A Family of Operating Systems
in a Software Laboratory

TR86-023
May 1986

Frederick Allan Fisher

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#:3175, Sitterson Hall

Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

A FAMILY OF OPERATING SYSTEMS IN A SOFTWARE LABORATORY

by
Fredrick Allan Fisher

A Thesis submitted to the faculty of The University of
North Carolina at Chapel Hill in partial fulfillment of the
requirements for the degree of Master of Science in the
Department of Computer Science.

Approved by:
Adviser
Reade , -
j'z*f L o LA "’i’:"«ﬁ e
Reader*

Chapel Hill, 1986

FREDRICK ALLAN FISHER.
A Family of Operating Systems in a Software Laboratory
_ (under the direction of RICHARD T. SNODGRASS).

It is nearly impossible to provide hands-on experience with operating systems in any introduc-
tory operating systems course. This difficulty is due to the size of operating systems and the
sensitivity of their position in day to day computer operations. A family of operating systems,
designed for classroom use, is shown to be a tool by which operating system design experience
may be gained. Two fully-documented systems, which have been used in an operating systems
class over the past two years, are presented as the nucleus of such a family. Courses using
these operating systems should have the same value for computer science students as laboratory
courses have for students in the natural sciences. All the code for both of these operating sys-
tems is included, along with suggested experiments and assignments.

Acknowledgements

An undertaking of this sort is never fully the work of one person. The author justly runs a
grave risk of bemg considered less than honest if he fails to give credit to those others who
were instrumental in bringing the project to a successful conclusion.

First on the list is my adviser, Rick Snodgrass. Not only did he write the first, one-page
version of UNIBATCH; he also wrote a near-final version of UNIBATCH's ContextHandler,
and made significant revisions to LocalSystem. An early version of MULTIBATCH's
LowLevelScheduler was another of his contributions, as were many of the assignments.

Harder to point to than these contributions, but far more important to me, were his wil-
lingness to explain puzzles, his ability to excite interest, and his encouragement throughout the
long ordeal which resulted in the production of this thesis.

Dick Morrill, developer of the Integrated Instrumentation Environment for the Softl.ab
project (mentioned within), also deserves credit. He did much of the early work on MULTI-
Barca, and wrote pseudo-code versions of six of the modules in the system:
MemoryManager, DiskManager, ProcessManager, MediumScheduler, High-
LevelScheduler, and Swapper. Although the final code for some of these modules
bears little resemblance to the original pseudo-code versions, they served as an invaluable start-
ing point; and in fact a few of them remained remarkably stable.

I would also like to thank Rich Hammer for letting me quote so freely from his article,
*“The Organization of Storage and Procedure Calls on an M-Code Machine.”’ It made the writ-
ing of one subsection of my thesis relatively easy.

I should of course point out that none of these individuals can be held responsible in any

way for any shortcomings of either my thesis or the code. All final decisions as to what was to
be included anywhere in the document were my own, as is the responsibility for any errors.

i

CONTENTS

CHAPTER I: INTRODUCTION

LI, THEPROBLEM ... i ssssess s st sssncssesssasssessase
L2, APPROACH ...t tisinissssssiienn i e insscssassssssnenssssassstsessass stsssssiasssssss onns
1.3. PREVIOUS WORK ...ttt sesesasa s ssssass st sessseassanenessnns
L4, SUMMARY ... st ssisesssn sssse s sssnsss s st ssassssssseses s enassssens

CHAPTER IT: OVERVIEW OF THE MACHINE SIMULATION

2.1. STORAGE ...ttt st srrsisaessesnsssresssbase e sssssesnsvasssesssnsbssnarassasesssssesenne
21,10 REGISIETSconrrrricmicccnrerars s enecssnns s enssenansssnsssesssensssnsssastsesesesssnns
2.1.2. Reserved LOCAHONSccoviccviiniiriicniesineriisiinecesssssstsinccrnonssesssssssens
2.1.3. Main Storageoconireriveinnscnsnesrnesnesions frarersnese et n st sanecan e sns
2.2. INTERRUPTS ...ooieemreritssisssncresresnssstnssenresasstsssmeonenssassessmoses sessnssssssessososnssarans

CHAPTER III: THE UNIBATCH OPERATING SYSTEM

3.1, MACHINE INTERFACE ...t issssssssissncsanessssistssnesasoensisssseseensane

3.1.1,
3.1.2.

3.13.
3.14.

TNEFOAUCLION ..o eecerrer e ieessarssaresssesentemaeenes svesseesassnns sresensesssanne

Machine Modulescveevinicmrnnmaneiissnin it eenes
3.1.2.1. LOCALSYSLEM ..cvcviericirirseisriiscsinrsssassss s e sesssrensssssnsaneae
SIOFAZEcovrrrisseserrerarssiiiesisstsnass s s s s st ms b bssre s sbasaasssnsssnsnes o bt san
TASEPUCTHIONS oa.oeoeeeeeresrirasteereesserst st eeassanessesassseeesasessnssnsos tnnasesnans

SEOFGREostieteeree ettt sster e s st e st sr st s s s e e s e b ba e e sas st s as s as s
PPOCEAUTES ..ueevvereeeeeesscecsisnsesssssssensorisssssossstsesmsnssssssssassssmssnns
DIBVICES .ceorvrreerrririrermecresmsstrssesemsssaseeesranstessecssmesesssratsastss sanssmranssrssusesesane
INLEITUPLES .ottt crenccrcscs st it e e sn s s srsens st csssnnasesssansssaessssbenns

iv

SO h 31—

10
10
11
13
15

17
17
19
19
19
19
20
20
20
21
21

3.2

3.3.

3.2.1.
3.2.2

3.2.3.
324,

ASSIGNMENTS

...

INIrOdUCLIONccovieeee ittt st arsersans s rrs st s s sne s s s sesata s
Operation of UNIBATCHccovveeiiicrenssiininstostrnsnessssensssssessnsasassanns

3.2.2.1. Initialization

3.2.2.2, Maintaining State:

..

the ConteXt ...ccivieeerecerrrieeressrrsimnsssnnsn

3.2.2.3 Interrupt Handlingcccceccomcamesemmossesceramoansncoscsncsssessosnessassosasens

3.2.2.4. Supervisor Calls .
3.2.2.5. User Processes
Salient Features

oo

--

..

Organization 0Of UNIBATCHccviinmircnncicesnosesscssasssssissoscossaonsa
3.2.4.1, Division into Modulescucmivstmiinversinimnnisnscssresssinansses
3.2.4.2, Functions of MOQUIESc.ccueermerererirccmsisnncsnscanisiscnssnesmsnsnens
3.2.4.3. Dependencies of Modulesuvrininmeriiiemsiensssnsenscnines
Procedural dependencies ... iccvreiisiinsrorssercesssssisaresnens
Dependencies 0R VariabIesuveerresinencnisiecssniressosenens
Dependencies on constants and tyPeScovvsorcossssassosasesssscssans
Suggested order of FEAAINGcmicurocecnornsorsrsisensnsiosssssorensasse

..........................

..

CHAPTER 1IV: THE MULTIBATCH OPERATING SYSTEM

4.1.

4.2

MACHINE INTERFACE

4.1.1.
4.1.2.

Introductionc..ccoeeenee

Machine Modules

4.1.2.1. LocalSystem .

Storagecccouaens

Storagecuuuuu...
Procedures

..

..

L L T Ry T T P T L TP Y R TP

..

--

--

..

..

..

..

T T L T R

..

Operation of MULTIBATCHcovevieencniennnecresnessenensesnsscsninensessoncenss

4.2.2.1, Initialization

..

4.2.2.2. Major Data StIUCIUTEScccsimrmnemninmencsrsssnmoncssssvnssssssssre aasssesse

The Memoryblock

The Diskblock

The Context
The Processblock
The Priorityqueue

...

..

..

..

...

22
22
22
23
23
24
24

25
27
27
28
29
29
31
32
32
35

37
37
38
38
38
39
40
40
40
41
42
43
43
44
44
45
46
46
47
47
48

The deltalist ... eiereceecieerseee s svssene b rer s sasene st bt st s e s smesiae

4.2.2.3. Interrapt Handlingccocmvinvienivcnccc s

4.2.2.4. Supervisor Calls ... cerereccrssissessnneccnrees et naeas st neeesanenns s

4.2.2.5. TUSET PrOCESSES .evvvieeenieruerasessemrsnuesseesssnreresesssssressnssnnsensesseesansesssees

4.2.3. Salent FeatlITescccvcicieverieiserrarsassinesessressonsrssssnassessssnersssrssasssannesssn
4.2.4. Organization of MULTIBATCH

4.2.4.1. Modular Construction
4.2.4.2, Functions of Modules

4.2.4.3. Dependencies of Modules
Procedural dependeéncies
Dependencies on variables

“ne

E T P P PP T Y Y

..

--

..

...

Dependencies on constants and (ypescuseensiseccnsessansneses
Suggested order of TEAAINGcvvvvrevvemssicersssirsesnnsesisesenees
4.3. ASSIGNMENTScvoiviremrnirmmsisisisins s ssessssassssssssssssss sessssinssssssssssens

CHAPTER V: CONCLUSION

5.1, SUMMARY ...uoerereccererservsssssrssssssssssssnsassnstsssssosssssessssssmsssssasiss sossssessasssssa sessassess
5.2. EVALUATIONcoicorumenmmermssmanisscosssasnesssssssasssesssssssnsons ssssstossassscsssnssssssnses
53. FUTURE DIRECTIONSouertsiereenesinssnesssssstssisniseesmsassisssssssssssssssesssssasnssen
REFERENCES
APPENDICES

Appendix A-UNMBATCH

Appendix B-MULTIBATCH

vi

49
49
51
51
54
56
56
58
59
59
62
63
65
67

71
72
73

LIST OF FIGURES

Figure 1. ReServed LOCAHONSvveesmmseesessmsesorsessssssessssnsesonn corsessisssaerereres
Figure 2. Process CONMEXLieumumenmessmnssrssnrasesssssssssasssssssssasssstssssssssnsessaseas
Figure 3. Overall View of Main StOragecccccreervemmscnssiccnssmenensssnrmnessasssnens
Figure 4. The Size of UNIBATCH ..cccuvvieeimerermsisismsessensssossssemsissnssessssssssssssasssnes
Figure 5. Procedure Dependency Graph for UNIBATCHcooiveeenrnerinnienenn.
Figure 6. Graph of Dependencies on Variables for UNIBATCHccccooveeneeunnens
Figure 7. Graph of Dependencies on Constants and Types fo.r UNIBATCH
Figure 8. Process State Transitions in MULTIBATCHcoceeveienrererencrseeroreeens
Figure 9. The Size of MULTIBATCHcccnmsenisicnmsmsssrnsisinissssnsisssssssssssssasssnssess
Figure 10. Procedure Dependency Graph for MULTIBATCHcccoviionnionns

Figure 11. Revised Procedure Dependency Graph for MULTIBATCH

Figure 12. Graph of Dependencies on Constants and Types for MULTIBATCH

vii

...............

...............

................

...............

...............

................

................

................

12

14

16

26

30

31

33

33

55

60

62

64

CHAPTER L.

INTRODUCTION

1.1. THE PROBLEM

Courses in operating systems are generally limited to a passive presentation of material.
The theory of operating systems can be taught, and specific operating systems can be chosen as
case studies; but there is little oﬁportunity for active development, for haI}ds—on design or
modification of operating systems, especially in a first, one-semester course. This is not simply
a matter of teaching approach. The design of a complefe operating system is just too large a
task for a first course in operating systems, and existing operating systems are generally too
vital to the computer community -to allow students the privilege of playing with them, and too

large and complex to make the playing worthwhile.

This situation is no less a fault for its being intrinsic to the subject matter. The complexi-
ties, the innermost workings, the very scope of the design of an operating system—none of these
can be truly appreciated or understood by the student who has not actually experienced the

design process. Yet the task of operating system design remains too large to ask of a student.

This thesis is concerned with one possible solution to the problem. An overview of the
solution is presented in this chapter, as well as a brief review of previous work in the area.
Later chapters discuss in more detail the two operating systems that implement the solution.

Sections 3.2 (UnNiBaTcH Overview) and 4.2 (MULTIBATCH Overview) include descriptions of the

major data structures, general operation, and salient features of each system. In addition they
give a historical perspective on how each operating system was developed. These sections,
along with the suggested assignments (sections 3.3 and 4.3), and the Conclusion (Chapter 5)

should be of interest to most readers.

Chapter 2 (the machine description), and seciion one of Chapters 3 and 4 (the machine
and machine interface descriptions) are probably of interest only to those who will be reading
the code. Students may find these sections useful reference material when trying to understand
how interrupt handling and supervisor calls are implemented. Beginning students should real-
ize, however, that this document contains material for their instructors, as well as for students;
they should not expect to be able to understand all of it until after they have leamed something

about operating systems, and spent considerable time studying the code.

1.2. APFROACH

There is no wéy to make the task of designing an operating system easier, except by
specifying the operating system to be so small and simple that the endeavor of designing and
building it becomes practically worthless. However, an environment can be created, complex
in itself, but within which appropriately scaled down activities can still give the flavor and
some of the experience of actual cperating system design, The situation is analogous to that in
the physical sciences, No one would suggest that beginning physics students leamn for them-
selves the entire structure of physics, designing their own experiments to light their way; rather,
selected experiments are provided to demonstrate first-hand how certain physical principles are
manifested. The student need not discover new principles for himself, but he must reenact
experiments which demonstrate the existence of those principles.

The creation of the environment within which operating system ‘‘experiments’’ are possi-

ble is part of the SoftLab project, a group project designed to provide the capability for experi-

mental work in courses on architecture, translators, operating systems, and database

management systems, and for research in these areas. The purpose of this present portion of the
project is to provide a pair of operating systems~the nucleus of an entire family—which will
support experimentation and investigation of operating system design in the manner of a
laboratory science. In keeping with the goals of SoftLab, these operating systems are under-
standable and adaptable; they use only widely available hardware and software; and they are as

portable as possible.

These operating systems have been designed to enable tracing the growth, development
and relative importance of the different task-oriented units (the scheduler, for example, or the
interrupt handler) from the smaller operating system to the larger. They have also been con-
structed with the idea that additional operating systems, utilizing state of the art techniques,
will be added in the future, illustrating ever more difficult problems and complicated mechan-
isms. The two members of the family developed for this thesis are UNBArCH, a very simple
batch, uniprograming system, easily understandable in its entirety; and MULTIBATCH, a more
élaboratc and powerful multiprogranﬁné systexh with spooling, where a detailed understanding
of the complete operating system is not necessary for performing experiments and investiga-

tions on selected parts.

Since these operating systems are to serve as a theater for experimentation and study, and
the source code of the operating systems is to be available for this purpose, it is vital that the
code be clear and weli-documented. The included experiments and assignments often focus on
one segment of an operating system, sometimes with the intent of replacing that segment with
another segment designed to accomplish the same task in a different or more efficient manner.
The operating systems are therefore modular, so that one section can easily be changed without
incurring unwanted side effects throughout the rést of the system. Toward this end, the
language chosen for writing the operating systems is Modula-2, a language based largely on

Pascal, but with even more support for information hiding and separation of function.

Modula-2 contains strong type-checking facilities, is highly structured, and possesses all the
features of a good teaching language which has made Pascal so popular in academic circles—yet

at the same time it has low level capabilities necessary for systems programing [16].

Each operating system requires f:ertain hardware features to support it: reserved memory
locations, the number and types of registers, and input/output details. Included as part of the
description of each operating system, therefore, is a specification of that system’s machine
interface; that is, a description of those hardware features which are visible' to the operating
system, and which any machine wishing to run the operating system must possess. A part of
this interface will consist of a ‘‘machine module’’ which serves as a definition of the machine
from the operating system’s point of view. This module, called LocalSystem in both sys-
tems presented here, associates variables with reserved memory locations, defines some basic
machine data structures, and provides a set of machine instructions which can be used by the

rest of the operating system.

Each operating system may be run on a simulated machine having the characteristics
described in the machine interface specifications. An overview of these simulated machines is
also supplied as part of this document. These machines will be part of an Integrated Instrumen-
tation Environment (IIE), also part of the SoftLab project [13]. This environment supports the
monitoring of device and CPU utilization, so as to provide results for the experiments and
investigations conducted on the operating systems themselves. The IIE is a vital foundation to
the project, for without results there is no way to judge the quality of design changes, and

experimentation loses most of its value.

Since the purpose of the entire SoftLab project is to provide an environment where exper-
imentation is practical and fruitful, each operating system description is accompanied by a list
of suggested experiments and assignments. It was with this in mind that room was deliberately

left in the operating systems for improvements. It is hoped that the decision of which features

were essential to the operating systems, and which could be omitted in favor of inclusion

among the assignments, was made wisely.

Listings for the source code of both operating systems are contained in the appendix. The
final versions presented are the work of the author, though some modules ﬁre partly the wofk of
others (see Acknowledgements). Both operating systems compile correctly in the form given;
unfortunately, the machine on which they \;vere to run has not been coinpleted yet, and so it has
proved impossible to completely debug them.

It is expected that students wishing to use this system be competent programers in at least
one high level language, that they have some knowledge of machine architecture, and that they
be familiar with data structures. There is no need for them to have a solid background in
operating systems; that would defeat the purpose. However, this document and the éc‘mmpany-
ing operating systems are intended to aid the student in learning the subject of operating sys-
tems, not to teach it outright. It will be most effective, and ‘most understandable, if used as an

adjunct to a standard operating systems course.

13. PREVIOUS WORK

There are several publications which deal with operating systems in a laboratory environ-
ment [1,5,6,7, 8,9, 11, 12, 15], This section will briefly discuss ways in which these docu-
ments, though successful in their own goals, do not meet the SoftLab objectives; and what their
goals actually are. Two texts whose goals seem closest to those of SoftLab will be singled out

for more detailed analysis.

Some of the cited publications are textbooks, whose only mention of a software labora-
tory environment lies in their appendices (Holt [12], Shaw [151); some others are technicat
reports (Corbin [7], Corwin [8]). Ineither case, there simply is not enough space in these publi-

cations to do anything more than describe what might be a promising system. Other texis,

though devoting a large portion to the subject, nevertheless provide at most a small portion of
the relevant code {Brinch Hansen [1], Holt [11]). Some publications suffer in general useful-
ness by developing a language specifically for the purpose, rather than employing an existing
one (Brinch Hansen [5], Halstead [9]); most describe operating systems which are overly
| simplistic (Briﬁch Hansen {5], Corbin [7], Corwin [8], Halstead [9], Holt [12], Shaw [15]); and
design alternatives are suggested only in the exercises of Comer [6], although Holt {11, 12]
presents a number of assignment questions which could be made into good experiments if onl.y

the code for the operating systems were included.

Of course, the aims of most of these works differ from one another, and from the aims of
SoftLab in general and this project in particular. For example, Brinch Hansen [1] seems most
interested in presenting an exposition of Concurrent Pascal, and showing how an operating sys-
tem can be written in a high level, structured, concurrent language. Holt [11, 12] seems even
more interested in demonstrating the value of structured concurrent programming, though an
appendix in the earlier wbrk includes a very simple operating system, complet.‘e except for
references made to procedures discussed earlier in the text. The later work, though similar in
intent, provides no code; and the exposition of other topics (such as the Unix operating system)
causes it to lose focus. Both of these books, however, raise a number of questions in their exer-
cise sections as to how operating systems could be constructed differently from the expositions

~given, and are therefore closer to the experimental spirit of Softl.ab. Shaw [15] is first and
foremost a textbook. Its appendix contains a description of a project to construct a multipro-
graming operating system (as well as a simulation of the machine on which it will run); but the
purpose of this is mostly to apply the concepts learned in the book; no code is given, nor are

any alternatives supported.

Given such differences of purpose, it is not to be expected that these publications would

fulfill all the stated SoftLab objectives of being understandable, adaptable, reliable, portable,

and available, However, two texts have goals which approach the aims of SoftLab closely
enough to merit closer scrutiny: Halstead’s A Laboratory Manual for Compiler and Operating

System Implementation [9] and Comer’s Operating System Design, The Xinu Approach [6).

Halstead’s work is obviously directed towards much the same goals as the SoftLab pro-
ject. However, the approach is to construct a complete compiler and a complete operating sys-
tem, rather than to experiment with portions of ones already provided. The language used is
Pilot, a stripped-down version of Neliac, which in tum is a real-time systems langnage derived
from Algol. The reason given for using such a stripped-down language is that its design will be
easy to extend; but the language is so simple that it becomes difficult to read and
write—attributes which should be of prime concern in a system devoted to education. Also,
although the systems are claimed to be modular by virtue of consisting of subroutines, all vari-
ables are global. The operating system is incapabie of certain features necessary in any reason-
able system: memory managemeant, for example, or multi-level scheduling. Finally, there are
no suggestions or support for operating system experimentation, except to implement the sys-
tem on a machine other than the Univac 1108, since that is the implementation given in the

book.

Comer’s book is more successful in fulfilling the goals of SeftLab. It is a much larger
book than Halstead’s, yet deals only with operating system design. The operating system it
presents is highly functional, though it assumes only a small amount of memory and is weak on
protection. The language used is C, which is easily accessible, though it does not have strong
support for modularity and can sometimes be difficult to read. The code itself is fairly clear,
however, and the exposition in the text is quite good. In spite of all this, the Eook is a textbook
on operating system design, not a laboratory mamual, The XINU system is presented, step by
step, with all its code; but it is presented more or less as a finished product. Design alternatives

and extensions are suggested in the assignments, but the discussion in later chapters always

assumes the original configuration; and perhaps most significant, there is no provision for

analyzing the effects any such aiterations have on performance.

14. SUMMARY

The size of operating systems makes their design and development unsuitable for assign-
ment in operating systems courses. As a result, the absence of any kind of hands-on experience

with operating systems is a weakness common:to almost all first courses in operating systems.

To help alleviate this problem, a pair of operating systems intended for pedagogical use
has been designed, iniplemented and documented. These operating systems, while preserving a
““family’’ resemblance, illustrate different approaches to operating system design, so that the

instructional benefits of studying the different operating systems will be complementary.

Each operating system is easily modifiable to allow for meaningful experimentation with
regard to the extension of function and enhancement of performance. The different functions
have been compartmentalized into modules, to facilitate making selective alterations on operat-
ing system functions. For this purpose, and because of its low-level capabilities, the language

Modula-2 has been chosen as the language in which to write the operating systems.

The operating systems, by their differences, demonstrate large scale design alternatives.
In addition, each operating system comes with a list of experiments and assignments, which
demonstrate design alternatives on a smaller scale. In order to monitor the changes in operating -
system efficiency which occur as the result of executing these assignments, the operating sys-

tems may be run in an Integrated Instrumentation Environment.

It is hoped that these operating systems will provide an environment in which students
can gain hands-on experience of operating system design, without the laborious effort of build-

ing their own operating systems from scratch.

Contained in this document are:
An overview of the simulated machine on which the operating systems will run (Chapter 2).
A machine interface specification for each system (section 1 of Chapters 3 and 4).
An exposition and description of the orgamzanon of each system (section 2 of Chapters 3
ing%;of suggested experiments and ass1gnments for each system (section 3 of Chapters 3
an :

The code for the two operating systems {appendices).

CHAPTER II.

OVERVIEW OF THE MACHINE SIMULATION

MULTIBATCH and UNIBATCH do not run on exactly the same machine, but the variations
are slight. The machine simulations used in the SoftLab project are versions of a basic M-Code
interpreter, based on Niklaus Wirth’s Lilith engine [14]. This interpreter effects a virtual
machine called the M-Code Machine. The details of its workings which affect most directly the
operation of UNMIBATCH and MULTIBATCH can be collected into two broad categories: storage

and interrupt -handling. .

2.1. STORAGE

Most of this section on machine storage is taken from an unpublished SoftlLab internal
working document called ‘‘Organization of Storage and Procedure Calls on an M-Code

Machine,”” by Richard Hammer [10].

2.1.1. Registers

The M-code machine uses the following registers:
PC: program counter.
IR: instruction register.

F': code frame base address: this is the start of the code frame for module 0, the main module of
the program.

G data frame base address: this is the start of the data frame for module 0.

11

S: stack pointer: this points to the top of the process stack.
H: stack limit address: this is the address which S cannot exceed.

L: local segment address: this points into the process stack and always points to the bottom of
the currently-active activation record.

P: process state address: this holds the location where the process state is saved when the pro-
cess is not running. '

M: process interrupt mask: this is a bitmask of sixteen bits, used to disable certain interrupts
during the execution of privileged modules.

T: segment table base address: this points to the first address in the segment table (or table of
modules) for the currently active process. (In early versions of the M-code machine there will

be only one segment table, and this register will always contain 40B (octal), the address of that
one segment table.)

For those registers that contain addresses (F, G, S, H, L, P and T), the addresses are
always absolute. The content of the PC, however, is relative: the PC contains the number of

bytes beyond the start of the current code frame, that is, beyond F.

In addition there is a 16-register expression stack which is used to store the intermediate

results of operations, and on which parameters are placed during procedure calls.

2.1.2. Reserved Locations

The first 40B locations in storage are ‘‘reserved locations.’” These locations contain the
trap and interrupt vectors, and data needed for bootstraping. These reserved locations are iltus-

trated in Figure 1.

Locations 0-2. Each program module will have in storage a data frame and a code frame.
The data frame contains a pointer to the codeframe, an initialization flag which indicates
whether that module has had its initialization section executed, a pointer to the string table, and

an array of global variables. The code frame contains the M-code instructions for that module,

Module 0 is unique in that the data frame for Module O resides in the first three locations

in storage, to enable bootstrapping. Address 0 therefore contains the address of the code frame

0 code frame address
module 0 initialization fl
data frame ' 1 initiatization Bag
9 string pointer
3 device mask
boot context address -
bootstrap data 4 = -
5 saved P-register
8 boot flag
"from" address
16
trap vector ComSsessoosese-coso-ooo-o----
17 to" address
(— 20 "from" address
91 to address
interrupt vectors -{
36| . _romaddes
"to" address
— 37

Figure 1. Reserved Locations.

13

for module 0, address 1 contains the initialization flag, and address 2 contains the string pointer.
(Module O is also unique in that it has no space for global variables; thus its data frame occu-

pies only three words.)

Locations 3-6. Address 3 cox;tains the device mask, used for masking interrupts. Setting
any bit of this mask to 1 disables the corresponding device interrupt. Address 4 contains the
address of the context, or process state, for the start-up ﬁmcess; that is, the value used to initial-
ize the P register during bootstrapping. Addresses 5 and 6 contain other bootstrapping data: a

saved P register and a boot flag.

Locations 16-17. These two words constitute the trap vector, which contains two
addresses: the first is the address of the context of the interrupted process, the second is the
address of the operating system’s trap handling procedure. The first is set whenever an inter-

rupt occurs, the second is set only once during system initialization,

Locations 20-37. These addresses contain eight interrupt vectors. Like the trap vector

each interrupt vector consists of two words, a context address and procedure address,

2.1.3. Main Storage
Main storage holds a process’s segment table, its data and code, its stack, and its heap.

The segment table contains the addresses of the segments for the modules. Each module
has one segment, consisting of a data frame and a code frame. The third address in the segment
table, for example, will be the address of the start of the data frame for module 3. In general
there will be one segment table for each process. The starting address of the segment table for

the currently active process will be held in register T.

-The segment table for process 0 will occupy addresses 40-177. By convention, the first
location in this segment table contains 0, because the address of the data frame for module 0 is

0.

14

In general, except for module 0, all modules will have their data and code frames con-
secutive in memory (thus constituting a segment), and all segments will immediately follow the

segment table. This constitutes the process’s sratic storage.

At the base of a process’s stack is its context, or saved state. Figure 2 shows the contents
of the context. The capital letters refer to the values of the registers of the same name. The
context holds, in order, the address of the current dataframe, the address of the base of the
current activation record, the PC, the process interrupt mask, the stack top, the stack limit, the

error code (in the case of a trap), the error trap mask, and the address of the segment table.

P+ 0 G
1
2 ‘ PC
3 interrupt mask
4 S
5 H
6 error code
7 error trap mask
8 T |

Figure 2. Process Context.

15

Immediately following the process’s context is its run-time stack, holding the activation
records, or dynamic storage, for all procedures currently in progress. The stack grows upward
(from smaller addresses to larger), while the heap, starting at the largest address available to the

process, grows downward toward the stack.

Figure 3 shows the overall _view'of main storage with a single process.

2.2. INTERRUPTS

The M-code Machine architecture contains an interrupt mask register, known as the M
register. The M register-is set by the module priority (if any) given in the declaration of the
module to which the currently executing procedure belongs (if no priority is given in the

declaration, then the procedure’s priority is the same as that of its calling procedure).

In addition, there is a set of request lines, numbered §..15, implemented as a BITSET
- register (ReqLines). Each device will be associated with one request line, or one bit in Reqg-
Lines, which will be set. to 0 whén the device wishes to raise an interrupt. The register REQ
will be set to TRUE at the start of each interpretation cycle when at least one of the unmasked
request lines is low. A third register, ReqNo, holds the number of the highest bit missing from
the set ReqLines; that is, the highest prioﬁty line requesting an interrupt. The value of REQ is
checked at the beginning of every interpretation cycle; when it is TRUE, the interrupt indicated
by ReqNo is handled.

Each device is given one interrupt line. Traps are simply software interrupts, and all traps
are grouped together on a single interrupt line (line 7). The trap code is stored in the context (in
the error code field).

When an interrupt is processed, the register values are first saved in the process’s context,

and the address of the context is stored in the interrupt vector. The saved context of the operat-

ing system, always stored in reserved location 5, is loaded into the registers, with the value of

16

0
(module 0 data frame
2
3
bootstrap data
Reserved locations _{ 8 _
16
L 37 trap and interrupt vectors
40
segment table
177 -
~ 200 | code frame module 0
data frame module 1
[code frame module 1
Segments o
data frame module n
U [eodefame """ rodule
process context
STACK
HEAP
n

Figure 3. Overall View of Main Storage.

the PC coming from the appropriate interrupt vector. The interrupt handling routine then

begins executing. At its conclusion, the context switches back to the context saved in the inter-

rupt vector, and the interrupted process begins where it had left off.

CHAPTER III.

THE UNIBATCH OPERATING SYSTEM

3.1. MACHINE INTERFACE

3.1.1. Introduction

Every operating system, if it is to deserve the name, must be able to operate some particu-
lar machine. Certain features of the operating system are therefore bound to reflect features of
the machine for which it is written. On the other hand, not all machine features will show up.
Indeed, the fewer the machine depen&ent features of the operating system, the more portable it
is. Machine dependencies of an operating system can be divided into two basic types: 1) the
operating system directly references features.'of the machine, e.g., sets a register value; or 2) the
operating system makes assumptions about the machine’s capabilities, and therefore takes no
action on tasks which it expects the machine to handle, e.g., recognizing the occurrence of a

device interrupt.

‘While .both UNIBATCH and MULTIBATCH run on an M-Code machine, differences in the
operating systems’ capabilities demand slight alterations and tailorings of that machine. The

machine as used by UNIBATCH shall be known as the UniBatch Machine.

Most direct references to features of the UniBatch Machine are contained in the module
LocalSystem. These features consist of five dedicated memory locations—two for I/O, one

for bootstrapping, one for saving the state of the operating system, and one to hold the address

18

of the interrupt handling routine—and a set of ‘‘procedures’ which are in fact machine instruc-
tions available to the operating system. One of these, SetBoundsRegister, directly sets
the value of a machine register known as the ‘‘Bounds Register’’. In addition, UNIBATCH con-
trols two peripherals to the UniBatch Machine. These are a cardreader and a lineprinter and are

made expiicit in the machine instructions of LocalSystem

The only direct reference to the machine outside of LocalSystemis in Context-
Handler, where the Context type is defined to match exactly the process context of Figure

2.

Implicitly assumed by the operating system is the machine’s use of the new Bounds
Register tﬁ protect the operating system from user programs; also assumed is the use by the
machine of two values in a process’s context, presumably by loading them into registers: a pro-
gram counter (PC), and an interrupt mask containing a mode bit; this last is to allow the
machine to prevent user programs from having access to most of the machine instructions in
LocalSystem. In addition, it is assumed that the UniBatch Machine can detect the raising of

a trap or interrupt, and call the interrupt handling routine with the appropriate parameters.

Virtually any machine with all of these characteristics should be able to run UNIBATCH.
The M-code machine’s CPU needs to be upgraded only in the following ways: 1) a Bounds
Register must be added, 2) the interrupt mechanism must be altered to make provision for
parameters to the interrupt handling procedure, and 3) it must use the mode bit (placed in the
high bit of the interrupt mask) and the Bounds Register to protect the operating system against
the user program. This chapter discusses the two modules LocalSystem and Context-
Bandlex, which form the major interface between UNIBATCH and the UniBatch Machine; the
peripherals controlled by UNIBATCH; and the method by which UNIBATCH expects interrupts to

be implemented.

19
3.1.2. Machine Modules
3.1.2.1. LocalSystem

Storage

The memory locations 4, 5, and 17 are reserved to be the boot process context address,
the saved P register (or operating system context address), and the trap handling procedure
address of the trap vector. These meanings are confirmed in LocalSystem, which uses
Modula-2’s direct addressing feature to declare them as bootcontext, OScontext, and
interrupthandlexr. In addition, locations 10 and 11 are defined by LocalSystem to
represent the one-byte registers of the card reader and line printer, called inputbuffer and
outputbuffer. These locations are in reserved memory, but were given no special function
by the M-code machine. Inputbuffer holds the last byte read by the card reader, and

outputbuffer holds the next byte to be written by the line printer.

The presence of a Bounds Register is required explicitly by the presence of the machine
instruction SetBoundsRegister. This is the only register which the operating system
actually requires the UniBatch Machine to possess. All user memory references must be above

the value in the bounds register to be legal.

Instructions

The procedures ContextSwitch, Read, Write, SetBoundsRegister, and
Trap can all be implemented as otherwise unused M-code instructions. ContextSwitch
(#246 = CNTX) is used to return from an interrupt by restoring the old context; Read (#240 =
READ) is used to send a non-blocking request to the card reader to begin reading the next char-
acter; Write (#241 = WRITE) is used to send a non-blocking request to the line printer to
begin printing the next character; SetBoundsRegister (#214 = SBR) is used during ini-

tialization to set the bounds register; and Trap (#304 = TRAP) is used to handle software

20

interrapts—it stores the current context and raises an interrupt signal.

The implementation module of LocalSystem is written with empty procedures to per-
mit compilation, both of this module and of any other which imports from it; the linker will
have to be altered to substitute the correct M-Code instructions for the named procedures. Ata

later date, it may be possible to alter the compiler to recognize this special module directly.
3.12.2. ContextHandlex

Storage

The Context record is a data structure which stores the register values representing the
working environment and location of a program in order to restart the program after a return
from interrupt. This type is defined in ContextEandler io match the process context of
the M-Code machine. However, of all the fields in the context, the operating system regu-
larly accesses only the PC. Once, during initialization, it must set all the values of the single
user contexf ; but the only value which really concerns it at th;it time is the interrupt
mask, where setting the high bit to 1 (the mode bit) is a signal that the machine should not let a
user program execute any LocalSystem instruction but Trap. The user context has its

mode bit set to 1, while the operating system has its mode bit set to 0.

Procedures

The procedures NewContext, SetInterruptHandler, SetPC, SVCArgu-
ment, and SwitchContext are codable in Modula-2. NewContext creates a new con-
text for the user during system initialization; SetInterruptHandler stores a pointer to
the interrupt handling routing in memory location 17, interrupthandler; SetPC can
change the PC in the most recently interrupted context; SVCArgument retrieves from a
user’s stack the argument to a supervisor call which caused the trap; and SwitchContext

returns to the most recently interrupted context.

21

3.1.3. Devices

UNIBATCH can send a start signal to the card reader only by issuing the Read instruction,
and to the line printer only by issuing the Write instruction. These each send a non-blocking
request for action to the appropriate device, so that the device begins acting concurrently with
the CPU. Itisupto the 6perating system to ensure that at most one request is sent to eaéh dev-
ice at a single time-most easily by not sending a request until fielding a ‘‘device completed”’

interrupt. Each device handles one byte at'a time..

3.1.4. Interrupts

The UniBatch Machine handles interrupts exactly as the M-code machine does, except
that there is only one interrupt handler, rather than one for each device and one for traps. Also,
the machine must place the interrupted context and the reason for the trap on the expression

stack, where they will be picked up as parameters by the interrupt handling procedure.

Regardless of what line the interrupt comes in oﬁ, 'it must be fielded b); the procedure
whose address is ir location 17 (interrupthandler), placed there during system initializa-
tion by a call to SetInterruptHandler. If a trap caused the interrupt, the effect of the
machine’s trap instruction must first be to place the reason for the trap (which will be the ordi-
nal of a value of type Exceptioncode, defined in LocalSystem) on the machine’s
expression stack. If the interrupt was due to a device, then the request line number (8 for the
cardreader, 9 for the lineprinter) should go on the expression stack. In either case, after the
registers are stored in the context, the address of the context (in the P register) should be placed
on the expression stack. Then the interrupt routine should be called. It will use the values on

the expression stack as its parameters.

At the close of the interrupt routine, control will be switched back to the context that was

passed as a parameter, by a call to ContextSwitch,

22
3.2. OVERVIEW

3.2.1. Introduction

UNIBATCH is a toy operating system intended to be the first system for which students are
given actual code, and on which they may make alterations. It is designed to be a minimal
example of a complete operating system, exhibiting all of the major operéting system functions
in the simplest possible way. As such, it cannot be considered to be useful as an operating sys-

tem; however, the simplicity should promote its effectiveness as a teaching aid.

UNIBATCH processes a stream of batch jobs, one at a time, which have been compiled into
M-code, and entered on punched cards, one M-code instruction per card. Any operands will
immediately follow the instruction on a separate.card, one card for each operand. Sincé Unr-
BATCH provides no file system, all input must be supplied on cérds immediately following the
job, and all output will go directly to a line printer. The card reader and line printer are the

only peripherals which UNIBATCH supports.

The JCL for the system is extremely simple: each new job is preceded by a card contain-
ing the character *“/”’, and the code for each job is immediately followed by a card containing

the character *“$’’. If there is any input data, it will immediately follow the *‘$’’ card.

This chapter discusses the operation of UNIBATCH, including the initialization sequence,
state maintaining data structures, interrupt handling, and supervisor calls. It goes on to present
some salient features of the system as a whole. Then it discusses the organization of UNIBATCH

and the modules which make up the operating system.

3.2.2, Operation of UNIBATCH

UNIBATCH, as the operating system, is loaded into the UniBatch Machine in the lowest
unreserved locations: its segment table starts at octal location 40, and the code frame of module

0 immediately follows that at location 200. (Remember that the module 0 dataframe, when

23

only one program is loaded, is placed at location O rather than immediately before the
corresponding code frame.)} At location 4 is the address of the operating system’s context. The

context will immediately follow the end of the last module’s code frame.

3.2.2.1, Initialization

At boot time, all appropriate valués in the boot context will have been set: correctly.
When the boot is initiated, control passes to the starting location of the operating system. As
with all Modula-2 programs, the initialization sections of all modules in the operating system
other than the main module are executed first. These set up the data structures and place the
address of the interrupt handling routine in the interrupthandler variable. After this,

the module UniBatch itself begins executing.

UNIBATCH's first action is to save its context; that is, assign the value of bootcontext

t0 OScontext, the location the M-Code machine calls the saved P register.

Next the cardreader must be started. This is done by calling the LocalSystem
machine instruction Read. When a character has been read, an interrupt will cause the char-

acter to be processed and start the card reader going again.

Finally, a user context must be created, and a user program set running. The context is
initialized to start at a fixed location, be of a fixed size and have a fixed-size stack. All user
processes will use this same context, since only one can run at a time. After the context is
created, the operating system requests a user job to be read in, and when this has been accom-

plished it switches to the user context.

3.2.2.2. Maintaining State: the Context

During normal operation, the CPU will constantly be switching between the operating
system and the current user process. The mode of the controlling process, and the PC and stack

status of the dormant process, must be maintained and accessible at all times. This information

24

is contained in the Context dita structure.

The Context holds the state of a process. It is not kept up to date in the currently run-
ning process, but is updated when the process is interrupted. It keeps track of the location of
the process in memory, the status of its activation record stack, its mode bit, and the reason for
any traps. The Context is a hidden data structure, defined and exported by Context-

Handler; and it is accessed through the pointer type ContextID, and exported procedures.

3.2.2.3. Interrupt Handling

‘When an interrupt occurs, the register values are saved in the Context of the current
process. The register value holding the address of the Context, however, is placed on the
machine’s expression stack (used, among other things, for passing parameters). Then that
register is loaded with the address of the operating system’s Context, and the values from
that Context are used to refill the other registers. The value of the PC is taken from the
stored address of the single interrupt handling routine. The reason for the interrupt is also

placed on the machine’s expression stack,

Execution of the interrupt handling routine then begins. The type of interrupt and previ-
ous context are taken as parameters, the first of which is used to index into a case statement of
possible interrupt handling responses. When the interrupt has been handled, the operating sys-

tem switches back to the former context.

3.2.2.4, Supervisor Calls

Supervisor calls are implemented as a form of interrupt. Each supervisor call first calls an
intermediate procedure whose action is simply to call LocalSystem’s Trap procedure
with SVC as a parameter; however, the intermediate procedure itself takes as parameters the
type of supervisor call and the parameters to it. This places all the necessary information in a

known location on the process stack: the top activation record will be the one for Trap, and

25

the fourth location above the base of the preceding activation record will be the type of supervi-

sor call. The parameters to the supervisor call will be immediately above that.

