The Display of Temporal Information

TR86-019

July 1986

Karen Shannon

The University of North Carolina at Chapel Hil
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/A flirmative Action Institution.

THE DISPLAY OF TEMPORAL INFORMATION

by

Karen Shannon

A Thesis submitted to the faculty of The University of
North Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Master of Science in
the Department of Computer Science.

Chapel Hill

July 1896

Approved by:
Lo

v
A R]

Acknowledgements

Rick Snodgrass as advisor provided valuable support and encouragement during the entire project. His
interest and guidance kept things on track. Also thanks to David Beard and Fred Brooks for valuable com-
ments on the system.

KAREN SHANNON. The Display of Temporal Information

(Under the direction of RICHARD SNODGRASS)

Computer graphics has been used as an effective medium for displaying and accessing static information
such as that found in a conventional database. Recently, issues concerning the display of temporal informa-
tion have emerged. This research has concentrated specifically on the design of a graphical system to
display temporal information. The thesis identifies the issues that must be resolved when designing such a
system. In doing so, we considered the human perception of time, the properties of the time domain in tem-
poral databases, and how the chosen representation of time can affect the perception of time.. Several
comprehensive examples show how various representations can portray relevant information. The imple-
mentation design shows the feasibility of such a system. Limitations of the system and issues for future

research are discussed.

Table Of Contents

The Approach

1. Introduction . - S
2, Issues in Displaying Informatlon

2.1. Displaying Information in Conventional Databases

2.2, Displaying Information in Historical Databases ...

2.2.1, Human Perception of Time

...

2.2.2. The Time Domain in Historical Databases

2.2.3. Representing Time

......................

2.3, SUMMATY ..oocrevrvrrerrenssseessssmsmsssmsonss reresssnersrnntanse

.................

......................

3. Previous WOTK ... veeceinerssesssessssssssssssesssmssssssss sssssssesss

3.1. Display Systems for Static Information ...eeeneosssnsne
3.2, Display Systems for Tune-Varymg Informationecoene.
3.3, SUINIMIATY ..oovvrvrressserreserssnstossrrarsnssosssbesssssasasssssensasesenessessrans
4, Overview of the Approach r st asaran
4.1, Essential Features e e s

4.2, The Three MOdEIScoeerererrermecesensereensees .

...

...

...

...

...

.......................................

4.2.1. The Data MOdelccvmmnsisiesmserecscecenarsssssnsessssseas
4.2.2. The Graphical Modelcooeereeerrrsernensansessssnas
4.2.3. The Screen Modelccvvcrsvmrvcenmensscesssesesssssases
4.3, Relationship Between the Models ... ircneceeccnconstreeranes
4.4. Representation of the Time DOmainccceverereueravereencsrsnras
4.5. The Structure of the SYSEMcceeereeeecemeerereseeresesaverermereencars

Comprehensive Examples

5. Spartan School of Aeronautics
5.1. The Database ..

5.2. Static Representatlon for an Example Query
5.3. Representing the time dOMAIRceeviiencecscniesereememsissssones
5.4. Representing Indeterminacy ..o csssssesesssssssssssrnsons
6. Football Plays verssreenetsResetban e betr e sae AR n b e b bRt st aa e Rnene
6.1. The Database eraneror e s ees eSS a e arnrareaaaai s

6.2. Representationscscsen

7. A Simple Monitoring SyStem ...
7.1, The DLABASEvvcrvarmmsirssssssssssssssssssssmssmsssssssssssssssssssans
7.2. Static Representations for Relationscecrvrmrereveessscssenn

7.3. Representing TIMEcrveneisrsrssirinns

Implementation

...

..

...

...

...

...

...

...

...

...

...

8. Building the Graphics Knowledge Base ...t nineaens

8.1 IDL NOAHOM ...l ississssssstcsscamsinmsssnsssssssssnsiasasanssssasnsren

...

R=R- RN LV T T S S]

L LI B OB e et el b ek ek b e
I I 7 S I Y T A S L S e I]

37
37
38
43
48
50
50
51
57
57
60

70
70

8.2, Description of Graphics Knowledge Baseuerecrsrnmsinnnens
8.3. Schema EdIOr .evucciisresrenmmcnsiinnsessncinienismnnsssnssenasansssesnessses
8.4. Example Transformation «....eceeececiesiessesssnmncssssssssressesssansns
9. Building the Object Frame ...
0.1. The Tuple SITUCLULEcoremrmmrisirecermsisinraesomsasssscasasasasbessnsses
9.2, The Object Frame “rerosonse

9.3. Object Synthesis - wrossesenararsseontorenss

...

...

...

...

...

..........

10. Displaying the Object Frame .. coserussmsansresinsorsasesesss

10.1. Time Display CONTOUETvevvssmrerrsrnnsersommsssrsssemmessnsesene

..............

.................

102, INtEIPreter ..ovrcorenassrs

11. Evaluation costeasntesssressasstese s ane s ns st seenspenens easasesen

................................

11.1. Status of Implementationeee...

.............................

11.2, Static Display ISSUES ..iuuereesrseisnresnisssercannssvsnsssssssnisssossansesss
11.3, Temporal Display ISSUESieoreecesssseeossnsssssesnarensnssrsensasnns
11.4. Essential FEAtUrEscccccrcommaressnsscssasacsssssesesnensssssesnasossassass
11.5. EffiCiency ceocecccrennnees renenettaserroo s bsbrsarasnas e bastenas
11.6. EXLENSIONS .vcrrriernearsrvarecres toscanenae ab LA LR R RSO be00sSeL0O RS e e RiS 0400
12. Conclusionccecveeecernenn. vermraseuenestes rn et ss e saenenassaes

Appendices

Appendix A. Graphics Knowledge Base ... oo,
Appendix B. OBJect FIAME oo v esssnsssecseresssemsnssasinise s sessssnss

Appendix C. Tuple Structure .

Appendix D, Schema Editor Cormnand Syntax ...
Appendix E. Schema Editor Commands for Examplescceceeeseriererreenas
ADPDPENAIX F, GIOSSATY cuovuvesirscresscmsessacssessssossssnsrsomisosssssssssssssosssossssssnnes

BibiHOSIADNY ecuiososecrrrinsnssnmsssissensssssossssssesssnessssssonsrsas sessnrassrsssssesms sssossaes

iii

...

...

...

...

...

...

..

..

72
77
g0
86
36
38
89
93
93
94

{031
101
101
103
105
106
108
110

112
115
116
117
119
129

132

Figure 4.1 : An Example Interval Relation ... cesisissorenseens rerrvsens et veees
Figure 4.2 : An Example Relation Schema -

Figare 4.3 : Interaction Between a Database Schema and the Database It Deﬁnes
Figure 4.4 : An EXample ODJECEcccmimesimmicnisisnssemsaissssairasrasssesrastocssssssssssssamssssssnssssensmn sassassnansas
Figure 4.5 : An Example Object Template : Cert e s s s e b e nnsnens
Figure 4.6 : Windowing an Icon within the Object Coordmates
Figure 4.7 : Interaction Between Graphics Knowledge Base and Object Frame it Deﬁnes S
Figare 4.8 : Interaction Between a Screen Template and the Screen it Definesocceeeevinvvnicnnnce.
Figure 4.9 ; An Example Screen Template ..ccecrnncesecsrasersrsescnn - ermreressinaes
Figure 4.10: An Example Screencoeieeeens - reerstaveben e erentesssnaneanesesnats S
Figure 4.11: Interaction between Model Definitions - rerrererae st sesnsrspeeee senaensasrans
Figure 4.12: Interaction between Model Instances vttt eaaesaen e snt s e aRen st r et e srans
Figure 4.13: Expanded Object TEMPIAe ..o veemessice e resessssisesormrmemssssssstisossememsscsssssisesasesensrssens
Figure 4.14: A Constructed Object Contained in a Unit Square of the Screen. . oooccevvieececrssrenenns
Figure 4.15: An Object With a Height of 3 and 2 Width 0f 2.eueeeeceeenevescemmeresessssesresssessssmssene
Figure 4.16: Variations in the Perception 0f TIIMEccweecreemiviriesesresersssenssasssssmssressssssassssssasasssesasses
Figure 4.17: Prototype Display System ArChIlECIUIR ..cvirmrmnsinmmrerserimmsnsnsmsmsssnsssanssssnsmsrsssssiinnns
Figure 5.1 : An Example Query . earaestretsyr st SR ehs b b et a4 e e
Figure 5.2 : The Plane Icon erernbss et neras et A b s asean
Figure 5.3 : Additional Icon Representation for Model Cessna 414 Aouimcnenrvennssersrssassnsmnnenes
Figure 5.4 : Additional Icon Representation for Model Piper Archerdlovviiciiccrnrnransnisincrenniene.
Figure 5.5 ; Additional Icon Representation for status = inrepair .o,
Figure 5.6 : The Static Representation at 8:00 AM ... reevveiresrecmnrnesennenrsesesosesssessssaonsrscessssenseas
Figure 5.7 : Progression of States Using Animation and Clock Icon to Represent Timeveveenee
Figure 5.8 : Status Of CeSSIT ...covriiriernrmrosssormismsassssastossssssnmme s smestossssssrresssess stost ssesesssssatatsisssnssasrens
Figure 5.9: Representation for Status of CessIlcieiiiniinmimnccsinnimmen s sssssssea s sessorssessasases
Figure 5.10; A Query on Relation flights

Figure 5.11: Representation of INAELEIIMHNACY ...ecorvorisrcsencorscremmsstiineseseseemssasisnnsrrerses s sesssstsesesnesenes
Figure 6.1 : First GAMNE PLAYS coccoccecierrrsiomncernr s saststsesnmentesesess s b et asas sesoast b bt eovaronsesee s sssis sessnenras
Figure 6.2 : Representation Using Lines Plotted Against a Time AXISccooocemivvnvenrvnsssesssinsennene
Figure 6.3 : Total Distance from Playsceinsmimisimsssi i sensessss st sssinssssssssssssanses
Figure 6.4 : Representation Using A Bar Chart Plotted Against a Time AXIS .evvieveveiesvermssrisenn
Figure 6.5 : First TOUChAOWD PLAYScooireiisivnrrorrsennsimsissssorsreansssssassssssserarsssssiess ssssssnsne sesssssssiassnsss
Figure 6.6 : Succession of States USING ICONS ..u.vuuuirermrisurssssenssssssssmsssmassssssssssssossssssasssssssssasessseeses
Figure 7.1 : Entity Relations of the Monitoring System Databasecoceomeeeavieserrsrrceamesssisrncreseneas
Figure 7.2 : Relationship Relations for the Monitoring System Databaseccccovervierensrsassrncnan,
Figure 7.3 : Static Representation of the Monitoring Database Entity Relationsciviceenicnins
Figure 7.4 : Static Representation for the Relationship Relations at 2:51:13ovveceivinremrnvincinennnn:
Figure 7.5 : Progression of States Using Animation and Digital Clock ICON co.cvvevcveniniiiinissinnnns
Figure 7.6 : Progression of States Using Animationtrace and Digital Clock Iconcccovvviniiiniins
Figure 8.1 : Building the Graphics Knowledge Basecccvmirrnaninsncsimsssessscsmessssssssssrssnens
Figure 8.2 : Object Template for airplanestatius o sssssi s
Figure 8.3 : Actions for Finite Attribute Pairmodel = 4144 ..

Table Of Figures

iv

16
17
18
19
20
21
2
23
24
24
26
27
28
29
30
33
34
39
39
40
41
42
43
44
46
47
48
49
51
52
53
54
55
56
59
60
62

63
67
70
81
82

Figure 8.4 : Action for Finite Attribute Pair model = ArcherII ..

--

Figure 8.5 : Actions for Finite Attribute Pair status = inrepalr ..

Figure 8.6 : Representation for Infinite Attribute plane ...
Figure 8.7 : Representation for TIMe ...cecvecccammsessssonasessessnoscsssssmssens

Figure 9.1 : Building the Object Frame .

Figure 9.2 : An Example Relation

Figure 9.3 ; Tuple for CessI

.................

Fignre 9.4 : Creating an Object for each Tuple

Figure 9.5 ; Sharing Object Template Attributes

.............................

Figure 9.6 ; The Object for Cess T i

..................................

Figure 10.1: Displaying the Object Frame

.............................

D T T E Y P T P T Y T

Figure 10.2: Viewport for Entire Screen

Figure 10.3: Viewpott for ObJECLuvvreniimsnsiiemsssssiserssssmssssssinrsenes
Fignre 10.4: Object Coordinates Within Viewport

....................................

--

Figure 10.5: Polygon Drawn Within Object Coordinates -
Figure 10.6: Sequence of Primitives for ICOncccocemveceercromreersnens

..

Figure 10.7: Generating a New CPT

Figure 10.8: Transformation of Polygon Pointsccccceecvrernens

.............................

Figure 10.9: The Jcon Representationcocecomeeeeseenens

.......................................

Figure 11.1; Time for Displaying Tuples of Relation alrplanestatus

83
84
84
85
86
87
88
39
50
92
93
95
96
96
97
97
o8
98
98

The Approach

This part discusses an approach for designing a graphical system to display temporal information.
The actual approach is discussed in Chapter 4. Chapters 1-3 provide background material. Chapter 1 gives
an introduction and explains the various categories of databases. Chapter 2 discusses the issues in display-
ing both static and temporal information. Chapter 3 gives an overview of previous research in the areas of
static and temporal information display and identifies directions for future research. Finally, Chapter 4 out-

lines an approach for the design of the graphical system.

CHAPTER 1

Introduction

Computer graphics has been used as an effective medium for displaying and accessing static infor-
mation such as that found in a conventional database [Herot, et al 1980). Graphical representation of data is
useful in conveying information because pictures are processed by the brain much faster and with more
. accuracy than their equivalent text [Lodding 1983}, Computer graphics also allows one to view the same

data in a variety of ways, thus emphasizing different trends and relationships.

Recently, issues concerning the presentation of temporal information have emerged. Databases can
be classified into four types based on their support of temporal information [Snodgrass 1986]. These types
are static, rollback, historical, and temporal, S‘tatic databases are updated by replacing informaﬁon result-
ing in data values only at the ‘‘current’’ time. Rollback databases contain all past states of the static data-
base as it is updated over time. All information is associated with a transaction time, the time it was stored
in the database. Historical databases contain the time when the information being modeled was valid,

termed valid time. Finally, temporal databases contain both valid and transaction time for information,

This thesis is concerned with the graphical representation of valid time although similar techniques
can be used for representing transaction time. Therefore, we use a historical database to model data. Our
research has concentrated specifically on the design of a graphical system to display temporal information.
We identify the issues that must be resolved when designing such a system. In doing 50, we considered the
human perception of time, the properties of the time domain in temporal databases, and how the chosen
representation of time results in a different perception of time. Our approach in representing both static
and temporal information is to provide the flexibility to view data in several ways, thus emphasizing dif-
ferent aspects for different applications. Several comprehensive examples show how various representa-

tions can portray relevant information. The implementation design shows the feasibility of such a system.

Included in the design is the specification of a language used to interactively associate graphical aspects

with data and with time. Limitations of the system and issues for future research are identified.

Part 1 gives an overview of our approach. This chapter provides a general introduction. Chapter 2
discusses various issues relating to the display of static and temporal data. Chapter 3 gives an overview of
previous research in the area. Chapter 4 outlines an approach for designing a graphical system to display
temporal data. Part 2, containing Chapters 5, 6, and 7, presents several comprehensive examples. Paﬁ 3
discusses the implementation of the prototype system. Chapter 8 describes the underlying data structure,
Chapter 9 gives details on the graphical language. Chapter 10 desribes the time displayer and Chapter 11
discusses the Interpreter, “The chapters in Part 4 evaluate the prototype system and suggest areas for future |
research. Appendices A, B, and C give the specification of three important data structures. Appendix D
gives the BNF for the Schema Editor cormmands. Appendix E contains the complete example commands

from which portions appear in the text.

Words or phrases denoting important concepts appear in ifalics when first introduced. These words
also appear in a glossary at the end of the text. In the .example; and running text, user input appears in
fixed-width £ oﬂt. All keywords in the graphics language and temporal query language appear in
fixed-width bold. Figures contain a combination of fonts. Keywords appear in fixed-width
bold. Values which can be specified by the user appear in fixed-width font. Tables within figures

are in Roman font, Al other text is in Roman font.

CHAPTER 2

Issues in Displaying Information

A graphical system can provide a user-oriented display of the information in a database by providing
the flexibility of presenting the same data in various ways depending on the user’s needs. This flexibility,
however, creates several problems for the designer of the system. The following section examines the
issues in designing graphical displays for conventional databases. The next section discusses the additional
problems encountered when extending this system to display temporal information. The last section sum-

marizes the study.,

2.1. Displaying Information in Conventional Databases

The issues in designing a system for displaying information in a conventional database relate to the
representation of the data, the overall layout or presentation of the data, and the efficiency of the display

system [Newman & Sproull 1979].

There are sevefal issues to consider when graphically representing data, First, a representation must
be chosen so that data is displayed in the most effective way. The image must carry a specific message.
This is difﬁcult because often the ideas of the designer of the image are very different than the ideas of the
user. Another problem is that some images convey undesirable messages or can have different meanings in
different contexts {Lodding 1983]. Secondly, relevant attributes of the data must be displayed to differen-
tiate between distinct data vaiues. A display sﬁould also provide several alternate representations of the
data. Different tasks may need to emphasize different attributes of the Same data. Also, there is sometimes
the need to present the same data at different levels of detail depending on what aspects of the data are
most relevant to the task, Finally, the display should allow the interactive creation of representations for

new data, namely new data derived by querying the database. It may not be reasonable to provide defined

representations for every possible derived entity.

The second area in the design of graphical display systems relates to the overall layout or presenta-
tion of the data on the screen. First, there is the consideration of limited screen space. Given a large set of
data representations which do not fit on the screen, the system must determine which portions to display.
Nexi, the overall layout must preserve any implicit relations among data values. The data must be
presented in a manner that does not obscure these relationships, Finally, the size of each data object must
be large enough for it to effectively convey a specific idea. The system must be aware of the size ‘and reso-

lution of the display in order to effectively display each data value.

The final area in the graphical system design is the efficiency of the graphics display system. The
graphics systemn must be efficient enough to use interactively. Hence, the response time between the input
command and the reflected changes in the displayed information must be kept to a2 minimum. In many
situations, tradeoffs between complexity of pictures and time to generate pictures must be made. In an
interactive system where response time is especially important, the complexity of the pictares must be
compromised. However, overly complex images should be avoided anyway when conveying messages

[Lodding 1983].

2.2, Displaying Information in Historical Databases

The issues relating to data representation, data presentation, and system efficiency are also apparent
when designing systems to display temporal information. In addition, several other problems arise when
determining a representation for the time domain of the data. The following section discusses the human
perception of time, The next section explains the properties of the time domain in historical databases.

Finally, the last section discusses the issues involved when representing the time domain.

2.2.1. Human Perception of Time

An investigation of the display of temporal data would not be complete without some insight into the
human perception of time. A major difficulty in determining a representation for time is that time is per-
ceived differently by different people and even differently by the same person when subjected to various
environmental conditions. Therefore, like a verbal description of time, a pictorial description can be limit-

ing and difficult to understand.

An analysis of the human perception of time is quite complex. In this section, we greatly simplify it

for our purposes. A complete analysis is beyond the scope of this research.

For purposes of this research, we divide the concept of human perception of time into two areas:

« how one experiences time
« how one describes time

The first area, the experience of time, is important because it affects how one interprets temporal informa-
tion. Since we are conveying information to people, subjective time is more important than actual time, The
second area, the description of time, is important because, ideally, we would like to represent time in a way

which is equivalent to its verbal description.

One does not directly experience time but rather experiences particular sequences and rhythms, A
person’s awareness of time is based on their attention to the number of changes which occur in a given
time interval. The more attention paid to time, the longer it seerns [Whitrow 1980]. For example, an hour
lecture seems very long when one looks at their watch every 5 minutes. The same amount of time seems

much shorter when one’s attention is on a specific activity, such as a basketball game,

There are two fundamental ways in which time is experienced [Shallis 1983]. Sometimes it is per-
ceived to flow where the passing intervals of time (seconds, minutes, days, etc.) are endless. This
corresponds to a time interval in which perceived changes are gradual, for example, the sun rising and set-
ting over the interval of a day. The second way time is experienced is as a separation of events making
past, present, and future distinct. An example is a day at work with meetings scheduled every hour in dif-

ferent conference rooms, Each meeting is distinct from the previous meeting and the next meeting.

A description of time can be in terms of duration or succession. According to Kummel, neither
duration nor succession alone can describe time since duration without succession becomes a static picture
and succession without duration contradicts the notion of an event existing in time [Kummel 1966]. How-

ever, we can emphasize either duration or succession when describing time,

To emphasize duration, there must be a coexistence of past, present, and future, Time perceived as a
line as in a space-time diagram gives this coexistence but transposes time into a spatial image. A spatial
description of time has the implicit assumptions that time can be spatialized and that it is linear, continuous

and connected. These assumptions have been necessary for scientific convenience but are not necessarily

accurate in a more philosophical description of time. This is because time has the additional property of
unidirectionality which space does not. That is, there is a recognition that time only flows in one direction,
forward. Objects may be still in space but are always continuously moving in time [Shallis 1983], A spa-
tial description of time, therefore, is adequate only when expressing static durations, Within this duration,
however, is the image of a point in successive positions along a line thus giving a description with both

duration and succession [Kummel 1966].

A time description emphasizing a succession of events implies that time is associated with change or
motion. A representation of motion assumes that time is not an independent characteristic of an event but
rather a way to describe the relations between events, reinforcing the concept that one does not directly
experience time but rather experiences changes. Whitrow states, ““it is not time itself but what goes on in
time that produces effects’® [Whitrow 1978]. A description of time as motion also has limitations as does
the space-time diagram. Since time seems longer when more attention is paid to it, representing time with

motion can possibly distort one’s estimation of time.

From this brief study, we concluded that there is no single perception of time. Time is experienced in
different ways depending on the events happening in time. Time is also described in different ways
depending on the application it is used in, This conclusion had a great impact on how we chose to graphi-

cally represent time,

2.2.2. The Time Domain in Historical Databases

Historical databases contain data valid at particular times. Changes to the database are performed by
adding information rather than replacing information giving a progression of data values over time
[Snodgrass 1986]. This can be contrasted with conventional databases which only contain data valid at the
*‘current’’ time,

The time domain of data can be one of two types, event or interval. An event is only valid at an
instant of time while an interval is valid between and including two events.

