An Integrated Approach to
General Software Monitoring

TR86-022
May 1986

Stephen Edward Duncan

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Aflirmative Action Institution.

The SoftLab Project

‘An Integrated Approach
to |
General Software Monitoring

Stephen Edward Duncan

May 1586

Abstract
'fhis thesis describes a system of general data collection and analysis tools for monitoring user programs
and the Unix Kemel. The data is produced by sensors that are defined in 2 Sensor Descriptor Language,
and can be placed in bother user and system code. The analysis tools treat the data as a relational data-
base, with each.sehsm' producing mi:la. in its own relation. Specific sensors have been installed in the file

systerri source code and a sample database created to demonstréte the utility of the approach.

SoftLab Document No. 27

Copyright @ MCMLXXXVI Stephen Edward Duncan

Department of Computer Science
~ University of North Carolina
Chapel Hill, NC 27514

Acknowledgments

I would like to express my appreciation for the support and assistance of my thesis committee, Mahadev
Satyanaraya:gan, John Smith, and most especially the committee chairman, Rick Snodgrass, in the
development of the thesis document. M.zmyj helped in the project development, both in technical assis-
~ tance and the contribution of ideas, Rick, Satya, Tim Seaver, and the teams at Carnegie-Mellon and Ohio

State who suffered through early releases. Finally I would like to thank my wife, Lynne, for her support

- throughout the project.

ii

Table Of Contents

Chépter I'Introduction . .1
Chapter 2 Software Monitoring 3
2.1 UNIX Tools - . 3
2.2 Previous Wark by Other Researchers . _ 5
2.3 Overview of Thesis Project | 6
Chapter 3 Event.Record Data Structures .9
3.1 Constraints .
3.2 Event Buffer ' : .
3.3 Streams, Tuples, and Schemas w10
3.4 Implementation : : . 10
Chapter 4 Sehsoﬁ _ 14
4.1 Basic Sénsor Design : ' 14
4.2 What Do We Want To Find Out? : ' 15
4.3 Overview of the Unix File System. 15
4.4 The Sensors 15
4.5 Testing : , S
4.6 Future Work i IS S e e O SR R A S84 SRRSO SRR S R SR SR HA SRt eSS e 88 18
Cha:pter 5 System Call — the Monitor et oot e e e e 22
5.1 Function sasnsansssiminsnesousisstRos e abbet easebaranasie 22
5.2 Decoding a Command ' ' . 23
5.3 Command Operation 24
5.4 Testing evtsseesesrssaos e eR AR et e meee 26
Chapter 6 Accountant eveemmessssossorensmasssseassoisssesessssssssone 2T
6.1 Standalone FUNCON .. ssscemrsrsssssmessmissismesnssssssass sossasemenss soass R—-y
6.2 INUEINAL OPCIALIOR ..ovceirrsessresseressssmmssrersisssssmarasrssssassscrsssss seatacssasssastansnss sosssessas prsssmacararsassssares sesyass samanssesees 28
6.3 Use usssussssenssstenssstiasarssasens s s ene R s atn s as SR s ' 29

6.4 User Communication 30

6.5 Future Changes t0 USe SiZNAIS ...cecuscissssiessesmmossonmsmionssisissaniammesssriasasmmtassassos sasnsssassassrsnssssasssrsassrsassssse 30

6.6 Testing 30
Chapter 7 Analysis TOOISccececvunierecuscensesssssnsnonnsns . evmraeniressseras semstaneraneaesesansesaesases 32
7.1 Relational Database Paradigm JUTOUPTRRRO. X
7.2 The Tools 34
7.3 TOOI IMPIEMENLAUON ...c.vomeusuncseomsasaosorssasesossssssossssssasasmonon sossansanasos sassesotsssssaossssssarasssasassesssssssssss senssas 36
7.4 Transforming Relational Operators to Tools- 39
Chapter § Conclusion and Future Work 45
8.1 Implementation 45
8.2 Operation and Analysis... iassoss sesserensoeneas 46
8.3 Future work ' R 47
BADHOZTAPRY. couscuommonecommsosonsosascosasassassosssssnaness ssassscssasssosossascass sarmsssbor 199950605005000906950048 0 s000n a0n 085580830050 scannse 49
Generating Standard Sensors Appendix A
Unix manual pages Appendix B
Installing the Monitor System, Release 1.3 ' Appendix C

Source Code eeesesestistin st arata b et se s e anent AR AR e u s bdraadr emane Appendix D

iv

Chapter 1

Introduction

The purpose of this master’s project is to provide a general purpose method for instrumenting and moni-
toring software. Towards this end, a suite of general data collection and analysis tools for moni :orir;g user
programs and the UNIX kernel have been designed and implemented. Specific sensors have been
installed in the file system source code, that have been used to generate a sample database used to demon-
strate the utility of the tools. This tool suite will assist users with the evaluatidn of their software and will

assist them in experiments performed on those systems.

The design of the monitoring system was driven by a set of questions concerning the Unix file systeri.
These questions required a specific set of data retrieved via sensors in the Unix kemel, an accounting user
program to control the sensors, and a monitoring system call to act.as an interfﬁce between the accounting

program and the sensors. A flexible method to investigate the data is provided in the set of analysis tools.

When the project was begun, only static observations of file systemns existed [13] [18] [15]. To gét a
significant increase in the knowledge of file system usage dynamic information was needed. The original
goal of this project was to provide this data. Implementing the software to record the dynamic use data
showed that the approach could be modified from a specific monitoring system into a generalized monitor-
ing system, During the course of this project, other researchers have since done some dynamic studies,

notably Qusterhout [12] and Floyd [4], which will bé discussed below with other monitoring approaches.

Following this introduction is a review of the current state of software monitoring and its relation to this
project. Each of the remaining chapters discuss an aspect of the project’s implementation. Chapter 3
discusses the data structures used in the system. Chapters 4, 5, and 6 discuss the data gathering parts of
the system. The sensors are described in chapter 4 and in Appendix A, with the chapter covering the

specific design and placement of the implemented sensors and the appendix covering the method of sensor |

generation. Chapter 5 details the requirements and workings of the monitoring system call, and chapter 6

discusses the accounting process with which it interacts. The tools to analyze the data are discussed in
Chapter 7. The chapter discusses the paradigm used to view the data and gives 2 description of the high
level implementation used to meet this paradigm. One appendix contains manual pages describing the

user interface, while an additional appendix contains directions for installing a distribution of the system.

This document uses a set of fonts to distinguish types of special terms. Jtalics are used t introduce spe-
cial terms and is used in dispilays of relational algebra expressions and C comments. C variables are
presented in typewriter and keywords are in typewriter bold, while displays of terminal out-
put are in typewriter bold and typed input is shown in typewriter. Unix file names and pro-

gram names are presented in the body of the text in helvetica slanted.

iy

Chapter 2
Software Monitoring
This chapter describes other work done in software monitoring as it relates to the approach taken in this
project. This is organized into three sections. The first describes the tools available with the Unix operat-

ing system, the second describes work done by other researchers, and the third describes the approach

taken here.

2.1. UNIX Tools

A small set of tools for software monitoring is supplied with the Unix operating system. These are sum-

marized in the table below and discussed in the paragraphs that follow.

dbx allows dynamic control and inspection of an executing process,
gerotiprof provides a trace of the function calls made by a process.

lostat reports device Vo statistics for the system.

vmstat reports virtual memory statistics for the system.

ps provides a report of all processes in the system,

teoy performs instruction counting.

kemnel tracing provides information about certain events in the kemnel.
print statments inserted into code, provides flexible but primitive monitoring.

2.1.1, dbx

The purpose of dbx is to assist in tracing logic problems while developing a program. It can examine
specifics of a program’s execution and possesses facilities for tracing and recording data, but pfovides no
information or control of systerﬁ calls or of details within the operating system, and is limited to operating
on a single process at a time. Programs that use dbx are compiled with an option that keeps additional

data that are used in tracing the program.

2.1.2. gprof and prof

The related tools gprof [8] and prof are designed to show the control flow within a program. Both can be
used on user processes; gorof can also be used on a specially configured kernel. Neither tool allows infor-
mation other than execution of a function to be recorded, so that the state of the process can’t be deter-
mined for a given function execution. This prevents the recovery of sysiem call usage by a user from the

information provided by the profiled kernel,

2.1.3, System statistics

Jostat and vmstat provide statistics on the operating system, while ps provides statistics on user
processes. Jostat reports the i/o operations for devices and vmstat reports statistics on the operating
system’s virtual memory. Neither present any information regarding individual processes, only zbout the
system as a. whole, Ps provides information about processes, but only from the system process table, not

from their internal state, such as the routine currently executing or the contents of variables.

2.1.4. kernel tracing

Tracing may be configured into the kernel. It provides for the recording of events in the kemel, and can
be dynamically controlled. New events can’t be easily added, nor can the information interrogated by the

sensors be changed.

2.15. tcov (instruction counting)

tcov produces a statement-by-statement profile of a C program, useful for determining the often executed
code sections and the determining test coverage, A program uses it by specifying an option to the com-
piler that does the actual work of inserting the monitoring code. Each time the program is run, the moni-
toring information is updated, and can be viewed using fcov . This approach differs from that of gprof and

prof in ihat only counts and not durations are measured [21].

2.1.6. Adding print statements

The most basic method of monitoring software is the insertion of print statements into the code. With

analyzing memory dumps, it is among the earliest methods developed. Since it is so basic, it can provide

the basis for more complex systems, but these must be built ad Aoc for each target. The limit on informa-
tion about system calls is also not covered. The output is also slow, unless special efforts are made to

affect the buffering,

2.1.7. Limitations of Existing Unix Tools for Software Monitoring

‘While Unix provides a reasonable assortment of monitoring tools, the tools themselves are not designed to
work together and there are major gaps In its coverage. No information about system usage by individual

processes is provided, nor is any method of relating an individual process to the system as a whole.

2.2, Previous Work by Other Researchers

The use of the data produced by monitoring as a database has .been suggested by Garcia-Molina er al. [5)]
in their proposal for debugging a distributed computing system. They propose gathering data through the
normal software monitoring approach of instailing sensors. Their approach differs from traditional moni-
toring approaches by treating the data produced as a single relation in a database. This has the tremendous
advantage of using existing database software for developing analytic tools Their prﬁne interest is in pro-

viding and examining traces of transactions in a distributed system.

* Goldberg and Popek use software monitoring in their analysis of a distributed file system [7]. Their pur-
pose was to use the data gathered for evaluating the relative merits of a distributed file system versus a
local file system, and for optimizing the distributed system. Their interests lie in performance measure-
ments, so that their sensors are used to determine the execution time of functions. The system they use. is

not intended to be a general monitoring system.

' Miller, Macrander, and Sechrest developed a monitoring system for metering distributed programs [11].
Their approach was to instrument the communications and process control routines in the Unix kemel
with metering controlled by daemons. Processes to be metered are specified to the daemon, which creates
a filter process to handle the metering data. Programs to analyze the data must be written by the user,
User prograrns to be metered by the system require no modification, nor can additional metering be added
to a program. While their method is extensible to other events in the kernel, it is not intended to meter

process events that do not occur in the kernel and is not readily extensible to handle such metering. This

-

system is clearly meant to provide a means of debugging and studying distributed programs on a case by

‘case basis, rather than to analyze the behavior of the entire sytem.

Kupfer discusses a method of remote procedures call for implementing monitoring tools and uses vmstat
as an example. This is a study in remote monitoring implementation using an existing protocol rather than

an actual monitoring system. {10]

Concurrent with the development of the project presented in this thesis are projects by Ousterhout and
Fioyd. Ousterhout et al. insmxmehted the Unix file system and created tools to analyze the data produced
[12). Specific sensors were created to monitor events in the file system for answering specific questions
about the file system. The thrust of their investigation was o use monitoring. to investigate specific
behavior of the Unix file system, rather than to illustrate a general monitoring approach through such an

imvestigation.

The approach by Floyd [4] also entailed instrumenting the file system. The thrust of his investigation is
the .implications of the use of files and directories for designing and evaluating distributed file system
implementations. To accomplish this a tool was built for characteﬁzi’hg the usage of files by the examina-
tion of' data produced by the sensors, allowing the selection of &m based on file usage. | Statistical tools
were used to examine the resulting breakdowns, so that relative usage of file types could be compared. A
set of library routines associates related sensor data, such as that for open and close operations, to relieve
the analysis programs of that burden. It differs from the approach taken here in not being a generalized

set of tools. but rather a specific set designed to answer specific questions.

2.3, Overview of Thesis Project

The approach to software monitoring described in this document is to provide a general purpose frame-
work on which experiments can be devised, using an instrumented Unix file system as an illustration of
the method. The system consists of a data collection component and a data analysis component; the
diagram in Figure 1 presents the data collection part of the system. The kernel was modified to contain
sensors that detect events in the kernel and store event records in an event record vector, and a Monitor
system ¢al! to manage the vector and sensors. The Monitor call is the agent for controling the enabling of

sensors in the kemnel, transferring event records from the vector to the Accountant, adding event records

-6-

I sensor E stored in event
record
E_J‘J— vesior
gensqr
retneved
(=—
=
em
I
L —control
T dau
Kemel space
User space
User process Accouniant Tape Uﬂilly

user procass
sensor -

user process

Figure 1.
from user processes to the event record vector, and handling communication between the Accountant and
user processes. The Accountant user process controls accounting through the Monitor, and retrieves the
event records stored in the event record vector from the Monitor for storage in disk files, where a tape util-
ity transfers them asynchronously to tape, The Accountant and other user processes can also contain sen-

sors that use the Monitor 1o record their event records in the event record vector.

The analysis process is illustrated in Figure 2, taking the tapes prepared in the data collection phase and-
passing their data through a pipeline. The pfogram enschema associates the event records with a
achema describing those records that was derived from the sensor descriptions to a data type called a
stream. The tool pipeline is a series of relational operations performed on the stream and is assembled

from the tools discussed in Chapter 7 and defined in Appendix B.

-

tapehandle } [enschema tool pipeline]

Figure 2.

The monitoring system is part of the SoftLab project at the University of North Carolina, Chapel Hill,
Other related parts of SoftLab are a compiler for the sensors and a temporal query language for relational
databases [17].

The system is designed to run under Unix 4.2 BSD, It has been run on Vax minicomputers and on Sun-2
workstations at UNC, Ohio State University, and at Carnegie-Mellon University. At C-MU, modifications
are being made to run the data gathering portion of the system in a multiprogramming environment using

graphical tools to examine the data. This will be discussed in more detail in the appropriate chapters.

Chapter 3

Event Record Data Structures

This chapter covers the data swructures used for the event records, detailing the design considerations and

" the implementation.

3.1, Constraints

The Unix kernel on Sun workstations cannot exceed 512 Kbytes. 'I'hi_s places an absolute limit on the
space available for storing event records and requires that event records must be efficient in using space.

Hence variable length format for the event records is used,

An even.t record consists of an initial structure that contains an identifier for the type of record and the
length of the record in short integers. The remainder of the event record is an array of the C type short
that is cast to the appropriate type. The ﬁecision to use type short rather than type char was made
based or the typical size of operands and the efficiency of assignments. The sensor specific fields in event

records will be covered in the next chapter along with the sensors that generate them.

3.2. Event Bauffer

The kemnel sensors deposit event record in an event record vector organized as a circular queue with
pointers to the beginning and end, a count of how much of the vector contains, and a flag to indicate if the
vector is full. The event vector is physically composed of unsigned char (the Unix kemel uses the
typedef facility to call this u_char), but is logically treated as consisting of shozt integers. This
allows arbitrary handling of data within the event vector without concem for object alignment while con-
forming to the event record format. The Monitor copies the. event record vector to the Accountant on

request as an array of integral event records, and then resets the circular queue pointers, counts, and flags.

3.3. Streams, Tuples, and Schemas

The data produced by thel sensors is gathered by the Accountant and written to a series of files as raw
event records. The Accountant stores the event records in binary to conserve disk space. A schema, pro-
duced when the sensor descriptions are compiled, is required to interpret the event records. The schema
describes the event records based on the defining sensor and provides the means for identifying and Iabel-

ing event records and their fields.

The combination of a schema followed by the event records it explains is called a streamn. A stream can
be considered a relational database, with each event record in it a tuple with the relation determined by
which sensor created it. As such, the fields within the record are domains in the relation. Certain domains
are necessary o identify the relation and are'immutable. These are the domains cmdtype, cmdlength, and

eveninumber, The last is also known as the sensor id.

3.4. Implementation

An event record consists of a head structure, mon_cmd, describing the type of sensor that generated the

record and the length of the record, and a body, containing fields specific to the sensor type and definition.

struct mon_cmd {
char type,
length;
}s
struct mon_pevt {
struct mon_cmd cmd;

short aventnumber,
performer;

long object;

short initiator;

long timestamp;

short fields [EVENT_LIMIT];

b
typedef struct mon_pevt mon_putevent;

‘The event record is considered to be an array of short. The structure mon_cmd is used rather than
just having to separate fields so that assignments can be more readily made. Other types of events share
mon_cmd but fill the rest of the event record with their own fields. Since all records share mon_cmd,
they can be read and written without regards to their identity, based solely on the length. The appendix

Generating Standard Sensors details how to handle the variable length and shoxt alignment constraints

-10-

for character strings.

Since the records are variable length, some additional cdmpiexities arise when handling them in the event
vector. In implementing the event record as a circular queue, a static array was used to save the overhead
of memory and linked-list management. This means that before we can place a record on the queue, we
must see if and where wrap-around takes place in the record. Instead of checking for every short integer
in the record, an extra space, the queue has an appendi:c at its end large enough to hold the longest event
record. This allows a single test to take place after the record has been copied into the vector, If wrap-
around is necessary, a routine copies the part of the record in the overflow area to the front of the event

record vector and adjusts the write pointer. The wrap-around routine only executes once per pass through

the quene, so the overhead is small,
u_char *mon_writs_ptr, /* Write pointer in mon_eventvector %/
*mon_read ptr, * Read pointer in mon_seventvector %/
*mon_eventvector_end; 1% First pos after buffer, start of appx */
iat mon_eventvector count; * No. of chars of valid event records

in mon_eventvecior *
int mon_oflow_count = 0; 1% Event record overflow */

u_char mon eventvector [MON_EVENTVECSIZE + MON_EVENTRECSIZE];
1% Event record ring buffer */

A further problem is encountered when copying event records ﬁom the queue to the accountant. The
accountant requests the data in terms of an absolute size, and receives as many event records as will
integrally fill this size. If the queue contains more data than can returned to the accountant, the monitor
routine must advance through the event records until it finds the appropriate number to return. In addition,
wrap-around must also be handled so that the accountant receives the event records in the proper order.

The code to handle this will be discussed in Chapter 5.

A schema is organized as a hierarchical structure, called a d'atabase. since it permits treating event
secords as tuples in a database. The format of all schemas is shown in the following IDL code, and can be

found in the file schema_idl.idl.

Structure schema Root database Is

database => database_name @ String,
relations : Sag Of relation;
relation => rel name : String,
rel_ sensor_id : Integer,
rel_vlensensor : Boolean,
= true if variable length

attributes Seqg Of attribute;

20

all.

ae

attribute => attr name String,

attr_length H Intager,
- in bytes
attr pos : Integer,
-- from beginning,
- = < 0 if notfixed
attr_type : type;
type ti= type_integer | type_rational |

type_string | type_boolean;
For type Usa Enumerataed;
End :
Process schema_idl Iav schema Is
Pre input : schema;
Post output : schema;
End -

The format compiles into a set of structures, macros, and routines that the analysis tools (Chapter 6) use to
handle the event records. Every sensor compiled by the compiler has 2 relation structure generated
corresponding to the sensor’s event record. The schema allows event records to be processed by name
without building into each ool knowledge of all event records and sensors. If a tool changes the format of

an event record, it must also adjust the schema to reflect the change.

A schema is a database structure, containing a database name and a linked list of relation struc-
tures. This list containg a relation structure for all possible relations that an accounting session can

generate, though programs processing the event records can generate additional relations.

Each relation structure contains a mame, rel name, taken from the name of the sensor, an
identification field, rel sensorid, taken from the eventnumber field, rel vlen_sensor, a
flag indicating if the associated event record is variable length, and attributes, a linked list of the
dorﬂains in the relation. A new relation can be created from an old by changing its name and
identification. A relation can also be changed back and forth from variable to fixed length, The con-

tents of the relation can be altered by changing the attribute list.

A domain is an attribute of a relation and an attribute structure represents the domainina rela-
tion structure, The attribute contains a name and type, attr_name and attr_type, defined
in the sensor definition, its position in the event record, attr _pos, and the length of the domain field,
attr_length, that varies with the type of the field. The offset of a domain within an event record may
vary depending on whether the associated field occurs after a variable length field. If this is the case, the

offset is recorded as a negative number and must be reset each time an event record in that relation is read.

-12-

‘The length is fixed for ail types of fields except for character strings, where the length is variable, but
always a multiple of two, so that the organization into an array of shoxt is not violated. A field with a
length of only one byte must be paired with a similar field or a padding byte also 0 ensure this organiza-

tion.

Since the schema must precesd the event records, any changes to the schema must be known before the
first event record is written out, since the schema must be written first. To support the stream concept, a
data structure Mstream (for Monitor siream) exists, which associates a Unix FILE structure with a
~ schema.
typedef struct S Mstream {

FILE *fp;

char recoxrd[MAXRECSIZE];

database schema;

shozt flag;
} Mstream;

There is a one to one correspondence between Mstreamsand FILEs. The Mstreamelement fpisa
pointer to the associated file. Each Mstream structure contains room for the incoming event record in
its e}ment record. Note that, unlike event records, this is an array of type char. There is also an
element for the stream’s schema, and a flag to indicate if the schema has been read or written. This allows
the schema to be automatically read or written on the first appropriate operation, and prevents duplicate

writes.

typedaf struct s_tuple {
char *record;
relation relation;
} tuple;

A tuple is defined as an association of an event record and its relation. When it is read from a
stream, record points to the Mstream’ s record and relationisthe relationin Mstream’s

schema for that event record. The relation isignored when the tuple is written.

Chapter 4

Sensors

This chapter covers the sensors used to instrument the kernel, concentrating on the design of the sensors,

the choice of sensors, and their placement in the kernel.

4.1. Basic Sensor Design

For any event record, certain basic information is needed. We must know the type of sensor that created
the event record - such as a kemel sensor, a user sensor, or an error record, to give three examples. Since
we are using variable Iength records to save space, we must specify the length of the event record.' To
know what fields are in the record, we need to have an event number that is specific to each sensor. For
kemel sensors we want to know who performed the action and who initiated it by saving the process
identifier (pid) of those two processes. Most sensors will have some object that they are recording infor-
mation about. A unique identifier for this object is stored. Much analysis requires knowing the time that
an event happened, o a timestamp field is included. This yields the following standard fields:

type of event record 1 byte what created the record
length of eventrecord 1byte inshort integers

event pumber 2bytes defined by the sensor compiler
performer 2bytes who performed the sensor
object ~ 4bytes what was being affected
initiator 2bytes who requested the action
timestamp 4 bytes when did this occur

In addition, free form fields follow these in the event record that can be used for sensor specific data,

Sensors are defined via a Sensor Definition Language [16] and compiled either by a special compiler or by
hand, as defined in Generating Standard Sensors (see Appendix A). The sensor compiler produces sensor
include files containing macros and declarations for the target programs and a schema for the event

records that the sensors create. The schema is used by the analysis tools to interpret the event records.

4.2, What Do We Want to Find Out?

The choice of what specific fields to put into each sensor is determined by what questions we may want to

ask. We have identified the following pieces of data that would be useful to collect.

within each process locality
« how many files are open over time, and at one lime « length of paths to files
« impact of process on system: .
percentage of total calls . within each file
« frequency of operations
volatility » size of reads, wriles
» reads o writes ratios « duration of access
» modes of read, write, read/write = number of reads & writes per access
« relative sizes of reads and wriles + file size :
e creates, deleies
general
event frequency » relationship of any of the above to the load
« proportion of total events for each event type average, number of users, eic.

4.3. Overview of the Unix File System

1

The Unix file system consisis of a tree of special files called directories that can contain both regular files
and other directories. A process has associated with it a current working direﬁ:ory, whose files can be
specified by name. Files not in the current working directory are specified by a path, that is absolute from
the root of the tree or relative to thi_: current working directory. The most common primative operations on
afileare open, close, read, write, seek,and creat {sic). open follows apath and returns
a file descriptor, that is an entry in a system table. The path is handled one component at a time and is a
measure of the locality of reference. close removes the reference to the system table, Files are
deleted when there are no references in the system tabile and when no directories point to it. read and
write always do implied seeks before operating, so seek can be traced by recording the position in a
file where read and write take place. Files can exist in more than one directory, but can be abso-
lutely identified by the more basic Unix YO system. A file is actually a specific inode on a specific device.
An inode is a data structure that records the physical location of the file. Each device contains its own

inode list numbered from zero to a limit based on the capacity of the device. [19]

4.4. The Sensors

The following sensors, presented in Sensor Definition Language, enable us to determine the information
that was listed above. The object for these sensors, when it exists, is the device/inode pair, that uniguely

identifies the file.

FileClcse

Evant FileClese (Device, INumber:doubleintager cbjact;
FPinalSize:doublaeintaeger
) ds
timestampaed, sensortraced;

The FileClose sensor is triggered in the kemel routine closef in the file kem_descrp.c
" whenever 2 file is closed either by a process or by the system. Its event record identifies the file and
the size of the file when closed.

ReadSensor

Event ReadSensor (Device, INumber:doubleinktegex object;:
FilePos:doublaintagaez;
ActualiCount:integer
)} ia

timastamped, sansortraced;

ReadSensor records reading from a file. Its object is the file in question. FilePos is the posi-
tion in the file and ActualCount is the count of bytes read. This sensor provides basic informa-
tion on activity on open files, along with WriteSensor. It is installed in the routine rwuie in
the file sys_generic.c and is invoked by the low level read system cail.

WriteSensor

Evant WriteSensor (Device, INumber:doublaintagar object;
FilePos:doubleintegex;
ActualCount:intager
) is

timestarped, sensortraced;

WriteSensor records writing to a file. The arguments to WriteSensor are the same as 0
ReadSensor, Iiis also installed in the routine rwuioc in the file sys_generic.c and is invoked by
the low level write system call,

OpenSuccesasful

Event OpenSuccessful (Mode:intager:
Init$Size:doubleintager
) is
timestamped, saensortraced;

OpensSuccessful records the opening of a file. It does not name an object, the name is provided
by the previous string of event records produced by NextComponent. The Mode parameter

records the access mode in which the file was opened and the InitSize parameter records the
size of the file when it was opened.

NameStart

-14-

Evant NameStart (Device, INumber:doublaintagar cbject) is
timastamped, sensoxtracaed;

NameStart is used to signal the beginning of the lockup of a filename. It records the file identity
for the beginning of a pathname in its object. It is installed near the entry of the pathname lookup
routine namei in the file ufs_namic.

NextComponent
Evant NextComponent (Davice, INumber:doubleainteger objact;
FileName:string({127)
)} is

timestamped, sensoriracaed;

NextComponent records in its object the file identity of the current pathname component, which
it stores in FileName. NextComponent is installed in the pathname lockup loop of the rou-
tine namei in the file ufs_nami.c, The number of NextComponent event records for a process
is a measure of the locality of reference for the file. The object of the NextComponent event
record immediately preceding an OpenSuccessful event record for the same process is the
opened file returned to the process.

INodeCreate

Event INodeCreate (Device, INumber:doublaintagar object) is
timestamped, sensortraced; ’

INodeCreate signals that a new file has been created. The object is that file. INodeCreateis
placed in the inode allocation routine ialloc and can be triggered by an openora creat sys-
tem call, '

INcdeDelete

Evant INodeDelete (Device, INumber:doubleinteger objaect) is
tinestamped, sensortraced;

INodeDelete shows that its object, a file, has been deleted. It is placed in the inode recovery
routine ifree. This is part of the housekeeping done by the system, and is not directly called by
user processes. Files are only deleted when there are no more references to them.

4.5, Testing

Initial testing of the sensors was done by emulating the affected routines in the kernel with 2 set of rou-
tines that filled in constant values into the structures that the sensors referenced. These emulated routines
were compiled with the Monitor (Chapter 6) and a truncated version of the Accountant {chapter 5), This

permitted full testing of the sensor control code and verification that the values were put into the correct

-17-

places in the event records while not affecting an operational system. The kemel did not have to be |
‘modified for each code change nor was rebooting necessary after aborted tests, greatly speeding the test-

ing process.

It was more difficult to test the validity of the data gathered from the kernel itself. When the monitoring
system was enabled on 2 system with 2 normal load, data was generated at the rate of up to 50,000 bytes
of data in three seconds. This volume made it difficult to determine what was really happening.
Verification of the sensor data consisted of two parts. The first determined what was happening in the ker-
nel to insure that the sensors were placed properly and thus monitoring the desired events. This was done
by adding printf statements to the kernel to trace the execution pattern and tracking this pattern
againsf that produced by the sensors. Only small test runs could be performed with this fnedxod since it
produced disastrous effects on kernel performance and reliability. The second part of verification insured
that the fields accessed by the sensors contained the desired information by using a test suite of processes.
The suite accessed specific files in a specific order so that the event records generated and their values
could be predicted. Both parts of the verification required 2 primitive print program, blindprint,to

view the event records produced by the test runs,

Additional verification has come by having the system run at other sites, namely the Computer Science
departments at Ohio State Uriivemity and Carnegie-Mellon University, The work at those sites aided

greatly in debugging the code.
4.6. Future Work

4.6.1. IBID sensor

A standard sensor takes up a certain minimum amount of room, approximately 20 bytes. When instru-
menting routines that are accessed frequently, this overhead can become excessive, especially since the
data in these circumstances is often only slightly different from event record to event record. The over-
head can be minimized by having a sensor generate event records that take advantage of consecutive calls.
These event records can either be completely new types of records or variations on existing types. Two
new types of records are proposed: /BID records, that record only fields that differ from the preceding

event record, and count records, that have a count field that is incremented for consecutive invocations of

-18-

the same sensor, Instead of using new types of event records, normal event records can be altered to
accomplish the same tasks. For either new event records or old, criteria must be established for using the
abbreviated form rather than the full form of an event record, Only those fields that differ from the previ-
ous event record need be stored in the new structures, but to reduce complexity, the space saving struc-
tures will only be used if the previous event record was generated by the same sensor and if they share the
same object, performer, and initiator. This would happen frequenty with common o@ﬁons like read.
The fields that need to be stored may be indicated by ibid in the sensor definition, while the remaining
field, those not associated with ibid, are only recorded when the previous event record did not meet the

IBID criteriz. The timestamp feld, when active, is always generated. An example is

Evant ReadSensor ({(Device, INumber:doublaeintaeger objack:
FilePos:doubleinteger ibid;
ActualCount:intager ibid
) is

timestampaed, sensortraced;

Extra control information is added to the sensor to detect whether to save space or to use the regular event
record. The object, performer, and initiator fields are at fixed points in the previous event
record and can be compared directly by keeping one additional pointer to the previous non-space saving
event record, which would be cleared when the event vector is cleared, and reset when the regular sensor
code is used. A bitmask determined at sensor compile time is used to specify those fields that are to be
updated by the space saving code. The fields that are not flagged by the bit mask are copied from thé. pre-
vious event record at analysis time. While this could be done for all sensors, it adds overhead for sensors

unlikely to be called successively.

struct ibid event {

mon_cmd emd; /% type = MONOP_PUTEVENT IBID %
) * length = variable 3/
short new_fields; /¥ which fields to replace *

short fields([254]; /*values »/
1: ‘

If the sensor is not imestamped, then a counter event record can be used, that counts the number of identi-
cal event records that occur. A sensor generating a counter event record requires the same initial logic to

determine what type of event record to generate. If a counter record can be used, the sensor requires less

19.

time to generate it than either an IBID record or a regular record. Since the counter record only contains'

one data field, it requires much less space than either alternative.

struct count_event {

mon_cmd cmd; /* type = MONOP_PUTEVENT CQUNT */
1% length = 3 *
int count; 1® times 1o replicate eveni %/

|

The advantage of using separate count and IBID event records is that they do not conflict with data
already present. They can be merged into the same format as regular event records by a simple tool at
analysis time. The disadvantage is that there is still a significant amount of overhead even in these sen-
sors. There is also more complex.ity when handling the interface with other sensors, since there can be

many IBID records between the last regular record and the current record.

An alternative approach to exploiting coﬁsecutive calls to 2 sensor is to add stuctures to the event record..
These stuctures take the form of a overhead struct containing a count and the bit mask of target
fields, and an array of the target fields. This approach removes all the overhead of extra event records, by
simply expanding the existing ones. Only the last event record written needs to be examined to determine
the sensor’s action. Each update expands that record, changes its length, and moves the event vector's

write pointer.

struct ReadSensor {

mon_emd cmd; 7* type = MONOP_PUTEVENT _IBID */
/* length = variable *

short eventnumber;

long obiect;

shozrt initiator;

short performer;

leng timestamp;

long filepos;

short actualcount;

struct ibid { .
u_char ibid_count,

ibid mask;
} ibid_head;
short fields(]: /* sets of timestamp filepos.actualcount */

}:

A disadvantage of this approach is that the format is only loosely compatible with the older format. It can

be converted to the older format, though, without much difficulty, since all the data is present. It has the

-20-

great advantage of having very little overhead, and of having but one format for both IBID and counting

tecords. The latter is handled by having anull ibid mask. -

4.6.2. Use of Signals to Coordinate with the Accountant

Using timing loops to retrieve event records from the system has the problem that either many calls will be
unnecessary or the buffer will overflow. This situation can be corrected by signaling the accoun_tant when
the buffer is ready to be read. The signaling is done by the kernel sensors themselves and by the monitor
routine for user sensors. The sensor definition is changed to detect when the buffer is nearly full and to
then signal the accountant. The sensors would still check for overflow. This requires a flag to indicate
that the accountant has been signaled and a threshold to specify when the signafing shouid occur. When

signaled, the accountant must interrupt what it is doing and retrieve the records from the monitor.

4.6.3. Better Concurrency Checking for Multiprocessing

The monitor system call is a critical section [1]: the event record‘ vector must only be accessed by one pro-
c;ess at a time, otherwise the pointers will become corrupted.A This is not significant on a uniprocessor run-
ning tegular Unix, since only one process is active at a time and interrupts ¢an be disabled to insure com-
pletion of sensors and the monitor routine. On a multiprocessor these measures do not suffice, A func-

tioning semaphore must be used in both kernel sensors and the monitor call to insure exclusivity.

4.6.4. Network File System

Sun’s Network File System (NFS) [25] presents other problems, The information desired for a sensor may
not be kept in the local system, and must be requested remotely. Since the information is not locally
present, additional changes must be made to the kernel to provide the information. If this is done outside
the control of a sensor, the new code could be executed at an inappropriate time, such as when rebooting,
and cause system failure. If the code for providing the infonnaﬁon is put in as a parameter to the sensor
macrb, the remote request generates an additional read system call, that in turn triggers ReadSensor,
threatening to become infinitely recursive. A possible solution is to define a new set of sensors for NFS

that are placed in the NFS code itself, rather than the interface to the standard file system implementation.

21.

Chapter §

System Call - the Monitor

The Monitor is the local system call SYSL_MONITOR that is used by the Accountant to manage the

event record vector and the kemel sensors, and to communicate with user processes.

All data from the sensors is written into the kemnel’s event record vector. To protect the operating system,
data in the kernel is only accessible to user processes through system calls. Since the Accountant, a user
process, controls the sensors in the kernel and reads the event record vector, a system call must be pro-

vided as an agent.

To ease adding system calls to the kemnel, an indirect system call, SYSLOCAL, with its own table of sys-
tem calls, was added to the table of system calls. To invoke the Monitor requires calling syscall with
the entry number in the system call table for SYSLOCAL, the entry number in the local call table for the
Monitor, and the address of the buffer holding the command to the Monitor. The include file syslocalh

contains the entry numbers for SYSLOCAL and SYSL _MONITOR.

syscall (SYSLOCAL, SYSL_MONITOR, (unsigned char *)ipreq}:

5.1. Function

The Monitor maintains a vector of enable bits, mon_enablevector, which controls the status of the
kernel sensors, and a message buffer, mon_requests, for communication between the Accountant,
other user processes, and the Monitor itself. The enable bits in mon_enablevector for a specific sen-
sor are determined at sensor compile time (see the appendix Generating Standard Sensors). The Monitor
enables and disables sensors by switching the appropriate bits as directed by the Accountant through a
' MONOP_PUTREQ command, The communication system is only partly implemented. It handles com-

munication between the Accountant and Monitor but not between the Monitor and other user processes.

The Monitor also manages the event records produced by all sensors. On detecting that the event buffer is
full, The Monitor inserts an error record into the buffer to signal that data may be lost. This is only done
before writing the event buffer to the Accountant. Event records are only written to the Accountant on

request.

5.2, Decoding a Command

The operation of the Monitor is performed in a critical section. This prevents conflicts when manipulating
the pointers in the event record vector, The first step in decoding a command is to enter the critical sec-
tion. In the uniprocessor implementation this is simply a test on a counter, mon_semaphore. This
counter must be zero for the operation to take place. If for some reason it is not zero, then 2 sensor was
interrupted. This should never happen, It means that the sensors are placed incorrectly or that the kernel
has been corrupted. The only action taken is to disable all sensors and o return the value
MON_CONCURRENCY ERR. This kernel should then be fixed, recompiled, and rebooted. In any case no
more accounting can be done. As its name implies, mon_semaphore may be replaced by a true sema-

phore in a mﬁltiprocessing implementation, It would then wait until it could enter the section before
proceeding.

A system call must copy its parameters from user space to kernel space to access them, and must copy its
return values from kernel space back o user space. Since the commands to the Monitor are variable
length, the Monitor must first determine the size of the command. All commands to the Monitor begin
with the C struct mon_cnid (see Chapter 3), which contains the length of the entire command, This
structure is copied first and its length component is used to determine the size of the command. The com-
mand is then copied in its entirety for the length specified in mon_cmd. This does mean that mon_cmd
is copied twice, but it is only the length of 2 short and reading the command in its entirety enables any
padding in the command structure to be ignored and obviates including machine and compiler dependent
code to determine padding within structures. A switch statement uses the type component of
mon_cmd as the argument to determine which comumand to process. After the processing the command,

the call exits the critical section and returns.

«23-

5.3. Command Operation

The function of the different Monitor commands are found in the manual pages for in Appendix B. The
internal workings of the ¢commands are described here. The commands themselves are represented as

integers and are defined in the file monops.h.

Most commands are executable only by the Accountant. Exceptions are MONOP_GETREQ, which a user
process issues to retrieve messages from the Accountant, and MONQP_INIT, which can be executed only
when there is no Accountant. In an emergency, the super user may also issue "“MONOP_GETEVENTS and
MONOP_SHUTDOWN. This feature is provided to prevent the loss of data should the Accountant process
prematurely end. If a process tries to issue a privileged command, the Monitor returns the value

MON_NOT_ACCTNT, found in the file monerrcds.h.

If the Monitor receives a command other than MONOP_INIT before accounting has started, it returns the
value MON_NOT_INIT. If MONOP_INIT is issued after accounting has started, then the Monitor

returns MON_ALRDY_INIT.

MONOP_INIT
This command initializes accounting and the process that issues the command becomes the Accoun-
tant. The supporting variables for the event record vector are initialized:

mon_write ptr write pointer into the event record vector
mon_read_ptr read pointer into the vecior
mon_eventvector_end pointer to the end of the vector
mon_eventvector_ count byie count of the filled portion of the vector
mon_oflow_count count of attempted writes after the vector filled

Since the current state of the sensors is not known, the vector containing the sensor enable bits,
mon_enablevector, is set o ail zeros, The buffer to communicate with other user processes,
mon_requests, is cleared of old requests. The size of the event record vector in bytes, which is a
compile time constant, is returned to the calling process.

MONOP_PUTEVENT_INT and MONOP_PUTEVENT_EXT
These commands write event records into the event record vector. The process id of the caller and
the time when the command is processed are written into the event record in the command. The
writing of the event record is performed as a sensor would write it (see Chapter 4 and the Appendix,
Generating Standard Sensors). If writing the record would overflow the vector,
mon_oflow_count is incremented and the Monitor returns MON_BUFF_FULL to the calling
process.

MONOP_GETEVENTS
This is the most complex of the commands. It handles transferring the event records from the event
record vector to the Accountant. The complexity arises from having to adjust the amount of data
transferred to fit the amount requested by the Accountant while handling vector wrap around and

-24-

insuring that only integral records are transferred. The first task of MONOP_GETEVENTS is to
determine if any data was lost because of a full vector. If this occurred, an error record is written
into the vector,

struct mon_erec {

struct mon_cmd comd;
long val;
}: '

typedef struct mon_erec mon_errrac;

The field val receives the count of records missed because of overflow. There is always room left
in the vector for a single error record. Two cases arise when determining how much data to
transfer. If more data is’in the vector than requested, then the lengths of the records in the vector
are accumulated in the character count, the total amount to transfer to the Accountant, by moving
from mon_cmd to mon_cmd until the requested amount is satisfied. If this process reaches the
end of the event record vector (wrap around) before satisfying the request, the Monitor handles it by
continuing the process from the beginning of the vector. If the accountant requests more data than
is available, the entire vector can be transferred without handling event record boundaries. The size
of data in the event record vector becomes the character count. The data must be transferred in the
order that it filled the vector. Wrap around divides the data into two parts and forces the transfer to
be done with two calls to copy. Wrap around is detected when the write pointer has a lower
address than the read pointer. If there is wrap around, the transfer count, the amount to transfer in 2
single call &b copy, is set to the minimum of the character count and the length between the read
pointer and the end of the vector. This amount is transferred to the Accountant’s buffer, the charac- -
ter count is decremented, and the pointer into the Accountant's buffer is incremented. If the charac-
ter count is not zero, then data from the lower addresses for the lower amount is transferred. All the
pointers, counts, and flags are updated, and the Monitor retums the amount of data transferred.

MONOP_ PUTREQ . .
The Accountant controls sensors in both the kernel and user processes with MONOP_ PUTREQ com-

mands.

atruct mon_request {
short targetpid,
eventnumber,
) enablevalue;
}:
struct mon_praq {
struct mon_cmd emd;
struct mon_request reg;
}s
typedef struct mon_preq mon_putreq:
typadaef struct mon_preqg mon_getreg:

Kernel sensors are specified by a targetpid of zero. If the kemnel is the target, the bit specified
by eventnumber in mon_enablevector is set to the value of enablevalue, Requests to
user processes are not handled directly, but are stored in a static sized array of mon_request
structures, mon_requests. The request is stored in the first available slot in mon_requests,

.25.

and the user process is signaled that a request is awaiting it.

MONOP_GETREQ

When signaled that a request is awaiting it, the user process issues a MON_GETREQ to the Moritor
to read the request. The Monitor searches the request vector for the first message with a matching
process id. No allowance is made for muitiple messages. Since multiple signals are lost in Unix
(see signal(2)), there is no easy way to inform a process that there are multiple messages, though a
process could continue to ask for requests until no more are returned, When the message is found,
the message is returned to the caller and the slot in the request vecior is cleared. If no message is
found, then an error record is added to the event record vector and the Monitor returns
MON_REQ_NOT_FND to the caller.

MONOP_SHUTDOWN
The Accountant issues this command when accounting is finished. All sensors should be disabied
and a final MONOP_GETEVENTS issued before shutdown so that no data is lost. Shutdown dis-
ables any kernel sensors that might have been left enabled and resets ail pointers, flags and counts.

5.4. Testing

Initial testing of the Monitor was done using stub routines for certain sysiem calls and an abbreviated form
of the Accountant (see acct (IL) in the Appendix). This allowed testing to be done in user mode using
interactive debugging. The abbreviated form of the Accountant was used t0 minimize any side effects

from exrors in the Accountant. This was not sufficient for testing since it did not provide for asynchronous |

calls, or for problems with the kemel! interface.

Initial testing in the keme! was done with 2 reduced accounting environment. The minimal Accountant
was again used, only a single sensor was placed, and a reduced event record vector was used to isolate
errors. Since errors in the Monitor would cause the system to crash, the debugging was carried out on
workstations. This minimized interference with other users and permitted more rapid compiling and
rebooting. Since dynamic debugging cannot be used on the kemnel, execution was traced with print state-
ments. The test system was put under load by 2 file system exerciser designed by M. Satyan.arayanan [14].
The event vector logic was put under load by using parallel unbuffered /O, The code for communicating

with user processes was not tested.

A beta release of the system was installed at Ohio State University and at Carnegie-Mellon University.
This provided the opportunity to detect more errors in implementation and installation, which have been

corrected,

226~

Chapter 6

Accountant

The user process that controls the kernel sensors is called the Accountans. The Accountant controls the
enable status of the kemel sensors, periodicaily dumps the kernel’s event record buffer to disk, and, é
orthogonal to this project, communicates with .other user processes that have sensors. This chapter will
describe the Accountant’s function for this project, the internal operation to accomplish these functions,
and a typical session of using the Accountant, This will be followed by a brief delineation of the use of
the Accountant with other processes with sensors, and by a section discussing future plans for the Accoun-

tant,

6.1. Standalone Function

No accounting, which is the recording of event records, takes place except under the supervision of the
Accountant. The Accountant must first initialize the accounting session, initialize all desired kernel sen-
~ sors, and, when the session is finished, disable all sensors. These are all accomplished thrbugh the media-
tion of the Monitor (see Chapter 5, above). In the event that thé Accountant dies, the sénsors can be dis-
abled manually by the utility shutdownacct(8L) (see Appendix B) but the data left in the event record
buffer are lost. If the sensors are left running, they will eventually run out of room in the event record
buffer. The kernel sensors will then cease 10 record data, and user sensors will get an error from the sys-

tem call. A new session cannot be started until accounting is shut down,

The Accountant’s second task is to periodically read the event record buffer via the monitor system call,
The size of the buiffer is returned to the Accountant when it initializes accounting. It receives integral

event records from the monitor that are written out to the current output file.

Since output may be extremely large, the data will have to be spooled to tape during the longer accounting

sessions. To facilitate this, the Accountant periodically changes output files, so that the old ones can be

accessed by a tape utility (dd(1) will suffice for the tape utility). The size of file for switching is defined

at compile time and is currently based on the Unix 4.2 BSD parameters,

6.2. Internal Operation

All communication with the kemel is done through commands to the Monitor sent by the local system
cdll, SYSL MONITOR., The values of S}!‘S'LOCAL and SYSL_MONITOR are found in the file
syslocal.h, which must be included in the C file for compilation. For the formats of the various com- -

mands, see the manual page for SYSL_MONITOR{2L) in Appendix B.

syscall {(SYSLOCAL,SYSL_MONITOR, {unsigned char *)icommand};

The procedure InitAce is called by main to initialize the accounting session. InitAcc calls the
procedures InitOutput, TurnOnAllSensors, and DoUnixProto i complete the initialization
process. :nitOutput is used first to create a unique file to hold the event records produced by the
accounting session. InitAcc readies the Monitor by sending the MONOP_INIT command (see
Chapter 5) to it through the SYSL_MONITOR system call. The Monitor returns the number of bytes in
the event vector. Immediately after initializing the Monitor, no sensors are active, InitAcc sends the
command MONOP_PUTEVENT_EXT to the Monitor containing 2 header record for the accounting ses-
sic_m. This header contains information identifying the files containing the operating system and the
Accountant, and information about the status of the system, such as the load average, number of users, and
the time. An optional string on the Accountant’s command line can be included in the header record,
Since it is the first record in the event vector, it is at the front of the data produced by the session, and
serves to separate accounting sessions in a stream of event records, TurnOnallSensors enables
individual kernel sensors as indicated by an array of sensor ids, ActiveSensors. Foreach entry in the
array, a MONOP_PUTREQ command with an enable value of one is sent to the Monitor. Finally,
DoUnixProto is called to read any accumulating records in the event vector and to write them out to
disk. The event records are gathered through the MONOP_GETEVENTS command sent to the Monitor,
and are written out to disk by the procedure WriteEventRecord. The MONOP_GETEVENTS com-
mand specifies a buffer address and a the buffers size. It writes into the buffer as many whole event

records as the Monitor has available up to the size of the buffer. WriteEventRecord is called to

-28-

write the records to the file, It manages the amount of data written to the current file and changes files
with the procedure SwitchFiles after reaching a predeténnined size. This file change is hidden from
the higher level procedures. SwitchFiles closes the current file, generates a new unique file from a
template, and sets the current output file to be the newly created file. The old file is now available to be
spooled to tape. A set of different files is used instead of a pipe so that the system can be left unwatched.
In actual operation on a Sun, the kernel event vector reached saturation in five seconds under heavy load,
If the pipe were connected to a tape process that requested action, the Accountant would enter a wait state
and the event vector in the kernel would reach saturation long before any operator intervention could take

place.

At this point the sensors are beginning to fill the event vector in the kernel, The Accountant returns to the
main routine and executes an infinite loop consisting of sleeping for a fixed period of time and executing
DoUnixProto. | The Accountant never ends on its own. Accounting must be stopped by signaling the
Accountant with the signal SIG_TERM (see signal/(3C) in The Unix Programmer's Manual). When sig-
naled, the procedure Finish is called to end the accountant session. Finish invokes Tur-
nOffSensors to disable all sensors in the ActiveSensors array and processes any remaining
records in the event record buffer through DoUnixProto. The accounting session is terminated by
sending the command MONOP_SHUTDOWN to the Monitor. The current output file is then closed, and

the Accountant exits.

6.3. Use

A typical session of the accountant is started by typing the following to the shell (this assumes ¢shi(1) is

the shell), whose output is in bold. The percent sign (%) is the shell’s prompt to the user.

% accountant "Agcounting saession example” &
[1] 18105

The string is an optional header for the event record stream. The line printed out tells the job number and
process id of the Accountant. The Accountant is run for some desired length of time or until some desired
event happens. It will produce files in the current working directory that can be spooled out to tape.

When it is decided to stop the session, this is typed to the shell;

=29-

% kill -TERM %1

%
[1] Dene accountant "Accounting session examplae"

%

The files produced by the Accountant can be used by the analysis tools once the proper schema is

prepended.
6.4. User Communication

When the Accountani is used as a standalone process, the sensors it enables are determined at compile
time. If a different suite of sensors is desired, theﬁ the code must be changed and recompiled. The
Accountant can also run under a user monitor that controls the accountant throu_gh signals, This monitor is
called the Simon (as in Simple monitor) monitor. Simon is meant to be ;.ised interactively with the
Accountant and other user programs. using the monitoring system. It allows enabling and disabling

specific sensors.

6.5. Future Changes to use Signals

To enable the Accountant to better adjust to the volume in the event record buffer, the sleep—read Ioop is
replaced by a sleep alone that is only interrupted by signai from the Monitor or from the kernel SEnsors,
Upon interrupt, it reads and writes, and then goes back to sleep. Changes to the Accountant entail a new

interrupt routine and signal handling, and a slight modification to the main loop.

A difficulty in this approach is testing the cooperative processes. Much of the Accountant could be
debugged by simulating the kernel calls in a single user process with the Accountant (see below). Using
signals requires two processes rather than one and thus makes testing more complex. A call to a system
procedure that was simulated by a call to a user procedure will have.to change to some form of remote

procedure call. This will make isolating errors more difficult.

6.6. Testing

The Accountant was initially tested by compiling it with 2 miniature kernel. This mini—kemel contained

an emulation of the system calls used by the Accountant, the Monitor system call suite of syslocal

30-

and sysl_monitor, and a set of skeleton routines to drive the kemel sensors. Since the entire system
is in user space, the interactive debugger dbxtoo/ (see dbxtooi/(1) of Sun Microsystems® Programmer's
Manual) was used to trace the Accountant’s operation. This tested all the major pérs of the Accountant,

including initialization, event record gathering and distribution, and shutdown,

Integrated testing of the Accountant using the installed Monitor has been minimal because of changes in

the Sun operating system during development. This will be done on 2 DEC VAX computer running Unix

42 BSD.

31-

Chapter 7

Analysis Tools

This chapter discusses the tools used to analyze the accounting daia, The Appendix containsAUnix manizal
pages describing how to invoke each tool while the emphasis here is on the relation of the tools to the
accounting data ard how the tools are designed. The discussion is divided into four sections. The first
section establishes the relationship between the tools and operations in relational algebra. The second sec-
tion describes the high level implementation of the tools followed by a section describing the library rou-
tines and the approaches to common problems used in creating the tools. The final section shows how to

transform relational algebra expressions into a pipeline of 1ools.

The variable format of event records makes the accounting data difficult to access. The quantity of
accounting data requires that it be in binary format. (The rationale for these decisions are explained in
Chapter 3.) These two attributes preclude analyzing the data with generic Unix tools. Any program that
needs to access the data must be able to handle it in binary format and must know where each field is in
each event record. If this data is hard coded into the program, then handling a change in event records or

the addition of new event record types would require re-coding the program.

The Monitor system provides a solution with the schema organization, making each accounting stream
~ self-identifying, Any new type of event record or changes to the composition of an event record is
reflected in the schema. As explained in Chapter 3, the schema is produced by the sensor compiler. This
does not mean that the schema and associated event records are immutable.‘ A program can add new types
of event records and alter the make up of others as long as it changes the schema accordingly. A library
of common routines for manipulating the schema is provided to hide implementation details and will be

discussed later in this chapter.

A conceptual viewpoint is necessary (o treat any data systematically, Here, we desire to perform analysis

through relational operations, but the database preduced is too Jarge to keep on disk. The concept of the

st ream allows us to overcome the constraints on database size by accessing the tuples sequentially, The
relational viewpoint requires 2 data abstraction, relations and tuples, and a set of relational operations. As
explained in Chapter 3, the event records are treated as tuples in a relational database, mapped to the
proper relation through the schema. The sensor that created an event record determines its relation, while
the fields in the event record become components in a tuple. To complete this paradigm, the analysis tools
provide relational operations. Additional tools are included for the administrative handling of the data.
The price for this Is that no relational operation that requires viewing a relation in its entirety can be per-

formed.

7.1. Relational Database Paradigm

The view of an accounting stream as a database presents problems for specifying relational operations.
Traditional databases view their data as always completely available and randomly accessible. When pro-
cessing a stream; only 2 small portion is visible at any one time, as limited by the availability of memory
and the size of the stream. Relations are therefore only visible as parts and not as a whole. Certain rela-
tional operations require deéling ‘with two relations simultanecusly. The union operation examines rela-
tions a tuple at a time, and never needs to reexamine a tuple, except possibly tovhandle duplicates. Ordi-
narily, the union of two relations would not contain duplicates, but dup]icates are not well defined for
event records: identical event records can be produced by operations or by identical events with
insufficient granularity in the timestamp; both place the identical records adjacent to one another. If the
order of the event records has not been changed, this adjacency can be used to define duplicate and dupli-
catés can be hahcﬂed without recourse to multiple passes through the data. Discarding duplicates is an
option rather than the norm, since the order of the data could likely have been changed, and the timestamp

is not guaranteed to be unique.

The Cartesian product and set difference operation must compare each tuple in one relation against all
tuples in the other relation, Since this requires multiple passes through the stream, it is clearly impractical

for large streams. The method for handling smaller streams will be described below.

The schema must reflect any alterations to the makeup of a relation. If additional processes use the

stream, the schema changes must be completed and the schemna written out before the tuples themsejves

.33

are processed. Relational operations on traditional databases are assumed to be non-destructive: the

operations only provide new data, leaving the old data unchanged. This is not always desirable in a

stream, where paring the size of the database for a given investigation can be important. Any data

removed from the stream is Iost to all subsequent processing, so the choice of destructive or non-

destructive operations must be left to the investigator.

The identification of tuples with relations in a traditional database system is hidden from the user. In a

stream, the identification is visible as mon_cmd and the sensor id. Any changes to a tuple is reflected in

the length field, while a new relation requires that a new sensor id be generated,

7.2. The Tools

aggrop

applyop

daschema

Unlike other analysis tools, the output is not a stream, but a table, with a line for each
distinct parsition value that contains the results of the aggregate operators on the argu-
ment value. The partition values come from a specified component of the target rela-
tion, while the argument value is another component of that relation. An intemal data
type is kept to record the aggregate value for each partition value encountered. The
options are used to determine the aggregate functions to apply to the argument value, to
create a format for the output. The operation can be applied to all relations made from
the requisite domains and a count of the those relations not made from those domains is
printed t0 stderr. The table is only printed when the end of the stream is reached,
with only columns for those operations specified on the command line. The table does
not have column headers so that it can be piped directly into a post-processor,

Since the data structures in an accounting stream are complex, a way was needed to
allow arbitrary filters use the system without having to deal with decoding the data.
Applyop does this by projecting fields from a relation as strings to a user specified pro-
gram and appending the output as new components of that relation’s tuples. The com-
mand line contains the relation to affect and which of its tuple components to project to
the co-routine, The result components must also be specified along with their data
types, for appending to the relation. Initial processing creates a new schema with
new attributes appended to the target relation. The processing loop of
applyop can be considered to consist of two parts, a reader and a writer. The reader
extracts the values of the projected components for the tarpet relation and writes them
as a line to the co-routine, For target relations, the writer reads a line from the co-
routine and appends the result components to the tuple. The co-routine must take pre-
cautions to make sure that a result line is printed for each line it receives, otherwise the
process will hang, It is acceptable to kave no resuit components.

When the schema is not wanted in the stream, or a file containing oniy the schema is
wanted, it can be removed using deschema. The operation simply reads the schema,
writes it to a null file, and writes the event records to the standard output.

.34

enschema

ﬁnites?ars

_projecr

The Accountant does not associate a schema with its event records; snschema is avail-
able for this purpose. enschema prepends the schema to the event records with a sheil
script using cat(1).

#!/bin/csh ~f

% enschema

$1 is schema

$52=-n are event record files
4 -~ represents stdin

if (—e 51) then

cat $*
axit O
alss
echo 50 : schema file $1 not found.
exit 1
endif

The finitestate tool applies an instance of a finite state machine for each pariition com-
ponent vaiue in the input. Each instance of the machine maintains in a list the
tuples in the current sentence. The list is written to the output stream if accepted
by the machine and is cleared if rejected. Either case starts a new sentence. Each
accepted sentence is preceded by a relation detailing the range of timestamps in the sen-
tence, the partition value, the name of the partition component, and the size of the sen-
tence. This relation is added to the output schema and may be named on the command
line. The partitioning component must exist in all relations in the stream. The value

_of a tuple's partition component is used to determine the instance of the finite state

machine to execute. When a new partition value is encountered, a new instance of the
machine is allocated. Command line options allow the name of the sentence header
relation to be changed from the default FinitesState and allow rejected sen-
tences to be written out as well, but without a sentence header. The purpose of the
latter option is to prevent the loss of data while still allowing sentences to be formed.

The finite state machine file consists lines of transitions in ascending order by states,
The conditions on a single line represent an implicit AVD, while additional lines for a
transition represent an OR. The first condition satisfied determines the transition to
take. The user is responsible for ensuring that the finite state machine does what is
intended. The machine file is read in and parsed to create the machine itseff. The
parser only detects transition line syntax errors and errors in the order of states.

