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DEDICATION

Patrick D. Halton celebrated his hundredth year on the 1Ith of August
1978. His patience, unders tanding, support, encouragement, and love have
been a constant inspiration to me; and his unquestioning faith‘and trust in
me have allowed me to persevere and survive through times of doubt and
discouragement, He died peacefully on the 29th of May 1979, He had 7
long been fascinated by trees of all kinds, and it is therefore particularly
fitting that this paper is, hereby, humbly dedicated to him, with my most

sincere and heartfelt love and admiration,



ABSTRACT

Consider an g=ary tree (in which every ncde has no more than & children).
Zach node holds a singie datum, including a key. These are the cccupied,
internal, or closed nodes of the data~structure. Augment the tree, following
D, E. Knuth, by adding a set of wnoccupied, external, open, or free nodes,
so that every internal node now has just g children and every external ncde
has no children. We assume that there is an unambiguous rule, depending
only on the key-values at the internal nodes of the tree, whereby a new
datum, with a new key walue, will be inserted at one of the externzl nodes;
this node then becomes internal and acquires 8 new external nodes as children.
We further assume that the rule and the statistical distribution of data are
such that every external node has equal probability of being selected for
insertion of a new datum, at every stage. Various statisties of such trees
are now Abtained_explicitly, in ; systematic manner which may bte extended to
higher moments. The principal resu}t is that the average level of both

internal and external nodes in a given tree is asymptotic in probability to

p f T log m as m -+ =, where m is the number of internal nodes in the tree,
Since the corresponding average level for a k-level fully balanced iree
k
. g -1, . . 1
= -~ = el -3
(with m g ) is asymptotic to k log m Tog 3 log m as m =+ =, we

conclude that, unless the distribution-of data is far from the rather

plausible assumption made here, it is hichly improbable that the considerable

Jdata-bases will ever be Jjustified

cost of rebaisncing trees when constructing

in Eractice.



THE PROPERTIES OF RANDOM TREES
by

John H. Halton

1. INTRODUCTION

The underlying-problem which we consider is the construction of
an. efficient data-storage structure of arbitrary size, when the data
are identified by a key, which may be thought of as omne or several
real numbers. A sequence of such data is received and successively
inserted in an initially-null structure, according to a rule depen-
ding only on the (possibly multi-dimensional) order of the keys,
not on their magnitudes or other parts of the data. When we consider
the statistics of such data, it is reasonable -to assume that every
possible order of.the incdming'data is equally probable., We seek to
devise a structure such that the work of imsertion, deletion, and
retrieval of data is a slowly-growing function of the number m of
data to be handled.

A favorite structure, balancing speed of imsertion, deletion, and
retrieval is a free. When the key consists of a single real number, so
that all key-values are linearly ordered, we may chdose-a binary tree,
in which every node has 0, 1, or 2 children, and every node but one (the
root) has just one parent (the root has nome). If we call the nodes of
such a tree intermal (or occupied or closed) nodes, we may augment the
tree with additional extermal (or umoccupied or open) nodes, in such a
way that all internal nodes have just twe children and all external nodes

have none (see Knuth {68]). Each internal node contains the key of just



one datum; the key belonging to the first datum received in sequence

being placed at the root of the tree; and, thereafter, we proceed
recursively, comparing eatch new key with keys stored at successive nodes
encountered in a traversal of the tree, beginning at the root, moving to
the right child 1if the new key exceeds the key found at the current

node, and to the left child if not; when an external node is reached,

the new key is placed there, At every stage, every right child has a key
greater than that at its parent, every left child has a smaller key than
its parent. Figure 1 below shows the augmented binary trees with m in-
ternal and n external nodes, for m = 0, 1, 2, 3, and 4. All topologi-
cally distinct trees are shown, Internal nodes are shown as filled (black)
;\ circles and external

@ o nodes as open

~© (white) circles,

n=2 d/ ,
m= 2 & Note that, in every
3

J case, n =m + 1,
‘ . 4 This is generally
° o} ! <
N . true (as is proved
¢« » by Knuth [68]) for
¢ 06 0 binary trees, and

o 0 indeed 1s a special

-

case of a general

result for s-ary

3
[ ]

Figure 1. trees,



Every node has a level, defined as the number of steps (edges) in a
direct path from the root to the node; the root thus has level 0, The
height of the tree is the maximum level over all internal nodes, Knuth
[68] calls the sum of the levels of all external nodes of a tree the

external path length of the tree (we denote this by E’(l)

m when there are

m internal nodes in the tree) and the sum of the levels of all internal
nodes the intermal path length (we denote this by F;l)). Given a tree,
with m internal nodes, the work required to insért a new datum at level
h is essentially proportional to the number of comp;risons required to
find an external node at which to place it, and a little reflection shows
that this is just h, If, as we shall argue later, all external nodes are
equally likely céndidatéé for insertion of a random datum, it folloﬁs
that the expected (average) amount of work required to imsert a datum is

proportional to E(l)

m /n, where n is the number of external modes in the tree.

Similarly, the work required to build the entire tree is proportional to

D

m The work required to search for a datum without success is essen-

tially the same as the work required to insert the datum sought and not
found: the average amount of work required by an unsuccessful search is

thus proportional to E(l)/n.

m The work required to find a given datum is

proportional to one more than the level at which it is found; so that the
average work required to find a datum is proportional to 1l + F;l)/m.

When the key consists of more than one real number, the ordering
becomes multi-dimensional, and a binary tree does not suffice for efficient

storage and retrieval. This motivates the concept, familiar from graph

theory, of an 8-ary tree, in which every node has 0, 1, 2, ..., 8 children.



As before, we may augment the m internal nodes of such a tree with =
external nodes, so that every internal node has just s children and
every external node has none, Again, each internal node holds the key
of a single datum. The insertion rule will not be specified, except as
stated earlier. Level, height, internal and external path lengths are
all defined as for binary trees, and the reasoning leading to the
formulae for average work regquired for various operations holds without

any change. It is clear that the gquantities

(1y _ (1) .
Xm = Eh In (1)
and Y;l) = Fél)/m (2)

are central to these considerations. Figure 2 below is the counterpart

of Figure 1, for general s.