Adding a time domain to data may result in instances of incomplete or incorrect information. This is
because an event may not occur at a specific time or this information may not be known. Therefore, data

returned from a query can be considered as true or indeterminate. An indeterminate event may represented

by three consecutive time intervals. The first interval is the time it is possibly valid, the middle interval is

the time it is definitely valid, and the last interval is the time it is possibly invalid [Snodgrass 19821

2.2.3. Representing Time

Determining the one representation of time is analogous to finding the perfect phrase to describe it.

Time is different things to different people and has different meanings in various applications.

Representing the time domain in temporal databases involves choosing a representation for events, a
representation for intervals, and a representation for indeterminacy. Several questions arise, In the follow-
ing discussion, the term event is used to refer to data with a time domain of type event and the term interval

is used to refer to data with a time domain of type interval.

(1) Representing one event

An event cannot be represented as static data because this contradicts the notion of an event
existing in time. An event really has a duration equal to the smallest time unit in the database,
Another issue is that time is not really an independent characteristic of an event like other attri-
butes but rather a way to describe the relations between events. How is time shown when there
are no other events to relate to?

(2) Representing one interval

In an interval, there are two properties that can be shown, The duration or length of time can be
shown and the actual starting time or stopping time of the interval can be shown. In some appli-
cations, the duration is important. In other applications, the starting or stopping time is impor-
tant. In still other applications, both are important.

(3) Representing a sequence of events

In this situation, we have a succession of ordered events, where the duration between events is
measurable. If the succession should be emphasized, the representation of time can be associated
with motion making past, present, and future distinct. However, if the duration is also important,
this may not be an adequate representation.

(4) Representing a sequence of intervals

In this situation, we have a succession of intervals ordered by starting time where the duration
between intervals as well as the duration of overlapping intervals is measurable. Again, there are
several properties that can be shown. The duration of each interval can be compared. The start-
ing or stopping time of each interval can be compared thus reducing the sequence to a sequence
of events. The duration between intervals can be compared. Finally, any combination of the
three can be compared. Again, it reduces the problem to one of emphasizing duration, succes-
sion, or both.

(5) Representing a sequence of events and intervals

if there does not need to be a distinction between events and intervals, the problem is the same as
representing a sequence of intervals where each event has a duration equal to the smallest time
unit in the database, If there should be a distinction, then a representation must be chosen that
differentiates between the two, This involves emphasizing duration.

(6} Representing indéterminacy

If an indeterminate event is represented as three time intervals, a representation must be chosen
for the ‘‘possibly valid”’ interval, the ‘“‘definitely valid’’ interval, and the ‘“‘possibly invalid”
interval. If indeterminate data does not need to be distinguished from true data then all three
representations can be the same, If a distinction should be made, the representation for the *‘pos-
sibly valid’’ interval and the “‘possibly invalid’’ interval must capture the inherent nature of
indeterminacy. That is, the representation must portray the uncertainty in the data.

The quesﬁc;ns above are concerned with representing time in terms of its description in that choosing
a representation involves choosing to emphasize dﬁration, succession, or hoth, Also relevant is representing
time in terms of how it is experienced. Should it be perceived to flow where the changes are gradual?
Alternatively, should the events be separated by making distinct changes? Choosing particular representa- -
tions for time can make these changes more or less distinct thus portraying a different experience of time.
Also related is how the representation of an object changes over time. For example, if an object changes
position over time, time will appear more separated. Alternatively, if an object intensity changes gradually

over time, time will be perceived as flowing.

2.3. Summary

This chapter identified tﬁe issues that must be resolved when designing a display system for é tem-
poral database. The issues in displaying information in a conventional database are choosing a representa-
tion for data and determining the layout of the data while keeping the system efficient enough to use
interactively. The issues in displaying informaticn in a temporal database include the issues in displaying
static information plus a consideration of the human perception of time, the properties of the time domain,

and the problems encountered when representing time domains.

The human perception of time relates to how one experiences time and how one describes time.
Time is experienced as flowing or as a separation of events. Time is described in terms of duration and/or
succession. Representing time in a temporal database involves choosing a representation for events, inter-
vals, and indeterminacy. The representation chosen can emphésize duration, succession, or both. In addi-

tion, a representation can make time perceived as flowing or as a separation of events.

From this study, we concluded that there is no ““one’ representation of time that could suffice for all
situations just as there is no *‘single’” perception of time. Our approach for representing temporal informa-

tion, encompassing many representations of time, is outlined in Chapter 4,

CHAPTER 3

Previous Work

Much work has been done involving the use of graphics with databases. In addition, some research
has been done in the area of disphying time-varying data. The next section describes relevant graphicél
display systems for static data emphasizing the techniques used for the representation and presentation of
the data. The following section discusses the representation of time in display systems for time-varying
data. The last section summarizes the current state of the art and presents areas which require further

research.

3.1, Display Systems for Static Information

The Picture Building System (PBS) [Weller & William 1976] uses a relational database to store
graphical descriptions of data in addition to storing the data values. The graphical descriptions can contain
graphic primitives and references to other predefined objects. Storing graphical data in a relational database
allows data objects to be displayed directly from the information in the database. This makes the data
independent from application programs, permitting different logical views of the data, Unfortunately, the
execution efficiency when using a relational database to store the graphical descriptions will always be less
than when using tailored data structures, This system has different goals than ours in that it is primarily

~ concerned with the storage and retrieval of graphical information rather than other types of information.

Another area of fesearch is in spatial data management which is the technique of accessing data
through its graphical representation, Two overlapping projects were funded by the Cybernetics Technology
Office of ARPA, one in 1976 and the other in 1977, In the first Spatial Database Management System
(SDMS) [Donelson 1978], the database is presented to the user on a six foot by eight foot rear-projected

color television display. Moving about the data surface is accomplished by joysticks and a touch sensitive

screen. Sound and sensation are also used to manage the data. The second SDMS [Herot 1980] also allows
browsing through the database without the use of a formal query language. This system uses two screens
for the graphical output. One screen contains a world view of the data and the second screen contains a
specific view corresponding to a highlighted rectangle on the world view screen. The user can move this
rectangle, thus changing the specific view, and can also vary the detail of the specific view by zooming in
and out. Both SDMS systenis use icons (symbolic pictures) to represent data oﬁjects following the princi-

ples for effective display of data documented by Morse [Morse 1979].

A disadvantage of the SDMS is that the representation of the data is fixed so the user can only view it
in its predefined representation rather than viewing it in different ways depending on the task. Efforts to
remove this limitation led to the View System [Friedell, et al 1982] which augments the SDMS with the
ability to dynamically generate icons as they are required. The View System provides the ability to choose

the attributes of the object to be displayed as well as providing a choice of several predefined views of the

object.

Another systemn which uses the concept of spatial data management is the Automated Desk [Yedwab,
et al 1981]. This system is used to access pfogmms and data of alarge computer thus s.implifying the learn-
ing process for new users of the operating system. Programs and data are displayed on a large spatial sur-
face called the desk top. This surface is larger than the screen window so particular portions of the desk top
are displayed by scrolling across the surface. There is an additional provision to show an undetailed view
of the whole desk top. The system also provides interactive creation and deletion of objects. New objects
are created by specifying the shape, border character, 1abel and program to be executed when the object is

picked. An object is deleted by invoking the delete command and then pointing to the object.

The spatial data management systems provide easy retrieval of information without a precise
specification of the data. However, these systems are more suited for browsing through the database than
for locating specific information. Complex queries still require the use of a database query language. The
spatial organizaﬁon of the data with vartous levels of detail provides a possible solution to the limited
screen space problem but is somewhat restrictive in its presentation of data. Certain databases could not be
effectively displayed with this organization, Also, the use of multiple screens makes the sttem device-

dependent which is a disadvantage for a general purpose display, A third limitation is that there is no provi-

11

sion for dynamically changing a graphical view at the request of the user, although the View System does

provide several predefined views.

Another relevant area of research, investigated by Friedell, one of the designers of the View System,
is the automatic synthesis of graphical object descriptions [Friedell 1984]. Friedell describes a technique
for automatically s&nthesizing graphical object descriptions from a high-level object specification called a
quasi-description. A quasi-description gives the identity of the object type and the identity and values of its
important descriptive attributes, A graphics knowledge base gives the graphical information necessary for
the synthesis of the object given its type and attribute values. This technique was used in the implementa-
tion of the View System. While it provides an effective mechanism for associating graphical aspects with
existing entities and attributes, an apparent limitation is that there is no mechanism for dynamically gen-

erating representations for new entities.

3.2. Display Systems for Time-Varying Information

The display systems for time-varying data incorporate some of the techniques used for displaying
static data. In addition, animation is used to display the time domain. The foilowing section describes 2

graphic system for displaying temporal data and several systems for program visualization.

An existing graphical display system for time-varying data is the Modal Data Management Graphical
Interface (MDM/GI) [Ariav & Morgan 1982]. This system provides an animated presentaticn of time-
oriented data. The data objects are represented as icons. The data and the associated icons are stored in the
MDM database, The system provides control, such as direction of movement and speed of movement, over
the displayed sequence, In addition, 2 *“Time-Icon’’ is displayed on the screen showing the time each event
occurs. This icqn can be a calendar page, a month scale, or a clock face and can be chosen by the user or
provided as a default based on analysis of the time domain of the retrieved data objects. Although the
MDMY/GI focuses on the dynamic presentation of temporal data in its prototype implementation, Ariav
mentions other techniques which coyld convey time. One is a three dimensional representation where
present events are closer to the user than previous events. Another is a color coding of time where present
events have increased intensity and previous events are faded. A third technique uses line or bar charts

plotted against a time axis.

12

Research in the area of program visualization 1s also somewhat relevant. A graphical system for
algorithm animation is a typical example [Brown & Sedgewick 1984]. This system graphically represents
fundamental characteristics of algorithms and displays the algorithms in execution. The user has the capa-
bility of controlling the execution of the algorithms and changing the presentation of the views. In addition,
the system is implemented on a workstation with a bitmap graphic display which provides the capability to

create different view windows,

Another system for program visualization was developed to support software development [Kram-
lich, et al 1983]. This system provides a graphics editor to create, edit, and view static diagrams, a dynamic
object controller to bind the diagrams to the program code, and a design database where these diagrams are

stored, The user can shift between an overview level and a detailed level and can control animation speed.

Like the MDM/GI system, the two program visualization systems provide only one representation
for time. This does not provide the flexibility needed for viewing time differently depending on the task.
The graphical representation of the algorithm is also fixed limiting the user to a description which may not

highlight the most relevant issues.

3.3, Summary

The graphical display systems described above have presented possible solutions to some of the
problems in graphical display. The Picture Building System and Friedell’s technique both provide a
mechanism for associating graphical aspects with entities and attributes. The spatial database management
systems provide several levels of detail for the same view as well as providing one solution to the problem
of limited screen space. The time-domain has been represented using animation in both the MDM/GI and

program visualization systems.

The limitations of these systems highlight some problems which require further study. First,
representations for derived and existing entities need to be generated interactively. Secondlj, more tech-
niques for handling limited screen space need to be investigated for their applicability to various tasks.
Finally, more research needs to be done for solving the time representation problem. A representation for
events and a representation for time intervals must be provided as well as a representation for indeter-

minate data. Also, these representations should be different for different applications,

13

CHAPTER 4

‘Overview of the Approach

Because temporal information is a generalization of static information, a graphical system used to
display temporal information should be a generalization of a graphical display system for static informa-
tion, This graphical system should provide capabilities for graphically representing data in two dimensions
on a high resolution display and should manage the layout of the data in an effective way. It also should be
efficient enough to use interactively. In addition, it should provide capabilities for displaying time domains

and indeterminacy.

Our research has concentrated on those issues relevant to the display of temporal information, though
portions also apply to the display of static information. In particular, the scope of the investigation was lim-
ited to techniques for representing the time domain, Since these techniques are generalizations of those

used to display other attributes of data, they can also be effective when used to display static information.

This chapter gives an overview of the approach taken in designing our graphical display system for
* temporal information. The techniques described assume a temporal relational database. However, the tech-
niques can be generalized for use with any of the database models. The first section discusses the essential
features for our approach. The next section discusses the data model, the graphical model, and the screen
model with the third section explaining the relaﬁonship between the three models. The fourth section
discusses the representation of the temporal portion of the data. Finally, the last section describes the struc-

ture and main features of the prototype display system.

4.1, Essential Features

QOur research has built on concepts from the systems described in Chapter 3, especially the MDM/GI

system [Ariav & Morgan 1982] and object synthesis techniques [Friedell 1984]. This section describes the

essential features of our approach and how each relates to previous work.

(1} Iconic representation of objects

)

Iconic representation of data objects was used in each system described in Chapter 3. This
feature has been shown to be effective in these systems.

Graphical data independence from application programs

Graphical data independence exists in the PBS [Weller & William 1976], the View System
[Friedell, et al 1982], and in the MDM/GI [Ariav & Morgan 1982]. In the PBS and the MDM/GI
the graphical data is stored in the same database as the data it describes, In the View System,
graphical data is stored in a separate structure. In our system, graphical data is also stored in a
separate data structure, We chose not to store graphical daia and and other data in the same data-
base for two primary reasons. First, a specific data structure for graphical information allows fas-
ter access t0 information than the operations for a relational database. Since it is known which
items are accessed most frequently, the data structure can be tailored so that these are done very
efficiently, Also, separate structures allow concurrent accessing of data and graphical descrip-
tions. Secondly, a separate data structure allows different users to create their own description
files when accessing the same database. This allows the same database to be used for applications
which require different graphical views.

{3) Multiple views

G

&)

In the PBS, the View System, and the MDM/GI the representation of data is not fixed. The user
may select both the data and the attributes to be displayed. The View System also gives the user a
choice of different representations for the data. Our system extends this feature by allowing the
user to interactively create their own description of the data.

Automatic Synthesis of Graphical Object Descriptions

The View System uses techniques for the automatic synthesis of graphical object descriptions
from a high level specification. The graphical description is built when given the identity of the
object type and the identity and values of its attributes. Our system uses similar techniques. The
advantages are twofold. First, it allows interactively generating descriptions for new entities,
Secondly, it allows a major portion of the system to be device independent.

Graphical Representation of Time

The MDM/GI, algorithm animation [Brown & Sedgewick 1984], and the program visualization
[Kramlich, et al 1983] systems display time using animation. In each system, the user may con-
trol both the direction and the speed of the motion. In the MDM/GI a time icon is displayed to
give the user a reference point. Our system augments this feature by providing other representa-
tions for time as well. These are described in detail in Section 4 4.

4.2. The Three Models

Much research has been done in the area of information processing. Information processing is con-

cerned with providing both a structure for information and ways to manipulate that structure. For our sys-

temn, there are three major types of information to process. First, there is the data that we want to display.

Secondly, there is the graphic information necessary to display the data, Finally, there is the layout infor-

mation necessary to effectively present the data on the graphics screen. This section describes the concep-

15

tual models used for each of these information types in three separate subsections. Section 4.3 discusses

their interaction.

4.2.1. The Data Model

We can think of a data model as consisting of two elements. The first element is a mathematical
notation for expressing data and relationships between data. The second element is a set of operations on
the data. These operations include queries and other manipulation of the data [Tsichritzis & Lochovsky
1982]. For data, we use the relational model [Codd 1970], extended to include time, The first element of
the model, the mathematical notation, is the set-theoretic relation. A relation is a subset of the Cartesian
product of a list of domains {Ullmann 1982]. A domain is a set of values such as integers or character
strings.

In the relatdonal model, information is stored in relations. A relation can be viewed as a table where
the rows are called tuples and the columns are called artributes. The relation in Figure 4.1 contains three
explicit attributes (plane, model, status)and four tuples. The temporal attributes (fromand to)

will be discussed later in this section.

Figure 4.1 : An Example Interval Relation

airplanestatus (plane, model, status):
plane l model , status ll from ! to

Cessl 414A inrepair 08:00 | 10:30
Cessll 414A demoflight || 08:00 | 10:00
Piperl | Archerll onground 08:00 | 09:00
Piperll | Archerll | trainingflight [} 08:00 | 09:00
Each column or attribute has a domain which is a set of values valid for that attribute. Each relation is

created using a relation schema. A relation schema gives the name of the relation and the name and

domains of its attributes. The relation schema for airplanestatus is shown in Figure 4.2.

16

Figure 4.2 : An Example Relation Schema

relation name: airplanestatus

attributes:
name: plane domain: <name> :
name: model domain; { 414A ArcherII
name: status domain: { inrepair demoflight onground

trainingflight freeflight}

Attribute domains enclosed in “*{}’’ represent finite domains. Each possible value for the domain is
listed in the set. Attribute domains enclosed in ‘‘<>’’ represent infinite domains. For example, <name> is
the set of all strings beginning with a letter and containing only letters, digits, and the underscore symbol
‘™, Attributes with finite domains are termed finite attributes. Attributes with infinite domains are

termed infinite attributes.

We can classify relations as entity relations or relationship relations [Chen 1976). An entity relation
contains an entity identifier, or key, plus other descriptive attributes, A relationship relation contains two or
more entity identifiers plus other descriptive attributes. A relationship relation describes the relationship
between the entities names by the identifiers. The group of entity identifiers are used as the key of the rela-
tionship relation. Neither classifications of relations may contain any two tuples that agree on all the atiri-

butes of the key.

A relational database is a set of relations specified by a database schema. Each database schema is a
collection of relation schemas. The components of a database schema are used to generate arelational data-
base. This interaction is shown in Figure 4.3. The vertical dotted line separates the defining schema and
the instance. The horizontal arrows which cross the dotted line represent defires. For example, a database
schema defines a relational database. Arrows pointing downward within the Definition and Instance

columns represent consists of. For example, a database schema consists of a set of relation schema,

Historical databases contain the time when the information being modeled was valid [Snodgrass &
Ahn 1986]. In historical relational databases, one or two temporal attributes are added to each relation
schema. Relations with one temporal attribute, named at, are called Aistorical event relations, The value
of this atribute gives the instance of time that the tuple of the relation is valid. Relations with two temporal

attributes, named from and to, are called historical interval relations. The values of these attributes

17

give the time interval that the tuple of the relation is valid. For example, in Figure 4.1, the interval given
by the from and to attributes gives the time when the plane had the particular status. Temporal attri-

butes differ from other attributes in the manner in which they are used.

Figure 4.3 : Interaction Between a Database Schema and the Database It Defines

Definition ' Instance
database : reiational
schema : database
set of set of
relation : .
schema E relation
/ seq ‘\ sel of
relation attribute temporal : ol .
name definition type : uple
/ \ 5 / Nf
attribute attribute : time attribute
name domain : value value

The second element of the extended relational model s the set of operations for querying and mani-
pulating the data. For this we use the temporal query language TQuel [Snodgrass 1986] which is based on
relational calculus [Codd 1972]. TQuel extends Quel [Held et al, 1975], the query language for Ingres

[Stonebraker et al. 1976], to manipulate both event and time intervals.

4.2.2. The Graphical Model

The graphical model holds the information necessary o construct graphic descriptions. In the graphi-

cal model, information is stored in objects. An example object is shown in Figure 4.4. An ohject contains a

18

sequence of iconic representations and a set of graphic characteristics. An iconic representation is a
graphical shape such as an icon, a line, or a polygon stored as a sequence of points. The object in Figure
4.4 contains three icons, each composed of several polygons, and a text icon. Each iconic representation
can also contain graphic characteristics. Graphical characteristics are aspects such as color and size. The

object in Figure 4.4 has two graphical characteristics, color and coordinates.

Figure 4.4 : An Example Object

object
iconic representation:
icon plane
icon wingpropeller
icon wingpropeller
text "CessIi™
graphical characteristics:

coler black
coordinates 0,0 to 100,100

Each object is created using an object template. An example object template is shown in Figure 4.5.
An object template contains an ordered sequence of iconic templates, an ordered sequence of modifiers,
and a set of graphic characteristics. An iconic template names a graphical shape such as a line or polygon.
In addition, each iconic template can contain graphic characteristics. An iconic template differs from an
iconic representation in that all its points or characteristics may not be defined until after the modifiers are
applied. A modifier defines what type of modification should be made under what conditions. A
modification can affect graphical characteristics, add iconic representations, or change the intrinsic struc-
ture of an object. For example, the second modifier in Figure 4.5 adds the iconic representation of a nose
propeller to the existing representation. The object template graphical characteristics are used as the
default graphical characteristics for each object. Conditions specify requirements that must be met for the
corresponding modification to be made. In this example, the conditions are ﬁot specified; they will be

described further in Section 4.3.

19

Figure 4.5 : An Example Object Template

object template
name:
airplanestatus

iconic representation:
icon plane

modifiers:
conditionl: add icon wing propellers
condition2: add icon nose propeller
condition3: add text

graphical characteristics:

color black
coordinates 0,0 to 100,100

In the graphical model, each object template has its own coordinate system which can be specified by the
user, The default coordinate system of an object template is 100x100. The iconic representations of each
object are constructed using this coordinate system. This is best explained with an example. Each icon is
constructed within the iconic coordinates 0,0 to 1,1. To achieve the desired size; the icon is positioned and
scaled within the coordinate system of the object. For example, scaling the plane icon by 80 in both the x
and y directions and positioning it at 10,10 would result in the icon shown in Figure 4.6. This figure as

well as all figures representing objects were generated by our prototype display system.

20

Figure 4.6 : Windowing an Icon within the Object Coordinates

90

50

10

10 50 90

A graphics knowledge base is a set of object templates and a set of temporal characteristics. Tem-
poral characteristics include the representation of time for all object templates and other properties of time
such as the direction of time and the interval step. The set of objects created from the object templates in a
graphics knowledge base is stored in a structure called the object frame. The object frame cc;nsists of a
sequence of static states. Each static state contains a sequence of objects and the time at which the objects
are valid. The static states are ordered by valid time. The valid time can be an instant of time or an interval
of time.

The components of the graphics knowledge base are used to define an object frame, This interaction
is depicted graphically in Figure 4.7, The vertical dotted line separates the defining graphics knowledge
base and the instance. The horizontal arrows which cross the dotted line represent defines. Each labelled
curved arrow represents the relationship named by its label. Arrows pointing downward within the

Definition and Instance columns represent consists of.

21

Figure 4.7 : Interaction Between Graphics Knowledge Base and Object Frame it Defines

Definition Instance
graphics biect
Kknowledge gec
base frame
seq of
3
statie
set of set of state
eq of \
temporal object graphical vatid
characteristic template object time
eq of eq of Seq of et of
N graphical - A~ .
iconic characteristic condn.lonal iconic gmphnc'al.
template template modifier rep characteristic
initialize irziualize afect

A graphics knowledge base defines an object frame. The valid time for each static state of the object
frame may be determined by the temporal characteristics of the graphics knowledge base. For example, if
the interval step of time was 30 minutes and the direction of time was forward, then each static state’s valid
time would also be an interval of 30 minutes and the static states would be ordered by increasing time. An
object template defines an object. The iconic representation of the object is initialized using the iconic tem-
plates of the object template. The graphical characteristics of the object are initialized using the graphical
characteristics of the template.. The conditional modifiers are then applied, possibly changing object

characteristics,

4,2.3. The Screen Model

The screen model holds the information necessary for the layout of information on a screen. A screen
consists of a sequence of segments each containing a sequence of scaled images. A segment contains a

portion of the entire screen. Each image in the segment covers one or more squares of the grid. Images

22

appearing later in the sequence may cover or overlap previous images.