The call to Trap raises a trap interrupt. The interrupt handler knows from the parame-
ters that the trap was a supervisor call. It then uses ContextHandler’s SVCArguments

10 obtain the type of supervisor call and its arguments. Finally, it takes the appropriate action.

The user may invoke supervisor calls to read from input or write to output.

3.2.2.5, User Processes

Each user job is assigned in turn to the same context. As a result, each job has the same
amount of space allotted for its code, and for its stack and heap. It is possible to alter the sys-

tem to make the values specifiable through JCL extensions.

‘When a user process obtains the CPU, it keeps it until it is finished, is aborted, or is inter-
rupted. However, all interrupts return the CPU to the same interrupted process when complete,
unless they result in termination of the process. Hence, a user process that goes into an infinite
loop will hang the machine. No other job is even read in until the current user job'is completed
or canceled. During I/O requests the operating system merely loops until the appropriate dev-

ice is free.
3.2.3. Salient Features

UNIBATCH is most notable in the following ways:

(1) It is small. Counting only executable program instructions—that is, ignoring comments
and declarations—it consists of less than 200 lines of code. Figure 4 contains. a chart of
the size of each module of UNIBATCH, with and without comments (but including declara-

tions), and the size of M-code produced.

26

line without size of
M-Code
count comments
(bytes)
def 88 19
320
ContextHandler — vh 53
def 81 20
67
1o mod 152 Q0 5
def 50 11
InterruptHandler — 75 T 1308
def 34 12
5
Loader — 2% = 64
def 85 28
1l
LocalSysten - T % 0
def 28 8
; 358
Scheduler — = o
def 32 i}
SV¥Calls — = £ 259
UniBatch mod 58 25 258
Total 1201 571 3815

Figure 4. The Size of UNIBATCH.

(2) It includes most of the major functions of an operating system. In spite of its small

size, it loads jobs into main memory, schedules processes, handles interrupts, processes

errors, and provides protection. It does not have any provisions for memory management

or multiprograming, nor does it include a file system.

(3) Few of its operating system functions are more than skeletal.

Scheduler has so

little to do that it could logically have been combined with Loadex, and the separation

was made purely on functional grounds; all interrupts transfer control to a single pro-

cedure; all detected errors result in abortion of the user’s program; and protection consists

27

merely of checking a bounds register to keep the user from compromising the integrity of the
operating system.
(1) It makes use of concurrency in the operation of peripherals. The ‘‘Read” and

““Write” instructions in LocalSystem merely send a signal to start the card reader and

lineprinter. The compleﬁon of the devices is signaled by an interrupt.

(2) Itis fully documented. The definition modules, in particular, have been written 50 as to

permit proper use of all exported procedures without the necessity of looking at the code.

3.24. Organization of UNIBATCH.

This section describes the rationale used in dividing UNMIBATCH into modules. It then
briefly describes the modules, and the ways in which those modules interact with one another,

It also suggests an order in which the modules should be read for maximum comprehension.

3.24.1. Division into Modules

UNIBATCH was not originally conceived as being divided into modules. The first draft of
UNIBATCH, largely in pseudo-code and written well before Modula-2 had been chosen as the
language for all SoftLab projects, fit on a single typed page and consisted of eight small pro-
cedures, with reference to five other ‘‘machine dependent actions.”’ Although modularity was
considered from the start to be an important design consideration in SoftLab, the simple use of
procedures seemed sufficiently modular for such a small program, As a result, all of the pro-
cedures were available to be called by any of the others; and all of the types, constants, and

variables used by more than one procedure (thankfully few) were completely global in scope.

With the choice of Modula-2 as the programing language for SoftLab, a new, more formal
meaning was attached to the concept of “*‘modularity,”” embodied in the Modula-2 programing
structure of the module. This structure was imposed upon a program that had by then grown to

be many times its original size. Module boundaries were drawn along lines based primarily

28

upon fienctionality, rather than upon procedure calls or access to data; that is, procedures with
similar functions were grouped together, rather than those which called mostly other procedures
in the same group, Hor those which required access to shared data objects. (Procedures which
manipulate a data object should, of course, be grouped together by the criterion of functional-

rity..,) These three criteria often overlap, but the point is that functionality was the criterion
chosen.

As a result of this design decision, and because strict modularity was imposed upon a pro-
gram that had already developed significantly without such restrictions, the import and export
lists of most modules are longer than might be expected in what is still a profou_ndly small pro-
gram. Fortunately, the smallness of UNIBATCH is itself a mitigating factor here: it is essentially
possible to k_e_ep the entire operating system in one’s head at once, and the number of intercon-
nections between modules, therefore, by no means prohibits use of the system for its intended
purpose. However, it should be noted that changing one module may require more changes in

other modules than would initially be expected.

3.2.4.2. Functions of Modules

UNIBATCH consists of eight modules (seven not counting SVCalls). A brief statement

of the function and character of each follows, in alphabetical order by module name,

ContextHandler-Handles all facets of switching between the context of the operating
system and the context of the user program.

InterruptHandler-Initiates processing of all interrupts, and produces error mes-
sages when appropriate.

IO-Allows low level input and output: all reading is done from a card reader; all writing
is to a line printer.

Loader—I oads program instructions into memory.

LocalSystem-Defines programer-available machine instructions, and dedicated
memory locations. May be thought of as part of the hardware. This module and

29

ContextHandler together constitute a definition of the machine.
Schedulexr-Handles aborts and directs the loader to load the next job.

SVCalls—Allows user access to some operating system' functions. Dependent upon, but
not part of, the operating system.

UniBatch-Initializes the system and starts it running, -

3.24.3. Dependencies of Modules

The organization of UNIBATCH can best be seen by looking at.its dependency graphs. In
- these graphs, an arrow points from each module to all modules on which it depends (that is,

from which it imports).

Procedural dependencies

Procedural dependencies give the most information on layered structuring, or on which
modules are low-level and which are high-level. Low-level modules support high-level ones,
bu—t not vice versa. Figure 5 contains the procedural dependency graph for UNIBATCH
Although the graph seems rather tangled, it may be noticed that no ammow points up. In other
words, UNIBATCH consists of a hierarchy of four layers: at the bottom is LocalSystem,
which calls no procedures from other modules; next are ContextHandler and IO, which
import procedures only from LocalSystem; higher stil are IntermptHanaler,
Loader, and Scheduler, which import procedures only from modules on the same or
lower levels; and at the top is UniBaf.ch, which as the main module can import from any

module, but which does not export any procedures.

This hierarchy, although accidental in the sense that the modules were not formulated
with intent to create such a hierarchy, is not really surprising in terms of functionality.
LocalSystem, at the bottom, is an extension of the machine instruction set. Above that are

IO and ContextHandlexr, modules which are intimately connected with hardware. Next

30

UniBatch
IntérruptHandler Loader | Scheduler
ContextHandler 10
Y /
LocalSysten

Figure 5. Procedure Dependency Graph for UNIBATCH.

come the modules dealing with interrupts and primitive processes—InterruptEandler,

Loader, Schedulexr-and at the top is system initialization, UniBateh itself,

On the other hand, it could easily be argued that IO belongs with interrupt handling; or
that the Scheduler, dealing with the high level control of processes, belongs to a level
higher than the InterruptEandler and Loader. Itis only to be expected, given the late
stage in development at which UNIBATCH was broken into modules, that the hierarchy indicated
by the dependency graph is not absolutely ideal. In addition, the layering of the hierarchy is
weak—UniBatch, for example, at the top of the hierarchy, directly calls procedures in
LocalSystem, at the bottom. In other words, each layer interfaces not only with the layer

directly above and below, but with all the layers below. The interface is thus more compli-

31

cated, and less modular, than would ctherwise be the case.

There is no doubt, however, that a reasonable hierarchy does exist, though it may not be

the very best one. This knowledge should facilitate understanding the system.

Dependencies on variables

Dependence on variables imported from other modules is fatal to information hiding. The
frequent export of variables from modules gives rise to a large number of variables whose
scope is global over the entire system, and allows uncontrolled access between modules. Thus
frequent dependence of modules on variables imported from other modules demolishes true

modularity, leaving only its appearance.

Figure 6 contains the graph of dependencies on variables for UNIBATCH. The modules are

UniBatch
InterruptHandler Loader Scheduler
ContextHandler I0
LocalSysten

Figure 6. Graph of Dependencies on Variables for UNIBATCH.

32

arranged in the same hierarchy suggested by the procedural dependency graph. No other
hierarchy is suggested by the graph, as only three modules import any variables; and only one,
LocalSystem, exports any. In fact, all the variables exported are reserved memory loca-
tions, which the other procedures need to access. Two of the variables, currentcontext
and inputbuffer, are never modified by the importing procedures; and two others,
OScontext and interrupthandler, are set only once, during system initialization. The
final variable, outputbuffer, is altered regularly by IO-but is never altered anywhere
else, not even by LocalSystem No unexpected side effects should occur, therefore, as a

result of these few global variables.

Dependencies on constants and types

Dependénce on constants and types imported from other modules is not dangerous, but
one would expect the dependency graph to resemble the graph of procedural dependencies.

Figure 1 contains the graph of dependencies on constants and types for UNIBATCH.

Once again, the modules are presented in the same hierarchy as that suggested by the pro-
cedural dependencies graph. For the most part, that hierarchy is supported by the current graph.
There are only two exceptions: the arrows pointing upwards from IO and Context-
Handler to InterruptHandler. These are the types Devicecode and SVCeode,
and do not represent a serious problem, but they are a further indication that the hierarchy

presented is a weak one,

Suggested order of reading

UNIBATCH will be most understandable if read from the bottomn of the hierarchy to the top,
so that most modules refer only to procedures which have already been encountered. In addi-
tion, all of the definition modules should be read before any of the implementation modules.

An appropriate order would be:

UniBatch

|

InterruptHandler Loader

(D
2
(3)
@
%
o)
&)
8

33

Scheduler

ContextHandler

I0

\

LocalSystem

Figure 7. Graph of Dependencies on Constants and Types for UNIBATCH.

UniBatch,
LocalSystem,
ContextHandler,
10,
InterruptHandler,
Leoader,

Scheduler,
UniBatch.

Note that UniBatech is included at the beginning and the end; this is because, as initial-

ization, it comes first; but as it deals only with procedures and types declared in other modules,

it is best understood by reading it last. Reading it both times seems the best solution. This

same strategy should probably be used on a modular basis: the initialization sections of

" modules which have them should probably be read quickly before the rest of the module, and

34

again after.

No modules are dependent upon SVCalls, and strictly speaking it is not part of the
operating system; however, as it has procedural dependencies only on LocalSystem, it may

be read any time after LocalSystem

35

3.3. ASSIGNMENTS

For each of the following modifications, be sure to decide how much the following issues

apply, and address them suitably:

‘What is the overhead of this modification?
‘What are the relevant performance measures?
Are there workloads which
a. dramatically increase,
b. dramatically decrease, or
c. insignificantly alter
these measures after the modification is instalied?
Is the requested modification a reasonable one to consider?

INTRODUCTORY MODIFICATIONS

(1)

@

3

4

5

Add JCL to the system, makmg it possible to specify the amount of space in words
required for a program’s code. If the cardreader reads in more than that number of cards,
it should be considered an error. .

Add JCL to allow a user to specify the starting location of his program in memory. If that
location is below the top of the operating system’s stack, or if it causes the top of the
user’s stack to be beyond the end of memory, it should be considered an error.

Add JCL to allow the specification of the amount of space allotted to a program’s stack.

Rewrite Loadex to test only instructions for validity (i.e., for being valid M-Code
instructions), and to test operands only for valid formar (i.e., for containing only numerals
and having a total numeric value between O and 377 octal). You may change the stated
format of the input if you wish (perhaps to match that for MULTIBATCH).

To ContextHandler add an instruction called GetPreviousInstruction
which returns the instruction most recently executed by the user process. (Be careful not
to return an operand to the instruction!) You will probably need a new machine instruc-
tion, LastInstruction. Would it be practical to have GetPreviousIn-
struction take a parameter and thus return the second to the last instruction, or the
fifth to the last? Why or why not? What usefulness might such a procedure have?

36

ADVANCED MODIFICATIONS

(D

2

&)

If a STACKOVERFLOW error occurs during the running of a user program, cause the
operating system to increase the value of the user’s stacklimit and re-execute the instruc-
tion which caused the error to occur. You will need 2 new ContextHandler routine,
GetPreviocusInstruction (described in exercise #5 above). What happens if the
operating system’s stack overflows?

Rework UNIBATCH so that it contains no circular dependencies. What happens to the -
IMPORT and EXPORT lists? Does the code become more or less understandable? Is
efficiency affected?

Allow the user to specify an error recovery procedure that would be invoked by Inter-
ruptHandler, and which would allow the user to recover from certain errors, rather
than necessarily having his program abort. You will need at least one new supervisor
call, SetErrorRBandlexr. What happens if an error occurs during execution of the
error handier? How does the system know?

CHAPTER V.

THE MULTIBATCH OPERATING SYSTEM

4.1, MACHINE INTERFACE

4.1.1, Introduction

MULTIBATCH’s machine depcnden(ﬁies are only slightly different than those for UNIBATCH.
Without exception, all direct references to the MultiBarch Machine are contained in the module
LocalSystem. There are a sei'of ‘‘procedures,”’ which are actually machine instructions
available to the operating system, and fourteen dedicated memory locations—two for 1/O, one
for bootstrapping, one for saving the state of the operating system, and ten for an array of vec-
tored interrupts. In addition, MULTIBATCH controls three peripherals to the MultiBatch
Machine. These are a cardreader, a lineprinter, and a disk, and are made explicit in the machine
instructions of LocalSystem. Finally, MULTIBATCH requires a clock, both for regular timed

interrupts and for executing time-scheduled events.

MuLTIBATCH makes implicit reference to the machine by assuming that the machine
checks user memory references to insure that they are within a set of specified bounds. MULTI-
BAtcH also assumes that the machine responds to device interrupts or traps by saving the state
of the process and calling the correct interrupt handling procedure, and that it prevents direct
user access to the machine instructions in LocalSystem (except for Trap) by checking

~ whether the CPU is operating in user mode or supervisor mode.

38

Virtually any machine with all of these characteristics should be able to run MULTIBATCH.
The M-code machine’s CPU needs to be upgraded only in the following way: it must use the
mode bit (placed in the high bit of the interrupt mask) and swo bounds values (kept in registers)
to protect the operating system from user processes, and user processes from each other. This
chapter discusses the two modules LocalSystem and VirtualMachine, which form the
major interface between MULTIBATCH and the MultiBatch Machine; the peripherals controiled

by MULTIBATCH; and the method by which MULTIBATCH expects interrupts to be implemented.

4.1.2. Machine Modules

MuLTIBATCH, like UNIBATCH, has two modules which define the machine to the operating
system; unlike UNIBATCH, however, the lower level module (LocalSystem) is completely

hidden by the higher level module (VirtualMachine).
4.1.2.1. LocalSystem

Storage

The memory locations 4 and 5 are reserved to be the boot process context address, and the
saved P register éor operating system context address). The locations 16 and 17 are reserved to
be the trap vector, and 20 through 27 are reserved to be interrupt vectors. These meanings are
confirmed in LocalSystem, which uses Modula-2’s direct addressing feature to declare
them as bootcontext, OScontext, and the array interruptvector. In addition,
the locations 10 and 11 are defined by LocalSystem to represent the one-byte registers of
th_e card reader and line printer, called inputbuffer and outputbuffexr. These loca-
tions are in reserved memory, but were given no special function by the M-code machine.
Inputbuffer holds the last byte read by the card reader, and outputbuffer holds the

next byte to be written by the line printer.

39

The Context record is a data structure which stores the register values representing the
working environment and location of a program in order to restart the program after a return
from interrupt. This type is defined in LocalSystem to match exactly the process context
shown in Figure 2, with the addition of an ‘‘upperbound’’ field at location P + 9. As was men-
tioned above, the MultiBatch Machine is expected to make certain that user processes keep all
memory references within a pair of bounds. The value in the ‘‘segmenttable’ field can serve
as the lower bound; a new field is needed only for the upper. This value can be loaded into the

same Bounds Register which was added to the UniBatch Machine.

Instructions

The procedures ContextSwitch, DiskRead, DiskWrite, Read, Write, and
Trap cannot be coded in Modula-2; however, all can be implemented as otherwise unused M-
code instructions. ContextSwitch (#246 = CNTX) is used to return from an interrupt by
- restoring the old context; DiskRead (#242 = DSKR) is used to send a non-blocking request
to the disk to begin transfering a given disk sector (128 bytes) to a specified memory location;
DiskWrite (#243 = DSEKW) is used to send a non-blocking request to the disk to begin
transfering 128 bytes, starting from a specified memory location, to a given sector; Read
(#240 = READ) is used to send a non-blocking request to the card reader to begin reading the
next character; Write (#241 = WRITE) is used to send a non-blocking request to the line
printer o begin printing the next character; and Trap (#304 = TRAP) is used to handle

software interrupts—it stores the current context and raises an interrapt signal.

The implementation module of LocalSystem is written with empty procedures to per-
mit compilation, both of this module and of any other which imports from it; the linker will
have to be altered to substitute the correct M-Code instructions for the named procedures. Ata

later date, it may be possible to alter the compiler to recognize this module directly.

40

4.1.2.2. VirtualMachine

VirtualMachine completely hides LocalSystem from the rest of the operating
system, and presents itself to the system as the available machine. In part, it acts as a filter for -
LocalSystem, passing only those procedures which need to be called in other parts of the
operating system; but it also acts as a modifier and constructor, making the action of some pro-
cedures more useful, making variables accessible only through procedures, and developing
some procedures and data structures not present in the lower-level module. In this last capacity:

it is most notable for being a context handler;

Storage

VirtualMachine is not responsible for declaring any storage space. It does, however,
make the Context of LocalSystem into an abstract type, by exporting only the pointer
type ContextID, which may be operated upon by the procedures ContextBounds,
InitOSContext, LowerStackLimlt, NewContext, ReturnFromInterrupt, ‘

SetPC, SVCArguments, TrapReason, and Updateéontext (described below).

Procedures

All the procedures in VirtualMachine are completely codable in standard Modula-2,
with the extension of the machine instructions provided by LocalSystem The following
procedures are used in context handling: ContextBounds returns the high and low bounds
of memory to which a process has access; HighOSBound returns the highest address occu-
pied by the operating system; InitOSContext sets the values for stack limit and upper
bound in the operating system’s context, and creates a duplicate of that context to serve as the
context of the null process; LowerStackLimit lowers the stack limit value in response to a
demand for more heap space; NewContext creates a context for each new process;

ReturnFromInterrupt returns to a previously interrupted context, SetPC can change

41

the PC in an interrupted context; SVCArguments retrieves, from a context interrupted by a
supervisor call, a pointer to the arguments to that supervisor call; TrapReason returns the
error code from a given context; and UpdateContext updates all the absolute addresses in

a context when a process has been relocated in memory.

In its capacity as a filter, VirtualMachine passes unchanged from LocalSystem
the procedures DiskRead, DiskWrite, and Trap. However, the number of exceptions
which can be passed as arguments to Trap is now restricted. Similarly, access to the interrupt
- vector array is restricted to the use of the new procedures SetInterruptHandler, which

sets the address of the interrupt handling routine in a specified vector, and SwitchContext,
which can change the ‘“‘formercontext”” field in the TRAP interrupt vector before returning
from an interrupt. The two procedures Read and Write are augmented from LocalSys-
tem: Read becomes a function which returns the value of the last character read, and Write
7 takes as an argument the next characte; which should be written. This avoids the necessity of

exporting the variables inputbuffer and outputbuffer to the rest of the system.

VirtualMachine also defines the enumerated types Trapcode, Inter-

ruptcode, and the range of valid M-Code instructions, Mcodeinstzruction.

4.1.3. Devices

MULTIBATCH can send a start signal to the card reader only by issuing the Read instruc-
tion, and to the line printer only by issuing the Write instruction. These eacﬁ send a non-
blocking request for action to the appropriate device, so that the device begins acting con-
cutrently with the CPU. It is up to the operating system to ensure that at most one request is
sent to each device at a single time—most easily by not sending a request until fielding a ‘‘dev-

ice completed”” interrupt. Each device handles one byte at a time.

42

The disk can be signaled by either of the DiskRead or DiskWrite instructions,
which also send non-blocking requests for action. It is still up to the operating system to ensure
that only a single request is sent to the disk at a time; however, the disk handles 128 bytes at
once, through direct memory access (DMA); that is, it can fetch those characters from or depo-
sit them to ény specified memory location without interrupting the CPU for each chm’acter.‘
DiskManager is written for a disk with eight cylinders, 128 sectors per cylinder, and 128

bytes per sector; these are all constants which can be changed.

4,14, Interrupts

The MultiBatch Machine’s handling of interrupts is exactly like that described for the M-
code machine. There are four devices. The card reader, the line printer, the disk, and the clock
are each given one interrupt line: line 8 to the card reader, line 9 to the line printer, line 10 to
the disk, and line 11 to the clock. Traps are simply software interrupts, and all traps are
grouped together on a single interrupt line (line 7). The trap code is stored in the context (in the

error code field). SVCs are implemented by the operating system as traps.

It should be mentioned here that in the current state of the MultiBatch Machine, traps are
handled directly by the M-code interpreter. The interrupt line is never set. This situation must
be amended in the final version in order to guarantee proper execution of MULTIBATCH’s trap

handling mechanism,

At the close of the interrupt routine, ReturnFromInterrupt causes control to be

switched back to the context that is stored in the interrupt vector of the interrupt that was raised.

43
4.2. OVERVIEW

4.2.1. Introduction

MuLTIBATCH, though simple in comparison to actual operating systems, is by no means
the toy that UNIBATCH is. Along with the addition of a disk and a clock, and more flexible
interrupt handling, the functions of spooling and multiprograming have been added to

ameliorate the single-mindedness of UNIBATCH.

MuLTIBATCH, like UNIBATCH, processes'a stream of batch jobs, which have been compiled
into M-code and entered on punched cards. As with UNIBATCH, there is no file system, so afl
input must immediately follow the code. A card reader, a line printer, and a disk are the only

peripherals which MULTIBATCH supponts. In addition, a clock is used by the system.

Unlike UNIBATCH, MULTIBATCH does not process jobs one at a time, but switches from job
to job according to a scheduling discipline. This facility, coupled with that of spooling,

tremendously increases the efficiency of CPU and device utilization.

In its current form, MULTIBATCH recognizes no JCL. It is assumed that the punched cards
are produced directly by the compiler, and that only correct jobs yield card decks. The code
portioﬁ of each job consists of only digits and spaces—each card holds one M-code instruction,
followed by any operands. The digits of an operand will be separated from those of the instruc-
tion or a previous operand by a single blank. The compiler will follow each section of code by
a card containing only the end-of-text (etx = cntl-C) character, and each set of input will be fol-

lowed by a similar card. Jobs with no input will be followed immediately by two such cards.

This chapter discusses the operation of MULTIBATCH, including the initialization
sequence, major data structures, interrupt handling, and supervisor calls. It goes on to present
some salient features of the system as a whole. Then it discusses the organization of MULTI-

BaTcH and the modules which make up the operating system.

44

4.2.2, Operation of MULTIBATCH

MuLTiBATCH, as the operating system, is loaded into the MultiBatch Machine in the
lowest unreserved locations: its segment table starts at octal location 40, and the code frame of
module 0 immediately follows that at location 200. (Remember that the module 0 dataframe of
the first loaded program is placed at location (rather than immediately before the correspond-
ing code frame.) At location 4 is the address of the operating system’s context. The context
itself will immediately follow the end of the last module’s codeiframe. At boot time, all values
in the bootcontext will have been set correctly except for the stack limit and the upper

bound.

4.2.2.1. Inigalization

As with all Modula-2 programs, the initialization sections of all modules other than the
main module are executed before the main module begins. In MULTIBATCH, ﬂ}is action sets up
certain data structures, initializes variables, and connects the interrupt handling routines with
the interrupt vectors. However, several data structures depend on dynamic allocation for their
initializations, and this cannot take place until after the stack limit and upper bound in the
operating systems context have been set, along with the corresponding register values. There-
fore, any module with such an initialization sequence must put that sequence in an exported

routine which is called explicitly by the main module.

The first job of the MultiBatch module is evidently to save bootcontext in
OScontext (as in UNIBATCH), and set the stack limit and upper bound values in the context
and the registers. But MULTIBATCH does not have direct access to any machine registers, only
to the values in a context. If it were to set values in its own context during initialization, those
values would be written over at the first interrupt by the values already in the registers. The
solution is to cause an interrupt and change the values in the operating system’s context during

that time. On completion of the interrupt the new values, being the values of the interrupted

45

context, are used to fill the registers.

Another task is taken care of during this same interrupt: the creation of the context for the
null process. This context is an exact duplicate of the operating system context, and its address
is stored in the trap vector before the interrupt finishes, so that, in fact, the operating system

henceforth runs as the null process, except during interrupts.

It is now possible to execute the initialization routines of those modules which require
dynamic allocation during their initialization. This is done immediately, so that there will be

no problem with subsequent instructions which may make calls to procedures in those modules.

Three tasks remain, First, the entire memory space of the operating system must be pro-
tected from future memory allocations by allocating a memory block encompassing the entire
sy:stem. Second, the entry of the null process in the process block table is im‘tializéd with the
memory block just allocated and the address of the null context (which can still be found in the
trap vector). Finally, the cardreader must be started. This is done by calling ﬂle LocalSys-
tem machine instruction Read. Whenever a character has been read, an interrupt will cause

the character to be processed and start the card reader going again.

At this point, there is nothing left to do but wait, which is what the null pfocess is best at.
A procedure in the main module consisting of an endless loop is called; it will continue to run,
except during interrupts, until it is displaced by the first new process, and again whenever no

other processes are available.

4.2.2.2. Major Data Structures

During normal operation, the system will be handling a large number of processes, and
must keep track of how many there are, which process has the CPU, which will get it next, how
much memory space each process controls (and at what locations), how many disk sectors each

process controls (and which ones), what the status of each process is, how much free memory

46

and disk space there is, and so on. This information is contained in six major data structures:
the Memoryblock record, the Diskblock record, the Context, the Processblock,

the Priorityqueue, and the deltalist.

The Memoryblock

All Memoryblock records are contained in two linked lists: a FREE list and a USED
list. Each Memoryblock record contains the following information on one block of
memory: 1) the low page of memory included in the block (a page being 128 bytes), 2) the high
page, and 3) a pointer to the next Memoxyblock record in the list. Memoxyblock
records are defined by and hidden within MemoryManager; procedures in othef modules can

only access them through the pointer type MemoryblockID and exported procedures.

The two lists of Memoryblock records are initialized by a call to InitMemory dur-
ing system initialization. The USED list is set to NIL, while the FREE list is set to contain a

single record which considers all of memory a single block.

The Diskblock

Diskblock records are all contained in a doubly-linked list. Each Diskblock record
contains the following information about one block of disk space: 1) the low sector included in
the block (a sector also being 128 bytes), 2) the high sector, 3) the status of the disk block
(FREE or USED), 4) a pointer to the next Diskblock record in the list, and 5) a pointer to
the previous record in the list. The methods used by Diskblock records and 'Memoxyb-
lock records to distinguish between FREE and USED blocks are different for illustrative pur-
poses. Diskblock records are defined by and hidden within DiskManagex; procedures
in other modules can only access them through the pointer type DiskblockID and exported

procedures.

47

The list of Diskblock records is initialized by a call to InitDisk during system ini-
tialization. The list is set to contain one record per disk cylinder, each of which considers its
corresponding cylinder to be a single FREE block. Disk blocks cannot cross cylinder boun-

daries.

The Context

The Context holds the state of a process. It is not kept up to date in the currently run-
ning process, but is updated when the process is interrupted. It keeps track of the location of
the process in memory, the status of its activation reéord stack, its mode bit, and the reason for
any traps. Technically, the Context is a globally available data structure, defined and
exported by LocalSystem; but in fact it is accessed only through VirtwalMachine,
which exports ContextID (apointerto a Context variable) and procedures for manipulat-

ing a given context.

Each context is initialized at the time of a process’s creation by a call to

VirtualMachine’s NewContext.

- The Processblock

The Processblock is a record which holds all information about a process. First and
foremost, it contains the process’s ContextID. In addition, it contains the Memory-
blockID corresponding to the process’s physical location in memory, and the Disk-
i:lockID corresponding to its physical location on disk, as well as a flag indicating _whcmer it
is currently memory-resident. It also keeps track of all other disk blocks allocated for use by
the process, how much of the process’s input has been read, where its output has been directed,
the process’s priority, and its running status. All processblocks are stored in an array called the
processblocktable. Both processblocktable and the Processblock record

are local to ProcessManager. Procedures in other modules can only access them through

48

exported procedures and the type ProcessID, which is an index into processblock-

table.

The processblocks in processblocktable are initialized by a call to InitProc-
Manager during system initialization, All processblocks have their status set to TER-
MINATED, which is an indication that the ProcessblockID for that processblock is

currently unused.

The Priorityqueue

The Priorityqueue is a list of ProcessIDs kept in order by their priority and, where
priorities are equal, on a first-come-first-served basis. Each priority queue is a pointer to an
array, indexed by process ID, whose elements are records containing the priority of the index-
ing process, and the process IDs of the preceding and succeeding elements in the queue. Each
priority queue also has a dummy head and tail node, to speed insertion and deletion of records.
Priority queues are used to hold the lists of processes with which the scheduler deals. There is
one list for ready processes (those which take turns at fhe CPU), one for eligible processes
(those which are prevented from running only by current policy), one for ineligible processes
(those currently unable to run, whether blocked, sieeping or suspended), and one for processes
waiting to be swapped in (those which were swapped out while ineligible, but whose status has
now changed). The array type which constitutes a priority queue is local to Pro-
cessManager, and can only be accessed through the pointer Priorityqueue and

exported procedures.

Each priority queue is initialized by the procedure or module which uses it, with a call to

InitPriorityQueue. A newly initialized list is always empty.

49

The deltalist

The deltalist is a linked list of time-scheduled Events. Each Event is a record
which contains the ID of the process to be acted upon, the difference between the times when
the previous Event and current Event should be executed hence "delta” list), and a pointer
to the next Event. There is only one deltalist':, focal to ProcessManager, and it is
accessible only by exported procedures. Clock reg-ularly prompts TrapHandler to check
the list and execﬁte any actions that have come due. Possible actions consist of rescheduling a

process, awakening a process, terminating a process, and preempting a pfocesse

4.2.2.3. Interrupt Handling

When an interrupt occurs, the register values are saved in the context of the current pro-
cess. The register value for the address of the context, however, is saved in the ‘‘formercon-
text’’ field of the appropriate interrupt vector. Then that register value is replaced with the
address of the operating system’s context, and the values from that context are used to refill the
other registers. The value of the PC is taken from the ‘‘interrupthandler’’ field of the interrupt

vector.

Each device has one routine to handle its interrupts: Disk interrupts are handled by
TransferComplete, in DiskManager; lineprinter interrupts are handled by
CallSpoolOut, in Spooler; cardreader interrupts are handled by CallSpoolln, also
in Spooler; and clock interrupts are handled by ClockInterruptHandler, in
Clock. None of these is exported; each is only called as the result of an interrupt. All traps
are handled by a single trap handling procedure, ProcessTrap in TrapHandler, which
likewise is not exported. During the initialization of modules which contain interrupt handling
procedures, the *‘interrupthandler’” field of each interrupt vector is set to contain the address of
- the correct intermupt handling procedure by a call to VirtualMachine’s SetInter-

ruptHandler.

50

If the interrupt is a trap, the value of the trap code is stored in the context of the process
that was trapped. This value is retrieved at the beginning of the trap handling procedure by a
call to VirtualMachine’s TrapReason, and is used t0 index into a case statement to
execute the proper action. Unlike UNIBATCH, therefore, MULTIBATCH does not require altering
the M-Code machine’s interrupt mechanism to deal with parameters. Traps can be divided into
three types: 1) etror traps that are called directly by the machine, such as STACKOVERFLOW;
2) other error traps that are caught by the operating system, such as BADINSTRUCTION; and

3) non-error traps, such as INITIALIZE and SVC.

Each interrupt handling routine concludes with a call to VirtualMachine’s
ReturnFromInterrupt. This procedure uses the LocalSystem machine instruction
ContextSwitch to replace the register values with those in the context of the ContextID

stored in the interrupt vector. The interrupted process then picks up where it left off.

An additional complication occurs in the handling of a disk interrupt. It is often the case
that calling for a disk operation requires suspending action on a certain task until the disk
operation is completed. To accomodate this situation, DiskRead and DiskWrite both
take as parameters a procedure with one parameter of type WORD, and a value to serve as the
parameter to that procedure. These values are saved in the queue of disk jobs. When a disk
operation completes, causing an interrupt, the interrupt handling procedure retrieves these
parameters and calls the procedure. This allows the caller to have some control over what
actions are taken when the disk operation completes. Often, the caller does not require any
response at the time of disk completion; for these cases, the empty procedure Null is

exported by DiskManager.

This facility is used to a great extent in Spooler. Characters are read from the card
reader one at a time and stored in a circular memory buffer, divided into a constant number of

pages. When any page is filled, its contents are written to the spooling area of the disk. How-

51

ever, no more characters must be written into that page until tﬁe disk write has completed. Soa
procedure is passed to DiskWrite, along with the name of the circular buffer. At disk comple-
tion, the procedure is called, recording in the buffer that the page is now free to be written into,
and restarting the card reader in the event that it had hglted because the buffer was full. Similar

actions occur when writing to the fine printer.

4.2.2.4. Supervisor Calls

Supervisor calls are implemented as a form of trap. Each supervisor call first calls an
intermediate procedure whose action is simply to call VirtualMachine’s Trap with
SVC as a parameter; however,‘ the intermediate procedure itself takes as parameters the type of
supervisor call and the parameters to it. This places all the information in a known location on
the process stack: the top activation record will be the one for Trap, and the fourth location
above the base of the preceding activation record will hold the variety of supervisor call. The

parameters to the supervisor call will be immediately above that.

The call to Trap then raises a trap interrupt. The interrupt handler finds from the
process’s context that the trap was a supervisor call. It then uses VirtualMachine’s
SVCArguments to obtain the type of supervisor call and its arguments. The type of supervi-

sor call is used to index into a case table of possible actions.
The user process may invoke supervisor calls to read from input, write to output, go to

sleep, find its upper bound, and allocate and deallocate diskblocks. More calls may easily be

added. .

4.2.2.5. User Processes

Each user job is assigned a correctly initialized ProcessID. The amount of memory
space given to the process is equal to the size of its segmenttable and all code and data frames

(which is recorded while the job is being loaded), plus a fixed amount for stack and heap space.

52

If JCL is added to the system, stack and heap size could be made specifiable.

The initialized Process1D is then manipulated by the various levels of the scheduler to
determine when the process should be swapped in or out of memory, when it is fit to run, and
when it should actually get the CPU. Once a process is given the CPU, no other user process of
equal or lesser priority can preempt it. This is because all jobs are batch jobs, and keeping con-
text switching to a minimum will increase throughput. However, additional facilities of time-
slicing and maximum peranttéd CPU time may be added. Of course, any interrupt or trap will

give the operating system control of the CPU until the interrupt is handled.

In addition, any call for disk I/O will cause the process to voluntarily relinquish the CPU.
At this time, the process will be interrupted by its own supervisor call, and the scheduler will
reschedule it with the status BLOCKED. The next process in the readylist priority queue
will then have its context specified as the one with which the registers should be loaded. The
BLOCKED process will again be rescheduled when the requested I/O has corczple:ted= Normal
I/O for a user—e.g., reading input—does not cause the process to block since all input is con-
tained in memory, and output goes directly to a memory buffer. However, whenever a page of
the output memory buffer fills, it is written to disk, blocking the process. The output is stored

in a linked list of disk blocks which can be spooled as soon as it is complete.

There are three basic states in which a process may exist, as shown in Figure 8. Through
procedure ShouldexTap, called on periodic clock interrupts, HighLevelScheduler is
prompted to see if any jobs are waiting to be loaded and made into processes. HighLevel-
Scheduler is thus responsible for bringing jobs.into the system and initiating processes.
New processes are automaﬁcally placed intc a stopped state. MediumScheduler is
responsible for deciding which priority queue a process should be on. When it places a process
on the runqueue, the process becomes runnable. Processes placed on any other priority

queue remain in a stopped state. LowLevelScheduler decides which process on the

53

Stopped

.

)
.
‘.
.

HighLevel-~ Medium- LowLevel- HighLevel-

Scheduler Scheduler Scheduler : Scheduler
‘Transition Transitions : Transistions Transition

Figure 8. Process State Transitions in MULTIBATCH.

runqueue should next be set running. LowLevelScheduler also decides when the run-
ning process should yield the CPU. On the occasions when a process goes directly from the
running state to a stopped state, as on a block for I/O, LowLevelScheduler changes the
process’s status, and MediumScheduler places the process onto the correct priority queue.
Finally, BighlLevelScheduler decides when a process has finished (or made an irrecover-
able error), and causes the process to exit from the system. When a user process has finished,
the operating system frees all the process’s disk and memory space, and spools the linked list of

disk blocks which hold the process’s output.

ProcessManager declares eight process states, not three: BLOCKED, CURRENT,

INITIALIZING, PENDING, READY, SLEEPING, SUSPENDED, and TERMINATED.

54

CURRENT is the designation for the running process; READY means the process is runnable,
BLOCKED, INITIALIZING, PENDING, SLEEPING, and SUSPENDED are all Stopp.ed
states. They are distinguished to indicate the reason for the stoppage. BLOCKED indicates
that the process is awaiting some event (probably an /O completion); INITIALIZING is the
state in which HighLevelSchedulex passes a proce;ss to MediumScheduler; PEND-
ING means that the process may be placed on the run queue as soon as current policy permits;
SLEEPING indicates that the process is waiting for a time interval to pass; and SUSPENDED
means that the operating system has indefinitely removed the process from the run queue.
TERMINATED is the state given to an unused process ID, since a process exits the system when

it terminates.

4.2.3. Salient Features
MuLTIBATCH is most notable in the following ways:

(1) It is small. Although MULTIBATCH is about six times the size of UNIBATCH, UNIBATCH
was a toy, and MULTIBATCH is not. Compared to real systems, it is still small. Figure 9
contains a chart of the size of each module of MULTIBATCH, with and without comments,

and the size of M-code produced.

(2) It includes nearly all the major functions of an operating system. In addition to the
UniBatcH functions of loading, scheduling, processing interrupts, handling errors, and
providing protection, MULTIBATCH also spools, manages processes, memory and disk

space, and has muitiprograming,

(3) Most of its operating system functions are substantially implemented, and easily
extendible. Interrupt handlers are spread throughout the system, one for each device. A
new device would require a new interrupt handler, but no existing interrupt handler would

have to be altered. The scheduler has grown from doing almost nothing, in UNIBATCH, to

size of

c:;i: ;t, c:!:rlzlzl;zs M-Code
{bytes)

d 30 8

Clock - = p 258
. d 97 27

DiskManager ":: r =5 —35% 1630

HighLevelScheduler L = - 034
d 34 g

Loader mc: - o ” 504
4 203 92

LocalSystem ":jd - R 0
4 71 18

LowLevelS.cheduIer ":of y 5 I 888

MediumScheduler ::: = 1:2 ;; 901
d 101 30

MemoryManager ':: - o 5 908

MultiBatch mod 105 45 455
d 390 76

ProcessManager "z - =51 =75 2867

Spooler ::: - 7;; 43‘2) 2473
d 45 10

Swapper me:d 128 69 529
4 65 15

SVCalls T = = 484
4 13 2

TrapHandler ":: - 5 553 2184
. . d 241 52

VirtualMachine ’:: - 5 —7 1154

Total 5777 3058 17797

Figure 9. The Size of MULTIBATCH.

36

a full three-level scheduler, to which time-slicing and priority scheduling can easily be
added. The disk sweep strategy is easily adjustable, as are the strategies for allocating
memory and disk blocks. Error checking is still minimal, however, with all detected

errors aborting the user’s program, and there is still no file system.

(4) It makes use of concurrency in the operation of peripherals. The card reader, line
printer, and disk all run concurrently with the CPU, signaling their completion by an
interrupt.

(5) It is fully documented. As with UNIBATCH, particular attention has been given to make
the purpose and use of all exported procedures clearly understandable merely from read-

ing the definition modules.

(6) Itis structured. Though both UNIBATCH and MULTIBATCH are hopefully written in struc-
tured code, the overall structure of UNIBATCH was weak and somewhat accidental. That

of MULTIBATCH is fully intentional, and stronger as a result.

4.24. Organization of MuLTIBATCH

This section describes the rationale used in dividing MULTIBATCH into modules; it then
briefly describes the modules, and the ways in which the modules interact with one another. It

also suggests an order in which the modules should be read for maximum comprehension.

4.2.4.1. Modular Construction

Unlike UNIBATCH, MULTIBATCH was initially conceived as a modular design. This was
partly due to its larger size, and partly to its initiation at a Iater point in the SoftLab project,
when several modular languages were already under consideration. Seven
modules—DiskManager, MemoryManager, ProcessManager, Swapper, and all
three levels of the scheduler—-were produced in pseudo-code before Modula-2 was actually

chosen as the language of SoftLab. At about that time, MULTIBATCH was put on hold while the

57

effort was made to translate UNMIBATCH into Modula-2 and clean up some of its darker corners

that were illuminated with the transition.