Y
m=4, n=48 = 3

Figure 2,



We infer from this that
n=(g- 1m+ 1, (3>

Indeed, on the one hand, since the augmented S-ary tree with m intermal
and 7 external nodes is a tree, it is well known (see, e.g., Knuth [68],
§2,3.4.1, or Aho, Hopcroft, and Ullman [83], §7.1) that it has m + n = 1
edges; on the other hand, every edge points from an intermal node to one
of its children (external nodes have no children; internal nodes have
exactly 8 children each), so there are just am of them: (3) follows.

Various applications of s—ary trees have been suggested (e.g., sece
Muntz and Uzgalis [70], Finkel and Bentley [74], and Bentley [75, 79]).
In all cases, the postulate that all (multi-dimensional) orderings of
‘the data are equally p?obabie is quite plausibieo A fﬁll discussion of
this matter is postponed,

We shall further generalize the quantities ECI), F(1)5 X(l), and

m m m
Y;l) defined above to the sum of the p~th powers of the levels of all
external nodes of a tree, which we shall call the p-th external swn of

the tree and denote by E(p)

9 the sum of the p-th powers of the levels

of all internal nodes, which we shall call the p-th internal sum of the

tree and denote by Fép), and the corresponding averages,
(p) _ op)
X Eﬁ /n (4)
(@) _ -(p)
and rr-'=F /m. (5)

Averaging over all the nodes of a tree give one kind of expected
behavior; but it is more interesting to ask how trees in general behave;

so that we need to average again over all trees generated by random data.



General techniques will be defeloped below, which may be used to obtain
the mathematical expectations, and higher moments, of the four statistics
appearing in (4) and (5), These will be computed on the assumption that
insertion of a new datum is equally probable at every external node.

In particular, we will explicitly obtain the following results:

(1}, _ (1)
E[Xm ]_Tm , (6)
(1), _.m+ 8 (1) _ . _
E[.Ym ]‘TTM 1 g, (7)
(2); . rn1)q2 . (1) _ ()
E[X& ] [qw 1° + T T (8)
(2), _m+8 [, (1),2 _ (1) _ (D)
E[Y ]-T{{Tm 17 - (1 + 2007 T }+(1+e)(1+28),
(9)
(L)y _ m (2} 1 (1)
var[Xh 1=(+ G)m i I% e %ﬁ R (10)
and . |
(1), _ + 8.2
var[Yﬁ ] = (& —) var[Xil)]; (11)
where
_ 1
8 = - (12)
and

- e)q{ e e i T —~—3;-w}. (13)
1+)? @2+? 3+a)9 m + )9

Some special cases of these results do occur in the literature,
mainly for binary trees. When s = 2, 8 = 1, and ng) = 2q[2-q + 39,
T4 L+ (m+ 1)-q]; Booth and Colin [60], Windley [60], and Hibbard

[62] have all independently obtained the equivalents of (6) and (7), and



Lynch [65] and Knuth [73] have corresponding equivalents of (10) and (11).
Wilson [76] has results similar to (6) and (7), and also has the variance,

for g = 3,

We proceed to derive asymptotic results for m » =,

T”El) ~ (1 +8) logm + uy(e) (14)
(2) . .
and Tﬁ uz(e), (15)
where (1+9)(y - 1) €uy(8) < (1 + 0)y, y = 0.5772156649. ..
2 “2 2 wz (e
and 1+ 020 - 1) <uye) < 1+ 0)? I,
Whence E[X#l)] = (1 +8) logm+ 0(1), an
E[Y?gl)] = (1 +8) logm+ 0(1), (18)
(1) ), . . dogm
ELX '] - E[¥ /] =1+0 _0(——%—— , (19)
E[xngz)] = (1 + 8)2(log m)? + 0(log m), (20)
E[J:’ngz)] = (1 + 9)%(log m)? + 0(log m), (21)
(D7 .5 4.4 - ' log m
var(X "] = 24 8 = u,(8) + 0(—-%-—, (22)
Dy 25, 8- . pelog m
var[Ym ]=2+38 uzfe) folt =), (23)
D) - @2 = @+ 6) tog m + o)), (24)
and E[Yrgz)] - (E[Yrgl)})z = (1+6) logm+ 0(1). (25)

The last two expressions may be viewed as the in-tree variance of the node-

levels, in an average tree,



Previous authors do not seem to have examined the asymptotics of the
results they have obtained. As a result, they have failed to make the
following observations, which would appear to be crucial to important
strategié decisions in setting up a data=~base structure and its algorithms.

Chebyshev's inequality (see, e.g., Feller [68] or Tucker [67]) states
that, if a random variable @ has finite expectation E[Q] and variance
var[Q]l, then, for any ¢ > 0,

prob[|@ - £{9]] > ¢ E[@]] S var[Ql/(E[ED%.  (26)

Taking & = X;}), we derive that, by (17) and (22),

Prob[|X(1) [X;l)]|2e:E[X;l)]]Svar[Xél)]/sz(E[Xél)])z
~c(8)/ef(log M2+ 0 as mo=,  (27)
where <(8) = [2+ 8 - u,(0)]/0 + 512 = 0(1).  (28)
Taking ¢ = Y(l), we derive, in exactly the same way, by (18) and (23), that
prob( 7'V - e(ZP2c erV11 >0 a5 mo e, (29)
Similarly, for the in-tree distribution of levels (in an average tree),
we see that, if x and y denote the levels of random external and internal
nodes, respectively, themn, by (17) and (24),
Prob[ |z - E[X(l)}! (1)]] € var[x]/e (E[X(l)]

~ 1/(1 + 9)e? logm—+>0 as m~> =, (30)

and, similarly, by (18) and (25),

probl[y - B2 V1] > c elZP11 20 a5 m o> (31

These results mean that the random variables X(l)/ (X ;1)], 2;1)/E[Y;1)],

x/E[X( )], and y/E[Y; )] tend to 1 in probability as m + =, The Central

Limit Theorem (see ibid., or Halton [85]) does not directly apply, but we

may expect that at least the distributions of the level-averages X;l) and



Y;l) The critical points of the normal

approximate the normal for large m.
distribution are 3.090232 for probability 10«3 and 4.753424 for probability