In addition to comparing components to immediate values in the transition line, the
comparison can be the relation between a component in the current tuple and the same
component in the previous tuple for in the sentence,

Project components from a relation or relatons as an output stream. The input
achema is copied to the output schema where it is modified to reflect the change to
the relation. Project always places the relation selection fields (the structure
mon_cmd and the field eventnumber) at the beginning of the description for each
record, regardless of the specification on the command line. For each event record that
is read, project creates an output record by moving the fields as specified by the output
schema and writes it to stdout. Relations without projected fields may be kept or

«35.

relrstrieve

relstors -

salect

streameonvert

streamprint

tapehandle

discarded with a command line option.

The relretrieve tool extracts relations from an Ingres database to form a
stream A complete schema is built from the database describing fully the relations
and domains it contains. If the relations do not have the identification components, 7e/-
refrieve assigns a unique sensor id that can be specified on the command line and a
command type of MONCP_PUTEVT_EXT that may also be changed by a command
line option.

Reisiore uses the schema to creaie refations in an Ingres database. Each tuple
from the stream becomes a tuple in the corresponding relation in the Ingres data-
base. :

Select parses a formula from the command line and uses it to determine the tuples
to keep in the stream. A lexical analyzer is used to process the formuia, that is in
turn executed by a yacc(1) grammer. The selected tuples may be assigned to a new
reiation by command line option.

The accounting data is stored in a binary format that can vary according to machine

architecture. Streamconvert uses the information in the schema, which is not

stored in a binary format, and network software to adjust the data between network and

host formats as specified on the command line. Since there is no way to determine

what the current format of the data is except by trying to print it, tapes should be in net-

work format and disk files in host format, Character strings and byte fields are treated
in pairs a3 shorts. Rational domains and their associated components are not port-

able across system architectures.

Streamprint uses a libmontools routine and the schema toprinta stream in human
readable format. The names for relations and attributes can be used to
label the output.

Unix does not provide a means for handling multiple reel tape files of binary data.
Tapehandle extracts event records from multiple tape reels or creates multiple reel files
from event records. The schema in a stream must be treated separately,
Tapehandle permits the attributes of the tape and number of tapes in the file (extract
only) to be specified on the command line.

Union creates a single relation named on the command line from multiple rela-
tions of the same arity. Each tuple in the target relations has its sensor id
changed and name changed to that of the new relation,

7.3. Tool Implementation

The tools share a common library of routines and a common approach to handling certain tasks. The

library routines consist of those generated by IDL to handle allocation and iteration on schema, rela-

tion, and attribute structures, and additional routines that perform common operations on the IDL

36-

structures and on Mstreams and tuples. These common operations consist primarily of accessing

event records via the layout of the schema.

7.3.1. library functions

The tools use a set of common data structures. External data exists as event records, schemas, and
streams. Most tools deal only with streams, leaving a few special tools to convert the records and schemas
into streams and back again. Internal data from the stream exist a3 databases, relations,

tuples,and attributes (components).

There is a subtle distinction among attributes, domains, and components. Domains are sets of
values. A subset of the Cartesian product of a list 6f domains forms a relation whose members are called
tuples. A tuple has 2 component for each domain in the list that is described by an attribute [20]. Rela-
tions, tuples, and attributes are represented directly while domains are only represented through the attri-
butes of their associated components. If a component is to be added to a relation, then an attribute
for it must be added to the target relationin the schema. Similarly, the traits of a component, such
as its type and position in the tuple, are manipulated by altering the attribute, To change a com-
ponent means to change a value, while to change an attribute means to chmge the characteristics of

a component. The routines in the library manipulate components through their attributes.

object internal structure
schema database
relation relation

component attribute
eventrecord tuple

A suite of library routines exist (see /bmontools (3L) manual pages in the Appendix) to manipulate
tuples, streams, relations, and attributes. The IDL compiler provides additional rou-
tines in the file schema_idlo, that it generates from the schema definition file, and in the IDL library,
Ididl. The IDL routines hide the implementation details of the schema, while /ibmontools hides imple-

mentation details of tuples and streams.

«37-

For each of the IDL objects database, relation, and attribute, schema_idlo defines opera-
tions to create a new object and to operate on a list (called a sequence) of objects. The list operations

include membership, iteration, insertion, and deletion.

The routines in /ibmontools for streams allow the manipulation of 2 stream as an I/O object. In addi-
tion to read, write, and open operations on streams, the schema may be separately processed with its

own read and write.

The tuple manipulatior routines permit accessing relations and components by name. Becapse IDL
shares objects between sequences, whenever an 6bject changes in one sequence, it will change in the oth-
ers containing that object unless the change is made to a copy of the object, Since copying is not thgt sim-
ple, routines are provided to copy schemas, relations,and attributes. The stream read
routine automaticaily sets up a tuple. If a program modifies the layout of a relation, it can use a library
routine to. recalculate the positions of the components, A library routine also exists to print a wple in

human readable format, with or without labels,

7.3.2. Approaches to common tasks

In addition to the library routines, the tools share common design approaches in handling arguments and

options, applying operations to sets of relations, and changing IDL objects.

The analysis tools proper do not specify the input file, since they all read streams from the standard input,
and, if a stream is the output, they write that stream to the standard 6utput. Auxiliary tools, those used to
convert the data, such as tapehandle, streamconvert, and enschema, have a varied choice of input and out-
put. The arguments to the tools are relations, components, and tool specific arguments. When *~"" is

allowed as a relation, it signifies ail relations.

Command line options can appear in any order on the command line and can be intermixed with the argu-
ments. All options are preceded immediately by a dash (““~’") or by another option. Those options that
~ take arguments are separated from the argument by an optional space. The two most common options are

to name the relation modified by the tool and to write out the relations that would ordinarily be discarded.

-38-

When a tool changes a séhema, it must keep separate copies for the input and output streams. The
list below summarizes the steps required.

 read the input schema

= create the output schema by copying the input schema

¢ assign the output schema (o the output stream

« make any changes to the output schema
Note that if a new relation is added to 2 schema it will not interfere with existing relations and no new

schema is required,

Any changes to 2 relation should only be made in the output- schema, but anew relationcan
be added to the input schema without harm. To change a relation's attributes, the IDL list
manipulating routines should be used. Adding and removing attributes is handled by specific rou-
tines, while reordering the attributes réquires a combination of routines. After the relation is
complete, the positions of the components must be set by calculating the proper offset of each within the
event record, making sure that alignment and byte order is maintained. A new relation is created by

assembling a sequence of attributes using newlycreated attributes and the IDL routines.

'Changing the value of an attribute is trivial for fixed length attributes: assign the new value
to the properly cast offset into the event record. If the attribute is of variable length and the new
value is longer, then the event record must be extended by that amount and subsequent attributes
must be shifted. If the new length is shorter, the subsequent attributes can just be shified. A new
attribute is created by allocating space and filling it with the required values, except for the
attr_pos field. The new attribute isinserted at the end of the relation, the positions of the
components are updated, and the value for the new attribute can be filledin. Ifthe attributeis
to go somewhere other than the end of the event record, a new tuple is needed, and the components are

copied in by name.
7.4. Transforming Relational Operators to Tools

The basic operations of relational algebra are listed below with the symbols used to represent them in rela-

tional algebra expressions. [20]

-39-

Operation Symbol Results
projest Teomporems (Telation) mew relation with only specified components
select O formuia (relation) new relation with tuples satisfying formula
Cartesian Product relation X relation new relation containing the Cartesion Product of two relatio;s
set difference relation — relation relation containing tuples in first relation that aren’t in second

union relation U relation relation containing tuples in either relation

Consider the following relations
Creates{process,fle) Accesses(process,file)
and relational algebra formula on these relations:
Tprocess (Accesses — Creates)

The Creates relation contains tuples whose components are pairs consisting of a file and the process that
created it. The Accesses relation contains pairs of a file and a process that either read from or wrote to the
file. The expression creates a relation containing all those processes that only accessed files but never -
created any. The next section will detail how to transform this expression into 2 series of tool commands,

and on transforming any expression into tool commands.

COrdinarily, expmsiohs containing set difference and Cartesian product would be evaluated inside a con-
ventional relational database system though the tools relstore and refretrieve. If, afier reducing the stream
as much as possible it still can’t fit on a disk, then these operations can be simulated to a limited extent
using the analysis tools. To perform this expression with the analysis tools reguires rewriting the formula
‘into a form the tools can manage, possibly requiring more than one pass through the data. For large
streams this is still prohibitively expensive, but sormetimes it is possible to reduce the stream significantly
and to perform the evaluation with only a single pass. Each part of the expression will be dealt with in

turn.

Notice that the set difference operation is used in coordination with the project operation, where it forms
the relational algebra equivalent of a loop. The stream must effectively become two streams, each consist-
ing of only one relation. The set difference is performed by checking each tuple in one relation for
membership in the other relation. The shell doesn’t permit any way of specifying two streams, so one

stream must be turned into a file. This file can then be used by the following awk program and applied to

-40-

the stream by appfycp.

FPILENAME == "Creators" (
creators[$152] = 1:
nexkt

}

creators{5152)w=l {
print 0
next

ptint 1

Awk operates on lines of character data, breaking the lines into space separated fields that are numbered
$1 through $9. The code is broken into blocks with conditional statements that awk uses to determine
which blocks to execute. Execution continues for each block whose condition is met, unless processing

for the line is explicity stopped.

The first block in this prog_rani is selected when the input file is Creators and builds an associative
array based on the catenation of the first two fields (indicated as $1 and $2) as the index into the array,
Each entry is set to 1 to represent the presence of the catenation value. Furrh& processing of the line is
- bypasséd by the n&xt. keyword. The second and third blocks of code are executed on the remainder of
the input. These print a 0 if the current line has an entry in the associative array and a 1 if no entry is

found.

The Creators file is extracted from the stream by the pipeline:
% project Creates process file < stream | streamprint =-uk > Creators

Project extracts the tuples from the stream and streamprint converts the tuples to human and awk readable
. format, putting the results in Creaiors. Applyop takes the awk program, the Creators file, and the input
stream and creates a file in stream format called Accessers.

% applycp awk -p *-f awkfile Creators -’ Accesses process file =
accept tboclean < stream | select Accesses “accept=true” > Accessers

Applyop projects the values of the process and file components of the relation Accesses in a character for-
mat o the awk program and appends a boolean component accept (true and false are represented as 1

and 0), built from the awk program’s cutput. Select uses the new component to create Accessers, that

41-

contains tuples of those processes that accessed at least one file that they didn’t create. Since the associa-
tive array creators is kept in main memory, its size is limited. This approach is effective because

most domains in a stream have values in a limited range.

The Cartasian product of two relations is treated similarly to the set difference but is distinguished from
set difference in that the argument relations need not be of the same arity, nor havé similarly named coms
ponents. As with set difference, Cartesian product is used predominantly with select and project, but an
additional difficulty arises owing to the size of the intermediate relation. While set difference splits the
stream, thus reducing the size of the database, Cartesian product greatly increases the size of the database.
Each tuple in the new relation contains as many components as the two argument‘relaﬁons combined, and
the number of tuples in the new relation is the product of the number in the two arguments. If the e;nu're
Cartesian product is required throughout an analysis session, the investigation will be iimited by the
amount of memory available in the system. To save space, the refations and components not taking part in
the expression should be removed from the stream as early as possible through ssloct and profect. By
decomposing the expression, more space can be saved, at the cost of additonal passes through the d;atta.
Sufficiently small streams, where the intermediate results can fit on disk, can _utilize relstors and relro-
trieve, while sufficiently large streams make mt;re than a single pass through the data prohibitive. Con-
sider the relations Creates and Accesses again, with an additional component to Accesses that records the

number of bytes accessed.

Creates(process, file) Accesses(process,file,accesscount)
Again we wish to deal only with processes that don’t access files they create, with an extra condition that
the access be large enough, 500 bytes, for example. Since the arity of the two relations differ, set differ-

ence is not defined, hut an equivalent result can be obtained by combining project, select, and Cartesian

product,

Morocase 2 [cpmm tuprocess 2 A file lmfile2 A aceeszzount >500 (Creates X Accesses)]

Despite the change to Accesses, the same pipelines as used in the set difference example above can be

used to satisfy the Cartesian product expression with only a change to the selection formula:

salect Accesses "accept = true & accessccount > 500"

42

This works because the select formula in this expression is similar in effect to the set difference expres-
sion in the previous example, having only a single additional criteria. Differences in arity are unimportant
to applyop, since an implied project occurs before applying the co-routine. While this is a fortvitous

choice, it is not unlike many applications of Cartesian product.

Mare complex uses of Cartesian product that can’t be simulated by iteration cannot be handled by the
_ tools, since any stream small encugh to permit multiple passes can be better served by using 2 conven.

tional database system.

The applications that use a conventional database can be far more general than for a stream database. At
Camegie-Mellon University’s Computer Science Department, uéing the Monitor and a preliminary ver-
sion of the Accountant, accounting data has been placed into a relational database that can be viewed
using a graphical representation of an accoun;ing session [26]. A given accounting session is limited in
duration and in the number of processes run, because of space and processing time considerations.
Several sessions are kept in the database, and each is viewed separately. The graphical view of the ses-
sion presents each process as a time line, with event records appearing as bars on that line, Operations on
the view include panning through time, and zooming in on 2 moment, up to viewing the contents of an

event record.

Intermediate results in processing & relational algebra query require the ability to create new relations.
Tools that modify a stream provide tﬁis capability by allowiﬂg their target relation to be renamed. This is
only necessary for mnemonic reasons are when the target relation and the new relation must co-exist. If a
user program needs to crezte new relations or modify existing relations, then it must modify the schema to
contain the new relations and pass the new schema to the output before writing any tuples to the output. '

Details of what must be modified will be described below.

There are occasions when the investig.ation of a stream requires dealing with collections of tuples from a
variety of relations. While this is done in a traditional database system through the Cartesian product, we
have already seen that this is difficult to do with streams, and impossible if the stream is only to be pro-
cessed once. The order of tuples in an unmodified stream represents the order that the event records were

created. This differs from the traditional arrangement where the order of tuples is not significant. The

-43.

tool finitestate (see the manual pages in the Appendix) provides a means for examining series of tuples,
and deciding acceptance or rejection based on a finite state machine provided by the user. A separate
instance of the finite state machine is created for each partition value in :.he stream, The state of the
machine represents the memory of what has happened for that partition value. As each new tuple is
entered, it 1s stored in the sentence for its partition value. When an accepting state is reached, the sentence
is written out, preceded by a header tuple containing information about the sentence. If a fejecting stafe is

reached, the accumulated sentence is discarded.

Finitestate was designed to enable the study of the pathname locality when opening files. When a process
opens a file, it specifies the path the kemnel must traverse to find that file, This is monitored by the Name-
Start, NextComponent, and OpenSuccessful sensors (see Chapter 4). The sequence of the tuples created
by these sensors marks the path taken by the kemel io find the file. The length of the chain of tuples
shows the proximity of the file to the current working directory. The relationship between-the members of
the chain is shown only by their relative positions in the stream, and the absence of any tupies with the
same initiator within the stream. This preclude analysis by a relational algebra expression. Finitestate can
extract the chains as separate sentences, and, through a sentence’s header tuple, provide a hook that can be

caught by relational algebra.

The analysis tools do not provide a complete set of relational algebra operations, but they do provide most
of the common operations and the ability to use a complete relational algebra through the tools refstore
and relretrisve. The tools directly execute union, project, and select, and, using combinations of tools, set
difference. The Cartesian product is only available through Ingres, but can be simulated under certain cir-
cumstances, The ability to create new relations is provided in the tools, and the additional ability to exam-
ine sets of dissimilar relations through finitestate and applyop. Unlike traditional databases, the tools have

the capability of handling arbitrarily large amounts of data.

Chapter 8 |

Conclusion and Future Work

The system as currently implemented consists of sensors and schemas generated by hand from sensor
descriptions, the Monitor systém call to manage data and sensors, the Accountant to contro] the account-

ing process through the Monitor, and and some of the suite of analysis tools to treat the data.

8.1. Implementation

The use of automatic code generation for schemas reduced the time needed for developing the analysis
tools and the complexity of those tools. .Schemas provide a means to seif.define a stream, so that generic
tools do-not have to have hard coded knowledge of the event records, When the sensor compiler is com-
-pleted, new sensors can be defined in terms of their tarpet parameters, with their schemas generated

automatically, leaving only placement and parameter decisions to the user.

Despite the code generating tools, one tool was still difficult to develop. The interaction of multiple
processes and the lack of existing tools for specifying the interaction made the program appfyop difficult
to write. Existing debugging aids cannot handle multiple processes well, and, while Unix does have inter-
process communication facilities, these are really designed to work between programs that expect such

communication, rather than between arbitrary programs,

Simulating the kernel, Accountant, and Monitor allowed much of the system to be debugged before
proceeding to the target environment. This was especially important with the kem'ei routines, which oth-
erwise required large amounts of overhead for changes. Changes to parts of the system could be tested
quickly using the simulator before undergoing the expense of installing a new kemnel. Development in an
environment wherg crashes and performance were isolated (a workstation) reduced the remaining testing

time on a real system.

Distriblit.ing the system to other sites permitted independent testing, and caught problems that would have
otherwise gone unnoticed. Users at the distribution sites operated in a slightly different environment and
under a different set of assumptions leading to the detection of errors that wers missed in testing and the
detection of dependencies on local system modifications. The work at other sites effectively trebled the

testing, as well as contributing important ideas to improving the system.

While the complexity of an operating system makes proper placement of sensors difficult, stateless distri-
buted systems are even more difficult to instrument. As mentioned in Chapter 4, the act of obtaining

information can cause the sensors to recurse infinitely. This will be discussed further below.

-8.2. Operation and Analysis

The monitoring system is easy {0 use to collect file system data, and by extension, general data from the
kemel. For this purpose, the reduced Accountant acef suffices to control the system. Placing the sensors
in the kernei allows monitoring file system usage across all processes in the system and requires no
changes o user programs. Individual processes can be extracted from the data stream and analyzed
indepeﬁdendy, or the system activity can be viewed on the whole. Sensors can be added to programs to
create a unified set of data cdntaining both user and kernel information, though this ability has not been

fully demonstrated.

The relation database approach, while flexible, has weaknesses when handling arbitrary amounts of data,
Can_‘.esian product and set difference are impossible in a pure form {a pipeline can’t store an arbitrary
amount of data), and union must be slightly redefined to be implemented. Using a set of analysis filters is
a good approach: it is flexible, allows handling of cumbersome amounts of data, and is extendible, espe-
cially through the library routines. Of the tools, the ones not directly related to relational operations are
among the most useful: applyop and finitestate. The utility of applyop is in allowing arbitrary Unix filters
to be used on stream data, while finitestate allows handling data that is only represented implicitly in the
stream. The order of the event records, an implicit datum, is altered by finiiestate, but can be recovered

by using appiyop to append the position explicitly to each record.

-46-

8.3. Future Work

This section discusses work remaining to complete the existing parts of the system, identifies the systems
shortcomings, and suggests extensions. Completing the system requires refining the communication
between the data gathering components of the system, completing the analysis tools and the sensor com-

piler, and measuring the overhead generated by monitoring.

The communication betwe=n the Accountant and the Monitor is now initiated by a imer. Signals are a
better way of initiating Accountant/Monitor interaction, but add complexity to the development and test-
ing, since simulating the kernel would require a saparate process. When new features are added, it would
be better to be able to disable signaling and return to timaing during the testing process. Signals and inter-
process communication will also be required 1o implement an interactive controller for the Accountant and

user process/Accountant interaction. Some of this code already exists, but requires upgrading and testing.

The monitoring system is designed to be general, but to be truly useful for arbitrary monitoring, the
automatic generation of sensors and schemas from a description is needed. The sensor generation should
be straightforward, since the methods for converting sensor descriptions to code have already been

developed. The use of IDL should ease the schema generation part of the compilation.

Most of the analysis tools have been implemented. Of those described but not implemented are reistore,
relretrieve, streamconvert, and tapehandle. These are not necessary for many operations, but are needed

for transferring data between machines of different types and for using Ingres.

There are shortcomings in the design and implementation. Viewing the data produced by the sensors
currently placed in the kernel suggests some additional information that would be useful. If a single pro-
cess is to be studied, it is now impossible to determine if the entire activity of the process is covered in the
data or whether accounting was present through only a portion of the process’s exe;ution. It is also
impossible to know when all event records produced for a process have been seen. The addition of sen-
sors to record the beginning and ending of processes would enable both of these to be determined. Sen-
sors of this nature are dbeing used at C-MU to depict processes graphically along a timeline, so that at least

one implementation of these sensors exists [26].

-47-

In its current state, the monitoring system produces enormous amounts of data, and itself requires monitor-
ing to ensure that the data doesn’t overload the system. Unix file system usage makes for many essentially

identical event recards, allowing space to be saved by using ibid and count sensors.

As mentioned in chapters 4 and 5, efforts are being made to run the system on a multiprocessor. Handling
the resulting concurrency requires a genuine semaphore in both the kernel sensors and the Monitor. Since
this is not available directly in Unix 4.2BSD, assembly language routines will be necessary (it is assumed

that a multiprocessor will have the required operations),

Approaches to handling distributed file systems should also be investigated. Design and position of the
sensors become even more critical here, because of the potentially high overhead and possibility of sensor
recursion. Since the Sun Microsystems’ Network File System (NFS) is a stateless system [25], file infor-
mation must be Iooked up each time to insure its accuracy. This can’t be done with the current sensors,
but requires designing new sensors for each part of NFS. While the NFS requires a different set of sen-

sors, it does not require a different Monitor or Accountant,

Bibliography

1 Deit'el.' Harvey M. An Introduction to Operating Systems. Addison-Wesley, (1584).

2. Ferrari, D., Spadoni, M. Experimental Computer Performance Evaluation. Elsevier North-Holland,
Inc, New York, NY, (1980).

3, Ferran, D, G., Serazzi, A., and Zeigner Measurement and Tuning of Computer Systems. Prentice-Hall,

Inc., Englewood Cliffs, NJ, (1983).

4. Floyd, Rick Short-Term File Reference Patterns in 2 UNIX Environment, TR 177, Computer Sci-

ence Department, University of Rochester, (March 1936).

5. Garcia-Molina, H, Germano, Ir., F, Kohlef, W.H, Debugging a Distributed Computing System, /EEE

Transactions on Software Engineering SE-10, 2 (March 1984), 210-219,

6. Godfrey, M. D., Hendry, D. F.,, Hermans, H. J., Hessenberg, R. K. Machine-Independent Organic
Software Tools (MINT). Academic Press, New York, NY, (1982).

7. Goldberg, A., Popek, G. Measurements of a Distributed Operating System: LOCUS. ucla, (1982).

8. Graham, S. L., Kessler, P. B., McKusick, M. K. gprof: a Call Graph Execution Profiler. in Proceedings

of the SIGPlan *82 Symposium on Compiler'Construction, ACM, Boston, MA, (June 1982), 120-126,

-49-

9. Kupfer, M. Performance of a Remote Instrumentation Program. UCB/CSD 85/223, Computer Sci-

ence Division (EECS), University of California, Berkeley, (February 1985).

10. Kupfer, M.D. An Appraisal of the Instrumentation in Berkeley UNIX 4.2BSD. PROGRES

ReportUCB/CSD 85/246, University of California, (June 1985).

11. Miller, B.P., Macrarder, C., and Sechrest, S. A Distributed Programs Monitor for Berkeley UNIX,
UCB/CSD 84/206, Computer Science Division (EECS), University of California, Berkeley, (October
1984).

12. Ousterhout, 1.X, Da Costa, H., Harrison, IJ.,, Kunze, J.A., Kupfer, M., Thompson, J.G. A Trace-
Driven Analysis of the UNIX 4.2BSD File System. UCB/CSD 85/230, University of California, (April

1985).

13, Satyanarayanan, M. A Study of File Sizes and Functional Lifetimes. in Proceedings of the Eigth

Symposium on Operating System Principles, Asilomar, CA, (December 1981),
14, Satyanarayanan, M. fscript! - Benchmark suite for the Unix file system. magnetic tape

15, Smith, AJ, Analysis of Long Term File Reference Patterns for Application to File Migraticn Algo-

rithms. JEEE Transactions on Sofiware Engineering SE-7,4 (July 1981), 403-417,

16. Snodgrass, R. Monitoring Distributed Systems: A Relational Approach. Ph.D. Dissertation, Com-

puter Science Department, Carnegie-Mellon University, (December 1982).
17. Snodgrass, R. The Temporal Query Language TQuel. in Proceedings of the Third ACM SIGAct-

SIGMOD Symposium on Principles of Database Systems, Waterloo, Ontario, Canada, (April 1984),

204-212.

«50-

18. Stritter, E.P. File Migration. Ph.D. Dissertation, Stanford University, (March 1577).

19, Thompson, K. UNIX Impiementation, The Bell System Technical Journal 57, 6, part 2 (July/August

1978), 15.

20. Ullman, J.D, Principles of Database Systems, Second Edition (Computer Software Engineering
Series). Computer Science Press, 11 Taft Court, Rockville, Maryland 20850, (1982).

21 Weinbérga, P.J. Cheap Dynamic Instruction Counting. AT&T Bell Laboratories Technical Journal
63, 8, part 2 (October 1984), 1815-1826.

22. Measuring, Modelling and Evaluating Computer Systems. Beilner, H,, Gelenbe, E. (Ed.), North-

Holland Publishing Co., Amsterdam, (1977).
23. Performance 81. Kylstra, F. I. (Ed.), Elsevier North-Holland, Inc., New York, NY, (1981).

24. Software Metrics: An Analysis and Evaluation. Perlis, A., Sayward, F., Shaw, M. (Ed.), The MIT

Press, Cambridge, MA, (1981).

25. ‘Networking on the Sun Workstation (2A). Sun Microsystems, Inc, 2550 Garcia Avenue, Mountain

View, CA 94043, (1985).

26. Site demonstration of graphics interface at C-MU.

-51-

Appendix A

Generating Standard Sensors

This is SoftLab internal document 8, explaining the generation of sensor macros from a sensor description.

Abstract

Directions for compiling stanc_ia:d sensors for both kemnel and user prbcesses from a sensor description.
Includes examples of sensor descriptions and the sensors that should be generated.

This document describes the structure of sensors to be used with the UNIX™ operating system. The
source description for a given sensor will be in a Sensor Descriptor Language (described in a separate
document). The generated code is placed into a file to be included in the target routines. Each sensor is a
C macro with appropriate parameters determined by analyzing the source description. For every sensor .
described there will be two macros generated: the macro that constitutes the sensor proper and another .
macro that enables and disables the sensor. Each sensor description will also generate an ascii print for-
mat. This will be used to display the data from that sensor.

The code in this document is displayed in a constant width font with the keywords enboldened. Ital-
ics are used for comments in the code and for portions of the code that vary from one run of the sensor
translator to another. Technical terms in the text are italicized when they first occur.

1. Enabling and disabling sensors

The sensors are numbered sequendally, starting at one. This number is called the evenr number,
Each sensor is associated with one or more unique bits in the mon_enablevector array (see below),
which is effectively an array of boolean bit fizids arranged in short integers. The status of the bits
corresponding to a particular sensor determine the execution of the sensor. One bit is assigned to each
standard sensor. The event number divided by 16 yields the offser, the index of the short integer which
contains the bit, and the sensor number mod 16 yields the mask, which represents the power of two which
selects the appropriate bit, both of which are known at compile time. If the short integer selected by the
offset is OR ed with the mask, then the bit will be set and the sensor enabled. If itis AND ed with the com-
plemem of mask, then the sensor will be disabled.

1.1. Enabling and disabling user sensors

An array monu__boolvec is declared at the head of the user sensor definitions. As with the ker-
nel sensors, this is a boolean array of short integers. Sensors are enabled and disabled by manipulatng
this array. Note that this array is global to the user program but is not directly accessible by the kernel,
‘The cumbersome names used in the user sensors are necessary to avoid conflict with variable names in the
user program.

2. Sensor Generation

This section describes the include file containing the macro definitions for the sensors. There is one
include file generated for the entire operating system.

2.1. Include file header

The following definitions are placed at the beginning of the include file for operating system sen-
sofrs.

#ifdef KERNEL

f#includa *../monitor/mondefs.h"
#include "../monitor/montypes.h"
#ifndaf ntohs

#includa "../netinet/in.h"
fendis

false

#include <monitor/mondefs. h>
#include <monitor/montypes. h>

#ifndef ntchs
#include <netinet/in.h>

fandif

fendis .

#define Timestamp (long) ((time.tv_sec << 13) | (time.tv_usec >> 5))
axtern int mon_semaphore;

axtern unsigned char *mon_write ptr;
extarn unsigned char *mon_zead ptr:;

saxtern unsigned char *mon_eventvecter_end;
extern int mon_sventvector_count;
axteorn int mon_oflow_count;
sxtern unsigned short mon_enablevecter[];
axtern unsigned char *mon_wraparcund():

The conditional compilation is present for use when the machine is run in standalore mode, when most of
the file system is unavailable. The include files montypes.h and mondefs.h contain:the C type
definitions and declarations used throughout the monitoring system. The time stamp is defined as a macro
to enable easier modification to the granularity. It has a period of 2'7 seconds, with a resolution of
approximately 1/2'* seconds (a tick is approximately 30,5 microseconds). The low order bits of the
time.tv_usec field are dropped off because the system clock isn’t sufficiently fast to make them reli-
able. The variables are as follows: mon_eventvector points to the low address of the ring buffer,
mon_write_ptr is the tail and mon_read_ptr is the head, mon_eventvector_count is the
amount of data filled, and mon eventvector end points to the nominal high address. The variable
mon_oflow_count is incremented when data has been lost due to a full buffer;
mon_enablevector is an array used to indicate whether a sensor is active; and mon_wraparound
handles the wrap around condition for the ring buffer,

2.1.1. Include file header for user sensors

The header for user sensors is much simpler, consisting of the array of status bits and an event
buffer capable of holding a singie event, and some include files that hold need declarations and defini-
tions. The need for the remaining lines, those referring to ring buffer management, is obviated by using a
system call to handle the actual storage of the event records.

#include <monitor/montypes.h>

#include <monitor/mondefs.h>

#ineclude <netinet/in.h>

#include <sys/syslocal.h>

short monu__boolvec([l6}:
-mon_putevent monu__sbuffer;

2.2. Sensor Definition

The code inside the sensor proper consists of ¢onditional compilation statements, a control section
and the logic o store the sensor information in the ring buffer.

2.2.1. Conditional compilation

‘The conditional compilation statements are used to permit removal of the sensors from the operating
system without having to individually delete each section of code. Bracketing each sensor definition will
be

§ifdef MONITOR
#dafine sensorname {parameter,, ..., param.eter.) \

P

o

falae

Appendix A 2

#dafine sensorname (parame:er, » w2 parameter,)
g#endif MONITOR

All the sensors can thus be installed by defining MONITOR when compiled. The flag ~DMONITOR is
specified to the compiler to install the sensors; its absence removes them. Note that most sensors are ini-
tially disabled when installed, so that use of this flag will not guarantee that event records are generated.
However, it does imply that the enable bit(s) will be checked each time the sensor is encountered.

2.2.2. Control section of sensor

The control section determines whether the sensor is enabled, whether there is sufficient room in the
ring buffer to hoid it, and if the ring buffer must wrap around. Kemel sensors also contain code that
checks for concurrency with other kemnel sensors and prevents ¢xecution if concurrency is detected. If
there is insufficient yoom to hoid the event record then the sensor code is bypassed and
mon_oflow_count The ring buffer is constructed with an appendix of data locations which is used for
an overflow area so that only one check per sensor is required to deal with wrap around. If the buffer has
wrapped around, then the data from the nominal end of the ring buffer to the current position of the write
head (which is now in the appendix) is copied to the front of the buffer by the subroutine
mon_wraparound in the module local_syscalls.c. We know that there is room at the front of the ring
buffer since that compare has already been done. The generated code for controlling sensor execution is:

if (* (mon_enablevector + offsef) & mask)

{

if (meon_semaphore++ == 0}

{ r

if (mon_eventvector_count <

MON_EVENTVECSIZE + length_of event record*Z -~ sizeof (mon_errrec))

! {
raglster mon_putevent *reg ptr = (mon putevent *)mon_write_ptr;
register short *sen fields = reg ptr->fields;

Body of Sensor, to be explained below

if (sen_fields > (short *)mon_eventvector_end)

mon_WwWrite_ptr = mon_wraparcund ((unasigned char *)sen_fields);

alse
mon_write ptr = {(unsigned char *)sen fields;

}
alze mon_oflow count++;
mon_semaphore—-—;

offset, mask, length_of event_record, and MON_EVENTVECSIZE are constants known at compile
time. The offset is the index of the short intsger in mon _enablevector described above, containing
the bit that controls this sensor. The mask has a 1 at the appropriate bit location for this sensor and zeros
for the other positions. The correlation between the event number and the offset and mask values was dis-
cussed in Section 1.

The variable mon_semaphore is used to detect concurrency among the kernel sensors. It is com-
pared to zero and incremented before the main body of the sensor and decremented after it. If it is found
to be non-zero in the test, the main body of the sensor is bypassed and mon_semaphore is not decre-
mented, effectively disabling all kernel sensors. This is necessary to prevent corruption of the pointers
shared by the sensors, which could cause the operating system to crash.

The test to determine if there is room in the ring buffer uses the variable
mon_eventvector_count and the constants MON_EVENTVECSIZE, sizeof{mon_errrec),
and length of event record The variable mon_eventvector_count contains the number of bytes
currently filled in the ring buffer. Since length_of event_record is in short integers, it is multiplied by two

Appendix A 3

Pl e

P

to yield the length in chars. sizeof (mon_errrec) is also subtracted as room for an error
record. The size of the ring buffer is determined from the constant MON_EVENTVECSIZE For sensors
with fixed length event records, the actual lengths of their event records are known at compiie time. Sen-
sors with variable length event records use the maximum length for the comparison, though the actual
length is later inserted into the event record. Note that each line in the macro definition ends with a back
slash except for the final line,

2.3, Storage of sensor information

The logic to store the sensor information consists of an initialization section and a parameter storage.
section. User sensors and operating system sensors differ only in their initialization, Operating system
sensors will be covered first in detail, followed by the differences for user sensors.

2.3.1. Initialization |
Initialization for a sensor begins with loading the address of the first open position in the ring buffer
into a register pointer of type mon_putevent which is duplicated here from the include file montypes.h

°

struct mon_pevt {
struct mon_cmd {
vnsignad char type;
unsigned char length;
} emd;
shoxt eventnumber;
shezt performer;
leng object;
short initiator;
leng timestamp;
short fields{EVENT_LIMIT]:
| H
typaedaf struct mon_pevt mon_putevent;

If there are no character strings among the sensor parameters, the type of event,
MONOP_PUTEVENT_INT and the length in short integers are moved into the structure mon_cmd at the
beginning of mon_putevent . The length is multiplied by two to yield the length in chars and is
added t0 mon_eventvector count. The event number of the sensor is loaded into the
eventnumber field. See Section 1 for the discussion of how this is determined. The performer is
set to zero and bypassed. It is used to record the process id, which for a kemnel sensor is 0. The id of the
sensor’s object is loaded into the object field The initiator field is not used for kernel sensors.
If a time stamp is required, it is moved into the timestamp field, which is otherwise set to zero.

reg_ptr->emd.type = MONOP_PUTEVENT_INT: /% whennostrings*/ \
reg_ptr->cmd.length = length; \
mon_eventvector_count += length * 2; \
reg_ptr->performer &= 0; /* for processid * \
reg_ptr->eventnumbexr = even! nuwnber; . \
reg_ptr->object = id of sensor’s object ; \
reg_ptr->timestamp = Timestamp; /* when required */ \

* Fill in sensor specific fields — described in2.32 %

If strings are present the length of the event record can only be determined after the character string’s
length has been determined. Once the record’s length has been determined it can be loaded into the
buffer. The length is calculated by subtracting the initial position of the ring buffer pointer from the posi-
tion after the string is loaded.

register mon_string sen_f ptr = (mon_string)string_parameter ;

Appendix A 4

raglister mon _string sen_f end = (sen_f ptr + max_length/aizeocf (*mon_string)):
reagister short sen_length;

register short *sen_fields = reg ptr->fields:

rag_ptr->performer &= 0:

reag_ptr-~>eventnumber = even! number;

reg_ptr->object = d of sensor's object ;

reg_ptr->timestamp = Timestamp;

* Fill in sensor specific fields — described in2.3.2 %/

san_length = gen_fialds - (short *)reg ptr;
*reg_ptr->cmd.type = command;

*reg_ptr->c¢md.length = sen_length;
mon_eventvector_count += sen_length * 2;

Subtracting the beginning position in the ring buffer from the current position yields the length of the
event recard. The length is placed in cmd.length in the event record. The length is then converted to
bytes and added to mon_eventvector_count.

2.32. Parameter Storage

The parameters of the sensor are filled in at successive pasitions past the beginning of ffelds. There
are three cases: two byte integer, four byte double integer, and character strings. For a two byte integer,
the parameter is moved to the next open position.

* (sen_fields++) = parameter; \

For a double integer, the parameter is also moved to the next open position, but reg_ptr must be incre-
mented by two. Since the increment operator (++) will only increment by one, a separate addition is
required.

*(long *) (sen_fields) = parameter; \
sen _fields += 2; \

To insert character strings into the buffer, the pointers must be set to the first element in the string
and to the last element that is desired. This must be done at the beginning of the sensor’s block. These
are then used to step through the string,

ragister mon_string sen_f ptr = (mon_string)string_parameter; \
Tagister mon_string sen_f_end = (sen_f ptr + desired length); \

desired_length is the maximum Ilength allowed for character string parameters, in units of
sizeof (*mon_string). This can be calculated by taking the desired length in characters and divid-
ing by sizeof (*mon_string). The use of mon_string will be described below. The compiler
will resolve this term into a constant. When a parameter is known to have a maximum length shorter than
that for all sensors, or only a shorter length is desired for this particular parameter, that length should be
used instead. This is known at compile time. Subsequent string parameters reinitialize the same pointers.

The event buffer consists of short integers. Many machines do not permit the assignment of short
integer pointers to arbitrary boundaries, but are likely to permit such for character strings. The sensor
code handles this by 2 C typedef and two macros whose definitions vary depending upon this charac-
teristic.

#ifdef SHORTALIGN

typedaf char *mon_string;
falza

typedaf short *mon_satring;
fendif

Appendix A 5

o

Pl

§ifdef SHORTALIGN 1% For fetches that may need alignment */

#define PackStr(ptr} (ntohs((*ptr<<8} | (*(ptr+l))))

#defina NotEOS{ptr, last} (ptr <= last && *ptr++&0xff && *ptr++&0xEf)
#alsa

#define PackStr{ptr} (*ptr)

§define NotEOS(ptr,last) (ptr <=~ last && *ptr&Ox00ff && *ptr++&0xf£00)

fandis

The macro PackStr groups the characters of the string in pairs, either by using short integers or by
shifting characters, while NotEOS determines when the end of the string is reached { a null character) or
the maximum length allowed is reached. The system macro ntohs is used t0 prevent byte swapping:in
PackStr but is not necessary for the comparisons in the while statement, since both possibilities are
checked.

The variable length of character strings causes the lengths of event records that contain them to be
variable, The maximum string length must therefore be used in determining whether there is room
remaining in the ring buffer. It also requires those steps mentioned above under initialization to insure
that the actual length of the event record is entered into the ring buffer. The macro NotEOS handles the
termination condition in the while statement. Inside the loop, the smng is moved two characters at a
time into the address pointed at by the regxster pointer:

do { *{sen fields++) = Pack(sen f ptr); }
while { NotEOS(sen_f£ ptr, sen_f_end));
#{sen_fields - 1) &= ntohs(0xff00};

o

The string handling assumes all strings ferminate in binary zero. The last byte of the string in the ring
buffer is ANDed with 0xff00 fo allow for truncating a string. This must be passed to ntohs so that the
action occurs properly, regardless of the byte order of the host machine. Truncation results when the
string is longer than that allowed, or the sensor definition specifies that only a certain length is requ:red
and the parameter exceeds this,

2.3.3. Storage for user sensors

The data fields of a user sensor are filled using the same general code as the operating system sen-
sors. The major differences are that user sensors need not handle wraparound conditions or concurrency,
utilize different naming conventions, and use a system call to write into the ring buffer.

User sensors load the address of a buffer of type mon_putevent into a register, where data is
stored prior to being transferred 1o the ring buffer by a system call. This buffer is globali to the program
and is used by all sensors in the program.

reglster men _putevent *monu__reg buf = &monu__ sbuffer; \
reglstar short *u_sen fields = (gshoxt *)mcnu__reg_buf: \

The struct mon_cmd is filled in, using MONOP_PUTEVENT_EXT for type. Length is treated
identically to operating system sensors, as are eventnumber and object. Performer is
ignored. It will be filled in with the caller’s pid by the system call used to store the sensor. The times-
tamp field is filled ysing the same system variables as for the kernel sensors.

monu__reg_buf->aventnumber = MONCP_PUTEVENT EXT; \
monu__reqg_buf->object = gbject ; \
monu _reg buf->timestamp = limesamp; \

The length of variable length records is determined through the use of the variables
u_sen_f_ptr u_sen_f_ endand u_reg_length and the same algorithms used by operating sys-
tem sensors.

Xeglster mon_string u sen f ptr = (mon_string)str parm 1; A

Appendix A - 6

register mon_string u_sen_£f_end = u_sen_f_ ptr + desired length; \
ragister short u_rag_length; \

The algorithms used by the operating system sensors are used to fill monu__sbuffer This does
not store the data, however. A system call to 3 moritor in the kemel is required to write into the ring
buffer.

syscall (SYSLOCAL, MONITOR, (unsigned char *)monuy__sbuffer)}:

SYSLOCAL and MONITOR are defined in a header file /sys/h/syslocal.h

3, Examples of Code Generated from Sensor Descriptor File Below are the definition of a user sen-
sor followed by the generated code and the definitions of two kemel sensors followed by their generated

code,
3.1. A User Sensor Definition

Event UserXamplSensor (obj: integer objact;
str parm 1: string{127]:
sh_parm_2: integer;
str parm 3: string{l27}:
lg_parm_4: doublaeintager) is
timestampad, sansortraced;

3.2. AnInclude File Containirg A Single User—Defined Sensor

finelude <monitor/montypes.h>
#include <monitor/mondefs.h>
#includa <netinet/in.h>
#includa <sys/syslocal.h>
short monu boolvec[lsl-{0000000000000000}:
mon_putevent monu__sbhuffer;
§define UsorXamplSensor (cbj, stz_parm 1, sh_pam 2, stx_parm 3, lg_parm 4}
if (monu__boolvec(0] & 0xl } .
{
" register mon_putevent *monu__reg_buf = &monu__ sbuffer;
ragistar short #*u_sen_fields = (short *)monu__reg_buf;
reglster mon_string u_sen f ptr = (mon_string)str_parm_1;

reglster men_string u_sen_f end = u_sen f ptr + 127/sizecf(*mon_string):

regizter short u_zxag_ length;
monu__reg_ buf->eventnumber = 1; .
monu__reg_buf->object = obj;
monu __Treg buf->timestamp = 1; i

do { *u_sen_fields++ = Pack(u_sen_f ptr}; }
while (NotEOS (u_sen_f ptr, u_sen_£f _end)):;
*{u_sen_ fields =~ 1} = ntohs(OxffOO}.
#y_sen_fields++ = sh_parm 2;
u_sen_f ptr = (mon_string)str_parm 3:
u_sen £ end = u_sen_f ptr + 127/aizecf(*mon_string);
do { *u_sen fields++ =~ Pack{u sen f ptr); }
while (NotEOS(u_sen_f ptr, u_sen f_end} };
*u_sen_fields &= ntohs (0x££00);
*({ long * Ju_sen_fields = lg_parm 4;
u_sen_fields += 2;
u_reg length = u_sen_fields - (short *)monu__ reg buff;
monu__rag_buff->cmd.type = MONOP_PUTEVENT_EXT;
monu__ reg_buff->emd.length = u_reg_ length;

Appendix A 7

T T T T T

syscall (SYSLOCAL, MONITOR, (unaigned char *)&monu__ sbuffer):;

3.3. Kernel Sensor Definitions

Event ReadSenscor (device, inumber: integer cbjact;
filepos: doublaeinteger;
actualcount: integer) is
timestampad, sensortraced; -
Evant NextComponent (device, inumber: imtaegaxr objact:
filename: string[l127]) is
timastamped, saensortraced;

3.4. An Include File Containing Two Kernel Sensors

#ifdef KERNEL

#include *../moniter/mondefs.h"

$inclucde "../monitor/montypes.h”

#ifndef ntohs

#include *../netinet/in.h"

#andif

felse

#include <monitor/mondefs.h> .

#include <monitozr/montypes.h>

#ifndaf ntohs

#include <netinet/in.h>

#andiz

fendif

§dafine Timestamp (long) ({time.tv_sec << 15) | (time.tv_usec >> 5))
axtern int mon_semaphore;

axtern unsigned char *mon_write ptr;
extern unsigned char *mon_read ptr;

extern unsigned char *mon_eventvector_ end;
extern int mon_eventvector count;
axtern int mon oflow_count;

artern unsigned shoxt mon_enablevector([]:;
sxtern unsigned char *mon_wraparound(}:
#$ifdaf MONITOR

- §define ReadSensor (device, inumber, £ilepos, actualcount)
if (*(mon_enablevector+0) & 1<<8)

{

- i.‘_E {mcn_semaphoret+ == 0)

1f (mon_eventvector_count <
MON_EVENTVECSIZE — 15%2 - sizeof (mon_errred))

{
register mon_putevent *reg ptr = (mon_putevent *)mon_write ptr:
ragister ashort *sen_fields = reg_ptr->fields;
monprintf ("ReadSensor: mon_write_ptr = %d\n", mon_write_ptr); \
reg _ptr->cmd.type = MONOP_PUTEVENT_INT;
reg ptr->cmd.length = sen_fields+3 — (short *)reg ptr:
mon_eventvector count += reg ptr->cmd.length*2;
reg ptr->performer - 0;
reg_ptr->eventnumber = 3§;
reg_ptr->object = htonl ({{short)device<<ls)}

{(short)inumber & Oxffff)):

reg_ptr->initiator = u.u_procp—>p_pid;
reg_ptr->timestamp = Timestamp;
*{loeng *)sen_fields = filepos;

Appendix A 8

Rl ol e Pl

sen_fields += 2;

*sen_ fields++ = actualcount;

i2 { smen_fields > (shoxrt *)mon_eventvector_end)
mon_write ptr = mon_wraparound ({unsigned char *)sen_fields);\

e

ealse \
mon_write_ptr = (unsigned char *)sen_fields: \
monprintf (" ReadSensor = %d\n", men_write_ptr}; \
} \
elss mon_oflow_count++; \
mon_semaphore~; A\
} \
} /* end readsensor *!
felse :
#dafine ReadSensor(a,b,c,d)
#andis

Appendix A 9

$ifdef MONITOR

#define NextComponent (device, inumber, filename) \
if (* (mon_enablevector+0) & 1<<2) \
{ A\
if (mon_semaphore++) A
.{ \
if (mon_eventvector_count < \
MON_EVENTVECSIZE — 260 - sizaeof(mon_errrec)) A
{ \
register mon_putevent *reg_ptr = (men_putevent *)mon_write ptr:\
register shoxt *son_fields = reg ptr->fields; \
Tegliszster mon_string sen_f ptr = (mon_string)filename; Y
register mon_string sen_f_end = sen_f_ptr+l2Vsizeof (*mon_string):\
raglistar short sen_length: \
reg_ptr—>eventnumber = 2; A
rag_ptr->performer = Q7 \
reg _ptr->object = htonl(((short)device<<ls) | LY
{ (short) inumbersOXfLEL))} ; 5
reg_ptr->initiator = u.u_procp—>p_pid; \
reg_ptr->timestamp - 0; \
do { *sen_fields++ = PackStr{sen_f ptr); } \
while { NotEOS(sen_f ptr, sen f_end}); A\
¥{sen_fields — 1) &= nt.ohs (0xL£00):; A\
sen_length = sen_fields — (short *)reg_ptz; \
reg_ptr->omd.type = MONOP_PUTEVENT INT; \
reg_ptr->cmd.length = sen_length; \
mon_eventvector _count += sen length*2; A\
‘if (sen_fields > (short *)mon_eventvector_end) \
mon_write_ptr = mon_wraparound{ (unsigned char *)sen_fields):\
alse A
mon_write_ptr = {unsigned char *)sen fields; hS
} : \
alse mon_oflow count++; \
mon_semaphore—; \
} A\
} * end NextComponent */
§alsa
#defina NextComponent {device, inumber, filename)
fendis
3.5. Blindprinter Output for the Example Sensors
command = external length = 33 eventname = AcctHeaderx performer =
9 53 cbject = 100 initiator = 0 timestamp = 1089898524 acct dat e
= 10487620162 karnel date = 10487620162 hostname = grant init tex ¢t =
Fri Jun 14 14:03:05 1985 command - kernel length -
11 eventname - ReadSensor performe ' r - 0 object =
1280,2093 initiator - 102 timestamp = 1059 902835 filepos =
198207actualcount = 24 command = external length = 17 eventname =
UserXamplSensor performe ¢ = 953 object = 101 initiater =
0 timestamp - 339019804 str parm 1 - acct sh_parm 2 -
60 str_parm 3 = loop lg_parm 4 = 101 command = kernel length =
11 eventname = ReadSerisor performer =
o object = 1344,187 initiator = 952 timestamp = 1055904085
filepos = 301032actualcount = 8192 command = kernel length =
11 eventname = ReadSensocr performer =
0 object = 1344,187 initiator = 952 timestamp = 1059955246
filepos = 32011 0actualcount = 8192 command = kernel length =
11 eventname = ReadSensor performer =
0 cbject = 1344,187 initiator = 952 timestamp = 1059958996
filepos = 202052actualcount = 8192 cormand = kernel length =
11 eventname = ReadSensor pexformer =
L} objact = 1344,187 initiator = 952 timestamp = 1055959621

Appendix A 10

filepos = 320862actualcount = 8192 command = Kernel length =
10 evantname - NextComponent performe r - 0 ocbject -
1280,2 initiator = 952 timestamp = 0 filename = usr

Appendix A - 1

Appendix B
Unix Manual Pages
These are the Unix manual pages for the parts of the system. It has a table of contents and a permuted

index in the standard Unix format. The pages are in alphabetical order within the sections of the manual,

except for the intro (1L) entry, which precedes the others in the section.

TABLE OF CONTENTS

1. Commands and Application Programs

INTO o « & « s « s + ¢ s s o s+ s « » « o introduction to the Monitor system tools
BCCOUNEANE o o « + o » o s o « 4 « o o « s o = o o« o o Storeeventrecords in a file
acct W 4 s s s s s e s s s e s e s v e v s s writeeventrecords to standard out
aggrop e « « » s« « s « s « applyone of (sum, average, count, min, max) to the stream
applyop e e s o v s e 4 s 5 s s s e+ s e « o applyagiven function to the stream
blindprint Dblindprint- print binary event records in human readable format
deschema ., Iemovetheschema from the stream into the named file stdout .
enschema e e e s o a2 s s e« « prependtheschema tothe inputevent records
finitestate c s o 4 a s s s 2 e e« oo Aapplyafinitestate machine to a stream
project * s s e s s s s x s e 4 s s s e s oo o selectorrearrange components.
relretrieve . create a stream of event records and schernas from the named Ingres database
relstore e a s s s o s e.a s s o o « o Storethesream in the named Ingres database
select c o s s s s o s s s e selectrecords from the stream based on a formula
strearnconvert e s s s s s s s+« convert the event records from or to network format
streamprit printthe event records in a stream in human readable format
tapehandle handlemultiple tape archives of event records
union e s a s s s s« s s+ s s+ o conflate similar relations into a singie relation

2L System Calls

syskmonitor 4.4+ .. o interact with kemel datacollection
syslocal & . . 4 i 4 e i i s 4 4 s e s s s e s s s s s o Indirectlocal system call

3L Montools Library
montools « s s ¢« s s s s ¢ s s« s « Monitorsystem stream and tuple operations

5. Flle Formats

finitestate ¢+ o 4 4 s 4 s s v e e+ s s« o [linitestate machine description format
schema - L] - - » - - » L] . . - - . - - L] . - L] * mL descripdon Qf eVeﬂt records
stream s o s o s s s o s s o thedatastructure used by the Softl.ab Monitor system

8. System Maintenance
shutdownacct emergencyclosedown of the monitoring system

Appendix B ' -i- April 1986

PERMUTED INDEX

sccountant: store event records in a file.

. sccountant{1L)

acct: write event records to standardout. acei(ll)
max) to the streain. aggrop: apply one of (sum, average, count, min, . . aggrop(ll)
finitestate: apply a finite state machineloastrearn. finitestate(1L)
applyop: apply a given functiontothestream. #pplyop(lL}
stream. aggrop: apply one of (sum, average, count, min, max) tothe aggrop(iL}
applyop: apply 2 givee functiontothe stream, ., . . applyop(lL}
tapehandle: handle multiple tape archivesof eventrecomds. . . o o o » o + - - « tapehandle(lL)
aggrop: apply one of (sum, average, count, min, miax) o thestream. aggrop(iL}
select; select records fromthe stream basedonaformula. . o - - o 2 o o o o o - o SElecH{lL)
blindprint - print binary event records i human readabie format. . . blindprint(1L)
readable format. blindprint-p:intbinary event fecords inhuman . . blindprint(IL)
syslocal: indirect local system call. s s 3 e s e a0 s s« s o Syslocal{2L)
shutdownacct: emergency close downof the monitoriog system. shutdownaccy(3L)
sysl_monitor: interact with kerneidata collection. . - -+« v - o o 4 4 4 o+ . Sysl_monitor(ZL)
project: 5eleCt OF IEAIMANge COMPONEDIS.. o o o o o o « + s ¢ ¢ & o o » o projeci{ll)
upicn: conflate similar relations into a single relation. . . wunion(1L)
format, streamcopvert: convert ihe event records fromorionetwork . . . streamconvert(IL)
aggrop: apply one of (sum, average, count, min, max) othestream. . . - - - . . » . aggrop(1L)
the named Ingres database. reifretrieve: create a stream of event records and schemas from . relretrieve(IL)
sysl_monitor: interact with kernel datacollestion, <+ .. . o v sysi_monitor(2L)
strear: the data structure used by the SoftLab Monitor systems, . stream(SL)
of event records and schemas from the named Ingres database. reiretrieve:createastream relmetrdeve(lL)
reistore; store the stream in the named Ingres database. . o o o v ¢ o o o o = 5.6 s « o o feistore(il)
' the named file stdout .. deschema: umoveuicschemafm&emlmo deschema(li)
finitesiate: finite state machine descriptionformal. . . . ¢ o ¢ « o o « o o o finitestate(SL)
schema: IDY, descripionof eventreconds. - . . o » - . o o o schema(SL)
shitdownacet: emergency close down of the monitoring system. shutdownacci(8L}
shuidownacet: emergency close down of the monitoring system. . shutdowpacci(3L}
records, enscherma: prepend the schema to the input event . enschema(lL)
enschema: prepend the schematotheinput eventrecords. . . ¢ v &+ ¢ ¢ ¢ o« ¢ 2 & s « » etnschema(il)
schema; [DL descriptionof eventrecords. 2 « v o = = « 2 » - o schema(SL)
tapehandle: handle muitiple tape archives of eventrecords. .+ ¢ ¢ o o v+ o« » o « o o« o lapehandie(iL)
database. relreirieve: create a stream of event records and schemnas from the named Ingres . relretrieve(11)
streamconvert; convert the event reconds fromorio petwork format. streamconvert(1L)
accountant: store eventrecordsinafile ., accountani(ll)
streamprint: priat the ¢vent reconds in a stream in human readable format. streamprint(1L}
blindprint - print binary event records in human readable format. blindpriot(IL)
scct: write eventrecordstostandardout. 8cct(ll)
accountant: storeeventrecordsina file.: v o ¢ ¢ v s 6 e e 4 s s e s« Sccountany(ll)
remove the schema from the stream into the named file stdout .. deschema: ., . . ., . . . « . . + . deschema(lL)
finitestate: finite state machine dascription format. « o « o finitestaie(SL)
finitestate: apply & finiie sate machine loastream. . - « . fioitestate(iL) |
stream. finitestate: apply a finite state machinetoa fioitestate(iL)
format. finitestate: finite state machine description finitestate(5L)
- print binary event records in human readable format. blindprint « . . « blindprint(1L}
finitestate: finite stale machine description formal . . ¢ . o ¢ o » « » o » « « « + » . fnitestate(SL)
coavert the event records from orto network format, streamconvert: + + « « . « » « Hreamconvert(lL)
the event records in a stream in humnan readable format streamprint:print « « » < « « « streamprint(1L)
select: select reconds from the streambasedona formula, . . - . o v v s« ¢ v o o 2 s o « » select{lL)
applyop: apply a given function to the stream. , . . - » - « applyop(1L)
getrelation, marelationbyname, setpositicn, getdomainbyname, rmdomain lgelemlauonbymme, montools(3L)
/str_read, sir_wrile, getrelationbysensorid, geterelationbynamne, getrelation, marelationbyname,/ montocls(3L)
/getrelationbysensorid, geterelationbyname, getrelation, rorelationbyname, setposition/ montoois(3L)
getrelation,/ /str_schemawrite, str_read, sir_write, gewrelationbyseasorid, geterelationbyname, montools(3L)
applyop: apply a given functicntothestream. . . + « « + «» + « - applyop(lL)
tapehandle: handle multiple tape archives of event records. . . tapehandle(1L)
blindprint - print binary event records in human readableformat. o blindprint(iL)
streamprint: print the event records in a stream in human readableformat. + + « . - . Sreamprini(lL)
schema: 1DL description of eventrecords. schema(5L)
sysiocal: indirect local systemecall. sysiocai(2l)
stream of event records and schernzs from the named Ingres database. relretrieveicreatea relretrieve(lL)
telstore: store the stream in the named Ingresdatabase. - < « . . o + « & « . relstore(il)
enscherma; prepend the schema to the inputeventrecords. . . . -« . . . « « « « s+ enschema(lL)
sysl_moaitor: interact with kernel data collection. #ysl_monitor(2L)
intro: introduction to the Monitor systemtools. inro(lLl) -
sysl_monitor: interact with kemel datacollection. . . . « + sysl_moniton2L)
finitestate: finite stale machinedescriptionformat. finitestate(SL)
finitestate: apply a finite state machineloastream. . . + « v . . + + o+ + o . finitestate(IL)
Appendix B i April 1936

aggrop: apply one of (sum, average, count, min,
aggrop: apply one of (sum, average, count,
stream: the data structure used by the Sofilab
intro: introduction to the

shutdownacet: emergency ¢lose down of the
tapehandie: handle
remove the schema from the stream into the
a gt7eam of event records and schemas from the
relstore: store the stream in the
sireamconvert: convert the svent records from or to
slream. aggrop: apply

enschema

format. blindprint -
readable format. streamprint:

biindprint - print binary event records in human
print the event records int a stream in human
project: select or

enschema: prepand the schema to the inpul event
schema: IDL description of event

tapehandle: handle multiple tape archives of event
relretrieve: create a stream of event
sireamnconvert: coavert the event

select: select

accountant: store event

streamprint: priat the event

blindprint - priat binary event

acct: write event

union: conflate similar relations into a singie
umion: conflate similar

schemas from the named Ingres database,
database.

file stdonat .. descherna:

mrelationbyname, setposition, getdomainbyname,
mdomain /geterelationbyname, getrelation,

- deschema: remove the

enschema: prepend the
relretrieve: creats a stream of event records and
project:
select;
formula,
lgeterelationbyname, getrelation, nnrelationbyname,
monitoring system.
union: conflate
union: conflate similar relations into a
streamn: the data structure usad by the
acet: write event records to
finitestate: finite
finitestate: apply a finite
the schema from the stream into the named file
fecountant:
relstore:
apply one of (surn, average, coutit, min, nax) {o the
applyop: apply a given function to the
finitestate: apply a finite state machine toa
select: select records from the
streamprint: print the event records in a
relstore: store the
deschema; remove the schema from the
Ingres database. relretrieve: createa
Monitor system.
network format,
human readable forrat.
str_read, str_write,/ sir_open,
B schemawme sir yead, st write)/
fstr fopen, str_schemaread, sir schenuwme,
sr r_write,/ sir_open, sir_fopen,
8r_open, st_fopen, str_schemaread,
stream: the data
sir_schemaread, str_schemawrite, sit_read,
aggrop: apply one of

Appendix B

: prepend the schema 1o the input event records.

max)tothe stream. . . .
min, max) to the stream.
Mouaitor system.
Monilor system tools.
monitoring system.
multiple tape archives of event records. M
tamed file stdout .. deschema:
named Ingres database. reiretrjeve: create
named Jugres database, . . .
network format.
one of (sum, average, count, min, max) to the

I T T T T R

L

a
.

