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Introduction 

Technical and scientific professionals are writers. Regardless of title or job description, 

they write. Most spend 25-75% of their tiine doing something related to writing- gathering 

and organizing information, writing per se, revising, talking with others about something 

they have written, giving oral presentations accompanied by documents, etc. They write 

many different forms - letters, reports, specifications, plans of various sorts, proposals, 
-

justifications, articles, oral presentations, to name some of the more prevalent forms. These 

documents are important. They form the skeleton of the writer's organization. While 

that skeleton must be fleshed out by other activities, the collection of written documents 

forms the core. If new tools can lead to more effective documents and can help skilled 

professionals work more efficiently, the payoffs will be substantial. 

Current tools for writing and producing documents fall into four major groups: edi

tors, formatters, checkers, and organizers. The first two are well- established and need no 

additional comment. Checkers are less universal, but still wide-spread. The most commo.n 

are the spell-checkers, but style-checkers are also beginning to appear. While those that 

use table lookup and limited pattern matching are of questionable value, checkers that will 

eventually include full parsers may have more impact, when they appear. The final group 

- the organizers - include structure editors and outline processors. The former tend to 

be mainframe-oriented and are often experimental or demonstration systems; Nelson's hy

pertext [1] and Engelhart's NLS [2] are early examples. More recently, the microcomputer 

outline processor has become widespread, but the jury is still out on its value. 

Current tools for writing were not designed for professionals. Most were designed 

for technical writers concerned with layout and physical production or for microcomputer 

hobbyists. What is needed are tools designed specifically for the sophisticated professionals 

who use workstations within distributed environments. 

We are developing a comprehensive Writing Environment (WE) for this application. 

Parts of this work are supported by IBM, NSF, and the Army Research Institute. In 

describing this system, we will emphasize five key concepts: 
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• the system is based on a cognitive model for written communication 

• the system is highly visual 

• the system was prototyped in Smalltalk and then ported to Objective C 

• the system will be used a series of cognitive experiments 

• they system can be extended to other applications 

The emphasis placed on cognitive aspects in this description probably needs more expla

nation. WE is one instance of an increasingly important kind of software that provides 

users with an environment in which to think or with functions that supplement human 

cognitive skills. To be successful, these intelligence augmenting systems must reflect the 

cognitive processes of the people using them. We suggest that a modified development cy

cle is needed that begins with an explicit cognitive model of the user interacting with the 

system to perform specific high-level tasks, includes formal testing of the model as well as 

the software, and ends (the first cycle) with systematic refinement of both. Therefore, our 

discussion of WE will include not just a description of the system but also its underlying 

rationale and the methods we used to develop and test it. 

Cognitive Model for Written Communication 

WE is based on a cognitive model of written communication. The model was derived 

from a review and synthesis of the literature in cognitive psychology, composition theory, 

human/computer studies, as well as our own experience. However, it is put forth more as a 

question than as an assertion. We are testing the model in a series of cognitive experiments 

and will revise it accordingly. It stresses the structure of information, particularly the 

transformations writers and readers produce as they write and read documents, and views 

writing and reading as symmetrical processes in several important respects (Figure 1). 

In this section, we describe the model, briefly, and then explain how we have used it in 

designing WE. 
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Whether readers read a document from beginning to end or jump from one place to 

another, when they "settle down" to read a passage they do so linearly. That is, they 

decode a linear sequence of words. However, they do not comprehend linearly. Rather, 

they comprehend by relating bits and pieces of information to one another hierarchically. 

They see that several points do, indeed, add up to the conclusion the writer has drawn, 

or that a general point is supported by the evidence or examples cited. As the process 

continues, readers relate what they are reading to what they already know. This process 

is particularly active as new information is integrated into the network of associations 

that underlies long-term memory. Thus, readers read, comprehend, and remember what 

they read by transforming information in one structural form into another: from linear 

sequence, to hierarchy, to network. 

The key to the reading process, however, is the hierarchical step. If a document signals 

its hierarchical structure through features included in it - such as a system of headings, 

overviews, topic sentences in paragraphes, etc. - readers use these clues to advantage. That 

is, they read and comprehend the document more quickly and the structure they infer for 

the document will match more closely that intended by the writer [3]. If such features 

are omitted from the document - no headings or inconsistent headings, flat narrative, few 

topic sentences, etc. - to the extent readers understand what they are reading, they will 

construct their own hierarchy for the document. However, the hierarchy they construct 

may or may not resemble that intended by the writer, and it takes time! Consequently, 

organizing expository information into a hierarchical structure and then signaling that 

structure is a particularly effective strategy for writers to follow. 