10-6,-for example., Roughly doubling these for safety, we may infer that

Prob[XIEzl) > Elx M +6.18(var{Xrgl)})%} <1073 (32)

and Prob[X”(z]') > E[Xngl)] +9¢51(var[}{”(11)])15] < 1078, (33)

with similar results for the Yél),

For comparison, consider an ideally balanced tree, with s? internal

nodes at level J, for j =0, 1, 2, ..., A. Then
. h+i
m=l+g+sie .. +g = i;—::fl, n=stl (34)
= ;. logim(s - 1) + 1]
so that & = logsn 1= Tog 5 1, (35)
Since all external nodes of such a tree are at the same level,
¥ 2 (36)

Using (6}, (10), (144), and (145), we may now calculate some values of m,

ideal-tree Xél), and the bound (33):

3

3 2 4 10 100
m 127 85 111 101
7 < 14.56 4 < 11.54 3<11.11 2 £.10.56

m 3191 5461 11111 10101

13 < 23.33 7 <17.54 5 < 16.56 3 <15.55 % (37}
m 1048575 - 1398101 1111111 1010101

20 < 33.05 11 €.24.95 7 < 21,68 4 < 20.21
m 67108863 89478485 111111111 101010101

26 < 41,36 14 < 30.49 9 < 26.80 5 < 24.86

One final statistic is available to us for comparison, in the case of

3=

2, Adel'son-Vel'skii and Landis [62} (see also Knuth [73], §6.2.3)

have devised the concept of a halanced tree as one which, at every node,
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has the heights of the left and right sub-trees differing by no more than
one; and they have a very elegant algorithm for rebalaneing such a tree
with every insertion, at a cost of insertion times about five times as long
as for simple insertion (see empirical discussion in Knuth). Knuth points
out that the Fibomacci tree is the least ideal kind of balanced tree; here,
the tree of index X has n =m + 1 = Fk (k =2, 3, 4, ...), where F, is the

Fibonacci number of index k, satisfying, for all integers X,

4

Fy=0,F =Fy=1,F

2 2, F

3 =3, Fg =5, F =8, ...

(38)

P = Fyuyg + Frpe

A little thought shows that the external path length of a Fibonacci tree,

gk T Eéii satisfieg the recurrence relation (with 82 = 0, 83 = 2, 84 = 35)
&k = ak-l + 8k-2 + Fk’ (39)
It is easily verified that this has the solution
<3k - Lk - '
&, = 30k - DFy + §k - $F,_|. (40)
It is well known (and easily checked) that (Binet'’s formula)
= - 1 .,k k _ 1+ V5 _1~-5
Fk-V'S"(Ol*B), o = 3 , B = s (41)

whence we see that
g = §§3{3<k - DG -8 k- 9] w‘sk';)}

B 5715(3 + é) k Q'.k + O(C!.k) ~ 0.3236 k Otk as k + », (42)

since a = 1,618, B = - 0.618, This implies that, for Fibonacci trees,

X;l) ~ 0.7236 k ~ 1.5037 log m, (43)

I

since m = Fk -1~ aklﬁﬁ. By contrast, (36) gives 1,4427 (i.e., 1/log 2)

as the factor of log m.
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To summarize, we may conclude that:

(1) on the assumption that ar every stage, a ne-w datum has equal
probability of being inserted at any of the external nodes of a tree, it is
possible (with adeqeuate automated formﬁla-nmnipulation assistance) to calculate
all the moments of the distribution of average work fdr insertion, search,
and full-tree construction, by the techniques developed here;

(2) asymptotic results indicate that, for large enough trees (in the
sense of numerous enough nodes), the probability that the in-tree average work

for search or insertion exceeds the mathematical expectation, ; J llog m, by

any appreciable percentage, is negligibie;

{3) it ‘follows that any rebalancing scheme is of doubtful utility,
in view of the additional work entailed, when the tree becomes large enough,
even when outlying cases are to be avoided.

The thru;t of the argument presented here is that‘absolute worst—case
situations become of such extremely small probability that extra work to
avoid them is not economically justifiable, for trees having, say, a hun-
dred or more nodes. Some authors have, nevertheless, studied the heights
of random binary .trees (as measures of the worst-case statistics), under
various assumptions of randomness (see Stepanov [69], Kemp [79], Renyi and
Szekeres [67], Yao [80], Robson [79, 82, 83], Flajolet and Odlyzke [82],
de Bruijn, Knuth, and Rice [72], Mahmoud and Pittel [84], Pittel [84],

Devroye [84, 86}, for example).
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2. THE STRUCTURE OF AN s-ARY TREE

We consider an 8-ary tree, augmented with external nodes, so that
there are m internal nodes (each with & children) and n = (8 ~ 1)m + |
exfernal nodes (by (3)), each without children. At each level k (k =
0, 1, 2, ...), let the number of internal and external nodes be e and
Yok respectively. We observe that, when m = 0, Hoo = 0 and Voo = i,
while, if m > 0,

Mg = 1 and Voo T 0; (44)

since the root is the only node at level 0 and is the first to be occupied,

Also, since a tree of m nodes cannot reach level m,

if k ; m, ],lmk = \)m(k+1) = 0- ‘ (45)

Of course, L @
kgoumk =m (46)

" and e
kgovmk = (s - 1)m+ 1, (47)

Since every internal node has just & (internal and external) children,
we see that, for k 2 1,

* v (48)

Som(k-1) T Mmk T Vimk
Following Knuth [68], we define the external and internal path
lengths and generalize them to the p—th external and internal sums of

the tree, for p 2 0,

) _ = (» _ ¢
2P 2 p) _ 2P
lm kgovmk and Fm = kzoumk R (49)
(0)
so that E " =(e~-1im+ 1, Eﬁc) = m, : (50)
by (46) and (47), and 5?21, £SO - 2P = rlP < >0, (51)



By (46), (48), and (49), we see that, whenm > 0 and p > 0,

(p) ) ~ @ ~ -] )
En = kzovmkkp - kzlvmkkp B kzltsum(k-l) Bt

= . (p) ol
sjzoumj(J + 1P - F%p = (g - l)F;p) + sqgo(g)Eéﬁ). (52)

The corresponding averages are defined in (4) and (5) and are the focus of
our investigationm,
We may note that, when § = 2 and p =1, (52) with (50) reduces to
(1) _ (D
gl =F "+ m, (53)
which is obtained directly by Kauth [68], §2.3.4.5, by induction; and he
proceeds in [73], §6.2.1, to derive that-
(1) _ 1, (1)
r e 2, (54)

m
in our notation (Knuth writes q; for our X(I) and Ch for our Y(l)

m m Tt 13,

He attributes (54) to Hibbard {62], He also gives (3) and (52) for general

8 but only p = 1, as exercises ([68], §2.3.4.5).