Each screen is defined using a screen template. The interaction between the screen template and the
resulting screen is shown in Figure 4.8. The vertical dotted line separates the defining screen template and
the instance of the screen. The horizontal arrows which cross the dotted vertical line represent defines. The
labelled dashed arrow which crosses the vertical line represents generates. Arrows pointing downward
within the Definition and Instance columns represent consists of. For example, the graphical primitives

contained in a defining primitive image generate a scaled image.

Figure 4.8 : Interaction Between a Screen Template and the Screen it Defines

Definition Instance
screen - screen
template :
/ seq of
coordinates :
seq of segment
seq of
primitive : scaled
image : image
seq of gem%;a:e’ -
graphical | .-~
primitive

A screen template contains a coordinate pair and an ordered sequence of primitive images. A coordinate
pair specifies the lower corner and upper corner of the screen grid. A primitive image is a graphical
description defined within a unit square. Each brimjtive image contains a sequence of graphicél primitives
such as polygons, color, position, and size. Primitive images generate scaled images. Position primitives
specify the grid square the image is mapped to. Size primitives specify how many squares the image should

coverin both the x and y directions.

23

For example, the screen template of Figure 4.9 would generate the screen shown in Figure 4.10.

Color is shown with texture.

Figure 4.9 : An Example Screen Template

screen template:
coordinates:
lowercorner 1, 1
uppercorner 5, 5

primitive images:
triangle
graphical primitives:
position ¢, 2
xsize 1
ysize 3
red filled polygon 0,0 .3,1, 1,1
circle
graphical primitives:
position 3, 1
xsize 2
ysize 2
green filled circle radius . 5 center .5, .5

Figure 4.10: An Example Screen

24

Note that the circle covers part of the triangle since it appears later in the sequence. The lower corer of
the circle is positioned at 3,1 on the screen, The circle covers two unit squares in both the.x and y direc-

tions.

4.3. Relationship Between the Models

The previous section described the three models used in our display system. The data model used is
the relational model extended to include time, In this model, relations are defined using relation schema, In
the graphical model, objects are defined using object templates, Finally, in the screen model, a screen con-
taining a grid of squares covered by images is defined using a screen template consisting of a coordinate

pair and a sequence of primitive images. This section discusses the mapping between the three models.

The interaction between the models consists of two mappings. The first mapping specifies the
interaction between the defining portions of each model. The second mapping specifies the interaction
between the instance portions of each model. The interaction between the defining portions of each model

is shown in Figure 4,11

25

Figure 4.11: Interaction between Model Definitions

Relational Graphical Screen
database graphics screenl
. knowledge - -
schema E base : template
set of % of kaf coordinates| [¢f9f

y : . -

) [Temporal : : .
relation | characteristic object : primitive
schema : template : object

/ seq of : g0 \@i 5 seq of

1 : ‘ \ i

relation attribute temporal | : iconic chir;g;x‘;zlﬁc conditional | : graphical

Dame definition type template template modifier primitive
attribute attribute
name domain

The relationship between the relational model definition and graphical model definition is shown in
the first two columns of Figure 4.11. Each database schema is mapped one-to-one to a graphics knowledge
base. One-to-one relationships are shown with a solid line in Figure 4.11. Each relation schema is mapped
one-to-one to an object template, implying that each relation schema is associated with a sequence of
iconic templates, a set of graphic characteristic templates, and, a sequence of modification templates. Each
attribute definition is associated with one or more conditional modifiers. This is shown in Figure 4.11 with
a two headed arrow, For finite attributes, the condition of the conditional modifier is the equality of an
attribute value to some specified valie. The maodification associated with each possible valuve of the attri-
bute can be explicitely stated. For infinite attributes, the condition is always met. Each possible value for
attributes cannot be listed in a condition; therefore, the modification associated with each attribute is
indirectly specified. The temporal type of the relation maps to one or more special modifiers, called iem-
poral modifiers. Temporal modifiers use the time value of the tuple mapped to an object to determine if
conditions are met. Similarly to infinite attributes, each possible value for time cannot be listed in a condi-

tion. Therefore, the temporal modification associated with each time value is indirectly specified.

26

The relationship between the graphical model definition and the screen model definition is shown in
the second and third columns of Figure 4,11. Each graphics knowledge base is mapped one-to-one t0 a
screen template. Each object template is mapped one-to-one to a primitive object. The iconic templates,

graphical characterics, and modifications of the object template map to one or more graphical primitives.

The second mapping between the models which describes the interaction between the model

instances is iflustrated in Figure 4.12.

Figure 4.12; Interaction between Model Instances

Graphical Relational Screen
relational : " object
database 5 frame screen
sef af seqof
relation state ; segments
sel of § % of \ : seq of
: | graphicat valid : scaled
tuple : - object time image
/ \{I:f i /(qaf W
time attribute iconic graphical :
value value =p characteristics]
trigger

The relationship between the data model instance and the graphical model instance is shown in the
first two columns of Figure 4.12. Each relational database is mapped one-to-one with an object frame,
Each tuple in a relation is mapped to one or more graphical objects. The objects are constructed using the
object template associated with the relation schema of the tuple. More than one object is constructed if the
representation of the tuple changes over time. The object representation is changed by each modifier which
meets a condition. The conditions met are determined by the values of the tuple’s attributes and time.

Therefore, the attribute value triggers which graphical characteristics are set. The modifications due to the

27

attribute values differentiate the object from other objects generated from the same object template. All

graphical objects contained in a static state are the representations for tuples at the time specified in the
valid time of the state.

The relationship between the graphical model instance and the screen model instance is shown in the
second and third columns of Figure 4.12, Each object frame is mapped one-to-one with a screen. A seg-
ment of the screen has a one-to-one correspondence to a static state. The scaled images within a segfnent
correspond to the graphical objects within a static state. The images are scaled and positioned on the screen

using the object’s graphical characteristics of width, height, and position.

For example, suppose the object template of Figure 4.5 was associated with the relation schema
airplanestatus shown in Figure 42. The object template name is the same as the relation name. The

expanded object template is shown in Figure 4,13,

Figure 4.13; Expanded Object Template

object template

name;
airplanestatus

iconic representation:
icon plane

modifiers:
if model = "414A” then add wing propellers
if model = "Archerll” then add nose propeller
if status = "inrepair” then position object at 1 along y axis
if status = "trainingflight” then position cbject at 2 along y axis -
if status = "demoflight” then position object at 3 aleng y axis
if plane in <string> then add text of the attribute plane value
position along x axis

graphical characteristics:
color black
coordinates 0,0 to 100,100

width 1
height 1-

The graphical object éonsn'ucted for the second tuple of Figure 4.1 will inherit the iconic representa-

tions and characteristics of the object template. Modifications are made to the object depending on what

28

conditions are met. For the second tuple, the conditions met are model = ™414A" , status =
"trainingflight™, and plane in <string>. Therefore, the object will consist of a black
plane icon, wing propellers,and text "CessII™. The object will be placed at position 2,2

on the screen and will be contained within a unit square. The resulting object is shown in Figure 4.14.

Figure 4.14: A Constructed Object Contained in a Unit Square of the Screen.

0,9

1,1

Increasing the object width to 2 and the object height to 3 results in the scaled object shown in Figure

4.15 (The xposition and yposition each retain their previous values of 2).

29

Figure 4.15; An Object With a Height of 3 and a Width of 2.

20,5

Cepsll

1,1

?

The particular graphical segments presented on the screen are determined in part by the temporal
modifier used. The conditions for temporal modifiers use the value or values for the time attribute(s). Tem-
poral modifications are made to objects, The iaarticular modification depends on how time is represented.
For example, if time s repn_asented by animation, the modifier will affect the visibility of the object. The

next section discusses the various representations associated with the time domain,

4.4, Representation of the Time Domain

In investigating a representation for the time domain, we considered human perception of time and
the properties of the time domain in temporal databases discussed in Chépter 2. We concluded that support-
ing only one representation for time would be too limiting as it would not suffice for all applications.. Time
means different things to different people and may need to be interpreted differently for different applica-

tions.

Representing time in terms of its description involves choosing whether to emphasize succession or

duration. In addition, particular representations of time can affect how time is experienced. Gradual

30

changes in representation make time seem to flow. More distinct changes produce a separation of events,

The time portion of our graphic display systemn supports the representation of time by motion tech-
niques, geometric transformations, colorscales, intensity, time icons, and various combinations of these
representations. Time can also be ignored, reducing the temporal data to static data and allowing the sys-
tem to be used for the display of static databases. Because of the special nature of indeterminacy, it is
represented with blinking, fading, or dashed lines. The remainder of this section discusses how these

representations cause time to be perceived in different ways.

The motion techniques supported are animation, animationtrace, and blinking., The
system also provides the user with control over the direction of the motion, the speed of the motion, and the
setting of the display mode to continuous or event-by-event. Motion techniques are examples of temporal

modifiers which can change a property of the objects (i.e the visibility).

Animation emphasizes succession in that it forces past, i)resent, and futare to be distinct with only
one state appearing at any one time. This representation is effective for a sequence of events if the order-
ing of the events is important. It could also be effective for a sequence of intervals if the comparison
among the starting times of the intervals is important. Animation also produces a separation of events
since the changes between events is distinct. Setting the display mode to continuous or event-by-event
affects how separated the events appear. ﬁ\mimation is not an effective representation if analysis of data

requires coexistence of past, present, and future or if time should be perceived as flowing,

If succession, coexistence of past, present, and future (duration), and flowing time is important,
animationtrace is a more effective representation than animation, This techmique displays a trail of
representations that fade over time. When time is also represented with position, termed display aiding
[Morse 1979], the various representations are displacements which indicate position in the past. Anima-
tiontrace thus provides coexistence of past and present and even a coexistence of past, present, and future if
one moves forward in time and then moves backward several states. In addition, aﬁimaﬁonuace results in

time perceived as more flowing than animation since the changes between states are more gradual,

Blinking provides a coexistence of past, present, and future by displaying all states at once, Succes-
sion is shown by blinking the “‘current’ state. Blinking is an effective mechanism for showing valid times

although it reduces readability' somewhat [Morse 1979]. Time is also perceived more as flowing than with

K |

animation since changes between states are less distinct.

A disadvantage of all three motion techniques is that representing time as motion can possibly distort
one’s estimation of time, As stated in Chapter 2, a person’s awareness of time is based on the number of
perceived changes occurring within an interval and the amount of attention paid fo these changes. This
finding motivated Ariav- to use a time icon such as a clock face or calendar page as a referencé point for the
user [Ariav & Morgan 1982]. Our system also provides time icons for this reason. The various icons pro-
vided include a clock face, a digital clock, a month chart, and a text yeér icon. A time icon can also be used
with the representation of a single event to show the valid time for the event. A time icon is an example of

a temporal modifier which adds an object representation:

Geometric transformations as temporal modifiers include scaling, rotation, and position. These tecﬁ-
niques used without motion techniques provide a coexistence of past, present, and future since all states are
displayed at once. Scaling and rotation are effective temporal modifiers if the combarison between objects
is mére important than the actual time of each object becailse it is difficult to show how a time value is
assigned to a scaling or rotation increment. An example of a scaling representation is where objects in the
“present’; are larger than objects in the “‘past’. An example of a rotation representation is where objects

which are more upright are closer to the present than objects which are more horizontal.

Position as a temporal modifier can be used both to position objects along the x and/or y axes and t0
change the intrinsic structure of objects. Another use of position is to position objects along the z axis pro-
viding a three dimensional representation where present events are closer to the user then previous events
[Ariav & Morgan 1982]. Three dimensional representations are discussed as an extension in Chapter 12.
Positioning an object involves changing the object’s graphical characteristics xposition and/or ypo-
sition using the time value to determine the position value, Using position to change the intrinsic struc-
ture of an object, termed intrinsic position modifier, involves mapping the time valve to an integer value
and then using this integer value as the x or y coordinate of of an iconic representation. If the time domain
type is an interval, then this representation can be effective for showing the duration of the interval. For
example, the starting and stopping time values can be mapped to integer values and uéed as the x coordi-
nates of a line. The difference in x values shows the dura‘tion. This technique is used in the example of

Chapter 6,

32

Colorscales and intensity as temporal modifiers like scaling and rotation are more effective for com-
paring objects than showing actual times of objects. An example of a colorscale modifier is a gray scale
where lighter shades depict early afternoon hours and darker shades depict late afternoon and evening
hours. An example of an intensity modifier is where ““current’’ events have increased intensity and previ-
ous events are faded. This is suggested as a representation in the MDM/GI [Ariav & Morgan 1982]. Both

colorscales and intensity create an illusion of flowing since changes between states are gradual.

Various combinations of the above representations are possible. Already mentioned are the combina-
tion of motion techniques and time icons to provide reference points for motion and animationtrace and
position to provide a trail of displacements over time. Other combinations affect the emphasis of duration
or succession and the perception of time as flowing or as a separation of events, Especially intere“sting are
combinations where one representation is 2 motion technique, For example, a combination of animation
and intrinsic position can emphasize duration while making time be perceived as a separation of events.

The chart of Figure 4.16 shows how certain representations and combinations of representations affect the

perception of time.
Figure 4.16: Variations in the Perception of Time
ﬂowing intrinsic posiﬁon scaling, position
animationtrace
animationtrace + position
exp erience animationtrace + scaling + icons
of
time
separation animation + intrinsic position. . animation

duration succession

description of time

33

Combinations can also alleviate deficiencies in single representations, for example, time icons pro-
vide reference points for motion techniques. Another example is a combination of animationtrace, scaling,
and a time icon. A disadvantage of scaling as a temporal modifier is that the actual time of the object is not
graphically portrayed. An advantage of scaling is that it is effective for showing comparison between
states. A combination of scaling and animationtrace with a time icon gives a reference point for time while

providing two representations, increased size and intensity, to indicate ‘‘current’” objects more effectively.

The final representation decision concerns indeterminacy. Because of the special nature of indeter-
minacy, it is represented with blinking, fading, or dashed lines. The “possibly—vélid” and *‘possibly-
invalid’’ intervals of the three interval time domain will be represented with blinking, a faded color, or
dashed lines. The valid interval will be represented in the normal fashion. Alternatively, indeterminacy can

be ignored if indeterminate data need not be distinguished from true data.

4.5, The Structure of the System

The general structure of the prototype display system is shown in Figure 4.17. Rectangles represent

data and ellipses represent program modules.

-

Figure 4.17: Prototype Display System Architecture

user
input
represent Schema kﬁ?ﬁ;jse
cmds Editor baseg
object object time . d
TQuel
query TDBMS tuples
historical
database

The technique used to associate icon representations and graphical characteristics with object templates

and modifying representations with attributes is based on that proposed by Friedell [Friedell 1984]. As

34

mentioned in Chapter 3, Friedell describes a technique for automatically synthesizing graphical object
descriptions from a high level specification which gives the identity of the object template and the identity
and value of its important descriptive attributes. This technique was chosen because it provides an effective
mechanism for associating graphical representaﬁons with data. A Graphics Knowledge Base holds the
information necessary for the synthesis of the object given its type and aitribute values. The Object Syn-
thesis module builds the object description from the information in the knowledge base and from the tuples
returned by the TDBMS. The object descriptions are collected into a structure called the object frame. The
object frame is passed to the Time Displayer which applies temporal modifiers and ‘passes each object to
the Interpreter. The Interpreter interprets the graphical code in the object and makes the appropriate catls
to the low level graphic routines to display the object. The Graphics Knowledge Base, the Object Syn-

thesis phase, the Time Displayer, and the Interpreter will be further described in Chapter 8.

. A limitation of Friedell’s techmique is that it doesn’t provide a mechanism for dynamically generat-
ing representations for new entities. We extended this technique to allow for new representations and also
to allow for changes to existing representations. This is done by using a Schema Editor which allows the
user to interactively specify the graphical representation of the object template and of its attributes. The
Schema Editor also allows the user to specify a representation for time and for indeterminacy. The Schema
Editor is used to initially construct and to modify the Graphics Knowledge Base structure. A major advan-
tage of this technique is that it allows the user to view th;: same data in several ways and to specify
representations for new relations. The syntax and semantics of the Schema Editor commands are discussed

in more detail in Chapter 8,

The TQuel queries on the temporal database are processed by a temporal database management sys-
tem (TDBMS). One such system exists [Snodgrass & Ahn 1986]. The resulting tuples are collected and

sent to the Object Synthesis module.

The next part steps through several examples illustrating the approach defined in this chapter,

Several representations of static data and time are shown.

35

Comprehensive Examples

In this part,.we will step through the process of representing and displaying relations from several
different temporal databases. Chapter 5 describes a temporal database for an aeronautics school. It then
gives examples of two different representations for time in this context which are useful for different appli-
cations. It next gives a representation for indeterminacy. Chapter 6 describes a temporal database which
holds instances of plays from a football game. In this example, time is shown to be best répresented with
position. Finally, Chapter 7 describes a terporal database for a simple monitoring system. This section
gives examples of relations which use or change the depiction of other relations. Time is represented with
both animation and animationtrace. In the examples, sample commands are provided; we discuss the syn-

tax and define the command language in Chapter 9.

36

CHAPTER 5

Spartan School of Aeronautics

This example steps through the procedure of graphically representing and displaying an example
query. Each relation is given an iconic representation and each attribute is given a modifying representa-
tion. For this query, time is represented in two ways. First, it is represented with animation. This represen-

“tation is augmented by also adding a clock icon giving a reference point for the animation. The second
representation for time is position, This representation is augmented with a [abelled time line, Represent-
ing time with positioh enables two states to appear simultaneously supporting more effective comparison

between the two. The final example gives-a representation for indeterminacy.

5.1, The Database

Spartan is a fictitious school of aeronautics which provides pilot training to anyone wishing to obtain
a pilot’s license. The administration of the school maintains a historical database consisting of three inter-
val relations. The first relation describes the school’s inventory of planes.

alrplaneinventory (plane, make, model, year)

The plane atiribute defines the unique name the school has given the airplane. This serves as the key for
the relation. The make attribute names the company which built the airplane. Spartan has airplanes made
by Piper, aerospatiale, Cessna, and Beechcraft. The model attribute gives the company
model name for each plane, The year attribute states the year in which the airplane was built. The aixr-
planeinventory relation is a historical interval relation. The implicit £ rom- attribute of the interval is
the time in which the school purchased the plane. The implicit to attribute of the interval is the time in

which the school sold the plane or *‘forever’” if the plane has not been sold.

The next interval relation keeps a log of activities for the school.
log { plane, status)
The plane attribute gives the name of the airplane. The status attribute gives the status at the time
specified in the implicit time interval. The possible values are demoflight, trainingflight,
freeflight, onground, and inrepair., The key of this re]atibn is tﬁe plane atiribute.
The third relatidn keeps track of the times each pilot or pilot-to-be has flown. It is also an interval
relation,
flights (piiot, plane}
The pilot attribute gives the name of the pilot. The plane attribute specifies the farticular plane used.
The implicit time interval gives the interval of time the pilot was in flight. The key of this relation is the

pilot attribute,

5.2, Static Representation for an Example Query

Suppose we wanted to know the status of the planes between 8:00 AM and 12:00 PM on Sept. 9,
1985. In addition, we are interested in the model of each of the planes. This information is obtained using
the temporal query language TQuel.

range of 1 is log
range of 1 is alirplaneinventory
retrieve into airplanestatus (l.plane, i.model, l.status)

where l.plane = i.plane
valid frem "9/%/85 0800™ to "9/9/85 1200"

The tuples returned are shown in Figure 5.1.

38

Figure 5.1 : An Example Query

airplanestatus { plane, model, status):

plane model status from to
Cessl 414A inrepair 0800 | 1030
CessIl 414A demoflight || 0800 | 1000
PiperT | Ascherll | onground 0800 | 0900
Piperll | Archerll § trainingflight [} 0800 | 0900
Cessl 414A onground 103G | 1200
CessIl 414A onground 1000 | 1100
CessIl 414A trainingflight || 1100 } 1200
PipesI | Archerll | freeflight {] 0900 | 1200
Piperll | Archerll inrepair 0900 | 1200

Next we determine a representation for the tuples of the relation. This is accomplished using the fol-
lowing Schema Editor commands.

range of a is airplanestatus
represent a with icon plane positien 10,10 size 80,80

This icon is a generic plane outline which can be used for all of the different planes. This icon is shown in

Figure 5.2

Figure 5.2 : The Plane Icon

The lower corner of the icon is positioned at 10, 10 in the object coordinate system and the icon is scaled

by 80 in both the x and y directions.

39

We differentiate between the two models using additional icons by associating these icons to the par-
ticular values for the attribute model. For example, the Cessna 4142 has propeilers on its wings (Fig-
ure 5.3), while the Piper Archer II has a nose propeller (Figure 3.4). These are specified with the
following commands.

represent a.model=414A with icon wingpropeller position 30,35 size 5,30
icon wingpropeller position 65,35 size 5,30

represent a.model=ArcherII with icon nosepropeller
position 45,85 size 10,5

Figure 5.3 : Additional Icon Representation for Model Cessna 414A

40

Figure 5.4 : Additicnal Icon Representation for Model Piper ArcherIl

Next, we give a representation for the attribute status. To differentiate between the different

values, we represent the attribute with y position on the screen,

represent a.status = inrepair - with yposition 1
represent a.status = onground with yposition 1
represent a.status = trainingflight with yposition 2
represent a.status = demoflight with yposition 3
represent a.status = freeflight with yposition 4

This means that an airplane being repaired would be placed at a yposition of 1 in screen coordinates.

Since the attribute-value pairs status = inrepair and status = onground are both
associated with the yposition 1, we also associate the attribute-value pair status = inrepair with
the icon garage (Figure 5.5).

represent a.status = inrepair with icon garage
position 5,5 size 90,90

41

Figure 5.5 : Additional Icon Representation for status = inrepair

—

The last attribute to represent is plane. Since there is an infinite number of possible values for this
attribute, we represent it with text. This will place a text icon with the value of the plane atiribute at
the object coordinate position 45,50, Each character of the text will have a width and height of 4 in object
coordinates. . |

represent a.plane with text at 37,50 size 4, 4
We also need a way to position the planes along the x-axis. We accomplish this by giving an addi-
tional represéntation to attribute plane of xposition.
represent a.plane with xposition range 1 to 5
The tuples will be ordered alphabetically by name and positipned between 1 and 5 along the x-axis.
This completes the static representation for the relation. The screen coordinates are now set.
set screen.coordinates to 0,0 to 8,6

Figure 5.6 shows the resulting display for 8:00 AM.