L I N N
. s »
.

o« & e
PO R)

+ * e 2

v ¢ = »

a s 4 & &8 5 & B 4

L

print binary event reconds in human readable
p'inuheevcnlreoordsinasammin human

project: select or rearrange eomponznu.. .
readable formal.
readable format. streamprint:
fEAITange COMpPOBEntS..
records,

P

+ 8 £ & A A
“ v 0 »
« e e “ o

records.
records and schemas from the named Ingres daubase
records from or to network format.
records from the stream based on a formula. .
records in a file, .
records in a stream in humaco readable format, .

" 0 4 ® 3 % * o &

T e T B S S T L)

« s o+ 0 & T ¢ & s

« & ° s &

.
»
.
* v v s
.
.

.
°
¢ u
.

* a2 & &

P N N R T S

records in hurmnan readable format.
records to standard out.
reiation.
relations into a single refation.
reiretrieve: create a stream of event records and
relstore: store the stream in the named Ingres ., .
remove the schema from the stream into the named
mdomain /geterelationbyname, getrelation,
mmrelationbyname, setpasition, geldomainbyname,
schema from the stream into the samed file stdout
schema: IDL description of event reconds.
schema to the input event records. . .
schemas from the named Ingres database,
select or rearrange components.,
select reconds from the stream based on a formula,
select; select records from the stream basedon a
setposition, getdomainbyname, rmdomain -~ .
shutdownacct: emergency close down of the
simifar relations into a single relation.
singlerelaion.
Sofilab Monitor system.
standard out.
state machine description format. . . .
state machinetoastream.
stdout .. deschema: remove . ., . . .
store event recordsin a file.
store the stream in the named [ngres database.
stream. aggrop:
stream.
m ® & . 3 3 a ¢ = 8 9 F =B 2 5 &
streambasedon a formula. . .
stream in human readable format.
stream in the named Ingres database.
stream into the named file stdout .. .
stream of event records and schemas from the named
stream: the data structure used by the SoftLab
streamconvert: convert the event records fromorto .
streamprint: print the event records in a stream in
sir_fopen, sir_schemarcad, str_schemawrite, . .
s1_open, str_Topen, sir schemaread.
str_read, str_write, getrelauonbysensond,l PR
Slr_| ~schemaread, str _schemawrite, str_vead, . . , .
sir_schemawrite, SIT_read, str_write,
structure useg by the SofiLab Mopitor system. . .
fir_wrile, geirefationbysensorid,/ /str fopen, . . .
{sum, average, count, min, max) to the stream. ..

FREE R]

2+ » 2 & a
L I

« + w o2 e s 4 = 8

4 + % &+ ® s 0 % @ 5 e 2 s v 2 &

BT T R

. s n
+« 4 s .
. .

« s a2 ® s =2 a

-
.
.
.

“ s s & .

LI R T I N I I |

D R O L T S R S

* 4 e + = s & »
« 4 3 4 a u &

L R A T T R B SR)

L . T T R S
I T B O L T T T S S S GO

s % &+ ® = & 3 s =

.
LI)
L)
s .

« v o=

LR

Permuted Index

aggrop(iL)
aggrop(1L)
stream(SL)
intro(IL)
sinutdownacct(8L)
tapehandle(1L)
deschema(lL)
relretrieve(iL)
relstore(1L)
streamconvert(1L)
aggrop(1L)
enschema(ll)
blindprint(1L)
ttreamprint(1L)
ject(1L)
blindprint(1L)
streamprint(1L)
projeci(1L)
enschema(lL)
schema(SL)
tapehandie(11)
relretrieve(1L)

. streameonveri(IL)

select(1L)
accountant{1L}
streamprint(1L)}
blindprint(1L}
accy(1L)
uniop(1L)
unioa(iL)
relretrieve(IL)
relstore(1L)
deschema(1L)
montools(3L)
montools(3L)
deschema(lL)
schema(5L)
enschema(lL)
relratrieve(IL)
project(I1L)
select{1L)
select(1L)
moaiools(3L)
shutdownacct(3L)
union(IL)
unjon(1L)
strearn(51.)
acct(1l)
finitestate(SL)

. finitestate(1L)

deschema(1lL)
accountant(1L)
relstore(1L)
sggrop(iL)
applyop(iL)
finitesiate(1L)
select(1L)
streamprint{1L)
relstore(1L)
deschema(]1L)
relretrieve{1L}
stream(SL)
streamconvert(1L)
streamprint(1L)
montools(3L)
montools(3L)
montools(3L)
montools(3L)
montools{3L)
stream(5L)
montools(3L)
aggrop(1L)

April 1986

intro: introduction to the Monitor system

Appendix B

tapehandie: handle multiple
records.

relation.
stream: the data stracture
acct:

sysl_monitor: interact with kernel data collection.

sysiocal: indirect tocal system call.
tape archives of event records. . .

tapehandle: handle multiple tape archives of event

tools. .. v . . -

e ¢ 3 o ®

union: conflate similar relations into a single

used by the Softl.ab Moritor system.
Write event records to standanrd out.

-iv-

¢ e e

& e e &

.

Permuted fndex

. sysl_monitor(2L}

syslocal(2L)
tapehandle{1L}

. tapehandle(IL)

intro{1L)
union(1L.)
stream(5L})
acci(1l)

April 1986

INTRO(1L) User’s Manual — SoftLab Monitor Commands INTRO(1L)

NAME
intro — introduction to the Monitor sysiem tools
SYNOPSIS
toolname options operands
DESCRIPTION
The Monitor tools are used to examine the cutput from a run of accountant(1L). Each tool, with
the exception of tapehandle(1L) and enschema(1L), reads a stream (see stream(SL)) from stdin
"and writes a stream to stdout. A stream consists of a schema (see schema(5SL})) and a sequence
of event records (see sysi_monitor(2L)). The event records are treated as fuples where the
fields of an event record become components and the relations are determined by the sensor (see
Generating Standard Sensors) that produced the event record. The schema is used to define
the components for each relation to ailow access by the toals,
The schema contained in the stream is modified whenever the components of a relation are
changed and a new schema is produced for new relations in the output stream. The output
record always contains the components corresponding to the stuct command and the field
eventnumber (see sysi_monitor(2L)), which serve o identify the relation. It is an error if the
event record does not match the schema, or if there is no schema in the stream.
The options to a tool control the modes of operation of a tool. They may be specified anywhere
on the command line. When an operand is a component name, it must be related to a relation.
The general format is that the relation operand is specified first, followed by its components as
separate operands.
COMMANDS
aggrop - apply one of (sum, average, count, min, max} to the stream
applyop apply a given function to the stream
deschema remove the schema from the stream into named file
enschema prepend schema to stream
finitestate apply a finite state machine to the stream
project select or rearrange components
telretrieve ' create a stream from an Ingres database
relstore create an Ingres relation from a stream
select select records from a stream based on a formuyla
streamprint print records from a stream in a human readable format
streameonvert convert records in a stream to host or net format
tapehandle handle multiple tape archives of event records
union conflate similar relations into a single relation
SEE ALSO

accountant(1L), syslocal(2L), sysl_monitor(2L), montools(3L), finitestate(5L), schema(SL),
stream(5L), shutdownacct(SL)

Generating Standard Sensors, techreport 8. Stephen E. Duncan. University of North Carolina at
Chapei Hill. July, 1985 ' '

EXAMPLE
The following session prints the average size of a read operation on a file basis:
" tapehandle | enschema baseschema | aggrop —a ReadSensor object count

. AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hill

SoftLab April, 1986 1

ACCOUNTANT (1L) User’s Manual — SoftLab Monitor Commands ACCOUNTANT(11.)

NAME
accountant - store event records in a file

SYNOPSIS
sccountant [-a accountantname | [-k kernelname] [t initialtext] [-x tracelevel]

DESCRIPTION

" The accountant is a user-level process that interacts with sensors located in the Unix kernel and

in other user-level processes. The primary task of the accountant is to spool event records gen-
erated by sensors onto a disk file. Additionaily, the accountant also contains sensors that collect
relevant information such as the current time, system load, etc.
The accountant first invokes a sensor which stores the current time, the compile time of the
accountant (determined through the stat system call on the file named ‘“*accountant’’, as deter-
mined by which), the compile time of the kernel (determined using the file name *‘/vmunix’’), the
name of the host (determined through gethostname), the current time in ASCII, and some initial
text {defauited to **Accountant started’'). Several of these fields can be overridden using the -a,
<k, and -t options,
The accountant then loops until terminated with the SIGTERM (15) signal, retrieving event
records from the kemel and writing -them to a set of temporary files of the form sendata.00000,
where 00000 is modified to form a unique fle name using mkiemp .
The -x switch sets the level of debugging tracing: 0 for no tracing (the default), 10 for general
control flow tracing, and 100 for detailed conerol flow.

RETURN VALUE
The accountant never returns; it must be signaled with SIGTERM (15).

SEE ALSO .
which(1), gethosmame(2), signal(2), staw(2), sysi_monitor(2L), mktemp(3), monlib(3L),
shutdownacct(SL) :

HISTORY
June, 1934 Stephen Duncan at the University of North Carolina, Chapel Hill
Added the signal handling and multiple file output,
Revised the accountant sensor.
May, 1983 Steve Rueman at the University of North Carolina, Chape! Hill
Added the spooling function.
June, 1981 Richard Snodgrass at Carnegie-Mellon University
Created, :

SoftLab 17 September 1984 . 1

ACCT(1L) User’s Manual — SoftLab Monitor Commands ACCT(1L)

NAME

acct — write event records to standard out

SYNOPSIS

acct [numminutes]

DESCRIPTION

This is a truncated version of accountant(l1L). The accountant is a user-level process that
interacts with sensors located in the Unix kernel, The primary task of the accountant is to spool
event records generated by sensors onto a disk file. This particular version puts them to standard
output. Additionally, the accountant also.contains sensors:that collect relevant information such
as the current time, system load, etc.

The accountant first invokes a sensor which stores the Gurrent time, the compile time of the
accountant {determined through the stat system call on theifile named *‘acct’’, the compile time
of the kernel (determined using the file name ‘‘/vmunix’’), the name of the host (determined
through gethostmame), the current time in ASCII, and some initial text (defaulted to **Accountant
started'”).

The accountant then loops for the number of minutes in its argument, or for the default of 20
minutes, retrieving event records from the kernel and writing them to standard out.

RETURN YALUE

The accountant retumns 0.

SEE ALSO

accountant(1L), which(1), gethostname(2), sigral(2), stat(2), sysl_monitor(2L), mktemp(3),
monlib(3L.), shutdownacct(8L.)

. HISTORY

SoftLab

Jan, 1985 Stephen Duncan at the University of North Carolina, Chapel Hill
Created.

14 June 1934 1

AGGROP(1L) User’s Manual — SoftLab Monitor Commands AGGROP(1L)

NAME
aggrop — apply one of {(sum, average, count, min, max) to the stream

SYNOPSIS
aggrop —sacnx relation partition argument

DESCRIPTION

Options
Specify which of the aggregate options to take,

-5 sum :

-a average value

- count of the number of occurances

~n minimum value

-x maximum valye L
All but —, count, use the value of the c@mponent specified by argument. If no options are
specified, ~¢ is assumed.
Operands .
Relation is the name of the relation on which the aggregate will be performed. If The partition
specifies the component in relation on which to partition the records, e.g. initiator. The argu-
ment is the component in relarion over which one or more of —sacnx is applied, and must be a
numeric component.
QOutput _
A table is printed 0 stdows whose first column is the pertition value, and whose subsequent
columns are, in order, the sum, average, count, minimum, and maximum. Only those columns
whose option was specified appear in the output. The table can be further processed by other
filters, if desired.
Error Output ‘
A count of any error records detected in the stream is printed to stderr. If relation is specu‘ied as
-, a count of non-conforming records, those which lack either the partition or the argument com-
ponents, is also printed to stderr,

EXAMPLE

The following command produces a table of the averape of the count component of the relation
ReadSensor over the component initiator.

aggrop —a ReadSensor initiator count

This could produce the following table:

0 25
315 S12
2% 75
13 8
2 11
107 1245
SEE ALSO
intro(1L)
AUTHOR

Stephen E. Duncan, University of North Carclina at Chapel Hill

SoftLab April, 1986 1

APPLYOP(1L) User's Manual — SoftLab Monitor Commands APPLYOP(1L)

NAME
applyop — apply a given function to the stream

SYNOPSIS
applyop [~p arg] prog [—n name } relation component [component ..] =
resulicomponent:type [resultcomponent:type ...}

DISCRIPTION

Applyop extracts the components specified on the command line from the input stream (see
stream(SL)), converts the values to character strings, and passes them to the function program on
its stdin., Arguments specified with the —p option are passed unchanged to prog as command line
arguments. The stdout of prog is interpreted as space separated fields comprising the resultcom-
ponents which are appended to the relations of the output stream. The diagnostic output of the
function is merged with the diagnostic output of applyop. This permits arbitrary functions to be
applied to event records without writing specific stream handling routines for each function. It
is assumed that the function kmows what to expect as its arguments,

Options

~p Pass the next argument in the command line as a command line argument to the func-
tion. More than one —p may be specified. The arguments will be passed to the function
in the order that they appear on the command line. All arguments passad to the function
must be specified before the result components.

- -n Instead of changing relation, use the next argument name as the name of a new relation
consisting of tuples from reiation with the reselt components appended.

Operands

arg An optional argument to be passed unchanged to prog.

name ' An optional name of a new relation to be created from the current tuple and
the result component. If omitted, relation has the result components
appended.

prog The pathname of a program that performs the function.

relation The name of the target relation, or - if for all relations.

component A component in relation 10 be passed to prog.

= A sentinal to signify the end of the list of components.

resulicomponent A new component generated by prog of type type that is appended to rela-
tion,

type The type of resulicomponent, which can be one of boolean, charstring,
double (4 byte integer), int, and rational.

Output .
Result components of the specified types appended to the specified relations. This includes
modification of the associated schemas {see stream(5L) and schema(5L)).

EXAMPLE
The following applies an awk program (0 a stream via

applyop awk — *“~f awkfile’’ — initiator timestamp reltime:double

tc append 2 component that contains the elapsed time since the last event of that initiator.
Awkfile contains: '

if (save[$1] == 0}
print 0

SoftLab April, 1986 1

APPLYQOP(1L) User’s Manual — SoftLab Monitor Commands APPLYOP(IL)

else
print {32 — save[$1])
save[$1] = §2
}

This program calculates the time between calls for a given initiator, and appends it i each event
record as a new component reltime. The reltime for the first call is zero,

By piping the resulting stream through
aggrop —a — initiator reltime
{ses aggrop(1L)) on the resulting stream, one can determine the mean time between system
cails.
SEE ALSO
intro(1L)

AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hill

~ SoftLab April, 1986 2

BLINDPRINT(1L) User’s Manual — SoftLab Monitor Commands BLINDPRINT(1L)

NAME
blindprint - print binary event records in human readable format

SYNOPSIS
blindprint [file ...]

DESCRIPTION
Blindprint reads each file of binary event records in sequence and displays it in human readable
format on the standard output. If no file names are given, blindprint reads from the standard
input. Thus '
blindprint file
displays the file on the standard output, and
blindprint filel file2 >file3
concatenates the first two files and places the result on the third,

Blindprint is designed to work the software monitoring system described in SYSI, MONITOR and
accountant, The event records are produced by the monitoring system in binary format., Blind-
print prints one event record per line with each field labeled.

SEE ALSO
accountant(1L), SYSL_MONITCR(2L), monlib(3L}

AUTHOR
3-June-84 S. Duncan, University of North Carolina, Chapel Hill
Created.

SoftLab ' 14 June 1985 1

DESCHEMA (1L) User’s Manual — SoftLab Monitor Commands DESCEEMA({1L)

NAME
deschema — remove the schema from the stream into the named file stdousz.

SYNOPSIS
deschema schemafile

DESCRIPTION
Operands _
The pathname of the file to receive the schemas. Remove the schemas from the stream (see
stream(5L.)) into the named file, write the event record 1o stdout.

Output
The schema is written to schemafile and the eventrecords are written to stdout.

SEE ALSO
intro(1L)

AUTHOR
Stephen E. Duncan, University of North Carolina at Chape! Hill

SoftLab | April, 1986 1

ENSCHEMA (1L) User’s Manual — SoftLab Monitor Commands ENSCHEMA((1L)

NAME _
enschema - prepend the schema to the input event records

SYNOPsSIs
enschema schemafile [— filel file2]

DESCRIPTION
Operands
The pathname of the schema file (see schema(5L)), followed by optional file names. Input from
stdin can be mixed with the file names by specifying —~ as a file name where stdin should appear,
Specifying no file name defaults to stdin.
Qutput
A stream (see stream(5L)) is written to stdout.

SEE ALSO
intro(1L)

AUTHOR

Stephen E. Duncan, University of North Carolina at Chapel Hill

SoftLab April, 1986 i

FINITESTATE(1L) User's Manual — SoftLab Monitor Commands FINITESTATE(IL)

NAME

finitestate — apply a finite state machine to a stream
SYNOPSIS ;
finitestate [-k -1 name) machinefile partition
DISCRIPTION

Options

=k Keep tuples that would ordinarily be rejected. This permits conserving information that
would otherwise be lost to the cutput stream.

= Take the next argpument as the name of the sentence header relation rather than Finite-
State.
Operands

An optional name for the header relation, the pathname of a finite state machine fle and a com-
ponent on which to partition the event records. For each unique partition value, a separate
instance of the finite state machine is executed,

Output

The schema is modified to hoid the relation FiniteState which is created by this program if it
does not already exist. Accepted sentences of event recards, each preceded by a FiniteState
event record, are writien to stdout. FiniteState has the following fields (see sysi_monitor(2L):

cmd.type - MONQP_PUTEVENT_EXT

cmd.length ~ variable .
eventnumber - created unique in schema, if not already there
performer — set to process id of program

object - value of partition

Initiator - same as performer

timestamp - taken from first event record in sentence

lasttimestamp - taken from last event record in sentence
numberofevents - length of sentence, in event records, excluding this one
partitionname - partition, from the command line

Comments
This tool is needed for examining combinations of events. The other tools in general only deal
with individual operations.

SEE ALSC
inero(1L)

AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hill

SoftLab April, 1986 i

PROIJECT(1L) User’s Manual — SoftLab Monitor Commands PROJECT(1L)

NAME

project — select or rearrange COmMpCREnts.

SYNOPSIS

project [~k —n name] relation component [component ...} [— [—n name] relation component |
component ...]]

DESCRIPTION

Options

-k Keep relations not Ested in the operands. The default is to only write out the named
relations, _

~n Take the next argument as the new name for this relation. The defaultiis to keep the old
name. If issued with —k, Then the old relation is written out unchanged followed by the
projected version under the new name,

Operands

Relations followed by the desired components. More than one relation can be specified by
separating the relations with — The components should appear in the desired order. Preceding
each relation, an optional new name be be specified. The components for the struct command
and the field eventmumber (see sysi- momtor(ZL)) are always included and are always at the
beginning of the record.

Qutput

A stream (see siream(SL)) of modified event records with appropriate schema (see
schema(SL)). Each relation specified on the command line will contain only those components
specified for it. Relations not specified on the command line will be discarded uniess the -k
option is specified, in which case they will be written out unaltered.

EXAMPLE

The following line projects the timestamp component of the ReadSensor and WriteSensor rela-
tions.

project ReadSensor timestamp — WriteSensor timestamp

Project can be especially useful when used before printing a stream.

SEE ALSO

intro(1L)

AUTHOR

SoftLab

Stephen E. Duncan, Uniirersity of North Carolina at Chapel Hill

April, 1986 1

RELRETRIEVE(1L) User’s Manual — Softl_ab Monitor Commands RELRETRIEVE(1L)

NAME
relretrieve — create a stream of event records and schemas from the named Ingres database

SYNOPSIS
relretrieve database [relation ...]

DISCRIPTION
Operands
The database name and the relations to be put in the stream.

SEE ALSO
intro(1L}
AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hill .

Softlab April, 1986 1

RELSTORE(1L) User's Manual — SoftLab Monitor Commands RELSTORE (1L)

NAME
relstore — store the stream in the named Ingres database

SYNOPSIS
relstore databasename

DISCRIPTION
Operands
The name to use for the database,
SEE ALSO
intro(1L)
AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hill

SoftLab April, 1986 1

SELECT(1L) User’s Manual — SoftLab Monitor Commands SELECT(1L)

NAME
select — select records from the stream based on a formuia

SYNOPSIS
select { —k —n name] relation formula

DISCRIPTION
Options

=k Keep nonselected relations in the cutput. Only applicable if relation is not —,

-1 Use the next argument as the name of the projected relation. If used with -k, the origi-
nal relation is kept as well. Only applicable if relation is not—.

Operands _

- Name is used to replace relation as the name of the selected relation. This can’t be used if rela-
tion is =, Relation specifies which relation contains the components in formula. If relation is
specified as -, the formula is applied to ail relations which have the requisite components. The
Jormula consists of constants (numbers and quoted strings), component names (unquoted strings),
regular expressions {delimitted by matched */'s, see regex(3)), parentheses, comparison operators
(! =>» «), and logical operators (" | &). It should be enclosed in single quotes to prevent the
shell from expanding any characters. Since the formula is applied according to precadence, it is
possible to specify components that only occur in some relations and still select other relations
when the formula is used accross all relations via—.

Output
A stream of the selected event records.

EXAMPLES
To remove all the event records for a given initiator:

select - ’initiator 1= 277

To select all ReadSensor events for the object 27514 by other than initiator 215:

select ReadSensor ’object = 27514 & initiator != 215’

To select ail the tuples in the NameSiart relation that have a filename that starts with *‘junk’* and
have an object between 1100 and 27514:

select Namestart *filename =/junk*/ & object \!< 1100 & object \!> 27514

SEE ALSO
intro(1L)

AUTHOR
Stephen E. Duncan, University of North Carclina at Chapel Hiil

SoftLab April, 1986 1

STREAMCONVERT (1L} User's Manual — SoftLab Monitor Commands STREAMCONVERT(IL)

NAME

streamconvert — convert the event records from or to network format
SYNOPSIS

streamconvert [—h -n]

DESCRIPTION

Since event records are binary data, their representation is machine dependent (see
byteorder (3N)). Streamconvert uses the data in the schema (see schema(SL}) to convert each
field in the event record to the appropriate format. The schema itself is always in human read-
able format, s0 that dny machine can read it without conversion. Before a stream is written to
tape, it should be converted to the network format via streamconvert —n. When a tape is read, it
should, enschema should be run on it to creat a stream which should be run through streamcon-
vert —h 1o put it into host format.

If transporting data between machines with the same format, conversion is not necessary.

Options
-h Convert the stream from network format to host format.
-1 Convert from host to network format.

SEE ALSO
intro(1L}, byteorder(3N)

AUTHOR
Stephen E, Duncan, University of North Carolina at Chapel Hill

SoftLab April, 1986 i

STREAMPRINT(IL.) User’s Manual — SoftLab Monitor Commands STREAMPRINT(1L.)

NAME
streamprint - print the event records in a stream in human readable format
SYNOPSIS
streamprint [—cklru]
DESCRIPTION o
Read a stream (see stream(SL)) from stdin and print the event records © stdowr in a human
readable format. The event records are printed one per line, and the components are separated by
tabs.
Options
Evaluation of a stream by a tool requires certain key fields so that relations can be properly
identified. Therefore tools such as project{1L can’t remove them from the relation. If the key
fields are not really needed on the printed ourput, they will only clutter the output or force an
additional filter to be used to remove them. Therefore the options [ckr]:permit stripping off
these fields when printing.
-k Omit the key fields (the command type, length, and event number) when printing. This
is a superset of —¢.
- Omit the command type and length when printing. This is a subset of ~k.
=] Begin each line with the relation name followed by two colons. Label the componenis
of the event record using the attributes in the schema (see schema(5L)). This is the
default mode. It will override a previous —u.
-r Omit the relation name when printing. This only is applicable when the output is
labeled.
-u Don’t label the components, This will override a previous ~1.
. For -1 and -u, the options are evaluated in order, with the last option given taking precedence.
EXAMPLES
The following are samples of a single line of output from various combinations of options using
the same event record as input.
streamprint
ReadSensor::cmdtype = 1 cmdlength = 11 eventnumber = 8 performer = 0 object =
851978 initator = 12345timestamnp = 49152046 filepos = 512 actualcount = 128
streamprint ~u
1 118 0 851978 1234549152046 5§12 128
streamprint —r
cmdtype = 1 cmdlength = 11 eventnumber = 8 performer =) object = 851978 ini-
tiator = 12345timestamp = 49152046 filepos =512 actualcount = 128
streamprint —¢ 7
ReadSensor::eventnumber = 8 performer = 0 object = 851978 initiator =
12345timestamp = 49152046 filepos = 512 actualtount = 128
streamprint —uc
8 0 851978 1234549152046 512 128
streamprint —k '
ReadSensor::performer = 0 object = 851978 initiator = 12345timestamp = 49152046
filepos = 512 actualcount = 123
streamprint —uk
0 851978 1234549152046 512 128
SoftLab April, 1986 1

STREAMPRINT(IL) User's Manual — SoftL.ab Monitor Commands STREAMPRINT (11}

SEE ALSO
intro(1L)
AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hiil

SoftLab April, 1986 2

TAPERANDLE (1L) User's Manual — SoftLab Monitor Commands TAPEHANDLE (1L)

NAME
tapehandie — handle multiple tape archives of event records

SYNOPSIS
tapehandle [—ssize —nnumber —bblocksize —ddensity —fdevice] xc

DESCRIPTICN
This tool simplifies handling streams (see stream(5L)) that require more than one reel of tape.

OPTIONS

The size of the tape in inches, the number of tapes in the archive (extract only), the blocksize o
use in bytes, the density of the tape, and the device to use. For create, use the options to deter-
mine how many bytes will fit on the tape. The defaults are:

size = 2400
blocksize = 12K
density = 1600bpi
device = /dev/rmt0

For extract, the defauits are:

device = /dev/rmtQ

Operands
Specify x to extract a stream from the tapes or ¢ to create a set of tapes from a stream.

Input specifications

The input is a sequence of event records which are read according to the data in the struct com-
mand (see sysl_monitor(2L)) and are in turn put out to tape. Calculate from the options or the
defaults the number of bytes sufficient to fill 2 tape. When this number has been reached, prompt
the operator for more tapes.

Output specifications

Read the event records from the tape according to the information in each record’s command
struct. When an EOT is read from the tape, prompt the operator to mount another tape, until the
number of tapes specified has been reached; or the operator specifies there are no more tapes.

SEE ALSO
intro(1L) -

AUTHOR
Stephen E. Duncan, University of North Carolina at Chapet Hill

SoftLab | April, 1986 1

UNION(IL) User’s Manual — SoftLab Monitor Commands UNION(1L)

NAME

union - conflate similar relations into a single relation
SYNOPSIS

union name relationl relation2 [relations3 ...}
DESCRIPTION

Union takes a stream (see stream (5L)) from stdin, creates a new relation name from relationl,
relation2, ... , and writes the result to sidout, All relations in the list must have the same arity
and component names.

Both the union relation and the original relations are present in the output.

Operands

Name is the name to call the resulting union, relationl , relation2, ... , are the names of the consti-
tuent rejations.

EXAMPLE _
Convert ceriain relations to the same arity and then combine them into a union. The target rela-
tions have the following components:

MySensor YourSensor HisSensor

cmdtype cmndtype cmdtype
cmdlength cmdlength cmdiength
eventnumber eventnumber eventnumber
object object object
initiator initiator initiator
performer performer . performer
timestamp timestamp timestamp

name value weight
value name oldvalue
oldvalue height value
othervalue oldvalue name
history otheruser

The tool project(1L) is used to change the relations to the same arity and to rearrange the com-
ponents. Union then combines the relations into a single new relation.

project MySensor name value YourSensor name value HisSensor name value | \
union QurSensor MySensor YourSensor HisSensor

SEE ALSO
intro(1L)

. AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hiil

SoftLab prerelease April, 1986 1

SYSL. MONITOR (2L) System Interface Manual — Monitor Calls SYSL_MONITOR (21)

NAME

sys!_monitor — interact with kernel data collection

SYNOPSIS

#include <sys/syslocal.h>

#include <sys/mondefs.h>

result = syscall(SYSLOCAL, SYSL_MONITOR, buffer)
unsigned char *buffer;

int resuli; -

DESCRIPTION

Softl.ab

The function of this call is to facilitate communication between sensors embedded in executing
programs and the monitoring process. The sensor stores data in the kernel of the operating sys-
tem by invoking SYSL_MONITOR and the monitoring process, termed the accountant, retrieves it
by also invoking SYSL_MONITOR. The accountant may also enable and disable sensors, and
enable and disable all monitoring, through calls to SYSL_MONITOR.

The buffer is a pointer to a string of characters. The call returns an integer. SYSL_MONITOR is
used to pass event records generated by sensors in the farget program or in the kemnel to the
accountant. Regquests for sensor enabling or disabling are passed from the accountant to the tar-
get program by first calling S¥SL_MONITOR and signaling the target program. The target pro-
gram then calls SYSL_MONITOR to retrieve the request. The target program can then modify its
enable bis, located in the process’s own address space.

A sensor in a target program sends information by calling SYSL_MONITOR with a pointer to an
event record, Periodically the ACCOUNTANT calls SYSL MONITOR to retrieve 2l the event
records sent by sensors since the last time it did a read,

Two amrays are employed by SYSL_MONITOR to accomplish its function: one to hold requests,
and one to store event records in the event buffer,

The buffer passed to SYSL MONITOR is interpreted as a command beginning with the struct
mon_cmd (see MONOP_INIT, below), which contains the fype of command to SYSL_MONITOR
and the length of the buffer, including the leading struct, in short integers. The length should be
calculated by what is used in the buffer, rather than what is allocated.

Reguests are used to enable and disable sensors in specific processes. The target process is
identified by its pid, and the sensor to be enabled by its evenmumber. Requests are siored by
passing a struct request to SYSL_MONITOR containing the target pid, the event number of the
sensor, and a value which enables or disables the sensor. A process retrieves a request by calling
SYSL_MONITOR, which searches the request buffer for the process’s pid and returns the
appropriate mon_request struct. This struct is then used by a routine in the process to enable or
disable the indicated sensor. A process knows to call for a request by being signalled by the
accountant, and the routine which traps this signal both executes the call and enables or disables
the sensor, :

struct mon_request {
short targetpid; /# process in which to change +/
/* sensor (kernel = 0) +/
short eventnumber;
short enablevalue; /* = 1 to enable, = 0 to disable */

5

In the remainder of the section, the action taken for each one of the commands, (given in brack-
ets) is discussed.

[MONOP_INIT] The command and event record buffers are initialized. If MONOP_INIT
has already been called, a MON_ALRDY_INIT is returned; otherwise,

17 September 1984 1

SYSL_MONITOR (2L) System Interface Manual - Monitor Calls SYSL_MONITOR (2L)

zero is returned. This call identifies the calling process as the accoun-
tant, All other commands return the error value MON_NOT_INIT if
this command has not been executed.

struct mon_cmd {
char type; /% = MONOP_INIT #/
char length; /% = (sizeof(struct mon_cmd) + 1)/ 2 */

h

[MONOP _| PU'IEVENT "_INT]
A sensor wants:to store an event record into the event buffer. The struc-

ture of an eventrecord is as follows

struct mon_pevt {
struct mon_cmd cmd; /* type = MONOP_PUTEVENT _INT #/
/* length determined by fields in sensor */

short eventmumber; /= id of sensor */

short performer; /= pid of performer of */
/= the operation »/

long object; /+ identifier of object */
/* operated on */

short initiator; /+ pid of process requesting */
/» the operation */

short fields{ J; /# user-defined fields =/

1
typedef struct mon_pevt mon_putevent;

SYSL_MONITOR sets the performer field in the event buffer to the PID
of the calling process and the timestamp from the time in the kemel. If
the event buffer is almost full, an error record is deposited in the event
buffer instead of the event record, and MON_BUF_FULL is returned.
Only one error record is deposited in the event record, indicating the
loss of one or more event records. If there is enough room for the event
record, a zero is returned unless MON_INIT had not previously been
called,

struct mon_erec {
struct mon_cmd cmd; = type = MONOP_OFLOW »/
/+ length = (sizeof(mon_errrec) +1)¥2 */

long val; /+ overflow count for MONOP_OFLOW »/
}
typedef struct mon_erec mon_errrec;
[MONOP_GETEVENTS]
The ACCOUNTANT wants to retrieve all event records
in the event buffer.
struct mon_gevt {

struct mon_cmd cmd; /% type = MONOP_GETEVENTS #/
/* length = (sizeofigetevent) + 1)/ 2 */
short req_length; /* length of the remaining */
/* portion in short integers *+/
short *=acct_buf_ptr; /+ pointer to buffer to receive data +/

SoftLab 17 September 1984 2

SYSL_MONITOR (2L) System Interface Manual — Monitor Calls SYSL_MONITOR (2L)

b
typedef struct mon_gevt mon_getevent;

The event records received since the last GETEVENTS command are
copied back into the buffer that accr_buf ptr points to, and the number
of short integers retrieved is returned. If the event records occupy more
space than req lemgth short ints, then an integral number of event
records is returned, occupying space not more than reg lemgrh. The
buffer pointed to by acct_buf ptr must have space enough for
req_length short integers.

{MONOP_PUTREQ] A request is stored in the request buffer in the first available slot. The
structure of a request is as follows:

struct mon_preq {
struct mon_cmd cmd; /* type = MONOP_PUTREQ */
/+ length = sizeof(putreq) */
struct mon_request {

short targetpid; /* process in which to change =/
/* sensor (kernel = Q) =/
short evenfnumber; /* event to enable/disable */
short enablevalue; f* =1 10 enable, = Q to disable =/
}req;
b
typedef struct mon_preq mon_putreq;

If the request buffer is full, a MON_REQ OFLOW is returned to indi-
cate the request was not stored; otherwise a zero is returned. The rar ges-
pid is the pid of the process whose sensors are to be affected. If it is
zero, then it is the kemel’s sensors that are affected immediately by the
accountant. Otherwise the request is stored for retrieval by a
MONOP_GETREQ.

[MONOP_GETREQ] The target program is calling to retrieve a request. The structure for a
retrieval is identical to mon_putreq , above.

typedef struct mon_preq mon_getreq;

The request buffer is searched for a request with a matching process id
(pid). If the search is successful, the request is copied into the struct reg, .
the corresponding entry in the request buffer entry is removed, and a
zero is returned. If the request is not found, an error record is placed in
the event buffer and a MON_REQ_NOT_FND is returned.

[MONOP_SHUTDQOWN]
The accountant is calling to tumn off monitoring. All further calls other
than MONOP_INIT are ignored. In addition, all operating system sen-
sors are turned off, and must be tumed on again by the accountant. Any
events left in the buffer from the last MONOP_GETEVENTS are lost,
so all sensors should be disabled and MONOP_GETEVENTS used
before MONOP_SHUTDOWN is used.

struct mon_cmdcmd; /+ type = MONOP_SHUTDOWN #/
/* length = (sizeof(struct mon_cmd) + 1) /2 */

SoftLab _ 17 September 1984 3

SYSL_MONITOR (2L) System Interface Manual — Monitor Calis SYSL_MONITOR (2L)

RETURN VALUE
The call remms a negative integer on error, the values of which may be found in
<sys/mondefs.h>. If it succeeds it returns a non-negative integer which is command specific (see
above), Some calls have the side effect of changing the buffer passed in the call.

ERRORS

If a process other than the accountant issues the GETEVENTS, PU'I'REQ, or SHUTDOWN com-
mands, 8 MON_NOT_ACCNT is retuned and the command is not executed. If a command
other than one of the commands listed above is given, then MON_INV_CMD is returned. The
error value MON_SYS_ERR means that a system call error was found and ; perror (see intro(2))
can be used to print the ¢ system error message. If the error value MON_CONCURRENCY ERR
is returned, then a problem in the kernel sensors has been detected. The kernel sensors will have
been disabled and no more commands may be given to SYSLMONITOR . The system must be
rebooted to restore the monitor. The remaining errors are command-specific (see above).

SEE ALSO]
accountant(1L), blindprint(1L), syscall(2}, sysiocal(2L}, monlib(3L)
HISTORY
15-May-83 Created. R. Snodgrass, D. Doerner, R. Fisher, S. Reuman, Umversny of North
Carolina, Chapel Hill
MODIFIED

25-Jan-85 Changed event record buffer to a ring buffer, modified sensor enabling code,
changed to use structures, added security,
S. Duncan, University of North Carolina, Chapel Hill

14-Jun-85 Fixed various bugs, modified to work on Suns as well as vaxes.
S. Duncan, University of North Carolina, Chapel Hill

September : 17 September 1984 4

SYSLOCAL (2L) 1984 SYSLOCAL(2L)

NAME
syslocal — indirect local system call
SYNOPSIS

#include <sys/syslocal.h>
syscall(SYSLOCAL, number, arg, ...)

DESCRIPTION
syslocal performs the local system call whose interface has the specified number, and further

arguments arg.
The 10 value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, SYSLOCAL returns —1 and sets the external variable errno (see intro(2)).

If the specified code is not a valid SYSLOCAL system call, SYSLOCAL returns error code EIN-
VAL, see intro(2).

HISTORY
22-Jun-84 Tim Seaver (1as) at University of North Carolina
Created.

Septamber 17 i

MCNTOOQLS (3L) Programmer’s Manual — Softlab Monitor Subroutines MONTOOLS(3L)

NAME
str_open, str_fopen, str_schemaread, str_schemawrite, str_read, str_write, getrelationbysensorid,
geterelationbyname, getrelation, rmrelationbyname, setposition, getdomainbyname, rmdomain-
-~ byname, copydomain, copyrelation, copyschema, readrecord, writerecord -~ Monitor system
stream and tuple operations

SYNOPSIS
#include <monitor/montypes.h>
#include schema_idLh
#include streamio.h

Mstream * str_open(fp)
FILE *fp;

Mstream + str_fopen(filename,mode)
char *filename, *mode;

database str_schemaread(sp}
Mstream *sp;

int str_schemawrite(sp)
Mstream »sp;

int str_read(sp,tp)
Mstream *sp;
tuple »tp;

int str_write(sp,tp)
Mstream *sp;
tuple #tp;

#include <monitor/montypes.h>
#include schema_idl.h
#include fuple.h

relation getrelationbysensorid(schema, sensorid)
database schema;
int sensorid;

relation getrelation(record,schema)
short *record;
database schema;

relation getrelationbyname(schema,name)
database schema;
char *name;

void rmrelationbyname(schema, name)
database schema; '
char *name;

void setposition(tp)
tuple «tp;
attribute getdomainbyname(rp,domname)

relation rp;
char *domname;

void rmdomainbyname(rp,dname)
relation rp;
char *dname;

SoftLab prerelease 860210 1

MONTOOLS (3L) Programmer’s Manual - Softlab Monitor Subroutines MONTOOLS (3L)

attribute copydomain(ap)
attribute ap;

relation copyrelation(rp)
relation rp;

database copyschema(schema)
database schema;

tupleprint{fp,tp,label)
FILE =fp;

tuple *tp;

int Iabel;

#include <monitor/montypes.h>

int readrecord(fp,recd)
FILE =+fp;
mon_putevent *recd;

int writerecord(fp,recd)
FILE *fp;
mon_putevent #recd;

.DESCRIPTION
Te uvse the procedures, the include files for each set of procedures must be specified, and the
Iibrary must be linked., The linking is done by specifiying *‘~Imontools’’ to the C compiler if the
library is installed, or “*LIBDIRNlibmontools.a’ if it isn't installed, where LIBDIR is the path of
the directory where the library exists,

Stream Operations

sir_open returns a stream (see stream(SL)) associated with the open file pointer fp. NULL, is
returned if fp is NULL.

str_fopen retumns a stream for the file filename opened in mode mode (see fopen(3S)). If an error
is detected when opening filename, the global value of errno (see intro(3)) is set and NULL is
returned.

str_schemaread returns the schema (see schema(SL))} read from the front of stream sp. It will
only read the schema once. If an attempt is made to read the schema more than once, an error
message is printed to stderr and NULL is returned, NULL is also retumned is the schema can't
be read.

str_schemawrite writes the schema associated with stream sp on the front of sp. The schema
will only be written once, A zero will be retumed on successfully writing the schema. Attempts
to write the schema more than once results in an emror message printed to stderr and a return
value of —-1.

str_read reads the tuple (see intro(1L)} p from the stream sp. If the schema has not already
been read from sp, then it will be read first, str_read returns the number of chars read. Zero
represents EOF, If there is no schema for the stream, STRIO_ESCHEMA is returned. If an
error is detected while reading ip, STRIO_EREAD is returned. st _read exits with a status of 1
on a buffer overflow.

str_write writes the tuple tp on the stream sp. If the schema has not already been written to sp,
then it is written first. If there is no schema for sp, STRIO_ESCHEMA is returned.

Tuple Operations

SoftLab prerelease 36/02/10 2

MONTOOLS (3L) Programmer’s Manual — Softlab Monitor Subroutines MONTOOLS (3L)

getrelationbysensorid retumns the relation in schema with a sensor id of sensorid, NULL is
returned if no match is found.

getrelation returns the relation in schema using the data in record. NULL is returned if no
match is found.

geterelationbyname returns the relation in schema with the rel_name of name.

rmrelationbyname removes the relation with rel_name of name from schema. If the named
relation isn’t in schema, there is no effect.

setposition updates the positions of the domains in the tuple,

getdomainbyname retumns the attribute in the relation rp for the domain named domname.
NULL is returned if no match is made.

' rmdomainbyname removes the attribute for the domain dname from the relation rp. There is no
effect if the domain isn’t in the relation.

copydomain returns a copy of the attribute for the domain ap. Only the attr_name is shared in
memory, This is needed when a new relation is built that is similar but not the same as an old
relation.

copyrelation returns a copy of the relation 7p . Only the rel_name is shared in memory. This is
nesded when a relation needs to be modified in one schema but not in another.

copyschema returns a copy of the database(schema, see (schema(5L))) schema. Only the
database_name is shared in memory. This is needed if the schema is to be modified between
input and ocutput.

tupleprint prints the event record from tp in a2 human readable format to file fp. If label is set to
PRINTLABELS, then each field in the record and the record itself is labelled, A -1 is returned
if the file doesn’t exist or if there is an error in tp.

Event Record Operations

readrecord writes the mon_putevent (see sysl_monitor(2L}) recd to the FILE fp. It returns the
number of chars read or zero at EOF . A negative retum value signifies an error.

writerecord writes the mon_putevent recd 0 the FILE fp. It returns the number of chars writ-
ten or a negative value if an error is detected.

SEE ALSO
accountant(1L), blindprint(1L), intro{1L), syslocal(2L), sysl meonitor(2L), finitestate(5L),
schema(5L), stream(SL), shutdownacct(8L)
Generating Standard Sensors, techreport 8. Stephen E. Duncan. University of North Carolina at
Chapel Hill. July, 1985

AUTHOR .
Stephen E. Duncan, University of North Carolina at Chapel Hill

SoftLab prerelease 86/02/10 3

FINITESTATE (5L) | System Interface Manual — Softlab File Formats FINITESTATE(SL)

NAME .
finitestate — finite state machine description format
DISCRIPTION :
Finitestate(1L) reads a finite state machine description and executes the machine against a
streatn (see siream(SL)), .
Each line of the description is a transition consisting of a label for the state, a Iabel for the next
state, and a list of triples (relation domain,value} which specify whether to take the transition.

siaie nextstate [relation domainngme value ...)
state and nextstate are integers, relationname and domainname are character strings, and value

has the same type as the domain. If the triples are completely omitted, then the transition is
always taken. A member of the triple to be ignored can be indicated by ~. The following are the

possible combinations:
relation - — True if the current event record is in relation,
- domain value True if the current event record has domain in it and
domain has value value,
'~ domain — True if the current event record has domain in it.

If value is a backslash followed by a relation operator, the domain value is compared to the
domian value of the previous tuple in the sentence, rather than with value itself, The operator
must be one of >, <, or = in combination with ! (logical not), This provides for determining
equivalence classes.

The first transition in the file that has all of its conditions maet is the one that will be taken. The
states must be specified in ascending order.

The starting state is indicated with a state of **1"", accepting states are indicated with a nextstate
of *“0°’, and rejecting states are indicated with a negative nex:state, or by the lack of a transition
line for the input. The internal format of the finite state machine does not allow for
non—deterministic machines.
EXAMPLE

The following finite state machine accepts sentences from a stream where all the tuples have the
same valye in the initiator domain. Each accepted sentence represents the sequence of events
used by the kemel follows a pathname to open a file, and is a measure of locality of reference for
file names. An accepted sentence begins with NameStart, followed by a sequence of NextCom-

. ponents, and ends with OpenSuccessful. 1t is possible to have another NameStart in the sentence
if the path contained soft links {see In(1)) and it is possible to have ReadSensor and WriteSensor
when additional blocks from the file system are needed to trace the path. If any other relation is
detected in mid-sentence, the sentence is discarded.

1 2 NameStart ——
11
2 2 NextComponent — —

. 20 OpenSuccessful ——
2 3 ReadSensor — — WriteSensor - -
21
3 2 Namestart — — NextComponent — ~
3 3 ReadSensor - — WriteSensor ——
31

SoftLab prerelease 86/02/10 1

FINITESTATE (5L) System Interface Manual — Softlab File Formats FINITESTATE(5L)

If the resulting output is piped into aggrop(1L), the length of the sentence will be known.

SEE ALSO
finitestate(1L)

AUTHOR :
Stephen E, Duncan, University of North Carolina at Chapel Hill

SoftLab prerelease 86/02/10 2

SCHEMA (5L) System Interface Manual — Softlab File Formats SCHEMA (5L)

NAME
schema ~ IDL description of event records

DESCRIPTION
The schema is generated automatically by the sensor compiler. It contains the names and attri-
butes of each field for the event record produced by each sensor. This allows routines to under-
stand event records without having to hard code the attributes. The schema is in external /DL
format. The schema is read and written through the /DL ports inputandontput.

mES . B
schema_idl The description of the schema in /DL
schema_idLh Generated header file
schema_idl.o Support routines

SEE ALSO
idi(1}, intro(1L), sniproc(1)

A Tutorial Introduction to Using IDL, techreport 1. William B. Warren, Jerry Kickenson, and
Richard Snodgrass. University of North Carolina at Chapel Hill. November, 1985

Using IDL with C (Version 1.0), techreport 6. Tim Maroney and Karen Shannon University of
North Carolina at Chapel Hill, June, 1985

AUTHOR
Stephen E. Duncan, University of North Carolina at Chapel Hill

Softl ab prerelease 8602/10 1

STREAM({5L) System Interface Manua] - Softlab File Formats STREAM(5L)

NAME
stream — the data structure used by the Softlab Monitor system

DESCRIPTION
A stream consists of a schema (see schema(5L)) terminated by a marker and followed by a
sequence of event records (see sysi_monitor(2L)). The event records are treated as tuples
whose domains are the fields of the event records and whose relations defined by which sensor
created the record. The Monitor tools read in the stream and use it to interpret the following
event records. Any domains added or removed from a relation must be reflected in the schema,
A set of library routines to manipulate streams is found in ibmontools(3L).

SEE ALSO
intro(1L), sysl_monitor(2L), libmontools(3L}, schema(SL)

AUTHOR .
Stephen E. Duncan, University of North Carolina at Chapel Hill

SoftLab prerelease 86/02/10 1

SHUTDOWNACCT (8L) System Manager’s Manual SHUTDOWNACCT (8L.)

NAME 7
shutdownacct — emergency close down of the monitoring system

SYNOPSIS
lete/shutdownacct

DESCRIPTION
Shutdownacct provides an emergency shutdown procedure which a super-user can use to stop the
monitoring system in the event that something has happened to the accountant (see

accountant(1L)).

SEE ALSO
accountant{1L)

AUTHOR .
14-June-85 S. Duncan, University of North Carolina, Chapel Hill

SoftLab 14 June 1985 1

Appendix C

Installing the Monitor System, Release 13

This is SoftLab internal document 14, distributed with the system to explain installation and operation of

the system.

Abstract

Directions for installing the Monitor system from a distribution tape. Includes directions on the insertion
of sensors into kemel source code, compiling the new system, and how to operate the accounting process.

Changes from release 1.2

» Errors in the event vector handling have been corrected

« The sensor FileClose is now placed after the NULL test

» The granularity of calls to SYSL_MONITOR is reduced to 3 seconds
» The source code for local_syscalls.c has been cleaned up

» Tests for concurrancy have been added to the system,

Instaflation

The Monitor system is a collection of programs and routines for monitoring operating systems and
user processes. Iiis based around a monitor system cali that controls access to the system’s data buffers
and operations and a user program, called the accountant, that controls the system call. Sensors, in the
form of macros, are inserted into the target routines, which are enabled and disabled by the monitor at the
direction of the accountant. The accountant periodxcaily writes the'monitor’s buffers out in 2 raw format,
The program blindprint prints the data in human readable forma:. The routines in monlib allow
manipulation of the raw data by other programs.

The system is designed to work under Unix 4.2 on Vaxes and under Unix 4.2, Sun release 1.4 on
SUn workstations. The distribution tape holds a single directory, tempmon, which holds all of the
source for the Monitor system. The systam consists of the following parts:

The accountant -~ acct.c acct_sensors.h

The sensor macros ~ kern_sensors.h ufs_sensors.h sys_seénsors.h

The system calls SYSLOCAIL and SYSL MONITOR local_syscalls.c

The kemel files to be modified -
kern_descrip.c sys_generic.c ufs_nami.c ufs_syscalls.c
ufs _nami.c init_sysent.c¢

A set of library routines - readrecord.c printevents.c dumprecord.c,
found inmonlib.a

A non-interpretive printer - blindprint.c ‘

Various include files — syscalls.h mondefs.h monerrcds.h monops.h
montypes.h

A set of manual pages and the documents "Generating Standard Sensors”
and "Installing the Monitor system". Source for the manual pages
is provided.

Files for modifying the kernel conﬁguranon -
£file .MONITOR shortalign.c withaMakefile

Files for installing the kemnel paiches - patch.c

These are organized within tempmon into the following directories:

monitor mon prefixed include files
monsys C files and modified kemel files
monsys/doc manual pages

Patch Larry Wall's patching program

h kemel sensors and syscalls.h

The distribution tape contain 186Kbytes of data. The installed code occupies about 400K plus the size of
the directory to hold the new kernel (about 1200K). The data produced by the system can be enormous:
over 10K per second of operation on a loaded system.,

To install the Monitor system, perform the following steps:

{1 Change your current working directory to a directory where you want the contents of the distribu-
tion tape to be stored until the installation is complete. The contents will be stored in a directory
named tempmon in the current working directory.

cd somedir
(2) Mount the tape, and ensure that it is not write-enabled. The tape is read by typing
tar x

3)

@)

)

©

Change to the new directory
cd tempmon

The monitor system has a set of.dependencies that must be investigated before continuing. In
unmedified versions of 4.2BSD, syscalls.c and init_sysent.c each have a table of 150 entries. This
Jdnstallation adds entry 151, If you installation has already used entry 151, then you will have to
change the following to reflect a different entry number. The new entry number should be cne
greater than the highest allocated entry number. Note that additional local system calls can be
added with changes only to syslocal.h.

tempmon/monsys/ayslocal.h
tempmon/monsys/syscalls.c.pateh -
tempmon/monsys/init_sysent.c.patch

The directory tempmon contains a makefile with defauit directories and flags for storing the sys-
tem. Check in your system directory, usually /sys, to see if there are any directory conflicts, and
in the makefile for the current kernel image for any define conflicts. This is very important because
any directories with conflicting names may be damaged, Edit tempmon/makefile accordingly.
in general, KERNEL should be set to the standard system name.

KERNEL = GENERIC #Name of target kernel, used as basis for monitor kernel
MONITOR = MONITOR #Name for Monitor kernel :

MONDEF = MONITCR #Define for kernel's makefile

MCNINCLUDE = monitor #Name of directory for monitor include files

MONSYS = monsys #Name of directory for Monitor system

SY¥S = /sys #Name of system directory

The patches to the system files are applied to the following files, if you wish to add or remove ﬁlés,
edit makefile. The files syscalls.c and inift_sysent.c are required to support the
system call. .
PATCH = kern descrip.c ufs_syscalls.c ufs_allec.c ufs_nami.¢ \
sys_generic.c syscalls.c

The original files will not be affected.

Superyser privileges are required to perform the remainder of the installation.

M

@

©)

The first task is to check out the properties of the system:
make config

Move the directories and files into position and compile the user files:
make install

This also ensures that the new defines are in place. In general, if you make a minimum of changes .
to the defaults, you will see a large number of error messages from make. This is because a number
of tests are made to determine the files status and is normal. Make is directed to ignore these errors.
Others will cause it to abend. You should save the output from the make to insure that all went
well.

Create the monitored kerne! by typing:
make new

This applies patches to the files, confipures and makes a new kemel file. Check the files
depend.out and make.out in $(SYS)/$ (MONITOR) to see if all went well. The target
files should show up in $({$YS) /$ (MONITCOR) /makefile with different dependéncies than in
the regular kernel. The end of make.out should have loading vmunix at the end of it.

(10) The directory tempmon is no longer needed and can be removed.

rm —-rf tempmon

Appendix C 2

Before repeating any steps involving make, certain actions must be taken to insure proper installation.
(1) The make config step can simply be rerun,

{2) The make install step requires the the files with the extension .bak replace their equivalents that
lack .bak in the three directories tempmon/h, tempmon/monitcor, and
tempmon/monsys. The directories $(SYS)/$ (MONSYS) and $(S¥S)/ (SMONINCLUDE)
and the link /usr/include/$ (MONINCLUDE) should be deleted.

(3) The make config step requires that the files in $ (PATCH) (see above) should be removed from
$(8YS) /% (MONSYS) and the files $(MONITOR) and files.$(MONITOR) be removed
from $(3YS)/conf. . ,

The whole procedure should only take about an hour on an unloaded Sun, most of which is for compiling
vmunix., Vaxes will take about two hours, since they generally have more source files to be compiled.
While this creates a bootable image, it doesn’t bring it up. Before continuing, you should read the manual
pages for shutdown, and halt, section 6 in the article *“Installing and Operating 4.2BSD on the VAX'’, and
browse through the article ** Building 4.2BSD UNIX Systems with Config’’.

The following steps bring up the monitor system.

(1) Move the new kemel to the oot file system.
mv $(SYS)/monitor/vmunix /monvmunix
It is important 10 not overwrite the existing kernet image. Save it just in case.
In /vmunix /regvmunix

(2) Bring the system down.
shutdown =h +15 Pufting in new kernel
If no one is around, you can say now instead of +I5.

(3) You will have to find out what type of disk your root file system is on. The Unix command df will
show the device names for the file systems. The root file system is on the first Oa partition listed.
Repiace the two letter prefix for dk in the commands below. Halt the machine. The commands vary
from machine to machine, so check with your systems programmer before trying this. The
machine’s prompts are in bold. Commands will be given first for Vaxes and then for Suns.

>>> P These two lines stop the CPU
>>> H
It then prints messages that the CPU is halted,
>>> B ANY Jfor a VAX780 or 730
or
>>> B/3 Jor a VAX750

Boot: dk{0,0)monvmunix -s

For Sun workstations, the operation is simpler, The machine is halted by holding down the L7 func-
tion key and hitting A. From there:

- »B dki(0,0,0)monvmunix =3

From here on Suns and Vaxes behave the same. The system will come up now in single user mode.
Examine the various file systems and use different commands to see if everything is all right. Avoid
commands such as w, who, vmstat, and ps which require that the kernel be named vmunix,

(4) If everything looks alright, move in the new kernel.

m /vmunix Remember a copy is saved in / regvmunix
ln /monvmunix /vmunix

Since you saved the old wnunix, you can switch back and forth between the two versions fairly
easily.
(5) Reboot the system again. This is much easier. -

Appendix C 3

reboot
When the system comes up, it will now be the MONITOR system.

The accountant resides in $(SYS)/monsys, along with other support files. This is not a full imple-
mentation of the accountant, but does handle the basic tasks of managing the monitor system call. The
basic method of operation is to run the accountant for a given period of time, collecting the raw data from
standard out. The raw data may then be examined using blindprint or by programs using the rou-
tines in monlib,

acct 120 > acct.rdata & Collect datafor 120 minutes
Wait for it to finish
blindprint acct.rdata | lpr Print the data

A great quantity of data can be produced by an active system, s¢ you should try smallertime periods
at first. The accountant can be stopped with signals, but data will keep being fed into the monitor if it
doesn’t terminate normally. The program shutdownacct can be used to close down the monitor.
Check the manual page for acct for details of its operation.