3. RANDOM STORAGE OF DATA IN TREES
For single-keyed data, let the input sequence of keys be [al, @yy g,
ces am] and let p denote the (unique) permutation of [1, 2, 3, ..., m] for

which

e K (53)

(1) < %(2) < % < o(m)”
Assumrrion 10 The random input of single-keyed data is so structured that
every ordering permutation o satisfying (55) is equally likely.

Lemma 1@ Given the ordering permutation  of the first m data, the

only possible permutations p' of [1, 2, 3, «v., my m + 1] compatible with

(55) are those which place p'(m + 1) in one of the m + 1 intervals formed

by p(l), 0(2), .uuy p(m.
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Proof., [We require that, as in (55),

% r(1) <% r(2) S%r(3) < o % rim) % rm + 1)} (56)

so that m of the p'(j) must be the p(Z), in the order of (55). 1If p’(%k)

m+1(k=1, 2, 3, ..., or m+ 1); then p'(1) = o(1), p'(2) = 0(2), ...,
pf(k = 1) = p(k = 1), p’(k + 1) =p(k), p(k + 2) =p(k + 1), ..., p’(m+ 1)
= p(m), proving the lemma.]

CororLary 1. 11 Given the ordering (55) of the first m data keys, the

(m+ 1)=8t key a has equal probability of falling into any of the

p(m + 1)
m + 1 intervals formed by the earlier keys (in order) (1) ap(z), veos

%o (m)* )

[Of all possible permutations p’ specifying the ordering (56) of all
m + 1 keys, only the m + 1 permutations defined in Lemma 1 are possible, if
the orderipg,(SS) of the first m keys is given. By Assumption 1 and the
definition of conditional probability, these m + 1 permutations are them-
selves equally probable.]
Lema 2: ALl keys in the left sub-tree of any node
are less than the key at that node, and that is less
than all keys in the right sub-tree.

[(see Figure 3). The insertion rule ensures

that any key finting its way into the right

sub-tree must pass through a comparison at tche

node holding ay (say) and exceed it; similarly,

any key entered in the left sub-tree must be

less than a in value.]
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Corourary 2.1: If an m-node binary tree is formed by entering m data with

keys Gy Gos eses O (entered successively, in the order stated), and the

22
tree i3 augmented with m + 1 extermal (open) nodes; then each opern node
corresponds to one of the m + 1 intervals described in Lemma 1 (that is,
an (m + 1)-st datum will be entered at that open node i1f i1t falls in the
corresponding interval).

[1f @, < T then, by Lemma 2, either (i) o, is entered at an (internal)
node in the left sub-tree of the node holding s, oF (ii) o is entered at
a node in the right suﬁ—tree of the node holding @, or (iii) there is a
ricde holding a key oy such that @, < oy < ey and a is in the left and
aj is in the r?ght subftrees of the noée holding @y If, further, we know
that-;here is no key (entered in the trée) which lies between a. and aj’
then case (iii) is excluded entirely; and, in case (1), a. is at the rightmost
(internal, i.e., occupied) node of the left sub—treée of the node holding
a., s¢ that it is at the last of a string of right—-children of the root of
that sub-tree; while, in case (11), aj is similarly at the leftmost node of
the right sub-tree of the node holding a.. In either case, (i) the right
child of the node holding a or (ii) the left child of the node holding o5
i1s an open node (since its parent is the last occupied node, going to the
right (or left, respectively) and will be filled by a new key if and only if
that key lies between a, and aj. Since there are just m + 1 open nodes and
just m + 1 intervals between the ordered keys, this suffices to prove the

result,] Case (i) is illustrated in Figure 4; case (ii) is entirely analogous.



L (aj Tueorem 11 If m data are formed into a

K'\/ A .binary tree according to the insertiom

» rule defined earlier, and the tree is

Z{ / augmented with m + 1 open (external)

A K 5 nodes: then a further random datum is

equally likely to be inserted at any of
Figure 4. the open nodes.

[By Corollary 1.1, all intervals are equally likely candidateé for the
placement of the new key into the order of the previous data; by Corellary

2.1, each interval corresponds to a single open node, The theorem follows.]

Even for binary trees, it is possiblé to devise alternative probability
structures to that used in Assumption 1 above, or its consequence, Theorem 1,
For example, we may define equivalence~classes of binary trees, and say that
all equivalence-classes are equally likely (see, e.g., the work of Renyi and
Szekeres [67], de Bruijn, Knuth, and Rice [72], Meir and Moon [78], Kemp
[79], Odlyzko [79], Flajolet, Raoult, and Vuillemin {79], Flajolet and
Steyaert [80], or Flajolet and Odlyzko [82]). When we attempt to generalize
to s—ary trees, the alternatives multiply. We shall make the following
assumption, by analogy with Theorem 1.

Assumption 2: The random input of the s-ary tree is so structured that,

if m data are far'méd tnto a tree according to a suitable insertion rule, and
the tree is augmented with n = (8 = 1)m + 1 external (open) nodes; then a
further random datum is equally likely to be inserted at any of the n open

nodes,
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We note in passing that this is not the same probability as is naturally

generated by quad-trees and similar structures (see, e,g., Finkel and Bentley

[74] or Bentley [75, 79]), in which each datum has d keys (al, Gps oees ad)

and a Zd-ary tree is generated by simultaneocus ordering of each key., 1In

Figure 5, a simple example shows the difference, when m = 6 and d = 2,

2*?" It is natural to extend the structure of Corol-
34 : lary 1.1 and assume that all intervals generated
ol i by each key are equally probable, within any key,
T 2 and independent, between keys. This means that
4[; the "squares" in the first part of the figure
01 2 3 4 5 6 would be equally probable. But this particular

Six double-key data ‘
entered in order ‘L’ *2°
3%, ‘4, *5%, ‘g*, ‘Italie
numbers denote intervals
generated by these data,
in each coordinate.

o (86)

(38)(48)(56)
(34)(44)(54)(35)(45)(55)
(64)(65)

(85)(26)
(06)(15)(06)(16)
(04)(14)

(24)

(18)(23)

(08)

(00)(01)(02)
(10)(20)(11)(21)(12)(22)
(61)(52)(53)(61)(62)(63)
(42) (43)

(82)(33)

(31)

(41)

(30) (40)

(80)(60)

Corresponding tree, indicating whieh *squaraes?
g0 with which open nodes,

Figure 5.