On returning to MULTIBATCH, and keeping in mind the lessons learned from UNIBATCH, it
seemed that the ﬁrst task was to write definition modules for all the modules—both those
already existing in a pseudo-code version and those which had yet to be started. This clarified
exactly what each module was to be responsible for, and was responsible for some significant
changes in the existing pseudo-code modules. As with UNIBATCH, the modules were divided by
the criterion of functionality. ProcessManager is the least coherent module in this
‘respect, as it incorporates the three separate (though related) functions of process block
management, priority queue management, and process event scheduling. These functions are
grouped together to allow access to the processblocktable; putting them in separate

modules would have required exporting this private data object.

The next decision was to build MuLTIBATCH from. the bottom up. Actually, a dual
approach was used: the system was designed top down (as the writing of the definition modules
shows), and each module was written top down; but the order in which the modules were con-
structed was bottom up. The ideal goal was to have a strict hierarchy of modules, where each
module imported only from the one directly below it; and to write the modules starting from
the lowest one on the hierarchy. As it turned out, it was impossible to make MULTIBATCH so
strictly compartmentalized without being unacceptably artificial about _the IMPORT and
EXPORT clauses; in general, it was deemed a poor idea for Module B to import a procedure
which it never used from Module A, just so that it could export it to Module C. However, the
ideal of the strict hierarchy did influence the shape of MULTIBATCH, and as a result it is both

more hierarchical and more modular than UNIBATCH.

58

4.2.4.2, Functions of Modules

MULTIBATCH contains twice the number of modules that UNIBATCH does; where UN-
BATCH has eight (seven not counting SVCalls), MULTIBATCH has sixteen (fourteen not counting
SVCalls and OSStorage). A brief statement of the function of each follows, in alphabetical

order by module name.
Clock-Keeps track of time and initiates time-scheduled events. (Not in UNIBATCH.)

DiskManager-Allocates and deallocates diskblocks, and supports the disk read and
write operations. (Not in UNIBATCH.)

HighLevelSchedﬁle:—-Initiates and terminates jobs. (In UnBATCH as
Scheduler.)

Loader-Translates characters of input into octal M-code instructions and loads them
into memory. (Also in UNIBATCH.)

LocalSystem-—Defines programer-available features of the machine. It contains
several machine instructions under the guise of procedures, and defines the Context data
type. (Also in UNIBATCH as LocalSystem, though some features are found in Con-
textHandler.)

LowlevelScheduler—Decides which process gets the CPU next. (Not in UNIBATCH.)

MediumScheduler—Decides which processes should be memory resident, and which
should be passed to LowLevelScheduler. (Notin UnMBATCH.)

MemoryManager—Allocates, deallocates, and maintains up-to-date information on main
memory blocks. (Not in UNIBATCH.)

MultiBatch-Initializes the system and starts it running. (In UNIBATCH as Uni-
Batch.)

OSSTORAGE-Provides operating system specific details to allow the vendor-supplied
module STORAGE to correctly perform dynamic heap allocation; dependent upon, but
not part of, the operating system. (Not in UNIBATCH.)

ProcessManager—1) Creates, maintains, and removes processes; 2) manages priority
queue lists of processes; 3) keeps track of time-scheduled events for processes. (Not in
UNIBATCH.)

59

Spooler-Maximizes device utilization by holding input and output on disk until they
can be further processed. (Some features are included in UNIBATCH module IO.)

Swapper—Controls the transfer of non-running processes to and from disk. (Not in UNI-
BATCH.)

SVCalls—Allows user access to certain operating system features; dependent wpon, but
not part of, the operating system. (Also in UNIBATCH.)

TrapHandler—Responds to the raising of a TRAP interrupt. (Included within Uni-
BaTcH module InterruptBandler.)

VirtualMachine-Completely hides LocalSystem, presenting a higher level
machine to the rest of the operating system. (Some features are present in UNIBATCH
module ContextHandlexz.)

In general, references to the operating system should not be taken to include either

SVCalls or OSSTORAGE, unless specifically stated otherwise.

4.2.4.3. Dependencies of Modules

As with UNIBATCH, the easiest way to see the overall organization of MULTIBATCH is to
look at its dependency graphs. As before, an arrow will point from each module to all modules

on which it depends (that is, from which it imports).

Procedural dependencies

How close was it possible to come to building MULTIBATCH as a strictly compartmental-
ized hierarchy, where each module imported only from the one directly below it? In truth, not
very close. And yet a careful study of the procedural dependencies for MULTIBATCH reveals

that striving for this ideal goal had a profound effect on the structure of the operating system.

Figure 10 contains the procedural dependency graph for UNIBATCH. The graph is even
more tangled than the graph for UNIBATCH, but the only reason for this is the greater number of
modules. Each module in UNIBATCH points to an average of 40 percent of the other modules; if

this were true in MULTIBATCH, there would be a total of 73 arcs in the graph. In fact, there are

60

MultiBatch
Trap-
Handler
Highlevel Loade Medium- 5 ;
Scheduler onder Scheduler ‘V vapper
e 4
-
\ ¥
[~
LowLevel- Spooler Process- 1, clock Disk N Mamory-
Scheduler Manager Manager Manager

Y

\

VirtualMachine

l

LocalSystem

Figure 10. Procedure Dependency Graph for MULTIBATCH.

only 39. As with the graph for UNIBATCH, no arrow points up, thus revealing a hierarchy of six

layers—four for normal operation, one for handling traps, and one for system intitialization.

Unlike the graph for UNIBATCH, however, no arrow on any given level points left. What this

means is that MULTIBATCH contains no circular dependencies. In other words, the modules of

61

MULTIBATCH can be and are arranged in a s.trict hierarchy with the main MultiBatch
module at the top, TrapHandlex below it, and so forth, going from top to bottom among the
levels, and from left to right within a level, with each module placed directly below its prede-
cessor, If arranged in this fashion, the procedure dependency graph sti/l has no arrows that
point up. So a strict hierarchy is achievable, even if strict compartmentalization is not. UNI-

BATcH does not share this property.

Compartmentalization has not been completely forgotten. Note that if we allow special
exceptions for initialization and interrupt handling, tasks which by their very nature are non-
modular, and remove all arrows due to these actions from Figure 10, we produce the much
neater graph of Figure 11. All arrows have now disappeared from TrapHandler, which is
completely involved with the handling of one type of interrupt, and from MultiBatch,
which is nothing but initialization. The remaining arrows are now compartmentalized by level:
all modules import only from modules on their own level, or from modules on the level

immediately below.

It may be noted that this same trick would have worked to compartmentalize the graph of
UNiBATCcH-but its conly significance in that case would have been a demonstrﬁtion of the ten-
dency towards order and layering inherent in an operating system. In MULTIBATCH, on the
other hand, it reveals an intent to utilize that inherent layering to its fullest. Put another way:
Scheduler in UNIBATCH does not happen to need any exports from LocalSystem (two
levels below it), and so it doesn’t break the compartmentalization; but had it needed such an
export it would have imported it without hesitation. In MULTIBATCH, with its greater complex-
ity and proliferation of modules, such a need seemed to arise time and agéin, but in all cases it

was deliberately circumvented; and the resulting design is cleaner for it.

e

MultiBatch

Irap-
Handler

62

HighLevel Loader Medium- | Swapper
Scheduler y Scheduler ' PP
LowLevel- Spooler Process- Clock Disk | . Memory-
Scheduler Manager » Manager Manager
VirtualMachine
LocalSystem

Figure 11. Revised Procedure Dependency Graph for MULTIBATCH.

Dependencies on variables

As was said in the overview on UNIBATCH, dependence on variables imported from other

modules is fatal to information hiding and true moduiarity. In MULTIBATCH, however, this sort

of dependence is even less of a problem than in UNIBATCH.

LocalSystem is the only

63

module to export variables, as in UNIBATCH; but unlike UNIBATCH, MULTIBATCH has the module
. VirtualMachine which completely hides LocalSystem from the rest of the operating
system. Any other module neeaing access to the informétion in those variables gets it by
means of procedures exported from VirtualMachine. Thus there is no chance of acciden-

tally altering the value of a global variable.

Dependencies on constants and types

It may be noticed that (within limits) hierarchies different from that presented in the last
two figures could have been chosen for the modules of MULTIBATCH. For example, Loader,
which imports no procedures, could have been placed virtually anywhere in the hierarchy lower
than HighlLevelScheduler; or Spooler could have been to the right of Clock

instead of to the left of ProcessManager.

Choices like these were made according to two criteria. One was that the hierarchy
should be as reasonable as possible; thus LocalSystem and VirtualMachine essen-
tially constitute the machine, and are at the bottom of the hierarchy. Constituting the next level
are the tasks of managing peripherals, memory, and the CPU itself (including saving the pro-
cess state). The next level has the tasks of creating and terminating processes, and general high
level control of them. (Note that ProcessManager really contains tasks that belong on this
level, and other tasks that belong on the last; encompassing them all in one module requires
that the module be on the lower of the two levels.) And finally come the two special levels of
interrupt handling and initialization.

The other criterion was to hold fast, if possible, to the strict hierarchy in ail exports and
imports, not just those of procedures. It is this criterion which prevents Spoolex from being
placed to the right of Clock. Unlike UNIBATCH, MULTIBATCH can be arranged in a hierarchy
which is completely supported by the exports and imports of types and constants as well as the

more vital dependencies of procedures and variables. The dependency graph for constants and

64

types is contained in Figure 12. As with the revised procedural dependency graph, arcs due to

initialization or interrupt handling have been omitted.

Dependence on constants and types imported from other modules does reflect the organi-

zation of a large program. The ability to select a single hierarchy for the modules of

MultiBatch

Trap-
Handler

HighLevel- Medium-~ s
Scheduler Loader Scheduler wapper

yd e

>

LowLevel- Process- Clock Disk- {1 Memory-
Scheduler Spooler| o Manager - ° Manager Manager

VirtualMachine

LocalSystem

Figure 12. Graph of Dependencies on Constants and Types for MULTIBATCH.

65

MuULTIBATCH which is supported by all dependencies is another indication that, unlike that of

UNIBATCH, MULTIBATCH’s hierarchy is strong and well-developed.

Suggested order of reading

MuLTiBATCH will be most understandable if read from the bottom of the hierarchy to the
top, so that each module only refers to procedures, constants, ana types which have already
been encountered. Note that the strict hier_archy makes this a completeiy realizable goal,
whereas the circular dependencies in UNIBATCH make it impossible.\ In addition, all definition

modules should be read through once before any of the implementation modules.

Although it is possible to provide several hierarchies, all of which are strict in the sense
that no module imports from another module hjghér than i&elf, it is recommended that the fol-
lowing order of reading be chosen. It is taken from the dependency graphs, where an effort was
made to keep closely related modules (such as Loader and HighLevelSchedulexr)

together, even when the dependencies would have allowed them to be separated.

(1) MultiBatch,

(2) LocalSystem,

(3) VirtualMachine,

(4) MemoryManager,

(5) DiskManager,

(6) Clock,

(7) ProcessManager,

(8) Spooler,

(9) LowlevelScheduler,
(10) Swapper,

(11} MediumScheduler,
(12) Loader,

(13) BighLevelScheduler,
(14) TrapHandler,
'(15) MultiBatch.

66

As with UNIBATCH, it is suggested that all initialization sequences (including the Mul-
tiBatch module itself) be read both before and after the sections which they initialize.

No modules are dependent upon $VCalls and OSSTORAGE, and they are not strictly
part of the operating system; however, as they are dependent only upon VirtualMachine,

they may be read any time after VirtualMachine.

LY

67

4.3. ASSIGNMENTS

For each of the following modifications, be sure to decide how much the following issues

apply, and address them suitably:

What is the overhead of this modification?
‘What are the relevant performance measures‘?
Are there workloads which
a. dramatically increase,
b. dramatically decrease, or
c. insignificantly alter
these measures after the modification is installed?
Is the requested modification a reasonable one to consider?

INTRODUCTORY MODIFICATIONS

(1
2)

3

4

©

(6)

Add the supervisor call DiskRead. It should be able to read any specified number of
bytes starting from any specified location within any specified sector.

Add the supervisor call DiskWrite. It should be able to write any specified number of
bytes to any specified location within any specified sector.

Add procedures to keep time statistics on processes. The process block data structure
already is built to hold the statistics. Avoid adding any circular dependencies in MULTE
BATCH.

Add JCL to the system so that process priorities may be specified. It should be an error to
specify a higher priority than MAXPRIORITY, Who should be responsible for setting
priority? On what basis? What should the default priority be?

Add JCL to the system so that a user process’s stack size may be specified. What should
the default stack size be? Should there be any limits to the size which may be specified?
If so, specifying a size greater than this limit should be an error. Does it make sense in
this system to be able to specify heap size? Why or why not?

Add JCL to the system so that a user process’s maximum service limit may be specified.
What should the default be? Rewrite LowLevelSchedulex so that a process is
aborted if it runs longer than its maximum service limit. (This assignment assumes that
assignment #3 has already been completed.)

(N

®

®

(10)

68

Change SwapOut in the module Swapper to return a boolean indicating success or
failure. Alter the code everywhere SwapOut is called to test for success and take
appropriate action in case of failure.

Add a procedure tv MediumScheduler to determine the load average (the average
length of the ready list) over the past minute, five minmtes, and fifteen minutes. Under
what circumstances would such a procedure be useful?

Implement in Loadexr the currently unimplemented error checks of BADINSTRUC-
TION (meaning bad format) and UNDEFINEDINSTRUCTICON (meaning the format is
correct, but the instruction is not implemented), Any operand or instruction which is not
all digits representing an octal number between 0 and 377 is in bad format. Only instruc-
tions can be undefined (there are no undefined operands)-to find out which instructions
are undefined, you will need a copy of the CPU interpreter.

Alter the handling of the sleep supervisor call so that the process is not swapped out
unless it has asked to sleep for more than 1 second. Is this a reasonable time span? Why
or why not? What other factors should the decision depend on?

ADVANCED MODIFICATIONS

(1)

@

3

4)

Ags it stands now, if MULTIBATCH runs out of stack or heap space, it will crash. Rewrite it
so that more space will be allocated in this case. What problems would arise in ensuring
that the stack remains contiguous? What are the difficulties in dealing with a noncontigu-
ous stack? How much overhead is involved in normal operation, making certain that the
stack is not disrupted even during this rare event?

Add protection to the disk, so that no process can write over or read from another’s disk
space. How much overhead does this add ro normal disk reads and disk writes? What if
each process specifies public read and write permissions? (This problem assumes that the
disk read and write SVCs of Exercises 1 and 2 have been completed.)

Add an overflow list of process IDs so that there is no fixed limit on the number of
processes that can run. Those process IDs less than the overflow number should be stored
in the array; those greater than the overflow number should be kept in a linked list which
must be searched. All procedures which currently depend on indexing only will have to
be altered. What effect does increasing and decreasing the size of the overflow value
have?

Modify LowLevelScheduler to allow each process to run for only a certain length
of time (a quantum) before being interrupted. Does this serve any purpose in a batch sys-
tem? If so, what? Does it alter the system’s efficiency when running a queue of I/O
bound jobs? Why or why not? How about a queue of compute bound jobs? (This prob-
lem assumes that the procedures to collect time statistics, as described in Exercise #3,
have been implemented.)

)

(6)

)

®

®)

(10)

a1

69

Assuming that time-slicing has been implemented in the scheduler according to the previ-
ous problem, modify LowLevelScheduler so that, rather servicing only the highest
priority group of processes, all processes are serviced round-robin. However, the quan-
tum allowed for each process should be MAXQUANTUM/priority; thus the highest
priority processes (priority 1) get a full quantum, and the lowest priority processes (prior-
ity 5) get only a fifth of a quantum. (Beware of the null process!) Is this a reasonable
way to schedule? Why or why not?

Modify MediumScheduler to suspend processes when the load average is greater
than 15, and not to add new ones if it is greater than 12. Is this useful with the original
MULTIBATCH configuration? How about with time-slicing implemented? Are these par-
ticular limits appropriate? '

Modify TrapHandler to allow multipie traps to be stacked; that is, to allow traps to be

called from within TrapHandlexr, without losing the context of the original interrupted

context, Can this be done to any depth? Why or why not? Is it useful?

Alter the scheme for allocating memory blocks from First Fit to Best Fit and Worst Fit.
Which of the three is best? By how much? Does the type of work Ioad matter? Why or
why not?

Change the disk search strategy from SCAN to N-SCAN and C-SCAN. Which of the
three is best? Under which work load? By how much?

Assumning that time-slicing has been implemented, adjust the size of the quantum. Does
it have a maximum value, in terms of efficiency (throughput)? Are there any other
effects? Why or why not? Would it make a difference if MULTIBATCH ran processes in
time sharing mode instead of only in batch mode? Why?

Move the constant PAGESIZE from MemoryManager’s definition module to its
implementation module. Also, eliminate VirtualMachine’s constant BYTESPER-
PAGE. Remove both from the import lists of all other modules. This will require some
major changes, particularly in ProcessManagexr and Spooler, where the circular
buffers depend on knowing the size of a page. You will probably want to build a struc-
ture inside MemoryManager that other modules can use to construct circular buffers.
In order to keep PAGESIZE successfully hidden, this data structure must be local to
MemoxyManager, and only operable on by procedures that you will also write,

GROUP PROJECTS

ey

Add a second disk to MULTIBATCH, and use it for all spooling. How might this make a
part of the spooling process less complicated? Create a configuration that makes it easy
to add additional disks, or remove them. (see Comer [6] for a model).

@

3

70

Add a file system to MULTIBATCH. User processes should be able to read from and write
to files other than the standard input and standard output. You will need (among other
things) supervisor calls for reading to and writing from disk, and opening, closing, creat-
ing and removing files,

Add paging capabilities to Swapper. This will require allocating one memory biock
per page, rather than one per process. Keep in mind that the PC is currently set relative to
the current codeframe, which may be on a different page. Also, dynamic variables are

-addressed relative to the top of the heap (the process’s upper bound), which is also prob-

ably on a separate page from the dynamic variable, What will paging do to the simple
“Bounds Register’” method of protection used in MULTIBATCH? What can be done to
replace it?

CHAPTER V.

CONCLUSION

5.1. SUMMARY

UNIBATCH is a toy operating system, which despite its small size permits the introductory
study of operating system design. It is respectably modular, Had it been coded in Moduila-2
from the start, it could have been more so; however, its size makes slight deficiencies in this
area of minor concern. Modules are drawn along functional boundaries, making each module a
conceptual unit. This, coupled with Modula-2’s import/export mechanism, should make aitera—

tions to UNIBATCH fairly straightforward.

MULTIBATCH is a small but authentic operating system, intended to reflect more accurately
and completely than UNIBATCH the manner in which actual operating systems are built,
Though small, it is large enough that modularity is vital to building or understanding it.
Because the interfaces are fairly constricted and always well-defined, it should be possible for
students to make changes to the system with relative ease considering its overall size and the

necessary interrelations between separate parts.

These operating systems are designed to be used as a teaching tool within the environ-
ment of SoftLab. The Softlab environment will include not only the operating systems, but the
simulated machines on which they run and the simulated peripherals which they control. Most

importantly, it will include the IIE, or Integrated Instrumentation Environment. The IIE will

72

allow the effects of design alterations to be monitored. This will enable students te obtain per-

formance feedback from their alterations.

5.2. EVALUATION

Ey far the greatest shortcoming in UNIBaTcH and MULTIBATCH is that they are untried.
Though both systems compile in the form given, the simulated machines on which they were to
run were not fully developed when this document was completed. As a result, neither system
has ever been tested. Despite intensive desk-checking by the author and many students, there
are certain to be some substantial errors uncovered. Substantial debugging will be required,

once the hardware simulations become available.

This debugging task will be mitigated by the detailed documentation of UNIBATCH and
MuLTiBATCH. They were written with an eye to maintenance. All variables are commented, as
well as virtually all control structures in the code. Each procedure has a block comment stating

its purpose and the purpose of its parameters, and Modula-2 itself is as easy to read as Pascal.

Another shortcoming is that both systems illustrate only well-established techniques, and
are fairly weak in comparison to real-world operating systems. It would seem that an educa-
tional tool should be state of the art and illuminate the leading edge of the discipline; but Unr-
BaTcH and MuLTIBATCH possess minimal error checking, lack file systems, and have limited
protection. On the other hand, these operating systems were not written to be smudied. They
were written to be manipulated. It is not the realm of theory, but the realm of practice, in
which they shouid be found valuable. This is the way with laboratory exercises in other discip-
lines as well. No one would suggest that Physics lab curricula abandon demonstrations of
Newtonian mechanics, simply because Einsteinian relativity has proved more viable. There, it
is the experimental method itself which is being studied; here it is the practice of operating sys-

tem design.

73

The greatest strength of these operating systems is their usefulness. Alterations are not
merely academic desk exercises. In the framework of SoftLab these systems become runnable
operating systems which can be tried, altered, and retried, with performance effects monitored.
They can be run without a dedicated physical CPU. They may safely be allowed to crash as a

Iearning experience.

In addition, the operating systems and the surrounding SoftLab environment are accessi-
~ ble, The operating systems are written in a high level .Ianguage, commonly available and easily
readable. The hardware on which they run is simulated, and easily portable. No special equip-

ment is needed in order to successfully run, test, and manipulate them.

Furthermore, the systems are small but complete. Because they are small, beginning stu-
dents should not find them beyond their grasp; and because they are complete, students have
the opportunity to see how all the parts fit together. Too often students are in the position of

 studying disembodied portions of larger systems, if they study any actual code at all,

These operating systems are only the first two of a family. Future additions to the family
can afford to stress more advanced techniques and greater functionality at the expense of being

larger and more complex.

5.3. FUTURE DIRECTIONS

There are many directions which could be taken by the next operating system to be writ-
ten for the SoftLab project. The next will probably be a process-oriented operating system,
similar in functionality to MULTIBATCH but actually composed of separate processes. These
processes would have the status of utility programs, and take their turn in the run queue, just
like user proceSSes. This would decrease the CPU time spent in the operating system, and

would allow interrupts to be disabled for a shorter time.

74

In some ways the code for this systemn might be easier to write and understand than the
code for MultiBatch. In any case, there would be a whole new set of problems to solve and
code, such as interprocess communication.

Other possible future systems include a multi-processing system, with the ability to run
concurrent programs, and a distributed operaﬁng system,

Whatever directions are pursued, UNIBATCH and MULTIBATCH should respectably form the
nucleus of a family of operating systems designed as a set of tools wiﬂi which students may

gain hands-on experience in system design and implementation.

75

REFERENCES

1. Brinch Hansen, P. The Architecture of Concurrent Programs. Prentice-Hall, Inc., Engle-
wood Cliffs, N.J.,, (1977).

2. Brinch Hansen, P. The Trio Operating System. Software-Practice and Experience 10
(1980), 943-948.

3. Brinch Hansen, P. Edison Programs. Software-Practice and Experience 11 (1981),397-414.

4. Brinch Hansen, P. Edison: a multiproces.sor language. Software Practice and Experience 11,
4 (April 1981), 325-361. "

5. Brinch Hansen, P. Programming a Personal Computer. Prentice-Hall, Inc., Englewood
Cliffs, NJ, (1982).

6. Comer, D, Operating System Design, the Xinu Approach. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, (1984).

7. Corbin, K., Corwin, W,, Goodman, R., Hyde, E., Kramer, K., Werme, E, Wulf, W. A
Software Laboratory, Preliminary Report. 71-104, Computer Science Department,
Carnegie-Mellon University, (August 1971).

8. Corwin, W,, Wulf, W. SL230--A Software Laboratory, Intermediate Report. Computer
Science Department, Camnegie-Mellon University, (May 1972).

9. Halstead, M.H. A Laboratory Manual for Compiler and Operating System Implementation.
American Elsevier, New York, NY, (1974).

76

10. Hammer, R. Organization of Storage and Procedure Calls on an M-code Machine.
SoftLab Internal Working Document No. 3, Computer Science Department, University of
North Caroling at Chapel Hill, {May 1985).

11. Holt, R. C. Concurrent Euclid, The Unix System, and Tunis. Addison-Wesley Publishing
Company, Reading, MA, (1983).

12. Holt, R.C,, Graham, G.S., Lazowska, E.D., Scott, M.A. Structured Concurrent Program-
ming with Operating System Applications. Addison-Wesley Pub. Co., Reading, M.A., (1978).

13. Morill, D.R. An Integrated Instrumentation Environment in a Software Laboratory.
Master’s Thesis, Computer Science Department, University of North Carolina at Chapel Hill,
(expected March 1986).

14, Ohran, R. Lilith and Modula-2. Byze 9, 8 (August 1984), 181-192.

15. Shaw, A. Operating Systems (The Series in Automatic Computation). Prentice-Hall, Inc.,
Englewood Cliffs, N.J., (1974).

16. Wirth, N. Programming in Modula-2, 2nd Edition (Texts and Monographs in Computer
Science). Springer-Verlag, (1983).

APPENDICES

These appendices contain the code for UNIBATCH and MULTIBATCH. Within each system,
the modules are arranged in alphabetical order for easy reference. Every page is labeled at the
bottom with the module name and operating system name. Page numbering is by module; that

is, each module begins a new page 1.

Definition modules begin with a comment giving the function of the module, which pro-
vides the information a user would need in order to decide whether the module would be usefiil
to him. Implementation modules begin with a comment stating the policy of the module,
which provides user-irrelevant information on design decisions made in implementing the

module’s funetion.

Every procedure has a block comment stating the purpose of the procedure, and the func-
tions of all its parameters. These block comments are found in the definition module for

exported procedures, and in the implementation module for non-exported procedures.

Some implementation modules have a bracketed number in comments immediately fol-
lowing the name of the module. This is a module priority number, and is used to set the pro-
cess interrupt mask (the M register). A process cannot be interrupted By any device unless the
device number is greater than the module priority number. (This is also used with Modula-2
coroutines to implement monitors). The compiler currently does not recognize this construct,

- and so the numbers are commented out. However, this must be changed before the systems
will actually run, as these modules depend on not being interrupted in order to function prop-

erly. User processes should never be able to declare module priority numbers higher than 6, as

7 or higher would allow them to disable traps or device interrupts.

The import lists of some modules include procedures which have been commented out.
This is because the name of that procedure is identical to the name of a procedure declared
withing the module, or imported from a third module. Modula-2 does not allow the import of a

procedure in the form

FROM X IMPORT
X.procedurename;

which would resolve the difficulty. Rather the entire module must be imported, and dereferenc-

ing must take place when the procedure is used. The convention used here is:

IMPORT X;
FROM X IMPORT
{* procedurename ¥*);

This is simply to reveal in the IMPORT statement what procedures are being used from

module X

In general, constants are in upper case, variables are in lower case, types begin‘with a cap-
ital letter, and procedures and modules have a capital letter for the beginning of each word (as
in LocalSystem). Most exceptions are features of Modula-2 (SYSTEM is a module, not a
constant), but a few exceptions were made to improve readability. Declarations are listed in
alphabetical order whenever practical. Declarations of global objects that are used by more
than one procédure in a module are located at the beginning of the module. Global variables
which are used by only one procedure, but were declared globally so that their values would
survive between procedure invocations, are declared immediately before the procedure in

which they are used.

APPENDIX A

UNIBATCH

DEFINITION MODULE ContextHandler;

(***)

(*
. (¥
(*
(*
(*
(:i:
{*
(*
(*

FUNCTION: Handle all facets of switching between the context of the
operating system and the context of the user program, including
creating new contexts, and accessing and changing features of
a context. This module and LocalSystem together constitute
a definition of the machine.

AUTHORS: Rick Snodgrass and Rick Fisher

#)
*)
#)
*)
*) :
*)
*)
*)
*)

(***)

FROM SYSTEM IMPORT
(* Types *)
ADDRESS;

EXPORT QUALIFIED
(* Constants *}
HIGHINSTRUCTION,

(* Types *)
ContextID, Mcodeinstruction,

(* Procedures *)
NewContext, Reset, SetPC, SwitchContext, SVCArguments

CONST
HIGHINSTRUCTION = 377B; (* 377 octal + 1 = 256 = number of M-Code
instructions %)
TYPE
ContextID; {(* pointer to the actual context *}
Mcodeinstruction = [0.BIGHINSTRUCTION];

PROCEDURE NewContext(code AndDataframebase, stackbase: ADDRESS:
stacksize; CARDINAL): ContextID;

(* Create a new context. The caller must insure that the code frames and
{* stacks of the contexts do not overlap.

{*

(* PARAMETERS: codeAndDataframebase—starting address of the

{* code frame.

(* stackbase—starting address of the stack

(* stacksize—size of the stack in words.

(* RETURNS a context ID for the context.

ContextHandler.def _ UniBaTcH

*)
*)
*)
*)
*)
*)
*)
*)

PROCEDURE Reset(context: ContextID);

(*
(*
(*

Reset the values in a context when a process is aborted.

PARAMETERS: context-the ID of the context being reset.

PROCEDURE SetPC(context: ContextID; PC: ADDRESSY);

. (*
(*
{*
(*
(#*
(*
(*
(*

Change the PC of a context. The next time there is a context switch to this
context, instruction execution will start from the altered PC.

PARAMETERS: context—the ID of the context whose PC is to be
changed.
PC—the address to which the contexf' s PC should
be changed. The caller must ensure that the
PC is within the code frame of the context.

PROCEDURE SwitchContext{context: ContextID);

(*
(*
(*
(*
(*

Return to a previously stored context. The current context is not saved,
as a context switch should only occur when the current context has
Jfinished. (The context of the operating system is permanently stored

in a reserved memory location.)

PROCEDURE SVCArguments(context: ContextID); ADDRESS;

(* Obtain from the previously executing context the arguments of the

(* Supervisor Call that caused the context switch. Should be used only

(* if the context switch was caused by a SVC.

(*

(* PARAMETERS: context—the ID of the previously executing context.

(* RETURNS a pointer to the SVC arguments. If the context switch was

(* caused by something other than an SVC, the pointer returned

(* will probably be NIL, but it may point to nonsense values.

(* Otherwise, the values will be as follows:

(*

(* WORD([0} is the type of supervisor call.

(* WORD{1] is the starting address involved in the transfer.

{* WORD{2] is the number of bytes (characters) to be transfered.
END ContextHandler.

ContextHandler.def ‘ 2 UNiBatcH

*]
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
%)
*)
*}

IMPLEMENTATION MODULE ContextHandler; '

(***)

(+ +)
(* POLICY: None to speak of. *)
(* - *)
(* AUTHORS: Rick Fisher and Rick Snodgrass ®)
(* | o)
(*****************#******#*******#******t*#**#*****#************************)
FROM SYSTEM IMPORT
(* Types *)
ADDRESS, WORD,
(* Procedures *)
TSIZE;
FROM LocalSystem IMPORT
(* Types *)
Exceptioncode,

(* Procedures *)
ContextSwitch;

FROM InterruptHandler IMPORT

(* Types *)
SVCceode;

CONST
MAXMODULES = 9§; (* number of words in initial segment *)
WORDSINMEMORY = 40000B;

TYPE
Dataframeptr = POINTER TO Dataframe;
Dataframe = RECORD
codeframe: (* code base address *)
ADDRESS;
initializationflag: (* indicates if module is initialized *)
INTEGER;
stringpointer; (* address of the string table *)
ADDRESS;
globals: (* a variable-sized list of words *)
ARRAY [1..1] OF WORD;
END;
Segmenttableptr = POINTER TO Segmenttable;
Segmenttable = ARRAY [0.. MAXMODULES] OF ADDRESS;
ContextID = POINTER TO Contextrecord;

ContextHandler.mod . UniBaTcH

Contextrecord = RECORD

dataframe: (* data base address *)
Dataframepir;

currentactivation: (* base address of current activation record *)
ADDRESS;

PC: (* program counter *)
ADDRESS;

interruptmask: (* process interrupt mask *) -
BITSET;

stacktop: . {* pointer to top of stack *)
ADDRESS;

stacklimit; . {* stack limit address *)
ADDRESS;

trap: (* trap responsible for interrupt *)
Exceptioncode;

errortrapmask:
BITSET;

segmenttable: (* segment table address *)
Segmenttableptr;

END;

(* Create a new context. *)
PROCEDURE NewContext{code AndDataframebase, stackbase: ADDRESS;

stacksize: CARDINAL): ContextlD;

VAR
context: ContextID;

BEGIN

(* locate context at bottom of process stack *)
context := ContextID(stackbase);

WITH contextT DO
stacklimit := stackbase + stacksize;
currentactivation := stackbase + TSIZE(Contextrecord);
stacktop := currentactivation;
dataframe := codeAndDataframebase;
PC := ADDRESS(dataframe T.codeframe T);
interruptmask := {15};

END;

RETURN context;

END NewContext;

ContextHandler.mod 2 UNIBATCH

(* Reset the context if a user has halted. *)
PROCEDURE Reset(context: ContextID);
BEGIN
WITH contextT DO
currentactivation := ADDRESS(context) + TSIZE{Contextrecord);
stacktop := currentactivation;
END;
END Reset;

(* Set return PC in a context *)

PROCEDURE SetPC(context: ContextID; PC: ADDRESS);

BEGIN -
context].PC := PC;

END SetPC;

(* Switch the context *)
PROCEDURE SwitchContext(context: ContextID);
BEGIN
ContextSwitch({ ADDRESS(context));
END SwitchContext;

(* Get the address of the argument to a Supervisor Call *)
PROCEDURE SVCArguments(context: ContextID): ADDRESS;

VAR
argaddress: (* the address of the parameters *)
ADDRESS;

BEGIN

(* first find location af address of previous activation record *)
argaddress := context | .currentactivation + 1;

(* now get the address of its parameters *)
argaddress := ADDRESS(argaddressT) + 4;

(* Make sure it was an SVC trap *)

IF CARDINAL(argaddressT) <= CARDINAL(WRITESVC) THEN
RETURN argaddress;

ELSE
RETURN NIL;

END; (*IF *)

END SVCArguments;

BEGIN
END ContextHandler.

ContextHandler.mod 3 UNIBATCH

DEFINITION MODULE IntermaptHandler;

(s R RO o R R R R B R R R RO s s ol skl o ok ok R o

(*
(*
{*
(*
(%

*)
FUNCTION: This module handles interrupts and produces error messages. *)
*)
AUTHOR: Rick Fisher *)
*#)
(e skt et ol ook kool ko sl s oo e el ol ok ol sk ko sl ot e ok s s ook |
FROM LocalSystem IMPORT
(* Types *)
Exceptioncode;
EXPORT QUALIFIED
(* Types *)

Devicecode, SVCcode,

(* Procedures *)
Error;

TYPE
Devicecode= [CARDREADER .. LINEPRINTER]; (* Subrange of Exceptioncode *)
SVCcode = (READSVC, WRITESVC);

PROCEDURE Error(errorcode; Exceptioncode);

(* Print appropriate error messages. *)
(* _ *)
(* PARAMETERS: errorcode—the type of the error. Valid errors are: *)
{* BADINSTRUCTION: illegal characters in instruction.)
(* BOUNDSVIOLATION: user attempted to access memory *)
(* location below the address in *)
(* bounds register. *)
(* CASEINDEX: case index out of range. *)
(* ENDofDATA: attempt to read past end-of-file. *)
(* ILLEGALINSTRUCTION: illegal instruction. %)
(* MODEVIOLATION: user attempted to perform super- *)
(* visor instruction. ®)
(* NEWJOB: "new job" card found unexpectedly. *)
(* OUTofRANGE: inaccessible memory location. ®)
(* STACKOVERFLOW : stack overflow. *)
(* UNDEFINEDINSTRUCTION: no such M-Code instruction defined. *)
END InterruptHandler.

Intefruptl{andier.def UNiBAaTCH

IMPLEMENTATION MODULE InterruptHandler;

(***)

(¥ *)
{* POLICY: The interrupt handling procedure is invisible to the rest of *)
(* the operating system. All detected errors cause abortion of *)
(= the user’'s program, after a message is printed. Procedures ‘ *)
(* in the module cannot be interrupted except by device interrupts. *)
(* ' *}
(* AUTHOR: Rick Fisher *)
(* *)
(***)
FROM SYSTEM IMPORT
{* Procedures *)
ADDRESS;
FROM LocalSystem IMPORT
(* Types *)
Exceptioncode,
(* Variables *)
interrupthandler,

{* Procedures *)
Trap;

FROM ContextHandler IMPORT
(* Types *)
ContextID, Mcodeinstruction,

(* Procedures *}
Reset, SwitchContext, SVCArguments

FROM 10 IMPORT
{* Types *)
Cardbuffer, Linebuffer,

{(* Procedures %)
DeviceInterrupt, DoWrite, SizedRead, SizedWrite;

FROM Scheduler IMPORT

{* Procedures *)
CleanUp, GetNewJob;

InterruptHandler.mod UNIBATCH

TYPE
Processinterrupt= PROCEDURE(CARDINAL, ContextID);

(* Subrange of Exceptioncode %)
Trapcode = [BOUNDSVIOLATION .. UNDEFINEDINSTRUCTION];

(* Handle errors %)
PROCEDURE Error{errorcode: Exceptxoncode},
BEGIN

(* Write appropriate error message *)
CASE errorcode OF
BADINSTRUCTION:
DoWrite("ERROR: Illegal characters encountered in instruction.”);
| ENDofDATA:
DoWrite("ERROR: Attempt to read past end of File.”);
| NEWJOB:
DoWriteCERROR: Unexpected end of Input.’);
DoWrite(’Job Done.’);
| ILLEGALINSTRUCTION:
DoWrite(’ERROR: Hllegal instruction encountered’);
| OUTofRANGE:
DoWriteCERROR: Card contains reference to inaccessible memory location.’);
| BOUNDSVIOLATION:
DoWrite("’ERROR: Attempt to access illegal memory location.”);
| CASEINDEX:
DoWrite("ERROR: Case statment tag is out of range.’);
| MODEVIOLATION:
DoWrite("’ERROR: Attempt to perform privileged instruction.’);
[STACKOVERFLOW:
DoWrite(’ERROR: Stack overflow.’);
| UNDEFINEDINSTRUCTION:
DoWrite(CERROR: No action has been defined for this M-Code instruction.’);
ELSE
DoWrite("Undefined error.’);
END; (* CASE #)
END Error;

(* Handle interrupts *) _
PROCEDURE Servicelnterrupt(interrupt: CARDINAL; formercontext: ContextID);

VAR
instruction: _ (* pointer to an M-Code instruction *)
Mcodeinstruction;
reason: (* the CARDINAL parameter transiated to Trapcode *)
Trapcode;

InterruptHandler.mod 2 UniBaTcH

BEGIN

(* process interrupt %)

reason := VAL (Trapcode, intermupt);

CASE reason OF _
BOUNDSVIOLATION .. MODEVIOLATION,

STACKOVERFLOW ., UNDEFINEDINSTRUCTION:

Error(reason);
CleanUp; -
GetNewJob(formercontext);
| Halt:
CleanUp;
GetNewlJob(formercontext);
Reset(formercontext);
| CARDREADER .. LINEPRINTER:
DeviceInterrupt(reason);
| SVC
ProcessSVC{formercontext);
END; (* CASE *)

SwitchContext(formercontext);
END Servicelnterrupt;

(* Process supervisor calls *)

PROCEDURE ProcessSVC(formercontext: ContextiD);

VAR . ,

cardptr; _ (* pointer to argument to READ SVC *)
POINTER TO Cardbuffer;

lineptr: : (* pointer to argument to WRITE SVC *)
POINTER TO Linebuffer;

size: (* size of argument to SVC *)
CARDINAL;

sve: (* the supervisor call *)
SVCcode;

svcargs: (* the address of the arguments to the SVC *)
ADDRESS;

BEGIN

svcargs = SVCArguments(formercontext);
SVC 1= SVCcode(svcargsT);
INC(svcargs);
IF svc = READSVC THEN
cardptr := ADDRESS(sveargsT);
INC(svcargs);
size 1= CARDINAL(svcargsT);

SizedRead(cardptrT, size);

InterruptHandler.mod 3

UniBaTcH

(* if job card found in job, abort job and prepare to process next job *)
IF cardptrT[0] =’/ THEN
Error(ENDofDATA);
GetNewlob(formercontext);
END; (*IF *)
ELSE (* svc = WRITESVC #)
lineptr := ADDRESS(svcargsT);
INC(svcargs);
size := CARDINAL(svecargsT);

SizedWrite(lineptr T, size);

END; (* IF *)
END ProcessSVC;

PROCEDURE SetinterruptHandler(routine: Processinterrupt);

{* Store a pointer to the interrupt handling routine.
{*
(% PARAMETERS: routine—a procedure variable with the value of the
(* exception handling routine.
BEGIN
interrupthandler := PROC(routine);
END SetInterruptHandler;

BEGIN (* module initialization *)

(* Set the location of the interrupt handling routine *)
SetInterruptHandler(ServiceInterrupt);

END InterruptHandler.

InterruptHandler.mod 4 UNIBATCH

*)
*)
*)
*)

DEFINITION MODULE IO;

(**************#**)

(*

(« FUNCTION: This module allows low level input/output: all reading is done

€S
(*
{*
(*

Jrom a card reader, all writing is to a line printer.