Writing involves a similar series of transformations, but in reverse order. Writers 

normally begin with a need to write. The content is likely be scattered through the writer's 

long term memory or through various external sources, such as books, databases, or other 

people's heads. The "structure" of that information is likely to be a very loose associative 

network, derived as the information is brought to consciousness. A key step for the writer, 

then, is to gather information and to organize it. Most writers do so by constructing a 

hierarchy, in the form of an outline or a tree. Once the hierarchy has been constructed, 
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the task of writing becomes a traversal of the hierarchy during which the writer encodes 

the concepts into prose, graphics, or other forms. Thus, writing involves a similar but 

opposite sequence of transformations: network, to hierarchy, to linear sequence. 

Several conclusions can be drawn. First, writing involves both networks (directed 

graphs) and hierarchical structures but at different stages of the process. All earlier struc

ture editors with which we are familiar have adopted one principle or the other, but not 

both. The hypertext family of editors- such as Nelson's hypertext system [1], its Brown 

University derivatives [4], and NoteCards [5],- support directed graphs. A similar group 

support hierarchical structures- such as Engelhart's NLS [2], Thinktank [6] and the other 

outline processors, and :XS-2 [7]. While users can construct a hierarchy within a directed 

graph environment, they may find the environment more supportive when they can volun

tarily relinquish some function during certain stages of the process in exchange for greater 

discipline. Consequently, we have constructed an environment that includes both, permit

ting writers to develop graphs and hierarchies separately but also to transfer conceptual 

structures from one mode to the other, 

Another key conclusion is that writing requires a number of different cognitive skills 

- not just linguistic encoding skills. Writers think associatively, hierarchically on a small 

scale (individual inferences and deductions), hierarchically on a large scale (constructing 

a single large hierarchy), analytically (as they revise), etc. For many writers, particularly 

those in scientific and technical fields, these stages also include visual and spatial reasoning. 

This is particularly true during early exploratory thinking and during the organizational 

stage. Consequently, we have built our environment around the notion of an abstract space 

in which users can represent and manipulate concepts visually. 

A third, and related, implication is that writing includes both bottom-up and top

down thinking. During early exploration, writers often think bottom-up as they trace 

paths of associations, gather information, explore various relations, etc. While an entire 

document can be organized hierarchically by continuing a bottom-up strategy, it cannot 

be "aimed" easily or reliably using this approach. To focus a document and to insure 

that it achieves a clearly recognize goal, experienced writers often begin with a single large 
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objective and derive the hierarchical structure from that point. Thus, writers also need 

tools that let them work top-down. The point is not that one form of thinking or the 

other is best; both are needed but at different stages of the process. Consequently, the 

environment we are developing is strongly multimodal. 

While cognitive psychology has had a strong impact on human factors studies and the 

design of computer interfaces, it has had less impact on the underlying architecture and 

function of systems. In WE, the cognitive model has influenced not just the interface; it is 

central to the entire design and is a concept that will be evaluated experimentally. Thus, 

the system itself and the theoretical basis on which it is built emerge as a question: How 

do uaera write and think while working within this particular computing environment? A 

substantial part of our effort is directed at answering this question, as we explain below in 

the section on Cognitive Experiments. 

Description of WE 

Three aspects of WE distinguish it from other writing support systems: the visual 

interface, its multimodal architecture, and an underlying relational database. 

Visual Interface 

The interface for WE is based on three major factors derived from the cognitive model: 

• writers use a number of different cognitive skills in writing 

• writing involves a series of transformations in which information in one structural 

form is changed into another 

• structures can be more easily comprehended, constructed, and manipulated when they 

are represented visually (e.g., in a tree) than when they are represented linguistically 

(e.g., in an outline, as in 1.3.2.4). 
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Consequently, the user interface is distinctly visual and graphical, as opposed to language

oriented. 