2 0

situation yields the tree shown in the second
part of the figure, where we see that the sets

of "squares” corresponding to the various open

nodes vary in number from one to
six (there are clearly 7x7 = 49
"squares” and only 19 open nodes).
[The assumed insertion rule is
similar to that for binary trees:
at each node, search moves to one
of the four children, "NE" or "++",
if the keys to be inserted are both
greater than their counterparts at
the node being examined, "NW" or
"-+" if the first key is less

and the second greater, ''SW"
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or "--" if both are less, and "SE" or "+-", if the first key is greater and
the second is less,] The regions of the ordering-~diagram (top of Figure 5)
corresponding to the open nodes of the graph generated by the same data
(bottom of Figure 5) are outlined in thicker borders, and it is clear

that their boundaries are generated in a very natural way, each successive
datum falling into such a region and quadrisecting it. Since the "squafes”
are not really square, but formally define order omly; it is plausible to
argue that.the equal status of each of these regions (cerresponding one—to-
one to the open nodes) is more analogous to the equal status of the intervals
into which single-key data dissect the line, than is the conferring of

equal status to each "sguare", which is a knee-jerk application of the

Cartesian product, taking no notice of the order in which the data are

entered,
4. ° STATISTICAL RELATIONSHIPS
By Assumption 2, in an m~node s=-ary tree, each of the open nodes has
probability
1/n = 1/[(s - I)m + 11, (57)
by (3), of being the next node filled. We may define the mathematical
expectations of the parameters ke ana Ve defined in §2 to be
M = E{umk] and N, = E[v 1. (58)

m m
By (44) - (48), if Xk 2 1 and m 2 1, we have that

Mo=1 and Npg = 0 (59)
i > = N = Q-
if k2m, Mo Nm(kﬂ) 0; (60)
XMmk =m, (61)
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LN, = (8= 1m+ 1 (62)
k=0 ™
and N = Me 1y~ Mmk. (63)

Consider now an (m — 1l)-node tree to which an m-th node is added at

level 2. Then, clearly, since m 2 1,

Boe = Mm-1)k + Sure (64)
where 6hk is the Kronecker symbol,
' { 1 if h=k }
§,, = : (65)
hk 0 if h#k
and so, by (48) and (58), if k2 1 and m 2 1, [ .
o Elv ]
- = = (m=1)h
Mok = Mime1)te = E[shk] kzoahk (6 = 1m-1) + 1
_Mme ) Ge) " Mo )k
(s - L)(m~ 1) + 1
Collecting terms, we thus see that
Yk = % Dk T Bt 1) (66)
L_mo L _Llro
where L‘I'.m = m and Bm = M- 1+8° (67)

by (12).

Also, inserting the m-th node at level % reduces Y1 by one and

. L .. . > >
increases v, 1y7.1) by 8; so that, similarly, if k¥ 2 1 and m 2 1,

ek = Vim-1)k " shk + 86(h+1)k; (68)

whence, just as in getting (66) from (64), we obtain that

Bk = =10k * Bol(m-1) (= 1) 2 (69)

with the same coefficients & and Bm as before. The difference in the

values of Mmk and Nmk originates in the differing initial conditions,

Min =0, M =1 (m=21) and N00=1, Nm0=0(m?l)., (70}
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Now let us define the functions

E (t) = ] N .e
m &m0 mi

ikt

and Fm(t) = ZMmkeikt;
k=0

so that, by (49) and (58),

E (t) N
m kZO mk pEO

and, similarly,

o« N p '

We now note that (see Figure 2 and (60})

= . = = -
N 0, N 3, le 0 (% 2),

10 11
and MIO =1, Mlk =0 (k2 1);
whence
E (#) =se’® and F () = 1.

Now, by (69) with (60} and (70), if m 2 2,

T ikt T ikt v
E0) = INge™™ =y NGy * 3 DNy ey
m=1 . ., m=1
kt it
=a N e+ g et TN .e
m ey (m=1)k mo ey m=lig
= it .
= (e, + B,eE (2}
whence

T RN
!1§?l_ = z szg E[Eép)]s'
! p=0 !

(71)

(72)

(73)

(74)

(75)

(76)

ikt

7t fg =m~ 1]

(77}

(78)
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since, by (67}, a; = 0 and 81 =4 ; & . s (thus including the first equation

of (76) as a special case of (78)). Similarly, we see that

)
F () =1+ M
m k=1
m-1 . m=1 . .
-1 . ikt it igt
=l-a +o kZO M)k + 8¢ JZO M ine1y 7
=(-a)+(a +8eHF (2); (79)
whence
F 7 I + g, et
(z) = (1-a.) (@), + Bye ), (80}
m J=1 J h=g+1 h
as is easily verified,
Applying Maclaurin's theorem,
§(£) = pgo ?ﬁ;[ P, (81)
to (73} and (74), we see that
EEP] = 0P PE, ()], (82)
and 7)) = -0PLEDPF ()], (83)
By (6}), (62), (71), and (72), we have that
' E (0) = %22 and F (0) = m. (84)

(This is also obtained, by a little algebra, from (78) and (80).) Now,

we see that

, m . m B
(1) - it h
E[E ] = -if[= IO (o, + B, )], _. = z — E(0)
m e A A R T M
m+8 ? 1+6 _m+8 (1) (85
T8 oy R+ 0 T8 m * )
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by (13). Similarly,

. m m B B . m 8, B,
E[EéZJ] - 8 { ;Y i 4 =+ 1 [z :'B . (ai f.si)z]}

IS WS RO LY B e A

_m+ 8 (1),2 (1) (2)
= —— {[Tm 17+ Tm - Tm 1, (86)

m m m
(3, _m+2o l1+81+81+38
E[Eﬁ ] = {hz .E .Z m+B81+8g+0 + 3 z

o e)z]} mr 81393, 3[Tﬁl)32 - sféz)rél)

_m* 8,..,(1),3 (1)42 _ ,,(2) (1) (3} _ ..(2) (1)
——e—f[Tm 17+ S[Tm ] STm Tm + ZTm 3‘I’m + Tm‘ 1,
(87)
and so on.

