the image based 
on a natural subdivision. Let us examine some of the properties of our 
description . 

Firat, let us examine the connection of SA's from one intensity to the next, 
at a fixed degree of blurring . Consider functional surfaces which have 
a finite number of discrete critical points . Any selected intensity level 
i determines a collection of isointensity contours at that intensity. Ex­
cept at levels at which critical points occur, the set of contours varies 
smoothly with i. Since an SA varies smoothly with the region it repre­
sents, the SA's of the regions corresponding to the two sets of contours 
are also very similar . For this reason, the set of SA's for all inten­
sities in the (20) image will form a branching surface in three dimensions. 
We call this structure the SA-pile for a grey scale image, and we call its 
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Figure 8 . A Digital Subtraction Angiogram and Corresponding Contour Pile 
and SA-Pile 

branches SA-Iheeu . For a 30 image the SA-pile appears in four-dimensions 
and its sheets fora a three-dimensional hyper-surface in this space . 

To visualize the behaviors of SA-piles, view the image as terrain and the 
regions whose SA's we are computing as horizontal cross-sections through 
this solid mass . Thus near a maximum a cross-section is a closed region. 
while near a minimum a cross- section is a region with a hole in it. 

For an image with only one smooth oval bright spot (maximum). the SA-pi le 
consists of only one SA-sheet. For images with bright spots of a more com­
plex shape. there may be a branching structure of SA-sheets (vary much l i ke 
the branching structure in the 2D SA far non-oval 2D objects). What about 
more general images? We know that the critical points of the surface cause 
catastrophic changes in the isointenaity contours. Contours appear and 
disappear at local maximum points and local minimum points. and contours 
connect at saddle points. The SA-sheets also change drastically at these 
points. 

Local extrema are the first two types of critical points. Consider the 
terrain near a local ma.xi.llum . As illuatrated in Figura 9a . the SA sheet 
at this position ends at the intensity of the hilltop . How consider the 
terrain near a local minimum. As illustrated in Figura 9b . the SA forms 
a loop around the hole formed by the minimum. which instantaneously trans­
forms into an SA without a loop as we move below the intensity of the min­
imum . . That is. the SA-pile consists of a cylindrical sheet which instan­
taneously turns into a simpler sheet at the local minimum. Following our 
discussion in section 5. this abrupt appearance of the simpler sheet can 
be avoided if the global SA rather than just the first-order SA is used . 

The third type of critical point. the saddle point . comes in three generi c 
~ariatiea : passes between two hilltops and between two pit-bottoms (see 
Figure 9c) a pass between a hilltop and a hole in the hillside (see Fig­
ure gd), and a pass between a pit-bottom and a peak on the pitside (see 
figure 98) . These figures illustrate that as we move from below near these 
critical points , the components of the SA-piles behave as follows . In the 
first and third cases an SA-sheet tears at the saddle point . In the sec­
ond case a tear is formed in an SA-cylinder, turning the cylinder into an 
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Figure 9 . Components of SA-Piles near Intensity Cri tical Points: a) Max­
imum; b) Minimum; c) Saddle Point between Two Hills and between Two Pits; 
d ) Saddle Point between Hill and Hole in Its Side; and e) Saddl e Point be­
tween Pit and Peak on Its Side . 

ordinary sheet . In summary , the SA- pile consists of a branching st ruc­
ture of possibly torn and SA-sheets and cylinders. 

Now we must address the problem of imposing a natural hierarchy on the branch­
ing sheets in our description. We know that Gaussian blurring of an im-
age annihilates extrema and saddle points in pairs [Koenderink, 1984]. Be ­
cause the contours associated with the image will simplify with blurring , 
the corresponding SA -pile will also simplify . Our experience to date con­
firms the inference that the process of blurring will cause successive dis­
appearance of SA-sheets and SA-cylinders . We then impose a hierarchy based 
on ~he order of disappearance of SA-sheets and SA-cylinders, in a way analagous 
to the multiresolution SA of defined objects described in Section 4. 
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Figure 10. A Sequence of Blurred Digital Subtraction Angiograms. Their 
Contour Piles , and Their SA-Piles. 

We have implemented this process using subroutines that convolve an im­
age with a Gaussian, threshold the image at a selected intensity. and com­
pute an SA by connecting centers of maximal disks in the thresholded re­
gion as one follows the boundary of the region . The results of succes­
sively larger threshold intensities are displayed as a pile of SA's on a 
vector graphics screen. Similarly . the successive isointensity contours 
can be displayed as a pile . Figure 10 shows the contour piles and asso­
ciated SA-piles of a sequence of blurred versions of a digital subtrac­
tion angiogram. The predicted behavior can be seen. 

Further mathematical investigation and algorithmic development of the mul­
tiresolution grey-scale SA-pile is required . The usefulness of the ex­
ternal and global SA deserves attention. In addition, the relationship 
of this method to natural vision might be enhanced if the original image 
was first transformed into ''perceived intensity• by reflecting the ef­
fect of edges and intensity diffusion [17] . 
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8. SUMMARY AND CONCLUSIONS 

In closing. we suggest that the •ultiresolution s ymmetric axis transform 
is a main challenger in the possibilities for shape descri ption . However, 
more work ia needed in a number of areas . Mathematical study ia needed 
of how symmetric axes behave under figure- or boundary-baaed resolution 
reduction and how SA-piles behave under Gaussian blurring . Algorithms mus t 
be developed to connect SA's into an SA-pile and to follow branches of SA's 
and SA-piles through resolution reduction to annihilation. This will re­
quire methods of computing the SA that limit the creation of art i factual 
branches and the premature omission of real branches . 

In additi on, we hope to have f ocused attention onto the multiresoluti on 
approach of following features to annihilation and thus inducing scale­
based hierarchies . This appears t o be a powerful method of deri ving de­
scriptions that are suitable for model-directed pattern recognition . 
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