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)
*)

AR e AR B AR AR RO OO R OO e ol o Rk s sk ok ok ok)

FROM InterruptHandler IMPORT
(* Types *)
Devicecode;

EXPORT QUALIFIED
(* Constants %)
BLANK,

(* Types *)
Cardbuffer, Linebuffer,

(* Procedures ¥)
Devicelnterrupt, DoRead, DoWrite, SizedRead, SizedWrite;

CONST
BLANK = 7
CARDLENGTH = 80;
LINELENGTH = 132
TYPE
Cardbuffer = ARRAY [0.CARDLENGTH] OF CHAR;
Linebuffer = ARRAY [0.LINELENGTH] OF CHAR;

PROCEDURE DeviceInterrupt{device: Devicecode);

(* Handle device interrupts.

(*

{* PARAMETERS: device—the type of device responsible for the
(* interrupt. Valid devices are:

(* CARDREADER: the card reader.
(* LINEPRINTER: the line printer.

10.def

UNIBATCH

*)
*)
*)
*)
*)
*)

PROCEDURE DoRead(VAR buffer: ARRAY OF CHARY;

(*
(*
(*
(*
(*
(*

Read the next card in the card reader. Calls SizedRead.

PARAMETERS: buffer—the variable into which the card should be
read. If the buffer is not large enough to hold
the entire contents of the card, the rest of the
card will be lost.

PROCEDURE DoWrite(buffer: ARRAY OF CHAR);

(*
(*
{*
(*
(*

Send a line of output to the line printer. Will truncate lines longer than
132 characters. Calls SizedWrite.

PARAMETERS: buffer—the variable holding the characters to be
written.

PROCEDURE SizedRead(VAR buffer: ARRAY OF CHAR,; size: CARDINALY),

(*
(*
(*
(*
(*
(*
(*
(*.

Read the next card in the card reader. May be used instead of DoRead
if user already knows the size in bytes of the buffer variable, or if
reading into the first portion of the variable only is desired.

PARAMETERS: buffer—the variable into which the card should be
read.
size—~the number of characters to be read (should
not exceed the size of the buffer!).

PROCEDURE SizedWrite(buffer: ARRAY OF CHAR; size: CARDINAL);

(*
(*
(*
(*
(*
(*
(*
(*
(*

END IO.

10.def

Send a line of output to the line printer. Will truncate lines longer than
132 characters. May be used instead of DoWrite if user already knows
the size in bytes of the buffer variable, or if only the first portion of that
variable is to be written.

PARAMETERS: buffer—the variable holding the characters to be
written.
size—the number of characters to be written (should
not exceed the size of the buffer!).

2 . UNiBaTcH

*)
*)
%)
*)
%)
*)

*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
%)

*)
*)
*)
*)
*)
*)
*)
%)
*)

IMPLEMENTATION MODULE IO;

(ks ok ko ok R R R R R AR R R R R OR RO R e ORAOROROR R R sk o R ko)

(*
(*
(#
(*
(*
(*®

POLICY: This module reads in blocks of 80 bytes from a card reader or
writes in blocks of 132 bytes to a line printer.

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)
*)

(***#*******)

FROM LocalSystem IMPORT
(* Variables *)
inputbuffer, outputbuffer,

(* Procedures *)

Read, Write;
FROM InterruptHandler IMPORT
(* Types *)
Devicecode;
CONST
NEWLINECHAR = 12C;
VAR)
card: (* holds a card’s worth of characters *)
Cardbuffer;
cardindex: (* positions of inputbuffer filled *)
CARDINAL;
line: (* holds a line’ s worth of characters *)
Linebuffer;
lineindex: (* positions of outputbuffer filled *)
CARDINAL;
printerdone, (* becomes true when cardreader finishes *)
readerdone: (* becomes true when lineprinter finishes *)
BOOLEAN;

(* Handle device interrupts. *)
PROCEDURE Devicelnterrupt(device: Devicecode);

BEGIN
IF device = CARDREADER THEN

(* read entire card before signaling device completion *)

IF (inputbuffer = NEWLINECHAR) OR (cardindex = CARDLENGTH) THEN
card[cardindex] ;= BLANK;
cardindex := 0;
readerdone := TRUE;

I0.mod UNIBATCH

ELSE
card[cardindex] := inputbuffer;
INC{(cardindex);
Read; -
END; (% IF inputbuffer)
ELSIF device = LINEPRINTER THEN

(* print entire line before signaling device completion *)

IF line[lineindex] = NEWLINECHAR THEN
outputbuffer := NEWLINECHAR;
lineindex := 0;
printerdone := TRUE;

ELSE
outputbuffer := line[lingindex];.
INC(lineindex);
Write;

END;, (* IF lineflineindex] *)

END; (* IF device *)
END Devicelnterrupt;

(* Read one card. *) .
PROCEDURE DoRead(VAR buffer: ARRAY OF CHAR);

BEGIN ‘
SizedRead(buffer, HIGH(buffer));
END DoRead;

(% Write one line, *)
PROCEDURE DoWrite(buffer; ARRAY OF CHARY);

BEGIN
SizedWrite(buffer, HIGH(buffer));
END DoWrite;

(* Read a specified number of characters. *)
PROCEDURE SizedRead(VAR buffer: ARRAY OF CHAR; size: CARDINAL);

VAR
i: CARDINAL; (* logp index *)

BEGIN
IF size > CARDLENGTH THEN
size ;== CARDLENGTH;
END;

(* do nothing until card reader finished #)
REPEAT

{* nothing *)
UNTIL readerdone;

I0.mod 2 UniBATCH

(* double-buffer *)
FOR i := 0 TQ size DO

buffer[i] := cardi];
END;

(* begin reading next card *}
readerdone := FALSE;
Read; _

END SizedRead;

(* Write a specified number of characters on one line *)
PROCEDURE SizedWrite(buffer: ARRAY OF CHAR; size: CARDINAL);

VAR
i CARDINAL(¢ loop index *)

BEGIN

(* truncate lines longer than the size of a linebuffer *)
IF size >= LINELENGTH THEN

size := LINELENGTH - 1;
END;

(* do nothing until line printer is finished *)
REPEAT

(* nothing *)
UNTIL printerdone;

(* double-buffer *)
FORi:=0TOsize DO
linefi] := buffer[i];
END;,
linefsize+1] := NEWLINECHAR;

(* begin printing next line %)
printerdone := FALSE;
outputbuffer := line{0];
Write;

END SizedWrite;

BEGIN (* module initialization *)

(* both buffers are initially empty *)

cardindex := 0;

lineindex := 0;

(* line printer is initially idle, while card reader will be started by main module *)

printerdone := TRUE;

readerdone := FALSE;

END 10.

10.mod 3 UNIBATCH

DEFINITION MODULE Loader;

(***)

(*
(*
{*
(*
{*

*)
FUNCTION: This module loads program instructions into memory. *)
*)
AUTHOR: Rick Fisher %)
*)
(e seiok e ROk Rk ok ok ol ok A ok o ek ok ok o R ok ok sk ol okl ool ok)
FROM ContextHandler IMPORT
(* Types *)
ContextlD;
EXPORT QUALIFIED

(* Constants *)
USERDATAFRAME, USERSTACKBASE, USERSTACKSIZE,

(* Procedures *)

LoadJob;

CONST
USERDATAFRAME = 4000;
USERSTACKBASE = 10000;
USERSTACKSIZE = 6000;

PROCEDURE LoadJob(usercontext: ContextID; VAR valid: BOOLEAN);

{* Read in and load a job, in preparation for running it. *)

(* #)

(* PARAMETERS: usercontext~the ID of the user context. *)

(* valid-TRUE when a job has been successfully loaded. *)
END Loader.

Loader.def UNIBATCH

IMPLEMENTATION MODULE Loader;

(**********************#*#******$******#************************************)

(*®
(*
(*
(sé
{*

POLICY: Invalid instructions cause the program to be aborted.

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)

(***)

FROM SYSTEM IMPORT

(* Types *)
WORD, ADDRESS,

{* Constants *)
MAXCARD;

FROM LocalSystem IMPORT
(* Types *)
Exceptioncode,

(* Procedures *)
SetBoundsRegister;

FROM ContextHandler IMPORT
(* Constants %)
HIGHINSTRUCTICN,

(* Types *)
ContextID, Mcodeinstruction,

(* Procedures *)
SetPC,;

FROM InterruptHandler IMPORT
(* Procedures *)
Error;

FROM 10 IMPORT
(* Constants *)
BLANK,

(* Types *)
Cardbuffer,

{* Procedures *)
DoRead, DoWrite;

FROM Scheduler IMPORT
{* Procedures *)
CleanUp;

Loader.mod

UNIBATCH

(* Read, echo and load program instructions. *)
PROCEDURE LoadJob{usercontext: ContextID; VAR valid: BOOLEAN);

VAR
card: (* one card read by the card reader *)
Cardbuffer;
lacation: (* address for next program instruction *)
ADDRESS;
BEGIN
valid := TRUE;

location := USERDATAFRAME;

(* read and load cards until end of program *)
DoRead(card);
WHILE (card[0] #°$’) & valid DO

(* check for unexpected job card before echoing and loading memory *)
IF card[0] =’/ THEN
Error(NEWJOB);
location := USERDATAFRAME;
valid := FALSE;
ELSE
DoWrite(card); _
LoadInstruction(card, location, valid);
IF valid THEN
DoRead(card),
ELSE
CleanUp;
END; (* IF valid *)
END; (* IF card[0] *)
END; (+ WHILE %)

SetPC(usercontext, ADDRESS(USERDATAFRAME));
END LoadJob;

(* Load Memory *)
PROCEDURE LoadlInstruction{card: Cardbuffer; VAR location: ADDRESS,;
VAR cardvalid: BOOLEAN);

CONST
WORDSIZE
MAXADDRESS

I;
MAXCARD;

Loader.mod 2 UNIBATCH

VAR :
instruction: (* program instruction *)

Mcodeinstruction;
i: - (* loop index *)
CARDINAL;
BEGIN
1:=0;

instruction := 0;

(* translate numerals of instruction into an octal integer %)

WHILE (card[i] # BLANK) & (card[i] >= "0’} & (card[i] <= '7’) DO
instruction := ORD(card[i]) - ORD(’0’) + instruction * 10B;
INC(i);

END; (* WHILE =}

(* store instruction in memory unless format is bad *)

IF (card[i] = BLANK) & (instruction <= HIGHINSTRUCTION) THEN
locationT := WORD(instruction);
INC(location, WORDSIZE);

ELSIF card[i] # BLANK THEN
Error(BADINSTRUCTION);
cardvalid := FALSE;

ELSE
Error{OUTofRANGE);
cardvalid ;= FALSE;

END (*IF %)

END LoadInstruction;

BEGIN (* module initialization *)
SetBoundsRegister(USERDATAFRAME);

END Loader.

Loader.mod 3 UNIBATCH

DEFINITION MODULE LocalSystem;

(***)

(+ -)
(# FUNCTION: This is a pseudo-module containing descriptions of machine *)
(* dependent features. Because the objects imported from *)
(* LocalSystem obey special rules and are implemented directly *)
(* in M-Code, the module must be known to the linker or compiler, *)
(* and a definition module is necessary merely for documentation ®)
(* and to allow importing modules to compile properly. Modules *)
(* making use of features exported from LocalSystem are considered *)
(* low-level, system-dependent modules, and are therefore *)
(* non-portable. *)
(* *)
{* AUTHORS: Rick Fisher and Rick Snodgrass *)
(* *)

(***)

FROM SYSTEM IMPORT

(* Types *)
ADDRESS;

EXPORT QUALIFIED
(* Types *)
Exceptioncode,

(* Variables *)
currentcontext, OScontext, inputbuffer, intermipthandler, outputbuffer,

(¥ Procedures *)
ContextSwitch, Read, SetBoundsRegister, Write, Trap;

TYPE
Exceptioncode = (BADINSTRUCTION, ENDofDATA, ILLEGALINSTRUCTION,
NEWIJOB, OUTofRANGE, BOUNDSVIOLATION, CASEINDEX,
MODEVIOLATION, CARDREADER, LINEPRINTER,
Halt, STACKOVERFLOW, UNDEFINEDINSTRUCTION, SVC);

VAR

currentcontextf4]: (* address of current context *)
ADDRESS;

OScontext[5): (* address of operating system context *)
ADDRESS;

inputbuffer[10], (* cardreader’ s one-byte register *)

outputbuffer[11]: (* lineprinter’s one-byte register *)
CHAR;

interrupthandler{17]: (* interrupt routine for traps *)
PROC; -

LocalSystem.def UNIBATCH

" PROCEDURE ContextSwitch(context: ADDRESS);

(* Return to a previously stored context. Should only be called by *)
(* ContextHandler SwitchContext. *)
(* *)
(* PARAMETERS: context-a pointer to the previously stored context. *)
PROCEDURE Read; ;
(* Starts the card reader and returns. The card reader will run concurrently *)
(* with the CPU and deposit the next byte read into the reserved memory location %)
(* ““inpurbuffer’’ : *)-

PROCEDURE SetBoundsRegister(location: ADDRESS); -

{* Set the contents of the Bounds Register to be the lower limit at which *)
(x ° aprogram can be stored in memory. A reference while in User Mode *)
(* to an address below that pointed to by the Bounds Register will cause *)
(* an OUTofBOUNDS interrupt. *)
(* *)
(* PARAMETERS: location—the lowest address to which the user has *)
(* access. *)

PROCEDURE Trap(reason: CARDINAL);

(* Store the current context and load the context of the operating system, %)
(* then call the interrupt handling routine with *‘reason’’ as a parameter. *)
(* Should only be called through the InterruptHandler or SVCalls. *)
(+ ‘ y
(* PARAMETERS: reason—the cause of the trap. *)
PROCEDURE Write;

(% Starts the line printer and returns. The line printer will run concurrently *)
(* with the CPU and print the byte currently in the reserved memory *)
(* location “‘outputbuffer” *)

END LocalSystem,

LocalSystem.def 2 UniBaTCH

IMPLEMENTATION MODULE LocalSystem;

(****$$*$*###*****#***)

(#*
(*
(*
(*
{*
{*
(*

POLICY: None. At present this module is known to the linker, not the
compiler, so definition and implementation modules must both

exist for the purposes of compilation.

AUTHOR: Rick Fisher

*)

*)
*)
*)
*)
*)

%)

(***)

FROM SYSTEM IMPORT
(* Types *)
ADDRESS;

PROCEDURE ContextSwitch(to: ADDRESS);
BEGIN
END ContextSwitch;

PROCEDURE Read;
BEGIN
END Read;

PROCEDURE SetBoundsRegister(location: ADDRESS);
BEGIN
END SetBoundsRegister;

PROCEDURE Trap(reason: CARDINAL);
BEGIN
END Trap;

PROCEDURE Write;
BEGIN
END Write;

BEGIN
END LocalSystem.

LocalSystem.mod

(*

(*

(*

*

(

*

(

CNTX = 246

READ = 240

SBR =214

TRAP = 304

WRITE = 241

UNIBATCH

*#

)

*®

)

DEFINITION MODULE Scheduler;

(***********************#***)

(*

(# FUNCTION: This module handles aborts and directs the loader to load the

{* next job.

(*

(* AUTHOR: Rick Fisher
(* '

*)
*)
*)
*)
*)
*)

(***#*******************************)

FROM ContextHandler IMPORT
(* Types *)
ContextID;

EXPORT QUALIFIED

(* Procedures *)
CleanUp, GetNewJob;

PROCEDURE CleanUp;

(* Clean up remaining cards after a program has finished or been aborted.

PROCEDURE GetNewJob (userContext: ContextID);
(* Direct the loader to load the first job with no internal errors.

END Scheduler.

Scheduler.def

UNIBATCH

*)

.*)

IMPLEMENTATION MODULE Scheduler;

(***)

{* *)
(# POLICY: Jobs are aborted if improper JCL or a bad instruction is *}
(* encountered. *)
{* %)
(* AUTHOR: Rick Fisher ' *}
(* *)
(***)
FROM ContextHandler IMPORT .
(* Types *}
ContextID;
FROM 10 IMPORT
(* Types *)
Cardbuffer,
(* Procedures *)
DoRead, DoWrite;
FROM Loader IMPORT
(* Procedures +)
LoadJob;

(* Clean up last job *)
PROCEDURE CleanUp;

VAR _
card: (* one card read by the card reader *}
Cardbuffer,

BEGIN
(* read cards until a ‘‘new job'' card is found *)
DoRead(card);
WHILE card[0] #°/ DO
DoRead(card);

END CleanUp;

Scheduler.mod UniBaTcH

(* Find a new job %)
PROCEDURE GetNewJob (usercontext: ContextID);

YAR
jobvalid: BCOLEAN;

BEGIN

Jjobwvalid := FALSE;

WHILE NOT jobvalid DO
DoWrite('Job Done.");
LoadJob{usercontext, jobvalid);

END;

END GetNewJob;

BEGIN
END Scheduler.

Scheduler.mod 2 UNIBATCH

DEFINITION MODULE SVCalls;

(#***#*******#**)

{*
{*
(*
{*
(*
(*

FUNCTION: This module defines the user available procedures of Read and
Write.

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)
*)

(***)

EXPORT QUALIFIED
(* Procedures *)
Read, Write;

PROCEDURE Read(VAR card: ARRAY OF CHAR);
(* Read one card.

(*
(% PARAMETERS: card—the buffer for array of characters to
(* be read.

PROCEDURE Write(line: ARRAY OF CHAR);

(* Write one line..
(* :
(* PARAMETERS: line—the buffer holding the array of characters
(* to be written.
END SVCalis,

SVCalls.def UNIBATCH

*)
*)
*)
*)

*)

)

*)
*)

IMPLEMENTATION MODULE SVCalls;

(***)

(*
{*
(*
(*
{*

- POLICY: None to speak of.

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)

(**********************#**)

FROM LocalSystem IMPORT

(* Types *)
Exceptioncode,

{(* Procedures *)
Trap;

FROM IntermptHandler IMPORT

(* Types *)
SVCcode;

(* Supervisor call Read. *)
PROCEDURE Read(VAR card: ARRAY OF CHAR);
BEGIN
SVCTrap(READSVC, card);
END Read; '

(* Supervisor call Write. *)
PROCEDURE Write(line: ARRAY OF CHAR);
BEGIN

SVCTrap(WRITESVC, line);

END Write;
(* Cause a trap to the correct supervisor call.
PROCEDURE SVCTrap(sve: $VCcode; VAR buffer: ARRAY OF CHAR);
(*
(* PARAMETERS: svc—the correct supervisor call. May be one of:
(* READSVC: supervisor call to read from the
(* , card reader
(* WRITESVC: supervisor call to write to the
(* line printer
(* buffer—the buffer variable designated by the user.
(* '
(* Parameters are accessed by UniBatch via ContextHandler SVCArguments.
BEGIN
Trap(CARDINAL(SVC));
END SVCTrap;
BEGIN
END SVCalls.
SVCalis.med UNIBATCH

*)

*)
*)
*)
*)
*)
*)
*)
*)
*)

MODULE UniBatch;

(***)

{* *)
(* FUNCTION: Although this is the main program module, it serves only to %)
(* create a user context, get a new job associated with that context, *)
(* and switch io that context. *)
{* :)
(* AUTHOR: Rick Fisher *)
(* *)
(******#****#**********************#**)
FROM SYSTEM IMPORT
(* Types *)
ADDRESS;
FROM LocalSystem IMPORT

(* Variables *)
currentcontext, OScontext,

(* Procedures *)
Read;

FROM ContextHandler IMPORT
(* Types *)
ContextID,

(* Procedures *)
NewContext, SwitchContext;

FROM Loader IMPORT
(* Constants *)
USERDATAFRAME, USERSTACKBASE, USERSTACKSIZE;

FROM Scheduler IMPORT
{* Procedures *)
CleanUp, GetNewlJob;

VAR
context: (* the user context *)
ContextID;

(* Prepare for first batch job; system starts in Supervisor mode at memory location 0 *)
BEGIN (* UniBatch *)

(* save O/S context before being interrupted *)
OScontext := currentcontext;

(* start card reader *)
Read;

UniBatch.mod UNiBaTcn

(* prepare user context and switch to it *)

context := NewContext({ ADDRESS(USERDATAFRAME), ADDRESS(USERSTACKBASE),
USERSTACKSIZE);

CleanUp;

GetNewlob(context);

SwitchContext(context);

END UniBatch.

UniBatch.mod 2 UniBATCH

APPENDIX B

MULTIBATCH

DEFINITION MODULE Clock;

(***)

(* *)
(* FUNCTION: The Clock is responsible for keeping track of time. It does so *}
(* by counting the number of interrupts (ticks) caused by the clock %)
(* device. It also initiates events which have been set to occur *)
{* after a certain number of ticks. ’ %)
(* *)
{(* AUTHOR: Rick Fisher *)
(* *)
(***)
EXPORT QUALIFIED
(* Constants *)
TICKSPERSECOND,
(* Procedures *)
TickCount,
CONST

TICKSPERSECOND = 100; (* The clock device has not yet been written, so
this constant is just a guess. *)

PROCEDURE TickCount(): CARDINAL;
(¥ RETURNS the time in ticks. The time starts at 0 at system initialization. *)

END Clock.

Clock.def MurLTIBATCH

IMPLEMENTATION MODULE Clock(*{11]%});

(************#**)

(#
(*
(*
(*
(*
(%
(*
(*
(*
(*

*)

POLICY: The Clock counts one tick on each interrupt. Periodically, it *)
asks the High Level Scheduler to see if it is a good time to load *)

a new job; more frequently it checks the event list to see if any %)

evenis are due to be executed. Both of these actions are done *)

through traps, so as to ensure that as little time as possible is #)

spent in this uninterruptible module. *)

*)

AUTHOR: Rick Fisher *)
*)

(R Rk R ARk s R R R R R s R AR R R R ROl o R o R R)

FROM SYSTEM IMPORT
(* Constants *)
MAXCARD;

FROM VirtnalMachine IMPORT
(* Types *)
Interruptcode, OSTraps,

(* Procedures *)
SetinterruptHandler, Trap;

CONST
NEWJOBFREQUENCY = 16
SCHEDULECHECKFREQUENCY = 4;
VAR
tickcounter: (* number of ticks so far ¥}
CARDINAL;

(* The number of ticks so far. *)
PROCEDURE TickCount(): CARDINAL;

BEGIN
RETURN tickcounter;
END TickCount;

Clock.mod

MuLTIBATCH

PROCEDURE ClockInterruptHandler;

(* Handle a clock interrupt. Periodically set traps to check for new jobs, *)
(* and to examine the list of time scheduled events. *)
. BEGIN

tickcounter := (tickcounter + 1} MOD MAXCARD;

"IF tickcounter MOD NEWJOBFREQUENCY =0 'I'I-IEN
Trap(SHOULDERTAPY);

ELSTF tickcounter MOD SCHEDULECHECKFREQUENCY = 0 THEN
Trap(CHECKSCHEDULE);

END; (* IF *)

END ClockIntexrﬁptHandler;
BEGIN (* module initialization *)
tickcounter :=0;

SetInterruptHandIer(CLOCK ClockInterruptHandler);
END Clock.

Clock.mod 2 MuLTiBATCH

DEFINITION MODULE DiskManager;

(*#***$$****#***&*****************)

(*

(¥ FUNCTION: The disk manager is responsible for the allocation of diskspace, and
(% supports the disk read and write operations.

(*

(* AUTHOR: Rick Fisher

(*

*)
*)
*)
*)

,*)

*)

(*********************#***************#*************************************)

FROM SYSTEM IMPORT

(* Types *)
WORD:

FROM MemoryManager IMPORT

(* Types *)
MemoryblockID;

EXPORT QUALIFIED
(* Constants *)

CYLINDERCOUNT, CYLINDERSIZE, DISKSIZE, NULL, SECTORSIZE,

(* Types *)

DiskbiockID, Diskcompletion,

(* Procedures ¥)

Allocate, Deallocate, DiskRead, DiskWrite, InitDisk, Null;

CONST
CYLINDERSIZE
CYLINDERCOUNT
DISKSIZE
NULL
SECTORSIZE

TYPE
DiskblockID;
Diskcompletion

DiskManager.def

[I T

i

128; (* 128 sectorsicylinder *)
8;
CYLINDERSIZE * CYLINDERCOUNT;

0; (* for use in procedure Null *)
128;

* (* Pointer to the disk block type *)

PROCEDURE(WORD);

MUuLTIBATCH

PROCEDURE Allocate(size: CARDINAL): DiskblockID;

(* Allocate a disk block whose size is the smallest SECTORSIZE multiple *)
(* equal to or greater than the requested size in words. Return a disk- ®}
(* block descriptor, or DiskblockID(NIL) if unsuccessful. Blocks are *)
(* allocated by a First Fit strategy. *)
(* *)
(* PARAMETERS: size—the size in words to be allocated. %}
(* RETURNS the ID of the diskblock allocated; zf not successful, %)
(* DiskblockID(NIL) is returned. *)

PROCEDURE Deallocate(VAR diskblock: DiskblockID);

(* Free the specified disk block for reuse. *)
(* *)
(* PARAMETERS: diskblock—the diskblock to be deallocated. %)

PROCEDURE DiskRead(diskblock: DiskblockID; memoryblock: MemoryblockID;
notify: Diskcompletion; parameter: WORD);

(* Read from disk and load into memory, taking the appropriate action *)
(* when finished. Reading starts with the named diskblock and continues *)
(* until the diskblock is completely read or the memoryblock is filled. *)
(* *)
(* PARAMETERS: diskblock—the block on the disk being read. *)
(* memoryblock—the block of memory being written 0. *)
(* notify—the procedure which constitutes the correct %)
(* action to take when the Read has completed. *)
(* parameter—~the parameter to the notification procedure. %)

PROCEDURE DiskWrite(memoryblock: MemoryblockID; diskblock: DiskblockID;
notify; Diskcompletion; parameter; WORD);

(* Write from memory to disk, taking the appropriate action when *)
(* finished. Writing stops when the memoryblock has been completely)
(% written, or when the diskblock is filled. *)
(* *)
(* PARAMETERS: memoryblock—the block of memory being written. - *)
(* diskblock—the block of the disk being written to. *)
(* notify—the procedure which constitutes the correct %)
(* action to take when the Write has completed. *)
(* parameter—the parameter to the notification procedure. *)
PROCEDURE InitDisk;

(* Order-dependent module initialization. This procedure consists of %)
(* initialization statements which should not be executed until after *)
(* the initialization for the main module has begun.)

DiskManager.def 2 MuLTIBATCH

PROCEDURE Null(nuil: WORDY);

(* This procedure does nothing, it serves as a dummy parameter to DiskRead *)

(% or DiskWrite when no action is demanded upon completion of the *)

(* operation. *)

(*)

(* PARAMETERS: null-can be any WORD: for example the constant *}

(* NULL. *)
END DiskManager.

DiskManager.def 3 MuLTiBAaTCH

IMPLEMENTATION MODULE DiskManager(*[10]*);

(***)

(*
{*
(*
(#
(*
(*
{*
{*
(*

*)

POLICY: Blocks are allocated as an arbitrary number of contiguous sectors *)

of 128 bytes each. Deallocated blocks are merged with their *)

neighbors when it is possible. Blocks are not formed across *)

cylinder boundaries, so there are always at least as many blocks *)-

on the disk as cylinders. *)
*

)

AUTHOR: Rick Fisher *)
*

)

(***)

FROM SYSTEM IMPORT

(* Types *)
ADDRESS, WORD,

(* Constants *)
BYTESPERWORD,

(* Procedures %)
ADR, SIZE;

IMPORT VirtualMachine;

FROM VirtualMachine IMPORT
(* Types *))
Interruptcode,

{(* Procedures *)
(* DiskRead, DiskWrite, *) RemmFromInterrupt, SetInterruptHandler;

FROM MemoryManager IMPORT

(* Types *)

MemoryblockID,

(* Procedures *}

BlockSize, Starting Address;
FROM STORAGE IMPORT

(* Procedures *)

ALLOCATE, DEALLOCATE;
TYPE

Blockstatus = (USED, FREE);

CylinderID = [0..CYLINDERCOUNT - 1];

SectorID [0.. DISKSIZE - 1];

DiskManager.mod

MULTIBATCH

DiskblockID = POINTER TO Diskblocktype;
Diskblocktype = RECORD
lowerbound, (* first sector in block #)
upperbound: (* last sector in block *)
SectorID;
status: (* FREE or USED *)
Blockstatus;
next, (* next diskblock *)
previous: (* previous diskblock *)
DiskblockID;
END;
Diskbuffer = POINTER TO ARRAY [0.. SECTORSIZE - 1] OF WORD;
Diskoperation = (READ, WRITE),
LooseEnds = RECORD
transferfinished: (% true for last sector of block transfer *)
BOOQOLEAN;
count: (¥ number of bytes involved in final transfer *)
CARDINAL;
buffer: (* starting address of final transfer *)
ADDRESS;
notify: (* procedure to be called at completion of
transfer *)
Diskcompletion;
parameter: (* parameter to the above procedure *)
~ WORD;
END; : .
CONST

WORDSPERSECTOR = SECTORSIZE DIV BYTESPERWORD;

VAR
listheader: (* pointer to the list of diskblocks)
DiskblockID;
lastbuffer: (* temporary holding place for last sector of a disk transfer *)

ARRAY[C .. WORDSPERSECTOR - 1] OF WORD;

(* Allocate a disk block. *)
PROCEDURE Allocate(size: CARDINALY): DiskblockID;

VAR
currentblock, (* block currently under examination in list *)
newblock: (* newly allocated biock *)
DiskblockID;
sectorcount: (* size in sectors required for disk block *)
CARDINAL;

DiskManager.mod _ 2 - MuLtTiBATCH

BEGIN
sectorcount := (size - 1 + SECTORSIZE) DIV SECTORSIZE;
(* search list of disk blocks for first free block of sufficient size *)

currentblock := listheader;
WHILE (currentblock # NIL) & ((currentblock T.status = USED) OR

(currentblock T.upperbound - currentblockT.lowerbound + 1 < sectorcount)) DO

currentblock = currentblock T.next;
END; (* WHILE #)

(* allocate new block *)

WITH currentblockT DO
IF currentblock = NIL THEN
(* no block was found *)

newblock := NIL;
ELSIF upperbound - lowerbound + 1 = sectorcount THEN
(* block of correct size was found *)

newblock := currentblock;
newblock T status := USED;

ELSE o

(* larger block than necessary was found *)

{(* create new block record *)

ALLOGCATE(newblock, SIZE(newblockT));
newblock T lowerbound := lowerbound;

newblock T.upperbound := lowerbound + sectorcount - 1;
newblockT status := USED;

newblockT.previous := previous;

newblockT.next := currentblock;

lowerbound := lowerbound + sectorcount;

(* insert new block record into list *)

IF previous = NIL THEN
listheader := newblock;

ELSE
previous T.next := newblock;
previous := newblock;

END; (% IF previous *)

END; (* IF currentblock *)
END; (* WITH *)

RETURN{(newblock);

END Allocate;

DiskManager.mod 3

MurtiBaTcu

(* Free a disk block for reuse. %)
PROCEDURE Deallocate(VAR diskblock: DiskblockIDy);

VAR
temp: (* temporary pointer)
DiskblockID;

BEGIN :
WITH dlskblockT DO
status := FREE;

(* combine with next block on cylinder, if free *}
IF (next # NIL) & (nextT.status = FREE) & :
(upperbound DIV CYLINDERSIZE = nextT Jowerbound DIV CYLINDERSIZE)
THEN
upperbound := nextT.upperbound;
temp:= next;
next := next. next;
DEALLOCATE(temp, SIZE(tempT));
END; (* IF *)

(* combine with previous block on cylinder, if free *)
IF (previous # NIL) & (previousT .status = FREE) &
(lowerbound DIV CYLINDERSIZE = previous?.upperbound DIV CYLINDERSIZE)
THEN
previous T.upperbound := upperbound;
previous ! .next ;= next;
DEALLOCATE(diskblock, SIZE(diskblockT));
END; (* IF %)
END; (* WITH *)

diskblock = NIIL;
END Deallocate;

(* Copy data from disk to main memory. *)
PROCEDURE DiskRead(diskblock: DiskblockID; memoryblock: MemoryblockID;
notify: Diskcompletion; parameter; WORD);

BEGIN
DiskCopy(READ, diskblock, memoryblock, notify, parameter);
END DiskRead;

(* Copy data from main memory to disk. *)
PROCEDURE DiskWrite(memoryblock: MemoryblockID; diskblock: DiskblockID;
notify: Diskcompletion; parameter: WORDY;

BEGIN

DiskCopy(WRITE, diskblock, memoryblock, notify, parameter);
END DiskWrite;

DiskManager.mod 4 MuLTiBaTCH

PROCEDURE DiskCopy(operation: Diskoperation; diskblock: DiskblockID;

memoryblock: MemoryblockID; notify: Diskcompletion; parameter: WORD);

{* Copy information between disk and memory, a sector at a time.
(*
{* PARAMETERS: operation—either READ or WRITE.
(* diskblack—the ID of the diskblock involved.
(* memoryblock—the ID of the memoryblock involved.
(¥ notify—the procedure to be executed at the conclusion
{* of the operation.
(* parameter—the parameter to ‘‘notify’”.
VAR
i (* loop index *)
CARDINAL;
buffer: (* pointer to start of memory block %)
ADDRESS;
sector: (* one sector of the disk block %)
SectorID;
size: (* the size of the memory block *)
CARDINAL; :
tidyup: (* to be acted upon when transfer is complete *)
LooseEnds;
ptr: (* initialized to address of *‘lastbuffer’” *)
ADDRESS;
BEGIN

(* initialize %)

tidvup.transferfinished := FALSE;
tidyup.notify := notify;

tidyup.parameter ;= parameter;

buffer ;= StartingAddress(memoryblock);
size := BlockSize(memoryblock);

{* copy all sectors but the last *)

FOR sector := diskblock T lowerbound TO diskblock T lowerbound - 1

+ (size - 1) DIV SECTORSIZE DO
DiskDriver.CopySector(operation, sector, buffer, tidyup);
INC{buffer, WORDSPERSECTOR);

END; (* FOR *)

(* copy last (partial?) sector of block *)
sector := diskblockT.Jowerbound + (size - 1) DIV SECTORSIZE;
tidyup.transferfinished := TRUE;
tidyup.count := (size - 1) MOD SECTORSIZE + 1; -
sector := diskblockT.lowerbound + (size - 1) DIV SECTORSIZE;
IF operation = READ THEN

tidyup.buffer := buffer,

*)
*)
*)
*)
*)
*)
*)
*)

DiskManager.mod 5 MuLTIBATCH

ELSE (* operation = WRITE *)
ptr := ADR(lastbuffer);
FOR i := 0 TO tidyup.count - 1 DO
ptrT := bufferT;
INC(buffer);
INC(pir);
END; (* FOR i %)
END; (* IF operation *)
DiskDriver.CopySector(operation, sector, ADR (lasthuffer), tidyup);

END DiskCopy:

(* Module initialization. *}

PROCEDURE InitDisk;

BEGIN
(* set up initial list of disk blocks with each cylinder consisting of one free block *)

ALLOCATE(listheader, SIZE(listheaderT));

(* initialize node with the values for the last block on the disk *)
WITH listheaderT DO

next ;= NIL;

lowerbound := DISKSIZE - CYLINDERSIZE;

upperbound := DISKSIZE - I;

status := FREE;
END; (+ WITH *)

(* create rest of list »)
WHILE listheaderT.lowerbound > 0 DO

(* create node for previous block *)

WITH listheader| DO
ALLOCATE(previous, SIZE(previousT));
previousT.next := listheader;
listheader := previous;

END; (* WITH *)

(* initialize new block *)
WITH listheader T DO
lowerbound := nextT lowerbound - CYLINDERSIZE;
upperbound := nextT.upperbound - CYLINDERSIZE;
status ;= FREE,;
END; (*x WITH *)
END; (* WHILE *)

listheaderT.previous := NIL:
END InitDisk;

DiskManager.mod 6 MULTIBATCH

(* Take no action on a given diskread or diskwrite. *)
PROCEDURE Null(null: WORD);

BEGIN

END Nuli;

MODULE DiskDriver;
(e ks il o skt i ko ool s ook ol o ook ok ok sl ok o ol ok R ok s R ko)
{Aederkk ®)
(kxxkx FUNCTION: This local module does the low level work of actually %)
(e processing transfers of blocks of information between *)
(ko E the disk and main memory. *)
(Fexgsk *)
{wrsws POLICY: Requests for transfers are inserted into a list, ordered *)
(ks to minimize search time. Once a request has been)
(kb k given to the device, control is returned to the aper- ®)
{Fadok® ating system until the transfer has completed, at *)
(#RAokR which time an interrupt handler 1) calls the cleanup - %)
(eskakodere procedure which was passed as a parameter, and *)
(kkidok 2) starts acting on a new request. *)
(FHkER *)
(***)
(**)
{*%) IMPORT
(**) (* Constants *)
(#*) CYLINDERCOUNT, CYLINDERSIZE,
(+4)
(**) (* Types *)
(*%) ADDRESS, CylinderID, Diskbuffer, Diskoperation, Interruptcode,
(%) LooseEnds, SectoriD, '
(**)
(*%) - (* Variables *)
(**%) lastbuffer,
(*%)
(#*) (* Modules *)
(**) VirtualMachine,
(%)
(¥%) (* Procedures *)
(%*) ADR, ALLOCATE, DEALLOCATE, (* VirtualMachine.DiskRead,
(%%) VirtualMachine DiskWrite, *) RetumFromInterrupt, SetInterruptHandler, SIZE;
(%)
(#%) EXPORT
(**) (* Procedures *)
(**) CopySector;
(**)
(*%)

DiskManager.mod : 7 MuLTiBATCH

(%) TYPE

(%%} Requestpointer = POINTER TO Requestnode;

(#*) Requestnode = RECORD

(**) buffer: (* pointer to a sector of the memory
(#%) block involved in transfer #)

(¥*) Diskbuffer;

(%%} operation: (* READ or WRITE %)

(®*) Diskoperation;

(*x) sector: (* sector to be transfered *)

(**) - SectorID;

(%) tidyup: (* information to be acted upon

(%) when transfer is complete *)

(x%) LooseEnds;

(%) next: (* next in list *)

(**) Requestpointer;

(*%) ‘ END;

(**)

(#%) VAR

(**) currentcylinder, (* cylinder on which requests are currently being served =)
(**) i {* loop index *) .

(**) CylinderID;

(*%) direction: (* scanning direction of read-write head *)

(*%) (INWARD, OUTWARD);

(%) listheader: (* pointer to first node in request list %)

{**) Requestpointer;

(%) requestqueue: (* queue of requests for each cylinder *)

(**) ARRAY CylinderID OF |

(**) RECORD

{#%) head,

(*%) tail: (* head and tail of queuc *)

(*%) Requestpointer;

(**) END; '

()

(*%)

(%) PROCEDURE CopySector{operation: Diskoperation; sector: SectorlD; .

(¥%) buffer: Diskbuffer; tidyup: LooseEnds);

) (* Create a request node and insert it into the list of requests for *)
(*x) (* disk access. If it is the only request in the list, start acting on *®)
(**) (* it (if there are other requests, action will automatically begin *)
(**) (* on the next in line when the previous one is finished). *)
(%) (* *)
(*%) (* PARAMETERS: operation—-READ or WRITE. *)
(*%) (* sector—~the disk sector involved in the *)
(%) {* transfer.)
(#%) (* ' buffer—the page of memory involved in the *)
(%%) {* transfer.)
{*%) (* tidyup—information to be acted upon when *)
{%%) (* ' the entire block has been copied. *)
(**)

DiskManager.mod 8 MuLTiBaTCH

(*x) VAR

(%) request: (* the request node *)

(#%) _ Requestpointer;

(**)

(*} BEGIN

(*%) ALLOCATE(request, SIZE(requestT));

(**) requestT.operaﬁon := pperation;

(%%} requestT.sector = sector;

(¥*) request T.buffer := buffer;

(%) requestT.tidyup := tidyup;

(%) .

{#%) Insert(request);

(*+)

(%) TF listheader = request THEN

(*%) DiskStart(listheader T sector, listheaderT buffer);

(**) END; (IF *)

(**)

(*%) END CopySector;

(++)

(++)

(#*) PROCEDURE DiskStart(sector: SectorID; buffer: ADDRESS);

(*®) - (% Start the disk on its next transfer. *)

(#r) (% %)

(#*) (* PARAMETERS: sector—the disk sector involved in the ®)
- (*%) (* transfer. *)

(%) (% ‘ buffer—the starting of address of memory *).

(**) (* involved in the transfer. %) -

(v%)

(#*) BEGIN

(%% WITH listheaderT DO

{%*) IF operation = READ THEN

(#%) VirtualMachine.DiskRead(CARDINAL (sector), buffer);

(*x) ELSE

(**) VirtualMachine. DiskWrite(buffer, CARDINAL (sector});

(**) END; (* IF %)

(**) END; (* WITH *)

(#%) END DiskStart;

(¥*)

(**)

DiskManager.mod 9 MuLtiBaTCH

(**)
(%)
(**)
(¥*)
(**)
(**)
(**)
(**)
(**)
(**)
(*+)
(*+)
(**)
(**)
(**)
(**)
(**)
(**)
(**)
(#*)
(*#)

(**)

(+%)
(+*)
(++)
(++)
(%%)
(%)
(x5)
(x%)
(%)
(*+)
(%)
(*¥)
(++)
(%)
(%)
(*+)
(%%)
(*#)
(*4)
(x+)
(xx)
(%)
(+#)
(x%)

PROCEDURE Insert(request: Requestpointer);

(*
(*
(*
{*
(*
{*
(%
(*

Place a request into the list. Arrange the requests to facilitate

a SCAN, N-SCAN, or C-SCAN search strategy. (For each

cylinder on the disk a queue is maintained. The exact choice of
when and how to link the queues determines which disk-scheduling
discipline will be followed.)