The direct calculation of the corresponding E[Fﬁ?)] is rather laborious;
but, fortunately, we have the relation (52), leading directly to the corres-
ponding relation for the expectations,

) @) Pl (@
E[EVP)] = (s - DE[F¥’ 1 + s T A)Ee[rY], (88)
m m Lotg m
g=0
From this, we obtain that, since E[Eﬁo)] = m, by (50), E2\V] = (s - I)E[Fél)]

+ gm, whence, by (85),

Eﬁén]= (m + )7tD - @+ 0); (89)
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and E[Egz)] = (g - l)E[Féz)] + g{m + ZE[Fél)]}, whence, by (86),
EF D] = g+ 0)((rN1% - 1+ 2002 - 11Dy
+ m{I +8)(1 + 28); _ {90)
and E{Eés)] = (g - l)E[Fés)} + a{m + SE[Fél)] + SE{Eéz)}}, whence; by (87),
EFD] = (n + e){[z’rgl}]3 - spPr) zz'f) - 39{1;51)]2
+ 381#2) + (1 + 66 + 662)I£1)} -m{l + 8)(1 + 68 + 662);
(91)

and so on.

m+ 8
8

By (3), (4), and (5), since n = , we see that we immediately
obtain (6) - {9), as announced, as well as

ElrS)7 = (213 4 sz 2 part® gt - s L 2r (D o9

3, m+ 6 en(1)13 (1)12  :am(2) 24-(1)
and E[Y”(t ] =222 (zi1® - oselr V1% - (3l - 1 - es - 6e”lT) |
+ SBTrgz) #2033 - (v 8)(1 + 60 + 60%); (93)

with a clear path to higher internal and externmal sums and averages, by

increasingly, but not intolerably, laborious calculations,

To continue the analysis, we should now consider the higher moments
of the quantities EﬁP), F#?), X;p), and Z;p). Since things rapidly get
highly complicated, we shall only explicitly calculate the variances of
X;l) and Yél). The method used, however, is.clearly extensible to other
cases,

We have, by (4) and (49), with (85), that

(L, _ (1),2 (1)4,2
var[Xh ] = E{{Xﬁ 1°1 - {E[Xh 1}

8 2..[% 2 (1) 12
2 E[{kzokumk} - 2]

m+ 6

m m
G a)zizl j§1 LRl Vg ] - CES LD
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Referring to the relation (68), we see that

-8 (95)

EDvpVnsl = BLOVG 1y = S * 98y e WV omeys = 7 * S rany 11
if the m-th node of the tree is inserted at level A. As before, we average

first over the m-th node and then over all trees, and write Smij for the

quantity (95). Then

Smig = Sm-1ytg T B0y 2% B ey S ey g T Bl ey 4

+ gE[8

* ElSys8s] - oBLSn8 Grany ] (h+1) 2" (1)

2
= B8 gy Sng !t S ES (ay28 (e 1))

.m=1=-38 1+ 8
AT Smii A TR 1) G-l T Sme1) (4-1) )
6 1+ 8 1+ 8
T -t T T -0 P Ve - T Senyg
- (Y7 51:,7']}- | (96) .
We note that, by (47), Z§=15m¢j = Z§=1E[umiumj] = E[Z§=lvm£vmj] = ; 8 Elv,]
= ELigii e and ZT_N = B2 B Thus, (94) and (96) yield that
(1), _, 6 T 1 -8 .. 2 (1+8) ..
var(x, '] = =5 121 le{""l 8 “Sm-1)ig tmeT e tW DS 1y
6 2 1+9 ... 1+6.2 .
P T TR Nyt P06 DN gy T
' l)ZN(m-l)iI} - (1,071
- 1 ][ (1) (1)42 1 (2)
= |1 = ——————zlvar[X*"7] + [T 7]] ] + e E{Xx'“4]
[ (m + 6)2 m=1 m-1 o + 6)2 m=1
+ 2G9 BxT » Gy o r(D12 (97)
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This reduces to:

I LA I A DT CT

—-—1—]var[
2 m=1 (m + 6) m-1

var[X(l) 1= [1 -
) (m + 8)

and we observe that

m

1 ] M (h-1+8)(h +1+8)
8)

nfi- - n
nekell  (n + neker T8 (R0)

+

e)g(k 1 +8)(k + 3+ 8)(k+2+ 0)k+4+8)

x>
+

o
+

- 2 +8)(k +
Tk ¢+ 1 0)i(k+1+B)(kR+2+8)(k+2+8)(k+3+0)k+3+0)

1+ 8)im+1+8)

(m =2+ B)(m -0+ 8)(m
0 + 8)i(m - 0 + 8)

(m -1+ 8)i{m=1+ 8)(m

_(k+8)m+ 1+ 8)
"EE I m o)’ (99)

with the fractions cross-cancelling in pairs, except for the first and last.

Since X(l) = 1, so that var[X {1)] = 0, we see that (98) can be solved in the

form
m m
wotaf - B L [ il - o
n k=2 ‘h=k+l ) + 8) J(k + 8)
m .
_ m+ 1+ 6{ 1 1 1rn(1) (2)
T L T &c+ 5T RT T e k1 T Teede (100
Now note that, for any sequence fb, fl, fé, ses
m m+1
1 1 1
.X.[F*re k+1+9]fk1 XE fkl'.g"«»efz
k=2 5-3‘]
_ 1 1 1 '
- kzszfk-l " trvw ot mvTv e e (10D
Further, we evaluate the telescoping series:
m m
1 _ 1 1 )1 1
Lo T kzz[k g il e]' % " mee (02

k=2



-26-

and rf 1 =?f[ 1 1 ]
k=2 (k + 0)(k - 1+ 8)% ki2l(k-1+8)2 KroOk-1+8)
=1 L2 _ _1 1
(1+e)2Tm~l 1+6+m+e' (103)

Successively taking f& = Tél) and.iéz), and noting that Téq) = (0 and that

Téf% - 2{8) = (t2 9, ve see that (100), with the help of (101) - (103),

~1+8
becomes
o1}, m+1+8f7% 1+ 8 1 (1)
var{X, *'1 = =3 Lkzz ET 0k -17+08) mv1+7 ml
4 (1 +8)? R N ¢
-1 : 2 m+ 1+8 ml
k=2 (k + 8)(k - 1 + 8)
_m+ 1+ ej 1+ 8 1 (1) (2)
T T m+ 8 L "m+8 m+1+08 gw 1" Tp1 ? (1+8)

m + 8 m+ 1

2
(1 + 8) 1 (2)
- * + 8 %n-l}

1+8 1 {1) 2)
9)(1 T m o+ 6) “m+ 8 m 1 Tm~l

1
(2+8)(1 + ==

m___1 (1) _ 42
m+ 8 m+ 8 m ’

(2 +8)

confirming equation {10). Fortunately, we can get var[Yil)] from this;

1, with (3), (4), (5}, and (50); namely,

by way of (52) with p

M _g_e 1 m(l) 1+ 8,(0) _ [ (1, 7.
Xﬁ m m+B m*+em m+ &m m + Y L+sl, (104)
or T R Y (105)

Elj%_ggz var[Xél)], confirming equation (11).