42

Figure 5.6 : The Static Representation at 8:00 AM

k<t

Plperl

-

In this figure, each object is represented with the generic plane outline. The objects are ordered
along the x-axis by the value of the plane attribute. This value is also displayed as a text icon at position
45,50 within each object’s coordinate system. The y position of each object is set by the value of the
status attribute. The additional icon garage is added to the representation for the value of
inrepair. The wing propeller icon is added for objects with a value of 4142 for the model attribute.

The nose propeller icon is added for objects with a value of ArcherIX for the model attribute,

5.3. Representing the time domain

‘While this representation is adequate for a single static relation, it does not suffice for representing
one or more event relations, interval relations, or points in time of an interval relation. We next give two
different examples of representations for the time domain of the relation airplanestatus.

First we represent time with animation.,

represent time with animation step = 30 minutes mode = stop
time icon clockface position 4,4 size 1,1

43

We set the step size to 30 minutes since this is a good division for our example query, The mode is set to
stop so that the animation will halt at each step, We augment the time representation with the clockface

icom. 4, 4 on the screen. Figure 5.7 gives the progression of four states from 8:30 AM to 13:00 AM.

Figure 5.7 : Progression of States Using Animation and Clock Icon to Represent Time

SE

, J‘%‘l (N

44

The clock is positioned at 4, 4 on the screen and is the size of a unit square on the screen The hands of the
clock point to the corresponding time. If we think of the state at 10:00 AM as a single event relation, the
time icon serves to distinguish this event from static data. Thus, the event exists in time. In addition, the

.icon represents time when there are no other events to depict.

45

Using animatjon to represent time for the airplanestatus relation emphasizes succession of
states. Past, present, and future are distinct because only one state exists at any one time. Animation also
produces a separation of events since the changes between events are distinct. Animation is an effective
represeritation for time in the airplanestatus relation if the comparison among the starting times of
each status is important. However, animation is not effective if an analysis of the data requires a coex-
istence of past, present, and futuré., Given one state, it is hard to remember the previous state, Animation is
also not effective if we are interested in the duration of each interval. The next representalidn shows an
alternate representation for time which emphasizes duration.

Suppose we are interested in the status of CessII between 8:00 AM and 12:00 PM. In particular,
we would like to compare how long CessIT was in each status. We select the appropriate tuples using

the TQuel command:

range of a is airplanestatus
retrxieve (a.plane, a.model, a.status)
where a.plane = "CessII"

The resulting tuples are shown in Figure 5.8,

Figure 5.8 : Status of Cessll

airplanestétus { plane, model, status):

plane | model | staus |[from | to
Cessll | 414A demoflight 0800 | 1000
CessIT | 414A onground 1000 | 1100
CessH | 414A | trainingflight || 1100 | 1200

We represent the static portions of the data as before. We change the representation of time to xposi-
tion:
represent time with xposition step = 30 minutes
This representation of time changes the x axis of the screen to a time line. The time line has increments of
30 minutes, the value of the step size. The least time value is 430 minutes, corresponding to 8 hours multi-
plied by 60 minutesthour. To provide a reference point for time, we represent the background with a
labelled time line. The entire description is not given here

represent background with line 480,0 to 720,0
line 480,0 to 480,86

46

text "8:00" at 480,-1 size 2,2
text "8:30" at 510,-1 size 2,2

Figure 5.9 shows the resulting representation,

Figure 5.9: Representation for Status of CessII

IS
g i

| } |] |
T] i

i
g0 &3 $00 §:30 10:00 10:30 1100 50 T

RGP .

P}

o

Each increment on the x axis represents a time interval of 30 minutes. The yposition indicates status:
yposition 3 = demoflight; yposition 2 = trainingflight; yposition 1 = onground. For
example, CessITI had astatus of demof light for 4 x 30 minutes or two hours.

Xposition as a representation of time as shown in Figure 5,10 emphasizes the duration of each inter-
val by providing a coexistence of past, present, and future. However, the representation also shows succes-
sion, Within the duration between 8:00 AM and 12:00 PM is the image of CessIT in successive statuses
along the time line, thus giving a description with both duration and succession. If we think of each state
as a slice of width 30 minutes parallel to the y axis, time is perceived as a separation of events since the

changes between two states is distinct.

47

5.4. Representing Indeterminacy

The third interval relation, £1lights, sometimes contains incorrect information because the school
is not always careful about recording the exact starting and stopping time of a pilot’s flight. Therefore, data

returned from a query on £1light s is considered as indeterminate.

Suppose we are interested in pilot Jackie’s flighton May 16, 1985, The TQuel query is:
range of £ is flights
retrieve inte Jflights { f.plane)

where f.pilot = "Jackie™
valid from "5/16/85 00:00" te "5/16/85 24:00"

The resulting tuples are shown in Figure 5.10. To represent indeterminacy, the from and to “‘times-

tamps” are stored as intervals,

Figure 5.10: A Query on Relation flights

Jights (plane):
plane || from | to
CessII || 0900, 0930 | 1100, 1130
PiperI || 1300, 1330 | 1500, 1530

Jackie flew twice on May 16. In the first flight, he took off sometime between 9:00 and 9:30 AM and
returned sometime between 11:00 and 11:30 AM. In the second flight, he tock off sometime between 1:00

and 1:30 PM and returned sometime between 3:00 and 3:30 PM.,

We represent the relation Jflights with the icon plane and the attribute plane with text.
range of £ is Jflights

represent f with icon plane position 10,10 size 80,80
represent f.plane with text at 38,50 size 4,4

We are interested in the minimum flight time, therefore we need fo distinguish indeterminate data
from true data. In addition, we are interested in the time between flights and the length of each flight. Thus,
we represent indeterminacy with dashed lines and time with xposition with a step of 30 minutes.

represent indeterminacy with dashedlines
represent time with xposition step = 30 minutes

The background representation is a labelled time line where each interval represents 30 minutes. The

resulting representation is shown in Figure 5.11.

48

Figure 5.11: Representation of Indeterminacy

/e p%\ %%a %—}: foiy (A 4% p% %L} %)

Y P Ay {

A I IR R A A A A Ay
i i i] |

l
i/ (Y A

i

oW oW ®omou Mo

[
=

From the representation shown in Figure 5.11, it is easy to determine the minimum and maximum

flight time. In addition, the background serves as a reference point for time,

49

CHAPTER 6

Football Plays

This example shows another technique for representing time with:position. This'technique uses the
values of the starting and stopping time as part of the object description. Three variations are shown, The
first plots lines against a time axis and the second plots a bar graph against a time axis. The third positions
icons using the time axis. These representations are useful when one is interested in the duration of each
tuple’s time interval rather than when each tuple is valid.. Once again the relation is given an iconic
representation and one attribute is given a modifying representation, The second éttribute is used with the

time values as part of the object description.

6.1. The Database

A high school coach wants to determine which offensive football plays have been most successful

for the season. Information about the plays for each game is kept in two historical interval relations.

The first relation lists the plays for each game.

rlays (game, typeplay, startpos, stoppos}

The attribute game gives the number of the géme in the season. The domain for this attribute is
integers between 1 and 10. The values for attribute typeplay can be running, forwardpass, and
lateral. The attribute startpos and stoppos give the field position in yards just before and just
after the play, The implicit time interval gives the starting and stopping time for the play. The key for the

relation is a combination of the game and'the from attributes.

The second relation lists the time used for the touchdowns in a game.

touchdowns (game, number)

The game attribute gives the number of the game in the season. The attribute number uniquely
identifies each touchdown. The implicit time interval gives the time used for all the plays leading to the

touchdown. The key for the relation is a combination of the game and the number aitributes.

6.2. Representations
Suppose the coach wanted to compare the plays.in the first two minutes of the first game. This
appropriate information is obtained using TQuel. :
range of p is plays
retrieve into firstgameplays (p typeplay, p.startpos, p.stoppes)

where p.game = 1
valid from "0:00" -to "Z2:00"

The resulting tuples are shown in Figure 6.1.

Figure 6.1 : First Game Plays

firstgameplays { typeplay, startpos, stoppos):

typeplay startpos | stoppos || from to
running 20 26 ‘00:00 | 00:30
lateral 26 24 00:30 | 00:40
forwardpass 24 31 00:40 | 00:53
forwardpass 31 35 00:53 | 01:14
forwardpass 35 35 01:14 | 01:25
lateral 35 45 01:25 | 01:52
running 45 43 01;52 | 02:00

The comparison is concerned with the duration of each play rather than the starting time of each
play. For this reason, time is represented with intrinsic position.

represant time with intrinsic xposition step = 1 second

Intrinsic position as @ modifier involves mapping the time value to an integer and then using this integer
value as the x or y coordinate of an iconic representation. The mapping is specified by the step. In this
example, the step is 1 second so all times will be mapped to an integer value equal to the number of

seconds. In addition, the x axis of the screen is set to a time line with an interval step of one second.

Each tuple of the relation is represented with a line using the values of starting and stopping time as
the x coordinates and the values of the starting and stopping position as the y coordinates.

range of f is firstgameplays

51

represent £ with line (f.from,f.startpos) teo (f.to,f.stoppos)

The atiribute typeplay is used to modify the tuple representation with intensity.

represent f.typeplay forwardpass with intensity 1
represent f.typeplay lateral with intensity .6
reprasent f.typeplay = running with intensity .2

A background representation can be given with the same syntax as object representations. For this
example we use a coordinate axis with time as the x-axis and position as the y-axis. The complete descrip-
tion is not given here,

represent background with line 0,0 to 100,0
line 0,0 to 0,100

The resulting representation is shown in Figure 6,2.

. Figure 6.2 : Representation Using Lines Plotted Against a Time Axis

50 +
40+
04
2 4
0+
L]] 1 —_—1t } H 1 I i I i ;|
i 1 i ¥ 1 [] 1T i] i 1
00:20 00:40 91:00 01:20 01:49

time In seconds

Representing time with intrinsic position emphasizes duration rather than when each play began. In

Figure 6.2, the length is shown by the x distance of each line. Plotting lines against a time axis also gives

52

the illusion of flowing time since the changes between successive states are gradual, That is, the changes in

representation over time are not distinct.

Suppose the coach then wanted to compare the total distance gained from each play with the total
time taken and the time of the game. The TQuel query used to obtain the information would be
range of p is plays)
retrieve into playsdistance(p.typeplay, totaldistance=p.stoppos-p.startpc

where p.game=1
valid from 0:00 to 2:00

The resulting tuples are shown in Figure 6.3,

Figure 6.3 : Total Distance from Plays

playsdistance {typeplay, totaldistance):

typeplay totaldistance | from to
running 6 00:00 | 00:30
lateral -2 00:30 | 00:40
- forwardpass 7 00:40 | 00:33
forwardpass 4 00:53 | 01:14
forwardpass 0 01:14 | 01:25
lateral 10 01:25 | 01:52
running 3 01:52 | 02:00

Again the x axis of the screen is set to a time axis with an interval step of one second.

represent time with intrinsic xposition step = 1 second

In this example, the comparison is made using a bar chart. Each tuple of the relation is represented
with a polygon using the start and stop time attributes as the x coordinates, the total distance as the
upper y coordinate, and Q as the lower y coordinate,

range of p is playsdistance
represent p with polygon

{p.from, p.totaldistance) (p.to, p.totaldistance)
(p-to, 0) (p.from, 0)

A polygon is described by listing the vertices in either clockwise or counter-clockwise order. The vertices

are connected in the order given with the last vertex being connected to the first.

The atiribute typeplay modifies the object representation with color.

]

represent p.typeplay
represent p.typeplay
represent p.typeplay

forwardpass with colox blue
lateral with color red
running with color green

53

The background representation is the same as in the last example, The resulting repregentation is

shown in Figure 6,4. Color is shown with texture.

Figure 6.4 : Representation Using A Bar Chart Plotted Against a Time Axis

—_—
oo
L
L]

tme 1 seconds

Representing distance plotted against a time axis stresses the duration of each play. The duration is

given by the width of each bar. In addition, the total distance of each play is emphasized by representing

this with the height of each bar.

In both Figure 6.2 and Figure 6.4, time is represented similarly to an infinite attribute. Both examples
emphasize duration. Succession is shown by successive points along the time line. The next example shows

both duration and succession, emphasizing succession rather than duration.

Suppose the assistant coach comes along and wants to look at the plays for the first touchdown of the
first game. The TQuel query used is.

range of p is plays
range of t is touchdowns
retrleve into firsttouchdown plays({p.typeplay, p.startpos,
distance = p.stoppos-p. startpos)
where p.game = 1 and t.game = 1 and t.number = 1

54

valid from t.from to t.to

The resulting tuples are shown in Figure 6.5.

Figure 6.5 : First Touchdown Plays

firsttouchdown_plays (typeplay, startpos, distance):

typeplay startpos | distance || from to
running 55 7 02:45 | 03:10
forwardpass 62 20 03:10 | 03:20
lateral 82 8 03:20 | 03:30 *
runting 90 2 03:30 | 03:33 i
Iateral 92 3 03:33 1 03:36 :
forwardpass o5 5 03:36 | 03:39

The assistant coach decides to display the information similar to a representation often seen on telev-
ision. For this representation, each value of typeplay is represented with a different icon. The icon is
positioned using the value of the startpos .attribute a3 the x-coordinate and the value of the from
attribute as the y-coordinate. The icon is scaled in the x direction by the value of the distance attribute,

range of £ is firsttouchdown_plays
represent f.typeplay = running with icon barbell .
position (f.startpos, f.start) size (f.distance, 1)
represent f.typeplay = lateral with icon dotted barbell
position (f.startpos, f.start) size (f.distance, 1}
represent f.typeplay = forwardpass with icon curved barbell
position (f.startpos, f.start) size (f.distance, 1)
setting f.width = 70
f.height = 54

In additicn, time is represented with intrinsic yposition. The step interval is 1 second.

represent time with intrinsic yposition
step = 1 second

The resulting display is shown in Figure 6.6,

55

Figure 6.6 : Succession of States Using Icons

N
b

A —i
p — — —
A b =
Ha
25

'l L] Pl L 1L

oy E &0 % 100 110

In this representation, time is used to position each object representation. Therefore, this example
emphasizes the starting time of each tuple rather than the duration of each tuple. However, the duration is
shown by the vertical distance between icons. As in the other example, time is represented with the same

technique as an infinite attribute,

56

CHAPTER 7

A Simple Monitoring System

This example shows a technique for representing relationship relations. The representation involves
using the representation of defined entity relations. Time is represented with both animation and animation-

trace. Both time representations use the additional representation of a digital clock icon.

7.1, The Database

This database describes simple monitoring for an operating system. This exampie is taken from a
paper on monitoring complex systems [Snodgrass 1985]. Details on how the data is gathered are not impor-
tant for representation purposes.

The database consists of three entity relations and three relationship relations. All of the entity rela-

tions are historical interval relations.
The first entity relation describes the characteristics of 4 process.
process (id, state}
The id attribute is the process identifier. The state attribute can be Ready (the process is scheduled
but not currently running), Running (the process is currently running on a processor), Blocked (the
process is waiting on a2 mailbox), or Done (the process has halted or aborted). The implicit time interval

gives the time that each process is in the corresponding state,

The next entity relation describes the characteristics of a processor.
processor {(id)
The processor relation contains only one attribute, id, which gives the processor identifier. The implicit

time interval gives the lifetime of the processor.

The third entity relation describes the characteristics of a mailbox.
mailbox (id)
This relation also contains only one attribute, id, which gives the mailbox identifier. The implicit time
interval indicates when a process has access to the mailbox.
The first relationship felation describes which process is running on which processor. This relation is
an interval relation.
runningon (process, processor)
The process attribute is the process identifier. The processor attribute is the processor identifier,
The implicit time interval gives the time that the process is running on the corresponding processor.
The next relationship relation is an event relation which records the instantaneous time that a process
sends a message to a mailbox.,
sendnessage (process, maillbox)
The process attribute is the process identifier. The mailbox attribute is the mailbox identifier. The
implicit time event indicates when'the process sent a message to the mailbox.
The third relationship relation lists the processes blocked while waiting to receive from a mailthox,
This relation is an interval relation.
waiting (process, mailbox)
Again, the process attribute gives the process identifier and the mailbox attribute gives the mailbox

identifier. The implicit time interval gives the time that the process is blocked.

The tuples for the entity relations are shown in Figure 7.1. The tuples for the relationship relations

are shown in Figure 7.2,

58

Figure 7.1 : Entity Relations of the Monitoring System Database

process {id, state):

id state from to

P1 | Ready 1:00:00 | 2:00:00
P2 | Ready 1:23:24 | 2:05:12
Pl | Rumning |} 2:00:00 | 2:15:37
P2 | Running {l 2:05:12 { 2:45:29
P1 | Ready |[|2:15:37 | 2:45:30
P2 | Blocked || 2:45:20 | 2:54:20
P1 | Runmning |} 2:45:30 | 2:52:47
P1 Done 2:52:47 | 4:00:.00
P2 | Ready ||2:54:20 | 2:56:10
P2 | Rumning | 2:56:10 | 2:57:05
P2 Done 2:57:05 | 4:00:00

processor (id}:
id|| from | 1o
A ’ 1:00:00 | 4:00:00
B || 1:00:00 | 4:00:00
mailbox (id):
id from to

M1 ¢ 1:00:00 | 4:00:00
M2 (| 1:00:00 { 4:00:00
M3 || 1:00:00 | 4:00:00
M4 || 1:00:00 | 4:00:00
MS 1] 1:00:00 | 4:00:00
M6 || 1:00:00 | 4:00:00
M7 || 1:00:00 | 4:00:00

59

Figure 7.2 : Relationship Relations for the Monitoring System Database

rnunningon {process, processor):

process | processor || from to
Pl A 2:00:01 2:15:37
P2 B 2:05:13 245330
P1 B 2:45:31 2:52:47
P2 A 2:56:11 2:57:05

sendmessage (process, mailbox):

process | mailbox ” at
P1 M3 2:00:05
Pi M4 2:00:06

B M7 2:30:29
P1 M7 2:51:13

waiting (process, mailbox}:

process | mailbox || from | to
P2 | M7 ||2:4530 | 2:54:20

7.2. Static Representations for Relations

We first construct the representations for each entity relation. The coordinates of the screen are set to
lower left comer 0,0 and upper right corner 12, 8.

set screen.coordinates to 0,0 to 12,8

The process relation is represented with a circle.

range of p is process
represent p with circle center (50,50) radius 25

The id attribute is represented with text centered in the circle. This attribute is also used to position the
processes from 0 to 4 along the y-axis,

represent p.id with text at 45,50 size 8,38
yposition zrange 0 to 4

The intensity of a process is determined by its state and the xposition of a prbcess is always O.

represent p.state = Running with intensity 1.0
represent p.state = Ready with intensity 0.7
represent p.state Blocked with intensity 0.4

represent p.state = Done with intensity 0.1
setting p.xposition = 0

60

The processor relation is represented with a rectangle.

range of s is processor
reprasent s with icon rectangle position 10,10 size 70,90

The id attribute is represented as text at the top left hand corner of the rectangle. This attribute is also
used to position the processors from 4 to 8 along the y-axis. The x position of the processor relation is

always 20.

represent s.id with text at 60,80 size 8,8
yposition range 4 to 8
setting p.xposition = 0

The mailbox relation is represented with an oval.

range of m is mailbox
represent m with icon oval position 30,25 size 40,50

Once again, the id attribute is represented with centered text. The attribute is also used to position the
mailboxes from 20 to 80 along the y axis, The x position of the mailbox relation is always 20.
represent m.id with text at 14,20 size §,8

yposition range 1 to 8-
setting m.xposition = 10

The static representations for the entity relations of Figure 7.1 are shown in Figure 7.3.

61

Figure 7.3 : Static Representation of the Monitoring Database Entity Relations

1:23:24

[
® @

OO OMONO,

We next determine the representation of the three relationship relations and of the derived relation-
ship relation. The representations for these relations will differ from previous representations in that they

will use the representations of the entity relation named in the attributes which make up their keys. '

The representation for the relation runningon is the process contained in the processor. The attri-
butes of runningon are associated with the representations of the entities they relate.
range of r is runningon
range of process is p
range of processor is s
represent r.process with process p
represent r.processor with processor s

where r.process = p.id and r.processor = s.id
setting p.yposition to s.yposition

It is important to note that these attributes are not associated with representations of the relations that
they relate but rather the representation of the particular tuples they relate. Therefore, they will inherit the
object characteristics such as xposition, yposition, scale, color, and intensity as well as any icomnic represen-

tations.

62

In order to move the process inside the processor, the yposition of the process must be changed. This
is accomplished with the setring command. This command sets the yposition ofthe process object

toto the yposition of processor object (Figure 7.4).

The representation for the relation sendmessage is a pointer from the process to the mail-
box. Therefore the attributes of sendmessage must be associated with the representations of the tuples
they relate.

range of s is sendmessage

range of p is process

range of m is mailbox

represgsent s.process with process p

represent s.mailbox with mailbox m

represent s with pointer (p.xposition,p.yposition)

to (m.xposition, m.yposition)

where s.process = p.id and s.mailbox = m.id
setting s.width = 12
setting s.height = 8

Since the pointer can potentially stretch across the diagonal of the screen, the scale of the object type is set

to coordinates of the screen.

The representation for the relation waiting is a pointer from the mailbox to the process. The
appropriate commands are

range ¢f w is waiting

range of p is process

range of m is mailbox

represent w.process with process p

represent w.mailbox with mailbox m

represent w with pointer (m.xposition,m.yposition)

to (p.xposition, p.yposition)

where w.process = p.id and w.processor = s.id
setting w.width = 12
setting w.height = 8

‘The resulting representation for all the relations at time 2:51:13 is shown in Figure 7.4,

63

Figure 7.4 : Static Representation for the Relationship Relations at 2:51:13

25013

]
@O DO

7.3. Representing Time

The layout for the static representation of Figure 7.4 contains implicit dependencies among objects.
For example, the pointer from mailbox M7 0 process P2 is dependent both on the position of M7

and the position of P2. The chosen representation of time must preserve these dependencies.

Representing time with animation preserves the dependencies because it does not change the position
of objects., However, the position of objects may change over time, Since we are also interested in the
actual time, we augment the time representation with a digital clock icon. A digital clock is chosen over a
clock face because it shows the number of seconds more explicitly.

represent time with animation

time icon digitaleclock position 11,7 size 1,1
step = 1 second

Figure 7.5 shows a sequence of states using this representation.