The distribution contains the following kernel sensors which are installed in the Unix file system:

ReadSensor
WriteSensor
FileClose
INodeCreate
INodeDelets
OpenSuccessful
NameStart
NextComponent

All the sensors, except for OpenSucessful, use the device/inode numbers to uniquely identify the file,
OpenSuccessful, which is placed in the file ufs_syscalls.c, uses the associated series of event
records produced by NameStart and NextComponent to identify the file, NameStart is placed where the
code begins to lock up a path name, while NextComponent records processing of each part of the path
name. Both are in the file ufs_nami.c. INodeCreate and INodeDelete are placed in the file
‘ufs_alloc.c and record the actual creation and deletion of files. Deletion only occurs when the last
reference to a file is removed. ReadSensor and WriteSensor are placed in the file sys_generic.cand
are activated for all reads and writes on file descriptors. FileClose is place in kern_descrip.candis
activated when a file descripter is closed.

‘Appendix C 4

Appendix D

Source Code Listings

This is 2 listing of a selection of the code for the project. The code is printed by files within grouped by
directories. A directory may contain the files for a specific command or just a set of related files. Each
directory starts cut on a new page with its name in bold face. Files within a directory have their names set
off between two horizontal lines. The duectory name for a command or library is the command or library
name, while the other directory names show part of their path, e.g. sys/monsys. Not include in this list-

ing are patches to the kernel routines, since this code might be proprietary.

Table of Contents
accountant command . 1
acct command 13
aggrop analysis tool 19
applyop analysis tool : 25
blindprint ' analysis utility 40
deschema analysis utility 45
enschema analysis utility 47
finltestate analysis tool 43
project : analysis tool S8
select : analysis tool 64
. Streamprint anatysis utility ’ 71
shutdownacct utility 73
ibmontools library 74
minikernel debugging package 87
distribution/ distribution set up files 21
{makefile shortalign.c}
sys’h kemel include files 93
sys/monitor monitor include files o8
sys/monsys monitor kernel routines 100

ACCOUNTANT

makefile

41 To compile the UNC varsion, set HHBRE to -DUNC -DMONITOR

) and then make accountant,
README
CMUHEADERS = const.h CMUvars.h CMU.c¢
SIMON = SandDataRecords.c SendError.c SendEventRecord.c ProcessCmd.c
OBJSIMON = SendDataRecords.o SendError.o SendEventRecord.o ProcessCmd.o
STANDALONE = DoUnixProto.c Finish,c WriteEventRecord.c
This directory containa the accountant with its necessary sensors. OBJSTANDALONE = DoUnixProto.o Finish.o WriteEventRecord.o SensorControl.o
Basic organization is to divide into modules guch that only some OBJMINI = minikern.o ufs.o sys.o kern.o local_syscalls.o
have to be looked at whan studying system. MAXFILESIZE = .
Each decomposad module gats the giobal include files, if necessary,
and whatever external variables are necassary. CFIAGS = -g
CMU.c - controls CMU operatien # Make this line hlank for compiling at CMU
CMUconst .h = CMU specific constants WHERE « ~DUNC -DMONITOR
CMUvars.h - CMU specific varlables -
DoUnixProto.c = Unlx event racord handling
Finish.c = Unlx termipation routine
ProcesaCmd.c = 8imon Interface # Change thils to default module
RCS/ accountant: uncstandalone
README
SendDataRecords.c - $imon interface ' # For the UNC Unix standalone system
sendError.c ~ Simon intarface uncstandalone: maln.c $(GBJSTANDALONE)
SendEventRecord.c ~ S$imon interface cc -0 accountant $(WHERE) -DSTANDALONE main.c $([OBJSTANDALONE)
Sensorcontrol.c = Enables and disables kernel sensors
wWriteEventRecord.c = Unix output handler # For tha UNC Unix monitor driven system
accountant.,h - Sensors for the accountant uncsimon: main.c $(OBJSIMON}
accountant .sen - Definition of accountant senmors cCc ~o accountant § (WHERE) -DSIMON maln.c § {(OBJSIMON)
const.h « global constants
enet . h) ~ athernet scuff # For the CMU system
ipe.h ~ CMU ipc stuff {4.17) cmu; main.c §{OBJSIMON}
main.c ~ main routines, was accountant.c cc -¢ accountant main.c §(OBISIMON)
nakeflle
ovld/ - obsolete stuff
quene. h ~ CMU include file
vars,h - global variables # These are the Unix modules
These files make up A fake kernel that can be used to test the accountant. DoUnixProto.o: DoUnixProto.c
minikern.c - simulates some kernel calls) ' cc -c DoUnixProto.c ${CFLAGS) -DSHORTALIGN ~DSTANDALONE 3 (WHERE)
sYs.c ~ holds sensors Finish,o: Fipish.c
ufs.c - holds sensora ce ~¢ Fintsh.c $(CFLAGS) -DSHORTALIGN ~DSTANDALONE $ (WHERE)
kern.c = holds sensors WriteEventRecord,.o: WriteEventRecord.c
local_syscalls.c ~ bring cver from /sys/monsys cc - WriteEventRecord.c 5 {CFLAGS) % (MAXFILESIZE) -DSHORTALIGN -DSTAND

ALONE % (WHERE}

SensorContrel,o: SensorControl.c
cc -¢ ${CFLAGS) ${WHERE) -DSHORTALIGN ~DSTANDALONE SensorControl.c

Thesa are for use with the Simon monltor

SendbataRecord

SendError.o:

8,0! SendDataRecords.c
c¢ -¢ SendbPataRecords.c ${WHERE)

SandError.e

ce -¢ SendBrror.c¢ §{WHERE}

SendEventRecord.o:

cc -c
. Provesscmd.o:

4 These files

minlkern,.o:
cec -C

ufs.o:
e -¢

6Ys.0¢
cCc =C

kern.o:
ce ~¢

local_syscalls
st ~c

SQndEvéntRecord.c

SendEventRecord.¢ ${WHEAE)
ProcessCmd.cC
ce -¢ ProcessCmd.¢ 5 ({WHERE)

form the minikernel, for tasting without

minlkern.c
-g -DMONITOR

ufs.c
-¢ -DMONITOR

BYs.c
~g ~DMONITOR

kern.c
-g —-DMONITOR

~Usun

~lsun

=lisun

«~Usun

-DKERNEL
-DKERNEL
-DKERNEL

~DKERNEL

.02 local_sysgcalls.c
-g ~DMONITOR -DEKERNEL -tisun

~DSHORTALIGN
-DSHORTALIGN
~DSHORTALIGN
~DSHORTALIGN

-DSHORTALIGN

tastaccountant: main.c ${OBJSTANDALONE) ${OBJMINI)
ee -g ~0 testaccountant $(WHERE} -Usun -DSTANDALONE \
-DSHORTALIGN main.c $ (ORJSTANDALONE) ${OBJMINI)

instailation

minikern.c

ufs.e

BY8.C

kern.c

local syscalls.e

These are the lnclude file dependencles, but are not clever
¢ about ifdef’'s and the llke.

DoUnixProto.o:
DoUnixProto.o:
DoUnixProto.o:
Doltnixbroto.o:
Finish.a:
Finish.o:
Finlsh.o:
Finish.o:

Appendix D

!usr!include/mohitor/monops.h
Jusr/include/monitor/montypes.h
fusr/include/sys/syslocal.h

const.h

fusr/include/monitoxr/monops,h
/usc/include/monitor/montypes.h
fusr/include/sys/syslocal . h

const.h

WriteEventRecord.o: const.h

main.o: Jusr/include/monitor/monops.h
main.o: Jusrfinclude/monltor/monerreds.h
main,ot accountant.h

main.o: acc_set.h

main.o: const.h

main.o: quaue,h

main.o: enet . h

maln.o: CMUcenst.h CMivars.h CMU. ¢

SendDataRecord.o: const. h
SendDataRecord.o: vars.h

SandExror,o;
SandError.o:

const . h
vars,.h

SendEventRacord.o; const.h
SendEventRecord.o; vars.h

ProcessCmd.o:
ProcessCmd.o2
ProcessCmd.oz
ProcessCmd,of
ProcessCmd,o!
ProcessCmd.o?
ProcessCmd.o:
ProcessCmd.os
ProcessCmd.of

ipc.h

enet .h

queus.h

CMUconst . h

CMUvars.h

const.h

vars.h .
/usz/include/monitor/monops.h
fusr/include/monitor/monarreds. .k

const.h

It.l.iiii."ﬁ.“.l‘.t'.i..i‘ﬂ!.!li‘ii*.t.t.l...l’t‘ﬁil"ﬂﬁiiii"l’l’llilﬁl'.ﬁ!.i/

F i

const.h

s/

/* This flle contalins the definitions of constants used by the accountant, */

Fil

/% Original author: Richard Snodgrass
’ﬁiitli...ll.l.*.ﬁIQQtﬁli*ﬁ*‘ﬁii***ﬁil‘&ﬁ*tQlt.ﬁ.I...tﬁﬁ"‘Cltt‘l’ll.!.iﬁ‘.l.i.’

*
*/

I..l’l’iti.‘i!il‘l’!lil.i.ilﬂ Command Typea tti"il.tliﬂi...ﬁl.l..“\’#'t‘l.lI."i,

/* Sent from Simon to the resident monitor additional argument (s) L
#define EndCommand 0 /* nene s
f#define AdjustObjectCommand 1 /*object-1d,event-1d, internal value*/
fdefine CheckPointCommand’ 2 /* oblect-type : »
#define ReadEntryCommand 3 /% antry~1id af
#define WriteEntryCommand 4 /* antry-id value “y
ddefine SampleCommand S /* object-id entry-id L

accountant

/% Sent from Simon to Simon Accountant additional argument {s) LY} JrAasbanihruddbnwkassannnd Domalpn Typas SHathasastbbsthhnbrasbetensbibanndbnny
tdafine TermlnateAccCommand 128 /* none *

#define SetTraceCommand 129 /* new trace value 7 fdefine IntDomaln [
tdefine AddObjectToClass 130 /* object, class, internal flag */ fdefine DblIntDomain 1
fdefina AddEventToClass 131 /* avant, class, internal flag, #tdefine stringDomain 2
timestamp flag ~/ #define MaxDomainType 2
tdefine AddDomalnToEvent 132 /* domain, event .y .
¥define startNomalrrocau.lnq 133 /* none L ¥ . JERARRORSAR R AR AR AN RAANE Arrpay Slzeg " *e ARt AR bR o kbR AatadnindARAeRhinaS
f#defines InltAcecountant 134 /* InitCount, InitTime Lr4
#defina MaxClassTypes 2 /* ClasshArray(x} [} */
. /* Sent from Simon Accountant te Simon additional arguhent (8) ./ tdafina MaxNumClasses 10 /* ClassArray[}[x] -/
tdafine InitDataWords 3 #daefine NumEventsPerClass 20 /* ClassArray(l{).EventiD{x] A
#define InitDataRecord 128 /* InitDat aWords worth of integers */ fdefine NumObjectsParClass io00 /* ClamsArray{](].SName([x] */
#define AcchRbortbPataRecord 129 /* sequance number Lrs #dafine NumEventsParObject 128 /* Classhrray(1().position[x] L74
’ tdefine MaxNumEvents 255 /* EvantArray(x] L7
’l‘t.ﬁll.ﬁ.tli!.iittil Dat. R'cord Typea .lt‘l’l’i.lﬁ‘ttt..l.ﬂiﬁi‘liIC'I’..I..I, 'deflne “ax“umnomaina 10 Ii Eventhrray[l.nomalnslxl .I
fdefine MaxInfoltems 5 /* InfoArray(x] *y
/* Sent from the resident menitor to Simon additional argument {8) wf fdafine MaxEventRRecordLength 50000 /* EventRacBuf [x] length Iin chars
f#define LastRecord /] /* word-count f must be an even number vy
#defina EventRecord 1 /* many parameters *f
#dafine ReportDataRaecord 2 /* entry-1d value t(frasnhbhsannnnbnkkeddt Clagghrray{classtypas][] *tArsedsdedbdattiaphhiantbany
fdaefine CheckDataRecord 3 /* timastamp .
: f#define ExternalEvant 0 /* index for cmu use only */
fdefipe ErrcrDataRecord 5 /* error-num additional-infe ./ fdefine InternalEvent 1 * /* index for unc and cmu use */
fdefine NewMameDataRecord] /* objact-id timestamp LT ‘

,.ii..lil‘ili.l‘.ttii. Intolrray[intoit.m'] li!i.li.iﬁiti.Il.t.’ﬁ..ﬂ*if.ﬁ..ﬁf
JRANRAR NI R R A SO NS RE AR bt Rk Error Codes VA Eantettaniadiandaniraahidinadnng

fdefine NumErrors o /* index of number of errors seen %/

/* Sent from Simon Accountant to Simon additional argument (s) */ #defina SysMonReturn 1 /* index of monitor return value *f
tdefine BadClass 128 /* class number L7
$dafine BadDomain 129 /% domaln index LY AR LA URAAR AL AR AAAE A Trace valuas "PEsaAsbsdttndnnbbnbbaaitddiatitbndins
fdefine PadEventNumber 130 /* avent number) :
idefine BadDomainType 131 /* domain, type Lr tdefine NoTrace] /* completely quiet */
fdefine TooManyObjectsInClass 132 /+* class v/ fdefine HighlevelTrace 10 /* general control flow */
fdefina UnlIdentifiedobjectInEvent 133 /* event */ fdefine LowLevelTrace 100 /* detailed control flow ./
tdefine UnldentifledEvent 134 /* class, event ' */ tdefine DemoATrace 5 /* Prints a * each time a packet is*/
#define TooManyEventsInClass 135 /* class ./ /* mant, and a # each time a packet*/
fdefine EventHasBadDomalins 116 /* event : \F2 /¢ is regent due to an etherhet */
#define BadClassType 137 /* classtype *f /% transmission error ./
#define Unldentcifledobjaect 138 /* object */ fdefine UNCDEMD 1 /* for running at OUNC ./
f#define BadInfoArraylndex 139 /* index s

,itl..‘tl’tlit‘ili-!tlitli Dlak valuas ...it.tl!liltittﬁititliﬁliﬁﬁt*itllil.l
/ni.l.ltltnitiittnott'tt.tﬂﬁ Exlt COdes ii*lottﬁtttittilililﬁﬁ&iﬁititillhiﬁll 'datine PHOdQ 06‘! ,t N I r pfOtQCtion t/

idefine File_Wame_Prefix "sendata.XXKXXX" /% prefix for disk output file ¢/
#define StdTerminatlon 0 Mifndef MaxFilleSize
ddefines ResldentMonitorind -1 tdefine MaxFilleSize 4096* {1024+12)
f#define CantLocateAccData -2 fendif MaxFileSize
tdefine CantOpen ‘-3 ’ I
jdefine CantWrite -4 * pafines the maximum number of chars before ewitching files., This is
fdefine BadClose -5 * determined by speed of access and local disk usage, For the fastest

* access, only tha direct pointers of the inoda are used (12 of them),

Appendix D 2 accountant

@ach of which polints to 4K bytes, An alternate value would be using
the indirect blocks, the first of which points to 1024 block polnters,
yielding 4Mb + 48Kb as the file size. The accountant on a Sun 2 was
able to produce 50,000 bytes in 3 seconds, and a minutes worth of data
minimum should be in a single flle,

/

» 2 o » = B

vars.h

JUr R AR RSN S d AR AR A RS R RS AAART AR ARG AR RaRE AR AR AR RAR R s R s RO Ah ARt h At an)

/" vars.h */
/% This f[iie contains the definitiona of a1l globals used by the accountant.%/
/ «/
/% original author; Richard Snedgraes 7
/* Modifications for unc implementation: Steven Reuman v/

FotdddddandpdrddadddddddpniddtpdaatadandannindiataRatanddiRpaoR R thhnaRonRANe S

unsigned int /* The actual usar parts of tha messages af

cmdbuffer[12],

databuffer[256];
#if STANDALONE

char *Flle Name; f* disk flle for output v/

int dlsk_dump; /% file discriptor for Flle_name «/

char *mktemp (} ¢ f* used to create unique file names &/
fendif
[ll.ﬂ.iﬁ.iiiit‘ﬂiﬁlﬂt*il Structured varlables i..taacottaittntnt&ﬁﬁtenitt&iol[
/* Arrays to record active processes, sensors, and event records. *f
/* In the UNC implementatlon, the following definitions ara relevant: */
" : */
™ 1) class = all the Information In ona sensor description flle. */
i = gat of objects L4
/" = st of events 7
I* In the UNC implementatlon, there is only one class, ./
I+ 2) object= process-id : - v/
/ 3} event = all the Anformation in one event record “/
" = set of domains ./
T = gutput of one gensor In the target program *f
A 4) domain~ datatype ouwtput by sensor in target program */
/" = integer, double, string, char, atc, v/
A s/

/* Note that Clmsshrray[l[].EvéntIDlxl = unlgua event-1d so wa could index &/

Appendix D

/* with the following o/
FA EventArray{ ClassArray{]([].EventID[x] | L¥4
/* Note that ClassArray{l([].EventID{x] and EventArray[x] are Indexed by tha */
/* same unlque event-id for a glven sensoy, The two data structures have L4
/% been meparated ko enable simpler commands to be sent to the accountant Ly

Ff* {l.e., thiag way, no ClassType {(ClassArrayi{x][]} or ClassNumber "/
/* (ClassArray[)[x]} has to be sent in command in order to AddDomainToEvent &/
/% for example). a7

’t.t.lt.iiit.ttl.ilt‘tﬁ..i*lt.ﬁlillilﬁ.tl’.ti..i‘.llﬂ.t.li..ﬁﬁ'.i.llﬁiltitlll.,

struct ClassRecord |
int NumSNamas; /*index of ClassArray[][].SName[x) +/
int NumEvents; /*index of ClassArray(}[]).EventID{x] LY
int SName{NumObJectsPerClass]y /*list of cbject-ids in the class ./
char position[NumEventaPerObject];/*sensor bit position in cmd bhuffare

char EventID(NumEventsPerClass);/*1ist of event~ids in the class s
] ClassArray|[MaxClassTypesj[MaxNumClasses];

atruct EvntRecord |
char TimeStamp; /*1=enabled {get time of event}; O=disabled =/
char Numbomains: /*index into EventArray[].Domalnsix]| L7
char Domaina [MaxNumDomains]; /*list of domains in event record L4
] EventArray [MaxNumEvents]; /* indexed by unigue event id af

unalgned int L
InfoArray[MaxInfoltems];/*data stored by accountant for monltor .f
unsigned short
EventRecBuf [MaxEventRecordLangth/2);/*interface with sensorread in
shorts--ung data structure used
comparably to pup.dataf(] of
cmu implementation *f

JRAvdnapakanagninratpintt Simnle varlabDleas #wrkatansaddsrunmitbadrbstanhanandniy
char *invocationcomment:

int InitCount, /*initial number of commands received */

trace, /*hi=1littls printout; low=lots of printout */

NumEventag /*number of events currently declared to acc*/
unsigned int

rilitime, /*timecut used to walt for the buffer to fill,

in seconds*/
GlobalTimeStamp; /*generation time of last event record
. picked up from kernel */

char *sensor_invocation;

accountant

accountant,sen

-~ Sensor description file for the accountant, version 2
-- Rick Snodgrass, May 29, 1984

User Taskforca Accountant la

Proceass UnixAccountant is

register short wu reg length:
u__reg buf->eventnumber = 0;

__reg_huf->object
u_reg_buf-)timestamp
“{long *)u_sen_flelds
u_sen_fields
*{long *)u_sen_flelds
u_sen fields
«[long *)u_sen_flelds
u_sen_fialds
do { *u_sen_filelds++ =

- 0'

- 1z

= {long)thistime;
+= 2z

= {long)accttime;
+= 27

= {long)kerntime;

+w 27

PackStr (u_sen_f ptr};

\
\
\
Y
\
\
\
\
\
\
A\
whila { Notfos {u_sen_f ptr, u sen_f end)): \
*{u_gen fields - 1) &= ntohs (Ox££00)7 \
IncludeFileName *accountant.h; u_sen_f ptr = (mon_string) chartime: \
u sen_f end = u sen [ptr + 27+2/sizeof {mon_string): \

Event Restart (time, accountanttime, kerneltime: doubleinteger; do { °n Ban_ flalds+t = Packsr.rtu sen_f ptr); l \
HostName: Stringilé)s . . while { NotEOS {u_sen_f_ptr, __sen_t__andl)i \

AscliTime: String{16]; -- should ba the same info ag tima (2) *(u_sen_fields - 1) &= ntohs(Oxf£00}; \

Invecation: String{80)} -- invocation line, with commant u_sen f ptr = (mon_string} inittext; \

is timestamped, sensortraced, assumadenabled: uwsen f end = u_sen f ptr + 127*2/slzeof(mon_string); \

do { *u_sen_fields++ = PackStr{u_sen_f ptr); } \

Event Status {Users, lLoad, Running, Blocked, Swapped: integer} —-— all counts while { NotEQS(u sen f ptr, u_sen_f end)); \
ies timestamped, sensortraced, assumedenablad: *{u_sen_fields — 1) &= ntohs{0x{£00); \
u_reg_length = u_sen flelds - {short *)u__reg_buf; A
u__reg buf->cmd.type = MONOP_PUTEVENT _EXT: \
u__reg buf->omd.length = u nq_lcnqth. \
syscall {STSLOCAL, S¥SL , MONITOR, { unsigned char * J&u_ sbuffer);\

and UnixAccountant;

end Accountant.,
: i

#dofine status {users, load, running, blocked, =swappad) \

t \

reglster mon_putevent *u__ reg buf = &u_ sbuffer; \

register short * u_gen_flelds = {short *}u_reg_buf->flelds; \

accguntant.h reglster short u reg lengthy \

- __reg_buf->cmd.type = MONOP_PUTEVENT_EXT: A

u__reg_buf->cmd.length = u_sen flelds - u_ reg_buf +5; \

__reg_buf->eventnumber = 1§ \

u__reg_buf->object - {; \

finclude <monitor/montypes.h> u__reg_buf->timestamp = 1; \

#include <monitor/mondefs. h> *u_sen_flelds++ = users; \

#include <netinet/in.h> *y_sen_fields++ = load; \

tinclude <sys/myslocal.h> 'u sen_ “fields++ = running; \

short u__boolvec(ié] - {@,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,}; “u_sen_fieldst+ = blocked; \

mon_putevent vu__sbuffer; *u sen fieldsH = swapped; \

tdefine RestartSensor{thistime,accttime,kerntime, hostname,chartime,inittext}\ syscall {SYSLOCAL, SYSL , MONITOR, (unsigned char *)&u_ sbuffer); \

{ \ }

reglster mon_putevent <u__reg_buf - &u__sbuffer; \
reglster short #u_gen_ flelds = (short ')u reg buf->fields: \
reglster mon_string u_sen f ptr - { mon_string }hostname; \

register mon_string u_sen f end = u_sen f ptr+1242/sizeof(mon_string);

Appendix D 4 accountant

main.e

,aiﬂﬁtlllti..“ltl.i.tta‘iﬁillliﬂtitltiﬁtiiﬁii.li"iit.‘ti*t!i.lﬂnlllﬁiﬁi,

li
It

ACCOUNTANT

/* Original author: Richard Snodgrass
/* Modifications for UNC lmplementation: Staven Reuman

,l

lt

/t General organization:
Vi Main procedure
i* InitAec

I.

/Q

It

Staphan Duncan

*/
o
&/
*/
&/
af
*f
W4

ag

/
*7
wf

I“‘l’..li..ﬂ.l.*i‘.'ﬁ.tliiit.**ﬁ.ﬂﬂ't.ﬁi".i.ﬁ.....l’ili‘ﬁﬁ'ﬁﬂ*ﬁﬁﬁe“.l’ﬁ .ﬁf

#ifndef lint

gtatic char rcsheadar([] = “$Header: main.c,v 1.3 85/11/713 00:16:12 duncane Exp

L ¥ 4
gendif lint

def = unc, ndef = cmu

def = gtandalone mode

ndef = in monitox

must be defined to enable monitoring

,O

/* These are flags to the compiler:
/% UNC 1

/% STANDALONE 1

/.

f£* MONITOR 1

,l

/* These are set in const.h

#* UNCDEMO 1

trace Jevel need to demo

I.i.ﬁﬂﬂﬂl.'l‘!l’"l.ﬁﬁﬂi"lt. Datlne Implemant.tlon ﬁ.ﬁ..i'ﬁﬂ'.ﬂ&ﬁﬁiﬂﬁl?ﬂ“.ﬁ"‘,

*f
*/
*/
o
*f
*f
b4
*/
af

’ﬁ‘*i'.‘ﬂili.‘l’ﬂ'l..l..il’ilﬂﬁﬁl}!ﬁa.ﬂ&*.iﬂtl\iﬁi“.ﬁﬁ‘ﬁl ﬁ.'ﬂ'l.ﬁbﬁ.&ﬁlﬁt.ﬂ‘ﬁtttﬁ’

f#include <sys/types.h>
#include <sys/time.h>
f#include <sys/foctl.h>
#include <sys/stat.h>
finclude <stdio.h>

#include <signal.h>
tinclude <monitor/monops.h>

tinclude <monitor/monerrcds.h>

finclude “accountant,h®
#include “const.h*
#include "vars.h”

Appendix D

f* sensors %/

#ifndef UNC

#Hfdef ATCMU
finclude <sys/ipc.h>
felse

#include "ipc.h*
#endif ATCMU

#include "queue.h*
#include *enet . h"
#include "CMUconst.h"
#include *CMUvars.h®
#include *CMU.c™
fendif s» §if 1UNC */

Jhoanhknapohbobdhnnatans Structured Variablag A4esesaradnansakeanakninanatata s

/* Arrays to record active processes, sensors, and event records. */
/% In the INC Iimpleamentation, the following definitions are relevant: by
/ af
Al 1) clasa =~ all the information in one sensor description file. uf
Fad « gat of cbjects ey
/* = gat of events wf
i In the UNC implementation, there is only cne class, ./
/* 2} object~ process-id v/
FAd 3) event = all the information in one event record ./
/* : = gat of domaina R oy
/* = gutput of one sensor in the target program ./
/= &) domain= datatype output by sensor in target program */
FAd = ipnteger, double, string, char, etc. *f
/* */

l.iii.iii&il’tt.l’.t‘tltﬂttltli.l*!.llt!li....iiiiil.ilﬁ'ii‘tltt'tiltt.tttit.tif

unsigned int
InfokrrayfMaxInfoltems);/*data stored by accountant for monitor */
vnsigned short
EventRecBuf [MaxEventRecordLength/2);/*interface with sensorread In
shorts--unc data structure used
comparably to pup.data]] of
cmu fmplementation 2/

Illliliit.tlitltiiliiiﬁﬂ slmple variablea ﬂii.ti.iﬂtlllii!tliitttlitilti.ittl/
char *invocatloncomment:

int InitCount, /*initial number of commands recelved */
trace, /f*hi=little printout; low=lots of printout */
NumEvent 83 /*number of events currently declared toe acc*/
unsigned int
filltime, /*timeout used to walt for the buffer to fill,
in seconds*/
Global TimeStamps /*generation time of last event record
plcked up from kernel =/
char *sensor_linvoeation;

accountant

unsigned int
: emdbuffer{12}),
databuffer{256];

/* The actual user parts of the messages */

char AccountantName [100];

char KernelName [10G};
char InitialText[100};
int KarnelVectorSize = 0;

short ActiveSensorsf) - { 1, 2, 3, 5, 6, 7, 8, 9, 0 };
/* sizeof i3 used to get the num, of elem. */

!tt..lliﬁtttttt'itt!ti-itlit.ittit....tl’tttﬁi!tttttttiti*ttti‘titittltltnﬁtt/
i MAIN . wy
/* This procedure 18 the driver routine for the accountant (cmu and unc *f
/* implementations). Its major functlons are to lnitialize the accountant*/

/* in Inlthec{) and execute an infinite loop of */
/" . */
/* 1) recelve and execute a command sent by the monitor by *f
/* calling Processacmd {} ~/
Fad 2) handie communication with the target program running w/
/* on Cm* {cmu) or vax {unc} by calling */
/e boProtocol {) L
/* or DoUnixProto () */
/* : 7
/¢ Original author: Richard Snodgraas xf
/* Modifications for unc Implementation: Steven Reuman, Steve Duncan *f

SRR R A A AR AN R A AR AR AN AR AR AN AR RARR AW RSN RN R AR AN R AR AR N A R RN R AN AN

main (argec, argv)
int argc:

char *argv([]:

{

int 1;

#ifdef STANDALONE

int Finish(};

signal (SIGFERM, Finigh);
fendlir

/*closedown routine */
/*exit from while L1f STANDALONE */

/* Give defaults for switch values */
strepy (AccountantName, "“accountant®™);
strepy (KernelName, */vmunix.monitor®);
strepy{IntrialText, “Accountant started*):
trace = Q;

/* Get switches */
for (1 = 1; 1 < arge; 1++)
{
if (stremp{argv[i], "-a™) == 0 && ++1 < arge)

Appendlx D

{ .
- #ifdef STANDALONE

i

strncpy {AccountantName, argv[i], sizeof (AccountantName));
continuvey ’

}

if (stromp(argvii], *-k") == 0 & ++1 < argc)
{

strnepy (KernelName, argv(i), sizeof (KernelName});
continue;
}

1f {(stremplargv[i]), "-t*) == 0 && ++} < arge)
{

strnepy (InitialText, arqvil!, sizeof (InitialText)};
while ({i+l) < argc s& *argv{i+l] = *=’)

{ .
if {strlen{InitialText) + 1 < sizeof (InitialText)}
strcat {IniclalText, * ")
strncat (InitialText, argvi++i]), sizeof{InitialText) -~
strlen{InitialText}) - 1);)
}
cont fnue;

]
1f (strompfargv{i], “-x*) == D &6 ++1 < argc)
{
trace = atol (argvfi]);
continue; ’

]

printf(“accountant; usage [-a accountantname] [-k kernelname) [~t ilnit
faltext) {-x tracelevel]\n*);

axit (~1); .
}
Inithce {); /*initialize the accountant ¥
while (1) /*get commands and process */
/*InitCount commands expected */

sleep(filltime); /* wait for event buffer to fl
11 */
felse
for {L = 1; 1 <= InitCount; i+t}

1f {lpecrecelve {¢mdport, &cmdmsg, Init'time}=«l) Processcmd();
fendif /* #else not STANDALONE =/ '

*

#1fndef UNC

DoBrotocol {}: /*get Cm* response,send to monjtor*/
telse
DoUnixProto(): /*get event record {unc), send L3

1f {trace =~ ~0} Finish():

accountant

#endif /* else of #1f |UNC */
}
}

ftt‘tltthlitttit.ii!ltlittil‘ﬁﬂi'..tﬁiiﬁl.tt'itttti!i*‘tttttti.itltt!iitﬁ/

/* Initace()

/’t

/* This is tha initlalization procedure for the accountant, In the CMU
/* implementation, it initializes the connection batween Cm* and the
/* accountant, sends an initial acknowledgemant message to the monitor
/* and checks for the first packet of data from the target program(s}.
/* All monltor commands received before the

/* StartNormalProcessing command are simply routed to Cm*, In the UNC
/* implementation, connection 18 established with kernel memory and

/* the kernel event record buffer cleared for communication with the
/* target program. The following serial functions are performed

/* and commented as below;

/t

P 1. initialize ipc data structures by calling initipc()
rA 2. 1f operating on Cm*, establish connection with Cm#

FAd 3, if operating on UNC, establish connection with kernel
FA 4. when suyccessful, send acknowledgement to monitor

/e 5. Inttlalize simple and structured global variables

f* 6. walt for the StartNormalProcessing command.

FA 7. get initial data message from Cm* or target program
/* to monitor by calling doprotoceol {} or dounixproto{).
/* '

/* original author: Richard Snodgrass
/* Modificatlions for UNC implementation: Steven Reuman

*f
*/
*/
b
*/
*/
*/
*/
*/
*/
*/
=/
*/
*/
*/
“/
*/
>/
*/
*/
*/
"/
*f
f

AR R e L e T P T A L

InithAce ()
{
int number,
j-l jl
ClassType,
Elnlshed;
char namestring{i5];
long sensor_thistime,
senser_accountanttime,
sensor_kerneltime;
char sensor_hostname[255]);
char *asel) time;
struet stat stat_buf;
short cmd [6]); /*buffer for command message to kernel
#lfdef UNC .
struct mon_cmd command; /* holds command for kernel */
sendif UNC
/" 1. Inltialize ipc data structures by calling initipci)
Appendix D

*

>/

FA or by opening disk file wheit STANDALONE

#1fdef STANDALONE
InitQutput {};
felse
InitIPC {}:
dendil

/* Creates file for output */

#1fndef UNC
/* 2. 1f operating on Cm*, establish connection with Cm*

for {(1=0; 1<=15; 144)

{
sprintf (namestring, “/dev/enet%d~, {);
EnetDesc = open {(namestring, 2};
if (trace >= LowLevelTrace)

printf ["%s -> Ad\n", namestring, EnetDesc):
if (EnetDesc [= -1}

break;
§

ioctl (EnetDes¢, EIOCSETF, &myfllter}:

sendpkt (0] .pup.chksum = 0177177;
sendpkt [0] .pup.pup_type = MonDataPupg

sendpkt[1].pup.chksum = 0177777;
sendpkt{ll.pup.pup_;ype = MonDataPup:?

settimaocut {(EnetDesc, Timeout):

/* write Initial data message to Cm*; get response in
/% recvpkt., “number® = number of bytes returned--not
/* currently used.

while (1}

{
writa {EnetDesc, sendpkt, PAKETMINLENGTH);
number = loread (EnetDhesc, &recvpkt, PAKETLENGTH);
1f {{recvpkt.pup.pup type == MonAckPup) &s
{recvpkt.pup.pup 1d[1} == 0)}
break;
b

databuffer{0) = InitDataRecord;
for (i=1; l<=InitDataWords;i++)
{
databuffer[i]) = {recvpkt.pup.datail * 2 - 2] << 16};
databuffer([i) += recvpkt.pup.datafi » 2 - 1};
}

if (trace »= HighLeveleace)

accountant

./

u/

*/
*/
*f

s

printf {"Connection established on Cm*: ([2]):%d\n", databuffer[2}

/* end non-UNC saection */

#alse /% UNC %/

rAd 3. 1f operating on UNC, esatablish connection with kernel */
‘/* For the UNC implementation, the monitor(9) call used below opens and */
/* clears the kernel flle to be shared with the target program. It w/
/* returns the slze in bytes of the e.r. buffer allocated. This *f
/* 18 then passed back to the monitor in an InitDataRecord. */

1f (trace==UNCDEMO) printf ("\n[ACC: Locating Kernel Storage...)\n"

/*
* Starv up kernel monltor
*/
command.typa = MONOP INIT;
command,.length = (sizeof(struct mon_cmd)+1)/2;
KernelVectorSize = ayscall (SYSLOCAL, SYSL MONITOR,
{u_char *)&command);
databuffer[0] = InitDataRecord;
databuffer{l] = {unsignhed int)KernelVectorSize;
databuffer{2] = 0;
databuffer[3} = 0;
1f {trace >~ HighLevelTrace && databuffer(1]>0)}
{ .
printf {(*InitAcc: Kernel connectlon establlished:\n*);

priptf (“Shared memory available = %d bytes\n*, databuffer([1}])
]
/t
* Get data for RestartSensor
*/

sensar_thistime = time(0):

ascil_time = ctime{ &sensor thistime);:

gethostpame {sensor hostname, 80);

1f {stat{AccountantName, &stat_buf)=«0)
sensor_accountanttime = stat_buf.st_mtime;

else sensor_accountanttime = -1;

gethostname {sensox_hogtname, B80);

if (stat(KernelName, &stat_buf}==0}
sensor_Xerneltime = sgtat_buf,st_mtime;

elge sensor kerneltime = ~1; -

RestartSensor (sensor_thistime, sensor accountanttime,
sensor Xerneltime, sensor hostname, ascli_time,
InitialText);

#ifdef STANDALONE

!.
* Note that ActiveSengors s null terminated
* {null 18 not a valld sensor 1d)
*/

. Appendix D

TurnOnSensors{ ActivesSensors };
fondif

1f (trace == UNCDEMO)

printf (*\n[ACC: Kernel Connectlon establishad ~- *);
1f {trace == UNCDEMO)

printf (“%d bytes avallable,)\n*, databuffer[l]);

fendlf delse

#ifndef STANDALONE
Fid 4, when successful, send acknowledgement to monitor */
if (trace >= LowlevaelTracej
printf(*InitAcc: calling Senddata to ack open shared memory\n“);
SendData (InitDataWords + 1);
tendlif

/* 5. initialize simple and structured global variables .

GlobalTimeStamp = 07
filltime = 13 :

#1fndef UNC
CurrPup = &sendpkt[1);
SeqNum = 0; -
StarMonUgedwords = 0;
CurrentSend = 1;
CurrPtr = 0;

fendif

/* 1n seconds */

for (ClassType = 0; ClassTypa < MaxClassTypes; ClassTypett}
for {1 = 6; 1 < MaxNumClasses; 1++)
{ .
ClassArray[ClagsTypa){l] .NumSNames = 0;
ClassArray([ClassType}[l] .NumEvante = 0;
for {i=0; j<NumEventsPerClass; j++)
ClassArray([ClassType) [1}.position[]] = 0;

NumEvents = 0;
for (1 = 0; { < MaxNumEvents; i++) EventArray{l].NumDomalns = 07

#ifndef STANDALONE ,

FAd 6. wait for the StartNormalProcessing command, */
/* In the CMU implementatlion, 1f other commands are recelved beforehand */
/* they are passed on to Cm*, but should not fill up more than one */
/* packet to the resident monitor. In the UNC implementation, other *f
/* commands are ignorad. */

1f (trace >= LowLevelTrace}
printf("Initacc: calling ipcrecelve for StartNormalProcessing\n®);

Einished =~ 0}

accountant

while {ifinished)
{
if {ipcreceive {(cmdport, &cmdmsg, InitTime) ~= 1}
{
if {trace > HighlevelTrace)
printf{*InitAcc: command raceived: %d\n",cmdbuffer(0]);
if {(cmdbuffex[0} =« StartNormalProcessing} Finished = 1;
#1fndef UNC
Processcmd {} ;7
#endif
H
}
fendif /* ISTANDALONE */

if {trace >= HighlevelTrace}
printf (*InitAcc: Inftlalization commands have been processed.\n"):

/* 7. get initial data message from Cm* Or target program v
f* to monjtor by calling doprotocol{ji or dounixproto(). v/

#ifndaf UNC
DoProtocol{); /* retrieve StarMon sensor description */
f#else
DoUnixProto () /* check for event recoxds */
1f (UNCDEMO) printf({*\n[ACC: Target program initialization record now
avatlable.]l\n™);
fondif
} /* InithAcec %/

DoUnixProto. ¢

jiitilut‘lititit!‘!*lttliilltliittl*ﬁtil‘ttit!’tt!tti!.it*&ﬁﬁitlti‘*tt*ti,

A DoUnixProto (} : */
/* This routine is the back part of the processcmd{)} loop. After each */
/* command is processed, control flows here so the accountant can */
/% continue to plck up event records from the event record buffer. */
/* If the event record buffer 1s not empty {return value = 2} the */
/* the data retrieved {s sent o the monitor by calling ./
/* SendDataRecords{). The rouclne is UNC implementation speclfic. *f
/= . */
/* Author: Steven Reuman *f

SRR RN R AR AR R AR AR R kAN AR h AR AR kA AN AN A NN A NN R AR KRR A AR AR AR AR AR R DAk f

Appendix D

#include <monitor/monops.h>
tinclude <monitor/montypes.h>
finclude <sys/syslocal. h>
#include *const.h*

extern int KernelVectorSize;

extarn short EventRecBuf {l;

extern. int- trace;

DoUnixProtoi)

{
mon_getevent GetEvent:
int ' count ;
GetEvent.cmd.type = MONOP_GETEVENTS:

GetEvent.cmd.length = (sizeof {mon_getevent)+l) /2;
GatEvent,req_length = KernelVectorSize;
GetEvent.,acct_buf ptr = EventRecBuf;
if { tcount = syscall (SYSLOCAL,
SYSL MONITOR,
funsigned char *)&GetEvent)
) >0 '

[
#1 fdef STANDALONE
WriteEventRecord {(sizeof(short) ¢ count},EventRecBuf};
#ifdef UNCDEMO .
if (trace == UNCDEMO)
{
/* print out the flrst event record’s fixed flelds #/
mon_putavent “pevi = (mon_putevent *)EventRecBuf;

printf {(*%-5.4u%, pevt->emd.type) ¢

PrintE {*%=5,4u", pevi->cmd. Length) ;
printf (*%-10.8u", pevt~»aventnumber);
printf (v%-10.8u", pevt=>parformer):
printf (*%-10,.8u", pevt->object }:
princfi“s~10.8u", pavi-»object j7
princf (*4-10.8u", pevt=>initlator };
}
#endif
false
SendDataRecordsi}; frurite to putputs/
fendlf

accountant

Finish.c

#include
#includae
#include
#include
#inciude

extern i
extern i
extern i

<stdio.h>
<monitor/monops.h>
<monitor/montypes.h>
<sys/syslocal.h>
*const.h"

nt disk_dump;
nt ActiveSensors(}];
nt trace;

/* array of active sensors

/* output file of event racords */
LF

fitititttlltl*ii'i.i!.i‘..t‘t'ltiﬁ...ltti!ittli‘titiiﬂ*‘t!ti'*ﬁ**i!‘ﬁﬁ*‘*,

/* Finis
,t
,I
’i
/i

h

This 15 tha exit routine for STANDALONE mode, reached via
the sigset call. It turns off all sensors, gets the last
data from the event buffer, and closes the disk flle,

/* Stephen Duncan
/tttltttttt!aﬂttttttiti'ii.it!ttlililltiti.ltttitttttit!ittittﬁ*ii!i.*httl

Finlsh()
{

}

struct mon_cmd command}

if (trace >= LowLevelTracae)

1
fprintf {stderr, *entered Finish{)\n=};
Eflush{stderr};

}

TurnOffSensors {ActiveSansors) ;
DoUnixProto();

/% stop recording %/
/* Get last events */

command.type = MONOP_SHUTDOWN; /* Cloge down system #*/
command.length = (sizeof(struct mon_cmd)+1)/2;

syscall {SYSLOCAL, SYSIL MONITOR, (unsigned char *)&command);

close {(disk_dump) ;
exit (StdTermination};

*/
*/
*/
>/
*/
*/

/titttnattttii!iﬁnjttttltitititittt“tiltti!.*tt“t&tlltiﬁﬁ‘iittttﬂliﬂttt/
/* AbortAcct

/* Disable the kernel sensors, shutdown accounting, and exit.
IR
Appendix D

*/

*f
*7

10

/* Stephen Duncan

*/

Itkliti!.ttttii*i.*uﬂtﬁ*ttt&tlhtk&ﬁitiititititttliiii!!liiitiit'!t*itﬂili[

AbortAcct (error)
int error;
{

/* exit code */
struct mon_cmd command;
TurnOffsensors {(ActiveSensors) ;

command .typa = MONOP SHUTDOWN:
command.length = (slzeof (struct mon_cmd)+1)/2;

syscall (SYSLOCAL, SYSL_MONITOR, {unslgned char *)&command);

exit (error);

WriteEventRecord.c

fifndef lint

static char *rcsheader = "$Header: WriteEventRecord.c,v 1.3 85/11/13 00:15:25

duncans Exp $%;
#endif 1int

f..t!tlﬁttttttttt&itititit‘iti*ﬂti*ﬁ*i*tt*ttt&t*iiiiliitittii'it!iil!iiii/

/* These routines control the output to filas tor the UNC
/* implementation.

/* WriteEventRecord
/* initoutput

f* SwitchFiles

" GenTemplate

*/
v/
*/
*/
*/
*

/* If a eritical failure ocours, AbortAceot is called to clean things up */

i

*/

Iittt*iiititttt.iltitiiiit*i*itliltti.'*i*.l*tit**t**ﬁ*tiiﬁi*..“lti*nii‘l

#include <stdio,.h>
$#include <ctype.h>
#include “const.h*

extern Int
static int
stati¢ char

trace;
disk_dump;
*File Name;

/* indicates trace level
/* Flle descriptor of ocutput
/* current output flle

*/
*f
*/

accountant

static int FlleSlize = 0; /* to det, when co switch fileg */
static int a_char = -1, .b char = 0; /¥ for GenTemplate L¥)
static char char lisc{} «~

*abcdefghl 1k lmnopqrstuvwxy zABCDEFGHI JKLMNOPQRSTUVHXY20123456789%;

,ltiilititi#ittttitl*lﬁtIti.iﬂ!tltlitttﬁti.tiiitiil‘ﬁﬁlttitﬁﬁﬁﬁﬁ*ﬁlﬂitiii/

/* WrlteEventRecord xy
" Write out a record to a disk file in STANDALONE mode, wf
/" This is UNIX specific. Y
Iz */
/* Stephen Duncan : 4

/.0.!i.Iili‘iti‘-.*litt-.t.ﬁiiittti"iiil‘"ﬁt‘tiﬂﬁ.it!tﬁi‘ii.t.ﬁ*tiii’i‘l

WriteEventRecord {count,data)
Int count;

char «data;

{

/* puts to disk %/

1f (count + FlleSize > MaxFileSize } SwitchFiles();

1f { write{disk dump,data,count) < 0)

{
peryor {“WriteEventRecord: writing disk_dump®);
Aborchcet {(CantWrited /* Need to shut down things */

}

FlleSize += count;
}
!itﬁiiii*t*tit*t*iﬁlﬁ.ti*ﬁt‘**t*iti*i‘*t*aﬁ*ttiﬁtittitﬁﬁtt*tttiﬁﬁti‘tt.lﬁ/
/* InitOutpuc "y
/= Open the first file for output. s/
/"~ ./
l* "
/* Stephen Duncan wf

/itii-‘*tatlitiliititﬂtttnntil..tttttlﬁﬁitiiit&ﬁtiittit‘tttiﬁﬂtwit'iiittt/
InitOutput {)

char *template;
char *mktemp () ;
char *GenTemplatel)?

template = GenTemplate{File Name Prefix);

Flle Name = mktemp(template);

if ((disk_dump = creat(File Name,PMode}} < 0)

i
fprincf (stderr, “creat falled for %s \n*,Flle Name);
AbortAcct {CantOpen) ;

}

else If {trace »= HighLevelTrace)
printf{“File %5 created\n“,File Name};

}

,t&lilﬁ.ﬁ.tlitﬁ'ﬁli!ﬁi.itttttiﬁ*tﬁtﬁii##t*ttt.*ittl*iltt*tiﬁiﬁtﬂitiitiﬁtt/

Appendix D

11

/% switchFlles LF)
" Close disk_dump, create a new unique file, dup disk_dump. \¥)
A Y
/% Stephen Duncan .y

I.ittliiiiitituttttiiai.ltltll.tititttiii**i*tttttﬁﬁﬁtiatnittanttttiiihiﬁ/
statlc

SwitchFlles {}

{
char *template;
char *mktemp () ;

1f (close{disk_dump) < 0 }
{
perror (*SwitchFlles: closing disk_dump®):
AbortAcct {BadClosa) § /% Need to glose down accountant */
}
template = GenTemplate(Flle MName Preflx)y
File Name = mktemp{template);
if { (disk_dump =« creat {Flle_ Name,FMcde)} < 0)
t

perror {"SwitchFiles: creating new flle®);
AbortAcct (BadClose);
}
FilesSize = 0;
}

FASARER RS A LA SR LSRR LR AT R AR Rl i bs il ilisld ittty

/* GenTemplate ' ®/
Fid Generate a new template for the flles from a constant string. */
/* L4
/* Stephen Duncan */

flttﬁﬂﬁlitttttttiitﬁtiit*ﬁlit.tttttﬁitlit*ﬁ*ﬁttttﬁ#ﬁiﬂﬁinti.*ttnttiﬁi*iti/
static char * '

GenTemplate (template)
char *template;
{

/=

* Form of template 18 [.]*xxxxxx

* Note that statlc variables a_char and b _char are used to

* retain info between calls, It doesn’t really matter what they
* are initlally.

*/
int len; /* length of template %/
char *new; /* new template */

Lf { {len = strlen(template)) <= 7 }

{

fprintf {stderr, “GenTemplate: invallid template: As\n*,
template) s

AbortAcct (CantOpen) ;

accounkant

new = {char *}malloc(lentl };
strcpy (new,template} ;

Fid

» % * ¥ R

* flles, howaver.
~/
1f (char list[a_char+l] == 0)
{
a_char = 0;
if (char_list{b_chartl] == 0}
b_char = 0;
else
b_char++;
}
else
a_char++;

new[len-7] = char_listfa_ char};
new(len-8] = char_ list{b charl;

raturn{new) ;

The followlng section ¢hanges two postions of the template
to ease the work of mktemp. When a_char reaches the end,
it resets to 0 and increments b char. This ylelds 36+2
unlque templatas, mktemp{) is stil} used to check for
file names and to add the pid, It can only handle 2§

SensorControl.c

#ifndef lint

static char *rcsheader = "$Header: SensorContrel,.c,v 1.3 85/11/13 00:15:06 dun

cans Exp $§"7
tendlf lint

tinclude «<stdic.h>

finclude <sys/syslocal.h>

#include <monitor/monops.h>

#include <monitor/montypes.h>

/* Commands to sysl monitor to enable/disable sensors */

static mon putreq off_preq = {

Appendix b

{ {(char)MONOP_PUTREQ,

{char} { (sizeof (mon_putreg)+1) /2} }, /* type,length */
{0,0, 0} /% pid, event, enablevalue LF)
}: . :
static won _putreq on preq = |

{ {char)MONOP_PUTREQ,
{char) {{sizeof (mon_puireq)+1)/2) }, /* type,length */

{0, 0, 1} /* pld, evant, enablevalua */

¥s
ltttttttlitﬁttﬁtatt‘ttiitt*tﬁtt*i*iiittitit*ﬁtttttttttttﬁititltiittﬁt‘tttf
/* TurnOffSensors */
/- Turn off all active senzors ./
I+ ~/
/* Stephen Duncan ./

’.littl*ittitttﬁtﬁ*i..i*i‘iii'tittﬁtitt..ittiﬁ.....itttttit.itlttiiﬁiitil/
TurnOffSensors (ActiveSensors})
short ActiveSensors|]; /* Null terminated array */

{
int 1; /* gsubscript for ActiceSensors */

for {1 = 0; ActiveSensors[i]j: 1++)
{

off_preq.req.eventnumber = ActiveSensors(i);

8yscall (SYSLOCAL, SYSL MONITOR, {unsigned char *)&off preq);
1 ;

faaiil!*l#it.n!tttitttﬂﬁttttttﬁi‘tiiitiilt‘itttittttttiititititti‘tt*#*ii/

/* TurnOnsSensors */
f* Turn on sensoreé in ActiveSensors */
FAd) ./
/* Stephen Duncan . L4

,niiititil‘ttiit*tittttiiQh&ttt**ttiit*tl*iittttt.tﬁ*t*ttttttltnltaiiittt/
TurnOnSensors (ActiveSensors) '
short ActiveSensorsf]; /* Null terminated array */

{
int i,8tatus;

for (1 = 0; ActiveSensors(i}; 1++}
{
on_preaq.req.eventnumber = ActiveSensors(il;
status = syscall (SYSLOCAL, S5YSL MONITOR,
{unsigned char *}&on_preq);
Lf { status < 0)

fprintf{stderr,
“sysl_monltor enable falled for %d with code ¥din®,
on_preq.req.eventnumber, status};

accountant

ACCT stat {acctname, &u_sen sgtat); \

*{long *)u_sen_flelds = (longju_sen stac.st_mtime; \
u_sen_fields += 27 \

stat {kernelname, &u_sen_stat); \

*({long *)u_sen_fields = (long)u_sen stat.st_mcimes \
u_sen flelds += 2; \

gethostname (namespace, 12); \

do { “u_sen fields++ = PackStr(u_sen f ptr}; } \
while { NotEOS{u_sen f ptr, u_sen_f_end} j; \
makefile ' *{u_sen_flalds - 1) &= ntohs(Oxff£00}; \

asciitime = ctime {¢1time); \

u _sen_f ptr = (mon string) asciltime; \

u sen £ end = u sen_f ptr + 12%2/aizeof{mon_string); \
do { *u_sen fields++ = PackStr{u_sen £ ptr}s } \

MONDEF = MONITOR while { NotEQS(u_sen_f ptr, u_sen_f end) jz \
MONINCLUDE = monitor *{u_sen fields - 1} &= ntohs{0xf£00); \
PEBUG = ~DMONDEBUCG -DDEBUG u_sen_f ptr = (mon_string} init_text; \
CFLAGS = -D$ {MONDEF) =-Usun u_sen_f_end = u_sen_f ptr + 127*2/slzeof {(mon_string); \
do | *u_sen_fields++ = PackStr{u_sen f ptr); } \
acct: acct.c ../$(MONINCLUDE) /montypes.h acct_sensors.h while { NotEOS{u_sen f ptr, u_sen f end}); \
cc ~D$ (MONDEF) -o acct acct.c *{u_sen_flelds ~ 1} &= ntohs(Oxff00};

u_reg length = u _sen fleids - (short *)u__reg buf; \
u__reg_buf->cmd.type = MONOP_PUTEVENT EXT; \
u__reg buf->cmd.length = u_reg length; %
syscall{SYSLOCAL, SYSL MONITOR, { unsigned char *)eu _sbuffer); \
}
: i1defina UserXamplSensor{obi, str_parm I, sh parm 2, sty parm 3, lg parm 4) \
acct sensors.h if (u_boolveci{Dd] & Oxl<<i) \
A\

register mon_putevent *u__reg buf = gu__sbuffer;
reglster short * u_sen_fields = {short *}u__reg buf->flelds; \
register mon _string u sen f ptr = (mon_string)scxr parm 1; \

tinclude "../monitor/montypes.h” register mon_string u sen_f end = u_sen_f ptr + 127%2/sizeof {mon_strin

#include . ./monitor/mondefs.h® a: o\ '

tinclude <netinet/in.h> . register short u_reg_length; \

¢include <sys/syslocal.h> u_ reg buf->eventnumber = 1; \

short u__boolvec{1l6} = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,}; - u__reg_buf->object = obl; \

mon_putevent u_ sbuffer; u__reg_buf->timestamp = 1; \

ddefine AcctHeader {acctname, kernelname, init text) \ do { *u_sen_flelds++ = PackStr{u_sen_f ptrjs }

A while (NotEOS{u_sen_f ptr, u sen_f end} j; \
register mon_putevent *u reg buf = &u_ sbuffer; \ *{u_sen_flelds - 1} &~ ntohs(Ox{ff00};
char namespace[26]1; \ *u_sen flelds++ = sh_parm 2; \
char *asciitime, *ctime{); \ u sen_f ptr = {mon string) str_parm 3; \
long 1time = time(); \ u _sen £ end = y_sen f ptr + 127%2/sizeof (mon_string); \
register short @*n sen flelds = {short *)u_ reg_buf->flelds; \ do { *u_sen_flelds+t+ = PackStr{u sen_f ptzi; } \
reglster mon_string u_sen_f ptr « { mon_string)namespace; \ while { NotEOS{u sen f ptr, u sen_f end} }7 \
register mon_string u_sen_f end = u_sen_f ptr + 522/slzecf{mon_string) ’ *{u_sen_flelds -1) &= ntohs(0xff00}; \

PN) *(long *)u_sen flelds = ig_parm 4; \
register short u_reg_length; \ u sen flelds += 27y \
struct stat u_sen_staty; \ u reg length = u_sen_ flelds - (short *)u__reg buf; \
u__reg buf->eventnumber = 0; \ u_reg_buf->cmd.type = MONOP_PUTEVENT EXT; °
u__ reg_buf->object = 0; \ u__reg buf->cmd.length = u_reg length; \

u__reg_buf~>timestamp = 1; \ syscall{SYSLOCAL, SYSL MONITOR, {unsigned char *)&u_ sbuffer}; \

acct.c
#include <sys/param.h>
#include <sys/fdir.h>
tinclude <sys/sgystm.h>
#include <sys/user.h>
tinclude <sys/proc,h>
finclude <sys/stat.h>
finclude “acet_sensors.h”
¢include <stdio.h>
#include <ctype.h>
#define ALL
short buffer[512+50);
maln {arge,argv)
int arge;
char *argvl(];
{
int runminutes, /* accumulated run time »/
runduration, /* duration of event gathering */
sleeptime; /* duration of sleep */
int status; /* status of calls */
int 1;
char *numeric; /* for testing arg */
shert charewt [12),charcvc2f12]; /* the sun reguires allignment */
fprintf (stderr, "argc:$d\n®, argc);
switch(arge) /* determine run duration */
{
case 1; runduration = 20;
break; .
case 2: /*for (numericwargv(l] ; *numerlic ; numeric++)
if { lisdigit {*numeric))
{
fprintf (stderr,
"%3: arg must be an integer\n~
r
argv([0]);
exit {1}
}
Appendlx D

14

-

s/
ascanf fargv[l]), *%u”, srunduration);
break;

default:

forintf{stderr,“ss: invalid number of args\n*,argv(0})

axit {1);
I

it { (status=startupif)) < 1)
{

fprintf{stderr,™%s: startup falled, monltor error:sd\n®,

argv[Q},status);

exit(l);
}
u__boolvec{0} |= 1; /% enable AcctHeader +/
u_ boolvec[0] |= 1x<1; /* enable UgerXamplSansor */
strepy {{char *) (ccharcvt (0]}, “demo run®);
Acctﬂaader('acct','HONITOR“,charcvt);

,i
* put in data
./

#ifndef NOKERN
H fdef ALL

enablesensors{1);
enablesensors (2) ;
enablasensors(3);
f* there 1g no 4 «/
enablesensors ({5);
/* enablesensors (6) s
enablesensors (7);

/* "NameStart™ L)
/* "NextComponent™ =~/
/* "INodeCreate" /

{* "OpenSuccesasful” */
"FlleClose® ./
/% "INodeDelete* */

fendif . i
enablesensors(8); /* “ReadSensor™ */
#ifdef ALL
enablesensore{9); /* “WriteSensor® LFd
fendif
fendif

* This is the heart of the accountant,

* {n real accountant a signal ends the loop
* and sleep time is dynamically sized

* according to usage.