The default layout for the screen shows five tiled windows (Figure 2). The two largest 

are a graph window and a hierarchical window. The first supports operations that conform 

to the rules of a directed graph embedded in a Euclidean space. The second obeys the 

rules of hierarchies. A smaller window is available for either a text or a graphic editor used 

to write or draw the content of the document, associated as blocks of data with individual 

nodes. The fourth window is used to search the relational database for other structures 

or nodes that might be inserted into the current document. The last window is a control 

panel for managing the environment. Each window is described in more detail below in 

relation to its corresponding mode. 

Users can easily change the default configuration by resizing and moving the various 

windows. Thus, the entire screen can be used for the directed graph window during, say, 

the early brainstorming stage of writing. Or the entire screen can be used to show a tree 

in hierarchical mode during organization. Another option is to split the screen between a 

directed graph and a hierarchical window so that small hierarchical substructures can be 

copied from one mode to the other. (See Figures 2-6, below.) 

Modes 

A second key architectural feature of WE is its multimodal structure. While the tide 

of opinion is currently running against such designs, separating the function of the system 

into separate domains is desirable for this particular application. Since writing involves 

several different kinds of thinking, we support each with functions specific to that cognitive 

mode. An hypothesis we will test experimentally is that users will prefer to "drop into" 

different modes of thinking for different activities, gaining flexibility in some cases, giving 

it up in others in exchange for greater rigor and consistency. 

We expect most writers to begin a project by working in a directed graph window. 

This mode is particularly well suited for bottom-up thinking. Using a mouse, users can 

6 



Figure 2: 
WE Default Screen 



open a window to cover the entire screen. They can then create nodes at any spot in 

the windows simply by pointing with the mouse, clicking for a menu, and selecting the 

"create node" option. (Since the last option selected on a particular menu is retained as 

the default, subsequent clicks produce additional nodes without further selection.) They 

can label each with a word or phrase, either when the node is created or later as an editing 

operation. Users can also move nodes into clusters of related concepts (Figure 3.1) and 

can join pairs of nodes with directed links to denote specific associations (Figure 3.2). 

A second mode/window provides functions that conform to the rules for hierarchies · 

(Figure 4). Users begin in this window by creating a root node and labeling it, as in graph 

mode. They can then create child nodes under the root, indicating the major divisions of 

the document. The process of division can be continued until the nodes represent sections 

that can easily be written, usually a few paragraphs, or represented in a single graphic. 

A number of structure editing functions are also provided. These permit users to move 

nodes or branches around in the hierarchy, add and delete both leaf and interior nodes, 

etc. Users may also import nodes or structures from graph mode into tree mode. That 

is, they can go back to a directed graph window created earlier and select a node that is 

a root for a small hierarchical relation; when they return to the hierarchical window, they 

can point to the place where the branch should be placed and the system will insert the 

subtree into the tree at that point. 

The system provides four different visual representations for hierarchies. The first is a 

conventional horizontal tree in which parent/sibling relations are indicated by left to right 

relations (Figure 4). The second is a vertical tree that extends from top to bottom (Figure 

5). Zoom and roam functions are provided for each. In fact, since users can open several 

different windows on the same structure, they can show a small schematic view of the 

whole tree in one, an enlarged view of a section in a second, and a still larger image of the 

particular branch being worked on in a third. This is particularly useful for large structures, 

for team development efforts, or other projects where managing technical complexity is an 

issue. A third view presents a Chinese box representation of the hierarchy in which child 

nodes are shown as small boxes inside the larger box representing the parent node (Figure 
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Figure 3: 
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Figure 3.1: 
WE Spatial Graph Mode, 
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Figure 3.2: 
WE Spatial Graph Mode 
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Figure 4: 
WE Hierarchy Mode 

Horizontal Tree 



Figure 5: 
WE Hierarchy Mode 

· Vertical Tree 



6). Since the system shows only three levels of depth with this view, it provides a form of 

information hiding. The last view is a standard outline view. 

At any point, in either graph or hierarchical mode, the user can open a node and insert 

content. This is done by invoking either a conventional text or graphic editor. Typically, 

users write a paragraph or several paragraphs or create a single visual image. In this mode, 

the function provided is that of the particular editor. When users finish with a content 

unit, they close the node and the content is saved in a file system. Thereafter, whenever 

a node is moved using any of the structure editor functions, the associated content is also 

moved along with it. Since a node is a typed object bound to a particular editor/display 

program, the kinds of data that can be associated with a node can be extended simply by 

extending the set of types and associated editor/display programs. We describe several 

planned extensions, in the section on Future Work. 