64

Figure 7.5 : Progression of States Using Animation and Digital Clock Icon

20004

leY
@ ®

@
@ ® @

2:00:05

® @

/ﬂ
O OMONONO

65

2:00:06

® &

=
v

& e e e 6

2:00:07

® @

BCACR O ONG

A disadvantage of this representation is that it is hard to remember the previous state, This can be
alleviated by replacing animation with animationtrace. With animationtrace, full intensity indicates current
events with various decreases in intensity indicating past events.

represent time with animationtrace

time lcon digitaleclock position 11,7 size 1,1
step = 1 second

Figure 7.6 shows a sequence of states using this representation.

66

Figure 7.6 : Progression of States Using Animationtrace and Digital Clock Icon

I 20004

G

@

Q.
® @ ®

® @

20008

® &

Q]
@O ®® ®

67

O OO O OGN
A

® 0 O 0 ® e e

1

68

Implementation

To show the feésibility of the approach discussed in Chapter 4, we have compieted an implementa-
tion of a prototype display system. In this part, we describe the main components of the system. Chapter 8
describes the graphics knowledge base data structure which is the underlying data structure of the system.
Chapter 9 describes the Schema Editor, the program used to construct a graphical object description called
an objéct frame using information from the graphics knowledge base. Finally, Chapter 10 describes ihe
displayer. This includes the Interpreter which translates the embedded graphical code contained in the
object frame to low level graphics subroutine calls and the Time Displayer, the module which manages the

display of time.

69

CHAPTER 8

Building the Graphics Knowledge Base

This chapter describes the process of constructing the graphics knowledge base data structure. This

process is shown in Figure 8.1.

Figure 8.1 : Building the Graphics Knowledge Base

user Schema KG!a‘glhigSe
commands Editor n%a; £

The first section describes IDL notation which is used for defining the data structures. The second section
gives a top down description of the graphics knowledge base data structure using IDL notation. The next
section describes the Schema Editor commands to be given by the user. Finally, the Iast section steps

through an example construction of a graphics knowledge base data structure.

8.1. IDL Notation

The data structures are defined uwsing the data specification language IDL (Interface Description
Language) [Nestor, et al. 1982]. This specification language was chosen for several reasons, First, it pro-
vides & high level mechanism for describing complex data structures. Secondly, it supports an object
oriented view of the data which is necessary for our approach. And finatly, it can be automatically mapped
into C language constructs by the IDL translator. This assures consistency between specification and reali-

zation.

The following paragraphs give a brief description of the concepts used in the notation. These should

be sufficient for understanding the usage in the remainder of the chapter.

The fundamental data structure building blocks of IDL are nodes and classes. These are organized
into named collections called structures. A node is a named collection of zero or more named values called
attributes that the user wishes to treat as a unit. Attributes actually hold the data values; nodes are a group-
ing device. Node definitions use the symbol “*=>"’, An example of a node is:

action => applyto: objecttemplate,
code: primitive;

Thenode action has two attributes applyto and code.

The domain of values that an attribute can hold is specified by its type. An attribute type can be a
basic type, a structured type, or a node or class type. For example, the attribute applyto has a type
which is the node cbjecttemplate. IDL provides four basic types and two kinds of structured types.
The IDL basic types are named by the IDL keywords Boolean, Integer, Raticnal, and
String.

The structured types that IDL provi&es are specified by Set Of <type> and Seq Of <type>.
Here, <type> stands for any valid attribute type, other than sets or sequences. A Set Of <type> is an
unordered collection (set) of objects of <type>. Duplication of objects is not permitted within a set. A
Seq Of <type> is an ordered collection (sequence} of objects of <type>. Duplication of objects is

allowed in a sequence.

Artributes having a node or class type allow directed graphs to be specified. Nodes can be referenced

by several other nodes, permitting arbitrary sharing.

A class is a collection of nodes sharing common aspects. The elements of the class are called its
members. Attributes associated with a class are propagated to all members of the class. Such attributes
comprise the common aspects shared by members of the class. Class definitions use the symbols **: : ="
and ““|”’ to define members of the class and the symbol “*=>"" to define attributes of the class. An exam-

ple of a class is:

unit ::= second | minute | hour | day | month | year;
unit => val: Integer;

The class unit has six members; second, minute, hour, day, month, and yearz. The class

attribute val is propagated to all six members and is a common aspect shared by all members of the class.

71

8.2. Description of Graphics Knowledge Base

The graphics knowledge base holds all the information necessary to build a graphical description of
a data object given the identity and values of its atiributes. The data structure consists of a sequence of
object template descriptions, a background desc:iption, a sequence of time representations, a set of time
characteristics, and -a representation for indeterminacy. The time characteristics include the interval step, -
the speed, and the ordering for time, and the mode for displaying frames.
graphicsknowledgebase => objecttemplates: Seq of objecttemplate,
background: Seqg Of primitive,
timerepresentation: Seq Of timerep,
timestep: steptype,
timespeed: speedtype,
timeordering: orderingtype,
timemode: modetype,
indeterminacyrep: indeterminacyrep;
Each object template contains a name, an iconic description, a sequence of modifier attributes, and a set of
graphical characteristics for the object template. The graphical characteristics for an object template
include the coordinates, the xposition and yposition on the screen, the height and width of the object tem-
plate, the color, and the intensity level,
objecttemplate => name: String,
iconicrep: Seq Of primitive,
attributes: Seq Of attribute,
coordinates: coordinatepair,
xposition: Integer,
yposition: Integer,
height: Integer,
width: Integer,

color: color,
intensity: Rational;

The iconicrep sequence contains the iconic representations for the object template, and may
include iconic primitives such as lines, circles, points, and polygons and transforming primitives such as

color, scale, and translations. These primitives will be discussed shortly,

Attributes of an object template are classified as firite or infinite. Finite attributes are those that have
a finite domain of possible values. Each of the possible values exists in the graphics knowledge base along

with modifying actions associated with it.

attribute ::1= finite attribute | infinite attribute;
attribute => name: String;

finite_ attribute => wvalues: Seq Of value actions;
value_actions => value: String,

72

actions: Seq of action;
Actions of the value_actions pair specify what modifications should be made to the representation of
the object template when the attribute has the corresponding value of the value_actions pair. An
action is applied to the object the attribute is contained in or to another object. An action also consists
of a code field containing the graphical prinﬁtive'which is applied to an object.

action => applyto: objecttemplate,
code: primitive;

The attribute can be used to modify a characteristic of the object or to add an additional iconic representa-
tion to the existing iconic representation of the object. For example, the code could contain a color
primitive which would change the color characteristic of the object. Alternatively, the code could

contain a polygon primitive which would be added to the iconic representation of the object,

An infinite attribute has an infinite domain of possible values. Therefore, an explicit modification
action cannot exist in the graphics knowledge base. Instead, the modification action is indirectly specified.
The possible modiﬁcétion actions associated with infinite attributes include adding text to the object tem-
plate description, applying a function modifier to the object template description, changing the intrinsic
structure of the object template description, and adding another object template description to the existing

iconic representation of the object.

infinite_attribute => rep: infinite attributerep;

infinite attributerep ::= text | functionrep | intrinsicrep |
objecttemplate;

functionrep => applyto: objecttemplate,

code: primitive,
ordering: orderingtype,
, range: rangetype;
crderingtype ::= forward | reverse;
intrinsicrep >

A functionrep uses an ordering of the attribute values to determine the value for a transforming primi-
tive. Again, this modification can be applied to the object the attribute is contained in or to another object.
An intrinsicrep uses the value of the attribute as a coordinate in one or more components of the
object’s iconic representation. Different values change the shape of the object representation. Finally, an
object template representation adds the iconic representation of another object to the representation of the

object.

73

- The graphic primitives that make up the graphical code for each object template are classified in
three groups.

primitive ::= iconicprimitive | transformativeprimitive | stackprimitive;
primitive => dependent: Boolean;

All primitives have a field dependent which is TRUE if the evaluation of the primitive depends on
some atiribute value. For example, if the x coordinate of a point primitive was equal to an attribute

valye, the dependent: field of the point primitive would have the value TRUE.

Iconic primitives define graphical shapes.

iconicprimitive ::= point | line | pointer | curve |
polygen | circle | icon | text;

A point contains an x and a y field of type numbertype. A numbertype can be a Rational
value or the value of an attribute.

point => x: numbertype,
¥: numbertype;

numbertype ::= number | objectattributepr:;
number => num: Rational;
objectattributepr => cobjname: String,
attname: String;
A line and a pointexr both consist of two points. A pointer also has a small triangle at its second
vertex;
line => vertexl: point,
vertex2: point;
pointer => wvertexl: point,
vertex2: point;
A curve is made up of a sequence of points. A spline function maps a smooth curve to these points,
curve => points: Seq Of point;
A polygon also consists of a sequence of points but a connection is assumed between the last point and
the first point. A polygon also has a £illed field which indicates if the polygon should be filled in or

if only the outline should be drawn,

polygon => vertices: Seqg Of point,
filled: Boolean;

A circle consists of a center point and a radius. It also has a £i1led field indicating if it should be

filled in.

74

circle => center: point,
radius: numbertype,
filled: Boclean;
An icon consists of a name, a position, and a size. The position attribute gives the position of the
lower Ieft corner of the icon in object coordinates. The size atiribute gives a scaling factor in both the x
and y directions. The graphical code for the icon is contained in ancther structure. During the object syn-
thesis phase, the icon primitive is replaced by the graphical code and appropriate scaling and translation
primitives.
icon => name: String,
position: point,
size: point;
Text contains a string value for the text, a position to place the text, and the size of each character in the
string in object coordinates.
text => value: String,

position: peint,
size: point;

Transformative primitives are further classified into two groups: color primitives and geometric
primitives.
transfermativeprimitive ::= colorprimitive | geometricprimitive;
Color primitives affect the color of the object. If the color primitive is a colorscale, one value of the
scale will be used depending on the attribute vatue, If the color primitive is an intensity value, color
will be changed accordingly.
colorprimitive ::= color | colorscale | intensity;
color => name: String;
colorscale => name: String;
intensity => ival: numbertype,
range: rangetype:

Geometric transformation primitives affect the geometric characteristics of the object template.

geometricprimitive ::= rotate | scale | translate | position;
position ;1= xposition | yposition;

Rotate, scale, and translate primitives affect the orientation, the size, and the position of the object, respec-
tively,
rotate => angle: numbertype;

scale => X3: numbertype,
vys: numbertype;

75

translate => xt: numbertype,
yt: numbertype;

Position primitives define the object position on the screen. They contain a value field or nothing
(represented as type void).

position => value: numbertypelrvoid;
numbertype ::= numbertype | void;

Stack primitives are used in the interpreter to push and pop the color and transformation stacks. This
insures that the graphical characteristics and transformations for icons will only be associated with one

icon.

stackprimitive ::= PUSHCPT | POPCPT | PUSHCOLOR | POPCOLOR;

There is one representation of time for all object templates in the graphics knowledge base. This is
not as restrictive as it may seem however, because the display system allows the user to change this

representation interactively,

The time domain can be represented with geometric primitives, a colorscale, intensity,
animation, animationtrace, blinking, atime icon, or intrinsic position.

timerep ::= geometricprimitive | colorscale | intensity |

motiontype | time_icon | intrinsicxpos | intrinsicypos:;

motiontype ::= animation | animationtrace | blinking;

time icon ::= clock_icon | month_icon | year_icon;

clock _icon ::= clockface icon | digitalclock_icon;
The step, mode, speed and the direction of time can be set by the user. The mode is controlled by setting
the modetype to continuous or stop. The steptype is set to the desired interval. This can be
the starting or stopping time of each tuple or a specified unit of time. The speed of time is a value from I to

10 with 1 being the least time between frames. The direction of time is specified by setting the order-

ingtypeto forwardor reverse.

steptype ::= starttime | stoptime | unit;

unit ::= second | minute | hour | day | month | vear:;
unit " => wal: Integer;

modetype ::= continuous | fixed;

speedtype => val: Integer:;
orderingtype ::= forward | reverse;

There is also only one representation for indeterminacy for all object templates. Indeterminacy can

be represented by blinking, fading, or dashed lines. Alternatively, it can be ignored.'

76

indeterminacyrep ::+= blinking | fading | dashedlines | woid:
fading =>;
dashedlines =>;
blinking =>;
If a blinking representation is used, the step, mode, speed, and ordering time charactertics can be set by the

USer.

8.3. Schema Editor

. The Schema Editor allows the user to interactively specify what iconic tepresentations to associate
with an object and what modifying represeﬁtaﬁons to associate with the atiributes of the object. In addition,
it provides a mechanism to graphically represent the time domain, These associations are accomplished
through the use of the represent command. The complete BNF for the valid represent commands is

given in Appendix D, Portions of these commands in BNF are used in this section,

An object is represented with one or more iconic primitives. An iconic primitive is a line, a pointer,
a circle, a point, a polygon, a defined icon, a curve, or text,

<iconic primitive> ::= line <point> to <peoint> |
pointer <point> to <point> |
{filled}? circle center <point> radius <point> |
point <point> |
{filled}? polygon <point> { <point> }* |
icon <name> position <point> size <point> |
curve <point> { <point> }*
text at <point> size <point>

A point is an X,y coordinate where the values of x and y can each be specified with a number or with the

value of an object type attribute. A point can optionally be surrounded by “* ().

<point> ::= { <point> } |
<numtype>, <numtype>
<numtype> ::= <num> |

<obiject type> . <attname>

If the value is specified with an attribute value, the attribute value type must be numeric rather than a char-
acter string.
An object is represented with one or more iconic primitives by the command
range of <control> is <name>
represent <centrol> with <iconic primitive> {<iconic primitive>}*

setting <set cmd>
where <where cmd>

77

Each iconic primitive is added to the iconicrep sequence of the object template. The complete description

of each primitive must be given in the command.

The default coordinate system for the object template is a square of dimension 100x100. This means
that the points used to define the lines, polygons, etc. which make up the object type must be contained in
the square with lower left corher 0,0 and upper right corner 100,100. The coordinates of the object template
can be changed using the setting clause of the represent command.

range of <control> is <name>

represent <control> ...
setting <control>. coordinates to <point> to <point>

The values of the points used to define the lines, polygons, etc. should now be contained within the new

dimensions of the object type scale.

The setting clause is also used to change other graphical characteristics of the object template. The
syntax is

<set cmd> ::= set{ting}? <control> . <characteristic set>,
{<control> . <characteristic set>}*
<characteristic set> ::= xposition to <int> |
yposition to <int> |
width to <int> |
height to <int> |
color to <name> |
background color to <name> |
intensity to <rational> |
coordinates to <point> to <point>

The where clause gives additional conditions for the representation.

<where cmd> ::= <where condition> {<where condition>}*#*
<where condition> ::= <control>.<attribute> = <control>.<attribute>

The conditions are a test for the equality of tuple attributes. The representation is only applied if these con-

ditions are met,

Finite attributes of an object template are represented with one or more itonic or transformative
primitives. The complete description of the primitive must be given. A finite attribute is represented with a
finite primitive by the command
represent <control>.<attname> = <attval>
with <finite attribute rep> {<finite_ attribute rep>}*
<finite attribute rep> ::= <iconic primitive> |

color <name> |
background color <name> |

78

intensity <rational> |
rotate <int> |

scale <point> |
translate <numbertype> |
xposition <numbertype> |
yposition <numbertype>

A represent command must be given for each possible value of the attribute, Each primitive is added to the
action sequence of the appropriate value_actions node in the finite attribute rep sequence. Alterna-

tively, a finite attribute can be treated as an infinite attribute as explained below.

Infinite attributes are represented with geometric primitives, colorscale, intensity, text, or with the

representation of another object template, For infinite attributes, the complete description of the primitive

need not be given, The syntax is

range of <control> is <name>
represent <control>.<attname> with <infinite . attrlbute rep>
{<infinite attribute rep>}*
{ordering <ordertype>}? {range <rangetype>}?

<infinite attribute rep> ::= rotate |
scale |
translate |
xposition |
yposition |
colorscale <name> |
text at <point> size <point> |
objecttemplate
<ordering type> ::= forward | reverse
<range type> ::= <numbertype> to <numbertype>

The ordering type can be forward or reverse., The default is forward. The range gives a range of values to
use. The values of the attribute for all valid tuples will be sorted and then assigned a value for the infinite

primitive. This allows for maximum differentiation between values.

Time is treated similarly to infinite attributes in terms of representation in that a complete description
of the primitive need not be given. Time can be represented with combinations of infinite attribute
representations, blinking, animation, animationtrace, a time icon, intrinsic position, or nothing. Represent-
ing time with nothing implies that the data will be treated as static data rather than temporal data.

represent time with <timerep> {(<timerep>}*
{ordering <orderingtype>}? {step = <steptype>}?
{mode = <modetype>}? {speed = <speedtype>}?
<timerep> ::= <infinite_attribute rep> |
blinking |
animation |
animationtrace |

79

<time

icon> at <§oint> |

intrinsicxpos |
intrinsicypos |

void

<time icon> ::= digitalclock |
: clockface |

month
year

For time representations other than void, the ordering, step, mode, and speed can be specified. The ordering

is forward or reverse. The step is a time increment. This can be the starting or stopping time for the object

or a mpmber of seconds, minutes, hours, days, months, or years,

<steptype> ::= starttime
stoptime

<int>
<int>
<int>
<int>
<int>
<int>

second(s)
minute (s)
hour (s)
day{s)
month (s}
year (s}

The mode is continuous or stop. The speed is a value from 1 to 10 with 1 being the least time between

frames.

<modetype> ::= continuous |

stop

<speedtype> ::= [1-10]

Indeterminacy is represented with blinking, fading or dashed lines.

represent indeterminacy with <indet_rep>
{ordering <orderingtype>}? {step = <steptype>}7

{mode

= <modetype>}? {speed = <speedtype>}?

<indet_rep> ::= blinking | fading | dashedlines:;

If a representation is not specified, it is ignored. The ordering, step, mode, and speed can be specified if

they are not already specified in a time representation command,

8.4. Example Transformation

This section will step through an example construction of a graphics knowledge base using the

Schema Editor, The commands used are those used to represent the tuples of the airplanestatus

relation in of Figure 5.1,

The first command represents each object with a plane icon.

range of a is airplanestatus

represent a with icon

plane position 10,10 size 80,80

80

This creates an object template named aifplane status with an iconic representation of a plane icon.
The characteristics of the template are set to the defaults. This object template is added to the graphics

knowledgebase. The object template for airplanestatus is shown graphically in Figure 8.2.

Figure 8.2 : Object Template for airplanestatus

objectiemplate

name “airplanestatus”

iconicrep .
attributes <= icon
coordittates L Iiame "plane“ J
xposition 0
yposition 0
width 1 coordinatepair
height 1 Lo,om 100,100 J

color -
intensity 1.0 ﬂ
color

[name "black” l

The next command represents the finite attribute-value pair model = 414A,
represent a.model = 414A with icon wingpropeller positioh 20,30
size 10,10
icon wingpropeller position 70,30
size 1G,10
A finite atiribute is created and added to the attributes sequence of the object template. The rep of the
attribute contains two actions for the value 4144 of ‘““‘model’. These actions are applied to the

representation of the object template.

Each action corresponds to a representation clause for the attribute-value pair. The code of the
action gives the graphical primitive for the representation. The actions for the atiribute pair “model =

4142 are shown in Figure 8.3,

81

Figure 8.3 : Actions for Finite Attribute Pairmcdel = 4142

__ objectternplate
name “airplanestatus”
attributes

‘e

]

__finite astribute

name "mode["
mp [SR

value actions

value "414A"
actions .

acéan

applyto
o5

icon
name "wingpropeller”
position 20,56
size 10,10

action

appl
i

—

icon
name "wingpropeller”
position 7036 P
size 10,10

The next command represents the finite attribute-value pair “model = ArcherII”.

represent a.model = ArcherII with icon nosepropeller
position 45,85 size 10,10

Since the finite attribute ““model’” has already been created, a new value_actions node is added to
the rep of the existing attribute. There is one action for this pair cotresponding to the one representation

clause. The action for the finite attribute pair “model = ArcherII’’ is shown in Figure 8.4.

82

Figure 8.4 : Action for Finite Attribute Pairmodel = ArcherII

finite_attribute -

pame "model”
rep .

valug actions

value "414A"
actions e S

value actions

value "ArcherIl™ .
actions]
ajion }‘
appiyto —1
code [—
icon
name “"nosepropeller’
position 45,85
size 10,10

The next commands represent the finite attribute “*status”’.

represent a.status inrepalr with ypesitien 1
icon garage

position 5,5 size 30,90

represent a.status = onground with yposition 1
represent a.status = trainingflight with yposition 2
represent a.status = demoflight with yposition 3
represent a.status = freeflight with yposition 4

First a finite attribute for *‘status’’ is created and added to the attributes sequence of the object
template. Nexta value_actions node is created for each attribute-value pair and added to the rep
of the finite attribute “‘status’’. Again the actions are added for each representation clause, The actions

are shown for attribute-value pair “‘status = inrepalir” inFigure 8.5.

83

Figure 8.5 : Actions for Finite Attribute Pair status = inrepair

ite attribude

name "status”
rep]
value actions
value "inrepair’”
actions -
ac*bn ac*'on
appl 1 appl
mre o [me
))
position icon
position 3,
size 100,100

The next command represents the infinite attribute *‘plane’.

represent a.plane with text at 45,50
xposition range 1 to 4

First an infinite attribute for ‘“‘plane’’ is created and added to the attributes sequence of the object tem-
plate (Figure 8.6). Next, a representation is added to the rep sequence of the attribute for each represen-

tation clause. The resulting infinite attribute is shown in Figure 8.6.

Figure 8.6 : Representation for Infinite Attribute plane

infinite_atiribute

name “plane”
= : v y i
fext Sfunctionrep)
l position 45,50 l applyto

code‘

ordering forward

range 1-4

xposition
l value void |

The last command represents time:
represent time with animation step = 30 minutes mode = stop
Anew timerep node ‘“animate’’ is created and added to the timerepresentation sequence of
the grapliics knowledgebase. In addition, the step and mode are set. The speed and ordering are set {0

defaults. The time representation is shown in Figure 8.7.

84

Figure 8.7 : Representation for Time

animute

graphicsimowledgebase
chjecttemplates ~
timerepresentation .
timestep —
timemode stop
minute
val 30

The graphics knowledge base is now constructed. The next step is to construct object descriptions for

each tuple returned from the TDBMS using the object templates in the graphics knowledge base. Objects

objecttemplate

name "airplanestatus”

are constructed during the object synthesis phase described in the following chapter.

85

CHAPTER 9

Building the Object Frame

The object synthesis process uses information in the graphics knowledge base to construct an object

description for each active tuple. This process is illustrated in Figure 9.1.