*/

strepy ((char *} {echarcvt[0]), "acct™);

strcpy ({char *) {echarevt2{0]},"loop"};

for (runminutes = 0; runminutes < runduration;
{

/i

runminutes++)

/* initlallize monitor */

acct

* break up minute into portions to prevent buffer overflow
%/

#1fdef NOKERN

for (1 = 0; £ < 603 Ll4+)
‘ \
UserXamplSensor{l, charcvt, runminutes, charcvt2, rund

uration};

UserXamplSensor (1, charcvt, runminutes, charcvt2, rund

uration);

UserXamplSensor{l, charcvt, runminutes, charcvt2, rund

uration) ;

sleepil); /* gome time to get some data
*/
}
getevents{); /* puts in global buffer */
delse
UserXamplSensor{l, charcvt, runminutes, charcvt2, runduration)
H
for {1 =0; i< 20; 1++)
{
sleep(d); /* gome time to get some data
af
getavents{}; /* puts in global buffer */
}
fdendlf
}
shutdown (}; /* all done; clean up */
H
,t
* Routines that call sysl monitor
w/
fﬁ
[
* startup
* - initializes monitor, puts size of event buffer to stdout
L. BN
n/
startupf{)
i
struct mon_cmd command;
int 1;
command.type = MONOP_INIT:
command.length = (slzeof{struct mon_cmd)+1}/2;
i = syscall {SYSLOCAL, SYSL_MONITOR, {unsigned char *)gcommand};
fprintf(stderr, *miniacet; lnlt -- %d\n*,i};
returnil) ;
}
/n
» — — e e ——————
Appendix D

* gnablesensors

preg.cmd.type = MCNOP_PUTREQ;
= {sizeof (mon putreq)+1}/%:
preq.req.targetpid

preqg.ond. length

L H
preq.req.eventnumber = eventnumber;

preq.req.enablevalue = 1; -
1 = syscall {SYSLOCAL,SYSL MONITOR, {unsigned char
fprintf (stdaerr, “miniacct: enable -= Xd\n*,1);

- - esnables the sensor with eventnumber eventnumber

" = prints status of system call

b = caller must be accountant

*/

. enablesengors (event number)

int aventnumber

l .
mon_putreq preq;
inc i;

*)&epreq)

}

,t
-
* ghutdown
* ~ closes down monitor
" - caller must be accountant {
*
L

shutdown {)

struct mon_cmd command:

int is

command . type = MONOP SHUTDOWN:
= gizeof {struct mwon_cmd);

command. length

1 = syscall (SYSLOCAL, SYSL MONITOR,

{unsigned char

fprintf{stderr, “minlacct: shutdown -- %d\n®,i):

*} &command) ;

- writes out events from monitor’s buffer
- prints amount of buffer used

L]
* getevents
L 4
L

x/

getevents(}

int
mon_getevent
mon_putevent
short

i:
geve;

*pevt = {mon putevent *)buffer;

*nos

w buffer;

acct

gevt.cmd.type = MONOP_GETEVENTS; '
gevt.cmd.length = {sizeof{mon_getevent) +1) / 2;
gevt.req_length = sizeof (buffer)/2;
gevt.acet_buf ptr = buffer;
1 = syscall (SYSLOCAL, SYSL MONITOR, (unsigned char *)&gevt);
#1fdef DEBUG
fprintf{stderr,*minlacct: getevents ~- %d\n“,i);
for (2 &t > 0; {1 -= pevt->cmd.length, pos += pevt->cmd.length))
{
short *f:

pevt = (mon putevent *} posy
printf {"command:%d length:%d *,
pevt->cmd, type,
pevt->cmd. langth)
printf {"evt:%d perf:%d obj:%04&1x init:ed *,
pevt->evantnumbar,
pevt->parformer,
pevt~>objact,
pevt->initiator};
/%
* print out flelds
*/
princf{~fialds;");) . !
for { f = (short *) (pevi->fields};
f < { pos + pevt->cmd. length };
f++

printf{* s02x~, *f);

printf (*\n");
}
telse
write(l, {(unsigned char *) buffer, 1*2);
fendif
}
hppendix D 16

acct

AGGROP £7 0

) done ; \
done
sed ~f /tmp/sedfile /tmp/dep > /tmp/dep2
sed -e& °/*\§ Dependencies/,$% d° makefile > /tmp/makeflle
echo *# Depandencies DON'T REMOVE THIS LINE® \
| cat - /tmp/dep? >> ftmp/makefile
mv makefile makeflila.old
cp /fimp/makefile makefile
README =m -f /tmp/dep /tmp/dep? /tmp/sedfile /top/makeflle

Dependencies DON'T REMOVE THIS LINE
args.o: aggrop.h
find.o: aggrop.h

Aggrop 1s divided into the following files: main.o: ../lib/achema_idl.h
aggrop.h global types and defines main.o: aggrop.h
args.c command line processor " main.o: ../lib/tuple.h
find.c handles storage of aggragates main.o: .,/lib/streamio.h . Lo,
main.c man routinaes
aggrop.h
makefile

/% aggrop.h -~ global includes, defines, and types for aggrop */
CFILES = args.c find.c main.c

OFILES = args.o find.o main.o - /% have to hide this from other files
LIB = ../1ib static char resld[] = “$Headers"”:
LIBFILES = ,./lib/streamio.o ../lib/tuple.o ../lib/schema_idi.o \ L7 '
../1ib/readracord.o ../lib/writeracoxrd.o
CFLAGS = -g ~I$({LIB} /*
* pDefines for types
aggrop: ${OFILES) . L7
c¢ -0 aggrop $(CFLAGS) $({OFILES) $({LIBFILES) \
Jusyr/softiab/lib/libidl.a #define NUMERIC 0
#define CHARACTER 1
depend: tdefine MAXINT Ox7LEL€fff
~m -f /tmp/dep :
egrep *~#include™ $(CFILES) | qQrep -v ‘<’ | sed -e “/<.%>/d" \ I
-e ‘5/:(14\#include(| RASANFLAY RS-+ Y AR VLAY * pefines for optionsa
-& *s/\.c/.,0/" > /tmp/dep ./
-rm ~f /tmp/sedfiie
touch /tmp/sedfile idefine SUM 1
-for 1 ip ‘awk *{print $$2}*" /ump/dep® ; \ #define AVG 2
do for 1 in $(LIB} ; \ tdefine CT 4
do 1f [-f $51/881] ; \ idefine MIN 8
then echo »> /tmp/sedfile “s,551,5851/5%1,% ; \ fdefine MAX 16

break ; \

union val |{ /* union for domaln value */ * b
char tovaly * vigible: main, getdomalnval *
long nwal; L .
’: \i AR AN A RN A AN AN E RS E AN A ARSI TR NN AR AA RN ANAANS R AR AR RN AR AR AR ARk A kd tl

#ifndaf lint
statlc char rcsid[} = *$Header;$=;
u; #endif 1int

struct agg key {
int typa;
union val
b

struct bucket |

/* struct for lookup key */

/* buckets for cperations */ Jh KRR AR R AN R A AR RN AR AR AN R R AR AN AR RN AN F RO R AR AR R A AN AR RS b

long Bum; * Revision Log: *
long ct; * SLog:$
long min; L o
long max; * Edit Log: *
| L Oct 19 1985 {duncans) Created *
typedaf int hool; * Daec 9 1985 (duncans) Finished standalone testing. *
* &

AN ARERAAR AR AN AR AN AN AN AN SR AN R IRk e A bk A NA R AR A A A s k)

#include <stdio.h>
#include <monitor/monops.h>
#include <monitor/montypas.h>

main.c #tinclude *schema_idl.h*
#include *"aggrop.h*
#include *tuple.h”
. #include *streamio.h*

/* main,¢ ~ maln getdomainval */ P

Wi
1‘ IS R Rt R T R R A N R R R I I A F R RN TR RS YRR R RS R AT SIS 2 i\ * maln -
* . * Processes command line, and
* Title: aggrop * - for each tupla in the input streanm Updates an entry
- Filename: main,c * * via find{)} for each aggregate operation apecified
- Last Edit; ~Mon Dec 9 19:35:12 EST 1985* * * in the command line.
" Author: Stephen E. Duncan <duncans@uncx * * At EOF, usas lterate() to retriave tha values which
hd Department of Computer Sclence * L ara then printed.
* University of North Carolina * *
* Chapel Hill, NC 27514 * ./
L] *
* Copyright (C) The University of North Carolina, 1985 * main{arge,argv)
* - Ant arges
* All rights reserved. No part of this software may be sold or * char *AFrQV;
% distributed in any form or by any means without the prlor written * {
* permlssion of the SoftLab Software Distribution Coordinator. * Mstream *sp; /* Monpitor stream */
* . * tuple tup? /* holds incoming tuple v/
* Report problems to softlabfunc (csnet) or * char *ral_name, /* relation to check L7
softlablunc@CSNET-RELAY {ARPAnet) * *part_name, /* domaln to partition on */
* Direct all inquirles to the SoftLab Software Distribution * *arg_name; /* domain to perform op */
* Coordinator, at the above addresses. * struct agg key
* * *part_kaey, /* key for storing value 7
* Function: driving routines of aggrop * *tupval; ~ /% valype of argument domain /

Appendix D

18

aggrop

struct agg_key *getdomainvall):

== NULL }

fprintf{stdarrx,
“43.mains invalid domains for relation ta\n¥,
argvi0}.rel_name);
exit (1);
}

} /* else =/

* Accumulate the data

register struct bucket *val; /% gtored values */

struct bucket *find(), :
“iterate({); / functions for data storage */

vold init_iterate{);)

int flags, /* OPTIONS - SUM CT AVG MIN MAX */
statuys, /% status of calls */
rel_ld, /* numeric ld of relation */
all_relations=0, /* boolean for resiricting rel. */
err_recd_ct=0, /* count of error recds In stream */
missing dom_ct=0; /* count of recds missing domains %/ /"

I br
* Get Command lline arguments.
“f

args (arge, argv, sflags, &rel name, &part_name, &arg_name);

1f ((sp = str_open(stdin)} <= NULL } /* open a stream */

f
fprintfistderr,*Va.main ; can\’t open stream\n™):
exit{(1);

H

/*

* Check the arguments with the schema

=/
if (str_schemaread(sp) <= NULL
{
fprintf (stderr, *$s.malin
exit{1);
}
if (strcmpirel name, =%} == 0)
all relatlions « TRUE;
else
{
rolation
attribute

rel p:

}

par_p., arg_p;

/* need the schema now */

can’t read stream\n®);

/* can’t check domains */
/¥ can check domalna */

/* pointer for relation */
/* ptrs for domains */

if { {rel_p = getrelationbyname (sp->schema, rel nama}) == NULL

{

fprintf {stderr, *"Invalid relation %s for schema\n",

rel name);

exit{l):

rel_1d = rel p->rel sensor id:

/* for faster compares later *

1f { {par_p = getdomainbyname{rel_p,part_name))

== NULL

Il (axg_p = getdomainbyname (rel p,arg_name))

Appendix D

19

uhile { (status = str_read(sp,&tup)) > 0}

if ({(struct mon_cmd *)tup.record)->type == MONOP OFLOW)

err_recd Ct++}

}
else 1f { all_relations || rel_id ==
tup.relation->rel_sensor_id)

part_key = getdomainval {étup,part_name);

tupval = getdomainval {(&tup,arg_name) s
Lf (part_key == NULL || tupval == NULL}
if {all_relatlons)

(
migsing_dom_ct++;
continue;

}

else

i
fprint £ (stderr,

“%s.main : %s missing partition or argument\n®,

argv[0], tup.relation->rel_name);
exit (1);
} /* alse */
i1f {tupval->type != NUMERIC)
{

fprintf {stderr,
“Y3.maln ¢ %8 has invalid type\n®,
argv([0], arg_name);
axit (1)}
bofm AL %/
wal = find{part_key):
val-»sum +- (flags& {SUM|AVG}} ? tupval-ru.nval : 0;
val-»ct += {flags&{CT(AVG)} 2 1 2 Og
val->min
tupval=>u.nval : val->miny
val->max
tupval->u.nval ; val->max;

/* this is allowed */

= (flags&MIN c& tupval->u.pval < val->min) 2

= {flags&MAX && tupval->u.nval > val->max} ?

/* keep track of how many */
/¢ bypass rest of loop */

aggrop

} /* else {f */ . search the tuple for the domain and return its value

} /* while */ ’ . .
If (status < 0) /* an lo error occurred */ *f
i struct agg_key ¥
fprintf{stderr,”%s.maln : stream read error\n",argv([0)); getdomalinval {tp, domname}
exit (1); tuple *tp; ‘
} char *domname;
{

Pl attribute ap; /* domaln description in Bchema */
* Print out error counts, if any. int position; /* position of domain in record */
*/ struct agg_key *part_key = /* new key to return */

1f { err recd ct » 0) {struct agg key *)mallocisizeof {struct agg key});
fprintf (stderr,"Error records in stream: %d\n®, err_recd_ct);
1f (all_relations && missing_dom ct > 0) 1f { (ap = getdemalnbyname{tp->relation,domname)) e== NOULIL }
forint f (stderr,“Records in stream missing domalns: &d\n", raturn (NULL); /% doesn’t have relatlon */
missing_dom ct}); position = ap-rattr pos; /* displacement in shorts of domain */
if {(position < 0) position #w «1; -
/* switch (typeof{ap->attr type})
* Print out the results { .
“/ case Ktype string: /* jugt point to it, don*t copy it */
inic_iteratef); /* initialize for iterations */ part_key->type = CHARACTER;:
while { {val = iterate{}) != NULL) part_key->u.cval = (char *)&(tp~>record(position]};
: break;, :
/* casa Ktype boolean: /* treat these by length */
*+ Only print requested ops. case Ktype lnteger:
* Could use sprintf If this 1B too slow case Ktype_rational:
*/ part_key->type = NUMERIC;
switch (ap->attre_length)
1f {(flagseCT) {
printf {("%d"”,val-»ct); case 12
1f (flags&SUM) part_key->u.nval = (tp->recordipositicn]);
printf ("\t4d*, val->sum) break; NPT
1f (flags&AVG) case 2: T /% take two bytes %/
4 part_key~>u.nval = *{short *) {stp->recoerdiposition]);
if {val->ct} break?
‘printf("\tsf", (float)val->sum / {float)val->ct); dafault: /* agsume we take four bytes */
else part_key->u.nval = *({long *) {stp->record(position]);
printf{*\t0*}; break;
] } /% switch */
1f {flagaseMIN} break; ’
print£{"\t¥d~,val->min}); dafault:
1f {flags&MAX) return (NULL) ;
printf (*\t%d",val->max); b /* switch */
printf{*\n%); return {part_key) s
} /* while */ § /* getdomalnval */
exit (0);

P /* maln */

’i
&

* getdomalnval -

Appendix D 20 aggrop

7

aArgs.

/* args.c - arg */

[t ﬁkniiitttthr.!.lt.t.ittl...ﬂ..iii.'itlt.tltllttiit‘it!lattiﬁﬂtﬁiﬂn& .\

Title: aggrop

Fllenama: args.c

Last Edit:; “Mon Dec 9 19:38:40 EST 1585"

Author; Stephen E. Duncan <duncans@unc>
Depariment of Computer Sciance
University of North Carelina
Chapa]l H1ll, NC 27514

Copyright (C} The univerﬂity of North Carolina, 1985

All rights resarved. No part of this software may be sold or
distributed in any form or by any means without the prior written
permission of the SoftLab Software Distribution Coordinator,

Report problems to softlabfunc {csnet} or
softlablunc@CSNET~RELAY (ARPAnet})
Direct all inguiries to the SofcLab Software Distribution
Coordinator, at the above addresses.

Function: process arguments for aggrop

* ®» % & » % 3 = % % % F x % R poBRFEF SN

visible: args
®

* % 3 TR S B R N R E NN EREEREFE RS

\t .ti‘.t.illhtt!i.lQ'.I..i!‘.“.‘t-l'itilitiii‘....ttt.ti.ﬂlt‘Iﬁ.-!" -I

#1fndef lint
statle char rcsid[) = “$Header:$":
fandif lint

FU AR AR A A RS R RN AR E SO A NS AT R AR AR AT AR R AR A AARAAR R R TR T ARAARDATIR R A

* Revision Log: "
* $Log:$

L]]
* Edit Log: »
* Oct 19 1985 {duncans) Created *
» Dac 9 1985 {duncans} Finished standalone testing. L
L3 - E
\t (IR AR S EN T RS RERI NSRS TSI NIRRT SRR ER NSRRI ER S0 R YYD LY} iI

tinclude <stdio.h>

Appendix D

21

#include "aggrop.h”

/.

* -
* arg -

* set flage and grab arguments from cormand line.

* Exits with 1 uvpon error.

"

*/

fdefine USAGE “Usage: aggrop —ascnx relation partiticn argumenti\n®

args{argc, argv, options, relation, partltion,_arqumant)

int argce,

foptions;

char *Rargv,

»*raglation,

s*particion,

®Agrgument ;

int

*optlong = 07

argvt:
arge--§

for { { = 0: 1 < arges

t

il :,I
op_test = 07

FAl

/* Bumber of arguments */

/* Boolean array of operations */

/* Array of argumenta */

/* Relation to apply operations */
/% Domaln to partition aggregates */

/* Oparand domaln of aggregate operation ¢/

F* Array subscripts */
/% Count of operandas */

/* Clear optlons */
/* bypass program name */

144, argees)

* A pull argv(l] means the univeral relation.

Ll

LF { *{varguvi0} == *=* gg *(*argv+l) }

i
7%

* Options can be individually specified or
* al]l lumped togather behind a single "-*

A4

for (J = 1; *(*argv + }} ; J++ }

swlteh (*{rargv + 3})

{

cagse "a': .
soptions |= AVG;
break:

case *8':
toptions (= SUM;
break;

case ‘¢’
topt long |= CT;
break;

casa "9’}

/* tast for optlon #/

aggrop

*options (=~ MIN; fprintf (stderr, USAGE};

break; . exit {1} ;
case *Xx": |}
*options {= MAX: if (*optionsg == 0) *options = CT; /* Default action */
break; } /% arg */
default:
fprintf (stderx,

*Unknown optlon: %c\n"®,
*(rargv + 1))

axitc{l};
} /% gwitch */
} /* for § */ find.c
[RVZIEE Y
elsge /* select operand */
"
* This section sets the operands depending on /* find.c - find init_iterate iterate */
* how many have been sean. Notae that storage ’
* must be provided tor each. 'rhe default part !i (I 2 R E R I PR R X A2 S R RS RS YRR ISR SRS R SRS YL] t\
* lets us quit upon an error *
L * Title: agyrop b
switch {op_test) * Filename: find.c *
f * Last Edit: "Mon Dec 9 19:42:08 EST 1985 *
case 0: » Author: stephen E, Duhcan <duncans8unc> .
ralation = (char ®)malloc(strlen(*argv)+1); * Department of Computer Scilence *
strepy {*relation, *argv}; * University of North Carolina *
op test++; * Chapel Hi1l]l, NC 27514 *
break; * *
case 13 * copyright (C} The University of North Carolina, 1985 *
*partition = (char *)malloc{strlen{*argv}+l): * *
strcpy (*partition, *argv);: * All rights reserved., No part of this software may be sold or *
op_test++; * distributed in any form or by any means without the prior writtem *
break; . permission of the Softlab Software Distribution Coord!nator. *
case 23 - *
*argument = {(char *)malloc(strlen{*argv}+1}; * Report problems to softlablunc (csnet) or *
strepy(*argument, *argv): * softlablunc@CSNET-RELAY (ARPAnet) *
op_test++; * Direct all inquirjes to the SoftLab Software Distribution *
break; * Coordinator, at the above addresses. *
default: /* Too many operands{ */ " *
) fprintf (stderr, USAGE}; * Function: handle structures for aggregates for aggrop *
exlt (1}; * *
} /* switch */f * visible: find init_iterate iterate .
} /* else */ . hidden: rfind *
} /% for 1 =/ * *
\t XTSRRI R R R R ST NS S R TR R RS R R RS RS S AR YT YRR RS Y] ',
/n
* Make sure that we have what 13 needed. #ifndef lint
*/ :] stacic char resid[] = *"$Header:zS$*;
fendif lint
1f (op test != 3) /* Need 3 operands */ .
! ,ﬁ AR AR A A AN AT A AR AR AR AR AR AR R AR A AT E R R AN AN A A AN AR AN R A A AR AW kR *\
Appendix D : 22

aggrop

Revision Logt: *
SLog:$

Edit Log:
oct 19 1985 (duncans) Created
Dec 9 1985 {duncans} Finlshed standalona testing.

* » R > B BB

LK L B

\t AR AR AR AN AR R U R AR AT NG AR A AR RSB R R AR r AR DR AR R e BB il

#include <stdio.h>
#include “agqrop.h®

,t
This module implements an abstract structure containing a
sat of <key,value> palrs.
The only operators are find and ilterate.
Find takes a key and gearches the private structure for it,
allocating a naw one 1£ not found,
“f
/t
"
¢ aggiist -
. private data structure contalning a key and & value.
* —
~/

struct bucket *find({);
static struct bucket *rfind():

gtatic struct entry {

struct agg_keay Key; /* key for thle entry ¢/
struct buckat buckat § /% values */
struct entry *naxt /* linked list «f
} "agglist = NULL, /* list of values */
rlist = NULL; / Iterate() position in aggllist »/
’t
v find -
° search for the key in the data structure agglist,
b 1f ona deesn't exlst, add it,
" return a pointer to the bucket in the entry
T e et g ——
wf’

struct bucket *

find (key)

struct agg_key *key;
{

hppendix D : 23

,t
* only check ig for potential mess up of key.
*f
1f {(aggiist i= NULL &£& key->type I= agglist->key.type)
{
fprintf {(stderr,find: Bad key type\n");

exit{l);
}
/"
* Actually starts up recursive lookup with global agglist
.7
raturn {rfindicagglist, kay)};
}
,‘
B e e e Ak e i e oy e e g A S s e g 0 e e R il e e s L U D s A P A e Y i
* rfind -
* Does real work, traverses agglist looking for match on key
L] ——— - .
=/

#define NEWENTRY (struct entry *)malloc{slzeof {(struct entry})

static struct bucket ¥

reind{aggllst, key)
struct antry *2agolist; /* aggregate bucket 1list, nevar NULL *
/
struct agg_key ‘*key; /* lookup key %/
{
s

* This searches a sorted linked list for a key

* and returns a pointer to the buckets for that key,
* The key may be numeric or character, and the entry
* may have to be created.

*/

int swW; /* 3 way decision variable */
reglster struct entry *ep; /* pointer to 1ist antry */
if { *agglist 1= RULL) /* Can gtill check */

sw = (key->typs == NUMERIC) 7 /* put In form of strcmp ¢/

key->u.nval - (*agolist)->key.u.aval

: stromp(key->u.cval, {(*agglist)->key.u,cval);
if (8w == 0) /* found it */

returni&{(*aggiist)->bucket}});

1f { sw > 0) /* keep looklng */

raeturn{rfind {{*agglist)->next, key}};
,i
« If sw < 0, we should insert
* the entry here, s0 just fall through.,
L)

aggrop

I * NULL 1s returned at end of list.

* Insert a new entry here * ——
* This was reached by eilther a null list */
* or the value is prlor to the current list value. struect pucket ¢
*/ iterate{)
1f [{ep = NEWENTRY) == NULL)} /* create a new entry */ {
{ struct bucket *bucket @
fprintf ({stderr, "rfind: malloc falled\n*); if (riist) /* Check for end of list *»/
exit {1); {

) bucket = &{rlist->bucket};
1f (key->type == NUMERIC) /* initialize key */ rilst = rlist->next; /% Sgt up for next call */
(’ return(bucket);

ep~->key.type « NUMERIC; }

ep->key.u.nval = key->u.nval; else
} return {NULL) 3 /* At end of 1list */
else /* character key */ } /* iterate */

ep->key.type = CHARACTER;

ep—>key,u.cval = (char *)}malloc{strlen(key->u.cval} +1);
st repy (ep->key.u.cval, key->u.cvall;

-} :

ap->bucket .sum = 03 /* initiallze buckets =/
ep->buckeat.ct = 0

ep~>bucket .min = MAXINT;

ep->bucket .max = 07

e
* Insert the new entry inte the list
v/
ep->next = *agglist; /* set up tall of list */
*aggllat = ep;. /% link into list */

return{&{{*agglist)~>bucket})s
} /% xfind */

/ *
[P .
* Init iterate -
* Resets rilst to agglist, so lterate() can start from
* beginning again.
- —— —
L
vold

init_1iterate()
{

rlist =« agglist;
b 7* init lterate */

,i

*

* fterate -

* Each time the routlne is called, return the next value in
M agglist. Iterate is reinitlalized by init_iterate.

Appendlx D . 24 aggrop

APPLYOP

README,

New varslon of applyop —-—- uses pty’s.
Filrst, do schaema handling, same am old one.

Parts of system:)
handle new schema - -
get deacriptors for talking t¢ co-routine
fork co-routine with pty as stdin,stdout, stderr
loop: .
read tuple
1% zelected,
prlect domains to string
write string to piy
raad from pty
append to tuple
write tuple

makefile

CFILES = main.c args.c modify_schema.c pty.c co_routine.c apply.c tty.c
OFILES = maln.o args.c modify_schema.o pty.c co_routine.c apply.o tty.o

LIB = ,./1ib fusr/include/monitorx

LIBFILES = ../lib/streamlo.o ../lib/tupie.o ../1ib/schema_idi.o \

~./1lib/readrecord.o ../llb/writaracord.o

CFLAGS = -DDEBUG -DP¥Y$S -g ~I../llb -I/usr/include/monitor

applyop: S(OFILES) $({LIBFILES})
cc -o applyop ${(CFLRGS) $(OFILES) 35(LIBFILES) \
/usr/softlab/1ib/1ibidl.a

lincs

depend;

lint -DDEBUG ~-I../lib ~Ifusr/include/monitor ${(CFILES)

egrep "~4lnclude” $(CFILES) | grep -v *<’ | sed ~a */<.*>/d" \

~a ‘Bf3f . 1*\#include(ILASAYPLAVA LA L 2V \1/*

~a *sf\.c/.0/" > /imp/dep
-for 1 in *awk *|print $$2}° /tmp/dep | sort | unig® ; \
do for 1 in . S(LIB) : \
“do 1F { ~f $51/5%1) : ©\
then acho "s,$%54,551/881,° & \
break ; \
| £ A
done ; \
done > /tmp/eedfile
sed -f /tmp/sedfile /tmp/dep > /tmp/dep2
sed ~& °/~\# Dependenciles/,$5 d* makefile » /tmp/makeflle
acho *# Dependenclea DON’T REMOVE THIS LINE®
| cat - /tmp/dep? >> /tmp/makefile
mv makefile makefile.old
cp /tmp/makafile makefile
-rm -f /tmp/dep /tmp/dep2 /tmp/aedfile /tmp/makefile

§ Dependencles DON*T REMOVE THIS LINE -

main.o:
main.os:
main.o:
args.o:d
argg.o:

rodify_schema.o:
modify schema.o:
modl fy schema.a:

../1lib/schema_idl.h

. /1lb/tuple.h

../lib/streamic.h

«.fUb/schema_idl.h

../1ibftuple.h

fusr/include/monitor/montypes.h
..flib/schema_idl.h
../11b/tupla.h

co_routine.os ../lib/schema_idi.h
co_routine,os ,,/lib/tuple.h
co_routine.o: ./tty.h

;pply.o:
apply.o:
apply.o:

tty.o:

Jusr/include/monitor/montypes.h
../lib/schema_idl.h
.«f1ib/tuple.h

Jtty.h

A

]
[
=]
I

I

/* main.c ~- main routine of applyop */

tinclude <stdio.h>

#finclude “schema_idl ,h* : . {

tinclude ~tuple.h* ’ int rel_sensor id = tup.relatlion->rel sensor_ id;
#include "streamio.h™ SEQrelation t_seq_rps F* loop tmps */
relation p; :
database schemaln, schemaout, modify schema()}: foreachinSEQrelation(proj_seq_rp, t_seq_rp, rp)
char *Toolname; if (rp->rel_senscr_id = rel! sensor id)
|
main{arge, argv} apply_coroutine (itup, cp, app_seq_ap):
int arge; , breai: ’
char *rargy; }
{ astr write(sp out,&tup); /* Always write a tuple */
char *3oo argvy © /* arg vector to co_routine */] . -
tuple tup; /* current tuple in stream =*/
SEQrelation pro]l seq_rp; J* affected relations "/ Fad
SEQattribute app seq ap: /* affected relaticns */ * We should check the status of the child process for c¢leanup
Mstream *sp_in, *sp out; * handle in co_routine stuff
*/
/i } /% main */
* Get schema from stdin
*/

sp_In = str_open{stdin};
schemalin = str_schemaread(sp_in);
Tooclname = targv;

args.c

Ll

* Process command line args to set up co_argv for coroutine,

* set up target structure for each target relation, set up

* new schema,

/ / process_args.c - process args usage*/

args{arge, argv, kco_argv, &proj seq rp, Lapp seq_ap}? tinclude <stdio.h>

schemaout = modify schema {schemain, pre} seq_xp, app_seq_ap}; finclude <ctype.h»

/* new output schema */ fincluda <strings.h>

sp out = str_open (stdout): tinclude “schema_id}.h"

sp out->schema = schemaout; #include "tuple.h®
extern database schemaln, schemaout; /* schemas from main.c */

7* extern char *Toolname; /* invoked name *f

* Set up communication and execution of co_routine

L7 1%
* ———

start_coroutine {co_argv)} * args - .
* Set flags and grab arguments from command line.

FA) * Exits with 1 upon error.) i

* Main precessing loop *——

* apply the coroutine to tuples with relatlons in pro)_seq rp */

t! .
args{arge, argv, prog argv, prol seq rp, app_seq_ap)

while { str_read{sp_ln,&tup) » 0) int arge; /* command llne arguments *f

Appendix D 26 applyop

char "rargv,

"eAnrog argvs /¢ argument wvector to program s
SEQrelation “proj_seq rp; /* input relations to be projectsd “/
SEQattribute capp seq_ap; /* output domalns to be appanded */
{
int 1,14, /* Array indices */
p~1, #* index for preg_argv, 0 ls prog_name */
op test = 03 /% Count of operands *
char ‘tolcase();
relation p: /* tmp variable */
SEQrelation t_smeq_Ips /% emp variable *f
attribute ap; /% akgribute holder for domain “f
#ifdef APPRELATION
. SEQattribute app_seq ap: /% appending attributes */
fendif APPRELATION
BEQUHE; /* hypass program name */
argc-—;

initlalizeSEQreiation{*proi_seq_xp);
tnitializeSEQattribute (*app seq apj;
*prog argv = {char **jualloc{argc*alzecf{char *});

Fo

* Read until we run out of arguments or until the end of
* the projected domalns, signalled by “=*

v/

"for {1 = 0; { < argo && stromp(targv,®=") I= 0; 1++, argvi+)
i
/n
* A null argvil} means the *univeral relatlon“,
* All options muzt ¢oms before output domains
v/
1£ (*»{*arguv+0) =m ¢? gg % {*argv+l)) /* test for option »/
{
fi
* Each Instance of "-p" requlres a following argument,
* with or without intervening spaces.
* Flag type options can be individually specified or
* all lumped together behind a single *-*.
* Right now, there i# only one option, but just in case.
L4
for(§ = 1; d{*apgv +) : J++)
i
1f (“{*axgv + J) == 'p’ }
i
’l
* Argument to be passed to prog. Check to see
® jf interwening space, and assign to next apot
* in prog argv. The calling routipe has the

Appendix D

27

responsibllity to make sure prog argv has
enough room. Can‘t use a switch here since
break wouldn t work, Additional options willl
*alse if° or change break to goto,

> * > =

*/
if (strlen{*arxgv) ==~ 2) /* in next argument
if { ++1 < argec) /° we atlill have an arg
(*prog_argv) [ptt] = *++arqv;

alse
ugage();
else /* follows w/out space
{*prog_argv) {pt+] = ¢argv + 2;
break; /* exit loop
I
slse
usage ()
} /* for § &/ -
) /> if 7
else /* melect operand

{
ft
* Thig section sets the opaerands depending on
* how many have been seen.
*/
awitch(op tesc++)
i ;

case 0: /* pathname of program
*{*prog_argv) = *argv; /v first element
break;)

case 1t /* relation

if (strocmp(*argv,”-*) == 0)

! relatlon new_rp; /* tmp for making seq.
l: All relations, so copy all of them,
f;;aachlnSEOrelatlon(znhemaln—>relatiunl,

{ t_meq _rp,rp)

’t

* A peparate relation and attribute meg
* iz needed for project and append

*/

new_rp = copyrelation{rp};
initiallizeSEQrelation{new rp->attributes);
. appendrearSEQrelation{*proj_seq_rp,new_rpl;
#1fdaf APPRELATION ’
hew_rp « copyrelation(rp);
InitializesEQrelation(new_rp->attributes};
appendrearSEQrelation(*app_seq_rp,new_rp);

*/
s/

o

f

o
s/
*/

*f

applyop

fendif APPRELATION

1

else If { (rp = getrelatlonbyname(schemain, *argv)}

#1fdef APPRELATION

#endif APPRELATION

removeSEQrelation (*app_seq_rp,rp):

1

ww NULL } }
{ ‘} /* switch &7
fprintf(stderr, "%g: Relatlion not in schema\n", } /% elsa *}
Toolname) : } /Y for %/
exit (1);
}
else * .
{ * Make sure that we have scomething to work on.
f* */

* This relation 1z the only one in seq if (op_test < 3} /* not enocugh args */

L usage {};
relation new_ rp; /* tmp for making Beq. */

Fid
new_rp = copyrelation(rp); * Finish up prog_argv
tnitfalizesEQrelation {(new_rp->attributes); w/
appendrearSEQrelation{*proj seq_rp,new_rp}; {*prog_argv) [p] = 0; /* terminates list */
¢ifdef APPRELATION Fid
new_rp = copyrelation{rp); * Gather up the domains to be appendad
initlalizeSEQrelation{new_rp->attributes)? * Note that there may not ba any.
appendrearSEQrelation{*app seq_rp,new rp); */
#endilf APPRELATION if {1 < arge) /* bypags "=~ -7
} . r
break; 1+4;
default: /* the projected domaina */ argvt+;
/* I
* Add the domain to every relation to be projected for (7 1 < arge ¢ 1++, argvi+)
*/ i
foreachinSEQrelation{*proj_seq_rp, t;aeq_rp, rp) /*
{ . * Set up the attributes for each domain specified.
Al . * This comes in the form: “name:type®. The length

* Only add the domain if it 1s in the relation, * attribute is determined from the type, while

* ptherwise purge the relation as invalid. * the position attribute is determined later.

* Use same actual attribute se that it s set R */

* when the tuple ls read.

Y char *name = *argv, /* domain’s name */
relation old rp; *d type; /* domain’s type */
attribute ap;

1f ((d_type = index{name,’:’)) == NULL }

old_rp = getrelationbysenscrlid{schemain, usage(}; o /* they forgot the type wf
rp->rel sensor 1d}; else

1f { (ap = getdomalnbyname{old rp,*argv}) *d type++ = ‘\Q0'; /* end name and polnt to type */
= NULL) ap = Nattribute; /* allocate a new domaln *y
appendrearSEQattribute{rp->attributes,ap}; ap—>attr_hame = {char *)GetMeap((d_type - name) };

else strepy (ap->attr_name,name) ;

{ ;
removeSEQrelation {*pro}_seq_rp, rp): /"

Appendix D 28

applyop

* Set up type and length attributes of domaln
./

if | -tre-pl'char-txino".d_typof =0}
{

(lnt)ap—>lttt_typc.Vtype"ptflnq - Ktype_ string;
ap->attr_length = =23 /* signifies minimum and variable 4/

I
else If (stromp(*boolean®,d type) == 0)
i
(int)ap-ratie_typa.Vtype_boolean =« Ktype boolaan;
ap->attr _length = 17 /* haa implications for alignment o/
\ . .
elze if (strcmp(®int“,d_type) == 0)
{
{inv) {ap->atty type.Vtyps integer) = Kiype_lnteger;
ap-»attr_length = sigsof {short);
]
elsa If (stremp{®double”,d _type) == 0 }
{
(int) {ap->attr_typs.Vtype_integer) = Ktype_integer;
ap->atty_length = sizeof(long);
]
else 1f { strompi®rational=,d type) == 0)
{
{int) {ap~->atiz_type.Vtype ratlional} = Ktype rational;
ap-rattr length = sizeof (Float): /e game as a float */f
)
else
{
fprintf {stderr, “4#: Invalid typa for output demaini\n®,
Toclname)
_exit (l);
H
appendrearSEQattribute{*app_seq_ap, ap}:
} /" for %/
#ifdef APPRELATION
‘fI
* Put appending sequences Ln each appending relation
L .
foreachinsEQrelation{*app_seq rp, t_seq_rp, rp)
rp->attributes = app seq_ap;
fendif APPRELATION
} /% process_args */

FA

. usage -
* prints usage error message and exits

Appendix D

29

*/
usage ()
{
fprintf (stderr, "Usage: %8 {-p} prog relation domaln [domain]
domaln;type [resultdomain:type]\n®, Toolname);
exit {1}z
} /* usage */

= rasult

,t
L]
* toltasa -
® return a string transfommed te all lowesr case
"
v/

gtatle char *
tolcase(string_p)
char *string_ps
i
char
char

*new = (char *)malloc(strlen(string p)+l};
*new_p = new;

while { *string p }
Snew _pi+ = tolower{*string p++):
*new_p = ‘\0°;
return {new) ;
} /* tolcase */

modify schema.g

/* modify schema.c - modify_schema */

#include <stdio.h>
#include "montypes.h®
finclude *schema_ldl.h*
f#include "tuple.h”

/i

& e

* modlfy schema -

" create 2 new schema by appending the attributes in app_seq_ap
- to each relation in pro_seq rp.

LA Return a copy of tha new achema,

]

applyop

*f

extern char *Toolnama; /* invoked name from command line
databage
modify schema({schema, pro_seq_rp, app_seq_ap}
database schema;
SEQrelation pro_seq_rp:
SEQattribute app seq_ap:
{
SEQrelation seq rp; /* loop temporary
relation this rp; /* loop temporary
database new_schema} /* schema to be created
,t
* Copy schema to new_schema and modify new schema,
*/
new_schema = Ndatabase;
new_schema->database name = schema->database_name;

initializeSEQrelatlon(neu_schema~>relations}:

/ﬁ

* Copy the sequence of relations

*/
fore

Appendix D

achinSEQrelation(schema->relations, seq rp, thls_rp)

/t
* If this _rp is in pro seq rp, use the new
* one instead,

*/
relation new_rpr /* rel, in pro_seq_rp
SEQrelation t_seq_rp; : /* loop tmp.

int rel_sensor_id = this rp->rel sensor ld;

foreachinskEQrelation(pro_seq_rp, t_seq_rp, new_rp)
{
1f { rel_sensor_id == new_rp->rel_sensor id)
break; /* success
else
new_rp =« NULL; /* to Indicate fatlure
}
if { new_rp ==~ NULL }
appendrearSEQrelation (new _schema->relations,this_rp):
alse
{

* Must get new relation,

* create a new seqguence of attributes from the old,
* append the attributes in app seq_ap to it, making
* sure that rel vlensensor i{s accurate.

v/

*/
*/
o/

*/
*/

v/
*/

0

SEQattribute t_seq ap;
attribute ap?
int pos;y

/* tmp variables
/* position in record

hew_rp = copyrelation(this rp):
appendrearSEQrelation (new_schema->relations,new_rpj;
retrievelastSEQattribute{new rp—>attributes,ap);
1f { !new_rp->rel_vlensensor)
pos = ap-Pattr pos + ap-»attr_length;
foreachinSEQattribute (app seq_ap. t_seq_ap, ap)
{
appendrearSEQattribute (new_rp->attributes,ap):
if (new rp->rel_vlensensor)
ap->attr pos = -=1;
alse
{-
ap->attr pos = pos;
pos += ap->attr_length;
if { (typeof(ap->atty_typs)) == Ktype stiing)
new _rp->rel vlensensor = TRUE;

./
*/

/* make varlable length */

§

} /* else - new relation sectlon */
} /* foreach - settlng up SEQrelation in new_schema */

retuzn (new_schema) ;

} /* modify schema %/

tty.h
/* ey h */
/% puthor: J. Menges, UNC
* Modified:
* 5. Duncan, UNC, 3/18/86: added tomments

b
#include <sgtty.

h>

tinclude <sys/ioctl.h>

typedef struct |

applyop

char *name;
int fd;
} BTYPORT;

Lypedaf struct {

PTYPORT master;
PTYPOAT slave;
1 BTY;

typedef struct {
struct sgttyb sgttyb;
struct tchars tchara;
int ldisc;
struct ltchars itchars;
int lmask;

| TTYATTR;

co_routine.c

/% to_routine.c - start_coroutine, channel write, channel_read,
® channel_arror, channel_sof
L¥4

finclude <stdlo.h>
#include <signal.h>
#include "schema_idl.h*
finclude “tuple.h*
$ifdef PTYS

finclude “tty.h"

fendif PTYS

/
These routines are used to start and communicate with a co-routine.
Since the implementaclon is iikely to be system dependent, 1t is
isolated in this module, The main routlne doesn‘t know how the
reutine ls accessed, only that it 1s.

This particular implementation uses 4.2 BSD ptys to run the co-routine.
The requlrement for any roucine is that it wlll not buffer I/0 on

more than a line basis. The co-routine must be able to produce a line
for every line given 1t before processing the next input line.

= B » B N B R 5 B

*
Y

Appendix D 31

/!
* Global communication Structures:
./

#define RTNBUFSIZE 1024 /* slze of 10 buffer Lr
f#define LINEMAX 512 /* permitted length of line 2/
fdefine TO 1
#define FROM O
statlc FILE *channelf2]; /* comm channal to coroutine */
static char buffer{RTNBUFSIZE]}; /* 10 buffar for resuitc e/
extern char *Toolnamaj /* name of tool L7
/l

* gtart_coroutine -

- fork and exac a coroutine.

t 1

After the fork, dup stdin and stdout to be the ends of the pty.

*/

void
start_coroutine{argv)
char AATQV

i
#ifdef PTYS
int childy

PTY "pLy;

void {*sigchld_manage} {};
BTY *gatpty();

[t

/* hold the pid of the child */

/* pseudo terminal

af

/* handles dead child */

* Gat a pseudo terminal to run the coroutine on.

./

1f { (pty = getpty(}) == NULL)

exit{l};

1f (ttycopyattr (0, pty->alave.fd) < 0}

_exle(1);

if (ttysetecho (pty->grlave.fd} < 0)

_axit (i)

1f (ttysetcbreak (pty->slave,fd) < 0}

_exit{l);

if { {(child=ptyexacv(*argv, argv, pty, 07)) < 0}

,i

* Error, abort the process.

s/

fprint£{stderr,"vs: start_coroutine - fork failed"

_exic(1};

+ Toolname};

applyop

* Parent - do other half of ptys
*7
1t {{channel[0]) = fdopen{pty->slave.fd, “w"}} == NULL)
_exit(l);
if {{channelfl] = fdopen (pty->master.fd, “r*)) == NULL)
exlt{l);
slqﬁ;IISIGCHLD. sigchld manage);
fendirf
#1fdef PRWOPEN
char
vold
/n
* Convert argv into form that prwopen can handle.
Ly
signal {SIGCHLD, slgchld_manage};
for { ; *argv; argvit)
{

argiine{LINEMAX): /* holds argument line to coroutine */
{(*sigchld manage) {);/* signal handler for child process */

strcat (argline, *argv);
strcat {argline,” "); /* separate the arguments L7
}
ft
¢ Open channel to coroutine.
*/
1f { prwopen(argline,channel) < 0)
{
fprintf {stderr,
"ssistart_coroutine - prwopen falled for %s\n",
Tog)lname,argline} ;
_exit(1):
}
fendif
} /* start_coroutine */

1] - —
* channel_write -

* write a llne to the co_routine on the pty

* The line must be extracted from the tuple according to the
* attributes in rp. '

int
channel write (tp, rp)
tuple *tp;
relation rp;
{
int status;
tuple tup;

/* status of call */
/* rebullds tp */

/i
* Create a new tuple uslng the recoerd from tp and the relation

Appendix D

3z

* rp. Use tupleprint’ to write this to the channel,
74

tup.record = tp->record;

tup.relation = rp;

status = tupleprint {channel [TO}, &tup,DONTPRINTLABELS)

i1f (status < 0)

/* make new tuple using rp */

fprintf (stderr,
*ss:channel_write - couldn’t write to coroutinein®,
Toolname) ;
_exit(l);
!
fflush{channel (TQ]);
return{status);

/* make sure lt gets there */

} /* channel write */

I*

Noa

* channel_read -

*
"
*

read a line from the co_routine on the pty.
Convert the line to the format in rp and put it in flelds,

*/
int

channel_read {results)

char
[

**rasults;

char *bp = buffer; /* read into this buffer "/
fgets(bp, RTNBUFSIZE, channel[FROM});
1f { feof{channel [FROM}} }
{
“results = NULL:
return (0) ;
}
if ({ ferrori{channel [FROM]))

fprintf{stderr,“%s:*, Toolname):

/* preface to parror */
perror (“channel_read®”};
_exit{l);
} .
if { buffer(strlen(buffer} - 1] 1= *\n" }
{ .
/%
* If bp doesn’t end 1n newline, discard data untll it does,
* This has the effect that all of a given tuple’s append
* domains get eaten up, Put out an error msg too.
* Callling routine will figure out that it doesn’t have
* enough values,
[]

Alternative is to try to get enough space to read line.

applyop

char err_bp|RTNBUFSI2E];

fprintf (stdarr,“#s:channel read - ‘results toa large.\n",

Toolhame};

fprintf (scdary,“4z:data: vd, ¥s\n", Toolname, strlen {buffer},

buffer);

fgets (err_bp, RTNBUFSIZE, channel [FROM)):

while { Ifeof{channel{FROM}j }
1

" - 14f (err_bp[strlen{buffer) - 1 } == *\n‘ }

break;

fgets (eEr_bp, RTNBUFSIZE, channel [FROM]):

i
}
*results = buffer;
raturn (strleni(buffer)};

} /*channel_read */

e

* The followlng are routines to allow an external module to

* -look at the coroutine output channel.
*f

,t

L -

* ¢hannel_exror -

. check for an ID erroz on the output channel
o o s

LF

int

channel_axror ()
i

return{ferror {channel [FROM})) s
]

% channei_eof =
. check for eaof on tha output channel

L] -

LF
int
channel_eof ()

return(feof(channel[Pmiﬂ}l;
]

YL

Appendix D

33

T L e gt A 4 A e P A b s e ey L P e o e U A e o e B o e e B8

* sigchld manage -

- handle anything funny from child, like it dylng.

w

LT
statlic void
slgchld_manage ()
{
fprint? {stdexrr, *%s:Coroutine status
_exic{};

has changed\n”, Toolname);

/* apply.c - apply coroutine */

#include <stdio,h>
#include <ctype.h>
tinclude "montypes.h”
tinclude “schema_idi.h®
tinclude "tuple.h*”

VAl

X o——
* apply coroutine -

* pass domains to coroutine

* append the gutput of the coroutine

to the tuple

| .

*/

int dona = FALSE;

extern char *Toolname;

int max_intsi] = {
0,
{Oxff~1},
Ox€£LE-1),
(OnfefffE-1),
{OXLFECEREE~T)
H

void
apply_coroutine{tp, rp, app_seg_ap)
tuple bl q+H

/* processing done flag af

/* name of tool “/

/* values for glven length ./

/* affected tuple L7

applyop

relation
SEQattri
{

p; /* relation that changes
bute app_seq_ap? /* new domains
SEQattribute t_seq aps /* loop variabla
attribute ap; /* temp. varlable
int i s, /* index of position
: allgn = TRUE, /* allignment of domain

i; /* integer result value
float £ /* ratiopal result value
char *results, /* string of results domains

record = tp->record, / record from tp

last, / last allawed position

pos, / pdisition in record

reg = rasplts; / position in results
vold channel _write(};

if { done } return;
channe}_write(tp,rp};

!t
Fid

don’t append anymore
gend to the coroutine
/t
* Only have to read from coroutine if it writes something.
*/

{f { emptySEQattribute{app seq ap} }

return; /* nothing to append
!I
* We have domains teo append.
L7

1f { channel_read{tresults) == 0 }
{

done =~ TRUE;

return; /* all done here

]

#1fdef DEBUG

fprintf (stdexrr, “%a8",results);

fendlf DEBUG

/t

* Append each attribute to tuple

* ensure that there is room in the tuple,
* ensure that all attributes are present
*/

ap = getdomainbyname (tp~>relation,”cmdlength®};

*/
L¥

*/
/
*/
*/
*/
*/
~/
*/
*/
*/
*f

“/
*/

*/

*/

/* find length of tuple */

1_pos = record[ap->attr_pos] * 2; /* convert to chars
pos = & (record[l pos]); /* place to append
last = g{record((sizeof {mon_putevent) - 1)]):

Appendix D

*/
*/

34

cordin®,

/* end of tuple L¥
foreachinsEQattribute (app seq_ap, t_seq ap, ap}
i
fﬁ
* gcan In the value of each domaln into
* the record at pos
*f
while { *res && isspace(*res)) res++;
if { ap->attr length i= 1} .
pos += {pos - record)%2; /* align fleld ./

switch(typeof (ap->attr_type))

{

case

}

Ktype string:

while { *res &&¢ !isspace({*res) && pos < last }
{ o Lok

*{pogtt) = *(res++);
align = lalign;

FAl

* Have to end string on allgnment,'alnce last
¥ 1as unalignad, we don’t have to check it
*f

*{pos+t) = *\0°;
1f (lalign”) *{pos+t) = “\O’;
break;

case Ktype_}nﬁeqar:
/t

* Nead a different approach for each length,
* with sanity checks for them,
./

1f { pos + ap->attr_length > last)

}

fprint f {stderr,
“Ss:apply coroutine - domain %s extends past end of re

Toolname, ap->attr_name);

_exit{l}; /% can't continue */

If { {1 = atol{res}) > max_ints[ap->attr_length])

’t

* Print msg but continue

*/

forintf {stderr,
“$s:iapply coroutine - value truncated, ¥s:%d\n",
Teolname, ap~»attr_name, 1}:

applyop

#ifdef DEBUG
fprintf{stdarr,"sd\n";1);
fendlf DEBUG
while [isspace{*res)) rest++;
whlle { isdigit{*res)) res++;
switch {ap->attx_length)
{

cape 1:
* .
* Note that this is already aligned
/
*{unsignad char *)pos = 1;
post¥;
break;
case 2:
% {ghort *jpos = i;
pos = 27
break;
case 4:
*{long *Ipos = i;
pos = 4;
break:
default;
/ »
* Critical error, since length 1s not definedi
«f
tprintf (stdexry,
*%a:apply_coroutine - upkpown length in schema\n®,
Toclnase) ;
_exit{l);

/* ypdate position oy

/% update position */

/* update poaition */

]
break;

case Ktype ratlonal:
if { pos + ap->attr_length > last }
|

fprincf {stderr,
“Satapply coroutine - domailn %3 extends past end of re
cord\n®,
Toolname, ap->atLf hame) 7
_exit (1); /* can't continue */
}
1f { smcanf{res,*%f*,&f) 1= 1}
{ .
fprintf (stderr,
“ss:apply_coroutine - couldn’t read value for %s\n®,
* Toolname, ap->attf nhamej;
_axit (1); /* can*t continue */
]
*{float *}pos = f;
pos += ap~>attr length; /% update position */
Appendix D

35

cord\n®,

break}

cage Ktype boolean:
if { pos + ap~>attr_length > last)

fprintf (stderr,
“s5:apply coroutine - domain §s extends past end of re

Toolname, ap->attr_name);

_axit(1); /% can’t continue */
1f { sscanf{res,"si=,&l)

{

[= 1}

Iprintf (stderr,
“$s:apply_coroutine - couldn’t read value for %s\n*,
Toolname, ap~r*attr pamaj;
_exie (1}; - /* can’t continue */
I
* {unsigned char *jpos = (i j= 0};
poutt;
break;

/* update position */

default:
fprintf (stderr,
“Ss:apply_coroutine -~ invalid type, %s:%d\n®,
Toolname, ap->atty_nama, typeof{ap->attr_type)};

_exit{1); /* can’t continua */
)} /* switch on typeof &/
} /* foreach */
raturn; : /% normal return w/

} /* apply co routine ¢/

/* pty.c ~ prwopen, prwclose */

,t

* NAME

. prwopan —~ modified popen(3) to work with pty’s inatead of
bl plpes, and also provide both read and write

. capabilities to the child process,

"

* SYNOPSIS

-

#includa <stdlo.h>

applyop

int prwopen{ cmd, streams)
char *omd:
FILE streams[2};

AUTHOR (actually, mergerl)
John Iocannidls, icannldisf@ca.columbla.edu
Chris Torek mod made by Steve Duncan

SEE ALSO
popen(3), after which this call is modelled.

UNIX SOURCES USED
popen{l), script (1)

> * % F B ¥ S B ¥ S SRR

*/

#include <stdio.h>
#include <sys/ioctl,h>
finclude <sys/types.h>
tinclude <sys/stat.h>
#include <signal.h>
tinclude <sgtty.h>

static {nt plp_pid(20): .

int

prwopen{ cmd, streams)
char *emd:

FILE *streams[}:

{

int pty, /* file descriptor for pty */
pid, /* pid of cmd */
3: /* index into char table */

struct stat stb;

char c;

static char *line = “/dev/ptyp0O%;

for(¢ = *p°; ; ctt+ } /* Torek Mod: removes condition */
i .
/*
~* Check pty’s from ptycO
* Invariant: no avallable pty’s before ‘line’
* Terminates when no more ptys to check
*/
line(strlen(*/dev/pty*}} = c}
line[strlen{"/dev/ptyp*)ji = "0";
1f{ stat(line, &sth) < 0)
break; /* loop terminator *f
for{ J = 0: J < 16; J++)
{
/ *

Appendix D . . ‘ 36

opened:

* Get particular pty
* / :

linefsatrlen(*/dev/ptyp”}] = =0123456789abcdet™[}};
1£{ { pty = open{ line, 2 }j > 0)
goto opened;
}
1

return{ -1); /* no ptys avallable w/
Ii

* Have found a pty

*/

gwiteh{ pid = fork{})
{
case -1:

return(-1);

case 03
t .
int ¢, /* descriptor of old tty */
tLy; /* descriptor of new tty *+/
struct sgttyb bf;
t=open{ "/dev/tty™, 2 });
If{t >= 0) /* check for valid w/
{
loctl{ t, TIOCNOTTY, (char *}0 };
close(t }; /* discard parent tty -/
}
ll-
* Gat eguivalent tty for other half of davice
o
line[strlen{"/dev/")] = 't’;
tty = opéen{ line, 2 };
close{ pty); /% only used by parent
t/ ‘

loctl{ tty, TIOCGETP, &bf }:

bf.sqg_flags &= ~ECHO;

loctl{ tty, TIOCSETP, sbf };)

dup2(tty, 0 }: /% reget std{in,out,err} */
dupZ{ tty, 1 };

dup2 { tty, 2)}

close{ tty): /* all done with this now */

execl { "/bin/sh*, "gh*, *-c*, cmd, O };
_exle(l);-

applyop

pip pidipty)=pid: /% 50 we know which one
1£{ (streams|[0} =« fdopem{-pty, “r* }¥ =« RULL ||
(streams[l] = fdopen{ pty, "w® }) == NULL)
{ ‘
return{ -1);

' .
setbuf (streamsf0], NUOLL };
setbuf { streams[l}, NOLL }: #* get rid of block alze
raturn{ pid) '

}

prwclogse { streams j
FILE *streams||;

{ .
registar f, r, (*hstat){j, (*istat) (), (*qstat)();
int status;

f = fileno(streams[l]);

fclose (streams[0]);

fclose (streams[1}};

istat = signal (SIGINT, $IG_IGN};

qstat ~ signal (SIGOUET, $IG_IGN);

hstat = signal {SIGHUP, SIG IGN);

while{(r = walt {éstatus)} I= plp pld(f] && ¢ |= -1}

r
if{r == ~1)

status = =1;
signal (SIGINT, istatj)s
signal (SIGQUIT, qstat);:
signal (SIGHUP, hetat)s
return(stacusj;

/% get rid of block size

*/

7
*/

/* tty.c - getptyname, ptyopen, getpty, ttygetartr, ttysetattr,
% ttycopyatty, ttysetsecho, ttysetcbreak, ptyexecv
L¥4

f* Muthor: J, Menges, UNC */

/* Modifled:
hd $. Duncan, UNC, 3/18/86: added commenis

Appendix D

kY}

L7

#include <sys/types.h>
ginclude <sys/stat.h>

#include <sys/ioctl.h>

#include <stdio.h>
#flnclude “tty.h*

fdefine PTYTEMPLATE " /dav/ptyxx*
#define PTYLETTER pt
ddefine PTYDIGITS *012345678%abedef”

#dafine error_ pep {string) {perror{string}; return{(NULL);}
#define error_prp{string}\
{fprint fiatderr, “$s8\n", string); return(NULL);}
tdefine error pen{string) [perror{string); retura{-1);}
f#define error_prn(string) {fprintf(stderr, *%s\n*, string}; return{-i):}

,i
L
* getptyname -

* return the name of a pty
L]
*/

static char *

getptynama{l)

{

static char *template = PTYTEMPLATE;

template(strlen{PTYTEMPLATE} - 2) = PTYLETTER + § / strlen{PTYDIGITS):
template[strlen (PTYTEMPLATE) - 1] = PTYDIGITS[I & strlen(PTYDIGITS)I:
return template; :

,t
i]
* ptyopen -

* raturn a descriptor to a pty

[

*/
stacic int
ptyopen {pt yname}
char *ptyname;

st.ruct stat status;

return {stat {ptyname, g¢status) < 0) ? -2 : cpen{ptynams, 2);

applyop

" ttygetattr{fd)

* - int fdy
* getpty - {
> return a pointer to a PTY struct : TTYATTR *ttyattrp;
"
LF : ttyattrp = {TTYATTR *} malloc(slzeof {TTYATTR));
PTY * 1f {ttyattrp ~»= 0} error pep(“ttygetattr: loctl®);
getpty ()
1 tf (ioctl {fd, TIOCGETP, {char *) &({ttyattrp->sgttybl} < 0)
int 1; error_pep(™ttygetattr: loctl®);
char *ptyname; if (loctl {fd, TIOCGETC, {(char *) &(ttyattrp->tchars)) < 0)
BTY *pty: error_pep (*ttygetattr: foctl*});

1f (foctl(fd, TIOCGETD, (char *} & (ttyattrp->ldisc)) < Q)
pty = {PTY *) malloc(sizeof (PTY)); - error pep{*ttygetattr; ioctl");
if (pty == NULL) error_pep{"getpty: malloc"); 1f (foctl{fd, TIOCGLTC, (char *) &{ttyattrp->ltchars}) < 0}

) error_pep{*ttygetattr: loctl®); :
for (1 = 0; ;7 1++4) |{ 1f {loctl {fd, TIOCLGET, {char *} &{ttyattrp->lmask)) < 0)

ptyname = getptyname{{);
pty->master.fd = ptyopen (ptynama};

errcr_pep ("ttygetattr: loctl®);

If {pty->master.fd == -2} error_prp(“getpty: no more ptys\n"); return ttyattrp;
1f {pty->master.fd >« 0) { 1
pty->master.name = {Char *)} malloc{strlen (PTYTEMPLATE) + 1);
if (pty->master.name == NULL) exror pep("getpty: malloc®”); i*
strepy {pty->master.name, ptyname); Py —
. * ttysetattr -~
pty->slave.name = {char *) malloc{strlen(PTYTEMPLATE) + 1); d set the attributes of a tty
{f (pty->slave.name == NULL) error_pep(“getpty: malloc®); *
strcpy (pty->slave.name, ptyname); tf
pty->slave,name[scrlen{PTYTEMPLATE) - 5] = "t*; int
pty->glave.fd «~ open{pty->slave.name, 2}; ttysetattr (fd, ttyattrp)
1f (pty-»>slave.fd < 0) { int fd;

free (pty~>master.name)?
pty->master.name = NULL;
close (pty->master, fd);
free(pty->slave.name);
pty~»slave.name ~ NULL;
)
else break;

return pty;

- —

* ttygetattr -
* return the attributes of a tty

*/
TTYATTR *

Appendix D

TTYATTR *ttyattrp;

{
tnt re;

1f {locti(fd, TIOCSETP, {char *) &{ttyattrp->sgttyb)) < 0)

error_pen(*ttygetattr: loctl®):

if {loctl({fd, TICCSETC, {char *) & (ttyattrp->tchars}) < 0}

error_pen{“ttygetattr: loctl®); .

if (ioctl (fd, TIOCSETD, {char *) &{ttyattrp->ldisc)) < 0)

error_pen(“ttygetattrs lectl®);

1f (loctl({fd, TIOCSLTC, (char *} & (ttyattrp->ltchars)} < 0}

error_pen(*ttygetattr: loctl™);:

{f {(loctlifd, TIOCLSET, {char *}) & (ttyattrp«>lmask}) < 0}

error_pen(*ttygetattr: ioctl®};

return 0;

/*

L] ——— " ——— - -

applyop

“ ttycopyattr -

. copy the attributes of a tLy
L3

ef
int
ttycopyatcr {fdfrom, fdto)
int fdfrom, fdto;
i d
TTYATTR *ttyattrp;
int re;

ttyattrp = ttygetattr{fdfrom);

1f (ctyactrp == NULL} return NULL:
e = ttysetater (fdto, CCyattep):
frae(ttyattrp);

raturn {re < 0} ? -1 ¢ O¢

* ttysetecho -~

[set the echo on a tLy
W

./
int
ttysetecho (fd)
int fd;
{
struct sgttyb sgttyb;

if (foctl(fd, TIOCGETP, fchar *) &sgttyb) < 0)
arror_pen{“ttysetechos loctl®};

EQtiyb.s8g_flags &= ~ECHO;

if (loctl(fd, TIOCSETP, {char *) gsgttyb) < 0)
erxor_pen (“ttyseteche: foctiv);

It

u —_————

* tiysetcbreak -
* gat CBREAK mode on & bty

&/
int
ttysetchreak (fd)
int fd;
{
struct sgttyb sgttyb;

1f (foctl(fd, TYOCGETE, (char *) &sgttyb) < 0)
error_pen{“ttysetcbreak: loctlv);

Appendix D

agttyb.sg flags |- CBREAK;
if {foctl (Fd, TIOCSETP, {(char *} &sqgttyb) < 0}
arror_pen {“ttysetcbreak: loctl*);
]

,n

" - ———
* ptyexecy -

. exacute a program on a PTY

L ~—— -

*/

int

ptyexecv {nama, argv, pLy. [ds}
char *name;
char *argv[]:
PTY *pty;
int fda; ”
I

int child;

int fd;

1f {((child = viork(}} < 0) arror_pen(“ptyexec: vfork"):

if (child == 0} {
close {pty->master.fd);
for (fd = O; fds; fd++, fds >>= 1)
if {fds & 01)

if (dup2?(pty->slave.fd, td) < 0) error_pen(“ptyexec: dup2“);

close{pty->plavae.fd)}
execv{name, argv);
perror ("ptyaxecv: execv");
_exit {1}
}
alge { .
close(pty-»slave, fd)
raturn {child} s

s

applyop

BLINDPRINT

makefile

MONDEF « MONITOR
MONINCLUDE = monitor

DEBUG = -DMONDEBUG ~-DDEBUG
CFLAGS = ~D$ ({MONDEF) -Usun

blindprint: biindprlnt.o mon) ib
cc -0 blindprint blindprint.c monlib.ar

blindprint.o: blindprint.c ../S (MONINCLUDE) /mondefs.h
cc =c blindprint.e

monlib: readrecord.c dumprecord.o printevents.o
ar ru monlib.ar readrecord.o dumprecord.o printevents.c
ranlib monlip.ar

readrecord.o: readrecord.c ../5(MONINCLUDE} /montypes.h
¢¢ -¢ readrecord.c

printevents.o: printevents.c ,./$ (MONINCLUDE)/mondefs.h \
.- /% (MONINCLUDE) /montypes.h
ce =~¢ printevents.c

dumprecord.o! dumprecord.c ../$ (MONINCLUDE) /montypes.h
ce =-c¢ dumprecord.e

blindprint.c

/% blindprint.c - main */

/* monitor project */

/:III!IIIIIIIIfIIfIIIIIIIlIIflIII RN RN N RN NN N AR
f

project: Monltor project under Richard Snodgras at UNC

prograrmey : Stephen Duncan, 3/6/84

Biind print of genscr records. Format of each record taken
from the sensor descripter file with each int field in the
descripter being a short in €, and each double int in the
descriptar file belng an int in C. The length fleld present
in the second byte of each record is used to determine how
much to read from the file.