L

.whence, var{rél)] =
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5. ASYMPTOTIC RELATIONS

We observe that

mil 1 dz mil 1
A(l, k, m) = f = (log(h + z + 8)]
nedo P ER S 0
m=1 m o+ 9

L (logh v 1+ 8) - log(h + )} = log g, (106)

m-lfl dz . m=-1 1 -1 1

Alq, k, m) = ) [—= ]
neklo m+z+8)7 nk 9 Y ez a)?l0

____;___’”fl{l i 1 }
-1 g s 09 e 1 s )9t

o4 { 1 1 } for > 2;
-1 — - - g®2; (107)
-1 ks 0 e 97!

and, further,

7 12———-—-"*" T [-log(h ) 1A
= -1o0 -z +8
; Jo S L : 0

h=k+1
m
= . % {log(h + 8) = log(h - 1 +8)} = A(1, k, m), (108)
=k+]
T Il dz .7t 1 L
heksllo (k-2 + 0% heke1 9" 1 n -z 4 0)91 0
1 n 1 1
T m—— Z { - } = A(q: k, m)
-1, % (h =1+ a)q"l (h + e)‘?'1

for q > 2. (109)
Now note that the function 1/(x + e)q, with ¢ 2 1, is decreasing and concave

upward. Therefore, as we see in Figure 6, the horizontal segment LB lies
below the arc AB and the segment BM lies above the arc BC; furthermore, the

chord BC lies below BM and above the arc BC, while the arc lies above the
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¥ tangent SBT (with the portion SB lying
Curve y = —1 above the extension KB of the chord BC).
' (x + 0)7
. Thus, first,
WA _l < f“ o —
5 * +)? dn1@+9)? Jom-z+ A
" \ (110)
\,.\\\\ and

' T h+l 1
e, O

; AN h+0? In @+a)? Jo(heaz+ o)

; (111)

‘ ‘ z secondly,
1 " 3/2 /2 _

m+8)? (hel+ )
Figure 6., :
1
< J gz (112)
. 0 (h -2+ 8)9
and
; 1

/2, 1/2 S J dz . (113)

+)? m+1+0)? Jo@mez+ )

and thirdly, since the derivative of the function I/(x + e)q is -g/(x + e)q+1’

1

1 __ ., _q/2 — < J dz (114)
h+e)? he+e)? 0th-2+8)7
and 1
1 g/2 — < J dz : (115)
m+a)? @+ a)? 0(+z+8)7

Each of these inequalities may now be summed from %z = k + 1 to & = m, yielding

by (13) that, respectively,

n 1

—_—< 1+ 8)7 acq, k, m), (116)
h=k+l (h + a)q

r@ 2@ L (1 8

T;Q) - Téq) >+ ag k+1,m+ 1y, (117
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@ _p@ , 0+ 8 1 1 )
T -T + -
m k ks 1+0)7 (m+1+a)¥

<+ 4, k, m, (118)

7@ @ arad 1 i 1 ]
k 2
m k+1+8) (m+1+a)9

>+ A, k+1,m+ 1), (119

with (118) clearly better than (116), and (119) better than {1173,

(q) @ (g+1) _ nlq*1) q
Tm - Tk ‘Z_CTEW{TM Tk 1< +8)t 4(g, k, m), (120)

(q) () q 2(q+1) _ n(g+l)
Tm o ~ T - 2(1 + 8)[1% - Ty ]

<@+ 0?4, k+1,m+1). (121)
By (106) and (107), (118) and (119) simplify to
ng‘l’) - ng@ < .(1 + 9)94(q, k, m) - %A(q +1, k+1, m+ 1)] (122)
and
Tiq) . Téq) >+ o)l k+1,m+ 1) +da@+ 1, k+ 1L, me D], (123

making (123) our best lower bound for T?EIQJ - TIEQ)' Using this, we see that
(120} yields that

1@ 2@ < v 0ag kom -La@ 1, kel me 1)
- iﬁzﬂlg(q + 2, k+ 1, m+ 1], (124)

which is clearly better than (122); and, using (124), we see that (121) becomes

ng) - Tiq) <A+ o4l k+1L,m+ 1) +Za(q+ 1, k, m)
-ﬂL;—llA(q*'Z,k*}-sm*'l]

_qlg + l%ﬁq * 2) Alg + 3, k+ 1, m+ 1)]. (125)
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If we write
A{g, k, m) = B(q, k) - B(q, m), (126)
so that, by (106) and (107}, |
B(l, ») = - log(r + 8) (127)
for g 2 2; (128

and B(q: 1;) =

then, for any 6, we may interpret (123) - (125) as stating that the sequence

Uf,‘” - TISQ) + 1+ )8, »+ 1)+ %B(q + 1, 2+ 1)] (129)

inereases monotonically as r -~ », while the sequences

VIE‘?) = TI(,‘?) ¢ 1+ 0BG, ) -%BEG 1, 2+ 1)

- 9_(9_&:_1_1,3@ + 2,7+ 1] (130)

and WD =79 ¢ 1+ 0)Bg, r+ 1) +LBEG L )
- g!g{: 1! B(q + 2, » o+ 1)

_gqlg + 1%(q + 2) Blg+ 3, r+ 1)] (131)

decrease monotonically as r + =, Now, we note that (£ - 1)7°9 = £79(1 - éﬂ“q

and therefore

(€-107-g?-Z gt alar D) a2

%E-qﬂ + 24 - 1) ;~q-2 , (g ¢ lé(q *2) -3,

>0 for £2>0; (132)

‘whence, by (128), with £ = r + 1 + 8,

AN SR TG R o N 5 S (B )

r

> 0, (133)
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so that both Uﬁq) and Wﬁq) converge to respective limits:
(q) (@
Up 7 uq(e), W; y wq(e) 2 uq(e}.