Figure 9.1 ; Building the Object Frame

graphics
knowledge
base
object | object
synthesis frame
tuple
structure

The object synthesis process builds a data structure called the object frame which contains embedded
graphical primitives. After the synthesis is complete, the object frame is sent to the Interpreter which calls

the appropriate low level graphics routines for each graphical primitive in the object frame.

The first section describes the tuple data structure returned from the TDBMS. The next section
discusses the object frame data structure. Finally, the last section steps through an example object syn-

thesis process using the constructed graphics knowledge base of Section 8.4.

9.1, The Tuple Structure

The tuple structure contains the list of active tuples returned from the user query. The list is organ-
ized so that all tuples from the same relation are listed inside the relation structure.

relation => name: String,
tuples: Seq Of tuple,

attributes: Seq Of attributetype:;
The relation structure also contains the name of the relation and the sequence of attributes contained in the

relation. The example relation of Figure 4.1 is iltustrated in Figure 92,

Figure 9.2 : An Example Relation

relation
name "airplanestatus”
tuples .
aitributes . »} & JI
tuple _tuple tuple tuple
key "CessI" key "CessII" key "Piper(" key "PiperII"

atm'bi!g e artribi:e] attribl*tegype :
name "plane” name "model" name "status"
type stngvalue | | type stringvalue | | type stringvalue

Each attribute has a value type of numeric or string,

attributetype => name: String,
. type: valuetype;
valuetype ::= numericvalue | stringvalue;
numericvalue =>;
stringvalue =>;

Each tuple returned from the user query contains a unique key, a sequence of attribute name-value pairs,
and a time domain.

tuple => key: String,
attributes: Seqg 0f attributepair,
time: timetype;
attributepair => name: String,
value: String;

Each key is a single string-valued attribute. The time-domain can be of type event, interval, or
static. A static time-domain implies that the data is static rather than femporal. An event time-
domain contains one time stamp and an interval time-domain contains two timestamps,

timetype ::= event | interval | staticy
event => start: timestamp;
interval => start: timestamp,

stop: timestanmp;
timestamp => year: Integer,

month: Integer,

day: Integer,

hour: Integer,

minute: Integer,

second: Integer;

87

static =>;

The tuple for CessI is illustrated in Figure 9.3.

Figure 9.3 : Tuple for CessI

tuple

| key "'Cessnal"
attributes -
N attributepair attributepair attributepair
: name "plane” name "model” name "status”
interval value "Cessnal’ value "414A° value "inrepair
siant —f
= \ﬁ
’ tim}tamp timestamp
hour 10 hour 8
minute 30 minute O

9.2. The Object Frame

The object synthesis process builds an object for each tuple in the tuple structure. This object con-

tains the information necessary to graphically display the corresponding tuple.

The object frame contains the graphics knowledgebase, the defined icons, the active tuples, and the
constructed objects.

objectframe => knowledgebase: graphicsknowledgebase,
iconlist: icons,
activetuples: relations,
objects: Seq Of object:

Each object contains a reference to the object template and tuple from which it was constructed plus
other graphical attributes.

object => template: objecttemplate,
tuple: tuple,
rep: Seq Of primitive,
coordinates: coordinatepair,
Xposition: Integer,
yposition: Integer,
width: Integer,
height: Integer,
color: color,
intensity: Rational;

The rep sequence is constructed from the appropriate primitives of the object template given the

tuple’s attribute values. The graphical characteristic values are copied directly from the graphical

88

characteristics of the cbject template and then modified by the representation for the object template attri- -

butes.

9.3. Object Synthesis

This section describes the object synthesis phase using the constructed graphics knowledge base of

Section 8.3 and the following tuples.

airplanestatus. (plane, model, status):

plane | model l status {| from | to

CessI 414A inrepair 0800 | 1030
CessIl 414A demoflight 0800 | 1000
PiperI | ArcherII onground 0800 | 0900

PiperITI | ArcherIX | trainingflight || 0800 | 0900

The tuple structure contains one relation node airplanestatus. The first step is to create an
object description for each tuple in the relation. The object templates in the graphics knowledgebase are
searched for a name corresponding to the relation name. If.one is found, an object will be created from this
template for each tuple. If one is not found a default object template is used. Each object will have a

pointer back to the template and a pointer to the tuple. This relationship is illustrated in Figure 9.4.

Figure 9.4 : Creating an Object for each Tuple

objecttemplate

name "airplanestatus”

object object object

object

template — template — template — temnplate —

tuple “~ tuple ~ tuple ~ tuple ~J

tuple tuple tuple tuple
key "Cessl” | key "Cessil" ' l key "Piperl” J key "Piperlt”

89

Several atiributes of the object templaie are shared by the objects created from the template, Other
attributes are copied in to each object. Integer, rational, and boolean attributes are copied. String and node
attributes are shared unless an object characteristic is changed by a conditional modifier. For example, in
Figure 9.5, the iconicrep, coordinates, and color attributes are shared while the xposi-
tion, yposition, width, height and intensity attributes are copied. The sharing of attri-
butes increases the efficiency of the object synthesis module since it decreases the number of dynamic

memory allocation calls needed.

Figure 9.5 : Sharing Object Template Attributes

objecttemplate

name "airplanestatus”
iconicrep .
attributes <>
coordinates —
xposition 0
yposition O
width I
height 1 coordinatepair
color [0,010 100,100

intensity 1.0 L—

icon
f name "plang”

coior

Iﬁme "black”

abject

template |
tuple
rep —

textreps \

coordinates
xposition 0 tuple
yposition 0 I key "CessI" . l
width 1

height 1

color .
intensity 1.0

The next step is to add the attribute representations to each tuple. The attribute representations
modify the object representation. For each attribute in the tuple, an attribute with the same name is

searched for in the graphics knowledge base. If no attribute is found a default representation is used.

90

If the attribute found is a finite attribute, the actions associated with the value of the attribute
corresponding to the attribute value in the tuple are applied to the object representation. If the graphical
code of the action is an iconic primitive, the primitive is added to the rep sequence of the object. If the

code modifies the object, the appropriate graphical characteristic of the object is changed.

For example, the finite attribute model has the actions shown in Figure 8.3 and Figure 8.4. For the
object created for CessI, the actions applied will be the actions corresponding to the attribute-value pair
“model = 414a’ shown in Figure 8.3, Therefore, two wingpropeller icons are added to the rep field

of the object (Figure 9.6).

If the attribute found is an infinite attribute, the appropriate value of the graphical primitive given by
a functionrep is determined using the attribute value. This primitive then modifies the object. The
primitive is assigned the correct value depending on the highest and lowest value of that attribute for all
tuples. This allows the maximum differentiation between different values. Any text representations are
added to the textreps sequence of the object. These representations are separated from the other iconic

representations so that the text can be displayed fast.

For example, the infinite attribute plane has a text representation and a functicnrep.
These representations are illustrated in Figure 8.6. The text is added to the textreps sequence of the
object. The code of the functionrep contains the primitive xposition. The value for this primitive
is determined by the ordering of the tuples using the plane attribute and by the range. The ordering of
the tuples using the plane attribute is

CessI CessII PiperI PiperIT
The range is 1 to 4. Therefore, the tuple with attribute-value pair “‘plane = CessI” is given the xposi-
tion 1. This representation changes the xposition graphical characteristic of the object. The resulting
object for CessI after applying the modifications of the model, status, and plane aitributes is

shown in Figure 9.6.

91

Figure 9.6 ; The Object for Cesst

object m
tempiate tuple
tuple -—-—“/[key "CessI"
rep
textreps — \l(d(' \l,
Xposition 1 icon icon icon icon
yposition 1 | name "plane” I Iname "wingpropell?l I name "wingpropeller” I l name "garage”
text
valge "CessI”
position 45,50

After attribute representations have been added for each tuple, the object frame will contain high

level graphical descriptions for each tuple. The object frame is then sent to the time displayer module.

92

CHAPTER 10

Displaying the Object Frame

This chapter explains the modules which display the object frame data structure. This proéess is

shown graphically in Figure 10.1.

Figure 10.1: Displaying the Object Frame

procedure calls
set_viewport
. . cbject sei_coordinales
gjl:g dismlr:le er + Interpreter set_color | S?th re S}E‘TBN
pay segment draw_polygon graphics
ele,

procedure calls
creale_segment
set_visibility

The first section describes the module which manages the display of time. The next section describes the
Interpreter which translates the embedded graphical description language, or primitives, into procedural

calls to SUN Core graphics. These procedural calls generate the images on the SUN frame buffer (FB).

10.1. Time Display Controller

The order in which the objects are displayed depends on the representation for time. If time is
represented with the same technigues as other infinite attributes, then all objects are displayed at the same
time. ¥ time is represented with animation or animationtrace, then the objects are displayed in the order in
which they are valid if the ordering is forward and the opposite order if the ordering is reverse, If time is
represented with blinking, then all objects are displayed at once and each object representation will blink
when that object becomes valid. For animation, animationtrace, and blinking representations, a time icon

such as a clock face or calendar page can appear as a reference point.

Real time animation is simulated through the use of graphical segmenté. A graphical segment is the
part of the entire graphical display list which represents a portion of the complete picture on the screen.
Each segment contains calls to the SUN core graphics package to draw lines, polygons, points, etc. on the
display. By turning the visibility of the segment off, a portion of the total picture can be deleted. Tuming

the visibility back on will redisplay that portion.

One or more segments are created for each object. The number of segments created for an object is
determined by the duration of the object’s time interval, the time step, and the representation of time. If
time is represented with intrinsic position, then one segment is created for each object and all objects are
displayed at the same time by setting the visibility of all segments on simultanecusly. If time is represented
with position, scaling, rotation, intensity, colorscale, or any combination of these, then the number of seg-
ments created for each object is equal to the duration of the object divided by the timestep. For example, if
the duration of the interval for an object is 2 minutes and the time step is 30 seconds, then four segments
will be created for the object; one for each time step in the interval. Each segment will contain a descrip-
tion of the object with the appropriate transformation. If the time representation include animationtrace,
then the number of segments will be five. The last four segments will contain a representation of the object
with decreasing intensity. Finally, it time is represented with only animation or blinking then one segment

is created for each object.

If the time representation includes blinking, then all segments are displayed simultaneously and each
segment is blinked once when it becomes valid. If the time representation includes animation or animation-
trace, then each segment is set to visible when the segment becomes valid and set to nonvisible when is is
no longer valid.

The SUN core graphics procedure calls contained within each segment are determined by interpret-
ing the embedded graphicatl description language for each object. The Interpreter is described in the follow-

ing section.

10.2. Interpreter

The graphical representations of each object are drawn on the frame buffer (FB) of a SUN Worksta-

tion. A frame buffer is a rectangle of pixels. Graphical shapes are drawn by assigning a color to the

94

appropriate pixels. Initially, all pixels are assigned the color “white”’, The viewport is the portion of the
frame buffer which can be written into. The viewport for the entire screen is a rectangle with lower corner
0,0 and upper corner 1.0,.75 which covers the entire frame buffer. Within the viewport is the grid of
squares for the screen. For example, if the screen coordinates are lower comer 1,1 and upper corner 5,4, the
screen will contain a grid of 12 squares. The shaded portion shown in Figure 10.2 is the viewport for the

entire screen.

Figure 10.2: Viewport for Entire Screen

- - - - 5.4

1’1 - - -’ r , ’ ’ #

The viewport for each object is determined by the xposition, ypositicn, height, and
width characteristics of the object and from the coordinates of the screen. For an object with xposi-
tion = 2, yposition = 1, width = 1,and height = 2, the viewport is shown as the shaded

portion of Figure 10.3. The viewport now has lower corner .25,0 and upper corner .5,.5.

95

Figure 10.3: Viewport for Chject

5,4

1,1 P

After the viewport is calculated, a set_viewport call to SUN core graphics sets the specified region on
the screen. The coordinates for the object are set within this region, For example, if the object coordinates

are lower corner 0,0 and upper corner 3,4, the region would have the coordinates shown in Figure 10.4.

Figure 10.4: Object Coordinates Within Viewport

54

1,1

0,0

All iconic primitives contained in the object will be drawn in the object coordinate system with the
set viewport, For example, the polygon defined by the sequence of points 1,1 2,1 2,3 1,3 wouldbe

drawn as shown in Figufe 10.5.

926

1,1

Figure 10.5: Polygon Drawn Within Object Coordinates

5.4

0,0

The interpreter maintains a current position transformation 3x3 matrix (CPT), a current color, and a

stack for each. Initially, the CPT is the identity matrix. As each geometric transformation is encountered, it

is combined with the CPT. Two operators exist for saving and testoring the CPT: PUSHCPT and POPCPT.

These operators surround the graphical code for each icon so that the transformations applied to the icon

will not affect any other icon. The current color is initially the object color. As each intensity command or

color command is encountered, the current color is changed accordingly. Two operators also exist for sav-

ing and restoring the current color: PUSHCOLOR and POPCOLOR. These operators also surround the

code for each icon.

For example, the sequence of primitives generated for the icon “‘redrectangle’ with position

1, 0 andsize 2, 3 is shown graphically in Figure 10.6.

Figure 10.6: Sequence of Primitives for Icon

... Sodeforiconredreciangle
PUSH PUSH scale x=2 trans{ate color .| polygon POP POP
COLOR CPT scale y=3 01,0 red | 0,01,0L,10,1 CPT COLOR

The current CPT is first saved on the stack, Next, a new CPT is constructed by applying the scaling

and translating primitives to the current CPT. For example, if the initial CPT was the identity matrix, then

the scale primitive and translate primitive would be applied to the identity matrix to generate a new CPT.

This is shown graphically in Figure 10.7.

97

Figure 10.7: Generating a New CPT

100 200 200
le x=2 1

010 — [jaiyo3| —= 030 — | 007 | — 030

001 001 101

As each point in the polygon is encountered, it is transformed by the CPT as shown in Figure 10.8.

Figure 10.8: Transformation of Polygon Points

00111000 —2= —== 13 3330L0

- N
(= R
[l =N -]

The current color is then set to ‘‘red”’ and the polygon is drawn in the object coordinate system
within the set viewport. Both the setting of the color and the drawing of the polygon are accomplished by
calling the appropriate routines in the SUN core graphics package. The resulting representation is shown

in Figure 10.9. Color is shown with texture,

Figure 10.9: The Icon Representation

54

1,1 LUl

0,0

After the icon is drawn, the previous CPT and color are restored by popping each off their respective
stacks. The remainder of the iconic representations for the object are then transformed by the current CPT
(the identity matrix) and assigned the current color until another icon is encountered.

After the interpretation of the object is completed, the segments associated with each object will con-

tain a complete low level description of the object. The properties of the segments such as visibility are

98

then changed by the time displayer depending on the specified representation for time.

99

Evaloation and Conclusion

. This part contains the evaluation and conclusion chapters of the thesis. Chapter 11 gives an evaluation of
our display system including a discussion of how display issues were resolved -and how the essential
features of the approach were met. In addition, efficiency considerations are discussed and possible exten-

sions to the system are proposed. Chapter 11 concludes the research.

100

CHAPTER 11

Evaluation

This chapter gives an evaluation of our display system. We first give the status of the implementa-
tion. We next discuss how the issues described in Chapter 2 were resolved. We next describe how the
essential features of our approach were met, We next discuss the efficiency of the system and suggest pos-

sible improvements. Finally, we discuss the possible extensions to our system,

11.1i. Status of Implementation

The prototype display system was implemented as described in Chapters 8, 9, and 10." Currently the-
Schema Editor, the Object Synthesis module, the Time Displayer, and the Interpreter are all implemented,
The figures in Chapters 5, 6, and 7 were generated using this dispiay system. In addition, a pretty printer

for graphics knowledge bases was implemented. Appendix E was generated by the pretty printer.

The entire system was written in C on 2 SUN-2 running UNIX 4.2BSD. The system uses IDL, lex,
yace, and SUN Core. The system consists of 13,663 lines of C source code, 3811 lines of C declarations,
874 lines of lex and yacc, and 349 lines of IDL. Lex and yacc generated 3348 lines of the source code and
111 lines of C declarations. The IDL translator generated 6393 lines of the source code and 3627 lines of C

declarations.

11.2. Static Display Issues

The issues in displaying information in static databases include effective representation of data, lay-

out of data, and efficiency of the system,

For effective representation, there are five goals.

(1) The image must convey a specific message. Conveying a particuiiar message or meaning is difficult
because often the ideas of the designer of the image are very different than the ideas of the user. In
addition, some images convey undesirable messages or have different meanings in different contexts.

(2) Relevant attributes of the data need to be displayed in a way that differentiates between distinct data
values. The choice of representation affects the amount of differentiation.

(3) Alternate representations of the same data should be provided; Different tasks may need to
emphasize different attributes of the same data.

(4) Different levels of detail are useful. Certain applications need more or less detail.
(5) Interactive creation of representations for new data, namely data derived from querying the database,

should be provided. It may not be reasonable to provide defined representations for every possible

derivation.

Our system met goals 1-3 and goal 5. These goals are met by allowing the user to interactively
specify the representation of the data. TQuel, a temporal query langunage, allows ‘the user to choose the
appropriate attributes of interest. The Schema Editor allows the user to represent the object and the attri-
butes graphically. The representation commands are processed interactively allowing the user to experi-
ment with different object and different attribute representations. Interactive specification of representa-
tions allows different tasks to emphasize different attributes of the same data. Another advantage of
interactive specification is that a designer is not required to determine one representation for all applica-
tions, Supporting only one representation might compromise the effectiveness of each application display.
Finally, the Schema Editor commands allow the representation of newly defined queries on the database.

This again allows interactive experimentation to determine the effectiveness of various disi)lays. The

fourth goal is listed as an extention in Section 11.4.

Determining an effective layout of data is a research topic in itself. There are three main issues.

(1) The graphical system must handle limited screen space. Given a large set of objects which do not all
fit on the screen, the system must determine which portions to display.

(2} The graphical system must preserve any implicit relations among data or representations of data
when determining a layout, The chosen layout must not obscure or change these reiationships.

{3) The graphical system must ensure that the size of each representation is large enough to convey a
specific idea. The system must be aware of the size and resolution of the display in order to effec-
tively display each object.

Since layout of data was beyond the scope of our research, we provided one limited solution. The
approach is similar to the representation approach in that it allows the user to choose between different
screen layouts, User specification of screen layout is accomplished by representing various attributes with
xposition or yposition on the screen, This positioning representation of attributes determines the
layout of the objects on the screen. The implicit relations between the objects are preserved because the

layout is based on the differences of attribute values. The coordinates for the screen are also specified by

the user thus allowing different sizes for the objects. Scaling of objects can also be controlled by the user.

102

An interesting improvement to our approach would be to provide automatic resolution for objects which
appear at the same positicn on the screen thus obscuring each other. This improvement is discussed as an

extension in Section 11.4.

The final issue in displaying static information is attaining adequate efficiency of the display system.
The graphics system must be efficient encugh to use interaciively..In many situations, the complexity of
generated images must be restricted to attain this efficiency. Adequate efficiency is also relevent for tem-
poral display especially when animation is used to represent time. Efficiency in our prototype system is dis-

cussed in Section 11.4.

11.3. Temporal Display Issues

Additional issues that arise when displaying temporal information include a consideration of the
human perception of time, the properties of the time domain, and the problems encountered when
representing time domains.

The human perception of time relates to how one experiences time and how one describes time,
Tifne is experienced as flowing or as a separation of events. Time is described in terms of duration and/or
succession, Representing the time domain involves choosing a representation for events, intervals, and
indeterminacy. The representation chosen can emphasize duration, succession, or both. In addition, a
representation can make time be perceived as flowing or as a separation of events by making the changes

more or less distinct,

A major feature of our approach is that we allow more than one representation for time, In addition,
time representations can be combined for different effects. Again, the representation can be chosen by the
user to allow experimentation. The remainder of this section discusses how the choice of particular

representations resolves the issues listed in Section 2.2.3.

(1) Representing one event

An event cannot be represented as static data because this contradicts the notion of the event
existing in time. In addition, time is not an independent characteristic of an event but rather a
way to describe relations between events. Given these restrictions, time can be represented with a
time icon or other reference point such as a labeled time line in a background. A time representa-
tion of a time icon or other reference point allows the event to exist in time. In addition, the
representation differentiates an event from other events which may otherwise be graphically
equivalent.

163

(2) Representing one interval

When representing an interval, the duration of the interval car be shown or the starting or stop-
ping time of the interval can be shown. In addition, both the duration and the starting or stopping
time can be shown, A time representation of position will emphasize the duration of the interval.
Showing the starting or stopping point of the interval reduces the interval to an event. Showing
duration and the starting and stopping point can be accomplished by representing time with posi-
tion and wsing a background representation such as a labeled time line as a reference point.

(3) . Representing a sequence of events

When representing a sequence of events, we can show the succession of events or the duration
between events. To emphasize succession, a motion technique can be used. An additional
representation of a time icon provides a reference point for each state. Additional representations
such as scaling or color provide further contrast among different events. Animationtrace and
blinking provide a coexistence of past, present, and future and are useful if comparison between -
states is necessary. To emphasize duration between events, a time representation of position can
be used. Again, a background representation of a labeled time line provides a reference point.

(4) Representing a sequence of intervals

In this situation, we can show duration of each interval, duration between intervals, starting or
stopping times of each interval, or any combination of the three. Duration can be shown with a
representation of position. Starting or stopping times.can be shown with the same representations
as used for a sequence of events. Combinations can be shown using position and a background
labeled time line or with a combination of a motion technique and position.

{5) Representing a sequence of events and intervals

If there does not need to be a distinction between events and intervals the representation is the
same as that for representing a sequence of intervals. If there does need to be a distinction, then
the time representation shouid show duration. Possibleé representations include position, intrinsic
position, and a combination of a2 motion technique and position.

(6) Representing indeterminacy

If indeterminate data should be distinguished from true data, the possible representations include
blinking, fading, or dashed lines. These representations show the uncertainty in the data. Alter-
natively, indeterminacy can be ignored if indeterminate data need not be distinguished from true
data.

The resolutions to the questions above involve choosing a representation for time which emphasizes
duration, succession, or both, To représent time in terms of how it is experienced involves making changes
between states more or less distinct. Choosing particular representations of time makes time be perceived
more as flowing or more as a separation of events. For example, plotting data against a time axis makes
time be perceived as flowing since the changes between states are less distinct. Also related is how the
representation of objects change over time. For example, if an icon changes position over time, then the
changes will seem distinct and time will be experienced as a separation of events. Alternatively, if an

object changes intensity over time then the changes are less distinct and time appears as flowing.

104

11.4. Essential Features

This section discusses how the essential features of our approach listed in Chapter 4 relate to the

goals for our display system.