Input; stdin - sensor records from the accountant
or files named on command line

B o . —— e e —— —— i —— i —— T — - ——

|
|
|
i
|
|
1
i
|
|
|
|
|
|
|
without filtering t
I
|
I
|
i
|
1
b
|
|
|
!
*

output: stdout - ascll of fields in sensor record,
stderr -
truncated sengor message
invalid sensor id
Moduleg: main
External modules: <sya/montypes.h>,
readrecord.c
printevents.c
dumpevents.c
Maintenance:
CEEHT R TR R T e A P R R LR e LR LN
#include <stdio.h>
tinclude <monitor/monops.h>
#include <mopitor/montypes.h>
i~
" -
* reads sensor record and
* prints ascii of each record, one per line.
* d
*/
maln {arge, argv}
int arge;

char * argwv(]:
f
mon_putevent record; /* event record */
int rstatus, /% status of calls */
i; /* index for argv */
FILE * fp, /* for input */
* fopen{),
* fclose();

If (argc == 1}

while ([(rstatug = readrecord (stdin, &record)) i= 0}
I.
* Note that the else condition (bad read)
* just reads the next record
«/
1t (rstatys > 0)
switch {(recoxd.cmd.type)
{
casa MOROP PUTEVENT INT:
princint {atdout,irecord});
breaks

case MONOP_ PUTEVENT EXT: .
printext (scdout,&record);

break;
default:
fﬁ
* This 1s probably just an error record
LY .
fprintf (stderr,
"$s: Bad command: %d at disp Vd 1n stdin\n®,
argv[0), record,cmd.type, ftell(stdin)};
dumprecord {stderr, srecord)}
}
elpe /* an error */

fprint £, (stderr, “88: Read error for stdin at sdin-,
argv|0j, argvil}, ftell{stdin)});
i
else
for §1 = 1; 1 < argey 1++)
{
if ({fp = fopen f{argvii}, "r*)} == NULL)
{
fprintf (stderr, "ts: Can’'t open %s\n", argv[0j, argv([i]};
exit (1};
}
alse
while ((rstatus = readracord (fp, &record)} =)
i
’ L]
* Note that the else condlirion (bad read)
* just reads the next record
s
1f (rstatus > 0)
switch (record.cmd.type}
| I
case MONOP_PUTEVENT_INT:
printint (stdout, srecord};
break;

Appendix D

cage MONOP_PUTEVENT_EXT:
printext {stdout,&record);
break;

default:
fprintf (stderr,
“s5: Bad command: &d at disp %d in %a3\n%,
argv([0]), record.cmd.type,
ftellifp), argvil]):
. dumpracord {setderr, &record);
}
olse /* an error */
fprintf {stderr, "%s: Read error for file &a at %d\n",
argv([0], argvii], frellifp}):
}

fclose {fp);:

readrecord.¢

/* readrecord.c ~ readrecord */

finclude <stdio.h>
tinclude <monltor/montypes.h>
tdeflne FINEDLEN sizecf (struct mon_cmd) 42

0

/t

L]
*
L
.

L

readrecord
-~ reads an event record from a fils pointer into a putevent struct
~ put$ event record into structure polnted to by recd

- returns the length of the record or -1 on an jo error.

readrecord {fp, recd)

FILE

ifp;

mon_putevent *recd;

41

tnt stat;
int varlen;

/* for ic calls */
/% length of record past omd */

blindprint

short *record=(short *)recd; /* a little short hand */
o

* Find length of record

*/

1f [(stat = fread (record, slreof(short)}, FIXEDLEN, fp)
} 1= FIXEDLEN
)
/* all done %/

If (feof(fp)) return {0};

else return{-1}); /* some error */
I*
* Determine length in shorts remaining, (note recde=record)
*/

varlen = {int)recd->cmd.length - FINEDLEN;

I+
* Get remainder of record
*/

if ({stat = fread ({record + FIXEDLEN),
silzeof (short), varlen,
} t= wvarlen)
return (-1);

o)

return {(recd->cmd.length)s

/* didn’t read whole record */

/* return length in short ints */

printevents.c

/* printevents.c - printint printext */

tinclude <stdio.h>
finclude <monitor/montypes.h>

/I'

L)

* printint
* print internal event recds

b

Appendix D

42

printint (fp, recd)
FILE * fp;
reglster mon putevent * recd:
t

int Index=0;
switch(recd->eventnumber)

{

case 1:

fprintf {fp, “command = kernel\tlength = 46d\t~,

recd->cmd.length) 2
{fp, " “aventname = NameStart\t");
{fp, "performer ~ A6d\tobject = %d, dd\t=,
recd->performear,
{recd->objact)>>16,
{recd->object) §OXLfef) ;
{fp, “initlator = séd\ttimestamp = %1Qu\n*,
recd->intitiator,
recd->t imestamp) ;

fprintf
fprintf

fprintf

breaks:
case 2t
fprintf (fp., “command = kernel\tlength = t6d\t*,
: racd->cmd.length);
fprintf {fp, “eventname = NextComponent\t“);
fpecintf {fp, “performer = tvéd\tobiact = %d, %d\t",
recd->performer,
trecd->object)>>16,
{recd->object) OXfLEL);
fprintf {fp. “initlator = S6d\ttimestamp = $10u\t™,
recd->initlator,
recd->timestamp} ;
fprintf {fp, "fllename = %s\n",
recd->fields};
break;
case 3:
foprintf (fp, “command « kernelitlength = %6d\t~,
. recd->cmd. langth);
fprintf (fp, "eventname = INodeCreate\t®);
forintf {fp, *performer = $6d\tobject = %d, ¥d\t",
recd->performer,
{recd~>object)»>16,
{recd->oblect) §OXETLL)
fprintf (fp, “initiator =~ %éd\ttimestamp ~ %10u\n®,
racd->initlator,
recd~>timestamp} ;
break;
case 5;
fprintf (fp, “command = kernel\tlength = s6d\t*,

blindprint

Appendix D

case 6:

cage 7:

case 8;

fprint§
fprintf

fprintf
fprint £
braak;

fprintf

fprinct
tprincf

fprintg
fprintf
bf.aks

fprintf

fprintf
foprintf

fprintf
break;
fprintf

fprinkf
fprintg

fprintf

recd->cmd, length) ;

{fp, “aventname = OpenSucessful\b®}:

{fp, “performer = ¥6d\tobject =~ %d, ¥d\t=,
recéd->pexformer,

{recd->object}>>16,

{recd->objact) ¢Oxf{1f);

{fp, “injtiator = %6d\ttimestamp = llOu\t"
racd=->initiator,

rocd->timestamp) 7

{fp, "mode = s6d\tinitalze = %10d\n"~,
racd->fields(0],

#{int *) {recd->fields +1)};

ifp, “command = kernel\tlangth = %6d\t",
racd~>cmd. length) ;

{fp, “eventnama = FllaClose\t");

{fp, “performer = W&d\tobject = %d,td\t¥,
recd->performer, :

{recd->objact) >>16,

{raecd=->object) sOxLffC1);

ifp., "inltlator = ¥6d\ttimestamp = $10u\t™,

recd->initiator,
recd->timastamp} ; .

{fp, *finalslze = §10d\n",
s {int @} (recd->flelds #+0}};

{fp, "command = kernel\tlength = S6d\t",
racd=->cmd, langch) ;

{fp, “eventname = INodeDelete\t“),

{fp, “performer = §6d\tobjact = %d, 4d\t",
recd->per former,

lracd->oblact)>»>16,

{racd->object) sOxXILff);

(fp, "initlator = V6d\ttimestamp = N1l0u\n®,

recd->1nltiator,
recd->t imeatamp) ;

{fp, “command «~ kernel\tlength = %&d\i",
recd->cmd. length) &

{fp, "eventname = ReadSensor\¢™};

ifp, "performer = %6d\tobject = %d, ¥d\t™,
recd->performer,

irecd-»>object)}>>16,
{recd-r>object) s xiffr);

{fp, "initiacor ~ ¥6d\ttimestamp = $10ui\t*,

43

recd->initiator,
recd->t {mestamp};

forintf (fp, "filepos = %10d\tactualcount = %6d\n*,
*{int *) {recd->fields +0),
recd->fialdsi2)};

break;

cage 9:

fprintf (fp, "command = kernal\tlength = %&d\t*",
recd->cmd,Yengthy ;

fprintf (fp, "eventname = WriteSensor\t“);

fprintf {fp, “performer = A6d\tohbject = ¥d, %d\t¥,
recd->performer,
{racd->objact) »>16,
{recd->object) sOXfLLL);

fprintf {(fp, "initlator = V6d\ttimestamp = $10u\t*,
recd->initiator,
recd->t imestamp) ;

fprintf (fp, *fllepos = V10d\tactualcount = %&d4\n",
*{int *} (recd->fields +0j,
recd->fielda[2]);

break;

default:
fprintf (stderr,
“printevent: No internal eventnumber 45d\n®,
recd->eventnumber) ;
dumprecord (stderr, recd);

g
L]
* printext
* print external event recds
L]
./

printext {fp, racd)
FILE ¢ fps
reqister mon putevent * racd;
{

int index=0;

swit ch {recd->eventnumber)
i
case 0: .
fprintf {fp, "command = external\tlength = ¥6d\t*~,
recd->cmd, length};
fprintf (fp, “eventname = AcctHeader\t®);
fprintf (fp, "performer = 46d\tobject = 10%d\t~,

blindprint

Appendix D

case 1:

case 2:

recd->performer,
‘ racd~>object);]
fprintf (fp, "inltiator ~ %6d\ttimestamp = #10u\t*,
recd->initiator,
recd->timestamp}
fprintf {fp, “acct date = 10%d\t",
*{long *} ({recd->flelds + index});
index 4= 2;
fprintf (fp, "kerne) date = 10%d\t™,
*{long *) {recd->flelds + index));
Index += 2;
fprintt (fp, *hostname = %s\t",
{char *) {recd->fields + index));
index += {strlen((char *}{recd->flelds+index))+2)>>1;
fprintf {fp, "init text = %s\n%,
{char *) (recd->flelds + index)};
break;

fprintf (fp, "command = external\tlength = &6d\t=,
recd->cmd, 1ength);
fprintf {(fp, "eventname = UserXamplSensor\t™):
fprintf {(fp, "performer = AY6d\tobject = 10%d\t*,
recd->performer,
recd~->object);
fprintf {fp, “initiator = %6d\ttimestamp = A10u\t*,
recd=->initiator,
racd->timestamp) ;
fprintf (fp, “str parm i = %¥s\t*,
(char *) (recd->fields + index)):
Index += (strlen({char *){recd->flelds+index))+2)>>1;
forintf (fp, "sh_parm_2 = 6%d\t*,
recd->fields[index++]}:
fprintf (fp, "str parm 3 = %s\t",
{char *) (recd->flelds + index));:

index += (strlen{(char *} (recd~>flelds+index))+2)>>1;

fprincf {fp, "1g_parm 4 = 10%d\t*,
*(long *) (recd->filelds + index}}:
break;

fporintf {(fp, "command = external\tlength = %6d\t”,
recd->cmd,length) ;

fprintf (fp, "eventname = Header\t®=);

fprintf (fp, "performer = &6d\tobject = Ad, $d\t*,
recd->performer,
{recd->object)>>16,
(recd->object) 40xffEf);

fprintft (fp, "initiator - $6d\ttimesvamp = 310u\c*,
recd->initiater,
recd->t lmestamp) ;

44

fprintf {fp, “header = %s\n",
{char *) (recd->fielda));
break;

default:
fprintf {stderr,

*printevent: No external eventnumber %5d\n®,
recd->event number) ;
dumprecord {stderr, recd);

dumprecord. ¢

/* dumprecord.c dumpracord */

#include <monitor/montypes.h>
#include <stdio.h>

It
w —r—
* dumprecord
* - dumps an event record in hex to a flle descripter

. t’

dumprecord (file, recaoxd)

FILE *flie;

mon_putevent *record;

L) .
unsigned short *ptr = {unsigned short *)&recerd;
unsigned short *end = ptr + record->cmd.length;

for { ; ptr < end ; ptr++)

fprintf(flle, "%04x ", *ptr}:
fprintf(file, "\n");

blindprint

DESCHEMA

makefile

CFILES = deschema.c

N = /dev/null

OFILES = daschema.o

LIB = .,./11b fusr/include/monitor

LIBFILES = _./lib/streamio.o ../lib/tuple.o ../lib/schema_idl.c \
../31b/readrecord.o ../lib/writeracord.o

CFLAGS = -g -I../1ib =Xfusr/inciude/monitor

deschema; $(OFILES) 5{LIBFILES)

¢t ~o degchema ${CFLAGS} ${OFILES) $(LIBFILES) %
Jusr/softlab/iib/libidl,a

depend:

agrep "“finclude* $(CFILES) $N | grep -v *<° | sed -e "/<.t3/d" \

-a 'af:| 1*\d#incindel[| RSN FRAVALIR ST P \1/°
-8 "s/\.c/.of* > /tmp/dep .
~for L in ‘awk “{print $$2}° /tmp/dep | sort | uniq" ; \
do for)} in . S{LIB) : %
do if [~f 817881 | 2 ©\
then acho "5,554,561/581," ; \
braak : %
i3\
done 37 %\
done > /tmp/sedfile
sed -f /tmp/sedfile /tmp/dep > /tmp/dep2
sed -e ‘/*\# Dependencies/, 5% d* makefile > /tmp/makefile
echo *# Dependencles DON*T REMOVE THIS LINE* \
| cat - /tmp/dep? >> /tmp/makeflle
mv makeflle makeflle.old
cp /tmp/makeflle makefile
-rm -f /tmp/dep /tmp/dep2 /tmp/sedfile /tmp/makefile

Dependencies DON'T REMOVE THIS LINE

deschema,o! montypes. h
degchema.ot ../11bfechema_idl.h
deschema.o; .-/11b/st reamic.h
deschema.o: o 1ib/tuple.h

\

deschema.c

/* deachema.c - main %/

#include <stdio. h>
#inciude "montypes.h®
#include “schema_idl.h*
#include “streamio.h"
#inciude “tuple.h”

rAJ

* main -

aplits off a schema from a stream and writes it to a flle.

/

d4define BUFSIZE 1024

char

Toolname? / invoked name */

main{argc, argv}

int
char

{

argc;

*rargv;

FILE *fp; /* ptr to flle to recelve schema */

Mstream *“sp; /% input -stream f

database schema; /* schema from lnput o

Int io_count, /* count read or written ~/
buffer [RUFSIZE]; /* io buffer ny

Tooiname = Yargv++; /* save name fOr messages *f

if { arge 1= 2)

fprintf(stderr, “Usage: %s [ilename\n*, Toolname);
exlt{l};:
I
1f { {fp = topen{*argv,”"w"}) <= 0 }
[.
perror ("Opening schema flle%):
exit (1) i
)

1f { (sp = str_openistdin)} w« NULL })
l [N

forintf{stderr, “%s: Can’'t 6pen input stream\n*, Toolname);

exit (1);

)
if ({(schema = str_schemaread(sp)) == NULL }
{
fprintf{stderr, "%s: Can’t read schema\n*, Toolname);
exlit (1}; N
}
output {fp, schema): /* writes schem to fille */
fclose (fp);

!t
* Now we can just write as fast as we can.
“f

while { (lo_count = fread(buffer, sizeof({int), BUFSIZE, stdin)}
>0 .

if { fwrite(buffer, sizeof{int), io_count, stdout) == 0 &¢&
ferror (stdout) 1}
I
forintf{stderr, "%s: Error writing event records\n",
Toolname) ;
exit {l);
}
H
1f { ferror(stdin) 1}
{
fprintf {stderr, "%&: Error reading eventrecords\n®, Tooclname)’
exit {1);

}
exit (0)}

Appendix D 16 deschema

ENSCHEMA

anschema . csh

I\il/bin/csh \-f

Enschema - prepend a schema to a bunch of event records
Usage:

enschema schemafile [-] [fllename ...]

Last Edit: - Mon Dec 2 16:41 1985

Author: Stephen E. Duncan <duncansfunc>
Departmant of Computer Science
Unlversicty of North Carolina
Chapel Hill, NC 27514 - s -

Copywrite {C} The University of North Carolina, 1985

All rights reserved. No part of this software may be sold or
distributed in any foim or by any means without the prior written
permission of the SoftLab Software Distribution Coordinator.

Report problems to softlab8unc (csnet) or
softlabluncdCSNET-RELAY (ARPAnet)
Direct all inquirles to the SoftLab Software Distribution
Coordinator, at the above addresses.

set rceld=’SHeadey:$’
Revision Log:
$Log:$

¥
#
§
Edit Log:
Nov 20 1985 (duncans) Created.
)

it { ~a $1)} then
cat §*
exit 0

acho $0 : schema file 31 not found.
exit 1

FINITESTATE

makefile

FILES = main.c machineparse.y lex.l findpartition.¢ machine.c queue.c
OFILES = main.o machineparse,o findpartition.o machine.o queune.o lex.o
CFLAGS =» —g ~DYYDEBUG -I../11lb =-I/usr/include/monitor

LiBs = ,,./1ib/libmontools.a -11 /usr/softlab/lib/ilbidl.a

YFLAGS = ~d

finitestate: S{OFILES) lex.l
cc -0 fas ${CFLAGS) S(OFILES) $(LIBS)

depend:
egrep *~#include™ ${FITLES} | grep -v *<* | sed -e “/f<. *>/d")\
~e *8/:1(]1*\#include(| RASAYPEAV AL E-1-F AY FARRY
-a "s/\.c/.o/" > /ump/dep :
~for 1 In ‘awk *iprint $$2)}* /tmp/dep | sort | unig* ; \
do for 1 in . ${LIB} ; \
do 1f [~f $81/7%81) » \
then echo *5,5%1,551/581,% ; \
break ; \
i N ’
dona ; \
done > /tmp/sedfile
ged -f /tmp/sedfile /emp/dep » /tmp/dep2
sed -e ’/*\§ Dependencles/, $5 d’ makefile > /tmp/makefile
eche *# Dependencles DON'T REMOVE THIS LINE™ \
| cat = /tmp/dep? »>> /tmp/makefile
mv makefile makefile,old
cp /tmp/makefile makefile
~rm -f /tmp/dep /tmp/dep? /tmp/sedfile /tmp/makefile

Dependencies DON'T REMOVE THIS LINE
main.o: schema_idl.h

main.o; tuple.h

main.o: streamio.h

main,o: ./finitestate.h

main.o: ./fstab.h

machineparse.y: schema_idl.h
machineparse.y: tuple.h
machineparse.y: ./finltestate.h
lex.l: ./fs_machine.h)

léx.l: /y.tab.h

findpartition.o: schema_idl.h

findpartition.o: tuple.h

findpartition.ot JJfinltestata.h

machine,o: monops . h

machine, oz montypes.h

machine.o: schema_idl.h

machine,o: streamlo.h

machine.ot tuple.h

machine.o: /finitestate.h

queue.o: schema_ldl.h

queue.o: tuple.h

quette.o; ./Einltestate.h

queue.o? montypes.h
finitegtate.h

/% finitetypes.h - include flls for finitemachlne »/ i

#include "tuple.h®

tinclude “fs_machine.h* /* for the fs machine */

/a
* Types for the partition
*f
typedef struct gueue_node { /* the tuples in sentence */
tuple *g_tuple;
- struct queue_hode *q_next;
} g_node;
typedef struct { /* queue of tuples In sentence */
q _hode *q_head,
*q tail;
int q.count;
} t_gueue;
typedef struct { /* key to gelect partlition struct */
int type;
union f
char *eval;
long nval;

|YH
} part_key;

typedol struct |
part_key
t_queue
int

p_key:
©_queue;
p_stats;

} partition;

/% status of partition’s instance */

ddefine empty gqiqueus_pointer { {queue_pointer)->q_count == Q)

void insert_qi{}:

tuple *delate gi):

fstab.h
/* fatab.h */
static char rel_name[] = “Finitestata™; /* nane of new rel «/
!t
*“ This ls a table containing the attributes for the domains
* of the FiniteState relation.
.
struct fatab |
char name[20}; /* domaln name s
int type, /* integer, boolean, rational, string */
length; /% in bytes vy

} fatab{) ~ |

l

——" . A e e ——

-

“cmdtype*,
=cmdlength®,
*gvanthumber®,
"performer®,
*objact®,
"initiator~,
“timestamp®,
*lasttimestamp®,
"partition®,

Ktype lnteger, 1
Keype integer, 1
Keype Intager, 2
Ktype_integer, 2
Ktype integer, 4
Ktype integer, 2 },
Ktype Integer, 4
Ktype integer, 4
Ktype string, .24

Int fstabsize = mizeof{fstab) / sizeof{struct fstab};

Appendix D

49

machineparse.y

/* machineparse.y ~ yyparse, yyerror */

,i

* parger for selection formula -

* This actually executes the formula for each record.

oy -
L]

#include «<stdio.h>
#include "schema_idi.h®
finclude "tuple.h”
#include *finitestate.h”

tifdef TESTALONE

static char Toclnamef] =~ “tast*; /t invoked nama of program */
#alse
axtern char *Toolnama; /* invoked name of program */

extern machine *Machine;

fendif TESTALONE

int lineno = 0; /* 1line numbey of input LFs
LY
sunion -

char *numg

char *pame;

testnode *testlist;
linenode *line;

H

‘Stoken <pame> STRING

stoken <pum> NOM
stype <pame> v
stype <testlist> test

finitestate

ftype <testlist> testlist

stype <lipne> line
Atype <line>» machine
s

machine : lina

i

machine line
: {

$1->1_next = $2;

Machine = $1; $5 = Machine; }
if { $1->1_state <= $2->1_state)

5§ = $2;
§
else
{
yyerror ("States not in order®)
H
return{l);
}
}
: .
line H NUM NUM testlist { 5% = newline(atol ($1),atot (52}, %3);
} .
testllist /* empty */ { §% = NULL: }
| teatiist test t 88 = (51)2
{$1->t_next = §2, $§ = $1)
$2;
}
H
test H STRING STRING NUM { 58 = maketest (51, $2, $3):)
| STRING STRING STRING { $% = maketest (31, §2, $3); }
i Fe-t STRING NUM { $5% = maketest (NULL, $2, 53); }
i =t STRING STRING { 5§ = maketest (NULL, $2, $3);
| STRING STRING *-* { §§ = maketest (§1, $2, NULL):
| STRING *~' t-r { $§ = maketast {$1, NULL, NULL}:
| error { return (1);7 }
117
,t
-
* yyerror -
& routine invoked by parser when error is detected
W i e e e o e e i et -
*/
vold
yyerror {s)
char i H
t
fprintf {stderr, "%s: yyparse: %s around line tdin®,
Rppendix D

Toolname, 8, lineno):

,i

*,

* newline ~

* create and setup a new linencde in the machine
*f

static linenode * .
newline (state, nextstate, testlist)
int state, nextstate;
testnode *testlist;
i
linenode *lp = {)}inenoda *Imalloc{slzecf(linencdal):

1p->1_state = atate;
lp->1_nextstate = nextstate;
lp-»1_tlist = testlist;
1p->1_next = NULL;

return {lp);

/I

L] -
* maketast -

* create and setup new test condition

]

*/

static testnode »
maketest {rel, dom, vall
char *rel, *dom, *val;
{
testnode *tp « (testnode *Imalloc(sizeof {testnode});

tp->t_next = NULL;

1f (rel)

{
tp->t_rel = {char *)malloc{strlenirel}+1};
strepy {tp->t_rel,ral);’ n

}

else tp->t_rel = NULL;

1f (dom)

{
tp->t_dom = {char *}malloc{stxlen{dom}+l};
strepy {tp->t_dom, dom}

}

else tp->t_dom = NULL;

tp->t_relop = *\0*;

1f {val)

{

finitestate

1f { *val == "3\ }
awitch(valfl])
{
cage °1°: /* may be two position
if (strlen{val)>3j break;
switchivai{2]}
{
cise “w='3
cage >’
cage €73
case *\0°;
tp~>t_relop = valfl};
break;
defauits
§

f* check for relational

}
break}
case "=': A
case ‘>°;
case ‘<’
tp->t_relop = val[l)s
breaky
dafault:
] /% don’t de anything

tp->t_val = (char *)mallocistrlenivalj+l);
strcpy(tp->t_val,val)s
I
alge tp->t_val = NULLy
recurn{tp);
} /* maketest */

$1fdef TESTALONE

I
* main -
bl tegt routine
e/

main{)

int stat;
stat = yyparse();
exit {stat),;.

1

#endif TESTALONE

Appendix D

operator */

*f

*f

51

fs machine.h

/* fs machine.h - typedafs for the Is machine */

,t

* Tha machine ls bullt by the parser as linked lists. To speed
* execution, the linked iists are replaced by arrays terminated
* by NULL pointers.

*f

fifndef FS_MACHINE

fdefine FS MACHINE

typedef struct tnode | " 7+ condltlon in lina */

char *t_rel,
*t_dom,
*t_val;

char t_relop;

struct tnode *t_next:

} testnoda;

typodef struct lnode { /* 1line {transition) in machine */

int 1_state,
1_nextstate;

testnoda *)_tlist;

struct lnode *1 next;

} linenoda, machine;

fendif

[
m
H

{pme

/* lex.l - yylex */

L]

#include <stdio.h>
finclude “fs machine.h®
Minclude *y.tab.h®

Yl

finitestate

&

* yylex -
*

lexical analyzer for finite state machine

*/
axtern char *Toolname; /* invoked name of program */
extern int lineno;
char nextchar;
L 3]
L1
[\t] {2} /* ignore white space */f
\n { ilneno++; }
4.8 {71 /* commant “/
-2{0~9)+ {
yylval.num = ([char *)malloc{yyleng+l};
stropy (yylval.num, yytext);
return NUM;
}
- i
return yytext(0];
]
Al Sab £ {
1f { yytext[yyleng — 1] == ** }
yyrmora l) ; /* pick up the rest */
else |If { {nextchar = input{)))
{
yylval.name = (char *)malloc{yyleng);
strepy (yylval.name, yytext+l);
yylval.namefstrlen{yylval,name)] = *\0’;
return STRING?
}
else return 0;
}
[*- \t\n}+ i
yylval.name = {char *)malloc(yyleng+l);
strepy(yylval.name, yytext);
return STRING;
}
Appendix D

52

Lindpartition.e

/% findpartition.c - findpartition init_iterate iterate */
#include
#include
$#ipclude
#include

/

> % % B ¥ » ¥

<stdio.h>
*gchema_ldl, h"
*tuple.h”
finitestate.h

This module implements an abstract structure contalning a

set of <key,value> pairs.
The only coperators are find and lterate,

Find takes a key and searches the private structure for it,

allccating a new one if not found.

-

/

extern char *Toolname; /* Invoked name of program */
extern char *part_name; /* name of partition */
It
.o —_—
* partlist -
* private data structure contalning a key and a value,
*/
partition *findpartition({};
static partition *rfindl};:
.static struct entry (
part_key key; /* key for this entry *f
partition part; /* values w/
struct entry *next; /% 1inked 1list L7
} *partlist = NULL; /% 1ist of valuves o/
fdefine NUM 0 /* definitions for key.type */
fdefine CHAR 1
,t
]
* find -
« search for the key in the data structure partlist,
* 1f one doesn’t exist, add it.
" return a pointer to the partition in the entry
| -

finitestate

L

partition =
findpartition(tp)
tuple *tpi ‘ /% input tuple */
part_key p_key: /* key for partition into list */
attribute aps /* attributes of partition - oxf
’t
* find the partition in the tuple
*f
if { {ap = getdomainbyname (tp->relation->attributes,part_name))
== NULL }
t .
fprintf{stderr,%8: yecord missing partition\n™,Toolname):
exit (1);
i
I*
* Set up the key
»/

switch (typeof(ap->attr_type))
i
case Ktype_ string:
p_key.type = CHAR;
p_ley.u.cval =
{char *}malloc{strlen{itp->racotd[ap->attr pos]} +1 };
strcpy (p_Key.u.cval, stp->record{ap->attr pos])s
break:
case¢ Ktype boolean:
p_key.type = NUM;
p_key.u.aval = {long} {tp~>record[ap->atty_pog] == 1);
break;
case Ktype rational: /* too tough to partition on a float */
p_key.type = HUM;
p_key.u.nval = {long) (* {float*)stp->recordfap~>attr_posal);
break;
cage Kiype intager:
P _key.type = NUM:
switchlap-»attr_length)
(
case 1:
p_key.n.pval = {int) (tp->record(ap->attr_pos})s
break;
case 2:)
p_key.u.nval = *{short*)étp->recordfap->attr_pes);
break;
case 4:

p_key.u.nval = *{long*)&tp->record(ap->attr _pos|);

Appendix D

break:
defaults

fprintf (stderr,*ts: Invalld domain length for %Ss:&s\n",
Toolname, tp->relation->rel name, ap->attr_name);

exit{l):
b
break;

default:

fprintf{stderr,*Vs: Invaild domain type for %s:Vs\n=",
Tcolpame, tp->relation->ral name, ap->attr_name);
exit{1):

P
* Actually starts up recursive lookup with global partlist
LY)
return (rfind(spartlist,p keyl):
} /* findpartition */
Ii
L
¢ rfind -
J Does real work, traverses partlist looking for match on p kay
* —
v/

fdefine NEWENTRY (struct entry *)malloc{slzeof {struct entry))

statle parcition »

rfind (partlist,p key)
struct entry *spartlist; /" partition 1list, never NULL */
part_kay *p_key; /* laockup key : */
i
,t
* This searches a gorted linked list for a key
* and returns a pointer to the partition for that key.
* The key may be numeric or character, and the entry
* may have to be created.
*/
int L H /* 3 way decision variable */
reglster struct entry *ep; /* pointer to list entry */
Af { *partiist I= NULL) /* Can stlll check o/
{
sw = {p key->type == NUM) ? /* put in form of strcmp Lr
p_key->u.nval -~ (*partlist)~>key.u.nval
t strempip_key->u.cval, (*partlist)->key.,u.cval};
if (sw ==0)" /* found it v/
return (& ({*partlist)->part));
1f { sw > 0) /* keep looking ~/

_return(rfind{{*partlist}->next,p kay));

finltestate

fi
* If gw < 0, we should insart
* the entry here, so just fall through.

*/
}
’t
* Ingert a new entry here
* This was reached by either a null list
* or the value ls prior to the current list value.
t/
1f { {ep = NEWENTRY} == NULL } /* create a new entry */
{
fprincf{atderr, *rfind: malloc failed\n™);
exit {1);
)
if (p _key->typa == NUM) /* initialize p key */
|
ep->key.type = NUM;
ep->key.u.nval = p key->u.nval;
}
elsa /* character key *7
{
‘ep->key.type = CHAR;
ep->key.u.cval = (char *)malloc{strlen{p key->u.cval) +1}:
strepy (ep->key.u,.cval, p key->u.cval);
}
ep->part.p state = I; /* ptarting state */
ep~->part.p_queue.q_head » NULL; /* empty sentence wf
ep~>part.p_queue.q_tail = NULL;
/ﬁ
* Insert the new entry into the. list
*/
ep->next = #*partlist; /% set up tall of list */
*partlist = ep; /% 1ink into list */
return (& {{*partlist)~>part));
} /% rfind */
machine.c
/* machine.c¢ - run accept reject */
#include <stdio.h>
Appendix D 54

#include "moncps.h”

#include

"montypes.h*

#include “schema_lidl_h*®

#include
#include

“streamio,h™
tuple.h

#include “finitestate. h”

machine *Machine; f* the automata itself .f
extern char *Toolname; ’ /* invoked name of program */
extern char *part_name; /* name of partitlon domaln */
extern relation fs_relation: /* relation of partition >/
extern Mstream *sp out; : /* output stream */
/t
* ron -
* actually run the machine
*
*/
volid
run{pp, tup_p}
partition *pp;] /* struct for this partition +/
tuple *tup p: /* input tuple */
{
int state = pp->p_state, /* current state */
cmp; /* result of strncmp *f
machine *sp; /* polnter to state ./
testpoda = *tcp;s /* test conditlons ./
SEQattribute seq ap = tup p->relation->»attributes:)
attribute ap, ‘ /* attributes of test domain */
o_aps /* attributes of prev tuple */
chay *o_record; /* record of prec tuple */
lt
* position at the right state
*/
for { sp = Machine; sp &6 sp->1_state != state; sp = sp->1_next }
if { sp == NULL || sp->1_state != state }
{
fprintf (stderr, "%s&: panic 1n automata at %d.\n“,
Toolhame, pp->p state};
exit {1}; .
I
/i
* Check each line of the machine with the same state.
* Take the newstate of the first line whose conditions are met.
*f
for { 7 sp~>l_state »= state; sp =~ sp->1_next)
{

finitestate

Appendlx D

* Go through the list of conditions, all of which must
“ me met Lo be accepted. '

for { tep = ap~>1_tlist; tcp; tep = tep->t_next)
|

if ¢ ! (tcp->t_rel == NULL ||
stromp {Lup p->relation->rel name,tcp->t_ral) =="0))

breaaks /% falled for this llne */
,t
* We have matched the relation
b

if { tcp->t_dom == NULL) continue;
olse £ { jap = getdomalnbyname (8eq_ap, tcp->t_domj} == NULL)
break; /* Failed the domain test */
1f { tep~>t_wal == NULL } cont inne;
if { tep->t_relop) /* relational compare %/
!
,I
* A relational operator compares to
* tha previous tuple in this partition.
*/

1f { ampty_ q (spp->p_queua))
{ !.-
¢ Conditlion is always true the first time
*
insert_qlspp->p_gueue,tup pj;
pp->p state « gp->1 nextstate;
return;
)
o_record = pp->p_queue.q_tall->q_tuple->record;
o_ap ~ gatdomainbyname {
pp=>p_quene.q_tall->q tuple-> relatlon->attributes,
tep~>t_dom) ;
ctp = stracmp(tup p->record[ap->attr_pos],
o_gecord{o_ap->attr posj.
ap~>atte_length);
switeh {tcp->t_relop)
{

case °1'; ‘ /* may be followed be relop */
switch{tep->t_val{l))
|
case ">°3
1f { Homp > 0) } continua?
else’ break;
case ‘<°3
1f { i(cmp < 0) } contlnue;
alse break;
CASE ‘=t /* These are synonymous */

cage *\0':

55

tf (cmp =0) centinue;
else break;
default:
fprintf (stderr, *¥s: corrupted test in state %d\n®,
Toolname, pp->p_state);

axit{1):
i
break;
tase ‘="t
1f { cop == 0) continues;
alse break;
cage ">';
if { cmp > 0) continue;
elge break;
case “<°;
if { cmp < 0) continue;
alse break;
)
} /% AL »/ .

alse
switch { typeof {ap~>attr type))
{
case Ktype string:
1€ { strcmpitup_p->record[ap->attr_pos|,
tep->t_valj == 0) continue;
else break;
casa Ktype boolean:
if (*tep~>t_val &6
tup p~>record(ap->attr_pos} } continue;
else break;:
default:
if { strncnp(tup p->record{ap->attr_pos),
o_record{c_ap->attr_pos],
ap->»attr length) == 0) continue;
else break;
}
} /* for %/
if { tep == NULL)
i

/* unconditional, or conditions met +/

if { sp->1_nextstate =« 0)
{

/* accepted %/

accept (pp, tup pl;
return;
I
else L{f { sp->1_nextstate < 0}
{

/* rejocted o/

_reject (pp) 7
return;

else

finitastate

I+ else /* wa have a match */

* To next state, so enqueue tuple, increment count, VA4 .
* and set new state; * This relies on all the fields in FiniteState being
7 ® at a fixed position and that eguivalent filelds
* have the same length. A stralght struct copy
ingert _qlépp->p_queue, tup p}; * can’t be used glnce the queue record may no
pp->p_%tate = sp->]1 nextstate; /% transition */ * longer be in mon putevent fomm.
return; */
strncpy { {char *)&fs_tup.record[fg ap->attr pos],
| BAES S SLF &q_tup->record[ap->attr_pos],
} /* for */ : ap->attr_length);
/* }
* No valid state was found, 86 reject the sentence
i/ ,i
reject (pp): * set up those domains unique to FiniteState and
return; + that come from the last record.
} /* run */ */
IA ts_ap - getdomainbyname{q_tup->relation,*lasttimestamp*):
* q_ap = getdomainbyname(tup p->relation,"timestamp®);
* accept - *({long *)&fs tup.record{fs_ap->attr pos] =
. code for handling an accepted sentence *{long *)&tup _p->recordiq_ap~->attr posj;
*
*/ fs_ap = getdomalnbyname{fs tup.relation,”partition®);
strepy (&fs_tup.record[fs_ap-»attr_pos}, part_name);
static fs_ap->attr length = strlen{part name) + 1;
accept (pp, tup D) fs_ap->attr_length +e ({fs_ap->attr_length % 2) 2
partition *pp; 0 :1;
tuple ‘tup pr
{ fs event.cmd.type = MONOP_PUTEVENT_EXT; /* not from kernel 74
tuple *q tup, /* pointer to tuple in record queue *f fs_event.cmd.length = {fs_ap->attr _pos + fs_ap->attr_length) »>>1;
fs_tup; /* finlte state tuple R */ fs_event.eventnumber = fs_relatlon->rel_sensor_id;
mon_put event fs event; /* finite state event record */
SEQattribute tseq ap: /* loop tmp */ str write(sp_ont, &fs tup):
attribute fs_ap, /% attributes for domalns in fs tup *f
q_ap. f* attributes for domains in tuple gueue */ while (! empty q(ipp->p _queus)) /* write out sentence w/
ap; /* wmp *f {
q_tup = delete_g{&pp->p queue)j;
/" str wrlte(sp out, q_tup);
* Creata hew tuple FINITESTATE and write it out free{q_tup};
L7 '
str_write(sp_out, tup p): © /% write out last tuple */
q_tup = pp->p_queua.g_head->q_tuple; /* needed to fill fs_event */ free(tup_p);
fs_tup.relation = fs relation; pp->p_state = 1; /* restart machine LI
s tup.record = {char *}&fs event; 1
foreachinSEQattribute(fs relatlon->attributes, tseq_ap, fs_ap) /*
[J— — -
if ((g_ap = getdomainbyname{q tup->relation, fs ap->attr name)) . * reject -
w= NULL)} * code for handling an relected sentence
continne; * o - -
Appendix D 56 finltestate

*/ next->q tuple = {tuple *)malloc{eizeof(tuple));

static next->g_tuple->relation = tup p->relation;
rejact {pp} next->q_tuple->record = {char *})
partition *pp; malloc({(atruct mon_cmd *)tup_p->record)->length
i * 7)) /* room for record */
tuple *q tup;) strncpy (next->q_tuple->record, tup p->record,
{{{struct mon_cmd *)tup p->record)->length * 2} });
wiile (1 empty gq{&épp—>p_queue}) : next->q_iniext = NULL;
{ LE ({ empty_qiqp) }
q _tup = delete_g{&pp->p_gqueue); {
‘freelq_tupd; qp~->q_head = naxt;
H qp->q_tail = next;
pp->p_state - 13 /* restart machine %/ i
[alse
qp->q_tall->g_next = next; /* new tall o f
Qp->q_count++; /* Blze of queue %/
) /* lnsert_g */
!t
* ——
¥ delete q -
gueuve.o * return the tuple at the tall of the queue
*
*/
tuple *
7 delete_q (qp)
/" queus.c - empty q insert g delete q */ t_gueua *qp;
tinclude “schema_idl.h" tuple *Lup p; /* tupla teo be returned Lr
#include *tuple.h" q_node *tmp; /* s0 we can free tha hode */

dinclude “finitestate.h”

#include "montypes.h® if { empty_g{gp})} return(NULL};

tup_p = qp~>q_head->q_tuple;

! tmp = qp->q_haad;

- qp->q_head = qp->q_head->q_next;
* inmert g - free (tmp) ;

* insert a new tuple inte the gueua qp->q_count-~;

. recurnftup pl;

“ . } /* delete_gq */
void

insert_gigp, tup_p}
C_queue *gp;

tuple *tup_p:

{

q_node ‘next = (g node *)}malloc(sizeof {q_node));
/" s .
* Set up q_node for current tuple
L7
Appendix D 57 finitestate

PROJECT

makefile

args.o: ../lib/tuple.h
args.o: ./project.h - !

CFILES = main.c args.c modify schema.c

OFILES = maln.o args.o

LIB = ,./1ib /usr/include/monitor .

LIBFILES = ,./lib/streamio.o ../lib/tuple.o ../lib/schema_idl.o \

«./1ib/readraecord.o ,./lib/writerecord.o

CFLAGS = -g =I../llb -I/usr/include/monitor

project: ${OFILES)} 5 (LIBFILES)

depend;

cc -0 project 5{CFLAGS) ${(OFILES) S$(LIBFILES) \
fusr/softlab/lib/libidl.a

egrep "~#include™ §(CFILES) | grep -v ‘<’ | sed -~a “/<.*>/d* \
-a 's/:| I*\#include(IRASAR LAY RO} -1 Yo LS VAN
-e "s/\.¢c/.of" > /tmp/dep
-for 1 in “awk *{print $$2}* /tmp/dep | sort | unig* ; \
do fer 1 in . $(LIB) ; \
do if [-f $81/851) ; \
then echo "=g,851,581/88L," » \
break : \
f1 5\
done * \
done > /tmp/sedfile .
sed ~f /tmp/sedfile /tmp/dep > /tmp/dep?
sed -e */*\§ Dependencies/,$$ d* makeflle > /tmp/makefile
echo “# Dependencies DON‘T REMOVE THIS LINE® \
| cat ~ /tmp/dep2 >> /tmp/makeflle
my makeflle makefile.old
cp femp/makefllie makefile
-rm ~f /tmp/dep /tmp/dep2 /tmp/sedflle /tmp/makeflle

Dependencies DON’T REMOVE THIS LINE

main,o:
maln.o:
main.o:
main.o:
maln.o:
args.o:

fusr/include/monitor/montypes.h
«./1ib/schema_idl.h
«./lib/streamio.h
../1ib/tuple.h

./project.h

../lib/schema_idl.h

modify schema.o: «»/1ibfschema_1idl.h

modify schema.os -./lib/tuple.h

mod)fy_schema,o; /project.h
project.h

/* project.h */

I

* Options for project
*/

tdefine KEEP 1

/* main.,c - main %/

#include <stdio.h>
#include *"montypes.h*
#include “schema_ldl.h"®
tinclude "streamlo.h®
#include “tuple.h®
#include "project.h”

i

w -

* main - '

. determine the relations and domaing to project from
hd the command line, read and revise the schema, read
* each record and reject or project as appropriate.

wy/ . [P

char *Toolname; /* invoked name */

main{arge, argv)

inc arge;
char *hargv;
i .
int optiona, /% command llne options */
transier_length, {/* how much to copy ./
stat; e /* status of system calls */
char *ippos, “outpos; /* positions in racords »f
Mstream *sp in, *sp out; /% 170 streams LF
SEQrelation prol swq rp; /* relations to project *f
tuple tup_in, tup_out; /* 1/0 tuples */
attribute in_ap, out_ap; /* specific domaine ./
SEQattribute in_seq ap. out_seq ap, f/* domainas for copy wF
&_meq_aps /* tmp for loop */
Toolname = *argv; /* Bave name for messagas */
1f { {(sp in = atx_openistdin}) == NULL }
t .
fprintf (stderr, %83 Can’t open input stream\n®, Toolnameij;
axit (1};
]
1f (str_schemaread{sp in) == NULL) /* needed for argsi) s/
1 .
fprintf (stderr, *¥s: Can‘t read input achema\n®, Toolname);
exit{1);
}
1f { (sp_out = stx open{satdout)) == NULL)
i
fprintf (stderz, “%s: Can’t open output stream\n*, Toolnama);
axit (1};
}
args(argc, argv, &optlons, &proj seq rp, sp ln->schema,
& {(sp_out->schema)) ; /* hanigle command line «/
tup_out.record = sp out->record;
while [(stat = sty read({sp in,&tup in)) > 0)
{
1f { | inSEQrelation(pro} seq_ rp,tup in.reilation))
{
FA
* Code for relations not to be projected.
o/
1f { optionssXEEP) /* keep non-projected rels? */
Appendlx D ‘ 59

1f { (stat = str write({sp out,&tup ocut)) < 0}
{

slse
continue;

break; /* end on write error L)

/* next tuple 'Y

code for ralations that are to be projectad.

]

*

* Find the equivalent of the input relatlion in the output schema.
* Transfer data betwaen records in lumpe of contiguous domains.

* Write the new record.

tup out,.relation - getrelationbysensorid (sp_out->schema,
tup_in.relation->rel sensor_id}; /% set output rel, */

outposa = tup out.record; /* clear position in output record */°

out_seq_ap = tup out.relation->attributes; /% init, 1lst *f

while { | emptySEQattribute{cut_seq_ap) }
i

* Transfer data between records.

*+ Transfere equivalent contiguous domains as a lump.

* Since order of domains may have changed, sust statt
* looking at first input domaln each tima,

* Must make sure that everything is properly aligned

* on short boundarles. Test for this before and after
* finding lump,

.
ratrievefiratsEQattribute{out_seq_ap, out_ap);
in_seq_ap =~ tup in.relatlon->attrlbutea;
foreachinSEQatcribute (in_seq ap, t_seqg_ap, in_ap)
i
,t
* Set in_seq_ap to first equiv dom. ln out_seq ap.
* Note that It has to be there.
*/

1f { stromp{in_ap->attXx name, out_ap->altlr name) == 0)
|
in_seq_ap = t_seq_ap:; /* 1st equiv, domain %/
_inpos = { inpos <0) ? /% pos. In input */
- tup in.record - in_ap->attr_pos 3
tup_fin.recoxrd + in_ap->attr_ pos;
break;

project

/% args.c -~ args */

#include <stdlo.h>
_#include “schema_idl.h*
#include “tuple.h*
#include “projact.h”

fﬁ

-

* args -

. S6t flags and grab arguments from command 1lina,
" Exits with 1 upon error.

[]

7/

axtern char *Toolname; fA

vold

nama under which program is invoked */

args{argc, argv, options, relatlions, schema, new _schema)

int arge, I

*gptions; FA
char thargv; FAd
SEQrelation *relations; FAl

database schema, FAd
*new_schemay
| . .
int 1'j' ’*
offset = 0; fAd
relation new_rp = NULL,/®
old rp: /"
SEQattribute
tmp_seq_ap; fAd
attribute ap, /*

old ap, /*

tmp_ap; /"
options = 0; /
argv++; i~
argo--g

*new_schema = copyschema(schema);
initializesEQrelation(*ralations};

Sumber of argumants */
command line options */
Array of argumants */
relations to be projected */
old schema =/

Array subscripts */

position of current domaln in relation */
current relation in command line =/

old version of relation */

tmp for foreach */ .

current attribute in command line */
old version of attribute */
temporary pointer */

Clear optlons */
bypass program name */

f* get up new schema */
/* initiallze sequence */

for {1 = 0; 1 < argc; it+4, argvtt)

Appendix D

61

1 { *(*argv+0) == *-° && *(*argv+l})
i

/* test for option */

/t
* Optlons can be Individually specified or
* all lumpad together behind a singla *-’
=/
for (J = 1; *{*argv + }) ; }t+)
swltch (*{*argv + J))
{
case "k’:
*options |~ KEEP;
breaks
dafault:
fprintf {stderr, "Unknown option: sc\n",
*{*argv + 3}};
axic{1);
} /% switch */
} /* AL o/
else /* select operand v/
{ s
* This section sets the operands depending on
* how many have been seen. Note that storage
* must be providaed fox each.
~/
if { new_rp == NULL || strcmp{*argv, “-") =~ 0}

int d = 0; /* count of domaina */

[L]
+ Set up new ralation and append it
s/
if { new_rp I= NULL } /* already seen ona relation *
' .
new_rp->rel_vlensensor = (offset < 0) ?
TRUE : FALSE; /% handle last relatlon */
argvt] /* bypass "-" “/
}
if ((new_rp = getrelatlionbyname (*new_schema, *argv)}
w= NULL }

fprintf (atderr, "&s: bad relation - &s\n*®,
Toolname, *argv);
exic (1);
}
new_rp->rel_name = {char *}GetHeap(strlen{*argv) + 1);
strepy (new_rp~>rel_name, *argv);

L

project

} * Must make sure that everything ia properly aligned
. * on short boundaries.

. wg
A 1f { ! trangfer length % 2) /* mis-aligned v/
* Note that an odd pos implies a 1 byte fleld ' {
* but an even pos can be any length. . /*
* Note that tup_in’s attributes are all correct in pos, * If the next domain doesn’t take care of it,
* but outpos has not been set yet. * a padding chax must be added.
t’ Q,
if { {outpos - tup out.record) & 2 == 1 if { {retrievefirstSEQattribute|
& {inpos - tup_fn.record) & 2 =« 0) taillsEQattribute{out_seq_ap), out_ap}) == NULL
{ ' Il out_ap->attr_length i= 1 }
/* {
* Have to line things up. Other cases all work fine, i
* Worst case 1s a misallgned copy of lots of * This 1s the last domain.
* 1 bytes flelds. ' */
*/ : * {outpos + transfer_length - 1) =
*{outpos + transfer length - 2);
i1f { out_ap->attr_length !=1) /* next > 1 byte */ * {outpog++ + transfer length - 1} = *\0*;
{ }
*outpos = *(outpos ~ 1);]
/* allgn to even boundary */ - outpos += trangfer length:
* {outpos+s = 1) = *\0’; /% pad */ inpos += transfer length;
} } /* while #/
else /* next domain is 1 byte long */ :
{ {{struct mon_cmd *) {tup_out.record))->length =~
*outpos++ = *inpos; joutpos - tup out.record) / 2: /% Reget record langth */
continue; /% next lump */ if { (stat = str write(sp_out,&tup ovt})) < 0}
1 break; F* break loop on write err */
l .
} /* while &/
for (transfer length = 07
{! emptySEQattribute(out_seq_ap} /* note break */ if (stat < 0) /* ses 1f here due to error %/
&& 1| emptySEQattribute(in seq_ap) }: i
{out_seq ap = tallSEQattribute (out_seq_ap), fprint £ {stderr, *%s: I/0 error in processing records\n”,
in _seq_ap = talilSEQattribute{in seq_ap}) Toolhame) }
H exit {1);
f }
/&
* Actually determine how much to copy at once. exlt {0);
/ } f main »/

retrievefirstSEQattribute (out_seq ap, out_ap}:
retrievefirstsEQattributeIin“seq_ap, in_ap};
1f (stremp(out_ap->attr_name, in_ap->attr_name} =~ 0 }
transfer length += in_ap->attr_length;
eise
break; /* end of serles */
b .
beopy (1npes, outpos, transfer length);
/ﬁ

Appendix D i - 60 project

R

modify schema.co

/* modify schema.c - modify schema */

f#includa <stdlo.h>
finclude *schema_idl.h*
#includae "tuple.h”
$#include "project.h”

/t
]
* modify schema -
* copy the schema and modify the copy to have
* the relations in seq_rp
L¥
extern char *Toolname; /* invoked name from command line */
databaga
modify schema (schema, seq_rpj
database schema; /% schema to ba modified */
SEQrelation seq_rp; /* relations to be projected s/
i
SEQrelation t_seq_rp;
relation old_rp, /* tmp ptr to old entry */
new_rp, -/* new relation */
getrelatlionbyname () ;
database new_schema, /% gchema to be created */
copyschetna{) ;
Il
* Copy schema to new_schema and modify new_schema.
L
new_schema = copys#chema{schema);
,h
* For each relation to be projected {ln seq_rp)}, change its
*» entry in the schema. Don’t touch those not to be projacted.
* Must use nhame since copyschema avoids sharing.
%/
foreachinsEQrelation{seq rp, t_seq rp. new_rp)
{
1f { (old_rp = getrelatlonbyname(new_schema, new_rp->rel name)

Appendix D 63

I= NULL)
*old_rp = *new_rp;

} /% foreachinSEQ */
) /* modlfy schema */

/* sea If 1t*s there ¥/
/* raplace 1t */

project

Appendix D

* hdd relation to list of relations to project,
* must use schema instead of new_schema since
* comparison is done on input.

*/

old_rp-= getrelationbyname (schema, *argv);
appendrearSEQrelation{*relations,old_rpj;

* Set up flelds in relation, don’t touch
* omg.type, cmd.length, and eventnumber of -
* attributes. These are the first NUMFIXEDDOMS
* domains. Truncate rest of attributes,
7
new_rp->rel sensor_id « old rp->rel_sensor_ld:
new_rp->rel vlensensor = FALSE; /% initlally ¢/
foreachinsEQattribute (new rp~>attributes, tmp_seq ap, ap)
i
it (++d »>= NUMFIXEDDOMS)
{
tmp seq ap->next = NULL;
break?

/* truncate 1ist */

1f ({offset ~ ap->attr_pos} > 0) /* fixed position */
offset += ap-»attr length;
}o/r ALy '
else /* gather in domains */
f
/t
* Note that this code allows for duplicate domains!
* This 1s a feature, though maybe not that useful
* a onhe,
*/
if ((tmp_ap = getdomainbyname{old rp,*argv)) == NULL)
i)
fprintf {stderr, “¥s: bad domain - %s\n%,
Toolname, *arge};
exit(l);
}
if { (ap = copyattribute(tmp ap}) == NULL }
{
fprintf {stderr, “%s: couldn\°t copy domain - %s\n*

Toclname, *argv);
ex{t{l);
}
appendrearSeQattribute (new rp->attributes,ap);

/t

62

* Handle the new position

*f
if { offset < O) /* variable length */
ap—>attr_pos = offset; /* atr read() sets offset */
eise /* fixed length portion */

{
1f (typeof{ap->attr_typa} == Ktype string)
{ .
’ *
* ppgition becomes variable after this
7

ap->attr_pos = offset;

offgset = ~offset - 23

new_rp->ral_vlensensor =~ TRUE;
}
else if { ap->attr_length == 1 }

ap->attr_pos = offset++;
alse
{ .
ap->attr_pos = (offset & 2 == 0) 2

offset : +toffget; /* align */
offset += ap~>attr_ length:

}
I /% alse flxed length */
} /% alse handle domaing */

I /% else handle operand */

} /* for */

/t
* Make sure that we have what 1s needed.
* relation shouldn’t be empty
Q/ .
if { new_rp {= NULL) /* wa hava someching */
new_rp->rel_vlensensor ~ { offset < 0) ? TRUE : FALSE:
else ’
{
fprintf{stderr,“¥s: no relations to projectin®,Toolname):
exit {1}; '
H

} /* args */ . .

project

fendlf

B
s
-
.
in

/* main.c - main »/

#include <stdio.h>
#include *gchema_idl.h*
#include *streamio.h"
#include “tuple . h*
#include "y.tab.h"
finclude “selact.h*

* incoming record. The parser sets the global *select®

* to determine selectlon.