A fourth mode helps users Bearch the relational database in which nodes, links, and 

structures are stored. We explain its purpose and function in the following section. Here, 

we merely call attention to its existence. 

All four modes - graph, hierarchy, content, and search - are "held together" by a 

control panel. The control panel includes two major fields: a mode tree and a pair of 

stacks. The mode tree represents the different modes, as first-level children, and the 

specific named instances of each (i.e., windows), as second-level children. It provides a 

variety of management functions. For example, to move a buried window to the forefront, 

users merely point to it in the mode tree and select the appropriate operation. Thus, 

users can quickly get an overview of the entire "screen space" they have created, including 

windows covered by other windows. The stacks receive the nodes and structures created by 

the yank operation explained earlier. They permit users to make copies of several different 

nodes or structures while working in one mode/window and then selectively move them at 

their leisure into the structure being created in another. 
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Database 

A third major innovation in WE is the use of a relational database system as the 

store for all structural information. The database holds three kinds of entities: structures, 

nodes, and links. Structures are typed, named sets of links (and, by implication, associated 

nodes). The type indicates whether the structure is a graph, hierarchy, or path; this 

information is used by the system to determine the operations that can be performed on 

the particular structure. Each node is also viewed as a typed object. Associated with it 

are various attributes that identify the type of content "within" that node and, thus, bind 

it to an editor/display program; its spatial dimensions in graph-mode space; and both its 

associative and hierarchical links. Links are attributed pairs of node identifiers. The node 

identifiers define the directed arc; and the attributes indicate the kind of link (e.g., graph), 

the structure of which the link is a part, and other system information. 

Users can search the database for a structure, node, or link by its identifying label 

or by its attributes. This is done through the search window /mode, mentioned in the 

preceding section. In the current system, the database is confined to a single project, 

but we will extend its definition to permit teams and departments to store collections 

of documents and other kinds of data. Thus, future users will be able to search the 

database for information relevant to the current project. Once a usable node or structure 

is found, it can be imported into the environment and included in the structure currently 

being developed. A longer term goal is to merge another system we are developing -

MICROARRAS [8], an advanced full-text retrieval and analysis system - with WE to 

support content-based searches, as well. 

Implementation 

We have followed an unusual path in implementing WE. First, we designed and im

plemented a prototype system in Smalltalk running on a SUN-3 workstation. Smalltalk 

provides an object-oriented environment that encourages information hiding and hierarchi

cal modular design in which each level of the system is implemented in terms of the tools 

9 



defined at lower levels. It also provides a complete development environment including 

a sophisticated system browser, extensive graphic tools, and access to the full Smalltalk 

source. Since Smalltalk is an interpreter, changes can be made and tested quickly and eas

ily. The prototype system, shown in figures 2 - 6, provides full functional capability and 

can support documents up to about fifty nodes. Using it, we were able to test our original 

design by actually using the system to see how various features worked in conjunction with 

one another. However, since Smalltalk is not suited for large, high performance applica

tions, we planned from the beginning to port the system to other software and hardware 

environments. 

To facilitate this move, we developed device-independent toolkits for drawing and 

for managing user interaction with the system. Both toolkits were designed as Smalltalk 

classes. In Smalltalk, they were implemented directly using methods provided by the 

system. To port them to other environments, we are writing drivers that use the graphics 

and window management facilities provided by the target system. We have completed the 

porting of both toolkits to Microsoft Windows for the IBM PC/ AT, and we are currently 

moving them to X Windows for the SUN workstation. 

Finally, we are porting the entire system from Smalltalk to Objective C, a synthesis 

of Smalltalk and C developed and marketed by Productivity Products International, Inc. 

Objective C provides a large-grain structure of classes, methods, and inheritance charac

teristics nearly identical to Smalltalk. But, it also provides the small-grain capability to 

repalace system primitives with C functions for greater speed and processing efficiency. 

While we can foresee the possibility of translating Smalltalk classes into Objective C auto

matically, for the present we must still rewrite the syntax manually. This is largely a direct, 

line-for-line translation that requires virtually no changes to overall system architecture. 