Further, when ¢ = 1, we note that

E;l_g‘l-%a“zr’lz.b 13+ 14+°°°>0,
45 3£ 4g

- log

and, when g 2 2,

1 - 1ya*l -ty o -q ~q=1
i - D A IR -

_ % a1, alg 6+ 1) -q-2 , glg * 12)4(q * 2 93,

so that, similarly,

7@ @ s,
r r s
| @) '
whence Vr ¥ vq(e] 2 uq(e).
Indeed, we further observe that
WD 1@ <o) pro)? » 0 as roa,

(1) _ 5 rrl+o
V} v, <.(1 + 8) log 3

r » q -
for g 2 2;
so that it follows that

uq(e) = vq(e) = wq(e).

eee 2 03

+ (0 as » -+ o,

L Tz + 8)'q+1 + 0 as p -+,

(134)

(135)

(137)

{138)

(139)

(140)

(141)

(142)

Some numerical calculations yield the following values for the limit:

(136)
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s| 2 4 10 " 100 -
o| 1.000000 ©0.333333 0.111111  0.010101 0
3 = 1]-0.845569 0.176045 0.453270  0.566386 0.577216 (143)
g = 2| 2.579736 1.947728 1.744310  1.653890 1.644934
g = 3| 1.616455 1.329923 1.242978  1.205694 1.202057
Finally, we can now deduce from all this that, by (129},
‘zéf) < uq(e) - (1 +8)9BE, m+ 1)+ %=B(q + 1, m+ 1)0); (144)
by (130),
zéQJ >u(e) - 1+ 0B, m) -§8g1,m+ D
-2a 2l g e 2, me 1Y (145)
and, by (131),
i@ > 4, @ - L+ 0)¥Bg, m+ 1) + 4B+ 1Lm+ D)
-ﬂL‘:—_u.B(qq-z’mq-l)
-2g 2 J@r 2 pg a3, e 1), (146)

We note that bounds in (144) - (146) equal uq(e) + zég) - {yéq)s Véq), %gQ)},

respectively, so that (133), (137), and (139) - (141) imply that
qu) ~ uq(e) - (1 + e)q[B(q, m+ 1) + %-B(q + 1, m+ 1)}; (147)

which yields

7D~ u (@) + (1 +9) [log(m+ 1+ 8) - 2t
~ (L% 9) logm + u (8) + 0(); (148)
@ - qr_ 1 1 1 1
T u_(8) - (1 + 8)7[ + 5 ]
m q Tl me1+00Tt 2 nv 14 0)

~ u, (8) + oYy for g2 2. (149)
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We recall (see, e.g., Copson [44] or Whittaker and Watson [27]) that

the Riemann zeta-function is

:(q):l‘#-}-ﬂ-"’—l—"" aoo+"1-'°+lum, (150)
2 A nl

and Hurwitz's generalization is

g(g, 1 +98) = 1 + L + L + s (151)
a1+ a)? @2+e)? ((3+0)9
Since ¢ 2 2, by (12), 0<8S1; {152)
so that z(q) - 1 =1¢c(q, 2) Szlg, 1 +8) <zglg, 1) = z(q); (153}
() q
and we see that fﬁ 2 (1+86)" z{g, 1 + 8), as m » =, (154)

In particular, it is known that
2

2@ = (155)
m 1 .
and that ) 7 - logm=y =y =0,5772156649..., (156)
h=1 . ,

as m + ©; vy is Euler's (or Mascheroni's) constant (see, e.g., Abramowitz
and Stegun [72] or Mitrinovié [66]). It follows from (148) with (153),

(154}, and (156) that

m
(L +8)(vy-1)=(1+28) limM*”[ Z %-— log m]
h=2
< (1 +9) lim rf L tlogm- L
m—mh=lﬁ+e m+ 8

limm*w{Tél) - (1 +8) logm} = ul(e)

1

7 - log m] = 0oy {(157)
1

e~ 3

< (1 +8) limm_m[h

while, from (149) with (153), (154}, and (155),
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2

1+ 0’ -1 2

(1+ 9)2[;(2) - 1] € lim T;

2 .
1+ 92 u,(8) < (1 + )% c(2) = (1 + 8)° L. ase)

We see that the relation (148) yields (14), the relation (149) leads to
(15}, and the bounds given by the relations (157) and (158) yield (16).
Note, too, that, when ¢ = 2 and s +,m’ we get 1 + 8 = 2 and 1; and

(159)

ul(l) = Z(Y = l) and ul(m) Y
2 2
and u,(1) = 4(16- - 1) end  u,(=) = ?’6— (160)

¥

as is seen in (143).
We now see immediately that (17) follows from (6) and (148) (or (14));
ﬁnd, since 12%J3.+ 0, (18) follows from (7) and (148). We also see that
(1) (1), _ .8 (1) log m
E[Xﬁ ] - E[Yﬁ l=1+98 p qw 1+ 8+ 0( )’ {1el)
as in (19). From (8) and (9), with (148) and (149), we see that
(2), ~ 2
E[Xh ] f(1+8) logm+ O0(1)]° + [(1 +8) logm+ O0(1)] - O(1) (162)

and E[fﬁz)} ~ (1 + %9{[(1 +8) logm+ 0(1)]2 = (1 +28)((1 +8) logm

+0(1)] - O(l)} + (1 +8)(1 + 28)

~ (1 + 8)%(log m? + OClog m) + Of (log m%/m], (163)

" which yield (20) and {21), since (log m)2/m -+ 0, From (10) we now get that

1 +6

1
varl V] ~ (2 + 011 - 720 - uy(0) + 0k - 122

m+ g

log m + O(1)

~ 1l +8
2+ 8+ uzfe) -y log m + 0(1), {164)
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which yields (22); and then (11) gives us (23) at once. Finally, we observe
that A
(2} (1) 2 _ (D) (2)
E[Xﬁ ] - (E[Xﬁ n° = Ty = Tp s . _(165)
leading immediately to (24); and that
srP1 - @D = @+ - 4rP1? e 1D - 2D e e s,
(166)

which readily simplifies to (25).
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