L4
Toolname = *argv; /* save for error messages */
if { {sp_in = str_open{stdin)) == NULL)
l

fprintf {stderr, *%s: Can’'t open input stream \n*, Toolname);
exit {1}

}

1f { (sp_out ~ str_cpen(stdout)) == NULL)

|

fprintf (stderr, "%s: Can't open output stream \n*, Toolname};
exit{l);

}

if ((sp_in~>schema = str_schemaread(sp in)) == NULL }

fprintf(atderr, “%s: Can‘t read input schema \n*, Toolname):
axit (1);

§p_out->schema = sp_in->schema;
args {argQc, argv, &rp, &formula, ap_ in->schema);
build formula_list (formula}; /* lex. analyels of formula ¢/

" formula head = formula list; /% pave head of list ./
* while { (stat-str read{sp in,ctup)) > 0)
* maln - {
. process the args, select = FALSE; /* initlallze for this record */
¥ read the schema : formula_list =~ formula_head; /* reinitiallze list ./
. check each record against formula for selection if (xp} /* only on one relation Ly
b {
LF) if | rp == tup.relation }
{
char *Toolnama; /* invokad name of program ./ if (yyparse(} == 0 & salect)
tuple tup; /* relation info and event recd / str write{sp out, &tup);
ralation rp; /* relation to select upon */ else
hool select; /* boolean sslection set by yyparse “/ parse_errsti;
extern struct token_entry “formula list; /* lex. analyzed formula */ H
')
maln(arge,argv) else /* select on all relations */
int arge; {
char s4argv; 1f { yyparse() ==~ 0 L& select }
i str_write{sp out, &tup);
int stat, /* gtatus of calis */ elsa
parse errs = 0; /* count of bad parses "/ Darse_errgt+}
char *formula; /* malection formula */ §
Mstream *sp in, *sp out: /* ipput and output streams */ }
struct token_entry *formula_head; /* saved head of form. llat »/ if { parse_errs)
!
fprintf{stderr, “ss; %d parsing errors encountered.\n“,
i Toolname, parse_errs);
* Basic operation is to read the schema, determine the }
* relation to be selectad upon, and rum & parser on each exic {0);
Appendlx D 65

select

SELECT

makefile

CFILES = main.c args.c finddomain.tc parse.y lex.c¢
OFPILES = maln.o args.o finddomain.o parse.o lex.o

LIB =

.+/1ib /usr/include/monitor

LIBFILES = ../lib/streamio.o ../lib/tuple.o ../1ib/schema_idl.o \

..flib/readrecord.o ../lib/writerecord.c

CFLAGS = -g -~DYYDEBUG ~I../lib ~I/usr/inciude/monitor
YFLAGS = —-d

select:

depend:

${OFILES) ${(LIBFILES)
cc -0 select %{CFLAGS} ${OFILES) $(LIBFILES)} \
/usr/softlab/1ib/1ibidl.a

egrap "~#include™ $(CFILES) | grep -v "<’

-8 "8/t [J*\¢include|

-a "s/\.¢/.o0f" > /tmp/dep
-for 1 in tawk ‘{print $§2)° /tmp/dep | sort | unig® ; \
do for I in . $(LIB} : \

do $f { -f $51/851) 7 \ -

then echo "s, $%1,8$81/%51," ;7 \
break ; \

| sed -8 /<. %>/d" \

IRASAY FLAV AL L 74 AS FARA

17\

done ; \
done > /tmp/sedfile
sed -f /tmp/sedfile /tmp/dep > /tmp/depZ
sed ~a */~\# Dependencles/,$5 d* makeflle > /tmp/makefile
echoe "# Dependencles DON‘T REMOVE THIS LINE™ \

| cat - /tmp/dep2 >> Jtmp/makefile
mv makeflle makefile.old
cp /tmp/makefile makefile
-rm -f /tmp/dep /tmp/dep? /tmp/sedfile /tmp/makefile

4 Pependencies DON'T REMOVE THIS LINE

main.o:
main.o:
maln.o:
maln.o:
main,o:
args.o:

«-/11b/schema_idl.h
../1ik/streamlo.h
../1ib/tuple.h
./y.tab.h

./select . h

. ./lib/schema_1idl.h -

args.o: ../lib/streamio.h

args.a; .. /lib/tuple.h
finddomain.oc: ./select.h
finddomain.o: Jfy.tab.h
finddomain.o: ../lib/schema_id}i.h
finddomain.o: ../1ib/tuple.h
finddomalin.o: .o/lib/streamic.h
parse.y: fselect .h

lex.o: ./y.tab.h

lex.o: ./select.h

seleci.h

/* select.h - heador flle for select */

#define
#cefine

fdefine
fdefine
#define
tdefine

typedaf

TRUE 1
FALSE O

BOQLOES ™ () I=><&|"™

LITERAL 1
LOOKUP 2
INLIST 3

unsigned char bool;

struct token_entry |

int antry type;
int token_type:
union {

char *loockup name;
YYSTYPE inlist_lval:
int literal val;
bows

struct token_entry *next;

H

flfdef OLDSTUFF
struct token_entry |

int type;

char edomalin_name;
struct token_entry *next;
YYSTYPE yylval;

bool lookup;

Fid
e

Yii
FAd
YAl

i
i
fi

YA

IQ
Fa
Al
IQ
' /%
fﬁ

operators in formula

type of token entry

antry in process formula
LITERAL LOOKUP or INLIST
not defined for NOTTOKEM

whan lookup
when inlist
when literal

next entry in table

ehtry In process formula
token type

name of domaln If lookup
next entry in table

lval for parser

lookup or in yylval

*

*/

*/
*f
*/

b4
*/
./

*/

*/
./
“
"/
"/
“

“%s: finddomain -~ bad length for ¥s in &s: %d\n",
Toolhame, dom nama, tup.relation->rel name,
ap->attr_length};

return {0);

return NUMBER;

case (Ktypa_rationalj}:

yylval.num = *{float *) {ctup.recordlap->attr_pes)};
return NUMBER;

case (KLype_boolean):
yylval.boolean = (tup.recordf{ap->attr pos] I= 0);
raturn BOOLEAN;

case (Ktype_string):
Yyival.str = tup.record + ap->attr_pos;
return STRING;

default:
fprintf (stderr, i
%s: finddomaln -- bad type for %8 1n %s: Sd\n,
Toolname, dom hame, tup.relation->rel_name,
typeof {ap~>attx_type});
return{0);
] /* switch */
} /* finddomaln */

parse.y

/* parse.y - yyparse, yyerror “/

* Parser for selection formula -
This actually executes the formula for each record.

LT
sunion §
double num;
char hsty;
char * rexp?
Appendix D 67

unsigned char

H

#include “select.h”
#include <stdio.h>

extern char *Tooclname;

extern bool select;
*emsq,

char

s}
Stoken
‘token
ttoken
stoken
Stype
Sleft
tleft
Sleft
Slaft
L1

’!

* Boolean expression.
handles parens, AND, OR, NOT, and errors

L
L
baxpr

YA

L]

»

’

re_compi};

1*
&t

Tmf Fgr ¥y

[

1
i
|
I
|
|
1
i
t

1*

boolean;

/* lexical analyzer interprets domains

<num> NUMBER
<str> STRING
<reap> REGEXP

<boolean> BOOLEAN
<boojlean> bexpr expr numexpr strexpr

expr {
1 expr i
1’ bexpr {
expr "|" expr {
bexpr ‘| bexpr |
expr ‘&' expr {
baxpr ’&" bexpr {
l{l expr t'l {
{ bexpr ")’ {
error {

* Expression,

&

*

*/
expr

unlon of numerical expression and string expression and
use of BOOLEAN

|
i
[
|

numexXpr
strexpr
BOOLEARN
BOOLEAN *='
error

5%
1f
$%
it
$%
ir
55
5

BN S S |

$1; select = 51; YYACCEPT;|

52 =~ 0) $5 = 1; alge $3 = 0; }
{52 == 0);
$1 |§i $3) 55 = 17 elge $5 = 0; |}
{ 51 Il %3);
$1 &6 53) §% = 1; eolsa $§ = 0; |
{ %1 &6 $3);

$2;

$8 = 52;
YYABORT;

}
]
}

{ 58 = 81; |

BOOLEAN { 1£ (51 == $3) $§ = 1; else $% « 0; |}

{ YYABORT;

}

}

/* invoked name of program
/* set to determine selectlon
/* error message from re_comp

)
}

s/
“f
.

o/

select

} /* maln */

args.c

/* args.c - args */

#include <stdic.h>
finclude *schema_idl.h"
#include "streamio,h®
#include “tuple.h”

i
.

% args -
L process arguments from command line
L]

%/
extern char *Toolname;

args{arge, argv, rp, formula, schema)

int arge;
char *argv,
#sformula;

relation *rp;
I 1f { arge > 3)
[fprintf {stdery, “Usage: %s relation formula\n®, Toolname);
exit (1};
lf { {*rp = getrelationbyname (schema, *++argv)} == NULL }
i

fprintf (stderr, *%s; relation not in schema‘\n", Tcolname);
exit {1);
}
*formula = *++argv:
} /* args */

Appendix D &6

finddomain.e

/* finddomaln.c ~ finddomain */

#include
tinclude
#1nclude
#include
#include
#include

* findd

v/
extern tuple tup; /* input tuple
extern char “Toolname; /* lnvoked name of program
finddomain (dom_name)
char +*dom_name; /* name of the domain
{ .
attribute ap;) /* attributes of domaln

<stdio.h>
“y.tab.h"
“select ,h*
*schema_idl.h"
“tuple.h"
wstreamio. h*

omaln -
find the domaln in the tuple and set yylval accordingly
return a token based on the attr_type

if ({ap = getdomainbyname{tup.relation, dom_name)) == NULL }

return {0}z
switeh { typeof{ap->attr_type) }
{
casa {Ktype_integer):
switch (ap->attr_length)
{
case 13
yylval.num = {float}
{{unsigned char)tup.recordiap->attr_pos)};
breaks
cagse 2:
yylval .num = {float}
*{short *) (etup.recordlap->attr_pos]);
break;
cage 4:
yylval.num = {float)
*{int *) (atup.record[ap->attr pos]};
break;
default:
fprintf {stderr,

*f
*/

b4

select

entry ~ (struct tokén_ entry *)malloc(sizeof(struct token_entry)}:
if { formula_list == NULL) /% starting out ay
(
formula_list = entry;
list_tatl = entry;
I

alae
list_taill->next = entry; /* add at tail of list - w4
antry->next = NULL;
PO
* Determine entry characteristics,
v/

i€ { (index{*-+*,*for p) && luadigit(*(for_p+l)})
i1 1iedigit (*for_p)
14 {ofor p == *.' && iudiuit(*(!og_p+1);) }

/t
* Numeric token
*/
entry->entry_type = INLIST:
LE lscanf(for_p.'it‘.(float *1&f_tmp) == 1)
f
#ifdef YYDEBUG
fprinc £ {acderr,
#48: bulld formula list =~- num =~ &f\n*,
Toolname, f_tmp);
fandif YYDEBUG

’i
* Polnt for p to after number.
*/
entry->v.inlist_lval.num = £_tmp;
for_p++; /* bypass possible sign */

while(ladigit{*for _p) || *for_p == ‘.7) for_pt++;
$f (*for_p == *,")
while { isdigiti*++for p});
if { *for_p == ‘@’ || *for p == ‘E’)
t
for p+e; /* bypass possible sign */
while { isdigit (*++for p});
}
entry~>token_type = NUMBER:
list_tall = entry;
I
else '
return{ly; /* couldn’t read It LF
]
else 1f { *for p == "/’)
{
IQ
* Regular Expression

Appendix D 69

*/
entry->entry type = INLIST;
str_p = ++for_p; /* hang on to start */
for { ; l({foxr p >= for end || *for_p == */"); for_pt+t)
|
if { *for p == "\\") /* escape character */
for_pt++;
)
entry->v.inlist_lval.rexp =
{char *)malloc(for_p ~ str_p + 1}:
strncpy (entry->v,.inlist lval.rexp, str p, for p - str_p);
antry->token type = REGEXP;
1ist_tail = entry;

|
alse Lf | *for p == *=')
{
i
* String
*
entry->entry type = INLIST;
str_p = ++for_p; /* hang on to start */
for { ; t{for p >= for_end |} *for_p == *\"’); for_p+t)
{

if (*for p == '* }
for_pet:

/* ascape character */

I
entry->v,.inlist_lval.str =
{char *}malloc(for p - str p + 1);

entry->token type = STRAING:

strnepy (entry->v.inlist_ival.str, str_p, for p - str_p):

list_tail = entry;
I
alse 1f (index(BOOLOPS,*for p))
{

/* operator LF}

entry-»entry type = LITERAL:

entry-»>v.literal val « (int)*for_ p++;

list_tall = entry; /* point to tall of list */
I
else 1f (isalpha(*for_p) || *for p == '_*) /* domaln name */
{

if { (*for p == 'T* || *for p ~= ‘F’) /* boolean? */

&& {index(BOOLOPS,* (for_p+l)) || *{for_p+l} == *\0'))
{

entry-»antry_type = INLIST;
entry->token_type = BOOLEAN;
entry->v.inlist_lval.boolean = (*for_p == *'T7):
1igt_tail = entry; /* point to tall of list */
)
elsa
{ .
for { str_p = for'p;

select

’t
* Numerical expression

L] any expressiocn with NUMBERS
*/
numexpr 2 NUMBER ‘=" NUMBER f 1f { 81 =~ §$3) $$% = 1; else 58 = O;
t NUMBER ‘<* NUMBER {1f ($1 < $3) $5 = 17 else §5 = 0; '}
| NUMBER *>* NUMBER {4F {51 > 63) $§ = 1; else 5% = 0; }
| *{* numexpr °}’ { 8§ = 527}
| error { YYABORT; }
H
/t
* String expression
* logical expressions with strings and regular expressions
v/

strexpr 1 STRING "=" STRING
}
| STRING *=* REGEXP

}

{1f {stromp($1,$3) == 0) $% = 1; else $$ = 07

{1f { (emsg=re_comp{$3}} =« NULL } $§ ~ re_exe
c(51,83); else $5 = 0; }
| STRING *<' STRING {1f (stromp{$1,%3) < Q) $3 = 1: else $5 = 0; |
| STRING *<” REGEXP {if (stremp($1,$3) < 0) $% = 17 else $§ = 07)
| STRING ">’ STRING {1f (stremp($1,53) > 0) $% = 17 alse $5 = 07 }
| STRING ’>* REGEXP {1f (strcmp($1,$3) > 0) 55 = 1} else $5 ~ 0; }
] *{ * strexpr °}* | 58 = $2;)}
| error { YYABORT; }
%
I‘
L -
* yyerror -
. routine invoked by parser when error 1s detected
* -
u/
vold
yyerror(s)
char LE-H

{
/* dlnclude <signal.h> */

fprintf (atderr, *48: yyparse: ts\p“, Yoolname, s);

/* kill(6,3IGQUIT)S %/

Appendix D

68

/* lex.c - build formula_list yylex */

#include <stdio.h>

#include

<ctype.h>

#include “y.tab.h"
#include “select,.h®

t,‘

extern char *Toolnames /* invoked name of program
struct token entry *formula }ist; /¢ list of tokens In formula s/
I*
* -
* build yylex list -
- create a list of the tokans in the formula, uaes global
* formula_list, formula, and -
* - —
*/
build formula list (for p}
char *for p? /* formula from command line */
l .
int s /* index into dom_name »/
float £_tmp; /* hold numeric from formula */
char str_p, f* start of string s/
for end = for_p + strlen{for_p): / end of formula */
BEtruct token_entry *entry, /v list entry »/
11st_tail; / head of list */
FAd
* pProcess til end of formula.
* Add entry to front of list.
*/
formula_list = NULL; /* initiallze Jist v/
while { for _p < for_end }
i
while { isspace(*for p) && for p < for end }
for p+i; /* lgnore white space *f
if { for p >= for _end || *for p == “\0° }
return{0}; /* all done *

I
% Allocate and 1nitlallze a new entry.
ﬁ/ .

select

STREAMPRINT

main.c

/* main.

makelils

finclude
finclude

CFILES = main.c

OFILES = main.o

CFLAGS = —g $(LIBS)

LIR = ../1ib ,./includa /fusr/include/monitor

LIBS = -I../1ib -I../include —-I/usr/include/monitor
LIBES = .,/1lib/libmontools.a fusr/softlab/lib/libidl.a

* #1nclude
#include

VA

¢ - maln */

<stdio.h>
“schema_idl.h"
"tuple,h"
“gtreamio.h*

-* main
*

-

print out in ascii tha values for each record, one per line.
Labal the values 1f invoked with -1, toggled with -u,

streamprint: § (OFILES) *f
ec $(CFLAGS) ${OFILES) -o streamprint $(LIBES} .
char *Toolname;
depend: N main{arge, argv)
-rm -~ /cmp/dep int arge;
egqrep **fincliude” ${CFILES} /dev/null | grep -v *<* | sed ~e "/<.*>/d" char *axgvi]:
\ {
-a "8/:(1*\Hnclude| [RASAY FLAVAL IR S 1V H AU VARY int i,
-e “afyv.c/.of" > jtap/dep : options = PRINTLABELS,
-m ~-f /tmp/sedfile stat;
touch /tmp/sedfile Mat ream *8p;
~for 4 in ‘awk *{print $52)" /tmp/dep* ; \ tuple tup;
do for 1 in ${LIB} ; \
do Lf [~f SS1/851 | ; A ,
then acho »>> /tmp/sedfile “s,5$51,851/5681,% ; \ * Process coommand line.
braak ; \ L)
| $ AN Toolname = *argv;
done ; \ while (t+targv,—argc)

done
sed -f /tmp/sedfile /tmp/dep > /tmp/dep2
sed -e */~\# Dependencies/,$$ d° makeflle > /tmp/makaflle
echo *# Dependencles DON'T REMOVE THIS LINE®™ \
| cat - /tmp/dep2 >> jemp/makeflile
" mv makafile makeflle.old
cp /tmp/makeflile makefile
- ~f /tmp/dep /tep/dep? /tmp/sedfile /tmp/makefile

Dependancies DON’T REMCVE THIS LINE
main.o: ,./libfschema_fdl.h

maln.o: ../1lib/tuple.h

maln.o: ../lib/streamio.n

1f {{*argv) [0] == *'=*}
i

for (1=1; (*argv}[i); 1++)
{

switch{(*argv) [L]}

{

case *1¢:

il

FAd
,‘
i
Vil
I*

/*

options = PRINTLABELS;

breaky
case "u':

Invoked name of program

loop index

command line options
status of system calls
input stream

Anput tuple

save for error messages

b

*
wf
*/
.o
./

*/

/* ROTE : this toggles */

options = DONTFRINTLABELS;

break;

(11sspace({*for_p)}
&& (index (BOOLOPS, *for p) == NULL):
for_p++)

i
entry->v,lookup name =

{char *)mallocifor p - str p + 1};
strncpy {entry->v . lookup name, str_p, for_p - str_p):

entry->entry type = LOOKUP; £ run time eval, */
list_tail = entry; /* point to tall of list */
}
}
el se /* literal *f

|
entry->entry_type = LITERAL;
entry->v.literal val = (int)*for p++;
list_tail = entry; /* point to tall of list */
}
1} /* while */
} /* builld formula_list */

,’
", —
* Lexical analyzer for select formula -
b also does lookups into current tuple
[pe——"
*
yylex(}
{
int types /* token type *}
1f { formula_ list == NULL } /* no more tokens */

return{0) ;
elge 1f { formula_list->entry type == LOGKUP)

type = flnddomaiﬁ{formuia_llst->v.lookup_namei:
else {f { formula_list->entry type == INLIST)
{

type = formula_list->token_ type;

yylval =~ formula_llst->v. inlist_lival;

else /* must be LITERAL */
type = formula_list->v.literal val;

formula list = foxmula_list~>next; /* polnt to next token */

return{type};

/Y yylex */

Appendlix D 70

selaect

SHUTDOWNACCT

makafile

MONDEF = MONITOR
MONINCLUDE -~ monlcor

DEBUG = ~-DMONDEBUG ~DDEBUG
CFLAGS = -D% (MONDEF) -Usun

shutdownacct: shutdownacct.c ../$ (MONINCLUDE} /montypes.h \

++ /% (MONINCLUDE) /mondafs .k

cc -g -D$ (MONDEF) -o shutdownacct shutdownacet.c

shutdownacct.¢c

/* shutdownacct.c - main shutdown*/

Al

* ghutdownacct

- =~ allows superuser to close down monltoring in case

b - of emergency.

. - Note: 5Y5L MONITOR actually checks for suparuser

"- —e——
*/

fdefine MONITOR

#include <sys/syslocal.h>
#include <monltor/mondefs.h>
finclude <monitor/montypes.h>
finclude <stdio.h>

short buffer[4096]);
maln {)
{

/t

» B > K B

*/

shutdowni{);

i

all done; clean up

*/

shutdown

- closes down monltor
- caller must be root

shutdown {)

struct mon_cmd command;
int I H

command .typa = MONOP_ SHUTDOWN:

command.length = sizeof (struct mon_cmd};
i = gyascall (SYSLOCAL,SYSL MONITOR,
fprintf (stderr,"shutdownacct: shutdown —- Ad\n®, 1);

{unsigned char *}&command);

) /*
else

4ifdef MULTIFILE

f#else

Appendix D

default:
fprintf (stderr, *Usage: %s [-}u]\n®, Tooclname);
exit {1);
)
} /* for %/
if o/

/t

* try to open *argv as a stream (str_fopen} and
then print it. treat °-° as stdin.

* allow changlng to unlabelled "in medias res*
*/

E

1f (stremp(*argv,*=") == 0)
{
sp = str_open{stdin);
targv = “standard input®: / for erroxr messages */
}
else if ({sp = str_fopen{*argv,”r")) == NULL }
[
fprintf (stderr, “%s: can’t open %$s\n",
Toolname, *argv):
continue; /* next argument *f
)
while { (stat = str_read(sp,étup}} > 0}
1f { tupleprint {stdout, &tup, optlons) 1= 0 }
fprintf(stderr,
*%5: can't print tuple in %s.\n",
Toolname, *argv):
swltch{stat)
{
case STRIO _ESCHEMA:
fprintf (stderr, "%s: no schema for input.\n®,
Toclname) ;
exit(l);
break;
case STRIC EREAD:
fprintf {stderr, "%s: input read error,\n",
Toolname) ;
exit{l);
break;
default:
If § stat < 0)
t
perror{“streamprint: Reading*);
exit({l);

1

fprintf (stderr, "Usage: &s [-lu]\n®, Toolname);

exit{l);
tendlf MULTIFILE
} /% alse */
I /% while */

#ifndef MULTIFILE
sp = str open{stdin);

while { I(stat = str readisp,&tup)) > 0 }
1f { tupleprint (stdout, &tup, options) i= O }
{

fprintf ({stderr, "%a: .can‘t print tuple.\n", Toolname}:

exit{l);

}
switch{stat}
i : PR A L
cage STRIOQ _ESCHEMA:
fprintf {stderr, *%s: no schema for input.\n",
Toclname) ;
exit{l);
break;
case STRIO EREAD:
forintf (stderr, "%s8: lnput read errcr.\n",
Toolname) s
exit {1);
break;
default:
1f { stat < 0}
{
perror ("streamprint: Reading®);
exit{1);
)

}
dendif MULTIFILE
exit (G);
} /* main ¥/

st reamprint

schema idl.h

/% schema_idl.h - IDL declarations generated by idle, version 2.0
on Tue Apr 1 19:29:02 1986

*

include =/usr/softlab/include/C/global.h*

/+ Private Types */
/* Clagas Headers */

/* Nodes */

typedef struct Rattribute * attribute;

§ define Kattribute 2

define Nattribute {_attribute((attribute)}N_INIT{ \
GetNoda (slzeof (struct Rattribute),Kattribute), \
Kattribute, alzeof {struct Rattribute))))

define Fattributae{n) {Xattribute(n); FreeNode (n, Kattribute);}

defina _attribute (N) (N}

define Xattribute (N}

typedef struct Rdatabase * database;
defina Kdatabase 4
defins Ndatabase (_databasa({database)N_INIT{ \
GatNode {sizeof (st ruct RAdatabase),Kdatabase), \
) Kdatabase,slzeof {struct Rdatabase})})
defins Fdatabase{n) {XNdatabase{n); FreeNode{n, Kdatabase);)
define database(N)} (N}

¢ define Xdatabasza (N}

typedef struct Rrelation * relatlony

define Krelation 6

dafine Nrelatlon {_relation{{relation)N_INIT{ \
GatNode (slzeof {(struct Rrelation),Krelatfon), \
Krelation,sizeof {struct Rrelation}}))

f define Frelation(n) {Xrelation{n); FreeNodein, Krelation};}

deflna _relatlon{N} (N)

defina Xrelation (N}

typedef int type_boolean;
define Ktype_ boolean 1
define Ntype boclean Ktype_boolean
define Ftype_boolean(n)

typedef int type integer;
§ define Ktype integer 3

Appendix D 75

define Ntype integer Ktype integer
define Ftype integer(n)

typedef int type rational;
define Ktype rational 5
dafine Ntype rational Ktype rational
dafine Ftype rational(n)

typedef int type_string;
1 define Ktype string ?
detine Ntype string Ktype string
define Ftype stringin)

/* Classas */

typedafl union |
int IDLinternal;
KgenericHeader IDLclassCommong
type_integer Vtypa intager;
type_rational Veype rational;
type string Vtype string;
type boolaean Vtype boolean;

| type;

/* Sets and Saquencag */

typadaf struct IDLtagl{
struct IDLtagl *next;
ralation value;

} Crelation, *Lrelation;

¢ define SEQrelation Lrelation .
1 define inSEQrelation(relationseq,relatlionvalue) IDLInList ((pGenList)relation
seq, relationvalue) '
define inittallzeSEQrelation(relationsaeq)} relationseq = NULL
t define appendfrontSEQrelation{relationseq,relationvalue) relatlonseqg=\
{SEQrelation} IDLListAddFront { {(pGenList)relationseq,relationval
ue}
define appendrearsEQrelation(relatlionsegq,relationvalue) relatlonseg=\
{SEQrelation) IDLListAddRear { (pGenList) relationseq, relationvalu
@)
define orderedingertSEQrelation{relationseq, relationvalue,ralationconpfn) re
lationeseq=\
{SEQrelation) IDLListOrderedInsert { {pGenList) relationseq, relati
onvalue, relationcompfn)
define retrievefirgtSEQrelation{relationseq, relationvalue)\
relationvalue = (relation)lDLListRetrleveFirst {(pGenList)relat
lonseqg) ’
¥ define retrievelastSEQrelationirelationseq, relatlonvaliue)?®
relationvalue = (relation)IDLListRetrlevelast {(pGenList)ralati
onseq)

Libmontools

LIBMONTOOLS # Dependencies DON'T REMOVE THIS LINE

streamlo.o: schema_1dl.h
streamio.os streamlio.h
streamlio.o: tuple.h
tuple.o: schema_idl.h
tuple.o: tuple.h
tuple.o: tuple key.h
tuple.o: printlabels.h
makefile
CFILES « ptreamio.¢ tuple.¢ readrecord.c writerecord.c achema 1dl.id}
OFILES = streamio.o schema_idl.o tuple.o readrecord.o writerecord.o
INCLUDE » -I/usr/softlab/include '
LIB =
LIBES = /usr/softlab/lib/1ibldl.a
IDLC = fusr/softlab/bin/idle Structure schema Root database Is
IDLCFLAGS = -g
CFLAGS = -g ${INCLUDE) databasze -> database_name 3 String,
: relations H Seq Of ralatlon;
libmontools.a: $(OFILES)
ar ruc libmontools.a ${OFILES) relation =-> rel name H String,
ranlib libmontools.a rel sensor ld H Integer,
rel_vlensensor 3 Boolean,
S(IDLC) ${IDLCFLAGS) $< ' ~= true 1f variable length
attributes H Seq Qf attribute;
schema_idl.h: schema_idl.o
attribute - attr name H string,
depend: attr length H Integer, —— in bytes
~rm -f /tmp/dep attr _pos H Integer,
egrep "*#include™ ${CFILES) | grep -v *<' | sed -a "/<.*>/d" \ ' ~= frem beginning, < 0 1f notfixed
-e ‘g8/:f | *\#tinclude{ IRASAW I AYAL IR 227 5 N attr_type . : type;
~a "s/\.c/.0f" > jrmp/dep
~m -f /tmp/sedfile type HH type_integer | typae_rational |
touch /tmp/sedfile . type string | type boolean;
=for 1 in ‘awk "{print $$2}* /tmp/dep® ; \
do for 1 in 5(LIB) ;7 \ For type Use Enumerated;
do 1f [-f SSL/S$$1) 7 © - type integer=->; type raticnal=>; type stringe=>; type booclean=>;
then echo >> /tmpfsedfile “g, $§1,851/581,% & \ .
break ; \
12\ End
done ; \
done i Process schema_idl Inv schema iIs
sed ~f /tmp/sedfila /tmp/dep > ftmp/dep2
sed -e */*\ S5 Dependencles/, 5§ d* makefile > /tmp/makefile Pre input H schema;
echo “§ Dependencies DON’'T REMOVE THIS LINE® \ Post output @ schemay
} cat - /tmp/dep2 >> /tmp/makefile
mv makefile makeflle.old i End

cp /tmp/makefile makefile
-rm -f /tmp/dep /tmp/dep? /tmp/sedfile /tmp/makefile

fdefine SCHEMAREAD 1
fdefine SCHEMAWRITTEN 2

tdefine STRIO ESCHEMA -1

fdefine STRIO_EREAD -2

¢ifndaf MAXRECSIZE /* to allow an overrida */
tdefine MAXRECSIZE 512

fendif

typedel struct 5 Mstream |{
FILE *fp:
char record [MAXRECSIZE]?
database Bchema;
short flag;

) Metzeaw;

I

% Function daclarations

./
Matream “str_open{},

“str fopen():

database str_schemaread();
int str_schemawrite(),

atr_readi),
sty write{);

fendif STREAMIOINCLUDE

streamioc.o

/* streamjo.c - library routinee for streamio in Monitor system

- atr_open, s8tr fopen, str_schemaread, str_sachemawrite,
. str_read, str_write
»/

finciude <stdlo.h>

tinclude <monitor/monops.h>
finclude <monitor/montypes.h>
finclude “schema_jidl.n"

Appendix D

7

#include “styeamio.h*
ftinciude "tuple.h"

static Mstream stream{ NFILE): /* has sama lndex as fp into _{ob */

/n
-
* gtx open -
hd assoclate a fp, gotten from fopen or somewhere, with a Stream
. There 1s a one to one relationship between streams and FILEs
L™
o/

Mstream *

str_opan{fp)

FILE *fp;

{
registar Mstream *sp =~ NULL; /* polnter to stream *f

if { fp == NULL)

{
fprintf{stderr, "str_open: null FILE pointer\n®);
return (NULL) ;

alse

int 1; /* index into racord */

sp = gstream|fp-stdin); /* same stream for each fp */

sp->fp = Ip;

for { 1 = 0; 1 < MAXRECSIZE; L++)
sp~>record(i] = NULL;

sp->schema = NULL;

sp->flag =« 0;

returnsp};

/* clear record */
/* records schema status L3

i
I /* str_open */

I
L3 e e
* gtr_fopen =
. open the named file and assoclate a Stream wlth it.
*
*/
Mstream *
str_fopen{fllename,mode)

char *filename, *mode;
{ .
register Mstream *sp = NULL:
FILE “Ip;

Iibmontools

define ithinSEQrelation{relationseq, index, retatlonvalue}\
relationvalue = {relation)IDLListRetrievelth{{pGenList)relatic
nseq, lndex) '
define tallsSEQrelation{relatlonseq)\
{{relationseq) ? relationseq->next : NULL}
] detlne removefirstSEQrelation{relationseq) relationseg-%
{seQralation) IDLLi st RemoveFirstCell ({pGenList) ralationsaq}
4 define removeSEQrelation(relationseq,relatlonvalue) relationseg=\
{SEQrelation) IDLLi st RemoveCel] { {pGenList)} relationseq,relationv
alue)
define removelastSEQrelation(relationseq) relationseq=\
(SEQrelation) IDLLlstRemoveLlastCall ((pGenList) relationseq)
define foreachinSEQrelatlon(relationseq, relationptr,relationvalue} for\
{relationptr = relatlonseq; \
relatlonptr!=NULL&& { {relat ionvalue~relationptr->value)||1); \
relationptr«relationpt r~>next}
4 define emptySEQrelation{relationseq) ((relationseq)==NULL)
define lengthSEQrelation(relationseq) IDLListLength(relationseq)

typedef struct IDLtag2{
struct IDLtag? *next;
attribute value;}

) Cattribute, *Lattribute;

define SEQattribute Lattribute

dafine InSEgactribute{attributasaqg,attributevalue) IDLInList {{pGenList)attri

buteseq,attributevalue)

define initfalizeSEQattribute(attributeseq) attributeseq = NULL .

define appendfrontsEQattribute{attributeseq,attributevalue) attributeseq-\
{SEQattribute)IDLListAddFront ((pGenLiat}attributeseq,attribute

value)

t define appendrearSEQattribute {attributeseq,attributevalue) attributeseq=\

alue)
define orderedinsertSEQattribute{attributeseq,attributevalue, attributecompin
} attributeseg=\
’ {SEQattribute) IDLListOrderedInsert { (pGenList}attributeseq,attr
1butevalue, attributecompfn)
define retrievefirstSEQattribute{attributeseq, attributevalue)}\
attributevalue » (attribute)IDLListRetrieveFirst((pGenList)att
ributeseq)
§ define retrlevelastSEQattribute (attributeseq, attributevalue}\
attributevalue = {attribute}IDLListRetrievelast {({pGenLlst)attr
ibutesgeq)
4 define ithinSEQattribute{attributeseq, index, attributevalue)\
attributevalue » (attribute)IDLListRetrievelth{{pGenList}attri
buteseq, lndex)
¢ deflne taillsEQattribute{attributeseq}\
({attributeseq) ? attributeseq->next i NULL}
define removeflrstSEQattribute (attributeseq) attributeseq=\
(SEQattribute) IDLListRemoveFirstCell { (pGenLlst) attributeseaq)

Appendix D

(SEQattribute) IDLLi st AddRear { {(pGenLlst}attributeseq,attributey

76

define removeSEQattribute {attributeseq,attributevalue) attributeseq=\
(SEQattribute) IDLLL st RemoveCell { {pGenList}attributesgeq, attribu
tevalue)
define removelastSEQattribute{attributeseq) attributeseqg=\
(5EQatkribute} IDLL] st RemoveLastCell { ipSenListlatt ributeseq)
§ define foreachinSEQattribute(attributeseqg,attributeptr,attributevalue) for\
(attributeptr = attributeseq; \
attributept r1»NULL: & ((att ributevalua=attributeptr->valua) [{1}:
\
attributeptr=attributeptr->next)
define emptySEQattribute (attributeseq) t(attrihuteseq)--NULLI
define lengthSEQattribute {attributeseq) IDLEistILength{attributeseq)

/* Class Attributes */

/* Node Structures*/
struct Rattribute { IDLnocdeHeader IDLhidden;
String attr_name;
int attr length;
int attxr_pos;
type attr type;
b
struct Rdatabase { IDLnodeHaader IDLhidden:
String database name;
SEQrelatlion relations;
[H
struet Rrelation { IDLnodeHeader IDLhidden;
String rel_name;
int rel_sensor_id;
Boolean rel_vlensensor;
SEQattribute attributes;
|H :

/* Port Declarations */
void outpuc{);
database input{}:

streamio.h

/* atreamio.h - header for using streamlo */ i
#ifndef STREAMIQINCLUDE

#define STREAMIOINCLUDE

/* te prevent re-including #/

libmontools

i
* Set up tuple
./
tp->record = sp->raecord;
tp->relation = getrelation(tp->record, sp->schema);
setposition(tp}s /* this updates phiasical position of domain

return(stat);
1 /* str_read +/

*/

’ *
E — -
“ gtr_write -
* write out a tuple for this stream
L
~/
int
atr Write(sp,tp)
Mstream *sp; /* pointer to etream L7
tuple *rp; /* polnter to tuple */
|
1£ (t{sp->flag & SCHEMAWRITTEN)) /* ensure schema ia written */
tf { sp->schema }
{vold)atr_ schemawrite(sp); /* always ok, ~/
alse
. raturn {(STRIQ_ESCHEMA) 7 . /* must have a gchema ./
return{ writeracord (sp->fp, {mon_putevent *) (tp->record)});
} /* sir_write w/
tuglé.ﬁ
/* tuple.h - header for using tuples */
#ifndef TUPLEINCLUDE
idefine TUPLEINCLUDE
t#dafine NUMFIXEDDOMS 3 /* the number of fixed domalns =/
#dafine connectSEQattribute (sl,82} 51 = \ :
{SEQattribyte)} IDLListContact { (pGenList) s}, (pGenList)s2}
#define PRINTLABELS 1 /* optlons for tupleprint */
Appendix D

79

fdefine DONTPRINTLABELS 0
pGenList IbLListConnect (};

typedef struct s_tuple {

char *record; /* usuvally stream’s rac. L)
relation relation}
/*SEQattribute domains;*/ /* same as relation->attributes */
} tuple;
I.
* Function declarations
*/
relation getrelation(),
getralationbysensorid{},
getrelat ionbynama(j,
copyrelation();
vold setpostion{).
mralationbyname (),
rmdomainbyname () 7
attribute gatdomainbyname (),
copyattribute(};
databasa copyschema {) ;

tendif TUPLEINCLUDE

tuple key.h

/* tuple_key.h */

/t

* Thase are the key domains which must ba in avery event record
»/

#define KEYNAMESIZE 25

/* longest key name allowed */
static char key_attr tab{]} (KEYNAMESIZE] = |
"cmdtype®,

libmontools

if ({fp « fopen(filename,mode}) == NULL)
; /* Jjust leave errno set */
else
sp = str_openifp)?
return{sp);
} /* str_fopen */

* str_schemaread -~
* read in a schema from a styeam

*/
database
str_schemaread (sp)
Mstream *sp;
{
int [-H /* actuvally a char, but fgetc needs an int */
1f (sp-»flag & SCHEMAREAD)
f ’
fprintf {stderr,
"str_schemaread: schema already read\n®};
return{NULL) ;
H
1f { {sp->schema = input (sp~>fp}). 1= NULL)
sp->flag |~ SCHEMAREAD;
fi
* There may be a \n left after the schema, but we want
* to point to the beglnning of the event records,
/
1f { (c=fgete(sp->fp}) != ‘\n’)
ungetc{{charye, sp->fp);
return({sp->schema) ;
} /% str_schemaread */

J* wasn’t there afterall */

’l-
[Jp—
* str schemawrite -
* write out the schema for this stream
a, B
int

str _schemawrite (sp}

Mstream *sp;

(.
1f { sp-»Fflag & SCHEMAWRITTEN)
{

fprintf (stderr, .

*str_schemawrite: schema already writtenin®);

Appendix D 78

return{-1):2
}
output {sp~>fp, sp~>schema)l ;
gp—>flag |= SCHEMAWRITTEN:
return{0} s
} /* str schemawrlite */

/#

L . -
* Bty read -

* read a tuple from the stream

w

*f
int

str_read{sp,tp)

Mstream *sp; /* pointer to stream %/

tuple i 3 +H /* pointer to tuple +*/
{
int stat~=0; /* status of calls */
[i
* Read in a schema, if necessary.
w/
it { Visp->flag & SCHEMAREAD} j
{
if (atr schemaread{sp) == RULL)’
{
sp->flag |= STRIO ESCHEMA;
return {STRIO_ESCHEMA} ;
}
H
!ﬁ
* Read in the event record.
*/
switch {stat = readrecord(sp->fp, {(mon_putevent *)sp->record})
[.
case =-1% f* geadrecord error */
return (STRIO_EREAD) 3
break;
case 0: /4 EOF L7
return(stat}; '
break;
default:

1f { stat > MAXRECSIZE)
{

/* Probably already an error »/

fprintf{stderr, "str read: buffer overflow\n");
exit {1}

l1ibmontools

fprint £ (stderr,"str_read: invalld relation $d\n“, sensorid); . remove the hamed relation from the schema, if it’s thera

raeturn (NULL) 3 - - - -
i . /
return {cur_rp}; . vold
. oy rmraelationbyname (schema, name)
} /* gatrelationbyssnsorid */ " databage schema;
. char *name;
/™ ' {
. —— reglster relation rp; /* pointer to relation */
* getrelation —
* return a pointer to the relation in the record 1f { (rp = getrelationbyname{schema,name}) I= NULL)
* - removeSEQrelation {schema->relations, rp);
*/
} /* rmrelationbyname */
relation
gatrelation(record, schama} L)
short *record; * ———— ———
databasa gchema; * getposition -~
{ . Set the position of each domaln in the relation,
raglster int sensorid « ((mon_putevent *}record)->eventnumber; * Fixed lengch relaticns don’t change, nor do the
) " fixed flelds of variable length relations. A varlable
raturn{ getralationbyszensorid {schema, szaensorid) }: - position field is lndicated with a negative positlion.
N | e ————— v —
} /% getrelation */ .}
vafd
/i : setposition (tp)

tupla tEpy

* getrelationbyname - 1

» return a pointer (which may be NULL) to the relation with nams SEQattribute tmp_ap; /* pointer for foreach L4
. in the schoma ralation rp = tp->relation;
W attribute cur_aps /* pointer for foreach */
* char *puffer =« tp->racord;
relation int offset = 0, /% accumulated offget into record */
get ralationbyname (schema, name} slen; /* intermediate value */
database schema;
chayr "name; /"
{ * Set up the attributes so that the position is correct for

register relation
reglister SEQrelation

rp =~ NULL;
tmp soq_rp;

* the current sensor, Only the positions for the varlable
* part of varlablae langth sensors naeed ba calculated.
*/

/* tmp in foreach «/

foreachinsSEQrelatlon({schema->relations, tmp seq_rp, rp)
1f (stremp{rp->rel_name, namej == 0 } break;

1f (tmp seq rp 1= NULL} /% we found it =/
return{rp);

alse

return {(NULL} ; /* didn‘t find it */

i /% getrelationbyname */

* rmrélatlonbyname -

Appendix D ' 81

1f { rp~>rel_vlensensor)
{
foreachinSEQattribute {tp->relaticn->attributes,tmp_ap, cur_ap}

if {offset < 0)
i .
e
* Variable positlon
*/
if (cur_ap->attr_length 1= 1}

offget -= (-0ffset}%2; /% align the domaln »/

libmontools

“cmdlength®,
“eventnumber®
i
int key attr_tabsize = sizeof(key attr tab)/KEYNAMESIZE;

printlabels.h

*%,08%-101d\t",
“%,05%-10.10£\e",
1:

/* type_int, length 4 */
/% type rational ¥4

tuple.c

/% printlabels.h */

I+ i

* The label ls the attr_name of the domain, the value 1g the value

* fleld, except for hoolean fields, which are T or F. The attr_type
* and lengeth are used to select the right format.

*f

fdefine FMT RELATION 0
tdefine FMT STRING 1
#define FMT_BOOLEAN 2
ddefine FMT INT 1 3
fdefine FMT INT 2 i
#deflne FMT_INT 4 5
tdefine FMT_RATIONAL 6

static char *1_format[] = { /* labelled format
"$s5:\L", /* relation name
"5 = %¥s\C™, /* type_string
“k5 = As\t¥, /* type_boolean
"%s = ¥-3d\t-, /% type int, length 1
"§5 = %-5d\t", /* type int, length 2
%s = %-10ld\t, /% type_int, length 4
%s = %-10,10f\t", / type_ratlonal
)

"

* The *%.05" is used to discard an argument, so that the print routine
* doesn’t care about formatting.

o uf

static char *u_format([] = { /* unlabelled format
%.08", / relation name -
"%, 0sts\t", /* type string
“%,0s%s\t", /* type boolean
"%.0s%-3d\t", /* type int, length 1
"%.0s%-5d\t", /% type int, length 2

Appendix D

v/
v/
*/
*/
*/
*
*/
*/

v/
*/
*/
*7
7
*/

/* tuple.c - getrelatlon, getralationbyname, rmrelationbyname,

* getdomainbyname, rmdomainbyname, setpoeition,
* copyschema, copyrelation, copyattribute,

* tupleprint :

* tuple manipulation routines

*/

#define LIBTUPLE

#include <stdlo. h>» .
#include <monlitor/montypes.h>
#include "schema_idl.h"
tinclude *tuple.h®

finclude “tuple_key.h" : el
#include “printlabels,h* =~ =~ 7l - T

/* gignifies what to ignore in tuple.h */

It
*
* getrelationbysensorid -
* return a polnter to a relation in a databage from a sensorid
*
*
relation
getrelationbysensorid{schema, sensorid}
database schema;
int sengorid; .

{

SEQrelation rp = schema->relations,
tmp_rp:
cur_rp;

/* allowable relatlons */
/% ptr for foreach *
relation /% ptr for foreach e/
foreachinSEQrelation(rp, tmp_rp, cur_rpl
i ,

if { cur_rp->rel_sensor_id == sengorid)

break;

i
1f (tmp_rp == NULL}
{

/* didn 't find it */

livmontools

register attribute new_ap = Nattrlbute: /* new attribute %/
Ii

* A}l chat needs to be done is to copy In the flelds.

* Nota that name shares same spaca as old name. This allows

* comparisons on name pointer for simllar domains

"/

nev_ap->attr nName = ap->attr name;
new_ap->attr_length = ap->attr_length;
new_ap->alttr_pos = ap~>attI_pos;

new_ap->attr_type ap->attr_type;
return (new_ap)?
} /* copyattributa */
#1fdef OBSOLETE
f!
R]
* copykey -
- make a new copy of the key and all its parts
L]
*f
key
copykey(kp)
keay kp: /% the key to be copied */
{
key new_kp = Nkey; /* copy of key */
SEQattribute tall seq ap; /* used -in appending =/
register SEQattribute tmp seq ap; /* for use in forsach */
atcribute ap, /* pos ln sequence */
nas_ap; /% copy of attrlbute */

/.
* Copying consists of copying the name into a new area,
* and copying the sequence of attributes.
./
1f { kp == NULL }
return{ NULL);

/* don’t have tec do anything */

{f { (new_kp->key_name = ([char *)GetHeap{strlen{kp->key nama) +1)}
== NULL .}
{
TAd . .
* No room left, wa're in trouble
L7
fprintf (stderr, “copykey: no room in heap\n");
return {NULL) ;
}
strepy (new_kp->kay_nama, kp->key name);

Appendix D

83

*/

if { emptySEQattribute{kp—>attzibutes)) /* don't have to copy

return {new_kp) ;
,t
* Copy the attributes {(all are immutable domains)
v/
ratrievefiratSEQattribute {Xp~>attributes, ap);
1f { (new_ap = copyattribute{ap))} == NULL) /* didn*t work */
{
fprintf {stderr, *copykey: couldn’t copy attributes\n“);
return {NULL};
]
appendfrontSEQattribute (new_kp->attributes, new_ap};
tail_seq_ap = tallSEQattribute (kp->attributes};
foreachinSEQattribute(tatl_seq_ap, tmp seq_ap, ap)
f
Lf ((new_ap = copyattribute{ap)} == NULL) /* didn’t work +«/
' .
fprint £ {stderr, *copykey: couldn’t copy attributes\n®):
return {NULL) ;
}
appandrearSEQatt ribute {new_kp->attributes, new_ap):;
|
7,.
* All done.
./

return {new_Kkp);

b /% copykey */
fendif OBSOLETE

/ﬁ
L] - - ——
* copyrelation -
* create a hew copy in memory of the relation
n
*/
relation
copyrelation (rp)
relation Ip;
i .
int 1; /* 1line 1ln table ./
relation new_rp = Nrelation; /% copy of rp */
SEQattribute tall seq_ap; /* used in appending ¢/
register SEQattribute tmp seq ap; /% for use in foreach */
attribute ap = NULL, /* pos in sequence ./
new_ap; /* copy of acttribute *f

libmontools

1f { typeof (cur_ap-~>attr_type) == Kt&pa_;trinq]

{ .
,t
* Length must be multiple of 2,
* gensors wyite data in shorts,
*/
slen = strien{buffertoffaet}) +1i;
cur_ap->attr_length = (slen%2)?
slen + 1 @ slem;
]
cur_ap->attr_pos = offsat;
offset -= cur_ap->attr_length;
y /r Lf v/
else
{
/:
“ Fixed position
*/
if { cur_ap->attr_length != 1}

offgset += offsetk2; /* allgn the domain
if { typeof{cur ap->attr_type) == Ktype string)
{

/%

* Subsequent flelds are variable position,

* but thls fleld is stl}]l fixed.

* Length must be multiple of 2, since

* gensors write data in shorts,
*/
glen = strlen(buffertoffset] +1;
cur_ap-»attr_length = (slen%2}?
slen + 1 : slen
cur_ap->attr pos = offget;
offset += cur_ap->attr_length;

offset = -offset; /* now it’s variable pos

P/ LL

else

i .
cur_ap-atty pos = offset;
offnet += cur ap->attr_length;

} /* else */

} /* alsa */
} /* foreach */

if ({{struct mon_emd *)buffer)->length I= offset>1)
{{struct mon_cmd *}buffer)->léngth = offset>l;
/* reset length

| VAN S SV
) /* setpositlon */
,'

L]

* getdomalnbyhame -

* return a pointer to the named domain in the tuple,

Appendix D

. NULL ig returned if the domain isn’t in the tuplae,
. p
*/ .
attribute
getdomainbyname {rp, domname)
ralation ps
¢char *domname;
{
!t
Search for the pamed domain, return peinter to domain
*/
register SEQattribute tmp ap = NULL; /* ptr for foreach */
register at;ribute cur_ap = NULL; . /% ptr for foreach */

(-

1f { strcmp{cur_ap->attr_name,domname) == 0)

break:

i
if { tmp_ap == NULL)
return{NULL}) ;
else
return{our_ap)s
} /* getdomainbyname */

foreachinsSEQattribute (rp->attributes, tmp_ap, cur_ap)

/* not in attributes */

1%

*

#* rmdomainbyname -

* remove the named domaln from the relatlon, if it 1s there

7
void
rmdoma lnbyname {rp, dname}

relation rp: /% raelatlon contalning domain */
char tdname; T /* :name of domain /
{

attribute aps /* pointer to attribute *f

1f { tap = getdomalnbyname {rp, dname}) !« NOLL }
removeSEQattribute (rp~»attributes, apls
] /* rmdomalnbyname */

Ii

-

* copyattribute ~
* make a new copy of an attribute In memory

-

*f
attribute
copyattribute{ap}

attribute ap: /* attribute to be copied */

libmontools

tupleprint -

print out in ascli the values for the tuple
Label the values 1f label i true

» % 3 B B B

/

int

tupleprint {fp, tp, label)

FILE
tuple
" int

{

B [L A fe .
L3 {} /* where Lo print
sLps /% what to print
labal; /* whether to labal

char “nformat; /* format to use for output
SEQattribute © seq ap; /* tomp for loop
attribute ap; /* tmp for loop

if (tp == NULL)

(.
fprintf(stdery, “tupleprint: invalid file.\n");
raturn{-1j;

}

1f£ (tp =~= NULL || tp->ralation == NULL
Il tp->relation->attributes == NULL)

{

tpiintf(ntderr. *tupleprint: invalld tuple.\n%};
raturn{~-1);
)

In‘
» Select the appropriate printing format,
* either labelled or unlabellad.
"/

format = {label ==~ PRINTLABELS)? 1_format : u_format;

/n
® Print the relation name (if labelled) and each domain.
o/

fprintf{fp, format[FMT RELATION|, tp->relation->rel name);
foreachinSEQattribute (tp->relation->attributes, t_seq _ap, ap)
1 .
switch{typeof {ap~->attz Lype})
|
case Ktype string:
fprintt (fp, format [FMT_STRING)., ap->attr_nanme,
tp->recordlap->attr_posj);
break;
case Ktype boolean:

Appendix D

*/
s
*

*/
./
./

as

fprintf{fp, format {FMT BOOLEAN], ap->attr nanme,
((tp->record[ap->atti_pog} == 0} ? *F" : "T"}
break;
case Ktype Integer:
switch{ap->attr_length)
{
case 1:
fprintf{fp, format [FMT_INT_1j, ap->attr_name,
{int}tp->record [ap->attr_pos});
break;
case 2:
fprintf(fp, tormat{FMT_INT 2], ap->attr_namae,
* {short %)¢ (tp->record{ap->attr_pos)));
break;
case 4:
fprintf{fp, format[FMT_INT 4], ap->attr_name,
*{long *}&{tp->record(ap->atty powl]}):
break;
default;
fprintf{fp, “UNKNOWN "):
}
break;
case Ktype rational:
fprintf(fp, format [FMT RATIONAL], ap->attr_name,
*(float *)&(tp->record[ap->attr pos])):
break:
default:
foprintf (fp, “UNKNOWN s ¥
} /* switch »/
} /* foreach */
{void}pute(*\n’, fp):
if { ferror{fp))
{
perror {*tupleprint®);
réturn{-1);
]
return(0);
} /* tupleprint s/

/* end the line */

readrecord.c

/* readrecord.c - readrecord */

Iibmontools

,t

* Copying conslsts of copylng the name, the sensor id, and the

* varlable length flag, and then copying the key attributes (see
* key attr tab {n tuple key.h} and the remaining attributes,

*/

if { rp == NULL) /* don"t have to do anything */
: return{ NULL);

/i

* Note that the name pointer is copled,
* 5o that the space 1s shared.
*/

new_rp->rel name = rp—>rel name;
new_rp->rel vlensensor = rp->rel_vlensensor}
new_rp->rel_sensor_id = rp->rel_sensor_ id;

,.
* Must get up immutable (key) rflaelds
w/

for (1 = 0; 1 < key attr_tabsize; 1++}
{
ap = getdomainbyname({rp, key attr_tab[l]);
1f { ap == NULL) /* Should never happen! */
{
fprintf{stderr, "Copyrelation: error in keys\n*};
exit{1);
)
appendrearSEQattribute(new_rp->attributes, ap);
1 .
if { emptySEQattrxibutef{rp->attributes) }
return{new_rp}; /* don*t need to copy other attrs */

/t
* Copy the attributes (mutable domains)
*/
foreachin$EQattribute (rp->attributes, tmp seq_ap, ap)
{
{f { inSEQattribute(new_rp-»attributes, ap))
continue; /* don’t copy keys */
1f ((new_ap = copyattribute{ap)) == NULL } /* dldn't work */
{
fprintf (stderr, "copyrelation: couldn’t copy attributes\n®);
return (NULL) ;
}
appendrearSEQattribute {new_rp-*attributes, new ap);
}

return(new_rpj;

Appendlx D

a4

t

} /* copyrelation */

*
® copyschema ~
* copy a schema. This creates a completely separate copy
* of the schema so that changes to it will not affect the
* original schema,
LY
database
copyschema (schema}
database schema; /* schema to be copled */
i
database newschema = Ndatabase; /* target for copy */
relation rp, /% current pos in SEQrel, */
) new_rp; /* copy of rp */
register
SEQrelation tmp seq_rp; /% for use in foreach */

FAd

* Copying consistse of copylng the name and

* copylng the sequence of relatlons.

*/

if (schema == NULL)
return{ NULL };

il

* Note that name'is shared by both schemas.

b

newschema->database_name « schema->database_name;

1f { emptySEQrelation(schema->relationsy)

return {newschema} ;

/* don’t have to c©

foreachinsEQrelation (schema-»relations, tmp seq_rp. rp)

if | lnéw_rp = gopyrelatlon{rp)) == NULL)

{

/* don't have to do anything */

opy */

/* didn‘t work */

fprintf(étdarr,'copyschema: couldn't copy relacions\n");

return {NULL) ;
} : .

appendrearSEQrelat lon {newschema->relaticns, new rp);

return (newschema) ;
} /* copyschema */

FAd

libmontoels

MINIKERNEL

mv miniacct acct

README

mintkern.c

This directory containg a set of flles for emulating kernel calls. When
it is compllad with “accountant® or “acct™ of the Monitor system, it can
be used to test those programs without endangering the system,

kern.c vehicle for kern sensors

makaflle permits “make acct”, make “accountant*
mintkern.c kernal routines, call kern sys and ufs
BYS.C vehicle for ufs sensors

uts.c vahlcle for ufs sensors

Other files that are used that are not in this directory:
local_syscalls.c dyslocal and monitor system calls,
/% (SOFTLAB) /include/monitor
headers for Monitor system
/% (SOFTLAB) /erc/monitoringkernel/monacct/acct.c
minimal accouantant program
/% (SOFTLAB) /src/accountant/
real accountant.

makefile

ACCOUNTANT=/usr/softlab/Src/aceountant

ACCT«/usr/softlab/src/monitoringkernel/monacct

CFILES~/usr/softlab/src/monitoringkernael/monsys/local_syscalls.c \
minikern.c ufs.c karn.c sys.c

accountant : 5 (ACCOUNTANT} /*.c $ (CFILES)
make ~f 5 (ACCOUNTANT} /Makefile testaccountant
mv testaccountant accountant

acet: $ {ACCT) facct.¢ §(CFILES)
maka ~f §(ACCT) /Makeffle miniacct

/* minlkern.c - copyln copyout syscall panic sleep */
#lfndefl lint

statle char regheader{] = "SHeadar“;

#andif lint -

#undef zun

#include <sys/param.h>
#include <sys/dir.h>
#include <zys/systm,h>
#include <sys/user . h>
#include <asys/proc.h>
tinclude <sys/syslocal.h>
finclude <sys/stat.h>
#include <stdlo.h>

,l

N = -
* This module emulates the three kernel calls hecessary to permit

* local_syscalls and the accountant work without actually golng

* through the kernel,

“/

struct proc u_procp;

struct user uw; /* kernel user structure */

/i

e

* copyln -

- coples a user buffer of a speclified length to a kernel buffer
| P -—
*f
int

copyin{outbuf, iabuf, len)
register caddr_t inbuf, .
outbuf;
register int len;
1
for {(;len > 0; len-—)
®ipbuf+t = foutbuft+;

#include <stdlo.h>
#inciude <monltor/montypes.h>
fdefine FIXEDLEN sizeof {struct mon_cmd)*2

i
* readrecord
* - reads an event record from a flle pointer into a putevent struct
* - puts event record Inte structure pointed to by recd
¢ ~ returns the length of the record or -1 on an io error.
L] -
*/
readrecord {fp, recd)
FILE “fp;

mon_putevent *recd;

{
int stat; /% for lc calls */
int varlen; /* length of racord past cmd */
short srecord=(short *)recd; /* a little short hand */

/t
« Pind length of record
*/

if { (stat = fread (record, sizeof({short), FIXEDLEN, fp)
)} t= FIXEDLEN
}
if (feof(fp)) return (0};
else return{-1);

/* all done */f
/* some error */

i .
* Determine length in shorts remaining, (note recd==-record)
./

varlen = {int)recd->cmd.length - FIXEDLEN?