PARAMETERS: requesi—the information to be put into the
' list of requests.

VAR
requesteylinder: (* cylinder of the new request)
CylinderID;

BEGIN

requestcylinder := requestT .sector DIV CYLINDERS]ZE;

WITH requestqueuvelrequestcylinder] DO
IF tail = NIL THEN
(* queue is empty *)

(* place request at beginning *)
requestT.next := NIL;

head := request;

tail := request;

IF listheader = NIL THEN
(* this is the only request in entire list *)

listheader := request;
currentcylinder := requesteylinder;
END (* IF listheader *);

ELSE
requestT.next := tail T.next;
tail T.next := request;
END; (* IF tail *)

tail := request;
END; (* WITH *)

END Insert;

*)
*)
*)
*)
*)
*)

*)

DiskManager.mod 10 MULTIBATCH

(**) PROCEDURE NewScan;

(#%) (% This procedure links the request queues according to the SCAN *)
(x%) (* disk-scheduling discipline when a scan is complete. *®}
(**)
(#%) YAR
(%*) i, (* loop index *)
{**) first, (* first cylinder of next pass *)
(x%) fast, (* last cylinder of next pass *)
(%*) previous: (* the last cylinder looked at previously *)
(**) CylinderID;
(¥*) step: (* 1 if direction is inward, -1 if outward *)
{**) -1.1];
(**)
(*%) BEGIN
(**)
(*%) (* change directions *)
(%) IF direction = OUTWARD THEN
(*%) direction := INWARD;
() first 1= 0;
(**) . last ;= CYLINDERCOUNT - 1;
(%) step == 1; '
(%) ELSE
{**) direction := OUTWARD;
{®%) first := CYLINDERCOUNT - 1;
(*%) last := 0;
{(**) step :=-1;
(*%) END; (*IF %)
(**)
(*%) (* relink queues *)
(*%) i :=last;
(**) WHILE i # first DO
(¥} DEC(, step); -
(**) previous ;= CylinderID(INTEGER({) + step);
{%*) WITH requestqueue[i] DO '
(%%) IF head = NIL. THEN
{#%) head := requestqueue[previous].head;
(**) ELSE
(**) tail T.next := requestqueue[previous].head;
(**) END; (% IF)
(**) END; (x WITH »)
(%%) requestqueue[previous].head := NIL;
(**) END; (* WHILE *)
(**)
(k*) listheader := requestqueune[first] head;
(*%) requestquene(first].head := NIL;
(**)
(**) END NewScan;
(**)
(*+*)

DiskManager.mod 11 MuLTiBATCH

(#*)
(¥*)
(#*)
(**)
(¥*)
(#*)
(¥*)
(**)
(**)
(**)
(*%)
(**)
(¥}
(¥*)
()
(%)
(*)
(¥%)
(%)
(%)
(¥*)
(*+*)
()
(¥*)
(*+)
(*+)
(%)
(*%)
(**)
(+*)
(*x)
(*+)
(%)
(**)
(**)
(*+)
(*+)
(**)
(%*)
(**)
(**)

PROCEDURE TransferComplete;
{* Handle disk interrupt when a transfer is complete. (Currently
(* assumes SCAN disk-scheduling.)

VAR

lastrequest: (* the request just completed *)
Requestpointer;

ptr: (* initialized to address of ‘‘lastbuffer’” %)

ADDRESS;

BEGIN

(* prepare to start next request *)

lastrequest := listheader;

listheader := listheaderT.next; .
IF listheader = NIL, THEN

(* relink cylinder queues into a new list *)
NewScan;
ELSE
IF lastrequest = requestqueue[currentcylinder].tail THEN
(* this was last request on cylinder *).

requestqueuefcurrentcylinder].tail := NIL;
END; (* IF lastrequest *)

(* move to (or stay at} first cylinder that has requests *)
WHILE requestqueue[currentcylinder].tail = NIL DO
IF direction = INWARD THEN
INC(currentcylinder);
ELSE
DEC(currentcylinder);
END; (% IF direction *)
END; (* WHILE *)
END; (* IF listheader = NIL %)

(* start next request *)

IF listheader # NIL THEN
DiskStart(listheaderT .sector, listheaderT buffer);

END; (* IF listheader # NIL *)

DiskManager.mod 12

*)
*)

MULTIBATCH

(**)
(¥%)
(**)
(#%)
(%%)
(¥x)
(**)
(**)
(#*}
(**)
(**}
(%)
()

(+%)
(++)
(++)
(+4)
(+%)
(+)
(+%)

(0}

()
(%)
(**)
(%)
(**)
(**)
(**)
(%)
(**)
(**)
(**)

(* tidy up *)
WITH lastrequestT.tidyup DO
IF transferfinished THEN
IF lastrequest T.operation = READ THEN
ptr := ADR(lastbuffer);
FOR i:=0TOcount - 1 DO
bufferT := ptrT;
INC(buffer);
INC(ptr);
END; (* FOR %)
END; (% IF READ *)
notify(parameter),
END; (* IF transferfinished *)
END; (* WITH lastrequest *)

DEALLOCATE(lastrequest, SIZE(lastrequestT));
ReturnFromInterrupt(DISK);
END TransferComplete;

BEGIN(* local module initialization *)
SetInterruptHandler(DISK, TransferComplete);

(* set up list of requests—list is initially empty *)

listheader := NIL; - '

FOR i :=0TO CYLINDERCOUNT - 1 DO
requestqueuefi].head := NIL;
requestqueue(il.tail := NIL;

END; (¥ FOR *)

direction ;= INWARD;

END DiskDriver;

(***)

BEGIN (* module initialization *)

(* see procedure InitDisk *)

END DiskManager.

DiskManager.mod : 13

MuLTiBATCH

DEFINITION MODULE Highl evelScheduler;

(***)

(*
(*
(*
(*
(*
{*
(*
(*

FUNCTION: The High Level Scheduler is responsible for initiating and terminat-
ing jobs. When it chooses to accept a job into the system, it
creates a new process for that job, and loads the card images
associated with the job. '

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)
*)
*)
*)

(*****************************#***************************************$*****}

FROM ProcessManager IMPORT

(* Types *)
ProcessiD;

EXPORT QUALIFIED
(* Procedures %)
InitHLSched, ShoulderTap, Terminate;

PROCEDURE InitHL Sched;
(* Order-dependent module initialization. This procedure consists of initial- ®)
(* ization statements which should not be executed until after the initialization *)
(* . for the main module has begun. *)
PROCEDURE ShoulderTap;
(* Check to see if a new process can be loaded; if so, load it. *)
PROCEDURE Terminate(process: ProcessID);
(* Deallocate the resources of a completed process and attempi t¢ load a %)
(* new one. *)
(* *)
(* PARAMETERS: process—the process being terminated. *)
END HighLevelScheduler.
MuLTIBaTCH

HighLevetScheduler.def-

IMPLEMENTATION MODULE HighLevelScheduler;

e e e L EE I LB RS

(* *)
(* POLICY: The High Level Scheduler does no checking of the M-code or *)
(* : program input it gets from the Spooler; it simply loads each *)
(* page verbatim. *)
(+ o |)
(* AUTHOR: Rick Fisher *)
(* *)
(iR R R R R SRR R R Rk R R R R R R R R)
FROM SYSTEM IMPORT
(* Types %)
ADDRESS, WORD,
(* Procedures *)
SIZE;
IMPORT MemoryManager;
FROM MemoryManager IMPORT
(* Constants *)
PAGESIZE,
(* Types *)
MemoryblockID, Pageptr,

(* Procedures *)
{*x Allocate, *) BlockID, (* Deallocate, *) StartingAddress;

IMPORT DiskManager;
FROM DiskManager IMPORT
(* Constants *)
NULL,

(* Types %)
DiskblockID,

{(* Procedures %)
(* Deallocate, *) DiskWrite;

FROM ProcessManager IMPORT
(* Types *)
ProcessID, Disklist,

(* Procedures *)

CreatelD, DiskUse, Equal, Initialize, MemofyLocation, NullProcess, PermanentLocation,
Resident;

HighLevelScheduler.mod MuLTIBAaTCH

FROM Spooler IMPORT
(* Procedures *)
DeSpool, PopJobSize;

IMPORT MediumScheduler;
FROM MediumScheduler IMPORT
{* Procedures *)
Schedule (*, Terminate *);

FROM Loader IMPORT
(* Procedures *)
Load;

FROM STORAGE IMPORT
(* Procedures *) _
ALLOCATE, DEALLOCATE;

VAR
codeEnd, (* last node in code output list *)
codestart: (* header node for code output list %}
Disklist;
waitingOndisk: (* TRUE if *‘ShoulderTap"’ is waiting on disk completion *)
BOOLEAN;

(* Module initialization. *}

PROCEDURE InitHL.Sched;

BEGIN :
ALLOCATE(codestart, SIZE(codestartT));
codestartT.next := NIL;
codeEnd := codestart;

END InitHL Sched;

PROCEDURE Resume(null; WORD);

(* Record completion of disk operation and restart *‘ShoulderTap’ . *)
(* *)
(% PARAMETERS: null-an unused parameter, can be any word. *)
BEGIN

waitingOndisk := FALSE;

ShoulderTap;
END Resume;
CONST

PRIORITY 1; (* defauir priority is higher than the null process *)

STACKSIZE 8; (* number of pages in default stack *)

HighLevelScheduler.mod 2 MuLTIBATCH

VAR

codesize, (* number of pages in current job’s code *)

i; {(* loop index *) '
CARDINAL; .

inprogress: (* TRUE if part of a job has been processed *)
BCOLEAN,;

inputsize: (* number of pages in current job's input file *)
CARDINAL;

newblock: (* the memoryblock to hold the new job *)
MemoryblockID;]

pageaddress: (* where the job's next page should be written *)
ADDRESS;

pagecount: (* the number of pages spooled for the job *)
CARDINAL;

waitingforprocessID: (* TRUE if job is loaded, but no ID is assigned *)
BOOLEAN;

(* Tryto load a new job. *)

PROCEDURE ShoulderTap;
VAR
blockstart: (* starting address of memory block *)
ADDRESS;
newprocess: (* new process ID *)
ProcessID; .
page: (* pointer to the most recently despooled page *)
Pageptr;
BEGIN

(* attempt to load only if a previous incaration of ShoulderTap is not waiting
on a disk completion *)
IF NOT waitingOndisk THEN

(* try to load a job *)
IF NOT waitingforprocessID THEN
(* current job is not completely loaded *}

IF NOT inprogress THEN
(* there is no current job %)

(* get size of new job *)
PopJobSize(codesize, inputsize);
pagecount := codesize + inputsize;
IF pagecount > 0 THEN
inprogress := TRUE;
END; (* IF pagecount *)
END; (* IF NOT inprogress %)

HighLevelScheduler.mod 3 MuLTIBATCH

{* try to find memoryblock for a new job *)
IF (ADDRESS(newblock) = NIL) & inprogress THEN

newblock := MemoryManager. Allocate{ (pagecount + STACKSIZE)
* PAGESIZE);
blockstart := Starting Address(newblock);
pageaddress := blocksiart;
i=0;
END; (* IF newblock *)

(* load as many pages of the job as possible *}
IF ADDRESS(newblock) # NIL THEN
LOOP
IF i = pagecount THEN
(* job is completely loaded *)

inprogress = FALSE;
waitingforprocessID := TRUE;
EXIT; (* LOOP *)

ELSE
page := DeSpool();

END; (% IF i %)

IF page = Pageptr(NIL) THEN
EXIT; (* LOOP *)

END; (* IF page *}

(* write M-code to program’ s output *)

IF i < codesize THEN
ALLOCATE(codeEndT .next, SIZE(codeEndT));
codeEnd := codeEnd T.next;
codeEndT.next := NIL;
codeEnd T.diskblockptr := DiskManager.Allocate(PAGESIZE);
DiskWrite(BlockID(ADDRESS(page)), COdeEndT.diskblockptr,

Resume, NULL); '

waitingOndisk := TRUE;

END; (* IF i < codesize *)

(* load the page *)
Load(page, pageaddress);
INC(i);
IF i <= codesize THEN
EXIT; (* LOOP *)
END; (* IF i <= codesize *)
END; (* LOOP *}
END; (* IF ADDRESS *)
END; (* IF NOT waitingforprocessiD *)

HighLevelScheduler.mod 4 MurTIBATCH

(* make completely loaded job into a process *)
IF waitingforprocessID THEN
newprocess = CreateID(};
IF NOT Equal(newprocess, NullProcess()) THEN
waitingforprocessID := FALSE;
- Initialize(newprocess, newblock, blockstart + codesize * PAGESIZE,
blockstart + pagecount * PAGESIZE, STACKSIZE * PAGESIZE,
PRIORITY, codestartT.next, codeEnd);
codestartT next := NIL;
codeEnd := codestart; .
newblock = MemoryblockID(NIL);
Schedule(newprocess); :
END; (* IF NOT Equal *)
END; (* IF waitingforprocessiD *)
END; (* IF NOT waitingOndisk *)
END ShoulderTap;

PROCEDURE Terminate(process: ProcessID);

(* Deallocate the resources of a completed process and attempt to load *)
(* a new process. *)
(* *)
(* PARAMETERS: process—the process being terminated. *)
VAR
disklist: (* list of diskblocks used by process *)
' Disklist;
permanentlocation: (* disk location of process *)
DiskblockID;, .
tempdisknode: (* used in deallocating list nodes *)
Disklist; :
tempdiskblock: (* used in deallocating a disk block *)
DiskblockID;
tempmemblock: (* used in deallocating a memory block *)
MemoryblockID;
BEGIN

(* free memory space *)
IF Resident(process) THEN
tempmemblock := MemoryLocation(process);
MemoryManager.Deallocate(tempmemblock);
END; (* IF Resident *)

HighLevelScheduler.mod ' 5 MULTIBATCH

(* free disk space *)

permanentlocation ;= Permanentl ocation(process);

IF ADDRESS(permanentlocation) # NIL THEN
tempdiskblock := DiskblockID(permanentlocation);
DiskManager.Deallocate(tempdiskblock);

END; (# IF permanentlocation *)

disklist := DiskUse(process);

WHILE disklist # Disklist(NIL) DO
tempdisknode := diskiist;
disklist := disklistT.next;

tempdiskblock = DiskaockID(tempdisknodeT.diskblockptr) ;

DiskManager.Deallocate(tempdiskblock);
DEALLOCATE(tempdisknode, SIZE(tempdisknode T));
END; (* WHILE *)

MediumScheduler.Terminate(process);
ShoulderTap;
END Terminate;

BEGIN (* module initialization *)
inprogress := FALSE;
pageaddress := NIL;
newblock = MemoryblockID(NIL);
pagecount := 0;
waitingforprocessiD ;= FALSE;
waitingOndisk := FALSE;

(* see alsa procedure InitHLSched *)

END HighLevelScheduler.

HighLevelScheduler.mod 6

MuLTIBATCH

DEFINITION MODULE Loader,

(***)

(*
(*
(si:
(*®
{*
(*
(*

*)
FUNCTION: The Loader takes cards on which M-code instructions are punched, *)
translates the characters into octal numbers, and loads those *)
numbers into memory. *)
. R *)
AUTHOR: Rick Fisher %}
. - *)
(****************#**)
FROM SYSTEM IMPORT
(* Types *)
ADDRESS;
FROM MemoryManager IMPORT
(* Types *)
Pageptr;
EXPORT QUALIFIED
(* Procedures *)
Load;

PROCEDURE Load(page: Pageptr; VAR address: ADDRESS);

(* Convert the characters on the given page to octal numbers, and load them *)

(* at the given address, updating the address when finished to be the address *)

(* at which the next page should be loaded. *)

(* *)

(* PARAMETERS: page—the page to be loaded. *)

(* address—the address at which loading is to begin. *)
END Loader.

Loader.def MuLTIBATCH

IMPLEMENTATION MODULE Loader;

(RERRR R R AR R R R R R R ok o R Rk)

(*®
{*
(*
(*
(*
(*
(*

*)

POLICY: The Loader assumes that cards are correctly spooled, with code *)
Jfollowed by input followed by code followed by input, etc. No *)

error checking is undertaken. *)

. *)

AUTHOR: Rick Fisher *}
*)

(***)

FROM SYSTEM IMPORT
(* Types *)
ADDRESS, WORD;

FROM VirtualMachine IMPORT
(* Constants *)
BYTESPERPAGE;

FROM MemoryManager IMPORT
(* Constants *) '
PAGESIZE,

(* Types %)
Pageindex, Pageptr;

FROM Spooler IMPORT
(* Constants *)
ENDofINPUT, ENDofJOB;

CONST
BLANK 7
NEWLINE = 12GC;

VAR
code:

BOOLEAN;

currentvalue: (* current octal value of characters read so far *)
CARDINAL;

(¥ TRUE if current page is code, FALSE if page is input %)

(* Load apage of card images into memory. %)
PROCEDURE Load(page: Pageptr; VAR address: ADDRESS);

VAR
index: (* index into the page *)
Pageindex;
inputpage: (* new location for a page of input =)
Pageptr;

Loader.mod MuLTIBATCH

BEGIN

(* load input, or transiate and load code *)
IF NOT code THEN
(* page is input data *)

inputpage := Pageptr(address);

(* transfer each character and check for end of input *}
FOR index := 0 TO BYTESPERPAGE - 1 DO
inputpageT[index} = pageT[index];
IF inputpage T[index] = ENDofINPUT THEN
code := TRUE; :
END:; (* IF inputpage *)
END; (* FOR *)

INC(address, PAGESIZE);
ELSE
(* page is code *)

index :=0;

(* process each character on the page *)
LOOP

(* process all characters in a ‘‘word’’ (delimited by white space) *)
WHILE (page Tlindex] # BLANK) & (pageT[index] # NEWLINE) DO
IF (pageT[index] = ENDofJOB) THEN

(* move address to start of next page, unless it is already at the start of a page *)
INC(address, PAGESIZE - 1 - (address - 1) MOD PAGESIZE);

code := FALSE;
EXIT; (* LOOP *)

ELSE
currentvalue ;= ORD(pageT[index]) - ORD(’0’) + currentvalue * 10B;
INC(index);
IF index = PAGESIZE THEN

EXIT; (* LOOP #)

END; (* IF index *)

END; (* IF page *)

END; (* WHILE #)

Loader.mod 2 MurTiBATCH

addressT := WORD(currentvalue);
currentvalue := 0;
INC(address);
INC(index);
IF index = PAGESIZE THEN
EXIT; (* LOOP =)
END; (* IF index *)
END; (* LOOP %)
END; (* IF code *)
END Load,;

BEGIN (* module initialization *)
code ;= TRUE; ‘
currentvalue :=0;

END Loader.

Loader.mod 3

MULTIBATCH

DEFINITION MODULE LocalSystem;

(*=!==i=************************#***)

(% *)
(¥ FUNCTION: This is a pseudo-module containing descriptions of machine *)
(* dependent features. Because the objects imported from *)
(* LocalSystem obey special rules and are implemented directly *)
(* in M-Code, the module must be known to the linker or compiler, *)
(® " and a definition module is necessary merely for documentation *)
(* and to allow importing modules to compile properly. Modules *)
(* making direct use of variables or procedures exported from *)
(* LocalSystem are considered low-level, system-dependent modules, *)
{* and are therefore non-portable. *)
(x | *)
(* AUTHOR: Rick Fisher ' *)
(* *®)
(Fsdd R oo R R kR R kR ok kR oo e R kR)
FROM SYSTEM IMPORT
(* Types %)
ADDRESS, WORD;
EXPORT QUALIFIED

(* Constants *)

BADINSTRUCTION, BOUNDSVIOLATION, CARDREADER, CHECKSCHEDULE,
CLOCK, DISK, Halt, HIGHMCODEINSTRUCTION, INITTALIZE,

LINEPRINTER, LOWINTERRUPT, MODEVIOLATION, OUTofRANGE,
SHOULDERTAP, STACKOVERFLOW, SVC, TRAP, UNDEFINEDINSTRUCTION,
VALUERANGE, WORDSINMEMORY,

(* Variables *)
bootcontext, inputbuffer, interruptvector, OScontext, outputbuffer,

(* Types *)
Context, Dataframeptr, Segmenttableptr,

(* Procedures *)
ContextSwitch, DiskRead, DiskWrite, Read, Write, Trap;

CONST
HIGHMCODEINSTRUCTION = 377B;
MAXMODULES = 98; (* number of words in initial segment)
WORDSINMEMORY = 40000B;

LocalSystem.def MuLTIBATCH

(* Interrupt Codes %)

TRAP = T
CARDREADER = §
LINEPRINTER = 9
DISK = 10;
CLOCK = 11;
LOWINTERRUPT = TRAP;
(% Trap Codes *)
STACKOVERFLOW = 3
VALUERANGE = 4
BOUNDSVIOLATION = 7
MODEVIOLATION = 8§
UNDEFINEDINSTRUCTION = 9;
Halt = 10;
BADINSTRUCTION = 12;
CHECKSCHEDULE = 13;
INITIALIZE = 16;
OUTofRANGE = 17
SHOULDERTAP = 18;
svC = 19;
TYPE
Dataframeptr = POINTER TO Dataframe;
Dataframe = RECORD
codeframe: - (* code base address *)
' ADDRESS; ’
initializationflag: (% indicates if module is initialized %)
INTEGER;
stringpointer; (* address of the string table %)
ADDRESS;
globals: (* a variable-sized list of words %)
ARRAY [1..1] OF WORD;
END;,
Segmenttableptr = POINTER TO Segmenttable;
Segmenttable = ARRAY [0.. MAXMODULES] OF ADDRESS;
Context = RECORD
dataframe: (* data base address *)
Dataframeptr;
currentactivation: (* base address of current activation
record ¥)
ADDRESS;
PC: (* program counter *)
ADDRESS;
interruptmask; (* process interrupt mask *)
BITSET;
stacktop: (* pointer to top of stack *)
ADDRESS;

LocalSystem.def 2 MuLTIBATCH

stacklimit: (* stack limit address *)

VAR

ADDRESS; .
trap: (* trap responsible for an interrupt *)
CARDINAL;
errortrapmask: {* not used in current machine *)
BITSET;
segmenttable: (* segment table address #)
Segmenttableptr; .
upperbound: (* high address available to process *)
ADDRESS;
END;
Vectoredinterrupt = RECORD
formercontext: (* pointer to interrupted context +)
ADDRESS;
interrupthandler: (* interrupt routine *)
PROC;
END;
(* predefined locations *)
bootcontext[4], {* address of boot context *)
OScontext[5]: (* address of operating system context *)
ADDRESS;
inputbuffer[10], (* cardreader’s one-byte register *)
outputbuffer[11]: (* lineprinter’s one-byte register *)
CHAR; : .
interruptvector[16]: (* set of interrupt vectors *)

ARRAY [TRAP.. CLOCK] OF Vectoredinterrupt;

PROCEDURE ContextSwitch(context: ADDRESS);

(*
(*
(*

Return to a previously stored context. *)
*)
PARAMETERS: context—a pointer to the previously stored context. *)

PROCEDURE DiskRead(disksector: CARDINAL,; memoryaddress: ADDRESS);

(*
(*
{*
(*
C(x
.(*
(*
(%

Start the disk and return. The disk will run concurrently with the , *)

CPU and transfer the sector starting at the given address to the given *)

memory location. When finished, the disk will cause an interrupt. ®)
&

)

PARAMETERS: diskaddress—the sector of the disk from which data *)

is read. *)

memoryaddress—the starting address of memory into %)

which data is written. %)

LocalSystem.def 3 ‘ MuLTiBaTCH

PROCEDURE DiskWrite(memoryaddress: ADDRESS; diskaddress: CARDINAL);

(* Start the disk and return. The disk will run concurrently with the *)
{* CPU and transfer the memory block starting at the given address to *)
{* the given disk sector. When finished, the disk will cause an interrupt. #)
(* %)
(* PARAMETERS: memoryaddress—the starting address of memory *)
(% Jrom which data is read. *)
(* : diskaddress—the sector of the disk to which data *)
(% . is written. *)
PROCEDURE Read;

(* Start the card reader and return. The card reader will run concurrently *)
(* with the CPU and deposit the next byte read into the reserved memory *)
(* location *‘inputbuffer’’. When finished, the cardreader will cause an *)
{* interrupt. %}

PROCEDURE Trap(reason; CARDINALY;

(% Store the current context and load the context of the operating system, *)
(* then call the trap handling routine. *)
(* *)
(* PARAMETERS: reason—the cause of the trap. There are three types of *)
(» traps:)
(* Machine-raised error traps: *)
(* BOUNDSVIOLATION: User attempted to access memory _ *)
(* location outside the address in %]
(* the bounds registers. *)
(* MODEVIOLATION: User attempted to perform super- *)
(* visor instruction. *)
(* OUTofRANGE: Inaccessible memory location. *)
(* STACKOVERFLOW: No room on stack for activation *)
(* records or dynamic variables. #)
{* VALUERANGE: Case index, FOR loop index, or *)
(* array index out of range. *)
(* *)
(* Operating system-raised error traps: *)
(* BADINSTRUCTION: Illegal characters in instruction. *)
(* UNDEFINEDINSTRUCTION: No such M-Code instruction *)
(% defined. * }
(*)
(* Other traps: *)
(* CHECKSCHEDULE: Time to see if any scheduled events *)
(* should be executed. *)
{* Halt: User’s program is self-aborting. *)
{* INITIALIZE: Values must be set in OS context. *)
(* SHOULDERTAP: Time to see if any jobs can be *)
(* brought into the system and *}
(* made into processes. *)
{* SVC: Supervisor call. *)

LocalSystem.def 4 MUuLTIBATCH

PROCEDURE Write;

(* Start the line printer and return. The line printer will run concurrently *)

(* with the CPU and print the byte currently in the reserved memory *)

(* location “‘outputbuffer’’. When finished, the line printer will cause an *}

(* interrupt. *)
END LocalSystem.

LocalSystem.def 5 MuLTIBATCH

IMPLEMENTATION MODULE LocalSystem;

(***&***************)

{*
(*
(*
(*
(*
(*
(*

*)
POLICY: None. Atpresent this module is known to the linker, not the *)
compiler, so definition and implementation modules must both *)
exist for the purposes of compilation. *)
+)
AUTHOR: Rick Fisher ' *)
*)
(**#**************************}
FROM SYSTEM IMPORT
(* Types *)
ADDRESS;
PROCEDURE ContextSwitch(to: ADDRESS):
BEGIN
{(* CNTX = 246 #)
END ContextSwitch;

PROCEDURE DiskRead(disksector: CARDINAL; memoryaddress: ADDRESS);
BEGIN

(* DSKR = 242 *)
END DiskRead;

PROCEDURE DiskWrite(memoryaddress: ADDRESS; diskaddress: CARDINAL);
BEGIN

(* DSKW = 243 #)
END DiskWrite;

PROCEDURE Read;
BEGIN

(* READ = 240 *)
END Read;

PROCEDURE Trap(reason: CARDINAL);
BEGIN

(¥ TRAP = 304 *)
END Trap;

PROCEDURE Write;
BEGIN

(* WRITE = 241 *)
END Write;

BEGIN
END LocalSystem.

LocalSystem.mod MuLTiBATCH

DEFINITION MODULE LowLevelScheduler;

(***)

(+)
(* FUNCTION: The low level scheduler handles the details of suspension and *)
(* termination of processes, and serves as a scheduler for an *)
(* individual processor. The ready processes are kept in a priority *)
(* queue, and given access to the CPU in turn. *)
(* : *)
(* AUTHOR: Rick Fisher ®}
(* *)

(*************************************#*************************************)

FROM YVirmalMachine IMPORT

(* Types *)
ContextlD;

FROM ProcessManager IMPORT

(* Types *)
ProcessID;

EXPORT QUALIFIED
(* Procedures *)
AddToReadyQueue, Block, CurrentContext, CurrentProcess, CPULoad, Initl.LSched,
Sleep, Terminate, TimeQut;

PROCEDURE AddToReadyQueue(process: ProcessID);

{* Add the stated process to the ready queue. *)
(* : *)
(* PARAMETERS: process—the process to be added to the ready queue. *)
PROCEDURE Block;

(* Block the current process and choose a new process for running. *)

PROCEDURE CurrentContext(): ContextID;
(* RETURNS the context ID of the current process. *)

PROCEDURE CurrentProcess(): ProcessID;
(* RETURNS the process ID of the current process. *)

PROCEDURE CPULoad(): CARDINAL,;
(* RETURNS the number of entries in the ready queue. *)

LowLevelScheduler.def MuULTIBATCH

PROCEDURE InitLILSched;

(* Order-dependent module initialization. This procedure consists *)
{(* of initialization statements which should not be executed until *)
(* after the the module ProcessManager has been initialized. *)

PROCEDURE Sleep(time: CARDINAL);

(* Put the current process to sleep for a specified length of time. #)-
(* *)
{* PARAMETERS: time—the number of ticks process should sleep. #*)

PROCEDURE Terminate(VAR process: ProcessID);
(* Terminate a process. Should only be called by MediumScheduler.Terminate. %) -

(* *)

(* PARAMETERS: process—the process being terminated. *)

PROCEDURE TimeOut;

(% Called as a scheduled event, this preempts the current process and *)

{* chooses a new process for running. *)
END LowLevelScheduler.

LowL_evelScheduler.def 2 MuLTIBATCH

IMPLEMENTATION MODULE LowLevelScheduler;

(***) :

(* *}
(* POLICY: The low level scheduler makes no decisions regarding the length *)
(* of a quantum, or whether priorities should be assigned to *)
(* procedures. If priorities are assigned, however, all processes *)
(* of the highest priority will be completely serviced round-robin *)
(* before any other processes are given the CPU; and a new process ®)
(* of higher priority than the current process will preempt the *)
(* current process. . %)
(x | *)
(* AUTHOR: Rick Fisher)
(+ | *)

(***)

FROM VirtualMachine IMPORT
(* Types *)
ContextID,

(* Procedures *)
SwitchContext;

FROM ProcessManager IMPORT
(* Types *)
Actiontype, Priorityqueue, Prioritytype, ProcessID, Statustype,

{(* Procedures *)
ChangeStatus, Context, Empty, Equal, Insert, InitPriorityQueue, Next, NullProcess,
Peek, Priority, Remove, Schedule, Status, UnSchedule;

VAR
currentprocess: {(* the current process ¥)
ProcessID;
readylist: (* queue of highest priority processes *)
Priorityqueue;
readylistsize: (* number of entries in the readylist, including the current process *)
CARDINAL; '

(* Add the stated process to the ready queue. *)
PROCEDURE AddToReadyQueue(process: ProcessID);

YAR

next: (* next process in readylist *)
ProcessID;

LowLevelScheduler.mod MuLTIBATCH

BEGIN
ChangeStatus(process, READY);
IF Priority(process) > Priority{currentprocess) THEN

(* preempt the running process %)
Preempt{PENDING);

{* ensure no rescheduled processes are returned to the readylist *)
CUrtentprocess ;= Process;

(* reschedule all other ready processes *) .

WHILE readylistsize > 0 DO
next := Next(readylist);
ChangeStatus(next, PENDING);
Schedule(0, RESCHEDULE, next);
DEC(readylistsize);

END; (* WHILE *)

Insert(process, readylist);
INC(readylistsize);
Dispatch;

ELSIF Priority(process) = Priority(currentprocess) THEN
Insert(process, readylist);
INC{readylistsize);
END; (* IF %)
END AddToReadyQueue;

(* Block the current process. *)
PROCEDURE Block;

BEGIN
Preempt(BLOCKED);
Dispatch;

END Block;

(* Return the context ID of the current process. *)
PROCEDURE CurrentContext(): ContextID;
BEGIN

RETURN(Context{currentprocess));
END CurrentContext;

LowLevelSchedunler.mod ' 2 MuLTIBATCH

(* Return the process ID of the current process. *)
PROCEDURE CurrentProcess(): ProcessID;

BEGIN
RETURN(currentprocess);
END CurrentProcess:

(* Return the number of entries in the queue. *)
PROCEDURE CPULoad(): CARDINAL,;
BEGIN

RETURN(readylistsize);
END CPULoad;

(* Select the next process to control the CPU. *)

PROCEDURE Dispatch;
VAR
currentpriority: (* priority of current process *)
Prioritytype;
temp: (* temporary variable *)
ProcessiDy,
BEGIN

(* find the first ready process *)

currentprocess ‘= Next(readylist);

WHILE (readylistsize > 0) & (Status(currentprocess) # READY) DO
DEC(readylistsize);
currentprocess ;= Next(readylist);

END; (* WHILE *)

ChangeStatus(currentprocess, CURRENT);
SwitchContext{ CurrentContext());
END Dispatch;

(¥ Module initialization. *)
PROCEDURE InitLLSched;
BEGIN

InitPriorityQueue(readylist);
END InitLLSched;

LowLevelScheduler.mod 3 MuLTIBATCH

PROCEDURE Preempt(newstatus: Statustype);

(* Preempt the current process. %)
(¥ *)
(* PARAMETERS: newstatus—the status the process should have after #)
(* being preempted. ' %)
BEGIN

IF Equal(NullProcess(), currentprocess) THEN
ChangeStatus(currentprocess, READY);
ELSE
ChangeStatus(currentprocess, newstatus);
CASE newstatus OF
BLOCKED, PENDING, SLEEFING:
DEC(readylistsize);
Schedule(0, RESCHEDULE, currentprocess);
| READY:
Insert(currentprocess, readylist);
ELSE END; (* CASE *)
END; (* IF *)
END Preempt;

(* Put the current process to sleep.. *)
PROCEDURE Sleep(time: CARDINAL);

BEGIN .
Preempt(SLEEPING?;
Schedule{time, WAKEUP, currentprocess);
Dispatch;

END Sleep;

(* Terminate a process. *)
PROCEDURE Terminate(VAR process: ProcessID);

BEGIN

UnSchedule(process);

IF Status(process) = READY THEN
Remove(process, readylist);
DEC(readylistsize);

ELSIF Equal(process, currentprocess) THEN
DEC(readylistsize);

Dispatch;
END; (% IF *)
ChangeStatus(process, TERMINATED),
END Terminate;

LowLevelScheduler.mod 4 MuLTIBATCH

(* Preempt the current process and choose a new process to run. #*)
PROCEDURE TimeOut;

BEGIN
Preempt{READY),
Dispatch;

END TimeOQut;

BEGIN (* module initialization *)

currentprocess := NullProcess();
readylistsize := 0;

(* see also procedure InitLLSched %)

END LowLevelScheduler.

LowLevelScheduler.mod 5 MULTIBATCH

DEFINITION MODULE MediumScheduler;

e e L eIy

(*®
(*
(*
{*
(*
(*
(*

FUNCTION: The medium level scheduler is responsible for passing processes

that are ready to run to the low level scheduler, and in deciding
whether the remaining processes should be memory resident.

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)
*)
*)

(***)

(* Find the lengths of the lists of eligible and ineligible processes. *)
(* A process may be considered eligible if there is nothing intrinsic *)
(* to it which keeps it from running—for example, suspended processes, *)
{* if they are memory resident, would be considered eligible, whereas *}
(* blocked processes are ineligible regardless of whether they are in *)
(* memory or not. No process is eligible unless it is memory resident. *}
(* *
(* PARAMETERS: eligiblesize~the number of eligible processes. *)
{* ineligiblesize—the number of ineligible processes. ®)
PROCEDURE InitMedSched;
{* Order-dependent module initialization. This procedure consists of *}
(* initialization statements which should not be executed until after the *)
(* initialization for the main module has begun. *)
PROCEDURE Reschedule(process: ProcessID);
(* Reschedule a process because of a change of status (status can change *)
{* if a process becomes blocked or unblocked on an 10 request, is suspended *)
(* or unsuspended, goes to sleep or wakes up, or uses its entire quantum *)
(* in the CPU). *)
(* *)
(* PARAMETERS: process—the ID of the process to be rescheduled. *)
MediumScheduler.def MULTIBATCH

FROM ProcessManager IMPORT

(* Types *)
ProcessID;

EXPORT QUALIFIED

{* Procedures *)
GetListE engths,InitMedSched, Reschedule, Schedule, Terminate;

PROCEDURE GetListLengths(VAR eligiblesize, ineligiblesize: CARDINAL);

PROCEDURE Schedule(process: ProcessID);

(* Schedule a new process. *)
(* ' *)
(* PARAMETERS: process—the ID of the process to be scheduled. *)

PROCEDURE Terminate(process: ProcessID);

{* Terminate a process, removing it from all lists, etc. Should only be ®)

(* called by HighlevelScheduler. Terminate. %}

(*)

(* PARAMETERS: process—the process being terminated. *)
END MediumScheduler.

MediumScheduler.def 2 MuLTiIBATCH

IMPLEMENTATION MODULE MediumScheduler;

(***)

(* *)
(* POLICY: Swap out processes which are sleeping; swap in processes which *)
(* are ready to run, when memory space is available. Pass the eligible *)
(% processes (i.e., those which could run if current policy allowed) *)
(* to the low level scheduler. Processes are allowed to run if their %)
f* priority is as high as that of the CURRENT process. *)
(* *)
(* AUTHOR: Rick Fisher *)
(* *)

'(**************#**)

FROM SYSTEM IMPORT
(* Types *)
ADDRESS;

FROM MemoryManager IMPORT
(* Types *)
MemoryblockID;

FROM ProcessManager IMPORT

(* Types *)
Priorityqueue, ProcessID, Statustype,

(* Procedures *)

ChangeStatus, ContainedInList, Empty, Equal, InitPriorityQueue, Insert,
Next, Peek, Priority, Remove, Resident, ListSize, NullProcess, Status,
UpdateProcesslnfo;

IMPORT LowlLevelScheduler;
FROM LowLevelScheduler IMPORT
(* Procedures *)
AddToReadyQueue, CurrentProcess (*, Terminate *);

FROM Swapper IMPORT
(* Procedures *)
Swapln, SwapQOut;

VAR
eligiblelist, {(* processes eligible for running *)
ineligiblelist, (* processes ineligible for running *)
swapinlist: (* processes waiting to be swapped in *)
Priorityqueue;

MedinmScheduler.mod

MuLTIBATCH

PROCEDURE AllowedToRun(process: ProcessID): BOOLEAN,;

(* Determine if a given process may be added to the run queue. Current *)
(* policy allows a process to run if its priority is at least as great as that *)
(* of the current process. %)
(* ' *)
(* PARAMETERS: process—the process whose permission to run is being *)
(* tested. *)
BEGIN ;

RETURN Priority(process) >= Priority(CurrentProcess());
END AllowedToRun;

PROCEDURE CheckEligibleList;
(* Add to run queue all resident processes which policy allows to be added. *)

BEGIN
WHILE AllowedToRun(Peek(eligiblelist)) DO
AddToReadyQueue(Next{eligiblelist));
END; (* WHILE *)
END CheckEligibleList;

PROCEDURE CheckSwaplnList;

{* Swap in as many processes as possible. This procedure adheres strictly %)
(* to the order of processes in the swapin list. For example, if alarge process *)
(' which cannot be swapped in due to size constraints is followed by several *)
(#* smaller processes which could, then no processes will be swapped in at)
{* that time. *)
VAR
dummy: (* receives an unused function-return value *)
ProcessID;
BEGIN

WHILE NOT Empty(swapinlist) & SwapIn(Peek(swapinlist)) DO
dummy := Next(swapinlist);
END; (x WHILE *)
END CheckSwaplnList;

(* Find the lengths of the eligible and ineligible lists. %)
PROCEDURE GetListLengths{ VAR eligiblesize, ineligiblesize: CARDINAL);

BEGIN :

eligiblesize := ListSize(eligiblelist);

ineligiblesize ;= ListSize(ineligiblelist) + ListSize(swapinlist);
END GetListLengths;

MediumScheduler.mod 2 MurTiBatcu

{(* Module initiglization. *)
PROCEDURE InitMedSched;

BEGIN
InitPriorityQueue(eligiblelist);
InitPriorityQueue(ineligiblelist);
InifPriorityQueue(swapinlist);

END InitMedSched;

(* Reschedule aProcess, according to the process’s new status. *)
PROCEDURE Reschedule(process: ProcessID);

BEGIN
CASE Status(process) OF
BLOCKED:
Insert(process, ineligiblelist);
| PENDING:
IF ContainedInList(process, ineligiblelist) THEN
Remove(process, ineligiblelist);
IF Resident(process) THEN
Insert(process, eligiblelist);
ELSE
Insert(process, swapinlist);
CheckSwaplnList;
END; (% IF Resident *)
ELSIF NOT ContainedInList(process, eligiblelist) THEN
Insert(process, eligiblelist);
END; (* IF Contained *)
| SLEEPING:
SwapQOut(process);
Insent(process, ineligiblelist);
| SUSPENDED:
SwapOut(process);
Remove(process, swapinlist);
IF NOT ContainedInList(process, ineligiblelist) THEN
Insert(process, ineligiblelist);
END; (* IF NOT Contained *)
ELSE END;, (# CASE *)

CheckEligibleList;
END Reschedule;

(* Initial scheduling of a process. *)
PROCEDURE Schedule(process: ProcessID);

BEGIN
ChangeStatus(process, PENDING);
Reschedule(process);

END Schedule;

MediumScheduler.mod 3 MuLTiBAaTCH

{* Remove process from lists. *)
PROCEDURE Terminate(process: ProcessID);

BEGIN
Remove(process, swapinlist);
Remove(process, ineligiblelist);
Remove(process, eligiblelist);
LowLevelScheduler. Terminate(process);

END Terminate;

BEGIN (* module initialization *)
(* see procedire InithedSched *)

END MediumScheduler.