(1) I canié Representations of Objects

Providing iconic representation of objects allows the user to visualize data in different ways. Pic-
torial data is useful in conveying information because the brain processes pictures much faster
_than the equivalent text. Allowing the user to choose his own iconic representation assures that
the actual information conveyed is what the user intends.

(2) Graphical Data Independence

Graphical data independence from application programs allows interactive specification of
representations. The storing of information in a tailored data structure rather than a relational
database allows faster access to information that is used often. This also provides the possibility
of concurrent accessing of data and graphical descriptons thus creating a4 more efficient system.
In addition it allows different users to have different desctiption files for the same database.

(3) Awtomatic Synthesis of Objects

This feature allows the interactive generation of description for new data as well as allowing the
user to experiment with several representations for existing data. This provides the opportunity
for representing data differently for different applications.

(4y Graphical Representation of Time

This is by far the most important feature of our system. However, an effective representation for
time depends on the existence of the other features listed above. Allowing muliple time
representations and interactive specification of time representation allows the system to be used
for various applications of temporal databases.

The Schema Editor allows the user to choose his own representation for static data and for time. The
representation information, stored in the graphics knowledge base data structure, is independent from
application programs. The data structure is tailored to support fast access to information. In addition, each

user can have his own graphical description for the same database.

The Object Synthesis module supports the automatic synthesis of objects. Objects are created using
information in the graphics knowledge base, The Interpreter interprets the graphical primitives contained in
each object and makes the appropriate calls to dispiay the cbject.

The Time Displayer applies the temporal modifiers and passes each object to the Interpreter. An

object may be sent to the Interpreter multiple times if its representation changes over time,

The architecture of our prototybe display system was designed to provide the user with the flexibility

10 interactively choose representations. This flexibility resulted in a system less efficient than systems

105

where the representations are hard-coded into the application programs. The next section discusses the

efficiency of our system and possible improvements.

11.5, Efficiency

Efficiency in. software systems often involves space-time tradeoffs. In our interactive display systeni,
time efficiency had higher priority than space efficiency. However, space efficiency considerations are also
important, especially when disPléying large databases.

The implementation of the system was facilitated by the use of IDL notation and the IDL translator.
The IDL specifications of the data structures were automatically translated into C language declarations by

the IDL translator providing fast prototyping.

We first discuss efficiency of the system using the most straightforward implementation. We next

suggest further optimizations.

Representations for data structures affect both time and space. The IDL translator maps the IDL
specification into a C declarations file. Nodes are represented as C structures. Classes are represented as C
unions. Sequences and sets are represented as linked lists. The IDL basic types, Integer, Boolean,
.Rational are represented as the C types int, char, and float.IDL Strings are maintained ina
hash table with only one copy of each string value resulting in a savings of both time as well as space since

string comparison operations required only a test for pointer equivalence.

The time for displaying tuples is divided among the Object Synthesis module, the Time Displayer
module, and the Interpreter. The time for each module is shown in Figure 11.1 for one tuple, two tuples,

and eight tuples.

Figure 11.1: Time for Dispiaying Tuples of Relation airplanestatus

#tuples | Object Synthesis | Time Displayer | Interpreter Toial Time per tuple

1 0.02 sec 0.01 sec 0.01 sec 0.04
2 0.04 sec 0.05 sec 0.03 sec 0.06
8 0.12 sec 0.07 sec 0.13 sec 0.04

Also important in the analysis is the use of each module. The Object Synthesis time increases at a

rate less than the increase in the number of tuples because tuples of the same relation share a portion of

106

their representation. The Time Displayer and Interpreter time can increase at a rate faster than the increase
in the nember of tuples because each tuple may have o be interpreted more than once if its representation

changes over time.

Several optimizations are possible. For example, 16% of the time spent in the object synthesis
module is due to storage allocation calls to the C memory allocator, malloc. Time for allocation could be
decreased by providing a tailored memory allocator that was especially efficient for allocating certain sizes,
namely the sizes for objects. The allocator could allocate 100 objects at a time, The first creation of an
object would reguire a call to malloc but the next 99 calls would only require a pointer assignment, This

will be done in the next version of the IDL runtime system.

The time delay in the Time Displayer and Interpreter modules could be decreased by using a tailorad
graphics package for displaying objects. The system cmently uses the SUN core graphics package. A
disadvantage of this package is that a segment cannot be constructed using portions of another segment.
Therefore, a full interpretation is required for each object even if it shares portions of its representation
with another previously interpreted object. Also, an object which changes over time must be interpreted
several times. For example, if the xposition of an object has four different values in an interval, four seg-
ments must be created which differ only in the viewport. A tailored graphics package could provide for

sharing of segment portions.

Space efficiency in data structures could be increased both by changes in the IDL specification and in
changing the representations of unattributed nodes and integers. For example, the tuple structure described
in Section 9.1 had a very inefficient representation in that attribute names are contained in both the relation
nodes and tuple nodes. A more efficient representation could be to just list attribute values in the tuple
nodes. Another change for space efficiency could be to represent a time stamp as a string rather than as a
node containing six integers. For example, the time stamp ‘*May _16, 1985 8:31:15" would be represented

as ““850516083115°" using two digits each for year, month, day, hour, minute, and second values.

Changes in the representation of unattributed nodes and Integers are possible using representation
specifications in IDL. One such specification is to represent unattributed nodes as enumerated types rather
than C structures. Another specification is to represent integer attributes as C shorts or C characters.

Both specifications would result in space savings but would require some overhead for accessing.

107

From the brief analysis of our system efficiency, we concluded that adequate efficiency is possible
without compromising the flexibility to interactively choose representations. This efficiency is possible
both through options in the IDL, translator for generating different representations and through a tailored

graphics package. The next section discusses possible extensions to the system.

11.6. Extensions

This section lists possible extensions to our system and gives a brief description of each, indicating

its importance and its implementation difficulty.

(1) Different levels of detail

Providing the user with different levels of detail for the same data is a very effective technique in
the display of data and may be necessary when displaying large databases. The graphics model
can easily be extended to support different levels of detail. Each primitive in each of the object
templates in the graphics knowiedge base could contain a level at which it should be displayed.
Temporal and attribute modifiers could change the level as well as the representation. The Inter-
preter would then only generate graphics calls for those primitives which had the appropriate
level number.

(2) Automatic resolution Jor object placement conflicts

Providing automatic placement resolution could be an effective layout technique which also may
be necessary when displaying large databases. One possibility is to use the third dimension so
that conflicting objects are stacked (see also the next extension). A second possibility is to place
conflicting objects in the closest non-occupied grid square. The screen model could be easily
extended to support automatic placement resolution. Each square in the screen grid could include
a bit indicating whether it was occupied. When a placement conflict occurred, the conflicting
object could be stacked behind the occupying object or placed in the closest non-occupied
square.

(3} Use of the Third Dimension for Time Representation

The third dimension could be used for representing time as well as other attributes. The different
layers could be associated with different times. A progression through time would be possible by
flipping through the layers much in the same way a stack of papers is looked through. This
extension is not as important as the previous extensions since many representations are already
supported for time. However, it would be an intersting enhancement. The graphics maodel could
be extended to three dimensional space. Each coordinate would have an x, y, and z value. The z
value could then be changed by temporal modifiers.

(4) Incremental Synthesis of Objects

The current system processes all objects at once. An interesting extension would be to allow an
incremental synthesis and display of objects. This would allow for concurrency in the object syn-
thesis, time display, and interpreter modules thus decreasing the perceived processing delay of
the system. This change may be necessary for displaying large databases. The architecture of the
system would have to be modified somewhat to support incremental processing. In particular, the
object synthesis module would send each object to the time displayer immediately after it was
fully created. This may result in some reduction of efficiency in the object synthesis module since
all objects of the same template would not be processed together. Anocther modification would be
in the representations of infinite attributes and time. Representations would no longer be able to

108

use the ordering of tuples on some attribute value since all tuples would not be available, Instead,
absolute modification values would have to be used thus reducing infinite attributes to finite attri-
butes. More study needs to be done to determine whether this loss in flexibility is compensated
for by the decrease in processing delay.

(5) Compilation of Representations

The interactive specification of representations allows the system to be used for varions applica-
tions. The disadvantage is thai the efficiency can never be as good as when the representations
are hard coded in the application program. An extension to our system would be to provide for
compilation of chosen representations. The user could experiment with representations until the
desired one was found. The system could then generate a file of graphical procedure calls by
interpreting the object frame structure, The file could then be compiled. The resulting program
would display the specified data much more efficiently than the flexible graphic system because it
would not have io go through the object synthesis, time display, or interpreter modules. Compi-
lation of representations would be useful if many users needed the same representation for a data-
base, The interpreter could easily be extended to support this. Instead of making calls to the SUN
core graphics package the interpreter could print these calls in a file, compile the file, and link in
the SUN core library.

(6) Design of Representation Language

The Schema Editor commands are the basis for the interactive specification of representations.
The design of the language could be much improved. One disadvantage is that it is too wordy to
use in a practical way. The language could be designed to be more similar to TQuel or could pos-
sibly be combined with TQuel to allow for selection and representation at one time. A second
disadvantage is that it is not general enough. In particular, it would be useful to be able to specify
positions with expressions or with relative locations. This extension is a necessary addition to the
system and would require only changes to the Schema Editor and possibly the Object Synthesis
module. :

109

CHAPTER 12

Conclusion

The primary goal of our research was to provide the flexibility to view temporal data in several ways.
A secondary goal necessary for meeting the first goal was to provide the effective representation of static
data. These goals were met by allowing the user to interactively specify representations for data and to
experiment with different representations and combinations of representations. Efficiency considerations

were secondary.

A graphics system can provide a convenient and powerful medium to display information in a tem-
poral database. This thesis investigated techniques of varying function, generality, and performance and
examined these techniques in several representative situations. The research improved on the techniques
for representing static data and extended these techniques for displaying. temporal data. The implementa-

tion of a prototype system demonstrates the feasibility of our approach.

Appendices

Appendices A, B, and C give the TDL specification for the graphics knowledge base, the object
frame, and the tuple data structures. Appendix D gives the BNF for the Schema Editor commands. Appen-
dix E contains the complete exampies from which portions appear in the text. This appendix was generated
al_ltomatically by a tool gknbprint which pretty prints a graphics knowledge base. Appendix F contains a

glossary of words or phrases denoting important concepts.

111

Appendix A. Graphics Knowledge Base
Structure GraphicsKnowledgeBase Root graphicsknowledgebase Is

graphicsknowledgebase => objecttemplates: Seq Of objecttemplate,
screencoordinates: coordinatepair,
background: Seq Of primitive,
timerepresentation: Seg Of timerep,
timéstep: steptype,
timespeed: speedtype,
timemode: modetype,
timeordering: orderingtype,
timerange: rangetypeOrvoid,
indeterminacyrep: indeterminacyrep;

cbjecttemplate => name: String,
iconicrep: Seq Of primitive,
attributes: Seq Of attribute,
coordinates: coordinatepair,
xposition: Integer,
yposition: Integer,
width: Integer,
height: Integer,
¢eleor: color,
intensity: Rational;

attribute ::= infinite_ attribute | finite attribute;

.

attribute => name: String;

finite_attribute => rep: Seg Of value_actions;
value actions => value: String,
actions: Seq ©f action;
action => applyto: objecttemplate,
code: primitive;

infinite attribute => rep: Seq Of infinite_attributerep;
infinite attributerep ::= text | intrinsicrep | functionrep | objecttemplate;

intrinsicrep => : ——attribute value is used as part of icecnle rep

functionrep => applytc: cbjecttemplate,
code: primitive,
ordering: orderingtype,
range: rangetypeOrvoid;

orderingtype ::= forward | reverse;
forward =>;
reverse =>;
primitive ::= iconicprimitive
transformativeprimitive | stackprimitive;

primitive => dependent: Boolean; -— true if depends on some att value

iconicprimitive ::= pointer { line | circle | point | pelygon |
icon | curve } text;

transformativeprimitive ::= colorprimitive | geometricprimitive;

112

coleorprimitive ::= color | colorscale
geometricprimitive ::= rotate | scale
stackprimitive ::= PUSHCPT | POPCPT |

position ::= xposition | ypositien:
position => value: numbertypeQrvoid;
xposition =>;
yposition =>;

rangetype => lowvalue: Integer,
highvalue: Integer;

pointer => vertexl: point,
vertex2: point;
line => vertexl: point,
vertex2: point:
circle => filled: Boolean,
radius: numbertype,
center: point;
polygon => filled: Boolean,
vertices: Seq Of point;

eolor => name: String,
index: Integer,
r: Integer,
b: Integer,
g: Integer;
colorscale => name: String;

curve => peints: Seq Of point;
icon => name: String,
position: point,
size: point;

text => value: String,
position: point,
size: point;

intensity => ival: numbertype,
range: rangetype;

rotate => angle: numbertype;
scale => xs: numbertype,

ys: numbertype;
translate => xt: numbertype,

yt: numbertype;

PUSHCPT =>;
POPCPT =>;
PUSHCOLOR =>;
POPCOLOR =>;

point => x: numbertype,

y: numbertype;
knownpoint => x: Integer,
y: Integer;

| intensity:
| translate

PUSHCOLOR

coordinatepair => lowercorner: knownpeint,

uppercorner: knownpoint;

113

| position;
POPCOLOR;

End

numbertype ::= number | objectattributepr;

nurber => num: Rational;

cbjectattributepr => objname: String,
attname: String;

timerep ::= geometricprimitive | colorscale | intensity |
motiontype | time_icon |
intrinsiexpos | intrinsicypos | void:

time_icon ::= clock_icon | month_icon | year icon:
time_icon => pesition: peint,
size: point:
¢lock_icon ::= clockface_icon | digitalclock icon;
clockface icon =>;
digitaleleck_icon =>;
month;icon =>;
year jeon =>;

motiontype ::= animate | animatetrace ! blinking:;
animate =>;

animatetrace =>;

blinking =>;
intrinsiecxpos
intrinsicypos

~

na

steptype ::i= starttime | stoptime | unit;

starttime =>;

stoptime =>;

unit ::= secend | minute | hour | day | menth | year;
unit => val: Integer;

second =>;

minute =>;

hour =>;
day =>;
month =>;
year =>;

modetype ::= continuous | stop;
continucus =>;
stop =>;

speedtype => val: Integer;

indeterminacyrep ::= blinking | fading | dashedlines | void;

fading =>;
dashedlines =>;

numbertypeOrvoid ::= numbertiype | void;
rangetypelrvoid ::= rangetype | void;
vold =>;

For void Use Enumerated;

114

Appendix B. Object Frame

Structure ObjectPrame Roct objectframe
From GraphicsKnowledgeBase iconlist InTuples Is

objectframe => knowledgebase: graphicsknowledgebase,
iconlist: icons,
activetuples: relations,
objects: Seq Of object;

object => template: objecttemplate,
tuple: tuple,
rep: Seq Of primitive,
textreps: Seq Of text,
coordinates: coordinatepair,
xposition: Integer,
yposition: Integer,
height: Integer,
width: Integer,
color: ecolor,
intensity: Rational,
starttimevalue: Integer,
stoptimevalue: Integer;

relations => lowtimevalue: Integer,
hightimevalue: Integer;

attributetype => lowval: attributepair,
highwval: attributepair;

attributepair => numericval: Rational,
rep: Seq Of primitive;

tuple => object: object;
End

115

Appendix C. Tuple Structure

Structure InTuples Root relations Is

relatjons => list: Seq Of relation;
relation => name: 5tring,
tuples: Seqg Of tuple,
attributes: Seq Of attributetype;

attributetype => name: String,
type: valuetype;

valuetype ::= numericvalue | stringvalue;
numericvalue =>;
stringvalue =>;

tuple => key: String,
attributes: Seg Of attributepair,
time: timetype;

attributepair => name: String,
valuye: String,
from: tupleCRvoid;

tupleORvold ::= tuple | void;
void =>;
For void Use Enumerated;

timetype ::i= event | interval | static;
static =>;
event => at: timestamp;
interval => start: timestamp,
stop: timestamp,
indeterminate: Boolean;

timestamp => year: Integer,
month: Integer,
day: Integer,
hour: Integer,
minute: Integer,
second: Integer;
End

116

Appendix D. Schema Editor Command Syntax

<schemaEd cmd> ::= {<range cmd>}* {<represent cmd>}* {<set cmd>}* {<where cmd>}*
<range cmd> ::= range of <control> is <objecttemplate>

<represent cmd> ::=

represent time with {<time_rep>}+ {ordering <ordertype>}?
{step = <step_type>}? {mode = <mode_ type>}?
{speed = <speed_type>}?

represent <control> with { <iconicprimitive> }+

represent <control> . <attname> with { <infrep> }+

represent <contrel> . <attname> = <attval> with { <finrep> }+

represent background with { <finrep> }+

represent indeterminacy with <indetrep>

<set cmd> ::= setting <controlr.<numericcharacteristic» to <pum>
setting <control>».coordinates to <int>,<int> to <int>,<int>
setting <control>.color to <name>

<where cmd> ::= where <condition>
<cendition> ::= <control>.<attQrchar> = <control>,.<attOrchar>
<attOrchar> ::= <attname>

<characteristic>

<time rep> ::= <gecmetricprimitive>
colorscale
intensity
blinking
animationtrace
animation
clockface_icon
digitalelock_icon
menth_icon
year_ icon
nething

<step type> ::=starttime
stoptime
<int> second(s)
<int> minute(s)
<int> hour(s)
<int> day({s)
<int> month (s}
<int> year|(s)

<mode_type> ::= stop
continucus

<speed_Lype> ::= <int> ~-from 0-10 where C is the least amount of time
—--between frames
<indetrep> ::= blinking
fading
dashedlines
nothing

117

<infrep>i:= <geometricprimitive> {ordering <eordertype>}? {range <rangetype>}?
intensity {ordering <ordertype>}? {range <rangetype>}?
colorscale <name> {ordering <ordertype>}?
text at <pocint>
<finrep> ::= <liconicprimitive>
rotate <num>
scale <num> <num>
translate <num> <num>

xposition <num>
yposition <num>
color <name>

intensity <num>

<geometricprimitive> ::=
rotate
scale
translate
xposition
yposition

<iconicprimitive> ::= point <point>
line <point> to <peint>
pointer <point> to <point>
curve <point> {<peint>}¥
polygon <point> {<point>}*
circle cenhter <point> radius <numtype>
icon <name> position <point> size <pcint>
text <name> at <pcint>

<ordertype> ::=forward
reverse

<rangetype> ::=<num> to <num>

<point> ::= <numtype> , <numtype>
<numtype> ::= <num>
<objtemplateref> . <attname>
<objtemplateref> . <numericcharacteristic>
<objtemplateref> ::= <chjecttemplate>
<control>

<objecttemplate> ::= <name>
<attname> ::= <name>
<attvalue> ::= <name>

<centrol> 11= <name>

<numericcharacteristic> ::= xposition
yposition
height
width
intensity

118

Appendix E. Schema Editor Commands for Examples

airplanestatus (plane, model, status):

range of a is airplanestatus
represent a with icon plane
position (10.00,10.00) size {80.00,80.00)
represent a.model = 414A with icon wingpropeller
position (30.00,35.00) size (5.00,30.00)
icon wingpropeller
position (65.00,35.00) size (5.00,30.00}
represent a.model = BrcherII with icon nosepropeller
position (45.00,85.00) size {10.00,5.00)
represent a.status = inrepair with ypositicn 1.90
icon garage
position {(5.00,5.00) size (90.00,20.00}
represent a.status = onground with yposition 1.00
represent a.status = trainingflight with ypositicn 2.00
represent a.status = demoflight with ypesition 3.00
represent a.status = freeflight with yposition 4.00
represent a.plane with text at (37.00,50.00) =size {4.00,4.00}
Xposition
ordering = forward
range = 1 to 5
setting a.xpositicon = O
setting a.yposition =0
setting a.width = 1
setting a.height = 1
setting a.color = black
setting a.intensity = 0.50
setting a.coordinates to 0,0 to 100,100

set screen.coordinates to 0,0 to 8,6
represent time with animation
time_icon clockface position (5.00,4.00) size (1.00,1.00)
step = 30 minutes
speed = 0
mode = stop
ardering = forward
represent indeterminacy with nothing

119

Alternate Representation for time for airplanestatus

airplanestatus(plane, model, status):

range of a is airplanestatus
represent a with icon plane
pesition (10.00,10.90) size (80.00,80.00)
represent a.model = 4143 with color red
icon wingpropeller
position (30.00,35.00) size {5.00,30.00)
icon wingprepeller
pesition (€5.00,35.00) size {5.00,30.00)
represent a.model = ArcherII with icon nosepropeller
position {45.00,85.00) size (10.00,5.00)
color blue
represent a.status = inrepair with ypesition 1.00
icon garage
position (5.00,5.00) size {90.00,90.00}
represent a.status = onground with yposition 1.00
represent a.status = trainingflight with yposition 2.00
represent a.status = demoflight with yposition 3.00
represent a.status = freeflight with ypesition 4.00
represent a.plane with text at (38.00,50.00) size (4.00,4.00)
xposition
ordering = forward
range = 1 to 5§
setting a.xposition =
setting a.yposition =
setting a.width = 1
setting a.height = 1

0
a

setting a.color = black
setting a.intensity = 0.30
setting a.coordinates to 0,0 to 100,100

set screen.coordinates to 480,-2 to 720,46
represent background with line (48C.00,0.00) to {720.00,0.00)
line (480.00,0.00) to {480.00,6.00)
line (480.00,-0.20) to {480.00,0.20)
line (510.00,-0.20) to {510.00,0.20)
line (540.00,-0.20) toc (540.00,0.20)
line (570.00,-0.20) to (570.00,0.20)
line (600.00,-0.20) te {(600.00,0.20)
line (630.00,-0.20) to (630.00,0.20)
line (660.00,-0.20) to (660.00,0.20)
line (690.00,-0.20) to (630.00,0.20)
line (720.00,-0.20) to (720.00,0.20}
text "8:00" at (480.00,-0.50) size (2.00,0.20)
text ®8:30™ at (506.00,-0.50) size {2.00,0.20)
text "9:00" at (536.00,-0.50) size (2.00,0.20)
text "9:30" at (566.00,-0.50} size (2.00,0.20)
text "10:00" at (596.00,-0.50) size (2.0G,0,20)
text *#10:30" at ({626.00,-0.50) size {(2.00,0.20)
text "11:00" at {656.00,-0.50) size (2.00,0.20)
text "™11:30" at (686.00,-0.50) size (2.00,0.20)
text ®12:00" at (716.00,-0.50) =size (2.00,0.20)
represent time with xposition

120

step = 30 minutes
speed = 5§
mode = stop
ordering = forward
represent indeterminacy with nothing