J*
* Gat remalnder of record
*/

1f { {stat = fread {(record + FIXEDLEN},
sizeof {short), varlen, Ip)
} != varlen)

return {-1); /* dldn’t read whole record */

writerecord.c

/* writerecord.c - writerecord */

#include <stdio.h> .
#include <monitor/montypes.h

i~ . - -
* writerecord
* - writes an event record from a buffer that starts with a mon_cmd
* - struct {a mon putevent recd)} for the length in specified in
* - that struct. returns what fwrite returns
LY
“
writerecord {fp, recd)
FILE *fp;

mon_putevent *recd;
i i
short *record=(ghort *)recd; /* a llttle short hand */

return(fwrite(record, sizeof (short), recd->cmd.length, fp) };

return (recd->cmd.lengthj; /* return length in short ints #*/

Appendix D 86 libmontools

kern ()

struct inode In;
stxuct file F, *fp;
stxuct |
int tv_usec;
int tv_sec;
} tima;
struct a |
int p pld;
tp:
struct |
struct a *u_procp;
boug

In.i _dev = 2;
In.i_number = 1;
In.l slze = 14;
fp = &F; .
fp->f data = {raddr t)&In;
#1fdef DERUG
fprintf (stderr,"In kern sensar\n®});
fprintf (stderr, "San_commands: addrl = %d, addr2 = %d, [0} = Xex, [0]&é6
4 =~ Ad\n*,)
san_commandsg,
&san_commands (0],
san_commands[0],
sen_commands{0] £64) ;
fendif
tima.tv_usaec « 1500;
Cime.tv_sec = 1300;
p.p_pld = 12345;
u.u_procp =« &p;
FilleClosa({{struct inode *) (fp->f data))->1_dev, {{struct inode *) (fp->
f_data))->1_number, ({struct inode *) (fp->f_data)i->1_size);
}

8Ys.

in

. finclude *../h/typas. h”
tinclude “../h/sys_sensors, h”
#include <stdlo.h>

sys ()

Appendix b

B89

struct |
int tv_usec;
int tv_sec;
} time;
struct a |
int p pid;
i
struct |
struct a *u_procp;
[H

fifdef DEBUG
fprintf{stderr, “In sys sensor\n");
fprintf{stderr, “"Sen_commands[0): X%4x\n=,

sen_commands(0]};

t#andlf
time,.tv_usec = 1500;
time.tv_gec = 1500;
p.p_pid = 12345;
U.u_procp = &p;
ReadSensor{13,10,512,128);
WriteSensor{l3,10,512,128});

e
ind
w
.

I

finclude "../h/types.h*
finclude *../h/ufs_sensors.h®
finclude <stdio,.h>
ufa{)
i
struct |
int tv_usec;
int tv_sec;
} time;
struct a |
int p_pld:
Ip:
struct |
struct a *u_procp;
[IRH
short cname[12];

minikernel

return{len}; u.u_ap = {int *)Luap;

i : - syslocal (SYSL MONITOR,u_buffer) s
veode =~ {u.u_error < ¢} ? u.u_erroxr g u.u_r.r vall;
/* return{rcode) ;
* ¥
* gopyout - else
. coples a kernel buffer of a specifled length to a user buffer return({-1);
. }
Q/ /t
int . : B e o e e e
copyout {inbuf, outbuf, len} % panic
reglster caddr_t inbuf, * print the argument and exlt with 1
cutbuf? *
register int leng L7
{
for {;len > 0; len--) : - panle {msg)
*outbuf++ = sinbuf++; char *msgs /* NULL terminated string @/
return(len); {
} fprintf (stderx, msg);
fputc{stderr, *\n’); /* End with new line */
/t exlit {1);
* -)
* syscall - P
L] handle system calls. If the call goes to SYSLOCAL, & e ——
& intercept 1t and call syslocal, Otherwise, fall, * gleep -
e - " simulates sleep system call
!/]
int */
syscall {d1,d2,u_buffer)
int d1,d2¢ sleep(secs}
register unsigned char *u_buffer; int seCs;
{ {
struct a | B H /% Don’t do anything */
int callno; }
unsligned char tarqg;
) wap;
char dummy [8024} ;
int rcode; e . e
kern{}; /% generate kernel sensor data */
sys(): kern.c
ufs {};
/t
* Set up global user struct
*/
u_procp.p pid = 15; #include *,./h/types.h®
u.g_procp = Lu_procp; * #lneclude *../h/incde.h”
1f { d1l == SYSLOCAL } #include *../h/file.h”
(finclude *../h/kern_sensors.h"
vap.callno = SYSL MONITOR; Hinclude <stdio.h>
vap.arg = u buffer;
Appendix D 88

minikernei

DISTRIBUTION/(MAKEFILE,SHORTALIGN.C)

Makefile

Name of target kernel, used as bamis for new one
KERNEL=GENERIC

Name for new kernel

MONITQOR=MONIYTOR

4 Define for 1fdefs

MONDE F=MON I TOR

Define for fatch depandencies, determined within
SHORTALIGN=

Name of directory for monitor include files
MONINCLUDE=monitor

§ Name of directory for Monitor system
MONSYS=monsays

Locatlon of system flles

5YS=/8ys

Flles that get patched

PATCH=kern dascrip.c ufs_syscalls.c ufs nami.c ufs_alloc.c \
sys_generlc.c syscalls.c init_sysent.c -

I C flles in kernel .

TARGETS=local_syscalls.c $(PATCH)

¥ Flles that depend on 5{MONINCLUDE]

INCLDEPS= h/ufs_sensors.h h/sys_sensors.h h/kern_sensors.h h/syslocal.h\
mongys/local syscalls.c mongys/acct.c monsys/minjacct.c \
mongys/ufg.c monsys/sys.c monsys/kern.c monsys/acct_sensoxs,h\
monsys/blindprint .c monsys/readrecord.c monsys/printevents.c \
mongys/dumprecord .c monsys/shutdownacet.c \
monitor/montypes.h monitor/mondefs.h monitor/monops.h \
monjtor/monarxcds.h

i Determine 1f this machine can only fetch shorts on short boundaries
config:
cc -o shortalign shortalign.c
/bin/xrm -f makefile '
sed ‘/*SHORTALIGN/ a/=.*/='shortalign*‘/’ Makefile > makefile
Bacho ">Make: Now you can make install® '

Put all the directories in place and substitute ih for defines
install: PATCH § (INCLDEPS)
Bacho ">Make: Installing system®

Don’t run sed unless you have to
-grep -s S{MONINCLUDE] monsys/makefile |] \
sad */*MONDEF/ s/MONITOR/S (MONDEF)/’ mongys/Makafile |\
sed */"“MONINCLUDE/ s/monitor/$|MONINCLUDE}/' > monsys/makefile
§ Only do the moves and stuff ohce
-test -f ${5Y8)/h/ufs_sensors.h || cp h/ufs_sensors.h $(5YS)/h
~test ~f §{SYS)/h/sys_sensors.h || cp h/sys_sensors.h $(5Y5)/h
-test -f $(5Y5)/h/kern sensors.h || c¢p h/kern sensors.h ${5YS)}/h
-test -f $(5YS)/h/syslocal,.h || cp h/syslocal.h ${SYS5}/h
—tast -d §{SYS5}/5[MONINCLUDE] || mhkdir $({SYS}/$[MONINCLIE) && \
cp menitor/* §(SYS} /5 (MONINCLUDE)
-test -d fusr/inciude/$ {MONINCLUDE} (| \
{cd /usx/include; 1lh ~s $({SYS)/§ (MONINCLUDE} 5 (MONINCLUDE))
~tagt =f §(5Y5)/5(MONINCLUDE)/* . bak && /bin/rm -f ${5YS) /% (MONINCLUDE}
/*.bak
@echo *">Make: Sensors lnstalled*
~test -d §(SYS)/S(MONSYS) || mkdir ${SYS}/$(MONSYS} && \
cp monsys/* $(5YS} /% (MONSYS)
-test -f $(SYS5)/S{MONSYS)/*.bak && /bin/rm -f $(SYS)/5(MONSYS)/* bak
Becho *>Make: Making Accountant® : .
Note that Lf this 15 run twice, nothing really happens
{cd $(5YS}/5 (MONSYS); make acct; make blindprint; make shutdownacct)
fecho ">Make: Installation done, run make new or make modify=”

Create a brand new kernel - most rellable way to go
naw: S {PATCR)
fecho “>»Make; creating new system®™
Assume that 1f this iz done twice, that we should overwrite .
awk "{lf ($51 == *jdent™){printf "ident\t\L\"5(MONITOR)\"\n") else pri
nt $$0)° $({S5¥S)/conf/${KERNEL} |\
awk ‘lprint 530) /~options/ {1f (T++ == 0){printf “options\t\t${MONDEF

] S({SHORTALIGN}\n"}}* > 5(SYS)/conf/${MONITOR}

/bin/rm ~f $(5Y¥S)/conf/flles.${MONITOR}
This only makes or undates file.$(MONITGR) Lf neceasary

- {test ~f 5{5Y5)/conf/fliles,$(MONITOR) && \
grep -5 “$(MONSYS)* $(SYS)/conf/files,S(MONITOR) } i} \
sad ‘s/monsys/S(MONSYS)/* files.MONITOR \
> $(SYS5) /conf/files,${MONITOR}

=~{cd §(SYS)/conf; \

{test -d ../5{MONJTOR} || mkdlr ../${MONITOR}};\

conflg ${MONITOR})

(cd $(5YS)/S[MONITOR}; make depend > depend.out 2>&1; \
make vmunix > make.out 2>&l)

fecho ">Make; New system all done®

Modlfy an exlsting kernel -- trouble on some machines (SUN, e.gq.)
Unsupported, should do nearly the same as ‘new’, aexcept should
touch all .o files
modl fy: 5{TARGETS} $%{PATCH) .
gecho ">Make: Modifylng* §{KERNEL}
cp sedflile $(SYS)/$(KERNEL)
{cd $(5Y5)/${KERNEL]; \

char *compnamew~(char *) {cname);

H fdef DEBUG

fendif

fprintf(stderr, *In ufs sensor\n"}:

fprintf (stderr, “Sen_commands: addrl = %d, addr2 = %d, (0] = XM4x\n",

sen_commands,

&sen _commands[C],

sen commands (0]} ;
fflush {stderr};

time.tv_usec = 1500;

time.tv_sec = 1500;

p.p_pid = 12345;

u.w procp = £p7
Opensuccessful {1, 1024);
MameStart(13,2048);

strcpy (++compname, "seventy®) ;
NextComponent {13, 2048, compname) ;
strcpy (compname, *four®) ;
NextComponent {13, 2048, compname) ;
INodeCreate (13,2048} ;
INodeDelete (13, 2048);

Appendix D

20

minikernel

sys/i extern unsigned char *mon_eventvector end;
extern Int mon_eventvector_count;
extern Int mon_oflow_count?
extern unsigned short mon enablevector();
" extern unsigned char *Wraparound(};

#ifdef MONITCR

#dafine FlleClose{device, inumber, finalslize) A\
. Lf (*(mon_enablevector+0) & (l<<6)) A
README { \
if (mon_semaphoret+t == 0) \
i \
if (mon_eventvector count < A
. MON_EVENTVECSIZE - 14*2 ~ sireof {mon_errrec}) A
These are the include files for the local system call and the karnel { . A
8GNEOrS. reglster mon_putavent *reg _ptr = (mon_putevent *)mon_write ptr;\
kern_sensors.h gensors for kern * files reglster short *sen_flelds = reg ptr->flelds; \
s8ys_sansors.h sensors for sys“7 files mon_printf({*FlieCloge: mon_write ptr = %d,\t*, mon_write ptr});\
syslocal.h definitions for local system calls reg_ptr->cmd.type = MONOP_PUTEVENT_INT: \
ufs_sgensors.h aspsors for ufs_* files reg ptr->cmd.length = sen flelds+2 - {short *)req ptr; \
mon_eventvector count +» reg_ptr->cmd.length*2; \
reg_ptr->eventnumber = {short})é; \
reg_ptr->performer = 0; \
reg_ptr->objact « | {short)device<<is)| \
{ {short)inumber & OX{fff); \
L reg ptr->initiator = u.u_procp->p pld; \
kern sensors.h reg_ptr->timestamp = {int)Timaestamp: \
- *{int *) {sen_flelds) = (int)flnalslize; \
sen_flalds += 2; \
if { sen_flelds > (short *}mon_eventvector end) \
mon _write ptr = Wraparcund{{unsigned char *)sen fields);\
/* Sensor macros for the Kern process. else \
Generated from kernel.sen on June 14, 1984 {by hand). mon_write ptr = {unsigned char *)sen_filelds; \
Contains the following macros: ‘ mon_peintf ({*%d\n", mon_write ptr)); \
FileClose {device, inumbar, flnalslize) } A
./ eise mon_oflow_count+t; \
#ifdef XERNEL mon_semaphore-—; \
#inciude “../monitor/mondefs. h® } \
#include “../monitor/montypes.h* - } /* end FileClose */
¢tindef ntohs) felsa
finclude *,./netinet/in.h* fdefine FlleClose(davice, lnumber, finalsize)
fendif fendif
telse

#include <monitor/mondafs.h>
finclude <monitor/montypes.h>
fifondef ntohs

f#include <netinet/in.h>
fendi £

tendtf

#define Timestamp [lnt)(ltlmo.fv_lec «< 15) | {time.tv_usec >> 4)}

extern int mon_semaphora;
extern unsigned char *mon_write ptr;

mv makefile makefile,${KERNEL}; \

mv makefile.bak makefile.bak.${KERNEL); \

sed -f sedfile makeflle,bak.${KERNEL} > makefile° LY
make depend > depend.out 2>&1; \

make lint > iint.out 2>&l; \

make vmunix > make.out 2>&1}

Pecho “>Make: all done"

cleanmodify:
{cd ${SYS)/S${KERNEL); \
mv makeflile.$ (KERNEL} makeflle; \
mv makefile.bak.${KERNEL) makefile.bak)

PATCH:
{cd Pateh; make patch; mv pateh ..)

$ (INCLDEPS) ¢ :
$ Cnly apply changes 1f pecesary
Sorry about two negatives being regquired.
Sinte bak is the original, we don’t want to overwrite it
~test monitor = S{MONINCLUDE} (1] \
egrep -5 ‘~dincl.*[</)${MONINCLUDE}’ $8 || \
{{test ~f S@.bak || mv $@ $&.bak): \
ped ’/*#include.*{<\/)monitor\// s/monitor/${MONINCLUDE}/" 5.
bak | \
- sed */*#1fdef[|MONITOR/ s/MONITOR/S(MONDEF}/’ > 5&)

This Is vsed to modify the kernel’s makefile

S{TARGETS):: SEDFILE makeflle
echo ‘s, §(5YS)/sys/SE, $(S¥YS) /5 (MONSYS) /58,07 >> sedflle
echo 's/\!sys\/sys\/S!/\/sys\ls(MONSYS)\!$EIU' »> gedfile

#f Clear sedfils
SEDFILE:
>gedflle

This actually installs the sensors and system call support in source
$ (PATCH)::

Recho “>Make: Applylng patches*

patch §(5YS)/sys/$8 $(5YS)/${MONSYS}/$@.patch -D 9 (MONDEF} -o $(5YS)/$
(MONSYS) /50

Appendix D

shortalign.c

/* shortalign.c ~ main, sighandle */

#include <signal.h>
#include <stdlo.h>

I
| Tr—
* shortalign
" - Lf the machine requires aligned fatches, output 1s
® SHORTALIGN
* -~ aelse nothing
*
*/
main {)
{ .
statie short sarray[2]«{0,0]; /* To insure allgnment */
char *charptr=(char *)sarray;
short shold:
vold sighandle{);
/w
* Baslc operation is to misalign charptr and then cast it
* as a short, should cause a bus error if there are troubles.
*/
slgnal {SIGBUS, sighandle};
shold = *(short *)(charptr +1) 7
printf(*\n*);
i
/t
L] L
* gighandle
* - printg out *SHORTALIGN’ when called
* e S T e O T T e o e
*/
void
sighandle{)

{
printf {®, SHORTALIGN\n"};
exit (0} ;

distribution/{makefile, shortalign.cj

mon_write ptr = (unsigned char *)sen_fieids;
mon_printf ((“Sd\n*, mon_write_ptr)};
i /* and writesensoxr */
else mon_oflow count++;
mon_semaphore--;
i
)
telse
tdefine WriteSensor {device,inumber, fllepos,actualcount}
fendlf

-

ufs sensors.h

~/* Sensor macros for the UFS process.
Generated from kernel.sen on June 14, 1984 (by hand}.
June 16,1985t added macroa for char string handling for
machlnes that can’t fetch from arbitrary boundaries:

PackStr (ptr} ~ mondefs.h
NotEOS (ptr, last)) - mondefs.h
type mon string - montypes.h

All of these are dependent on SHORTALIGN
Contains the followling macros:

OpenSuccessful (mode, initsize)
NameStart {device, inumbar)
Next.Component {(device, inumber, £ilename)
INodeCreate {device, Lnumber)
INodeDelata (device, inumbar)

L

f1fdef KERNEL

finclude *. /monitor/mondefs.h*

#include *../menitor/montypes.h*

#ifndef ntohs

finclude *, /netinet/in. h*

dendif

jel se

#includa <monitor/mondefs.h>

tinclude <monltor/montypes.h>

#ifndef nrohs

#include <netinet/in.h>

fendl £

fendif

fdafine Timestamp {int) ((time,tv_sec << 15) | (time.tv_usec >> 5})

Appendix D

95

.extern int mon_semaphore;

extern unslgned char *mon_write_ptr;
extern unsignad char *mon_seventvector end;
extern int mon_eventvector count;
extern int mon oflow couht;

extern short mon_anablevector();

axtern unsigned char *Wraparound(};

/* The parametars for OpenSuccessful are:
mode 3 . mode;
inttsize ¢ ip->di_size;
*/
#ifdef MONITOR
faefinae OpenSuccessful {mode,initsize)
1f (mon_enablevector[0] & 1<<5)
{
i1f (mon_semaphoret+ == 0}
i
if (mon_eventvector_count <
MON_EVENTVECSIZE - 13*2 - sizeof (mon_errrac))
1

i i

register mon_putevent *reg ptr = {mon_putevent *}mon_write_ptr;\
\

reglster short *sen_flelds = reg ptr->fieids;
reg_ptr->cmd,.type = MONOP_PUTEVENT_INT: \
reg ptr->cmd,length = sen_fields+3-(short *)reg_ptr; \
" mon_aventvector_ count += reg _ptr->cmd.length*2; \
reg_pt r->aventnumber = (short)5: /* 1d of sensor */\
rag_ptr->performer - 0; \
reg_ptr-»>object - 0; /% no ohjlect */ \
reg_ptr->initiator = u.u _procp->p_plid; \
reg pLr->timestamp = {int)Timescamp; \
“ /Y type */ \
*sen flelds++ = {short}mode; /¢ inc */ \
*{int *)sen_flelds = {int)initsize; /v dint */ Y
san_flalds 4 2; \
if { sen flelds > (short *}mon_seventvaector_end } \
mon write ptr = Wraparound { {(unslgned char *)sen_flelds);\
else \
mon_write ptr = {unsigned char *)sen_flelds; kY
i \
else mon_oflow_count++; \
mon_semaphore--; \
} A
} /* end OpenSuccessful */
telse :
#define OpenSuccessful {mode,inicsize)
sfandlf

/* parameters for NameStart are frdm:
device ; ip->{ dev
Inumber: ip->1 number

sys/h

Eys sensors.h

/* Senscr macros for the 5ys process.
Gaenerated from kernel.sen on June 14, 1984
Contalns the following macros:

ReadSensor (device, inumbar, filepos, actualcount)
WriteSensor [device, intumber, filepog, actualoount)

*/

#1fdef KERNEL

#include *../monitor/mondefs.h”
#include *../monitor/montypes.h"
g#ifndef ntohs

#include *../netinet/in.h"
fend!irf

felse

$include <monitor/mondefs.h>
#include <monitor/montypes.h>
fifndef ntohs

#include <netinet/in.h>

fendlf

fendif

fdefine Timestamp (int) (({time.tv_sec << 15) | {time.tv_usec >> 5))

extern int mon_semaphore;

extern unsigned char *mon_write ptr;
extern unsigned char *mon_eventvector_end;
extern int mon_eventvector count;

extern Int mon_oflow_count;

extern short mon_enablevector{):

extern unsigned char *Wraparound({);

#1lfdef MONITOR

#define ReadSensor {device, inumber,fllepos,actualcount}

1f { *(mon_enablevector+0) & 1<<B)
1
1f (mon_semaphore++ == 0}
{
if (mon_eventvector_count <

MON EVENTVECSIZE - 15*2 - sizeof{mon_errrec))

{

Pl ol

reglster mon_putevent *reg ptr = {mon_putevent “)}men _write ptr;\

register short

\

mon_printf{{"ReadSensor: mon_ write _ptr = &%d,\t",

req_ptx >emd.type

tsen_ flelds = reg ptr->filelds:

- HONOP PUTEVENT INT;

reg ptr->cmd, length = sen~f1e1ds+3 - (short *)reg_ptr;
mon_eventvector_count += reg ptr->cmd.length*2;

Appendlx D

mon_write ptr});\

\
\
\

94

reg ptr->performer = 0;
reg_ptr-»eventnumber = B;
reg_ptr-robject

*{int *})sen_flelds w {int}filiepos;
sen_flelds - = 27
#sen_flelds++

elge

mon_write_ptr = {unsigned char *}sen flelds;

man_printf ((*$d\n*; mon _write ptr});
}

alse mon oflow_count+;

mon_semaphore-~;

/* end reaqsensor *I-

felse
#define ReadSensor(a,b,c, d)
fendlf

#ifdef MONITOR
ddefine WriteSensor {device, inumber, filepos,actualcount)
if {*imon_enablevector+l) & 1<<%}

if {mon_semaphore++ == 0)
i
if (mon eventvector_count <

MON EVENTVECSIZE - 15%2 - sizeof (mon_errrec)}

{

- ((short)device<<16 ¥l
{{short) inumber & Oxffff);
reg_ptr->initiator =~ u.u_proep->p pid;
reg_ptr->timestamp = {int)Timestamp;

= (ghort}actualcount;
if (sen_fields > {short *)mon_eventvector_end)
mon_write ptx = Wraparoupd{(unsiqned char *}sen_flelds)

Pl g P O i e g aid

PP A A g

register mon_putevent *reg ptr = (mon putevent *)mon_write_ptr;\

register short

*sen_fialds = reg_ptr->flelds;

\

mon_printf ({"WriteSensor: mon_write ptr w %d,\t", mon_write ptr));

reg ptr->cmd.type

req | _ptr->performer = 0;
req ptr->eventnumber = 3;
reg_ptr->object

*(int *)sen fields = (int) fllepos;

=« MONOP_PUTEVENT INT;
reg ptr->cmd.length = sen flelds+3 = {short ‘Ireg_ptr,
mon eventvector count += raquptr->cmd length*2;

- ((shortldevlce <<i6) |
{(short)inumber & Oxffff);
reg_ptr->initiator = u,u_procp->p pid;
reg_ptr->timestamp = {int)Timestamp;

sen _flelds = 2:
*sen_flelds++ = (short)actualcount;

if { sen_flelds > (short *)mon_eventvector_end }
mon write ptr = Wraparound{{unsigned char *)sen_flelds)

else

ns

P il il A gV e g e

s5ys/h

reg ptr->initlator = u.u procp->p pid; A tdefine INodeDalets {devicae, inumber)
reg _ptr->¢imestamp w {int)Timestamp; A fendif
o /*type */ \
if (sen_fields > {short *)mon_eventvectox_end) \
mon_write ptr = Wraparound ({unsigned char *ygen_fields);\
alse \
mon_write ptr = {unsigned char *}sen_fields; A
} \
else mon_oflow_count++; \
mon_semaphora--; \ syslocal.h
) \
) /* and INodaCreate %/
felse
tdefine INodeCreate{device, inumbar)
#endif /* rcsid = $Headar: syslocal.h,v 1.3 85/11/12 21:33:10 duncans Exp § */
. tdefinae SYSLOCAL 151 /* syslocal system call index */
/* parameters for INodeDelete are from: #dpfine SYSL NARGS 5 /* Max number of args allowed to */
device : 1p->i_dev /* local system calls. */
inumber: 1p->i_pumber
./ /* lpcal system calls */
fi1fdef MONITOR : #define SYSL MONITOR 1
#define INodeDelete {devica, inumbar) A\
if (*{mon_enablevector+0) & 1<<7) \
f : \
it (mon_semaphoret++ == 0) \
{ A
1f {mon_evantvector count < \
MON_EVENTVECSIZE -~ 12+*2 - slzeof (mon_errrec)) \
{ . \
reglstar mon_putevent *reg ptr = {mon_putevent 'Jmon_wrlto_ptt:\
register short tgan_flelds - reg_ptr->flelds; \
reg_ptr->cmd.type = MONOP_PUTEVENT INT; A
reg_ptr->cmd.length = sen_flelds - (short *}reg ptr; \
mon_eventvector count += reg_ptr->cmd.length*2; \
reg_ptr->sventnumber = (short)?; /% id of sensor */ \
reg ptr->performer = 0; \
reg_prr->ocbject = ({short)device<<l6} | /* int */ 0\
{{short} inumber&OXffff); Y oint w7\
reg_ptr->initlator - u.u_procp—)p_pid: \
reg_ptr->timestamp « (int)Timestamp; \
\
if (sen _fields > (short *)mon_eventvector_end) \
mon_write ptr « Wraparound{{unsigned char *}sen_fields);\
alse \
mon_write_ptr = {unsigned char *)sen flelds; \
} \
elsa mon_oflow_count++; \
mon_semaphore--; \
] \
} /* end INodeDeleta &/
felse
Appendix D 97

sys/h

*/ register mon_string sen f end = {sen f ptr+127*2/sizeof (mon_string
#1fdef MONITOR) . 1)\

fdefine NameStart (device, inumber) \ reglster short sen_length; \
if (mon_enablevector[0} & 1<<1) A reg_ptr->eventnumber = (short)2; f* id of sensor */ A
{ \ reg_ptr->performer = 0; A
1f {mon_semaphoret+ ==) \ reg _ptr->objact = {{ghort)device<<lt) | /* int =/ \
{ \ {{short} inumberc0xffff); /*int «/ N
if {mon_ eventvector tount < A reg_ptr->initlator = u.u_procp->p pld: A
MON EVENTVECSIZE - 12*2 - sizeof (mon_errrec)) \ reg ptr->timescamp = (int)O0; /% nil timestamp */ \
t \ do | *sen_fleldst+ = PackStrisen_f ptr);) \
register mon_putevent *reg_ptr = (mon_putevent *}mon_write_ptr;\ . while (NotEOD5(sen f ptr,sen f end)); \
reglster short tgen_flelds = reg ptr->flelds; \ *(sen_fields ~ 1) &= ntohs {OXEL00); \
reg_ptr->cmd.type = MONOP_PUTEVENT 1INT: \ sen_length = sen_flelds - {short *)reg ptr; A\
reg ptr->cmd.length = sen_flelds - {short *)rag ptr; \ reg ptr->cmd.type = MONOP_PUTEVENT_INT; A
mon_eventvector_count +e reg ptr->cmd.length+*2; \ reg ptr->cmd.length = sen_length? \
reg_ptr->»eventhumber = ({short}l: /* 1d of sensor */ AY mon_eventvector_count += sen_length*2; \
reg ptr->performer = 0; \ if { sen flelds > (short *)mon_eventvector_end) \
req_ptr->object = {{short)device<<i€} | f* int »/ \ mon_write ptr = Wraparound{{unsigned char *)sen_flelds}:\
{{short)inumbergOxXELEL); /* Aint »/ \ else \
reg ptr->initiator = u.u_procp->p pid; \ mon_write ptr = {unsigned char *}sen_flelds; \
reg_ptr->timestamp = Timestamp; A\ i /* if still room in vector */ ' \
1f (sen_fields > (short *)}mon_eventvector_end) \ else mon oflow _count+t; \
mon_write ptr = Wraparound{{unsigned char *)sen_flelds);\ mon_semaphore--; A
else 5 } \
mon_write_ptr = {unsigned char *)sen_flelds; \ } /* end NextComponent */ .
} \ telse
else mon_oflow_count++; \ #define NextComponent {device, inumber, f1lename)
mon_semaphore«—; \ fendlf
) \
I /* end NameStart L /* parameters for INodeCreate are from:
felse device : ip->1_dev
#define NameStart {(device, lnumber) inumber: 1p->i number
#endlf) :
#1fdef MONITOR
/* parameters for NextComponent are fromg fdeflne INodeCreate {device, Inumber) \
device : ip->l_dev if (*{mon_enablevector+0) & 1<<3) \
inumber: ip->1 number { ' \
filename: w.u_dbuff0,.15] 1f (mon_semaphoret+ == 0} \
"/ { \
#1fdef MONITOR if (mon_eventvector_count < \
#define NextComponent {device, lnumber, filename) \ MON_EVENTVECSIZE ~ 12%2 - sizeof {mon_serrrec}) \
1f (*(mon_enablevector+0) & 1<<2) \ {) \
{ 5\ register mon putevent *reg ptr « (mon putevent *)mon_write ptr;\
1f (mon_semaphoret++ =« 0} 5\ register short *sean_flelds = yeg ptr->flelds; \
{ \ reg_ptr->cmd.type = MONOP_PUTEVENT INT; \
if (mon eventvector count < \ reg_ptr->cmd.length = sen_flelds - (short *)reg_ptr; \
MON_EVENTVECSIZE -~ 260 - sizeof (mon_errrec}} A mon_eventvector_count += reg_ptr->cmd.length*2; \
{ \ reg_ptr->aventnumber = {short)3: /* id of sensor */ \
register mon_putevent *reg ptr = (mon_putevent *)mon write ptr;\ reg_ptr->performer =- 0 \
register short *sen_flelds = reg ptr->fields; - T\ reg_ptr-»object = . {{short)device<<ls) ! /* Ant %/ \
register mon_string sen f ptr = {mon_string)fllename; \ { (short) inumber&OxfLff); /% dnt */ 0\

Appendix D) 96 sys/h

struct mon_pevt . typedef struct mon_commahd mon_command;
{ .

struct mon_cmd cmd;

short eventnumnber,
parformer;

lorg object;

short initiator;

long timestamp;

short flelds (EVENT_LIMIT];

H]
typedef struct mon pevt mon putevent;

struct mon_erec
{
struet mon_cmd omd;
long val;
Ii
typedef struct mon_erec mon errrec;

struct mon_gevt
[
struct mon_cmd cmd;
- unsigned short req_length;
short . *acct_buf_ptr; /¢ This is a buffer in user’s acea */
i: . PR
typedaf struct mon_gevt mon_gatesvent;

struct mon_ragquest

short targetpid,
avent number,
enablevalua;
M

struct mon_preq
{ -
struct mon_cmd cmd;
struct mon_request req:
K
typedef struct mon preq mon putreq;
typedel struct mon preq mon_getreq;

gtruct mon_command
{
union {- - o
struct mon_cmd cmd; /* other cmds only have first 2 fields */
mon_putavent pavt;
mon_getevant gavt;:
mon_putraq’ preq;
1 w_svent;

Appendix D 99 sys/monitor

SYS/MONITOR ' tdefine MON BUFF FULL -3

$define MON_REQ NOT_FND -4
tdefine MON_NOT ACCTNT -5
#define MON_REQ OFLOW -6
#define MON INV_CMD «?
#define MON SYS ERR -8
tdefine MON_CONCURRENCY ERR -3

mondefs.h
monops.h

#) fdef MONITOR
/t
* Daclarations for the monitor system call.
*
#include <monitor/monops.h> /* operator defines and MONOPS macro * #define MONOP_INIT 9
/ ' tdafine MONOP_PUTEVENT INT 1
tinclude <monitor/monerrcds.h> /* error codes from syscall */ #define MONOP PUTEVENT_EXT 6

fdefine MONOF_GETEVENTS 2
fdefine REQ LENGTH 1024+50 - #defina MONOP PUTREQ 10
fdefine ACCT BUFFER 0x10be8 tdefine MONQP_GETREQ 11
#1fdef MONDEBUG fdefina MONOP_SHUTDOWN 12
fdefine MON_EVENTVECSIZE 35000 #deflne MONOP OFLOW 13
#define mon_print{(a) printf a /* Monltor kernel debugging statements */ #define MONOP NO REQ _ 14
felse
tdefine MON EVENTVECSIZE 50000 /* Size of vect that stores event recs */
tdefine mon_printf{a) #deflne MONOP{o, 1) {(short) (o | {1 << B)))
dendlf
fdefine MON_EVENTRECSIZE slzeof (mon_command) /* Max slze of event record */
fifdef SHORTALIGN f* For fetches that may need alliignment */
fdefine PackStriptr} { ntohs{{*ptr<<Bj | {(*(ptrx+l)}))
#define NotEOS({ptr,last) {ptr <= last && *ptr++e0xff &k *ptr++eOxfr)
delse
fdefine Packstr{ptr) ({short)*ptr} montypes.h

fdefine NotEOS(ptr,last) (ptr <= last && *ptroOx00ff && *ptr++&DxL£00)

dendlf
tendif MONITOR

fdefine EVENT LIMIT 256
#1fdef SHORTALIGN

typedef char * mon_string:
felse

typedef short * mon_string;
monerrcds.h fendif

struct mon_cmd
{
char type,

fdefine MON_ALRDY INIT -1 length;

fdefine MON_NOT_INIT -2 iz

H

uap = (struct a *)u.u ap;

switch {(vap-»callno} | /* sach case should ba #ifdef’d */
#1fdef MONITOR

cage SYSI, MONITOR:

monitor{uap->acg[t)}:
break}
tandif HONITOR
dafault:
u.u_error = EINVAL;
break:
}
raturn;
)
/Q
W
* monitor --
* The purpose of this system call i@ to allow communication
* hetwsen senstors in tayget programs and a mohltoring proceas,
* Sensors send event records to and retrjeve commands from
* monitor while the ACCOUNTANT. sends commands and retrieves event
* records, .
-
* Written by Dave Doerner for the Monitor project (C5145) 5/2/83
* Modifled by Stephen Duncan as part of MS project,
» Changed data buffer to a circular quans
" Changed to utllize structs in buffer
. Revampad much of the code: mnemonics, flow inside cases
v/
static
monitor {buffer) = /% SYSTEM CALL %/
u_char “*buffer; /* Address of command */

i

#itdef MONITOR

#tinclude <sys/kernel,h>

fdefine CALLERID u.u_procp->p_pid /* process id of caller "/

mon_command u_command;) /* Recelves command s
mon_command *u_cmd ptr = &u_comwand;

u_char sWraparound{} ; /* handles ring buffer wraparound “/

int 1, 1 /* loop temporarles *f

int cmd_lengths . /* length of command in chars LFs

int notzaro, /* booleans »/
matech;

mon_printf ((=**we2¥nagYSMON CALLED*##4dssbastdaypv));

Appendix D

if (mon_semaphore) /* concurrency check */
{
i
* A concurrency error has occurred.
* = Turn off the kernel sensors.
* ~ Raturn an error.)
* Note that until the error passes, no data can be read from
- the event vector, or added to it by PUTEVENTS., This is
* to try and minimize problems with the pointers. This
* gets clearad only when and if mon_semaphore is
» appropriately decremented. If two kernel sensors
» caused the concurrency, it will never clear, only
* rebooting will help then., Since this indicates buggy
* code, the code with sensers should be recompllied with
* the -DMON_ASSERT option.
~
for {1 = 0; 1 < MON_ENABLEVECTORSIZE; it+)
mon_enablevector(ij = 0; /* turn off sensors */
u,u r.r_vall = HON_CONCURRENCY ERR;
return;
H
alse mon_semaphore++; /¢ begin critical section »/
u.u_r.r_vall = 0; /* return val is inttiatly 0 v/

* Copy in command

* first copy in struct that starts command to determine length

* then copy in whole command overtop of the struct for that length
* Since the typa of command isn‘t known yet, the unlon versjon

* of a command lg used. This prevents any allgnment problems that
* might ocour with the structs.

mon_printf ({"buffer: Oxsx\n=, {(int) buffer)};
1f { copyln ({({caddr t)buffer, (caddr_tju_cmd_ptr, sizeof {struct mon_cwmd})

{
u.u_error = EFAULT;

u.u r.r vali = MON_SYS_ERR; /* signifies syatem error */
mon._semaphore~~; /% exit critical section */
return;

mon_printf ({“command = %d\n", u_cmd_ptr->u event.cmd.type}};
cnd length = {int)u_cmd ptr->u event.cmd.length * 2;

/* capyin deals in chars */
mon_printf {("length = $d\n*, cmd length)};

if [cmd length > MON_EVENTRECSIZE)

{
u.u _error = EINVAL: /* invalld argument to system call */

sys/monsys

SYS/MONSYS

local syscalls.c

static char resid[] = *$Header: local syscalls.c,v 1.3 85/11/12 20:35:36 dunca
ns Exp $%; '

/* local syscalls.c -- syslocal, monltor, Wraparound */
#include *../h/param._h"
#include ",./h/c¢ir.h"
#include *../h/systm.h"
#include *../h/user.h®
finclude ®../h/proc.h”
§include "../h/syslocal.h®
#include *,./monitor/mondefs.h®
tinclude "../moniter/montypes.h®
It
- -~
* This flle should contain all system calls that use syslocal.
* Each local routine should
€ - be of type statlie to prevent intérference with the
* rest of the system,
* -« have it global varlables and defines with a unique prefix
» - have #ifdefs to control 1ts compilation In the system
& -
*/
#define FALSE 0
idefine TRUE 1
41fdef MONITOR
’Q
* Declarations for the monitor system call,
o
#define MON_OFLOWRECSIZE sizeof (mon_errrec) /* In chars ~/
#define MON_ENABLEVECTORSIZE 12 /* chars in enable vector */
ddefline MON_REQLISTSIZE 256 /* No. of entries in request list */
#define MON_REQOPENSLOT 0 /% Marks open =lot 1n req. list *f
#define MON_SUPERUSERUID 0 /* uid of root */
fdefine MON_BADEID) =1 /* For marking accountant pld */

#ifdef MON_ASSERT
#define mon_assert {a,b)
telse ’ :
#deflne mon_assert (a,b)
fendif

if {a} panic{b}

,t

* monitor global ring buffer variables,
* initlalized at compile time and when
* gensors are turned OFF

*/
u_char *mon_write ptr, /* Write pointer in mon_eventvector »/
‘mon_read ptr, /* Read pointer in mon_eventvector *f
mon_eventvector_end; f First pos aftex buffer, start of appx */
int mon_eventvector_count; /% No. of chars of valld event records in mon_
- eventvector */
int mon_semaphore = 0; /* Used to- detact concurrancy */
int mon_oflow_count = 07 /% Event record overflow */
u_short mon_enablevector [MON ENABLEVECTORSIZE] ;
/* enable flags for sensors */
Fid
* Local varlables for monitor
*/
u_char mon_eventvector [MON_EVENTVECSIZE + MON_EVENTRECSIZE];
/* Event record ring buffer wf
mon_errrec mon_oflowrec = | /* Buffer full indlcator L7
{MONOP_OFLOW,MON OFLOWRECSIZE/2), /¢ struct mon_cmd «f
0 }: : /* count */
mon_errrec mon_noreq = | /* Err rec for no reg in queue */
{MONCP _NO REQ, MON _OFLOWRECSIZE/2), /* struct mon_cmd *f
0 ¥; /% pid L7
int mon_initflag = FALSE; /* initialize one time only 73
int mon_accountant_pid = MON_BADPID; /* identity of accountant ./

struct mon_request mon_requests {MON_REQLISTSIZE): /* request list for users *
7/

fendlf MONITOR

Perform local system call services
This drives all other local system calle

*
* gyslocal
*
®

syslocal{) {
register struct a [
int c¢allno; .
int arg[SYSL_NARGS);

/* SYSL NARGS is max args allowed */
} *uap;

‘n

* 5t11) room in ring buffer

. copy. in the event record, point to tha next opaning,

. handle the wraparound condition.

*/
register -on_putnvant* pevt_ptr = (monqputevent 'lmon write pt

*pevt_ptr = *{moh_putevent *ju_cmd_ptr;
mon_write ptr += cmd_langth;
if (mon_write ptr >= mon_eventvector_end)

mon write_ptr = Wraparound{mon_write ptr);
mon_svantvector_count += cmd_length;

| LSS S)
alse
i
(4. TR i
* We ran out of room in the buffer ——
* set a flag so that an arror record will
* be put in at GETEVENTS
*/

mon_oflow_count++;
u.n_r.x vall = MON_BUFF_FULL; .
mon_prlntt (|'0VERPIDH- vecptr = %D \n*",
(mon_write ptr - mon_eventvactor))):
braak;
} /% elne we overflowed*/

mon_printf {(“vacptr= ¥d \n", (mon_write ptr - mon_eventvector}));
u.u_r.r vall = 0;)
break;

i /* else we are initlalized »/

cagse MONOP_GETEVENTS:

,t N

Read all event records in vector.

Coples event records into buffer speclfied by acet_buf ptr.

Accountant only.

Returns numbaer of chars written out when successfnl,
MON_NOT_INIT 1f called before initialization
MON_NOT_ACCT 1f called ls not accountant or superuser

Handlea writing of error records.

Must handle four cases:

1) wraparound and avent count > requested
2) wraparound and event count > requested
3} no wraparound and event count |> requested
4) no wraparound and event count 1> requested
The count vs request will be handled first,
then the presence or absence of wraparound.

M N R N B R S R S

*/

Appendix D 103

1f (! (mon_initflag)) /* not initlalized
{

u.u_r.r_vall =« MON NOT_ INIT;

mon_princf {{*Not InitTallzed\n*}}:

break;

i

else 1f { | (CALLERID == mon_accountant_pid
|l v.u_uid == MON_SUPERUSERUID} }
{
u.u_r,r vall = MON _NOT ACCTNT;
break;
b

else /% all ok, proceed %/

(

L

reglstar mon geteavent *gevt = {mon_getavent *} u omd ptry

/* command is a get avent 174
register int req_length = gavt->req_length * 2;
/* requestad laength in chars */

register caddr t acct_buf ptr = {caddr_t) {gevt->acct_buf ptr);
/* ptr to atcountants buffer */

register int chay_count;

int transfer_count;

/* char count to write out “/

/* counts chars to transfar */

mon_printf ({“Read out of vector to Accountant\n®)});

if {mon_oflow_count != 0} /* ran out of room before call */

{

[L .

* Copy in error record

* treat it just like an event record
* guaranteed room for it

v

register mon_errrec *Ww = (mon_errrec ')monﬂyritq_ptr:

*w = mon_oflowrec)
w->val = mon_oflow_count;
mon_write ptr += sizeof(mon_errrec);

mon_eventvactor_count += slzeof (mon_errrec);

1f (mon _write_ptr >= mon_eventvector_ end)

mon_write ptr = Wraparound (mon_write ptr):

if (mon_write ptr >= mohn_eventvector_end
|l mon_write _ptr < mon_eventvector)

panic(*monitor: GET_EVENTS: err recd: pointers invalid\n®)

mon_oflow count = 0;

sys/monsys

u.u_r.r_vall = MON_SYS_ERR; /* signifies system error b4 mon_printf ({“Accountant is %d\n", CALLERID});

mon_semaphore--; /* exit critical sectton */ /I
return;? * Turn off kernel sensors, just in case
} */
) for {1 = 0 i < MON_ENABLEVECTORSIZE; 1++),
it { copyln{(caddr_t)buffer, [caddr t) u_cmd_ptr, cmd length) } mon_anablevector{i] = 0;
{ *
u.u error =~ EFAULT; * Initfallze request vector to all entries open
v.u r.r_vall = MON_SYS ERR; /* signifies system error %/ sf
mon_semaphore—-¢ /* exit critlcal section */ for {1 = 0; i < MON RBQLISTSIZE- 144}
return; mon requests[al.aventnumber = MON_REQOPENSLOT:
} mon_printf {{*Inittallzatfion dones oflow = %d, noreqflag = %d\n*,
mon_printf ({*length = %d\n*, u_cmd_ptr->u_event.cmd.length}): ‘ mon_oflow_count,
mon_noreqflag));
mon_printf{{"Right before switch: oflow = &d, noreqflag = %d\n®", v.u_r.r vall = MON_EVENTVECSIZE; /* return size of ring buffer
mon_oflow count, mon_noreqflag)}; w/
break;
/ll
* This switch is the driver of the system call. FEach case
* corresponds to a command. A pointer to a specific type case MONOP_ PUTEVENT INT:
* of command 1s cast to the generic command for each case. case MONOP PUTEVENT_EXT:
* The command structure and return values are command dependent. /*
*/ * Write event record in vector

Performer and timestamp fields art filled ln and
the record is put into the avent vector.

switch {u_cmd _ptr->u_event.cmd.type} *

l *

case MONOP_INIT: . * Returns 0 if the put was successful,
*
*

,* MON_NOT_INIT if before the initialization,
* Tnitialization MON BUF FULL if no room in the vector,
* The request and event record vectors are initialized. 7
* Can only be called once before a shutdown, the caller 1f (! {mon_inttflag)) /* not 1n1t1a11:ed wf
* becomes the accountant, If called a second time, {
* MON_ALRDY_INIT 1s returned. u.u r.r_vall = MON_NOT INIT;
% Normally returns the size of the event vector in chars, mon_printf ((“Not Inltialized\n')}.
L7 break?
if (mon_initflag)} /* must already be injtialized */ o
{ else
u.u_r.r_vall = MON_ALRDY INIT; t
mon_printf {(*Already Initialized\n")); registexr mon_putevent *pevt;
break;
} /*
i* * fi1}! in certaln fields of svent record
* Set Up polnters and counters for event vector *
*/ pevt = (mon_putevent *) u _cmd ptr:
mon_write ptr = mon_eventvector: pevt->performer =~ (short} TCALLERID; /* Fill in pld */
mon_read_ptr = mon_eventvector; pevt->timestamp = {long) (time.tv_sec <« 15 | time.tv usec >> 5);
mon_eventvector_end = &mMon_eventvector [MON EVENTVECSIZE); /* Generate time stamp */
mon_eventvector count = 07
mon_oflow_count ~ OF mon_printf {("Time stamp taken time= %d\n*, pevt->timestamp)};
if {{mon_eventvector_count + cmd_length < MON_EVENTVECSIZE - MON 0
mon_initflag =~ TRUE; /* records whether initialized */ FLOWRECSIZE) -
mon_accountant_pld = CALLERID; /* inltializer 1s accountant v/ ‘ && !mon_cflow_count)
Appendix D : 102

SYS/MONSYs)

next copy */

"mon_printf {{*GET_EVENT:

Appendix D

}

ir ¢
{

slse

{
}

mon_assert { (mon_eventvector_count < 0},

"monitor: GET_EVENT: wrap: vec count invalld\n®};
char _count -= transfer count;
mon_assert {({chayr_count < 0},

"monitor; GET EVENT: wrap: char_count invalidin®*);
4.0 x.r vall += tranafer count;
acct_buf _ptr += transfer count; /* adjust pointer for
}

&acctbuf= %d, char_count= &d, r_vall= &d\n
acct_buf ptr,

char_count,

u.e r.r vall));

char count > 0)

tranefer_count = char_count;

if { copyout ({caddr t) mon_read ptr,
acct_buf ptr,
char count) < 0)

u.u_error = EFAULT;
u.u r.r_vall = MON_sYS_ERR;
break;

else

,l
* Adjust pointers apnd counts,
* do sanity check.
* Note that wraparocund has already been handled.
*f
mon_read_ptr += char_count;
mon_eventyector count == char_count;
t.u_r.r_vall += char_count;

/* add count from this copy */
w.u_r.r_vall /= 2; /* convert to shorts */
mon_assert({mon write ptr > mon_eventvector_ snd

|| mon_write ptr < mon eventvector

|| mon_eventvector_count < 0

11 char_count < 8),

“monitor: GET_EVENT: invalld pointers\n"};

u.u r,r_vall -~ 0; /* didn't do anythlng */

break; /* only break in this case &/

case MONOP_PUTREQ:
I

* Write command

* This command 1s used by the accountant to enable

b kernel sensors and to put requests in to user

* programs.,

* A request is stored in the reguest vector at the first
* . avallable slot based on the targecpid.

* The acctountant usez a 0 target pid to indlcate
* that the kernel 1a the target.

* 0 If successful

* MON_REQ OFLOW if the request vector is full

" MON_NOT INIT if rcalled before initialization

- MON_| NOT ACCTNT 1f called not the aceountant or
* superusar.

Raturns

b
if (! {mon_initflaqg))
i

/* not initjalized .f

u.u_r.r_vall = MON NOT_ INIT:
mon_prlntf {{"Not Initialized\n®));
break;
H
mon_printf ((“PID of writer: wdin“,
{(mon_putreq *} {u_cmd_ptr)}->req.targetpid});
I
* Only the accountant or The superuser are allowed
*/
if {CALLERID == mon_accountant pid || u.u_uld == MON_SUPERUSERUID}
{
reglster mon putreq *preq = (mon putreq *) u cmd ptr;

if (preq->req.eventnumbar <= Q}
{

/* validate eventnumber */

u.u_r.r vall = MON_SYS_ERR;
u.u_error = EINVAL;
breaak;
}
mon_printf (({“Enabling sensors\n")};
if { preq->req.targetpld == 0 }
{

/* in kernel */

short pes = pregq->req.eventhumbay;
1f { preg->reg.enablevalue)
mon_enablevactorpos / 16]
al sa
mon_enablevectorpos / 16} &= ~{1 << {pos & 16));:

|= 1 << {pos & 16);

mon_printf{("PUTREQ: enablevector: %d pos: %d enableval: Ad®,

mon_enablavector[0) & (1<<(possl6)),
pos,
preq->req.enablevalue)};

sys/monsys

* First, calculate the number of chars to write out.
* This handles the cases relating to the size of the
* accountant’s buffer.

*/
if (mon eventvector count > req_length)
{
/0
* patermine length of events that will fit in
* reqg length integrally
v/
register u_char *p; /% ptr into vector
L4
register int accum_length = 07 /* accumulated length
L4
register int short_count = req_length / 2;
/* decremented length
®f
mon_printf ({“GET_EVENT: ->length = %d, req length = td\n",
{{struct mon_cmd *)mon_read_ptr)->length,
short_count) };
It
* while room left, reduce room and point to next recd
¥ accumulate length in accum length
* remember to handle wraparaund
*/
for {p = men_read_ptr;
short_count > ({struct men_cmd *)p)->langth;
short_count —-= ({struct mon_cmd *)p)->length
}
{
accum_length += ((struct mon cmd *)p)~>lengthy /* ghorts *
/
mon_printf(("GET_EVENT: p->len=id, alen=%d, scount=-td \n",
({struct mon_cmd *)p)->length,
accum_length,
short_count)};
p ++« ({struct mon_cmd *)p)->length * 2; /* u_chars
*/
1f (p >= mon_eventvector_end) p -= MON_EVENTVECSIZE;
char_count = accum_length * 2;
,l
* char_count now has length of whole
* recds that will fit in request
*/
} 7+ if less requested than avallable */
Appendix D 104

else /* more requested than avalilable a/
char_count = mon_eventvector_count;

/0
* Time te copy out to the user area.

* This handlies the cases relating to wraparound.
l/'

* transfer_count is amount actually transferred in a

* given invocation of copyout.

* tranffer tount is set to the size in chars of logical
* older part of the ring butfer only when therxe is

* wraparound physically starting at mon_read ptr.

mon_printf{{*"IN GET _EVENT: wrap = %d, out = %d, regq = sdin®,
{mon_eventvector_end - mon_read_ptr},
"char_count,
req length)):

mon_printf{{*Writer=%d reader=%d\n*,
{mon_write ptr - mon_sventvector),
{mon_read ptr - mon_eventvector})):

if (mon_write ptr < mon_read_ptr)

{
mon_print£((*In Wrap.\n"));
A

* Write out all or portlen of older part
*/
transfer count =
{{mon_eventvector_end - mon_read ptr} > char_count) ?
char_count : (mon eventvector end - mon_read ptr):
if (copyout {{caddr t} mon read_ptr,
{acct_buf_ptr),
transfer _count} < 0)

u.u_eryor = EFAULT:
u.u r.r vall = MON_SYS_ERR:
break;
}
alse /* copy succeeded %/
{
Vil
* Rdjust polnters and counts,
* do sanity checks
*/
mon_assert{ {tranafer count < 0},
"monitor: GET_EVENT: wrap value invalid~};
mon_read ptr +=~ transfer_counts
if (mon_read ptr >= mon_eventvector_ end)
mon_read_ptr -= MON_EVENTVECSIZE;
men_eventvecter count ~= transfer count;

s5YsS/mMonsys

* Returns 0 when successful, o I/
. MON_NOT INIT if called before initlalization, *
b MON_NOT_ACCTNT if caller ie not the accountant or * Implements wraparound for the ring buffer, The buffer
L4 the suparuser * has an extra tall equal to the length of the longest rec-
*y ¢ ord, Lf data is written in here, it i3 copled onto the
if {u.u_procp ~> p_plid =~ mon .ccgunt_ant_pld * heginning of the file. The reason for doing this iz so
{1 u.u_uld == MON SUPERUSERUID) ' * that one doesn’t have to check for the end of buffer on
{ * gvery byte of a record, only at end of write.
1f {t{mon_initflag)}) /* not initiallzed L7 * It im the responsibllity of the user to insure that the
{ * and of tha tail is respected,
u.u_r.r vall = MON_ROT_INIT: * g
mon print.t H"Hot‘. I)).ltlallzed\n"n. */
hrnk,
) u_char*
I . Wraparound{reg ptr)
* cloge down all sensora register u_char *reg_ptr; /* position In ringbuffer */
Ly i
for {1 = 0; 1 < MON_ENABLEVECTORSIZE; 144} fitdef MONITOR
mon_enablavector[l] = 0; register u char *buf_ end=mon_eventvector end; /* first pos of tall +/
mon_initflag = FALSE; register u_char *buf_ start=-mon eventvactor; /* start of buffer +/
mon_printf {{“Sensors shut down by Accountant”)};
u.u r.r vall = 0; : 1f (reg_ptr > buf_end + MON_EVENTRECSIZE || reg ptr < buf_start}
panlc("Wraparound: pointer out of range\n");
jl
* reinitlalize for next run while { buf end <= reg ptr)
*/ - *buf_start++ = *buf endtt;
mon_write ptr = mon_aventvector;
mon_read ptr = mon_eventvector; if (buf_start > buf_end + MON_EVENTRECSIZE || buf_start < mon_eventvector)
mon -ventuactor end = mon_evantvector + MON EVBNTVECSIZE:. panic{*Wraparound: polnter out of range\n®);
mon_eventvactor count = 0.
mon_orlou__counr. -0z . return{buf_start -1); /* next write pogition L74
] fendif MONITOR
alse H
u.u_r.r_vall = MON_NOT_ACCTNT;
break;
defaulc:

Y,u_r.r _vall = MON_ INV _CMD;
mon_printt {("\R#*a 2 a2 s INVALID COMMAND*##*#%% CMD = %d\n~,
u_cmd_ptr->u_event.cmd.type));
} /% End switch s/ .
mon_printf{(*At end of call: mon_oflow _count = %&, mon_noreqflag = %d\n~",
mon_oflow_count, T
mon_noreqflagl):
monh_printf({*at end of call: mon_enablevector « x\n",
mon_enablevector{0]));
mon_semaphore—-;
return;
fendif MONITOR
I

Rppendix D 107 sys/monsys

mon_printf{{"pos/l16= Ad, post%lé~ %d, Lenablevec(pos/i6]= %d\n

pos/16,

postlé, .

&mon_enablevector{pos/16])};
a2 r.r_vall = 07

/* for user preg->req.targetpid */

else

i
/Q
* Check for space in array
%/

for {L = 0; (i < MON_REQLISTSIZE &£
mon_requests[i1].eventnumber = MON_REQOPENSLOT): {++}

1f (1 = MON_REQLISTSIZE)
/* No room to store command */

{
mon_printf t{*Command quaue overflow!\n*}}?
u.u r.r_vall = MON REQ OFLOW;
}
else
{

/* put in new commands for user processes */

mon_requests(i) = preg->req;
u.u_r.r_vall = 0;
}
} /% else for user */
} /% if CALLERID */
else /* not the accountant or superuser */
{
u.u_r.r_vall = MON NOT_RCCTNT:
mon_printf ((*PUTREQ: not the accountant¥}};
return;
}

break;

case MONOP_GETREQ:

Read a request

* The request vector is searched for a reguest with

d a pid that matches the calling program.

If the search 1ls successful, copy the reguest back

" into the struct req in the command,

w clear the slot in the vector.

* elge write an error record into the event vector.

* Return 0 1f successful,

- MON_NOT_INIT if called before lnltlallzation,

. MON_REQ NOT_FNB 1f no request ls found.

*/

1f {!{mon_{nitflag)} /* not initlalized L7

Appendix D 106

u.u_r.r _vall = MON NOT_IRIT;
mon_printf {{*Not Initlalized\n*")};
i
else
{
match = FALSE:
1 =0;
while (1 < MON_REQLISTSIZE && Imatch)
{
match = {{int} mon requests{i}.targetpid == CALLERID);
1++4;
i
if (match)
i

/* Return command */

mon_getreq *greq = {mon_getreq *}u_cmd_ptx;
1-=;
greg->req = mon_raquests[l};
mon_requests{l].eventnumber = MON_REQOPENSLOT:
U.u r.r vall « 0;
}
else
t

/* Can’t find command L

mon_printf {{“Command not found in queuei\n*)};
1f {mon_oflow count == 0
&& mon_eventvector count <
(MON_EVENTVECSIZE - 2%sizeof (mon_errrec)})

register mon_errrec *w = (mon_errrec *)mon_write ptr;
*w = moh_horeq;
w=>val = 0;
mon_write ptr += w->cmd.length*2;
1f {(mon_write ptr >= mon_eventvector_end}
mon_write_ptr = Wraparoundimon write ptrj:
}
else mon ofliow _count++;
v.u_r,r_vall = MON_REQ NOT FND;
i . \
}
break;

case MONOP_SHUTDOWN:
I .
* Shut down monitoring
* The accountant should close down all sensors and call GETEVENTS
untll 1t returns 0 before calling SHUTDOWNS,
otherwise data will be left in the buffer and
will be lost.
Closes down all kernel sensors, and prevents any other command
other than init from belng execated.

= * » » %

sys/monsys