MediumScheduler.mod 4

MuLTIBATCH

DEFINITION MODULE MemoryManager;

(***)

(* *)
(# FUNCTION: The memory manager module contains the data structures and *)
(* procedures that allow for the correct management of main *)
(* memory blocks. This management encompasses allocation, de- *)
(* allocation, and keeping up-to-date informaiion on the size and ®)
(* status of any particular block. %)
(*)
(* AUTHOR: Rick Fisher #)
(* *)

(***)

FROM SYSTEM IMPORT
(* Constants *)
BYTESPERWORD,

{* Types %)
ADDRESS:

FROM VirtualMachine IMPORT
(* Constants *)
BYTESPERPAGE;

EXPORT QUALIFIED
(¥ Constants *)
PAGESIZE,

(* Types *)
MemoryblockID, Memoryusage, Pageindex, Page, Pageptr,

(* Procedures *)
Allocate, BlockID, BlockSize, Deallocate, InitMemory, StartingAddress;

CONST
PAGESIZE = BYTESPERPAGE DIV BYTESPERWORD;
TYPE
MemoryblockID; (* pointer to a memory block record *)
Memoryusage = RECORD
size: (¥ Maximum amount of space, in words *)
CARDINAL;
free: (* Percentfree #)
REAL;
END;
Pageindex = [0..BYTESPERPAGE - 1];
Page = ARRAY Pageindex OF CHAR;
Pageptr = POINTER TO Page;

MentoryManager.def | MurTiBATCH

PROCEDURE Allocate(size; CARDINAL): MemoryblockID;

(*
(*
(*
(*
(*
(*

Allocate a memory block whose size is the smallest PAGESIZE multi-
ple equal to or greater than the requested size inwords. Return a
memory block ID, or MemoryblockID(NIL) if unsuccessful.

PARAMETERS: size—the number of words of memory to be allocated.
RETURNS the ID of the allocated memory block.

PROCEDURE BlockID(address: ADDRESS): MemoryblockID;

(*
(*
(*
(*
(*
(*
(*

Find the memory block containing the specified address. If the address
is in a free memory block, MemoryblockID(NIL) is returned.

PARAMETERS: address—the location being searched for.

RETURNS the memory block ID of the memory block containing the
given address, or MemoryblockID(NIL) if the address is in a free
block.

PROCEDURE BlockSize(memoryblock: Memorybiock[D): CARDINAL;

(*
(*
(*
(*
(*

Find the size in words of a given memory block.

PARAMETERS: memoryblock-the id of the memory block whose size
is desired.
RETURNS the size in words of the memory block.

PROCEDURE Deallocate(VAR memoryblock: MemoryblockID);

(* Free the specified memory block for reuse.

(*

(* PARAMETERS: memoryblock—the pointer to the memoryblock being
(* Jreed. The value of memoryblock on returning

(* from this procedure will be MemoryblockID(NIL).
PROCEDURE InitMemory; _

{* Order-dependent module initialization. This procedure consists of

(* initialization statements which should not be executed until after the

(* initialization for the main module has begun.

PROCEDURE StartingAddress(memoryblock: MemoryblockID): ADDRESS;

(* Get the starting address of a memory block.
(* :
(* PARAMETERS: memoryblock—the ID of the memory block on
(* which information is desired.
(* RETURNS the starting address of the memory block, or NIL if there
(* is no such block.

END MemoryManager,

*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)

*)
*)
*)
*)
*)

*)
*)
*)

*)
*)
*)
*)
*)
*)

MemoryManager.def 2 MuLTIBATCH

IMPLEMENTATION MODULE MemoryManager;

(***)

(* %)
(¥ POLICY: Allocate blocks using First Fit. *)
(* *)
(* AUTHOR: Rick Fisher *)
(*

*)‘

(**********#*****************#**)

FROM SYSTEM IMPORT
(* Types ¥)
ADDRESS,
(* Procedures *)
SIZE;
FROM VirtualMachine IMPORT
(* Constants %)
MEMORYSIZE;
FROM STORAGE IMPORT
(* Procedures *)
ALLOCATE, DEALLOCATE;
CONST
HIGHPAGE = MEMORYSIZE DIV PAGESIZE - 1,
TYPE
PageAddress = [0.. HIGHPAGE];
MemoryblockID = POINTER TO Memoryblock;
Memoryblock = RECORD
lowerbound, (* first page in block *)
upperbound: (* last page in block *)
PageAddress;
next; {* next block in list *)
_ MemoryblockID;
END;
VAR
freelist, {(* list of free memory blocks *)
usedlist: (* list of used memory blocks *)
MemoryblockID;

MemoryManager.mod MuLTiBaTCH

(¥ Allocate a memory block. *)
PROCEDURE Allocate(size: CARDINALY): MemoryblockID;

VAR
current, (* pointer to current position in a list *)
newblock, {* pointer to newly created memory block *)
previous: (* pointer to previous position in a list *)
MemoryblockID;
BEGIN

(* find a suitable memory block *).

current := freelist;

previous ;= freelist;

WHILE (current # NIL) & (currentT.upperbound - currentT.lowerbound + 1 < size) DO
previous := current;
current = cun‘entT.next;

END; (* WHILE *}

IF (current = NIL) OR (size < 0) THEN
RETURN NIL;
ELSE

(* create a new block *)
ALLOCATE(newblock, SIZE(newblockT));
WITH newblockT DO
lowerbound := current T lowerbound;
upperbound := current T.lowerbound + size - 1;
END; (* WITH *)

(* adjust free list *)
IF currentT upperbound = newblock T .upperbound THEN
previous | .next := current T.next;
ELSE
current T lowerbound := currentT lowerbound + size;
END; (* [F +)

(* place new block in used list *)

current = usedlist;

previous := usedlist;

WHILE (current # NIL) & (currentT.Jowerbound < newblock T.upperbound) DO
previous := current;
current := currentT.next;

END; (* WHILE *)

previous T.next := newblock;

newblockT .next := current;

RETURN newblock;

END; (* IF *)
END Allocate;

MemoryManager.mod 2 MuLTiBATCH

(¥ Find the size of a memory block. *)
PROCEDURE BlockSize(memoryblock: MemoryblockID): CARDINAL;

BEGIN
IF memoryblock # NIL. THEN
RETURN (memoryblock T.upperbound - memoryblockT.lowerbound + 1) + PAGESIZE;
ELSE
RETURNO0;
END;
END BlockSize;

(* Find the memory block containing the specified address. *)
PROCEDURE BlockID(address: ADDRESS): MemoryblockID;

VAR
page: (* page in which address lies *)
PageAddress;
current: (* current position in list *)
MemoryblocklD;

BEGIN
page := address DIV PAGESIZE;

(* search for block *)

current := usedlist; '

WHILE (current # NIL) & (currentT.upperbound < page) DO
current ;= current T.next;

END; (» WHILE *)

IF (current = NIL) OR (current T.lowerbound > page) THEN
RETURN NIL; '
ELSE
RETURN current;
END; (* IF *)
END BlockID;

(* Deallocate a memory block *)
PROCEDURE Deallocate(VAR memoryblock: MemoryblockIDY);

VAR
current, (* pointer to current position in a list *)
previous: (* pointer to previous position in a list *)
MemoryblockID;
BEGIN

current := usedlist;
previous := usedlist;

MemoryManager.mod 3 MuLTIBATCH

(* search for the memory block *)

WHILE (current # NIL) & (current # memoryblock) DO
previous := current;
current := current T, next;

END; (* WHILE *)

IF current = memoryblock THEN

(* remove block from used list %)
previous T.next := currentT.next;

(* find position in free list %)

current := freelist;

previous := freelist;

WHILE (current # NIL) & (currentT.lowerbound < memoryblock T.upperbound) DO
previous := current;
current := currentT.next;

END; (* WHILE *)

{* adjust free list »)

IF previous = NIL. THEN
memoryblockT.next := NIL;
freelist := memoryblock;

ELSE

(* coalesce with previous if possible, else insert *)
IF previousT.upperbound + 1 = memoryblockT.lowerbound THEN
previousT.upperbound := memoryblock T .upperbound;
ELSE
memoryblockT.next = cutrent;
previous T.next := memoryblock;
previous := previous T.next;
END; (* IF previousT.upperbound *)

(* coalesce with current if possible *)
IF (current # NIL) & (previous T.upperbound + 1 = currentT .lowerbound) THEN
previous T.upperbound := current T.upperbound;
previous T.next := currentT.next;
DEALLOCATE(current, SIZE(currentT));
END; (* IF current # NIL #)
END; (* IF previous = NIL *)

memoryblock = NIL;

END; (* IF current # NIL *)
END Deallocate;

MemoryManager.mod ‘ 4 MurtiBaTecH

(* Retrieve information on the status of free memory space. %)
PROCEDURE GetMemoryInfo(VAR memoryInfo: Memoryusage);

VAR
current: (* pointer to current position in list *)
MemoryblockID;
count: (* number of memory words free *)
CARDINAL;

BEGIN
memorylnfo.size := MEMORYSIZE;

count :=0;
current := freelist;
WHILE current # NIL DO
INC(count, currentT.upperbound - currentT lowerbound +1);
END; (* WHILE *)
memoryInfo.free := FLOAT(count * PAGESIZE * 100)/FLOAT(MEMORY SIZE);
END GetMemoryInfo;

(¥ Module initialization. *)
PROCEDURE InitMemory;

BEGIN

(* create lists *)
ALLOCATE(freelist, SIZE(freelistT));
WITH freelistT DO
lowerbound ;= 0;
upperbound := HIGHPAGE;
next := NIL;
END; (+ WITH *)
usedlist ;= NIL;
END InitMemory;

(* Return the starting address of a memory block. *)
PROCEDURE StartingAddress(memoryblock: MemoryblockID): ADDRESS;

BEGIN
IF memoryblock # NIL THEN
RETURN memoryblockT.lowerbound * PAGESIZE;
ELSE
RETURNNILL;
END; (% IF)
END Starting Address;

MemoryManager.mod 5 MuLTiBATCH

BEGIN (* module initialization *)
(* see procedure InitMemory *)

END MemoryManager.

MemoryManager.mod 6 MuLTiBaTcH

MODULE MultiBatch;

(**)

{* #)
(* FUNCTION: This is the main module, responsible for initialization of the *)
(* system. It also includes the procedure which is the basis for *)
{* the “‘Null Process’'—what the CPU runs when no other ®)
{* - processes are available. *)
(+)
(* AUTHOR: Rick Fisher *)
(* *)
(e oottt oo ok e ot ot o kakesk e ol o s ko ook ok e ok ol sk ol e ok s o ook ol ok)
FROM LocalSystem IMPORT

(¥ Constants *)

TRAP,

(* Variabies *)

bootcontext, interruptvecior, OScontext,

(* Procedures *)
Read:

FROM VirtualMachine IMPORT

(* Types *)
ContextID, SVCcode, OSTraps,

(¥ Procedures *)
HighOSBound, Trap;

FROM MemoryManager IMPORT
{* Types *)
MemoryblockID,

(* Procedures *)
Allocate, InitMemory;

FROM DiskManager IMPORT
(* Procedures *)
InitDisk; -

FROM ProcessManager IMPORT
(* Types *)
ProcessID,

(* Procedures *)
ChangeStatus, InitNullProcess, InitProcManager, NuliProcess;

FROM LowlLevelScheduler IMPORT

(* Procedures *)
InitLLSched;

MultiBatch.mod MuLTIBATCH

FROM MediumScheduler IMPORT
(* Procedures *)
InitMedSched;

FROM HighLevelScheduler IMPORT
(* Procedures *)
InitHL Sched;

IMPORT TrapHandler;
(* not used, but importing it causes all other modules to be initialized *)

{* Occupy the CPU when nothing else is available. *)
PROCEDURE NullProcedure;

BEGIN

LOOP

END; (#* LOOP *)
END NullProcedure;

VAR
OSmemoryblock: (* the ID of the memory block containing the operating system *)
MemoryblockID;

BEGIN (* system initialization *)

(* save and adjust the context of the operating system *}
OScontext ;= bootcontext;

{* set the context and register values ¥)
Trap(INITIALIZE);

(* order-dependent initialization of other modules *)
InitMemory;

InitDisk;

InitProcManager;

InitLLSched;

InitMedSched;

InitHT Sched;

(* reserve first memory block for the operating system *)
OSmemoryblock := Allocate(CARDINAL{ HighOSBound()) + 1);

(* set up the null process *)
InitNullProcess(ContextID{interruptvector[TRAP].formercontext), OSmemoryblock);

MultiBatch.mod 2 MuLTIBATCH

(* start card reader *)
Read;

(* begin executing null process *)
NullProcedure;

END MultiBatch. (* should never get here *)

MultiBatch.mod 3 MuLTiBATCH

DEFINITION MODULE OSSTORAGE;

(*******#** ***)

(*
(%
{*
(*
(*
(*
(*
(*

FUNCTION: Increase heap size for a process. It is up to the standard *)
module STORAGE, which exports the ALLOCATE and DEALLQ- *®)
CATE routines, to keep track of what heap locations are in *)
use and which have been freed. *)
. : :] *)
AUTHOR: Jjd, Cambridge University Computer Laboratory - #}
Documented by Rick Fisher *)
(FrEEERE RO R R R R R RO OO Rk R R R Rk Sk sk dolok)
FROM SYSTEM IMPORT
(* Types *)
ADDRESS;
EXPORT QUALIFIED
(% Constants *)
AddressesPerUnit, WordAlign,
(* Procedures *) .
HeapAllocate;
CONST ,
AddressesPerUnit = 1; (* number of addresses per WORD *)

WordAlign = TRUE; (* if TRUE, all objects allocated from the heap must be
word aligned. *)

PROCEDURE HeapAllocate (amount: CARDINAL; VAR base: ADDRESS;
VAR free: CARDINAL): BOOLEAN;

(* This procedure incorporates ALL operating system dependencies *)
(* about heap storage allocation. *)
(* *)
(* PARAMETERS: amount—the number of words of contiguous heap *)
(* storage required. *)
(* base—the current base address of storage already *)
(x . used by the process. Must be NIL on the *)
(* process’s first call to this procedure. *)
(* Addresses greater than base contain areas of *)
(* the heap which have been used by the process. *)
(* free—the number of free words currently below *)
(* *‘base’’, but allotted to the heap. : *)
(* On successful return, *‘base — free”’ will contain the low address of a *®)
{* contiguous block of free storage, and free (>= amount) will comtain its *)
{* Size in storage units. ®)
END OSSTORAGE.

OSSTORAGE.def MuLTIBATCH

IMPLEMENTATION MODULE OSSTORAGE;

(ko b s ol sl o R o o s ok ok e sl sk O o e R s e R o e O SR o s e ko)

(x -)
(# POLICY: The heap grows downward (towards the stack). Each call for more #)
(* storage allocates at least the amount of space requested, if *)
(* available; otherwise it allocates enough so that, coupled with *)
(* - what was already free, the total equals the amount requested—if ®)
(* ' available. Otherwise, it fails. ’ *)
(* *)
(¥ AUTHOR: Rick Fisher *)
(x)
(***)
FROM SYSTEM IMPORT
(* Constants *)
BYTESPERWORD,
(* Types *)
ADDRESS, WORD,
(* Procedures *)
SIZE;
FROM VirtualMachine IMPORT
(* Types *)

OSTraps, SVCcode,

(* Procedures *)
ContextSize, HighOSBound, Trap;

FROM MemoryManager IMPORT
(¥ Constants *)
PAGESIZE;

FROM ProcessManager IMPORT
(* Procedures *)
Equal, NullProcess;

FROM LowlLevelScheduler IMPORT
(* Procedures *)
CurrentProcess;

FROM SVCalls IMPORT
(* Procedures *)
UpperBound;

CONST
MINIMUMINCREMENT = PAGESIZE;

QOSSTORAGE.mod MuLTIBATCH

(* Allocate some heap space. *)
PROCEDURE HeapAllocate (amount: CARDINAL; VAR base: ADDRESS;
YAR free: CARDINAL): BOOLEAN;

BEGIN

IF (base = NIL.) THEN
(* this is the first allocation for the process %)

IF Equal(CurrentProcess(), NullProcess()) THEN

(* process is operating system—leave room for null context *)
base := HighOSBound() - ContextSize();

ELSE

(* process is user process *)

base := UpperBound();
END; (* IF Equal *)
END; (* IF base *)

(* allocate space if possible *)
IF (amount <= MINIMUMINCREMENT) & (AllocateHeap(MIl\IIMUMINCREMENT) y THEN
INC (free, MINIMUMINCREMENT);
ELSIF AllocateHeap(amount) THEN
INC (free, amount);
ELSIF AllocateHeap(amount - free) THEN
free ;= amount;
ELSE
RETURN FALSE;
END;

RETURN TRUE;
END HeapAllocate;

- PROCEDURE AllocateHeap(amount: CARDINAL): BOOLEAN,;

(* Increase the amount of user available memory alloted to the heap. This *)
(* is actually a Supervisor Call whose use is restricted to this module. *)
(* %)
(* PARAMETERS: amount~the size in words of the memory to be allocated. %)
(* RETURNS TRUE if the allocation is successful, FALSE otherwise. 7 *)

VAR

success: (* TRUE if successful *)
BOOLEAN;

BEGIN _

ThreeParmSVC(HEAPALLOCATESVC, amount, success);

RETURN success;
END AllocateHeap;

OSSTORAGE.mod 2 MuULTIBATCR

PROCEDURE ThreeParmSVC(sve: SVCcode; amount: CARDINAL;
VAR success;: BOOLEAN);
(* Fix the parameters to “*AllocateHeap’’ on the stack, and cause a *)
(* trap. *)
BEGIN
- Trap(SVC);
END ThreeParmSVC;

BEGIN
END OSSTORAGE.

OSSTORAGE.mod 3 MULTIBATCH

DEFINITION MODULE ProcessManager;

{***)

(* *)
{#+ FUNCTION: The process manager module contains three categories of functions *)
(* and procedures: 1} to create and remove processes, and update *)
(% information on them; 2) to manage lists of processes, organized %)
(* as priority queues; and 3) to keep track of events which are %)
(* . scheduled for processes. : *)
(* *)
(+ AUTHOR: Rick Fisher : *)
(*)
(****************************#**)
FROM SYSTEM IMPORT
(* Types *)
ADDRESS;
FROM VirtuaiMachine IMPORT
(* Types #)
AllTraps, ContextID;
FROM MemoryManager IMPORT
(* Types *)
MemoryblockID, Pageptr;
FROM DiskManager IMPORT
(* Types *)
DiskblockID;
EXPORT QUALIFIED
(* Types *)
Actiontype, Disklist, Disklistnode, Priorityqueue, Prioritytype, ProcessID, Statustype,
Updatecode,

{(* Procedures *)

ChangeStatus, CheckSchedule, ContainedInList, Context, CreateID, DiskUse, Empty,
Equal, GetNextInput, GetNextOutput, Initialize, InitNuilProcess, InitPriorityQueue,
InitProcManager, Insert, LinkToOutput, ListSize, MemoryLocation, Next, NullProcess,
OutputList, Peek, Permanentl ocation, Priority, ProcessSize, Remove, Resident, Schedule,
Status, StoreNextInput, StoreNextOutput, TrapReason, UnSchedule, UpdateProcessinfo;

(**#*********************)

{* 1. Process Management *)
(**)

CONST
MAXPRIORITY = §;

ProcessManager.def - MuLTiBarcH

TYPE

Disklist = POINTER TO Disklistnode;
Disklistnode = RECORD
diskblockptr: (% address of first disk block used by process *)
DiskblockID;
next: (* next node in list *)
Disklist;
END: '
Proritytype = [0.. MAXPRIORITYT;
ProcessID; :
Statustype = (BLOCKED, CURRENT, INITIALIZING, READY, PENDING,
SLEEPING, SUSPENDED, TERMINATED);
Updatecode = (SWAPIN, SWAPOUT);

PROCEDURE ChangeStatus(process: ProcessID; status: Statustype);

(* Change the status of a process. *)
(* *)
(* PARAMETERS: process—the process whose status is being changed. %)
{* status—the new status of the process. Valid status values *)
(* are: ' *)
(* BLOCKED: Process is awaiting the comple- *)
(* tion of some event. *)
(* CURRENT: Process currently has control of *)
(* the CPU. _ *)
C(® PENDING:’ Process is ready to run, but is ®}
(* temporarily prohibited from *)
(* doing so by current policy. *)
(* READY: Process is ready to run. *)
(* SLEEPING: Process has voluntary suspended *)
{*® itself for a fixed time. #)
(* SUSPENDED: Process has been indefinitely *)
(% suspended by the operating *)
(* system. %)
(* TERMINATED: Process has finished; process *)
(* ID is available for reuse. *)

PROCEDURE Context(process: ProcessID): ContextID;

(* Find the context ID of a process. *)
(* _ *)
(* PARAMETERS: process—the ID of the process whose context is desired. *®)
(* RETURNS the process’s context ID. *)

ProcessManager.def 2 . MULTIBATCH

PROCEDURE CreateID(): ProcessID;

(*
(*
(*
(*
(*
(*
{*
(*
{*

Create a new process ID.

RETURNS the ID of the new process. If no more processes can be
‘created, returns the ID of the null process.

NOTE: This process does NOT create a process or reserve a process
ID. If the process ID returned by this procedure is not initialized (see
Initialize, below), then the same ID could be returned by this procedure
at a later date.

PROCEDURE DiskUse(process: ProcessIP): Disklist; -

{®
(*
(*
(*
(*

Reveal the disk blocks used by a process.

PARAMETERS: process—the process whose disk usage information is
desired.
RETURNS a pointer to the list of disk blocks.

PROCEDURE Equal{process1, process2; ProcessID): BOOLEAN;

(*
(*
(*

Determine whether two process IDs are equal.

PARAMETERS: processl, process2—the IDs of the processes in question.

PROCEDURE GetNextInput(process: ProceésID; YAR pagcﬁddres;s: Pageptr;

(*
(*
(*
(*
(*
(*
(*
(*

VAR byte: CARDINAL);
Find the location in memory of the next byte to be read from the input
for the given process.

PARAMETERS: process—the process whose input is being read.
pageaddress—the address of the memory page in
which the next input item lies.
byte—~the index into the given page at which
Which the next input item lies.

PROCEDURE GetNextOutput(process: ProcessID; VAR pageaddress: Pageptr;

(*
(*
(*
{*
(*
(*
(*
{*
(*
(*

YAR byte: CARDINAL; VAR memoryblock: MemoryblockID);
Find the next byte location in memory to be written with the output for the
given process.

PARAMETERS: process—the process whose output is being read.
pageaddress—the address of the memory page in
which the next output item lies.
byte—the index into the given page at which the
rext output item lies.
memoryblock—the memoryblock on which the page
resides.

*)
*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)

*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

ProcessManager.def 3 MuLTiBaTCH

PROCEDURE Initialize(process: ProcessID; memoryblock: MemoryblockID; input,
stackbase: ADDRESS; stacksize: CARDINAL,; processpriority: Prioritytype;
codestart, codeEnd: Disklist);

(* Attach a process ID to an actual process. - *)
(% *)
(% PARAMETERS: process—the ID of the new process. %)
(* memoryblock—the memory block in which the process . %)
(* is stored. *)
(* input—the starting address of input for the process. %)
(* stackbase—the first address past the end of the input; *)
(* the cailer must ensure that the stack and input *)
(* do not overlap. *)
{* stacksize~the size of the stack, in words. ®)
{* processpriority—the priority of the process. *®)
(* codestart—the list of diskblocks holding the code (the %)
{* first blocks of output for the process, not the *)
(* disk location for the process). *)
(* codeEnd—the last in the list of above code blocks. *)

PROCEDURE InitNullProcess(nullcontext: ContextID; memoryblock: MemoryblockID);

(* Special initialization for the null process. . *)
(* *)
(* PARAMETERS: nullcontext—the duplicate OS context being used for %)
(% : the null process’s context. #)
(* memoryblock—the memoryblock holding the code for the *#)
(* null process {(i.e., for the OS). *)
PROCEDURE InitProcManager;

(* Order-dependent module initialization. This procedure consists of *)
ok inifialization statements which should not be executed until after the)
(* initialization for module MemoryManager. *)

PROCEDURE LinkToOutput(process: ProcessID; diskblock: DiskblockID);

(* Link a diskblock to a process’ s output list. *)
(* +)
(* PARAMETERS: process—the process whose outputlist is to be augmented. *)
(* diskblock—the block to be added. %)

PROCEDURE MemoryLocation(process: ProcessID): MemoryblockID;

(* Find the memory block where the process is stored. *)
(* : *)
(* PARAMETERS: process—the process whose location is desired. %)
(* RETURNS the ID of the correct memory block (NIL if process is not in *)
(* memory). *)

ProcessManager.def 4 MuLTIBATCH

PROCEDURE NullProcess(); ProcessID;
(* RETURNS the process ID for the Null Process.

PROCEDURE OutputList{process: ProcessID): Disklist;

(* Finds the list of diskblocks constituting a process’s output.

(*

(* PARAMETERS: process—the process whose output is desired.
(* RETURNS the list of diskblocks.

PROCEDURE Permanent!..ocatioﬁ(process: ProcessID): DiskblockID;-

(* Find a pointer to the disk block where the process is stored.

(*

(* PARAMETERS: process—the process whose location is desired.

(* RETURNS a pointer to the correct disk block (NIL if process has never
(% been swapped out of memory).

PROCEDURE Priority(process: ProcessID): Prioritytype;

(* Obtain the priority of a given process.

(*

(* PARAMETERS: process—the ID of the process whose priority is desired.
{* RETURNS the priority of the process.

PROCEDURE ProcessSize(process: ProcessID): CARDINAL;

(* Finds the number of words in a process.

(*

(* PARAMETERS: process—the process whose size is desired.
(* RETURNS the number of words taken by the process.

PROCEDURE Resident(process; ProcessID): BOOLEAN;

(* Determine whether a process is resident in main memory.
{* .
(* PARAMETERS: process—the ID of the process in question.

{* RETURNS TRUE if process curently resides in main memory, FALSE
{* otherwise.

PROCEDURE Status(proce.ss: ProcessID): Statustype;

(* Find the status of a process.

{*

(* PARAMETERS: process—the process whose status is desired.
(* RETURNS the status of the process.

*)

*)
*)
*)
*)

*)
*)
*)
*)
*)

*)
*)
*)
*)

*)
*)
*)
*)

*)
*)
*)
*)
*)

*)
*)
*)
*)

ProcessManager.def 5 MuLTIBATCH

PROCEDURE StoreNextInput(process: ProcessID; pageaddress: Pageptr; byte: CARDINAL);

(* Store the location in memory of the next byte to be read from input for ®)
{* the given process. *)
(* *)
{* PARAMETERS: process—the process whose input is being read. %)
(% pageaddress—the address of the memory page in *)
(* which the next input item lies. ®}
(* ' byte~the index into the given page at which *)
(* which the next input item lies. *)

PROCEDURE StoreNextOutput{process: ProcessiD; pageaddress: Pageptr; byte: CARDINAL);

(* Store the next byte location in memory to be written with output from the *)
(% given process. If the parameter “*byte’” equals BYTESPERPAGE, 0 *)
{* will be stored and ‘‘pageaddress’’ advanced to the next page. *)
(* : *)
(* PARAMETERS: process—the process whose output is being read. #)
{* pageaddress—the address of the memory page in *)
(* which the next output item lies. #)
(* byte—the index into the given page at which the *)
{* next output item lies. *)

PROCEDURE TrapReason(process: ProcessID): AllTraps;

(* Return the reason for a trap. %)
(+ Y
(* PARAMETERS: process—the ID of the process which was running . *}
(* when the trap occurred. *)
{* RETURNS the cause of the trap. *)

PROCEDURE UpdateProcessInfo(process: ProcessID; reason: Updatecode;
newlocationptr: ADDRESS);

{* Update the information stored about a process according to the informa- *)
{* tion given. *)
(* ‘ *)
(* PARAMETERS: process—the ID of the process whose information is *)
(* being updated. ' *)
(* reason-may be one of: *)
(* SWAPIN: The process is being swapped in from *)
(* disk. *)
(* SWAPQUT:The process is being swapped out to *)
(* disk. *)
C (e newlocationptr—a pointer to the memory block or disk %)
(* block to which the process is being moved. *)

ProcessManager.def 6 MULTIBATCH

(**)

{* 2. Priority Queue Management *)
(R ok ok R R ok sk RO sk SRR R R R R R O ol)

TYPE
Priorityqueue;

PROCEDURE ContainedInList(process: ProcessID; list: Priorityqueue): BOOLEAN;

(* Determine if a process is in a particular list. ‘ #)
(* - *)
(* PARAMETERS: process—the process being sought. *)
(* ' list—the list in which the process might be. *)

PROCEDURE Empty(list: Priorityqueue): BOOLEAN;

(* Reveal if a given list is empty. *)
(* %)
(* PARAMETERS: list—the list being examined. #)
{* RETURNS TRUE if the list is empty, FALSE otherwise. %)

PROCEDURE InitPriorityQueue(VAR list: Priorityqueue);

(* Mandatory initialization for any variable of type Priorityqueue. *)
(* . %)
(* PARAMETERS: list~the variable being initialized. *)

PROCEDURE Insert(process: ProcessID; VAR list: Priorityqueue);

(* Place the process ID into the correct location in the given list. No action *)
(* is taken if the process is already in the list. *)
(* . *)
(* PARAMETERS: list-the list of process IDs. %)
(* : process—the process ID to be inserted into the list. *)

PROCEDURE ListSize(list: Priorityqueue): CARDINAL;

(* Find the number of elements in a list. #)
{* *)
(* PARAMETERS: list—the list whose size is desired. *)
(* RETURNS the size of the list. *)

PROCEDURE Next(VAR list: Priorityqueue): ProcessID;

(* Remove the next process ID from the given list. If the list is empty, the *)
{* process ID for the null process will be returned. *)
(* ®)
(* PARAMETERS: list—the list of process IDs. *)
(* RETURNS the process ID of the next process in the list. *)

ProcessManager.def 7 MuLTIBATcH

PROCEDURE Peek(list: Priorityqueue): ProcessID;

(* Obtain the next process ID from the given list. If the list is empty, the *)
(% process ID for the null process will be returned. *)
{* The list is not changed by this procedure. : *)
(* *)
(* PARAMETERS: list—the list of process IDs. *)
(* RETURNS the process 1D of the next process in the list. *)

PROCEDURE Remove(process: ProcessID; VAR list: Priorityqueue);

{* Remove the given process ID from the list, if it is there; otherwise, do *)
{* nothing. The process does not have to be next on the list. *)
(% *)
(* PARAMETERS: process—the process to be removed. #)
(* list—the list from which the process is to be removed. *)

(AA R A RO R Rk ol e R sk R R ok ok ol s e kol ek solok)

(* 3. Event Scheduling %)

(**)

TYPE
Actiontype = (NULL, RESCHEDULE, TERMINATE, TIMEDPREEMPT, WAKEUP);

PROCEDURE CheckSchedule(VAR act: Actiontype; VAR pid: ProcessID);

(* Determine if an event should occur, and for which process. (No action is %)
(* actually taken by the Process Manager.) *)
(* *)
(* PARAMETERS: act—the action to be taken. May be one of: %)
{* NULL: No action to be taken at this *)
(* time. *®)
{* RESCHEDULE: Send the process to the)
(* Medium Level Scheduler for %)
(* rescheduling. %)
(* TERMINATE: Terminate the current process. *)
(* TIMEDPREEMPT: Preempt the current process in *)
{* favor of the next waiting *)
(* process. *)
(* WAKEUP: Wake up a sleeping process. *)
(* pid—the process whose event is to be scheduled. *)
(* NOTE: Returns only one set of values at a time, though several events can %)
(* come due at once. ' *)

ProcessManager.def ' 8 MuLTIBATCH

PROCEDURE Schedule(when: CARDINAL,; act: Actiontype; pid: ProcessIDy;

{* Schedule an event.

(*

(* PARAMETERS: when—the number of ticks before the event should

(* occur.

(% act—the action to be taken. May be RESCHEDULE,
(% TERMINATE, TIMEDPREEMPT, or WAKEUP
(* * (see Procedure CheckSchedule for descriptions).
(* NULL should not be scheduled.

{* pid—the process for which the event should occur.

PROCEDURE UnSchedule(process: ProcessID);
{* Remove all events scheduled for a given process.

(*

(* PARAMETERS: process~the process whose event should be unscheduled.

END ProcessManager.

#)
*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)

ProcessManager.def 9 MuLTIBATCH

IMPLEMENTATION MODULE ProcessManager;

(***)

% . *)
(* POLICY: Process control blocks are stored in an array, which holds at *)
{ most MAXPROCESS processes. Doubly linked lists of process)
{* IDs are also stored in arrays with header and tail nodes. *)
{* - The process ID serves as the index into the array. Lists are *)
(* priority queues: setting all priorities equal will result in FIFO *)
(* queues. Scheduled events are stored in a delta list which *)
(* is singly linked, and which is dynamically allocated since %)
(% da process may have more than one scheduled event. The Process *)
(* Manager does not take any action on scheduled events, other ®)
(* than to record that the event is scheduled. : *)
(«)
(x AUTHOR: Rick Fisher *)
(* *)
(***)

FROM SYSTEM IMPORT
(* Constants *)
MAXCARD,

(* Types *)
ADDRESS,

{* Procedures *)
SIZE;

IMPORT VirtualMachine;

FROM VinualMachine IMPORT
(* Constants *)
BYTESPERPAGE,

(* Types *)

AllTraps, ContextID,

(* Procedures *)
ContextBounds, NewContext, (* TrapReason, *) UpdateContext;

FROM MemoryManager IMPORT

(* Constanis *)
PAGESIZE,

(* Types *}
MemoryblockID, Pageindex, Pageptr,

(* Procedures *)
Allocate, StartingAddress;

ProcessManager.mod MurTiBaTcH

FROM DiskManager IMPORT

(* Types *)
DiskblockID;

FROM Clock IMPORT
{* Procedures *)
TickCount;

FROM STORAGE IMPORT
(* Procedures *)
ALLOCATE, DEALLOCATE;

CONST
BUFFERSIZE - 2
HEAD = 0
MAXPROCESS = 25;
TAIL = MAXPROCESS + 1;
TYPE :
Bufferindex = [0 .. BUFFERSIZE - 1];
Circularbuffer = RECORD
buffer: (* the array of pages and memory-
blocks *)
ARRAY Bufferindex OF
RECORD
page: (* pointer to the array of characters *)
Pageptr;
byte: (* the index into “‘page’” *)
Pageindex;
memoryblock: (* ID of the memoryblock containing
“page’” *)
MemoryblockID;
END;
currentpage: (* index into “‘buffer’’ *)
Bufferindex;
END;
ProcessID = [0.. MAXPROCESS];
Eventptr = POINTER TO Event;
Event = RECORD
action: (* RESCHEDULE, TERMINATE,
TIMEDPREEMPT, WAKEUP *)
Actiontype; :
timeleft: (* time between previous event (or present
moment) and action *)
CARDINAL;
process: (% ID of process owning the event %)
ProcessID;
next: (* pointer to next event *)
Eventptr;
END;

ProcessManager.mod 2 : MuLTIBATCH

Listpriority = [-1..MAXPRIORITY + 1};
Listrange [HEAD.. TAIL];
Listelement = RECORD
priority: (* process priority *)
Listpriority;
next, {* next process in list %)
previous: (¥ previous process *)
Listrange;

END:
Locationrecord = RECORD
resident: (* TRUE if process is in memory *)
BOOLEAN;
memory: (* ID of process’s memory block *)
MemoryblockID;
diskblock: {(* ID of process’s disk block *)
DiskblockID;
END:;
Priorityqueue = POINTER TO ARRAY Listrange OF Listelement;
Systemusage = RECORD
quantumsize, (* maximum time process can run before
clock interrupt)
timecredit, (* amount of last quantum unused *)
servicelimit, (% maximum time process can run before
_ being rescheduled *)
cputime: (* time spent in CPU *)
CARDINAL;
END;
Processblock = RECORD
context (* saved registers etc. *)
ContextID;
diskuse: (* list of blocks allocated by the process *)
Disklist;
location: (* information on process’s location %)
Locationrecord;
nextinput: (* address of next input *)
RECORD
page: (* page of next input *)
Pageptr;
byte: (* index into “‘page’’ *)
Pageindex;
END;
output: _ (* the process’s output *)
RECORD
first,
last: (* diskblocks of output *)
Disklist;
current: {* memory buffer for recent output *)
Circularbuffer;
END;

ProcessManager.mod 3 MuLTIBATCH

priority: (* process priority *)

Prioritytype;
status: (* activity status #)
Statustype;
systemtime: (% time statistics on process %)
Systemusage;
END;
VAR
deltalist: (* list of scheduled events *)
Eventptr;
i, (* loop index *)
i (* loop index *)
CARDINAL;
previoustime: (* tick count last time head of delta list was changed *)
CARDINAL;
processtable: (* the array of process blocks *)

ARRAY ProcessID OF Processblock;

(* Change a process’s status. *)
PROCEDURE ChangeStatus(process: ProcessID; status: Statustype);

BEGIN
processtable[process].status := status;
END ChangeStatus;

(* Check the delta list. *)
PROCEDURE CheckSchedule(VAR act: Actiontype; VAR pid: ProcessID);

VAR

currenttime: (* tick count at start of procedure *)
CARDINAL,;

temp: (* used for deallocating old list nodes *)
Eventptr;

timepassed: (* time since head of delta list was changed *)
CARDINAL;

BEGIN

IF deltalist = NIL THEN
(* nothing is scheduled *)

act := NULL,;
pid := NullProcess();

ProcessManager.mod 4 MuLTIBATCH

ELSE
currenttime = TickCount();

(* check for wraparound in the tick counter *)
IF currenttime >= previoustime THEN '
timepassed := currenttime - previoustime;
ELSE
timepassed ;= MAXCARD - previoustime + currenttime + 1;
END; (% IF *) '

WITH deltalistT DO
IF tmeleft > timepassed THEN
(* nothing happens yet *)

act := NULL;
pid := NullProcess();
ELSE

{* get information and dispose of node *)
DEC(timepassed, timeleft);
act ;= action;
pid = process;
temp := deltalist;
deltalist ;= next;
DEALLOCATE(temp, SIZE(tempT));
END:; (* IF timeleft *}
END; (* WITH *)

IF deltalist T timeleft > timepassed THEN
DEC(deltalistT.timeleft, timepassed);

ELSE
deltalistT timeleft := 0;

END; (* IF deltalistT timeleft *)

previoustime := currenttime;

END; (* IF deltalist = NIL *)
END CheckSchedule;

(* Determine if a process is in a particular list. *)
PROCEDURE ContainedInList(process: ProcessID; list: Priorityqueue): BOOLEAN;
BEGIN
RETURN (listT[HEAD].next = Listrange(process)) OR (list T[process).previous # HEAD);
END ContainedInl ist;

(* Return a process’s contextID. *)
PROCEDURE Context(process: ProcessID): ContextID;
BEGIN

RETURN(processtable[process].context);
END Context;

ProcessManager.mod 5 MuLTIBATCH

(* Create a new processID. *)
PROCEDURE CreateID(): ProcessID;

VAR
i: CARDINAL; (* loop index *)

BEGIN

(* find an unused process ID *)

i=1; (* O is the null process—always ready, never unused *)

WHILE (i <= MAXPROCESS) & (processtablefil.status # TERMINATED) DO
INC(i);

END; (* WHILE *)

IF i > MAXPROCESS THEN
RETURN(NullProcess());
ELSE
RETURN();
END; (* IF *)

END CreatelD;

(* Determine a process's disk resource usage. *)
PROCEDURE DiskUse(process: ProcessID): Disklist;

BEGIN
RETURN processtable[process].diskuse;
END DiskUse;

(* Determine if a list is empty. *)
PROCEDURE Empty(list: Priorityqueue): BOOLEAN;

BEGIN
RETURN(ist T[HEAD].next = TAIL);
END Empty;

(* Check if processes are the same. %)
PROCEDURE Equal(process1, process2: ProcessID): BOOLEAN;
BEGIN

RETURN process] = process2;
END Equal;

ProcessManager.mod 6 MuLTIBATCH

(* Get location of next byte of input. *)
PROCEDURE GetNextInput(process: ProcessID; VAR pageaddress: Pageptr;
VAR byte: CARDINAL);

BEGIN _

WITH processtable[process] DO
pageaddress ;= nextinput.page;
byte := nextinput.byte;

END;, (% WITH %)

END GetNextInput;

(* Get the next output location. *)
PROCEDURE GetNextOutput(process: ProcessID; VAR pageaddress: Pageptr;
VAR byte: CARDINAL; VAR memoryblock: MemoryblockiD);

BEGIN
WITH processtable[process].ontput.current DO
pageaddress := buffer[currentpage].page;
byte ;= buffer[currentpage].byte;
END; (*» WITH #)
END GetNextOutput;

(* [nitialize a process block. *)

PROCEDURE Initialize(process: ProcessID; memoryblock: MemoryblockID;
input, stackbase: ADDRESS; stacksize: CARDINAL; processpriority: Prioritytype;
codestart, codeEnd: Disklist);