121

JElights(plane):

range of J is Jflights
represent J with icon plane

positien (1€.00,10.00) size (80.00,80.00)}
(38.00,50.00) size (4.00,4.00)

represent J.plane with text at

setting J.xposition
setting J.yposition
setting J.width = 1
setting J.height
setting J.color

1

0
0

klack

setting J.intensity = 0.10
setting J.coordinates to 0,0 to 100,100

set screen.coordinates to 540,-1 to 930,7

represent background with line

(540.00,0.00) to (930.00,0.00)

line (540.00,0.00) to (540.00,15.00)

line ({570.00,-0.20) to (570.0C,0.20)

line (60C.00,-0.20) to (600.00,0.20)

line (630.0C,-0.20) to (630.00,0.20)

line {6606.00,~0.20) to (660.00,0.20)

line (690.00,-0.20) to (6%0.00,0.20)

line {720.00,-0.20) to (720.00,0.20)

line (750.00,~0.20) to (750.00,0.20)

line {780.00,-0.20) to (780.00,0.20)

line (810.00,-0.20) to {810.00,0.20)

line (840.00,-0.20) to (840.00,0.20)

line {870.00,~0.20) to (870.00,0.20}

line (900.00,-0.20) t¢ (900.00,0.20)

line {930.00,-0.20) to (930.00,0.20)

text "3:00" at ({540.0G,~0.50) size (2.00,0.20)

text "9:30" at (565.00,-0.50) size (2.00,0.20)

text "10:00" at (595.00,-0.50) size (2.00,0.20)
text *#10:30" at (625.00,-0.50) size (2.00C,0.20)
text "1il1:00" at (635.00,-0.50) size (2.00,0.20)
text "11:30" at (685.,00,-0.50}) size (2.00,0.20)
text "12:00" at {715.00,-0.50) size {2.00,0.20)
text "12:30" at (745.00,-0.50) size {2.00,0.20)
text "1:00% at (775.00,-0.50) size (2.00,0.20)

text "1:30" at (805.00,-0.50) size (2.00,0.20)

text "2:00" at (835.00,-0.50) size (2.00,0.20)

text "2:30" at (865.00,-~0.50) size (2.00,0.20)

text "3:00" at (895.00,-0.50) size (2.00,0.20)

text "3:30" at (925.00,-0.50) size (2.00,0.20}

represent time with xpesition
" step = 30 minutes
speed = 5
stop
ordering = forward

made

‘represent indeterminacy with dashedlines

122

firstgameplays (typeplay, startpos, stoeppos}):

range of £ is firstgameplays

represent f with line (f.from,f.startpes} tec (f.to,f.stoppos)
represent f.startpes with intrinsicrep
represent f.stoppeos with intrinsicrep

represent f.typeplay
represent f.typeplay
represent f.typeplay

forwardpass with intensity 1.00
lateral with intensity 0.60
running with intensity G.20

-10

setting f.xposition

setting
setting
setting
setting
setting
setting

f.yposition = -10
f.widch = 130
f.height 65
f.color = black
f.intensity = 1.00

f.coordinates te -10,-10 to 120,55

set screen.ccordinates to

-10,-10 to 120,55

represent background with line

line:

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
text
text

text

text
text
text
text
text
text
text
text
represent time with nothing

{(0.00,0.00) te (0.00,100.00)
(0.00,0.00) teo {120.00,0.0Q0)

{-1.00,10.00) to
{-1.00,20.00) to
{~1.00,30.00) to
(=1.00,40.00) to
{-1.00,50.00} to
00,60.00) to
0g,70.00) to
00, 80.00) to
00,90.00) tc
(-1.00,100.00} to
{10.00,-1.00} to
(2G,00,-1.00) to
{30.00,~1.00) to
{40.00,-1.00) to
(50.00,-1.00) to
{60.060,-1.00) to
(70.00,-1.00) to
{80.00,-1.00} to
(90.00,-1.00} to
{100.00,-1.00} to
(110.00,-1.00) to
(120.00,-1.30} to
"time in seconds®

{-1.
{-1.
{-1.
(-1.

{1.00,10.00)
{1.00,20.00)
(1.00,30.00)
(1.00,40.00})
{1.00,50.00)
(1.00,60.00}
(1.00,70.00)
(1.00,80.00)
{1.00,90.00)
{1.00,106.00
(10.0¢,1.00)
(20.00,1.00})
{30.00,1.00)
{40.00,1.00)
{50.00,1.00)
(60.00,1.00)
{70.00,1.00)
(80.00,1.00)
{90.00,1.00}
(100.00,1.00)
(110.00,1.00)
{120.00,1.00)
at (40.00,-8.00) size (2.00C,2.280)

"0G:20" at

{18.00

,=3.00)

size

{1.090,1.00)

(38.00,-3.00)
{58.00,-3.00)
n01:20" at (78.00,-3.00)
»01:40" at (98.00,-3.00)
M10W at (~5.00,10.00)
%20" at (-5.00,20.00)
"307 at (-5.00,30.00)
"G at {-5.00,40.00)
“50" at {-5.00,50.00)

{1.00,1.00)
{1.00,1.00)
{1.00,1.00)
size {1.00,1.00}
(1.00,1.00)
{1.00,1.00}
(1.c0,1.00)
{1.00,1.00)
(1.00,1.00}

00:40" at size

"01:00" at size

size

size
size
size
size
size

123

step = 1 second
speed = 2
mode = continuous
ordering = forward
represent indeterminacy with nothing

124

playsdistance (typeplay, totaldistance):

range of p is playdistance
represent p with pelygon {p.from,p.totaldistance) (p.to,p.totaldistance)
{p.-to,0.00) (p.from,0.00)

represent p.totaldistance with intrinsicrep
represent p.typeplay = forwardpass with color blue
represent p.typeplay = lateral with color red
represent p.typeplay = running with color green

setting p.xposition = -10

setting p.yposition = ~10

setting p.width = 130

setting p.height = 30

setting p.color = black

setting p.intensity = 1.00

setting p.coordinates to -19,-10 to 120,20

set screen.coordinates to =-10,-10 teo 120,20
represent background with line {0.00,0.00) to (0.00,100.00
line (0.00,0.00) to (120.00,0.00)
line (~1.00,5.00) te (1.00,5.00)
line {-1.00,1C.00) to {(1.00,10.00}
line {-1.00,15.00) to (1.00,15.00)
line (-1.00,20.00) to (1.00,20.00)
line (-1.00,25.00) to (1.00,25.00)
line (10.00,-1.C0) to (10.00,1.00}
line (20.00,-1.00} to (20.00,1.00)
line (30.00,-1.00) to (3€.00,1.00)
line (40.00,-1.00) to (4C.00,1.00)
. line {50.00,-1.00) to (50.00,1.00)
line {60.00,-1.00) to (60.00,1.00)
line {(70.00,~1.00) te (70.00,1.00)
line {80.00,-1.00) to {80.00,1.00)
line {90.00,-1.00) to {90.00,1.00)
line {(100.£0,-1.00) tco (100.00,1.00}
line {110.00,-1.00) te (110.C0,1.00}
line (120.00,-1.00) to (120.00,1.00)
text "time in seconds™ at {40.00,-8.00) size (2.00,2.00)
text ®00:20" at (18.00,-3.00) size {1.00,1.00)
text "00:40" at (38.00,-3.00) size (1.00,1.00)
text "01:00" at (58.00,-3.00) size (1.00,1.00}
text "01:20% at {(78.00,-3.00) size (1.00,1.00)
text "01:40" at (98.00,-3.00) size (1.00,1.00)
text "5" at (-5.00,5.00) size (1.00,1.00)
text *10" at (-5.00,10.00) size (1.00,1.00)
text "15" at (-5.00,15.00) size (1.00,1.00)
represent time with nothing
step = 1 second
speed = 2
mode = continuocus
ordering = forward
represent indeterminacy with nothing

125

first_touchdownplays (typeplay, startpes, distance):

range of £ is firsttouchdown plays
represent f.typeplay = running with icen barbell
position (f.startpes,f.from) size (f.distance,1.00)}
represent f.typeplay = lateral with icon dotted barbell
" position (f.startpos,f.from) size (f.distance, .00}
represent f.typeplay = forwardpass with icon curved bkarbell
position (f.startpos,f.from) size {f.distance,1.00)
represent f.distance with intrinsicrep
represent f.startpos with intrinsicrep
setting f.xposition = 50
setting f.yposition = 163
setting f.width = 7¢
setting f.height = 54
setting f.color =~ black
setting f.intensity = 0.50
setting f.coordinates te 50,165 teo 120,219

50,162 tec 120,219
(52.00,164.00)
{52.00,164.00)

set screen.coocrdinates to
represent background with line
line

(120.00,164.00)
{52.00,219.00}

to
to

line
line
line
line
line

{60.00,163.50)
(70.00,163.50)
(80.00,163.50) to
(90.00,163.50) to
{100.00,163.50) to

(60.00,164.59)
(70.00,164.50)
(80.00,164.50)
{90.00,164.50}
{100.00,164.50)

to
to

line (110.00,163.50) to {(110.00,164.50}

text 60" at (59.50,162_50) size (0.40,0.50)
text *70" at (69.50,162.50) size (0.40,0.50)
text "BO™ at (79.50,162.50) size (0.40,0.5Q)
text *90" at (89.50,162.50) size (G.40,0.50)
text "100" at (99.50C,162.50) size (0.40,0.50)
text "110" at (109.50,162.50) size {(0.40,0.50)
cext "*2:50" at (50,00,170.00) size (0.4C,1.00)
text "3:006" at (50.00,180.C00) size (0.40,1.00)
text *3:10" at (50,00,190.00) size (0.40,1.00}
text "3:20" at {(50.00,200.00) size (0.40,1.00)
text *3:30" at (50.00,210.00) size (0.40,1.00}

represent time with nothing
step = 1 second
speed = 1
mode = stop
ordering = forward

represent indeterminacy with nothing

126

process (id, state):
precessor (id) :

mailbox{id}:

runningon (process, processor}:
sendmessage (process, mailbox):
waiting(process, mailbox):

range of p is process
represent p with circle center (50.00,5G.00) radius 25.00
point (25.00,)
represent p.id with text at (45.006,50.00) size (8.00,8.00)
yposition
crdering = forward
range = 0 to 4
represent p.state = Ready with intensity 0.70
represent p.state = Running with intensity 1.00
represent p.state = Blocked with intensity 0.40
represent p.state = Done with intensity 0.10
setting p.xpesition = 0
setting p.yposition = 0
setting p.width = 1
setting p.height = 1
setting p.color = black
setting p.intensity = 0.40
~setting p.coordinates to 0,0 te 100,100

range of p is processcr
represent. p with icon rectangle
position {(10.00,10.00) size (70.00,90.00)
represent p.id with text at (60.00,80.00) size (8.00,8.900)
ypositioen
ordering = forward
range = 4 to 8
setting p.xposition = 0
setting p.yposition = C
setting p.width = 1
setting p.height = 1
setting p.color = black
setting p.intensity = 0.40
setting p.coordinates to 0,0 to 100,1G0

range of m is mailbox
represent m with icon oval
position {30.00,25.00) size (40.00,50.00)
represent m.id with text at (40.00,50.00) size (8.00,8.00}
’ ypesition
ordering = forward
range = 1 to 8
setting m.xposition = 10
setting m.yposition = 0
setting m.width = 1
setting m.height = 1
setting m.color = black
setting m.intensity = 9.40

127

setting m.coordinates £o 0,0 to 100,100

range of r is runningon
represent r.processor with processor r
rapresent r.process with process p
yposition r.yposition
ordering = forward
_setting r.xposition = 0
setting r.yposition = 0
setting r.width = 1
setting r.height = 1
setting r.celor = black .
setting r.intensity = 0.40
setting r.coordinates to 0,0 te 100,100

range of s is sendmessage
represent s with peointer (p.xposition,p.yposition) to (m.xposition,m.ypositioen)
represent s.mailbox with mailbox m
represent s.process with process p

setting s.xposition = 0

setting s.yposition = 0

setting s.width = 12

setting s.height = 8

setting s.color = black

setting s.intensity = 0.50

setting s.coordinates te 4,0 to 12,8

range of W is waiting

represent w with pointer (m.xpesition,m.yrosition) to (p.Xposition,p.ypositionf
represent w.mailbox with mailbox m
represent w.process with process p

0

setting w.yposition 0

setting w.width = 12 .
setting w.height = 8

setting w.e¢olor = black

setting w.intensity = 0.50

getting w.coordinates to 0,0 to 12,8

setting w.xposition

set screen,.coordinates to 0,0 to 12,8
represent time with animationtrace
time_icon digitalelock pesition (11.00,7.00) size (1.00,1.00)
step = 1 second
speed = 1
mode = stop
ordering = forward
represent indeterminacy with nothing

128

Appendix F. Glossary

attribute Column of a relation ““table’’.
attribute (IDL) A named value with a domain specified by an attribute type.
attribute type The type of an IDL attribute which can be a basic type, a set or sequence, a node

. type, or a class type.
basic type The IDL types of boolean, integer, rational, and string,
class A collection of IDL nodes sharing common aspects.

coordinate pair The portion of the screen template which specifies the lower corner and upper
corner of the screen grid,

current position transformation
A matrix which defines the current transformations which are applied to each

. graphical primitive.
database schema A setof relation schema.

description of time
The area of human perception of ime which is concerned with how one descnbes
time. Time is described in terms of duration and/or succession.

display aiding A technique for representing time which displays a trail of displacements of an

object which fade over time.

domain A set of values such as integers or character strings which are valid for an attri-
bute,

duration The Iength of time,

entity relation A relation which contains an entity identifier or key plus other descriptive attri-
butes.

event Data which is valid at a instance of time,

experiance of time
The area of human perception. of time which is concerned with how one interprets
temporal information, Time is experienced as flowing or as a succession of events,

finite attribute Attributes of a relation with finite domains.
frame buffer A rectangle of pixels containing values.

graphic characteristic
Graphical aspects of an object such as color and size.

graphics knowledge base
The data structure containing a set of object templates and a set of temporal
characteristics. This structure is used to consiruct an object for each active tuple.

historical database
A database which contains the time when the information being modeled was
valid.

historical event relation
A relation augmented with one temporal attribute named at.

histeorical interval relation
A relation augmented with two temporal attributes named fromand te.

historical relational database
A relational database with one or two temporal attributes added to each relation

schema.

iconic representation
A graphical shape such as an icon, liné or polygon.

129

iconic template The template defining a graphical shape.
IDL The Interface Description Language used to specify data [Nestor, et al. 1982].

indeterminate data
Information in a database which may contain incomplete or incorrect information.

infinite attribute
Attributes of a relation with infinite domains,

Interpreter The module of the display system which interprets the embedded graphical primi-
tives of each object.
interval Data which is valid within an interval of time.

intrinsic position modifier
A special modifier which uses the value of an attribute as the x or y coordinate of
an iconic representation thus changing the intrinsic structure of the representation.

key The identifier for a relation consisting of one or more attributes. No two tuples of
arelation agree on all attributes of the key.

members The elements of an IDL class.

modifier The definition of what type of modification should be made t0 an object under

what conditions. Modifications include changing graphical characteristics, adding
iconic representations, and changing the intrinsic structure,

node A named collection of O or more IDL attributes.

object The structure which contains the information for the graphics model. This infor-
' mation includes iconic representations and graphical characteristics. Objects are
created using object templates.

object frame A collection of objects constructed from the object templates in the graphics
knowledge base. -

object template The defining template for an object which contains iconic templates, modifiers,
and graphical characteristics,)

primitive image A graphical description containing graphical primitives.such as color, polygons,
and size defined with a unit square.

Quel The query language for Ingres [Stonebraker et al, 1976].
relation A subset of the Cartesian product of list of domains.
" relation schema The definition for a relation which contains the name of the relation and the name
and domains of its attributes.

relaticnal database
A set of relation specified by a database schema.

relationship relation
A relation containing two or more entity identifiers plus other descriptive attri-
butes.

rollback database
A database which contains all past states of the static database as it is updated

over time,

Schema Editor The module of the display system which constructs the graphics knowledge base
given user commands,

screen template The definition for a screen which includes the coordinate pair of the screen plus a
sequence of primitive images.

segment A portion of the entire screen containing a sequence of scaled images.

set-theoretic relation
The mathematical concept underlying the relational model which is a subset of the

Cartesian product of a list of domains.

130

static database A database which is updated by replacing information resulting in data values
only at the “‘current’’ time.

statiec state A sequence of objects and the time that these objects are valid. The valid time can
be an instant of time or an interval of time.

structure A collection of IDL nodes and classes.

structured type The types of set and sequence which are provided in IDL notation.

succession A sequence of time values.

tenporal characteristic
Characteristics of time including the representation of time and properties of time
such as the direction and the interval step.

temporal database
A database which contains both valid and transaction time for information.

temporal modifier
Special modifiers which use the time value for a tuple to determine if conditions
are met and modifications should be made.

Time Displayer The module of the display systern which manages the display of time.

TQuel A9 8:2mp0ral query language designed by Richard Snodgrass [Snodgrass & Ahn
1986].

transaction time The time information was stored in the database.

true data Information in a database which is believed to be accurate.

tuple Rows of a relation **table.”

valid time The time when the information in a database is valid.

viewport The portion of the frame buffer which can be written into.

131

Bibliography

[Ariav & Morgan 1982] Ariav, G. and H. L. Morgan, MDM: Embedding the Time Dimension in Informa-
tion Systems. TR 82-03-01. Department of Decision Sciences, The Wharton School, University of
Pennsylvania. 1982.

[Bertin 1981] Bertin, J. Graphics and Graphic Information Processing. New York: Walter de Gruyter,
1981,

. [Brown & Sedgewick 1984] Brown, Marc H. and Robert Sedgewick. A System for Algorithm Animation.
ACM SIGGRAPH Proceedings, , July 1984, pp. 177-186.

[Chen 1976] Chen, P. P-S. The Enmy-Relatzonsth Model -~ Toward a Ungﬁed View of Data. ACM Tran-
sactions on Database Systems, 1, No. 1, Mar. 1976, pp. 9-36.

[Codd 1972] Codd, E. F. Relational Completeness of Data Base Sublanguages, in Data Base Systems. Vol.
6 of Courant Computer Symposia Series. Englewood Cliffs, N.J.: Prentice Hall, 1972, pp. 65-98 .

[Codd 1970] Codd, E.F. A Relational Model of Data for Large Shared Data Bank. Communications of the
Association of Computing Machinery, 13, No. 6, June 1970, pp. 377-387.

{Donelson 1978] Donelson, W. C. Spatial Management of Infarmatzon ACM SIGGRAPH Proceedings, ,
August 1978, pp. 203-209.

[Friedell, et al 1982] Friedell, M., J. Bamett and D. Kramlich. Context-Sensitive Graphic Presentation of
Information. ACM SIGGRAPH Proceedings, , July 1982, pp. 181-188.

[Friedell 1984] Friedell, Mark Automatic Synthesis of Graphical Object Descriptions. ACM SIGGRAPH
Proceedings, , July 1984, pp. 53-62.

[Held et al. 1975] Held, G.D., M. Stonebraker and E, Wong. INGRES--A relational data base management
system. Proceedings of the 1975 National Computer Conference, 44 (1975), pp. 409-416,

{Herot 19801 Herot, C. Spatial Management of Data. ACM Transactions on Database Systems, 5, No. 4,
December 1980, pp. 493-514.

[Herot, et al 19803 Herot, C., R. Carling, M. Friedell and D. Kramlich. A Prototype Spatial Data Manage-
ment System. ACM SIGGRAPH Proceedings, (1980).

[Kramlich, et al 1983] Kramlich, D., G. Brown, R. Carling and C. Herot. Program Visualization: Graphics
Support for Software Development. IEEE Proceeding of the 20TH Design Automation Confer-
ence, (1983), pp. 143-148.

[Kummel 1966} Kummel, Friedrich Time as Succession and the Problem of Duration, in The Voices of
Time. New York, New York: George Braziller, Inc., 1966.

[Lodding 1983] Lodding, K. N, Iconic Interfacing. IEEE Computer Graphics and Applications, 3, No, 2
(1983), pp. 11-20.

[Morse 1979] Morse, A. Some Principles for the Effective Display of Data. ACM SIGGRAPH Proceedings,
; August 1979, pp. 94-100.

[Nestor, et al. 1982] Nestor, .R., W.A. Wulf and D.A. Lamb. IDIL, Formal Description, Part I. SoftLab
Document No. 2. Computer Science Department, University of North Carolina at Chapel Hill,
June 1982,

{Newman & Sproull 1979} Newman, WM. and Sproull R.F.. Principles of Interaciive Computer Graphics.

132

New York, New York; McGraw Hill Book Company, 1979.

[Shallis 1983] Shallis, M. On Time: An Investigation into Scientific Knowledge and Human Fxperience,
New York: Schocken Books, 1983.

[Snodgrass 1982] Snodgrass, R. Monitoring Distributed Systems: A Relational Approach. PhD. Diss. Com-~
puter Science Department, Camegie-Mellon University, Dec. 1982, -

[Snodgrass 1984] Snodgrass, R. The Temporal Query Language TQuel, in Proceedings of the Third ACM
SIGAct-SIGMOD Symposium on Principles of Database Systems, Waterloo, Ontario, Canada:
Apr, 1984, pp. 204-212.

[Snodgrass 1985] Snodgrass, R. A Relational Approach to Monitoring Complex Systems. Technical Report
TR85-035. Computer Science Department, University of North Carolina at Chapel Hill. Dec.
1985.

[Snodgrass 1986] Snodgrass, R. A Temporal Query Language. ACM Transactions on Database Systems (to
appear), (1986).

[Snodgrass & Ahn 1986)] Snodgrass, R. and 1. Ahn. Temporal Databases. IEEE Computer, 19, No. 9, Sep.
1986.

[Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and Implementa-
tion of INGRES. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp. 189-222,

[Tsichritzis & Lochovsky 1982] Tsichritzis, D. and F. Lochovsky. Data Models, New Jersey. Prentice-
Hall, 1982.

[Ullmann 1982] Ullman, J. D. Principles of Database Systems. Rockville, Maryland: Computer Science
Press, 1982,

[Weller & William 1976] Weller, D. and R. William, Graphic and Relational Database Support for Prob-
lem Solving. Computer Graphics, 10, No. 2, August 1976.

[Whitrow 1978] Whitrow, G.J. The nature of time. New York, NY: Holt Rinehart and Winston, 1978.

[Whitrow 1980] Whitrow, G.J. The natural philosophy of time. New York, NY: Oxford University Press,
1980.

[Yedwab, et al 1981] Yedwab, L., C. Herot, R.L. Rosenberg and C. Gross. The Automated Desk. Proceed-
- ing of the Second Symposium on Small Systems, (1981).

133