Cognitive Experiments 

As we noted earlier, WE was designed in accord with a cognitive model of the writing 

process. We are using the system as an observational instrument in a series of formal 

experiments to evaluate that model as· well as other cognitive hypotheses and to test 
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specific system features and representation schemes. In this section, we will not describe 

these experiments in detail, but rather the technical features of the system that support 

them. 

A built-in tracking facility permits us to record the actions of users at a functional 

or operational level. Thus, we can observe the sequence of operations employed to create 

nodes, move them into spatial clusters, link them into associative relations, etc. Each 

operation is recorded along with the time it was performed and its associated parameters 

and stored in the same relational database as the document. These data constitute a high

level concurrent protocol of the session, collected unobtrusively and in a machine-readable 

form ready for analysis. 

Traditional approaches to concurrent protocols have employed video recordings of 

users interacting with a system, "thinking aloud" protocols in which users attempt to 

narrate the thinking processes they are using, and keystroke records. All three result in 

enormous volumes of data. Both video tape and thinking aloud protocols also require ex

tensive encoding to produce machine-readable data that can be analyzed. Thinking aloud 

protocols present further theoretical problems for situations where verbalization is not an 

integral part of the task being performed, such as tasks in which users manipulate spatial 

forms [9]. This is exactly the situation presented by our system - writers, particularly 

during the exploratory and organizational phases of writing, often think spatially and ab

stractly, rather than verbally. For these reasons, we believe the relatively large-grained 

record produced by the tracker, representing the operational history of a session will pro

vide more usable and reliable data for our purposes than more traditional protocols. 

The cognitive model on which the system was built is expressed as a grammar. While 

it superficially resembles the GOMS model of Card, Moran, and Newell [10], it goes beyond 

their framework. One distinction is the extension to a quasi context sensitive grammar. 

Context free productions are not powerful enough to handle user operations for this ap

plication. More importantly, the grammar can be used to develop a parser to analyze the 

protocols generated by the tracker. The trees that result from parsing the sequence of 

operations performed by a user during a session constitute a formal representation of that 
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user's strategy for the session. Thus, we have a concrete way of comparing the strategies 

of different groups of users, such as those of experts and novices. Additional display and 

statistical analysis techniques will permit us to play back a user's session, graph distribu

tions of specific operations over time, look for "cognitive rhythms", and note combinations 

of functions frequently used together. 

On the basis of this information, we will revise the cognitive model, as appropriate, and 

then refine the system. Thus, we hope to set-up a development loop in which the system is 

designed in accord with a well-defined model of the user's interaction with the system at a 

cognitive level, implemented in a fast prototype environment for initial testing, ported to 

an actual-use configuration for more extensive experimentation, and then systematically 

revised in accord with empirical results. 

Future Work 

While the system we have described is intended as an aid for professionals who write, 

it can be extended to other applications. Basically, the system provides a general visual 

interface for creating, editing, and displaying directed graphs of abstract nodes that can 

be associated with typed data. A number of other applications can be modeled in these 

terms. We plan to extend our work into three other areas. 

First, we want to extend the system from a single user system to a multiple user 

system for distributed environments. The central database underlying the system can 

facilitate team development of a structure and collaborative efforts. We also want to add 

a simultaneous teleconferencing facility in which several team members can view the same 

display on their respective workstations while they work on the same underlying data 

structure. This will be done in an environment in which switchable voice and video can 

be added to permit them to discuss their work and to see one another. We will also try 

to extend the cognitive model to characterize the cognitive/communication acts of a team 

of individuals working together to construct a single, integrated conceptual structure and 

then test that model, analogously. 
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Second, we will extend the system to include other forms of data. Since a node is 

an abstract, typed entity, other forms of content can be included by extending the set of 

node types and by providing the necessary display and edit functions. The system can, 

thus, include sound and video sequences from conventional video disks as well as emerging 

cdjromB by including in the nodes the instructions necessary for the bound function to 

display that data. 

A third application will extend the system to form a vertically integrated environ

ment for software development. The primary extension necessary is to make the graph 

multi-dimensional. In this way, one two-dimensional plane can be assigned to functional 

specifications, a second to source code, a third to executable modules, a fourth to test 

results, etc. While each level represents a large field of research, we will limit our work to 

a small subset of tools in each - such as Objective C and C in the source level - so that 

we can concentrate on issues of interaction between levels. 
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