BEGIN
WITH processtable[process] DO
context ;= NewContext(StartingAddress(memoryblock), stackbase, stacksize);

nextinput. page := input DIV PAGESIZE;
nextinput.byte := 0;

WITH output DO
first := codestart;
last := codeEnd;
WITH current DO
currentpage = 0;
buffer[currentpage].byte := 0;
END; (x WITH current *}
END; (* WITH output *)

priority := processpriority;
lIocation,resident := TRUE;
location.memory := memoryblock;
status ;= INITIALIZING;
END; (* WITH processtable *)
END Initialize;

ProcessManager.mod 7 MULTIBATCH

(* Initialize the null process. *)
PROCEDURE InitNullProcess(nullcontext: ContextID; memoryblock: MemoryblockID);

BEGIN
WITH processtable[NullProcess()] DO
context := nullcontext;
priority :=0;
location.resident := TRUE;
location.memory := memoryblock;
status := CURRENT;
END; (* WITH *)
END InitNuliProcess;

(* Module initialization. *)
PROCEDURE InitProcManager;

BEGIN

(* Initialize processtable *)
FOR i := 1 TO MAXPROCESS DO
WITH processtable[i] DO
status := TERMINATED;
WITH output.current DO
FOR j := 0 TO BUFFERSIZE - 1 DO
WITH buffer{j] DO
memoryblock := Allocate{PAGESIZE);
page := Starting Address(memoryblock);
END; (* WITH buffer *)
END; (* FOR *)
END; (* WITH output *)
END; (% WITH processtable *)
END; (* FOR *)

(* Initialize delta list *)
deltalist := NIL;

END InitProcManager;
(* Initialize a process queue. *)
PROCEDURE InitPriorityQueue(VAR list: Priorityqueue);

VAR
i: CARDINAL; (* loop index *)

BEGIN

(* set up list with header and tail nodes *)
ALLOCATE(list, SIZE(listT));

ProcessManager.mod 8 MuLTiBATCH

WITH list T[HEAD] DO
priority := MAXPRIORITY + 1;
next == TAIL;
END:; (* WITH *)
WITH list T[TAIL] DO
priority :=-1;
previous := HEAD;
END: ¢+ WITH =)

(% indicate each process is not in list *) -

FOR i := 1 TO MAXPROCESS DO
listT[i}.previous := HEAD;

END:; (* FOR *)

END InitPriorityQueue;

(* Insert process ID into the list. *)

PROCEDURE Insert(process: ProcessID; VAR list: Priorityqueue);

VAR

priority: (* the priority of the process %)
Listpriority;

current: (* index of current element in list *)
Listrange;

© next: (* the next process after the one being inserted. *)
ProcessID;
BEGIN

IF NOT ContainedInList(process, list) THEN

(* find correct place in list *)
priority := processtable[process].priority;
current ;= TAIL;

WHILE priority > listT[current]. priority DO

current = listT{current].previous;
END; (* WHILE *)

(* insert process ID *)

- next := listT[current].next;
listT[process].previous = current;
list T{process].next := next;
listT[next].previous = Process;
listT{current].next := Process;

END; (% IF *)
END Insert;

ProcessManager.mod 9

MULTIBATCH

(* Link a diskblock to a process’s output list. *)
PROCEDURE LinkToOutput(process: ProcessID; diskblock: DiskblockID);

VAR
nodeptr: (* the new node for storing the diskblock *)
Disklist;

BEGIN

(* create node *)
ALLOCATE(nodeptr, SIZE(nodeptrT));
WITH nodeptrT DO
diskblockptr := diskblock;
next := NIL:
END; (* WITH *)

(* add node to end of list *)
WITH processtable[process].output DO
last | .next := nodeptr;
last := nodeptr;
END; (* WITH %)
END LinkToOutput;

(* Obtain the number of elements in a list. *) _
PROCEDURE ListSize(list: Priorityqueue): CARDINAL,;

VAR
count: (* number of items in list *)
CARDINAL,;
current: (* index of current list item *)
Listrange;

BEGIN

count ;= 0;

current := HEAD;

WHILE list T[current].next # TAIL DO
current ;= listT[current].next;
INC(count);

END;

RETURN(count);
END ListSize;

ProcessManager.mod 10 MuLTIBATCH

(* Return a pointer to the memory block where the process resides. *)
PROCEDURE MemoryLocation{process: ProcessID): MemoryblockID;

BEGIN
WITH processtable{process].location DO
IF resident THEN
RETURN memory;
ELSE
RETURN MemoryblockID(NIL);
END; (* IF *)
END; (* WITH *)
END MemoryLocation;

(* Remove the next process ID from the given list. *)
PROCEDURE Next{VAR list; Priorityqueue): ProcessID;

VAR
process. (* temporary holder for return value *)
ProcessID;

BEGIN
IF list T[HEAD].next # TAIL THEN
process := listT [HEAD].next;
list TTHEAD].next := list T[process].next;
lisiTT list THEAD].next].previous ;= HEAD;
. ELSE
process = NullProcess();
END; (+ IF *)

RETURN process;
END Next;

(* Return the Null Process ID. *)
PROCEDURE NullProcess(): ProcessID;

BEGIN
RETURN(0);
END NullProcess;

(* Return the list of diskblocks containing the output. *)
PROCEDURE OutputList(process: ProcessID): Disklist;
BEGIN

RETURN processtable[process].output.first;
END QutputList;

ProcessManager.mod 11 MuLTIBATCH

(* Obtain the next process ID from the given list. %)
PROCEDURE Peek(list: Priorityquene): ProcessID;

BEGIN
IF list TTHEAD].next # TAIL THEN
RETURN(listT[HEAD].next);
ELSE
RETURN(NullProcess());
END; (* IF *)
END Peek;

{(* Return a pointer to the process’ s disk block. *)
PROCEDURE PermanentLocation(process: ProcessID): DiskblockID;

BEGIN
RETURN processtable[process} location.diskblock;
END PermanentLocation;

(* Obtain a process’s priority. *)
PROCEDURE Priority(process: ProcessID): Prioritytype;

BEGIN
RETURN(processtable [process] priority);
END Priority;

(¥ Return a process’s size in words. %)
PROCEDURE ProcessSize(process: ProcessID): CARDINAL;

VAR
high, (* high address in process *)
low: (* low address in process *)
ADDRESS;
BEGIN

ContextBounds(processtable[process].context, low, high);
RETURN CARDINAL(high - Iow + 1);
END ProcessSize:

(* Remove a process from a list. *)
PROCEDURE Remove(process: ProcessID; VAR list: Priorityqueue);

VAR
previous, (* index of previous process in list *)
next: (* index of next process in list *)

ProcessID;

ProcessManager.mod 12 MuLTIBATCH

BEGIN
IF ContainedInList{process, list) THEN
previous := list T[process].previous;
next := listT[process].next;
listT[previous].next := next;
listT[next).previous := previous;

(* indicate that process is removed from list %)
listT[process).previcus = HEAD:
END; (* [F %)
END Remove;

(* Determine if a process is memory resident. *)

PROCEDURE Resident(process: ProcessID): BOOLEAN;

BEGIN
RETURN(processtable[process].location resident);
END Resident;

(* Schedule an event. *)
PROCEDURE Schedule{when: CARDINAL,; act: Actiontype; pid: ProcessID);

VAR
current, {* current item in the delta list %)
previous: (% previous item in the delta list *)
Eventptr; :
BEGIN

previous := deltalist;
current := deltalist;

(* find correct place in list ¥)

WHILE (current # NIL) & (current T timeleft < when) DO
DEC(when, current.timeleft);
previous := current;
current := currentT.next;

END; (* WHILE *)

(* create node %)
IF current = deltalist THEN
(* list is empty, or new event should be placed first *)

previoustime := TickCount();

ALLOCATE(deltalist, SIZE(deltalistT));
previous, := deltalist;

ProcessManager.mod 13 MULTIBATCH

ELSE
ALLOCATE(previousT.next, SIZE(previousT));
previous := previous | .next;

END; (* IF current *)

(* insert event *)

WITH previousT DO
action ;= act;
timeleft := when;
process := pid;
next ;= current;

END; (* WITH previous *)

(*® alter next event’s waiting time *)
IF current # NIL. THEN
DEC(currentT.timeleft, when);
END; (* IF %)
END Schedule;

(* Obtain a process's status. *)
PROCEDURE Status(process: ProcessID): Statustype;
BEGIN
RETURN(processtable[process].status);
END Status;

(* Store the next input location. *)
PROCEDURE StoreNextInput(process: ProcessID; pageaddress: Pageptr; byte: CARDINALY);

BEGIN
WITH processtable[process] DO
nextinput.page := pageaddress;
nextinput.byte := byte;
END; (* WITH *)
END StoreNextInput;

(* Store the next output location. *)
PROCEDURE StoreNextOutput(process: ProcessID; pageaddress: Pageptr; byte: CARDINALY);

BEGIN
WITH processtable[process].output.current DO
IF byte = BYTESPERPAGE THEN
(* page has been filled +)

currentpage := (currentpage + 1) MOD BUFFERSIZE;
buffer[currentpage].byte := 0;

ProcessManager.mod 14 MuLTIBATCH

ELSE
buffer[currentpage].byte := byte;
END; (* IF *)
END; (* WITH *)
END StoreNextQutput;

(* Findthe cause of atrap. %)
PROCEDURE TrapReason(process: ProcessID): AllTraps;

BEGIN
RETURN VirtualMachine. TrapReason(processtable[process].context);
END TrapReason;

(* Unschedule a process’s events. *)
PROCEDURE UnSchedule(process: ProcessID);

VAR
current, (* current item in the delta list *)
previous: (* previous item in the delta list *)
Eventptr;
BEGIN

IF (deltalist # NIL) & (deltalistT.next # NIL) THEN
previous := deltalist;
current := previous T.next;

(* remove events within the list (not the first node) *)
WHILE current # NIL DO
IF currentT process = process THEN
previous T.next := current T.next;
INC(currentT.next T timeleft, currentT timeleft),
DEALLOCATE(current, SIZE(currentT));
ELSE
previous := current;
END; (x IF *)
current = previousT.next',
END; (* WHILE *)
END; (* IF *)

(* remove first node, if appropriate *)

IF (deltalist # NIL) & (deltalistT.process = process) THEN
current ;= deltalist;
deltalist := deltalist T.next;
INC(deltalist T timeleft, current T timeleft);
DEALLOCATE(current, SIZE(currentT));

END (* IF *)

END UnSchedule;

ProcessManager.mod 15 MuLTIBATCH

(* Update a process control block. *)
PROCEDURE UpdateProcessinfo(process: ProcessID; reason: Updatecode;
newlocationptr: ADDRESS);

VAR
oldstart, (* starting address of old memoryblock *)
newstart; (* starting address of new memoryblock *)
ADDRESS;
offset: (* the amount the process has moved %)
INTEGER;

BEGIN _
CASE reason OF
SWAPIN:
WITH processtable[process] DO

(* update process block; save old and new starting addreses *)
WITH location DO

oldstart := StartingAddress(memory);

resident := TRUE;

memory ‘= MemoryblockID(newlocationptr);

newstart ;= StartingAddress{memory);
END; (* WITH location *)

(* alter absolute addresses in context to reflect new location *)
offset := newstart - oldstart;
UpdateContext(context, offset};

END; {* WITH processtable %)
| SWAPOQUT:
WITH processtable[process].location DO
resident ;= FALSE;
diskblock = DiskblockID{newlocationptr);
END; (x WITH *)
END; (¥ CASE *)
END UpdateProcessInfo;

BEGIN (* module initialization *)
(* see procedure InitProcManager %)

END ProcessManager.

ProcessManager.mod 16 MuLTIBATCH

DEFINITION MODULE Spooler;

(***)

(*
f*
(*
(%
(#
(*
(:z:
(*

*)
FUNCTION: This module is responsible for taking input from the card reader *)
and transfering it to the disk until it can be moved to main *)
memory. It does the reverse with output, sending it to disk *)
until it can be sent to the line printer. #}
. *)
AUTHOQOR: Rick Fisher %)
*)
(***********#***)
FROM SYSTEM IMPORT
(* Constants *)
BYTESPERWORD;
FROM MemoryManager IMPORT
(* Types *)
MemoryblockID, Pageptr;
FROM DiskManager IMPORT
(* Types *)
DiskblockID,
FROM ProcessManager IMPORT
(* Types *)
Disklist;
EXPORT QUALIFIED

(* Constants *)
ENDofINPUT, ENDofJOB, ENDofOUTPUT,

(* Procedures %)
DeSpoo!l, EnSpool, PopJobSize;

CONST
ENDofINPUT = 3C; {* control-C *)
ENDofJOB = 3C;
ENDofQUTPUT = 3C;

PROCEDURE DeSpool(): Pageptr;

{* Retrieve the next incoming page spooled on the disk, moving it to main *)
(* memory. *)
(+)
(% RETURNS a pointer to the page retrieved—Pageptr(NIL) if spool is empty. *)
(x *)
(* NOTES: *)
(* 1) A program’s code, input and stack can all be assumed to start *)
(* on page boundaries. %)

Spooler.def : MuLTiBaTCH

(* 2) The value returned points to a page in a memory buffer of fixed . *)

(% size. Sometime following the next call to DeSpool, the page will be *)
f* overwritten. Therefore, the page should either be completely processed *)
(* or copied to a safe location before another call to DeSpool. *)

PROCEDURE EnSpool(newoutput: Disklist);

(* ‘Send output of a finished job to spooling area of disk. %)
(* PARAMETERS: newoutput—a linked list of all the diskblocks holding *)
(* output from a particular job. #)
(* *)
(+ NOTES: *)
(% 1) The last character of output must be immediately followed *)
(* by an ENDofOQUTPUT character. %)
(% 2) Each diskblock in the list should be a single sector in size, *)

PROCEDURE PoplobSize(VAR codesize, inputsize: CARDINAL);

(* Remove from the queue of job sizes the size in pages of the next *)

(* Jjob's code and input. *)

(* ' *)

(* PARAMETERS: codesize—the number of pages in the next job's code. *)

{* inputsize—the number of pages in the next job’s input. ®)
END Spooler.

Spooler.def , : 2 MuLTiBATCH

IMPLEMENTATION MODULE Spooler(*[10}*);

(***}

(= *)
(¥ POLICY: The Spooler reserves two cylinders of the disk during system *)
(* initialization for its own use. One of these is used for data *)
(* being spooled in, the other for data being spooled out. Having *)
(* all diskblocks for each of these functions on a single cylinder ®)
(* ensures that disk reads and writes will be processed in the order *)
(* in which they are requested. *)
(* *)
(* AUTHOR: Rick Fisher #)
(* *)
(**************************##***}
FROM SYSTEM IMPORT

(* Constants *)

BYTESPERWORD,

(* Types *)

ADDRESS, WORD,

(* Procedures *)

ADR, SIZE;

FROM VirtualMachine IMPORT

(* Constants *)

BYTESPERPAGE,

(* Types *)

Interruptcode,

{* Procedures *)
Read, ReturnFromInterrupt, SetInterruptHandler, Write;

IMPORT MemoryManager;
FROM MemoryManager IMPORT
(* Constants *)
PAGESIZE,

(* Types *)
MemoryblockID, Pageindex, Pageptr,

{* Procedures *) .
(* Allocate, Deallocate, *) StartingAddress;

Spooler.mod : MurTiBaTCH

IMPORT DiskManager;
FROM DiskManager IMPORT
(* Constants *)
CYLINDERSIZE, NULL, SECTORSIZE,

(* Types *)
DiskblockID,

(* Procedures %)
(* Allocate, Deallocate, *} DiskRead, DiskWrite, Null;

FROM ProcessManager IMPORT
(* Types *)
Disklist;

FROM STORAGE IMPORT
(* Procedures *)
ALLOCATE, DEALLOCATE;

CONST _
BUFFERSIZE = 4

TYPE :
Actiontype = (CONSUME, PRODUCE);
Bufferindex = [0.. BUFFERSIZE];
Cylinderindex = [0..CYLINDERSIZE - 1];
CircularDiskbuf = RECORD

delayingwhileEmpty, (* TRUE iff consuming procedure
cannot proceed while buffer is
empty *)

delayingwhileFull, (* TRUE iff producing procedure

' ' cannot proceed while buffer is

full %)
full: (* TRUE iff buffer is full %)
BOCLEAN;
next, {* next block ro be filled *)
first: (* oldest filled block *)
Cylinderindex;
spool: (* the array of diskblocks *)

ARRAY Cylinderindex OF DiskblockID;
END;

Spooler.mod 2 MuLTIBATCH

CirculatMembuf =

Bufferptr
Pagecountlist
Pagecountrecord

VAR

endofOutput:
Disklist;
head:
Pagecountlist;
inputbuffer:
CircularMembuf;
inspool:
CircularDiskbuf;
nextoutput,
output:

Disklist;

Spooler.mod

RECORD

buffer: (* the array of pages and memory-
blocks *)
ARRAY [0 .. BUFFERSIZE - 1] OF
RECORD
page: (* pointer to the array of characters)
Pageptr;
index: (* the index into “‘page’’ *)
Pageindex;
memoryblock: (* ID of memoryblock containing
“page’’ *)
MemoryblockID;
END;
currentpage, (* index into ‘‘buffer’ #)
nextlOrequest, (* next page available for an 10
request *) _
waitingOnlO: (* page waiting longest for an I/0
completion *)
Bufferindex;
waitingOndisk: (* TRUE if all buffer pages await
disk completion *)
BOOLEAN;
restart: (* driving producer (consumer) which
has been stopped because buffer was fulf
(empry) *)
PROC;
END;
POINTER TO CircularMembuf;
POINTER TO Pagecountrecord;
RECORD
pagecount: (* page count for a job *)
CARDINAL;
next: (* rest of list #)
Pagecountlist;
END;

{(* pointer to the last of the output blocks *)

(* first in list of Pagecountrecords *)

(* for card images read from card reader *)

{* disk area reserved for spooled input *)

(* pointer to the next output block to be wrirten *)

(* pointer to the list of output blocks, including those wrirten
but not yet deallocated *)

3 MuLTIBATCH

outputbuffer: (* for line images going to line printer *)

CircularMembuf;

outspool: (* disk area reserved for spooled output *)
CircularDiskbuf;

tail: (* last in list of Pagecountrecords *)
Pagecountlist;

transferbuffer: (* for disk-to-disk transfers, moving output to the output spool *)
CircularMembuf; '

transfersInprogress: (* the number of incomplete read requests for the transfer buffer *)
CARDINAL;) : :

virtualcardbuffer: (* for card images being despooled *)
CircularMembuf; -

waitingforoutput: (* true if no output in output list or in transfer buffer *)
BOOLEAN;

PROCEDURE Acknowledge(buffer: WORD);

(¥ This procedure is passed to the disk manager as the action to be taken *)
(* upon completion of disk operations requested by several spoolling *)
(* procedures. *)
(* *}
(* PARAMETERS: buffer—a pointer to the buffer holding the page *)
(* being read or written (*‘buffer’’ must be of *)
(* type WORD only because the formal parameter *)
(* to which *‘Acknowledge’’ is the actual takes *)
(* a parameter of type WORD). . %)

YAR

bufferpointer: Bufferptr;

BEGIN -

bufferpointer := Bufferptr(buffer);

WITH bufferpointerT DO

(* oldest unready page becomes ready *)
waitingOnlO := (waitingOnIO + 1) MOD BUFFERSIZE;

(* if no more pages are waiting, set *‘waitingOnl(Q”’ to neutral value *)
IF waitingOnlIO = currentpage THEN
waitingOnlO := BUFFERSIZE;

END; (* IF *)
(* buffer now has free space—the driving procedure can begin again *)
IF waitingOndisk THEN
waitingOndisk := FALSE;
restart;
END; (* IF *)

END; (* WITH *)

Spooler.mod 4 MurTiBATCH

(* if appropriate SPOOLING AREA was completely full (empty), restart procedure
which was waiting *)
IF (ADDRESS(buffer) = ADR(inputbuffer)) & inspool.delayingwhileEmpty THEN
inspool.delayingwhileEmpty := FALSE;
virtualcardbuffer.restart;
ELSIF (ADDRESS(buffer) = ADR(outputbuffer)) & outspool.delayingwhileFuli THEN
outspool.delayingwhileFull := FALSE;
transferbuffer.restart;
ELSIF (ADDRESS(buffer) = ADR(transferbuffer)) & outspool.delayingwhileEmpty
THEN
outspool.delayingwhileEmpty := FALSE;
outputbuffer.restart;
ELSIF ({ ADDRESS(buffer) = ADR(virtualcardbuffer)) & inspool.delayingwhileFull
THEN
inspool.delayingwhileFull := FALSE;
inputbuffer.restart;
END; (* IF *)
END Acknowiedge;

(% This is the actual interrupt handler for the cardreader. *)
PROCEDURE CaliSpoolln;

BEGIN
Spoolln;
RetumFromInterrupt(CARDREADER};
END CaliSpoolln;

(# This is the actual interrupt handler for the lineprinter. *)
PROCEDURE CallSpoolOut;

BEGIN
SpoolOut;
ReturnFromInterrupt(LINEPRINTER);
END CallSpoolOut;

(* Retrieve a page of spooled information, moving it to main memory. *)
PROCEDURE DeSpool(): Pageptr;
BEGIN
(* return nil if buffer and spool are both empty *)
IF inspool.delayingwhileEmpty THEN
RETURN Pageptr(NIL);
END;

- (* spool is not empty, so fill buffer as much as possible *)
Fill VirtualCardBuffer;

Spooler.mod 5 MULTIBATCH

WITH vintualcardbuffer DO

(* return nil if all buffer pages are waiting for a read to complete *)
IF waitingOndisk THEN

RETURN Pageptr(NIL);.
END;

IF waitingOnlO = BUFFERSIZE THEN
(* the next page to make an IO request will be the t_mly one waiting for completion)

nextlOrequest := currentpage;
waitingOnlQ := currentpage;
ELSIF nextIOrequest = BUFFERSIZE THEN
(* another IO request can be made when current page advances *)

nextlOrequest := currentpage;
END;

(* free the page last returned by this procedure (if not already free) *)
IF currentpage # BUFFERSIZE THEN
currentpage := (currentpage + 1) MOD BUFFERSIZE;
ELSE
currentpage := 0;
END;

IF currentpage = nextIOrequest THEN
(* buffer completely empty—spool must be empty too *)

nextIOrequest := 0;

waitingOnlO := 0;

currentpage := BUFFERSIZE;
inspool.delayingwhileEmpty := TRUE;
RETURN Pageptr(NIL);

ELSIF currentpage = waitingOnIQ THEN
(* buffer not empty, but no pages are ready *)

waitingOndisk := TRUE;
RETURN Pageptr(NIL),

ELSE _
RETURN bufferfcurrentpage].page;

END; (x IF *)
END; (* WITH *)
END DeSpool;

Spooler.mod 6 MuLTiBATCH

PROCEDURE EmptyTransferBuffer;

(* Move pages of the transfer buffer to the output spool until the transfer *)
{* buffer is empty, or the spool is full. It is only called when all of the *)
(¥ disk reads requested by FillTransferBuffer have completed. *)
VAR
alsowaiting: (* next transfer buffer page to be * ‘waitingOnl0"’ *)
Bufferindex; '
bufferisfull: (* true if transfer buffer is full *)
BOOLEAN; _
currentDiskblock, (* diskblock to be written to *)
futureDiskblock: (* diskblock to be written to subsequently *)
DiskblockID;
temp: (* for deallocating diskblocks and disklist nodes *)
Disklist;
BEGIN

(* deallocate old diskblocks *)

WHILE output # nextoutput DO
temp := output;
output := output T.next;
DiskManager.Deallocate(tempT.diskblockptr);
DEALLOCATE(temp, SIZE(tempT));

END; («* WHILE *)

WITH transferbuffer DO
IF waitingOnIO = nextIOrequest THEN
(* buffer is empty—no need for a disk block *)

cumrentDiskblock := DiskblockID{NIL);

ELSE
currentDiskblock := NextDiskBlock{outspool, PRODUCE);
END;

bufferisfull := (nextlOrequest = BUFFERSIZE);
IF ADDRESS(currentDiskblock) = NIL, THEN
(* spool is full or buffer is empty *)

outspool.delayingwhileFull ;= bufferisfull;
ELSE

(* write from buffer to spool *)
LooP

(* test if another buffer page can also be written to the spool *)
alsowaiting := (waitingOnlO + 1) MOD BUFFERSIZE;
IF alsowaiting = nextlOrequest THEN

futureDiskblock := DiskblockID(NIL};

Spooler.mod u 7 MuLTIBATCH

ELSE
futureDiskblock := NextDiskBlock(outspool, PRODUCE);
END; (* IF alsowaiting *)

(* do not write the last writable page yet *)

IF ADDRESS(futureDiskblock) = NIL THEN
EXIT; (* LOOP *)

ELSE -
DiskWrite(buffer[waitingOnlO].memoryblock, currentDiskblock,

Null, NULL);

currentDiskblock := futareDiskblock;
waitingOnlO := alsowaiting;

END; (> IF futureDiskblock *)

END; (* LOOP *)

(* write last page to disk, requesting acknowledgment *)
DiskWrite(buffer[waitingOnIO].memoryblock, currentDiskblock,
Acknowledge, ADR(transferbuffer));
END; (* IF currentDiskblock *)
END;, (* WITH #)
END EmptyTransferBuffer;

(* Attach the output of another job to previous output. *)
PROCEDURE EnSpool(newoutput: Disklist);

BEGIN
IF newoutput # NIL THEN

(* attach new output to old output *)
IF output = NIL THEN
output ;= newoutput,;
ELSE
endofOutputT.next := newoutput;
END; (* IF output *)
IF nextoutput = NIL THEN
nextoutput = newoutput;
END:; (* IF nextoutput *)

(* find the new last block of output *)

endofQOutput := newoutput;

WHILE endofOQutputT.next # NIL DO
endofOutput := endofOutput T.next; -

END; (* WHILE *)

Spooler.mod 8 MuLTIBATCH

IF waitingforoutput THEN
(* ‘‘FillTransferBuffer’ was waiting for new output *)

waitingforoutput := FALSE;
FillTransferBuffer;
END; (* IF waitingforoutput *)

END; (% WITH *)
END EnSpool;

PROCEDURE FiliTransferBuffer;
(* Move blocks of output to the transfer buffer until the transfer buffer
(* is full, or the output is finished.

VAR
bufferisempty: (* true if buffer is empty *)
BOOLEAN;
BEGIN
WITH transferbuffer DO

bufferisempty := (waitingOnlO = nextIOrequest);
IF waitingOndisk OR (output = NIL) THEN
(* can’t write to buffer—buffer is full, or no more output *)

waitingforoutput := bufferisempty;
EmptyTransferBuffer;
ELSE

(* read as many output blocks into the buffer as possible *)

WHILE (nextIOrequest # waitingOnlIO) & (nextoutput # NIL) DO

*)
*)

DiskRead(nextoutput T.diskblockptr, buffer[nextIOrequest].memoryblock,

TransferComplete, NULLY);
nextlOrequest := (nextIOrequest + 1) MOD BUFFERSIZE;
nextoutput := nextoutput T_next;
INC{transfersInprogress);
END; (* WHILE *)

IF pextIQrequest = waitingOnlO THEN
(* no more pages can be written into at this time *)

nextlOrequest := BUFFERSIZE;
END; (* IF nextiOrequest *)
END; (* IF waitingOndisk *)
END; (* WITH #)
END FillTransferBuffer;

Spooler.mod 9

MULTIBATCH

PROCEDURE FillVirtualCardBuffer;
(* Move blocks of input to the virtual card buffer until the virtual card *)
(* buffer is full, or the input spool is empty. *)

VAR
diskblock: (* the diskblock being read *)
DiskblockID;

BEGIN
WITH virtualcardbuffer DO

(* fill the buffer as full as possible *)

LOOP .
IF pextlOrequest # BUFFERSIZE THEN
(* buffer is not full *}

diskblock := NextDiskBlock(inspool, CONSUME);
ELSE

diskblock := DiskblockID(NIL);
END;

IF ADDRESS(diskblock) = NIL THEN
(* buffer is full or spool is empty *)

EXIT; (* LOOP %)
ELSE

(* read a block and advance next IO request *)

DiskRead(diskblock, buffer[nextIOrequest].memoryblock, Acknowledge,
ADR(virtualcardbuffer) };

nextlOrequest := (nextIOrequest + 1) MOD BUFFERSIZE;

IF (nextIOrequest = currentpage) OR (nextlOrequest = waitingOnfO) THEN

(* no more pages are available for 10 %)

nextIOrequest ;= BUFFERSIZE;
END; (* IF nextiOrequest *)

END; {+ IF diskblock *)
END; (* LOOP *)
END; (* WITH *)
END FillVirtualCardBuffer;

Spooler.mod 10 - MuLTiBATCH

PROCEDURE InitDiskBuffer(VAR buf: CircularDiskbuf);

{* Initialize a circular disk buffer (spool). All spools start out in the same *)
(* condition—empty, with any consumers from the spool currently delayed. *)
(* *)
(* PARAMETERS: buf-the spool being initialized. *)
(* *)
{* NOTE: This procedure will allocate all diskblocks for a spool from a *)
(% single cylinder if and only if (1) the first available sector on the *)
(* disk is the first sector of a cylinder, and (2) every other sector on *)
(* that cylinder is also available. This situation is only guaranteed at *)
(* system initialization. - %)
YAR
i: CARDINAL; (* loop index *)
BEGIN
WITH buf DO
full := FALSE;

delayingwhileEmpty := TRUE;
delayingwhileFull := FALSE;
next .= 0;
first .= Q;
FOR i := 0 TO CYLINDERSIZE - 1 DO
spool[i] := DiskManager. Allocate{SECTORSIZE);

END; (* iVITH *)
END InitDiskBuffer;

PROCEDURE InitMemBuffer(VAR buf: CircularMembuf; current, next, waiting: Bufferindex;

start: PROC);
{* Initialize a circular memory buffer. *)
(* *)
(* PARAMETERS: buf-the buffer to be initialized. *)
(* current~the starting value for ‘‘currentpage’’. *)
(* next-the starting value for ‘‘nextIOrequest’’. *)
(* waiting—the starting value for *‘waitingOnl0"’ . *)
(* start—the procedure value for “‘restart’”. *)

VAR i: CARDINAL; (* loop index *)

BEGIN
WITH buf DO
waitingOndisk := FALSE;
currentpage := current;
nextlOrequest := next;
waitingOnlQ := waiting;
restart ;= start;

Spooler.mod 11 : . MurTiIBATCH

(* associate memory blocks with page bujffers *)
FOR i := 0 TO BUFFERSIZE - 1 DO
WITH buffer[i] DO
memoryblock := MemoryManager. Allocate(PAGESIZE},
page = Pageptr(StartingAddress(memoryblock));
index :=0;
END; (* WITH *)
END; (* FOR *)
END; (* WITH *)
END InitMemBuffer;

PROCEDURE NextDiskBlock(spool: CircularDiskbuf; action: Actiontype): DiskblockID;

(* Identify the next disk block available for the given aétion. *)
(* *)
{* PARAMETERS: spool-specifies “‘inspool’”’ or *‘outspool’’. *)
{* action—CONSUME if reading from the spool; *)
(* PRODUCE if writing to it. *)
{* RETURNS the disk block ID of the desired disk block. DiskblockID{NIL) *}
(* is returned if no block is ready. %)
VAR

diskblock: DiskblockID; (* ID of the diskblock to be returned *)
BEGIN

(* assume failure initially %)
diskblock := DiskblockID(NIL);

WITH spool DO
CASE action OF
CONSUME:
IF (first # next) OR full THEN

(* spool not empty—calling procedure may consume *)
diskblock := spool[first];
first := (first + 1) MOD CYLINDERSIZE;
full := FALSE;
END; (* IF first *)

Spooler.mod _ 12 MuLTIBATCH

| PRODUCE:
IF NOT full THEN

(* calling procedure may produce *}
diskblock := spool[next];
next := (next + 1) MOD CYLINDERSIZE;
IF next = first THEN
full := TRUE;
END:; (* IF next*)
END; (% IF NOT *)
END; (* CASE *)
END; (* WITH *)

RETURN diskblock;

END NextDiskBlock;

(* Find the size of the next job. %)
PROCEDURE PopJobSize(VAR codesize, inputsize: CARDINAL);

VAR :
temp: (* used for deallocating old list nodes *)

Pagecountlist;

BEGIN
IF head = NIL THEN
codesize :=(;
inputsize :=0;
ELSE
codesize := headT.pagecount;
temp := head;
head = headT .next;
DEALLOCATE(temp, SIZE(tempT));
inputsize := headT.pagecount;
temp := head,
head := headT.next;
DEALLOCATE(temp, SIZE(tempT));
END; (% IF *)
END PopJobSize;

VAR
pagecount: (* number of pages in a given job *)
CARDINAL;

Spooler.mod 13 MuLTiBaTCH

PROCEDURE Spoolln;

(* Spool card images from cardreader to disk. This procedure serves
(* as the body of an interrupt handler for the card reader. The card reader
{* must be started by the main module during system initialization.
VAR
bufferisfull: (* true when input buffer is full *)
BOOLEAN; :
diskblock: (* the next diskblock to be written *)
DiskblockID;
BEGIN
WITH mputbuffer DO

IF currentpage = waitingOnlO THEN
(* can’t read a character-buffer is full *)

waitingOndisk := TRUE;
ELSE _
WITH buffer[currentpage] DO

(* read next character and increment index %)
page Tlindex] := Read();

*]
*)
*)

IF (pageT[index] # ENDofJOB) & (pageT[index] # ENDofINPUT) THEN

index := (index + 1) MOD BYTESPERPAGE;
ELSE

(* code or input finished—reset index and record size in list %)
index :=0;
IF head = NIL THEN

(* start new list of job sizes *)
ALLOCATE(head, SIZE(headT));
= head;
ELSE

(* add new element to list *)
ALLOCATE(tail T.next, SIZE(headT));
tail := tail T.next;

END;

tail T.next := NIL;
tail T.pagecount := pagecount;
pagecount := 0;
END; (* IF page *)
END; (x WITH buffer{currentpage] *)

Spooler.mod 14 MUuLTIBATCH

(* page full? if so, move to next page *)
IF bufferfcurrentpage].index = 0 THEN

IF waitingOnlO = BUFFERSIZE THEN
(* the next page to make an 10 request will be the only one waiting for
completion *)

nextdOrequest := currentpage;
waitingOnIO := currentpage;
ELSIF nextlOrequest = BUFFERSIZE THEN)
(* another IO request can be made when current page advances *)

nextIOrequest := currentpage;
END,; (* IF waitingOniO *)

currentpage := (currentpage + 1) MOD BUFFERSIZE;
INC(pagecount);
END;, (* IF index = 0 *)
END:; (* IF currentpage *)

(* if buffer has pages filled but not yet written, write one %)
IF nextlQrequest # BUFFERSIZE THEN
bufferisfull := (currentpage = nextIOrequest);
diskblock := NextDiskBlock(inspool, PRODUCE);

(* write a page if the spool is not full *}
IF ADDRESS(diskblock) = NIL THEN
inspool.delayingwhileFull ;= bufferisfull;
ELSE
DiskWrite(buffer[nextIOrequest].memoryblock, diskblock, Acknowledge,
ADR(inputbuffer));
nextlOrequest := (nextIOrequest + 1) MOD BUFFERSIZE;
IF nextlOrequest = currentpage THEN
nextlOrequest := BUFFERSIZE,;
END; (* IF nextlOrequest = currentpage *)
END; ¢* IF diskblock *)
END; (* IF nextlOrequest # BUFFERSIZE)
END; (* WITH inputbuffer *)
END Spoolln;

Spooler.mod 15 MuLTIBATCH

PROCEDURE SpoolQut;

(* Spool line images from disk to the lineprinter. This procedure serves *)
(* as the body of an interrupt handler for the line printer. The line printer *)
{* is started when output is sent to the spooling disk. *)

VAR
bufferisempty: (* true when output buffer is empty *)
BOOLEAN; :
diskblock: (* the next diskblock to be read *)
DiskblockID; :

BEGIN
WITH outputbuffer DO
WITH buffer[currentpage] DO

IF currentpage = waitingOnlQO THEN
(* can’t write a character-buffer is empty *)

waitingOndisk := TRUE;
ELSE

{* write next character and increment index *)
Write(page Tlindex]);
IF pagel [index] = ENDofOUTPUT THEN

index := 0;
ELSE .

index := {index + 1) MOD BYTESPERPAGE;
END; (* IF page *)

(* page emptied? if s0, move to next page *)
IF index = 0 THEN
IF waitingOnIO = BUFFERSIZE THEN
(* the next page to make an IO request will be the only one waiting
for completion *)
nextIOrequest := currentpage;
waitingOnlO := currentpage;
ELSIF nextIOrequest = BUFFERSIZE THEN
(* another 10 request can be made when current page advances *)

nextIOrequest = currentpage;
END; (* IF waitingOnlO *)

currentpage .= (currentpage + 1} MOD BUFFERSIZE;

END; (% IF index = 0 *)

Spooler.mod 16 MuLTIBAaTCH

(* read another page into buffer, if possible *)
IF nextIOrequest # BUFFERSIZE THEN
bufferisempty := (currentpage = nextIOrequest);
diskblock := NextDiskBlock{outspool, CONSUME);,
IF ADDRESS(diskblock) = NIL THEN
outspool.delayingwhileEmpty := bufferisempty;
ELSE
DiskRead(diskblock, buffer[nextIOrequest].memoryblock, Acknowledge,
ADR(outputbuffer));
nextIOrequest := (nextIOrequest + 1) MOD BUFFERSIZE;
IF nexilOrequest = currentpage THEN
nextlOrequest := BUFFERSIZE;
END; (* IF nextIOrequest = currenipage *)
END; (* IF diskblock *)
END; (* IF nextlOrequest # BUFFERSIZE *)
END; (* IF currentpage *)
END; (* WITH buffer #)
END; (* WITH outputbuffer *}
END SpooiQOut;

PROCEDURE TransferComplete(dummy: WORD);

(* Acknowledgement procedure for ''FillTransferBuffer’’ Since there *)
{* is no way to tell in advance what order the requested reads into transfer #*)
(* buffer will be completed, the most straight-forward course is to count the #)
(* reads. When all have completed, it is safe to empty the buffer’s pages *)
(* in order. *)
(* *)
{* PARAMETERS: dummy-unused parameter, included for formal reasons. *)
BEGIN

DEC(transfersInprogress);

IF transfersInprogress = 0 THEN

EmptyTransferBuffer;

END; (* IF *)

END TransferComplete;

BEGIN(* module initialization *)

SetInterruptHandler(CARDREADER, CallSpoolln);
SetInterruptHandler(LINEPRINTER, CallSpoolQOut);

(* initialize memory buffers *)

InitMemBuffer(inputbuffer, 0, BUFFERSIZE, BUFFERSIZE, Spoolln);
InitMemBuffer{outputbuffer, 0, 0, 0, SpoolOut);
InitMemBuffer(virtualcardbuffer, BUFFERSIZE, 0, 0, Fill VirtualCardBuffer);
InitMemBuffer{transferbuffer, BUFFERSIZE, 0, 0, FillTransferBuffer);

Spooler.mod 17 MurtiBaTcH

(* initialize spools *)
InitDiskBuffer(inspool);
InitDiskBuffer{outspool);

(* initialize pagecount list *)
head := NIL; '

tail := NIL;

pagecount ;= 1;

(* initialize output list *)
endofOutput := NIL;

output ;= NIL;
waitingforoutput := TRUE;

END Spooler.

Spooler.mod i3 MuLTIBATCH

DEFINITION MODULE SVCalls;

(***)

(*
(*
{*
(*
{*
{*
{*

- *)
FUNCTION: This module defines the procedures and types relating to Supervisor ~ *)
Calls. It is the only OS module through which a user can get into *)

the operating system. #)

- *)

AUTHOR: Rick Fisher *)
*)

(**#************************)

FROM SYSTEM IMPORT
(* Types *¥)
ADDRESS;

EXPORT QUALIFIED
(* Types *)
DisksectorID,

(* Procedures *)
FreeDiskSector, GetDiskSector, Read, UpperBound, Write;

TYPE

DisksectorID;
PROCEDURE FreeDiskSector(VAR sector: DisksectorID);
(% Free a no longer needed disk sector. ®)
(* *)
(* PARAMETERS: sector—the ID of the disk sector. *®
PROCEDURE GetDiskSector{ VAR sector: DisksectorID);
(* Obtain the sector ID of a free disk block. *)
(* *)
(* PARAMETERS: sector-the ID of the disk sector. *)
PROCEDURE Read(YAR buffer: ARRAY OF CHARY);
(* Read from input. *)
(* *)
(* PARAMETERS: buffer—the variable to hold the array of characters . *)
(* to be read. The size of the buffer determines the *)
(* number of characters read. %)
PROCEDURE Sleep(seconds: CARDINALY);
(* Halt the execution of a process for the given length of time. *)
(* *)

{* PARAMETERS: seconds—the number of seconds that should pass before *)
(* the process again becomes eligible for execution. *)

SVCalls.def

MurTIBATCH

PROCEDURE UpperBound(): ADDRESS;
{* Find the upper bound in memory to which the process has access.

(*
(* RETURNS the address of the upper bound.

PROCEDURE Write(buffer: ARRAY OF CHAR);

(* Write to output. Arrays of more than 128 characters will be truncated
(* to that length.
{*

(* PARAMETERS: buffer—the array of characters to be written.

END SVCalls,

*)
*)
*)

*)
*)
#)
*)

SVCalis.def _ 2 MurTiBaTcH

IMPLEMENTATION MODULE SVCalls;

(FRREFFRREREFRERLERBRERRRRRRERRREIE R FRRRRRIRARRE R E R R R TRk ok h ok)

{*
(*
(%
(*
(*
(*
(*
(*
(*
(*
(*

L . ®)
POLICY: Limit the user’s access to the Operating System to those procedures *)
which may be reached through a SVC trap.)

*)

NOTE: The order of the parameters in the exported procedures must be’ *)
maintained to reflect the order in which the *'SVCArguments’. *)

procedure of “‘VirtualMachine'* expects them (enumerated *)

in that procedure’ s definition module comment). *)

*)

AUTHOR: Rick Fisher *)
*)

(***********************************A*********************** *****************)

FROM SYSTEM IMPORT

(* Types *)
ADDRESS, WORD;

FROM VirtualMachine IMPORT
(* Types *)
OSTraps, SVCcode,

{* Procedures #)
Trap;

TYPE
DisksectorID = CARDINAL;

(* Freeano longer needed disk sector. %)
PROCEDURE FreeDiskSector{ VAR sector: DisksectorID);

BEGIN
TwoParmSVCI1(DISKDISPOSESVC, sector);
END FreeDiskSector;

(* Obtain the sector ID of a free disk block. *)
PROCEDURE GetDiskSector(VAR sector; DisksectorID);

BEGIN
TwoParmSVCIH(DISKALLOCATESVC, sector);
END GetDiskSector:

SVCalls.mod

MULTIBATCH

(* Read frominput. *)
PROCEDURE Read(VAR buffer: ARRAY OF CHAR),

BEGIN
TwoParmSVC2(READSVC, buffer);
END Read;

(* Sleep awhile. *)
PROCEDURE Sleep(seconds: CARDINALY;

BEGIN
TwoParmSVC1(SLEEPSVC, seconds);
END Sleep;

(* Find upper bound. *)
PROCEDURE UpperBound(): ADDRESS;

YAR
address: (* the upper bound #)
ADDRESS;
BEGIN
TwoParmSVC1(UPPERBOUNDSVC, address);
RETURN address;
END UpperBound;

(¥ Write to output. *)
PROCEDURE Write(buffer: ARRAY OF CHAR);

BEGIN

TwoParmSVC2(WRITESVC, buffer);
END Write;
(* The following two procedures are identical in form and function, differing *)
{* only in the types of parameters they accept. Their purpose is to cause a #)
(* trap to the correct supervisor call, at the same time fixing the positions *)
(* of the necessary parameters in the activation record stack. *)

PROCEDURE TwoParmSVCl1(sve: SVCcode; VAR word: WORDY);
BEGIN

Trap(SVC);
END TwoParmSVC1;

SVCalls.mod 2 MULTIBATCH

PROCEDURE TwoParmSVC2(sve: SVCcode; VAR buffer: ARRAY OF CHAR);
BEGIN

Trap(SVC);
END TwoParmSVC2;

BEGIN
END SVCalls,

SVCalls.mod 3 MuLTiBATCH

DEFINITION MODULE Swapper;

(e sk e RO R AR R e R R R R RO s R o sk AR R)

(*

(* FUNCTION: The swapper copies process images from main storage to disk and

(*
(*
(*
(*

vice-versa, freeing memory space when a process is swapped out.

AUTHOR: Rick Fisher

*)
*)
*)
*)
*)
*)

(***************************i*************##********************************)

FROM DiskManager IMPORT

(* Types *)
DiskblockID;

FROM ProcessManager IMPORT

(* Types *)
ProcessID;

EXPORT QUALIFIED

(* Procedures *)
Swapln, SwapQut;

PROCEDURE Swapln(process: ProcessID): BOOLEAN;

(* Move the process image from disk to memory, updating process information ~ *)
(* (other than status, which should be set according to the result of Swapln). *)
{* Processes should only be swapped in if they can become READY or *)
(* PENDING. *)
(* *)
(% PARAMETERS: process—the process being swapped in. *)
(* RETURNS TRUE if successful, FALSE otherwise, *)
PROCEDURE SwapOut(process: ProcessID);
(* Move the process image from memory to disk, updating process information *)
(* (other than status, which should be set before the call), *)
(* +)
(* PARAMETERS: process—the process being swapped out. *)

END Swapper.

Swapper.def MuLTiBATCH

IMPLEMENTATION MODULE Swapper;

(***}

(* *)
(* POLICY: The swapper allocates new memory space for processes being *)
(¥ swapped in, reads (or writes) the process to (from) disk, and then *)
(* aliers the Process Control Block to reflect the new location. ®)
(* %)
(* AUTHOR: Rick Fisher %)
(* *}
(***)
FROM SYSTEM IMPORT
(* Types *)
ADDRESS, WORD;
IMPORT DiskManager;
FROM DiskManager IMPORT
(* Types *)
DiskblockID,

{* Procedures *)
(* Allocate, Deallocate, *) DiskRead, DiskWrite;

IMPORT MemoryManager;
FROM MemoryManager IMPORT
(* Types *)
MemoryblockID;

(* Procedures *)
(* Allocate, Deallocate *)

FROM ProcessManager IMPORT
(* Types *)
ProcessID, Updatecode, Statustype, Actiontype,

(* Procedures *)
ChangeStatus, MemoryLocation, NullProcess, PermanentLocation, ProcessSize,
Resident, Schedule, UpdateProcessInfo;

(* Move the process image from disk to memory. *)
- PROCEDURE Swapln(process: ProcessID): BOOLEAN;

VAR
currentlocation: {* location of process before swap *)
DiskblockID;
memotyblock: (* location of process after swap *)
MemoryblockID;
size: (* size of process in words *)
CARDINAL,;

Swapper.moed MULTIBATCH

BEGIN
IF NOT Resident(process) THEN

(* allocate new memory block *)
size 1= ProcessSize(process);
memoryblock := MemoryManager. Allocate(size);

IF ADDRESS(memoryblock) = NIL THEN
RETURN FALSE;
ELSE
UpdateProcessInfo(process, SWAPIN, ADDRESS(memoryblock));
currentlocation ;= DiskblockID{ PermanentLocation(process)); ¢
DiskRead(currentlocation, memoryblock, SwapInComplete, process);
END; (* IF memoryblock *)

END; (% [F NOT %)
RETURN TRUE;
END Swapln;

PROCEDURE SwapInComplete(process: WORD);

(* Acknowledge that a process has been swapped in. This procedure is *)
(* passed to the DiskManager to acknowledge when a swap-in has completed.)
(* ' *)
(* PARAMETERS: process—the process which has been swapped in. ®)
BEGIN

Schedule(0, RESCHEDULE, ProcessID(process));
END SwapInComplete;

(* Move the process from memory to disk. *)
PROCEDURE SwapOut(process: ProcessID);

VAR
currentlocation: (* location of process before swap *)
MemoryblockID;
diskblock:- (* location of process after swap *)
DiskblocklID;

Swapper.mod 2 MurTiBarcH

BEGIN

- IF Resident(process) THEN
diskblock := DiskblockID(PermanentLocation(process));
IF ADDRESS(diskblock) = NIL THEN
diskblock := DiskManager. Allocate(ProcessSize(process));
IF ADDRESS(diskblock) = NIL. THEN
(* no room on disk for process ¥)

RETURN;
END; (% IF *)
END; (* IF =)
UpdateProcessInfo(process, SWAPOUT, ADDRESS(diskblock));
currentlocation := MemoryblockID(MemoryLocation(process));
DiskWrite(currentlocation, diskblock, SwapOutComplete, currentlocation);
END; (% IF %)

END SwapQut;

PROCEDURE SwapOutComplete(currentlocation: WORD);

(* Acknowledge that a process has been swapped out. This procedure is *)

{* passed to the DiskManager as acknowledgment that a swap out has *®)

(* completed. *)

(- | “)

{* PARAMETERS: currentlocation—the memory block to be deallocated. *)
VAR

temp: MemoryblockID;

BEGIN
temp := MemoryblockID(currentlocation);
MemoryManager.Deallocate(temp);

END SwapOutComplete;

BEGIN
END Swapper.

Swapper.mod 3 MuLTiBATCH

DEFINITION MODULE TrapHandler;

(***)

(* *)
(¥ FUNCTION: The Trap Handler responds to the raising of any TRAP interrupt. %)
(* As it responds only to the interrupt signal, it has no exported *)
(* procedures. *)
{* _ *)
(¥ AUTHOR: Rick Fisher *)
(* *)

(e sk otk s ok ook e ook sk kR el o okl ol sk ok skttt et sk ok sk ek)

END TrapHandler.

TrapHandler.def MurTtiBATCH

IMPLEMENTATION MODULE TrapHandler;

(***)

{* *)
(¥ POLICY: All error traps cause a message to be printed, and the termination *)
(* of the program. #*)
N)
(* AUTHOR: Rick Fisher . *)
(* *)
(**************************#**************************************$*********)
FROM SYSTEM IMPORT
(* Constants *)
BYTESPERWORD,
(* Types *)
ADDRESS, WORD,
(* Procedures *)
ADR, SIZE;
FROM VirwalMachine IMPORT
(* Constants *)
BYTESPERPAGE,
{* Types *)

AllTraps, Interruptcode, SVCecode,

(* Procedures *)
ContextBounds, InitOSContext, LowerStackLimit, SetInterruptHandler, SVCArguments;

FROM MemoryManager IMPORT
(* Constants *)
PAGESIZE,

(* Types *)
MemoryblockID, Page, Pageptr;

FROM DiskManager IMPORT
(* Constants *)
SECTORSIZE,

(* Types *)
DiskblockiD,

(* Procedures *} _
Allocate, Deallocate, DiskWrite, Null;

FROM Clock IMPORT

(* Constants *)
TICKSPERSECOND;

TrapHandler.mod _ MurLTiBaTcH

FROM ProcessManager IMPORT
(* Types *)
Actiontype, ProcessID, Statustype,

(* Procedures *)
ChangeStatus, CheckSchedule, Context, Equal, GetNextInput, GetNextOutput,
LinkToOutput, OutputList, Schedule, StoreNextlnput, StoreNextOutput, TrapReason;

FROM Spooler IMPORT
(* Constants *)
ENDofINPUT, ENDof OUTPUT,

(* Procedures *)

EnSpool;

FROM LowLevelScheduler IMPORT
{(* Procedures *)
Block, CurrentContext, CurrentProcess, Sleep, TimeCut;

FROM MediumScheduier IMPORT
{* Procedures *)
Reschedule;

FROM HighLevelScheduler IMPORT
(* Procediires *)
ShoulderTap, Terminate;

FROM STORAGE IMPORT
(* Procedures %)
ALLOCATE, DEALLOCATE;

(* Check the list of scheduled events, and take the appropriate action. %)
PROCEDURE ExecuteScheduledEvents;

YAR
action: (* the action to be taken *}
Actiontype;
process: (* process on which the action is to be taken *)
ProcessID;

BEGIN

REPEAT (* UNTILNULL *)
CheckSchedule(action, process);

(* take appropriate action *)

CASE action OF
NULL: ;

TrapHandler.mod 2 MurTiBaTCH

| TIMEDPREEMFPT:

IF Equal(process, CurrentProcess()) THEN
TimeOut; '

END; (% [F *)

| RESCHEDULE:
Reschedule(process);

| TERMINATE:
FlushOutputBuffer(process);
Terminate(process);

| WAKEUP: :
Wakeup(process);

END; (* CASE %) .

UNTIL action= NULL; -

END ExecuteScheduledEvents;

PROCEDURE FlushOutputBuffer(process: ProcessID);

(*
(*
{*
(*
(*

This procedure adds the ENDofOUTPUT character to a process’s
current output page, then adds that (partial) page to the list of outpur
blocks for the process, and EnSpools the entire list.

PARAMETERS: process—the process whose output is to be flushed. +)

VAR

byte: (* next byte for output on current page *)
CARDINAL;

diskblock: (* the block to which the page is written *)
DiskblockID;

memoryblock: (* the memoryblock in which the page lies *)
MemoryblockID;

outputpage: (* the current output buffer page *)
Page;

pageptr: (* pointer (o the current page *)
Pageptr;

BEGIN

(* punctuate final output page *)
GetNextOutput(process, pageptr, byte, memoryblock);
outputpage := pageptrl;

outputpage[byte] := ENDofOUTPUT;

(* add page to output list *)

diskblock := AHocate(PAGESIZE);
DiskWrite{memoryblock, diskblock, Nuil, NIL);
LinkToOutput(process, diskblock);

EnSpool(OutputList(process) %

END FlushOQutputBuffer;

*)
*)
*)
*)

TrapHandler.mod 3 MuLTIBATCH

CONST

MAXARGS = 2
TYPE :
Argumentlist = ARRAY [0. MAXARGS] OF WORD;
Arglistptr = POQOINTER TO Argumentlist;
(% Find which SVC caused the trap and act accordmgly *)
PROCEDURE ProcessSVC;
VAR -
address: (* for allocating space *)
ADDRESS;
argptr: (* address of arguments to SVC call *)
Arglistptr;
argument: (* the arguments to the SVC call *)
Argumentlist;
diskblock: (* for deallocating diskblocks *)
DiskblockID;
high,
low: (* context bounds *}
ADDRESS;
BEGIN

argptr := Arglistptr(SVCArguments(CurrentContext()));
argument := argptrT;

{* act according to the correct SVC %)
CASE SVCcode(argument[0]) OF
DISKALLOCATESVC(C: _
argument[1] := WORD(Allocate(SECTORSIZE));
| DISKDISPOSESVC:
diskblock := DiskblockID(argument[1]);
Deallocate(diskblock);
| HEAPALLOCATESVC:
address := ADDRESS(argument[2]);
IF LowerStackLimit{ CurrentContext(), CARDINAL (argument{1])) THEN
addressT := WORD(TRUE);
ELSE
addressT := WORD(FALSE);
END; (* IF %)
| READSVC: _
ReadFromInput(CurrentProcess(), ADDRESS(argument[1]), CARDINAL (argument[2]));
| SLEEPSVC:
address ;= ADDRESS(argument[1]);
Sleep(TICKSPERSECOND # CARDINAL(addressT) %
| UPPERBOUNDSVC:
address = ADDRESS(argument[1]);
ContextBounds(CurrentContext(), low, high);
address T := WORD(high);

TrapHandler.mod 4 MuLTiBATCH

| WRITESVC:
WriteToOutput({ CurrentProcess(), ADDRESS{(argument[1]), CARDINAL (argument[2]));
END; (* CASE *)
END ProcessSVC;

PROCEDURE ProcessTrap;

(* Choose the action to be taken on each trap. All error traps, and Halz, ' ®)
(* are handled directly, CHECKSCHEDULE, INITIALIZE, SHOULDERTAP *)
(* and SVC traps are given to other procedures. *)

VAR
process: (* the current process *)
ProcessID;

BEGIN
process := CurrentProcess();
CASE TrapReason(process) OF
BADINSTRUCTION:

WriteL.iteral(process, *Reported error BADINSTRUCTION currently *);
WriteLiteral(process, 'inapplicable: SYSTEM ERROR.");
FlushOutputBuffer(process);
Terminate(process);

| BOUNDSVIOLATION:
WriteLiteral(process, *Attempt to access illegal memory location.’);
. FlushQutputBuffer(process);
Terminate(process);

| CHECKSCHEDULE:
ExecuteScheduledEvents;

i Halt:
WriteLiteral(process, 'User initiated abort.’);
FlushCutputBuffer(process);
Terminate(process);

| INITIALIZE:
InitOSContext;

| MODEVIOLATION:
WriteLiteral(process, *Attempt to execute privileged instruction.’);
FlushOutputBuffer(process);
Terminate(process);

| OUTofRANGE:
WriteLiteral(process, *Attempt to access non-existent memory location.’);
FlushQOutputBuffer(process);
Terminate(process);

| SHOULDERTAP:
ShoulderTap;

| STACKOVERFLOW:
WriteLiteral(process, ’Stack overflow.’);
FlushOutputBuffer{process);
Terminate(process);

|- SVC:
ProcessSVC,

TrapHandler.mod 5 MuLTIBATCH

| UNDEFINEDINSTRUCTION:
WriteLiteral(process, *Reported error UNDEFINEDINSTRUCTION currently *);
WriteLiteral(process, 'inapplicable: SYSTEM ERROR.’);
FlushQutputBuffer(process);
Terminate(process);
END;
END ProcessTrap;

PROCEDURE ReadFromInput(process: ProcessID; bufferptr: ADDRESS;
bytecount: CARDINALY);

(* Copy the specified number of characters from the input file of the given *)
(* process to the memory location starting at the given address. Start with the *)
(* first input character not yet read. *)
(* *)
(* PARAMETERS: process—the process whose input file is to be read. *)
{* bufferptr—the starting address of the variable *)
(* into which the input should be read. _ *)
(* bytecount—the number of characters to be read. *)
VAR
buffer: (* the page pointed to by bufferptr *) -
Page;
byte: (* next byte to be read from current page *)

[0 .. BYTESPERPAGEF;
i, .
j (* loop indices *)

CARDINAL;

inputpage: (* the current page of input *)
Page;

pageaddress, (* address of current input page *)

tempptr: (* used in type conversions *)

. Pageptr;

tempaddress: (* used in type conversions %)

ADDRESS;

BEGIN

(* initialize *)

GetNextInput(process, pa%eaddress, byte);
inputpage := pageaddress|;

tempptr := Pageptr(bufferptr);

buffer := tempptr T;

i:=0;

j=0

TrapHandler.mod 6 MurTiBaTCH

(* transfer characters until finished or EOF *)
WHILE (j < bytecount) & (inputpage[byte] # ENDofINPUT) DO
buffer(i] := inputpageibyte];
INC();
INC();
INC(byte);

(* need new page of inpus? *)
IF byte = BYTESPERPAGE THEN

byte := 0;
tempaddress := ADDRESS(pageaddress);
INC(tempaddress, PAGESIZE);

pageaddress := Pageptr(tempaddress);
inputpage := pageaddnessT;
END; (* IF byte *)

(* need new page of buffer? *)

IF i = BYTESPERPAGE THEN
i=0;
INC(bufferptr, PAGESIZE);
tempptr := Pageptr(bufferptr);
buffer := tempptrT;

END; (* IF i %)

" END; (* WHILE *)

(* test for EOF %)

IF (inputpage[byte] = ENDofINPUT) & (j < bytecount) THEN
WriteLiteral(process, "Attempt to read past end of file.”);
FlushOutputB uffer{process);

Terminate(process);

ELSE
StoreNextInput(process, pageaddress, byte);

END; (% IF inputpage *)

END ReadFromlInput;

(* Respond to completion of a disk write. *)
PROCEDURE Wakeup(process: WORD);

(* *)
f* PARAMETERS: process—the process ID of the process to be awakened, *)
(* cast as type WORD. *)
BEGIN

ChangeStatus(ProcessID(process), PENDING };
Reschedule(ProcessID(process));
END Wakeup;

TrapHandler.mod 7 MULTIBATCH

PROCEDURE WriteLiteral(process: ProcessID; string: ARRAY OF CHAR);

(* Place a literal string into a parameter, so that its address can be used as
(* a parameter to WriteToQutput. It is assumed that literal strings are
{* written to user’s output only in the case of terminal failure of a program.
(%
(% PARAMETERS: string—the characters to be written.
BEGIN :
WriteToOutput(process, ADR(string), SIZE(string));
END WriteLiteral;

PROCEDURE WriteToOutput(process: ProcessID; bufferptr: ADDRESS;
bytecount: CARDINAL);

(* Copy the specified number of characters (maximum 128) to the output file
(* of the given process from the memory location starting at the given address.
f* Start immediately after the last output character previously written.
(* '
(* PARAMETERS: process—the process whose output file is to be written.
(* bufferptr—the starting address of the variable from which
(* the output should be written.
(* bytecount—the number of characters to be written.

VAR .

buffer: (* the page pointed to by bufferptr *)

Page;
byte: (* next byte of current output page to be written *)

[0.. BYTESPERPAGE];
diskblock: (* block ID to which output will be written *)

DiskblockiD;

i (* loop indices *)

CARDINAL; _
memoryblock, (* memoryblock associated with current output page *)
oldmemoryblock: (* memoryblock associared with previous output page *)

MemoryblockID;
outputpage: (* current memory page receiving output *)

Page:
pagewrite: (* becomes TRUE if output page must be written)

BOOLEAN;
pageaddress, (* address of current output page *)
tempptr: (* used in type conversions *)

Pageptr;

BEGIN

(* initialize *)
pagewrite := FALSE,
GetNextOutput({process, pageaddress, byte, memorybiock);

*)
*)
*)
*)
*)

%)
*)
*)
*)
*)
*)
*)
*)

TrapHandler.mod _ 8 MULTIBATCH

outputpage := pageaddressT;

tempptr := Pageptr(bufferptr);

buffer := tempptrT;

IF bytecount > BYTESPERPAGE THEN
bytecount := BYTESPERPAGE;

END; (% IF bytecount *)

(* transfer characters *)

FOR i := 0 TO bytecount - 1 DO
outputpagelbyte] := bufferfi];
INC(byte);

. {* need new output page? *)

IF byte = BYTESPERPAGE THEN
pagewrite := TRUE;
oldmemoryblock := memoryblock;
StoreNextQutput(process, pageaddress, byie);
GetNextOutput(process, pageaddress, byte, memoryblock);

END:; (* IF byte %)

END; (x FOR *)

StoreNextOutput(process, pageaddress, byte);

IF pagewrite THEN
diskblock := Allocate(PAGESIZE);
DiskWrite(oldmemoryblock, diskblock, Wakeup, process);
LinkToQutput(process, diskblock);
Block;
END; (* IF pagewrite *)
END WriteToOutput;

BEGIN (* module initialization *)

SetInterruptHandler(TRAP, ProcessTrap);
END TrapHandler.

TrapHandler.mod 9

MuLtiBaTcH

DEFINITION MODULE VirtualMachine;

(*****=!=****************************#**)

(* *)
(¥ FUNCTION: This module presents a ‘‘higher level’” machine than that of *)
(* LocalSystem. VirtualMachine is a low-level module, dependent *)
(* upon LocalSystem; however, modules may import from *)
(* VirtualSystem and remain portable. NO OTHER MODULE *)
(* SHOULD IMPORT ANYTHING DIRECTLY FROM - *)
(* LOCALSYSTEM, as that would diminish the portability of *)
(* the entire system. VirtualMachine defines the machine *)
(% as visible to the rest of the operating system. *)
(* _ *)
(* AUTHOR: Rick Fisher *)
(* *)
(AR ok ook R AR o Rl ook o o ok ksl ool ook ool o s ol ook e ok sl e)
FROM SYSTEM IMPORT
(* Constants *)
BYTESPERWORD,
(* Types *)
ADDRESS;
FROM LocalSystem IMPORT

(* Constants *)
HIGHMGODEINSTRUCTION, WORDSINMEMORY

EXPORT QUALIFIED
{(* Constants *)
BYTESPERPAGE, BYTESPERSECTOR, HIGHINSTRUCTION, MEMORYSIZE,

(* Types *)
AllTraps, ContextID, Interruptcode, Mcodeinstruction, OSTraps, SVCcode,

(* Procedures *)

ContextBounds, ContextSize, DiskRead, DiskWrite, HighOSBound,
InitOSContext, LowerStackLimit, NewContext, Read, ReturnFromInterrupt,
SetInterruptHandler, SetPC, SVCArguments, SwitchContext, Trap,
TrapReason, UpdateContext, Write;

CONST
BYTESPERPAGE = 128;
BYTESPERSECTOR = 128,
HIGHINSTRUCTION = HIGHMCODEINSTRUCTION; (* 377 octal *)
MEMORYSIZE = WORDSINMEMORY DIV BYTESPERPAGE

* BYTESPERWORD; (* 64K bytes *}

VirtualMachine.def MULTIBATCH

TYPE

AllTraps = (BADINSTRUCTION, CHECKSCHEDULE,
Halt,INITIALIZE, SHOULDERTAP, SVC,
UNDEFINEDINSTRUCTION, BOUNDSVIOLATION,
MODEVIOLATION, OUTofRANGE,
STACKOVERFLOW, VALUERANGE);

ContextID; (* pointer to the actual context *)

Inierruptcode = (TRAP, CARDREADER, LINEPRINTER, DISK, CLOCK);

Mcodeinstruction = [0 .. HIGHINSTRUCTION];

OSTraps = [BADINSTRUCTION .. UNDEFINEDINSTRUCTION];

(* all other traps are called directly by the machine *)

SVCcode = (DISKALLOCATESVC, DISKDISPOSESVC, DISKREADSVC,
DISKWRITESVC, HEAPALLOCATESVC, READSVC,
SLEEPSVC, WRITESVC,UPPERBOUNDSVC);

PROCEDURE ContextBounds(context: ContextID; VAR low, high: ADDRESS);

{* Find the limits of memory to which the context refers. *)
(* %)
(* PARAMETERS: context—the ID of the context in question. *)
{* low—the lowest address of the context.)
(* high—the highest address of the context. *)

PROCEDURE ContextSize(): CARDINAL;
(* RETURNS the size in words of a context. %)

PROCEDURE DiskRead(disksector: CARDINAL; memoryaddress: ADDRESS);

(* Start the disk and return. The disk will run concurrently with *)
(* the CPU and transfer the given sector to the given memory location. *)
(* If the procedure is called before being notified by a device interrupt *)
(* that the disk has finished if s last read, the command may be *)
(* lost. ®)
(* *)
{* PARAMETERS: diskaddress—the sector of the disk from which data is #)
(* to be read. *)
(* memoryaddress—the starting address of memory into *)
(* which data is to be loaded. *)

VirtualMachine.def 2 MULTIBATCH

PROCEDURE DiskWrite(memoryaddress: ADDRESS; diskaddress: CARDINALY);

{* Start the disk and return. The disk will run concurrently with the %)
(* CPU and transfer the memory block starting at the given address to *)
(* the given disk sector. If the procedure is called before being notified by *)
(* a device interrupt that the disk has finished it’ s last write, the *)
(* command may be lost. *)
(* %)
(* PARAMETERS: memoryaddress—the starting address of memory *)
(* from which data is to be fetched. *)
(* diskaddress—the sector of the disk to which data *)
(* is to be written. _ *)

PROCEDURE HighOSBound(): ADDRESS;

(* RETURNS the highest address occupied by the operating system. *)
PROCEDURE InitOSContext;

(* Set certain values in the operating system’s context. Ineffective if *)
(* not called during an INITIALIZE trap. Must be called during system %)
(* initialization. +}

PROCEDURE LowerStackLimit(context: ContextID; amount;: CARDINAL): BOOLEAN;.

(* Attempt to lower the context’s stack limit by the given amount in words, *)
(* thus giving more room for heap space. . . #)
(* %)
(* PARAMETERS: context—the ID of the context whose stack limit is *)
(* to be lowered. *)
(* amount—the number of words the stack limit is to be *®)
(* lowered. *)
(* RETURNS TRUE if successful, FALSE otherwise. *)

PROCEDURE NewContext(processbase, stackbase: ADDRESS;
stacksize: CARDINAL): ContextID;

(* Create a new context. The caller must insure that the code frames and *)
(* stacks of the contexts do not overlap. *)
(* *)
(* PARAMETERS: processbase~starting address available in the context. *)
(* stackbase—starting address of the stack. *)
(* stacksize—size of the stack in words. *®)
(% RETURNS a context ID for the context. *)

VirtualMachine.def 3 MuLTIBATCH

PROCEDURE Read(): CHAR;

(*
(*
(*
(*
(*
(*
(*

Get the value of the character currently in the reserved input buffer
memory location, and start the card reader getting the next character.
Calling this procedure before being notified by a device interrupt
that the card reader has finished may result in lost and/or duplicated
characters.

RETURNS the character most recently read by the card reader.

PROCEDURE ReturnFrmenterrupt(type: Interruptcode);

(*
(*
{*
(*
(*
{*

Return to an interrupted process. The context of the current process
is not saved, as this instruction should only be executed when the
current process has finished. (The context of the operating system is
permanently stored in a reserved memory location.)

PARAMETERS: type—the type of interrupt being concluded.

PROCEDURE SetInterruptHandler(type: Interruptcode; handler: PROC);

{*
(*
(*
(*
(*

Set the second word of an interrupt vecior to the address of the correct
interrupt handling routine.

PARAMETERS: type—the type of interrupt handler being set.
handler—the address of the handling routine.

PROCEDURE SetPC(context: ContextID; PC: ADDRESS);

{*
(*
{*
(*
(*
{*
(*
(*

Change the PC of a non-running context. The next time there is a
context switch to this context, instruction execution will start from
the altered PC.

PARAMETERS: context—the ID of the context whose PC is to be changed.
PC—the address to which the context' s PC should be
changed. The caller must ensure that the PC is

within the code frame of the context.

PROCEDURE SVCArguments(context: ContextID): ADDRESS;

(*
(*
(*
(*
(*
(*
(*
(*
(*
(%

Obtain from a previously executing context the arguments of the Supervisor

Call that caused the context switch. Should be used only if the context
switch was caused by a SVC.

PARAMETERS: context—the ID of the previously executing context.

RETURNS a pointer to the SVC arguments. If the context switch was
caused by something other than an SVC, the pointer returned
will probably be NIL, but it may point to nonsense values.
Otherwise, the values will be as follows:

WORD{[0] is always the ordinal value of the SVC.

*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)

#)
#)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

VirtnalMachine.def 4 MuLTIBATCH

(% IfWORD[0] is DISKALLOCATESVC or DISKDISPOSESVC, *)
(* then WORD{1] is a pointer to the ID of the disk sector ®)
(* to be allocated or freed. *)
(% IfWORD{0] is READSVC or WRITESVC, then WORD[1] %)
(* is the starting address involved in the transfer, *)
(* and WORD{2] is the number of bytes (characters) to be *)
(* transfered. *}
(* IfWORD[0] is HEAPALLOCATESVC, then WORD(1] is the *)
(# number of words to be allocated, and WORD([2] is a #)
(* pointer to a success flag. *)
(* IF WORD({0] is SLEEPSVC, then WORD[1] is a pointer to *)
(% the amount of time the process should sleep. #)
(% IF WORD{0} is UPPERBQUNDSVC, then WORD{1] is a *)
(* pointer to the process’s uppermost address. *)
PROCEDURE SwitchContext{context; ContextID);
(* Set the return context of the current trap interupt, so that when the *)
(* trap concludes, the new context will take control of the CPU. *)
(* #)
{* PARAMETERS: context—~the ID of the context to be given control of *)
(* the CPU. *)
PROCEDURE Trap(reason: OSTraps);
(* Force an interrupt, causing the trap handling routine to be called with *)
* “‘reason’’ as a parameter. *)
(* *)
(* PARAMETERS: reason—the cause of the trap. Valid reasons are: *)
(* BADINSTRUCTION: illegal characters in instruction. *)
{* CHECKSCHEDULE: execute events scheduled for *)
(* any processes. *)
(* Hal: abort process. *)
{* INITIALIZE: set up initial OS context. Only *)
(* call during initialization. *)
(* SHOULDERTAP: see if a job can be changed to a new *)
(* process. #)
(* SVC: " supervisor call. *)
{* UNDEFINEDINSTRUCTION: no such M-Code instruction defined. *)
PROCEDURE TrapReason(context: ContextID): AllTraps;
(* Find the reason for the given context having been trapped. *)
(* ' ' *)
(* PARAMETERS: context—the ID of the context which was trapped. *)
(* RETURNS the type of trap. %)
VirtuaiMachine.def 5 MUuLTIBATCH

PROCEDURE UpdateContext(context: ContextID; offset: INTEGER);

{*
(*
{*
(*
{*

Change all absolute addresses in the context by a specified amount.

PARAMETERS: context—the ID of the context being changed.
offset—the amount by which the addresses should be
altered.

PROCEDURE Write(character; CHAR);

(* Instruct the line printer to print a character. Calling this procedure
(* will overwrite the current contents of the reserved output buffer memory
(* location. Calling it without waiting for notification from a device
(* interrupt that the line printer has finished will result in lost
(* characters.
(*
(* PARAMETERS: character—the character io be written.
END VirtualMachine.

*)
*)
*)
*)

*)
*)
*)

.*)

*)
*)
*)

YirtualMachine.def 6 MULTIBATCH

IMPLEMENTATION MODULE VirtualMachine;

(***)

(¥ POLICY: Relay requests directly to LocalSystem procedures whenever *)
{* possible. *)
(* *)
(¥ AUTHOR: Rick Fisher - ' *)
(* %)
(*******#******#**)
FROM SYSTEM IMPORT
(* Constants *)
BYTESPERWORD,
{* Types *)
ADDRESS, SIZE,
(* Procedures *)
ADR;
IMPORT LocalSystem;
CONST
HIGHSVC = WRITESVC;
TYPE
ContextID =

POINTER TO LocalSystem.Context;

(+ Get the context address boundaries. »)
PROCEDURE ContextBounds{context: ContextID; VAR low, high: ADDRESS);

BEGIN
low := contextT segmenttable;
high := contextT.stacklimit;
END ContextBounds;

(* Find the size of a context. *)
PROCEDURE CentextSize(): CARDINAL;

VAR
context:(* any context *)
ContextID;

BEGIN

RETURN SIZE(contextT);
END ContextSize;

VirtualMachine.mod : MurTiBaTcH

(* Read asector from disk. *)
PROCEDURE DiskRead(disksector: CARDINAL; memoryaddress: ADDRESS);

BEGIN
LocalSystem. DiskRead(disksector, memoryaddress);
END DiskRead;

(* Write a sector to disk. *)
PROCEDURE DiskWrite(memoryaddress: ADDRESS; disksector: CARDINAL);

BEGIN
LocalSystem. DiskWrite(memoryaddress, disksector);
END DiskWrite;

(* Find the high OS bound. *)
PROCEDURE HighOSBound(): ADDRESS;

VAR
oscontext: (* operating system context *)
ContextID; :
BEGIN
oscontext ;= ContextID(LocalSystem.OScontext);
RETURN oscontext T.upperbound;
END HighOSBound;

(* Initialize the operating system’s context, *)
PROCEDURE InitOSContext();

VAR
context, (* the operating system context *)
nullcontext: (* the null process context *)
ContextID;

BEGIN
context := ContextID(LocalSystem.OScontext);
WITH contextT DO

(* allow 2K bytes for stack and heap *)
upperbound := stacktop + 16 * BYTESPERPAGE DIV BYTESPERWORD;
stacklimit := upperbound - SIZE(contextT);

END; (* WITH *)

(* create null context at top of heap identical to OS context %)
nullcontext := ContextID(context T.stacklimit + 1);
nullcontextT := LocalSystem.Context(contextT);
SwitchContext(nullcontext);

END InitOSContext;

YirtualMachine.mod 2 MULTIBATCH

{* Lower the stack limit to make more room for heap. *)
PROCEDURE LowerStackLimit(context: ContextID; amount: CARDINAL): BOOLEAN;

BEGIN
WITH contextT DO _
IF CARDINAL(stacklimit - stacktop) »= amount THEN
DEC(stacklimit, amount);
RETURN TRUE;
ELSE
RETURN FALSE;
END; (* IF)
END; (* WITH *)
END LowerStackLimit;

(* Create a new context. *) ,
PROCEDURE NewContext(processbase, stackbase: ADDRESS;
stacksize:CARDINAL): ContextID;

VAR
context; (* the context being created %)
ContextID;
i (* loop index *)
CARDINAL;
BEGIN

(* locate context at bottom of process stack *)
context = ContextID(stackbase);

WITH contextT DO
INC{ stackbase, SIZE(contextT));
DEC(stacksize, SIZE(contextT));
dataframe := processbase + SIZE(segmenttable T);
currentactivation := stacktop;
PC := ADDRESS(dataframe T .codeframeT);
interruptmask := {15}; (* mode bit *)
stacktop := stackbase + SIZE(contextT);
stacklimit := stackbase + stacksize;
segmenttable := processbase;
upperbound := stacklimit;

(* set correct addresses in the segment table *)
FOR i := 0 TO SIZE(segmenttable T} - 1 DO
INC(segmenttableT[i], processbase);
END; (* FOR %)
END; (* WITH %)

RETURN context;
END NewContext;

VirtualMachine. mod 3 . MuLTiIBATCH

{(* Read a character from a card. #%)
PROCEDURE Read(); CHAR;

VAR
temp: (* temporary holder for the input buffer)
CHAR;

BEGIN :
temp := LocalSystem inputbuffer;
LocalSystem.Read;

RETURN temp;

END Read;

(* Return to the interrupted process. *)
PROCEDURE ReturnFromInterrupt(type: Interruptcode);

BEGIN
LocalSystem.ContextSwitch(Local System.interruptvectorf ORD(type) + 7].formercontext);
END ReturnFromInterrupt;

(* Set the interrupt handler. %)
PROCEDURE SetinterruptHandler{type: Interruptcode; routine;: PROC);

BEGIN :

- LocalSystem.interruptvector] ORD(type) + LocalSystem. LOWINTERRUPT l.interrupthandler
= routine;

END SetInterruptHandler;

(* SetPC in acontext. *)
PROCEDURE SetPC(context: ContextID; PC: ADDRESS);

BEGIN
contextT.PC := PC;
END SetPC;

(* Get the address of the argument to a Supervisor Call. *)
PROCEDURE SVCArguments(context: ContextID): ADDRESS;

VAR
argaddress: (* the address of the first argument *)
ADDRESS;

BEGIN

(* first find location of address of previous activation record *)
argaddress := context | .cutrentactivation + 1;

VirtualMachine.mod 4) MuLTiBarcH

(¥ now get the address of its parameters *)
argaddress := ADDRESS(argaddressT) + 4;

(¥ make sure it was an SVC trap %)

IF CARDINAL(argaddressT) <= CARD]NAL(I{IGHSVC) THEN
RETURN argaddress;

ELSE
RETURN NIL,;

END; (* IF %)

END SVCArguments;

(% Switch the context. ¥)
PROCEDURE SwitchContext(context: ContextID);

BEGIN
LocalSystem.interruptvector[LocalSystem TRAP].formercontext := ADDRESS(context);
END SwitchContext;

(* Trap signaler. *)
PROCEDURE Trap(reason: OSTraps);

BEGIN
CASE reason OF _
BADINSTRUCTION:
LocalSystem.Trap(LocalSystem. BADINSTRUCTION});
| CHECKSCHEDULE:
LocalSystem.Trap{LocalSystem. CHECKSCHEDULEY);
| Halt:
LocalSystem.Trap(Local System. Halt);
| INITIALIZE:
LocalSystem.Trap(Local System, INITIALIZE);
| SHOULDERTAP:
LocalSystem.Trap(Local System. SHOULDERTAFP);
| SVC
‘ LocalSystem, Trap(LocalSystem.SVC);
| UNDEFINEDINSTRUCTION:
LocalSystem.Trap(LocalSystem. UNDEFINEDINSTRUCTION);
ELSE END; (* CASE *)
END Trap;

VirtualMachine.mod 5 MuLTIBATCH

(* Find the reason for a trap. *)
PROCEDURE TrapReason(context: ContextID): AllTraps;

BEGIN
CASE contextT .trap OF

LocalSystem.BADINSTRUCTION:
RETURN BADINSTRUCTION;
LocalSystem, BOUNDSVIOLATION:
RETURN BOUNDSVIOLATION;
LocalSystem. CHECKSCHEDULE:
RETURN CHECKSCHEDULE;
LocalSystem Hait:
RETURN Halt;
LocalSystem. INITIALIZE:
RETURN INITIALIZE;
LocalSystem MODEVIOLATION:
RETURN MODEVIOLATION;
LocalSystem, OUTofRANGE:
RETURN OUTofRANGE;
LocalSystem.SHOULDERTAP:
RETURN SHOULDERTAP;
LocalSystem. STACKOVERFLOW:
RETURN STACKOVERFLOW;
LocalSystem . SVC;
RETURN SVC;
LocalSystem, UNDEFINEDINSTRUCTION:
RETURN UNDEFINEDINSTRUCTION;
LocalSystem. VALUERANGE:
RETURN VALUERANGE;

END; (* CASE *)
END TrapReason;

(* Change the addresses in context by the gffset. *)
PROCEDURE UpdateContext(context: ContextID; offset: INTEGER);

VAR
i: (* loop index *)
CARDINAL;
datatemp,
segmenttemp: (* for type conversion purposes *)
ADDRESS;

YirtualMachine . mod 6

MULTIBATCH

BEGIN
WITH contextT DO
segmenttemp := ADDRESS(segmenttable);
datatemp := ADDRESS(dataframe);
INC{segmenttemp, offset);
INC(datatemp, offset);
INC(currentactivation, offset);
INC(stacktop, offset);
INC(stacklimit, offset);
segmenttable := LocalSystem. Segmenttableptr(segmenttemp),
dataframe := LocalSystem.Dataframeptr(datatemp);

(* update addresses in segment table *)
FOR i := 0 TO SIZE(segmenitable T) DO
INC(segmenttable Tfi], offset),
END; (* FOR *)
END; (* WITH *)

END UpdateContext;
(* Send a character to the printer. *)
PROCEDURE Write(character: CHAR);
BEGIN

LocalSystem.outputbuffer := character;

LocalSystem. Write;
END Write;

BEGIN _
END VirtualMachine,

YirtunalMachine.mod 7

MuLTIBATCH

