
.

Performance Modeling and Access Methods
for Temporal Database Management Systems

TR86-018

August, 1986

Ilsoo Ahn

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall, 083A
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

Performance Modeling and Access Methods

for Temporal Database Management Systems

by

Ilsoo Ahn

A dissertation submitted to the faculty of the University
of North Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill

1986

Approved by:

.1 l \ (!

Jl~ \, hI J J-,, ~'Jl ';·• 1
/

Advisor ,

/)It/ / I
~-t . L,

·/
.~eader

© 1986

llsoo Ahn

ALL RIGHTS RESERVED

ILSOO AHN. Performance Modeling and Access Methods for Temporal Database Management Systems

(Under the direction of Richard Snodgrass)

Conventional databases storing only the latest snapshot lack the capability to record and process

time-varying aspects of the real world. The need for temporal support has been recognized for over ten

years, and recent progress in secondary storage technology is making such support practically feasible.

There are three distinct kinds of time in databases: transaction time, valid time, and user-defined

time. Depending on the capability to support either or both of transaction time and valid time, databases

are classified into four types: snapshot, rollback, historical, and temporal. Each of the four types has

different semantics and different implementation issues.

Database systems with temporal support maintain history data on line together with current data,

which causes problems in terms of both space and performance. This research investigates the temporally

partitioned store to provide fast response for various temporal queries without penalizing conventional

non-temporal queries. The current store holds current data and possibly some history data, while the

history store contains the rest. The two stores can utilize different storage formats, and even different

storage media, depending on the individual data characteristics. Various issues on the temporally

partitioned store were stodied, and several formats for the history store were investigated.

To analyze the performance of TQuel queries on various access methods, four models forming a

hierarchy were developed: one each for algebraic expressions, database/relations, access paths, and

storage devices. The model of algebraic expressions maps the algebraic expression to the file primitive

expression, based on information represented by the model of database/relations. The model of access

paths maps the file primitive expression to the access path expression, which is converted to the access

path cost by the model of storage devices.

As a test-bed to evaluate the access methods and the models, a prototype of a temporal DBMS was

built by modifying a snapshot DBMS. The prototype was used to identify problems with conventional

access methods and also to provide performance data to check the analysis results from the models.

Reverse chaining, among the temporally partitioned storage structores, was incorporated in the prototype

to enhance its performance.

ii

iii

Acknowledgements

I wish to express my sincere gratitude and appreciation to Professor R. Snodgrass, who has guided,

encouraged, and enlightened me throughout this research.

I would also like to thank my committee, Professors J. Nievergelt, D. Stanat, J. Smith, and D. Beard, for

their valuable suggestions on various aspects of this research.

Last, but not least, I thank my family, on both sides of this globe, for their love and support.

iv

v

Table of Contents

PART I. Introduction ... 1

Chapter 1. Overview ... 3
1.1. Motivation ... 3

1.1.1. Terminology ... 4

1.1.2. Applications for Databases with Temporal Support 5
1.2. The Problem .. 6

1.2.1. Characteristics of Databases with Temporal Support 6
1.2.2. Conventional Access Methods ... 7

1.3. The Approach .. 9
1.3.1. Temporally Partitioned Store ... 9
1.3.2. Performance Models .. 10

1.3.3. Experiments .. 10

1.3.4. Summary .. 11

1.4. Structure of the dissertation ... 11

Chapter 2. Previous Wmk ... 13

2.1. Access Methods and Performance Analysis ... 13
2.1.1. Access Methods .. 13

2.1.2. Access Cost Estimation .. 14
2.1.3. Systems and Models ... 15

2.2. Databases with Temporal Support .. 17
2.3. TQuel ... 18

PART IT. Temporal Database Management Systems ... 21

Chapter 3. Types ofDatabases .. 23
3.1. SnapshotDatabases ... 23

3.2. Rollback Databases ... 25
3.3. Historical Databases .. 29
3.4. Temporal Databases .. 32
3.5. User-defined time .. 36
3.6. Summary ... 36

Chapter 4. Models and Performance Analysis .. 39
4.1. Models ... 39

4.1.1. Model of Algebraic Expressions .. 39
4.1.1.1. Algebraic Expressions ... 40
4.1.1.2. File Primitive Expressions... 43
4.1.1.3. Model of Algebraic Expressions ... 45

4.1.2. Model of Database/Relations ... 50

4.1.3. Model of Access Paths ... 52

vi

4.1.4. Model of Storage Devices•.................................. 62
4.2. Performance Analysis ... 64

4.2.1. Examples .. 65
4.2.2. Performance Analyzer••.................................•.......... 69

Chapter 5. New Access Methods ... ,................. 71
5.1. Temporally Partitioned Store ...•........................ 71

5.1.1. Split Criteria•......•......................................••................................. 73
5.1.2. Update Procedures ... 74
5.1.3. Retroactive or Proactive Changes•.........•......................•.......... 80
5.1.4. Key Changes ...•........................ 81
5.1.5. Performance ...•................................. 82

52. Structures of the History Store.. 83
5.2.1. Reverse Chaining ..•........................ 83
5.2.2. Accession Lists•...........•...••................................ 86
5.2.3. Indexing .. 88
5.2.4. Oustering•..........•... 90

5.2.4.1. Variations ..•........•......................••...••..........................•.......... 91
5.2.4.2. Nonlinear Hashiug ... 94

5.2.5. Stacking•..•....................... 105
5.2.6. Cellular Chainiug•.. 106

5.3. Secondary Indexiug•..................................•.. 108
5.3.1. Types of Secondary Indices ... 108
5.3.2. Structures of Secondary Indices ... 109

5.4. Attribute Versioning ...•..•.........•....................... 110

5.4.1. Conversion•..................•...........•...............................•.......... 111

5.4.2. Storage Requirements•.. 114
5.4.3. Temporally Partitioned Store•..•.....................•................................ 115

5.5. Summary••.........•..•.............................. 117

PART ill. Benchmarks .•...............•.. 119

Chapter 6. Prototype with Conventional Access Methods,........... 121
6.1. Prototype••..••....•................................ 121
6.2. Benchmarking the Prototype••....................•.......................... 127

6.2.1. A Benchmarlc .. 127
6.22. Performance Data•..............•....•................................ 132
6.2.3. Analysis of Performance Data ... 135
6.2.4. Non-uniform Distribution .. 138

6.3. Analysis from Models•... 139
6.4. Summary .•••••.••.•.•••••••••••••.••.......••••••.••••••......•.•••••••••••.....•..•.•••••••••.....•..•••••••........ 142

Chapter 7. Temporally Partitioned Store... 143
7 .1. Implementation of the Temporally Partitioned Store•...•.•.............................. 144
7 .2. Performance Analysis•... 147

7.2.1. Performance on a Rollback Database .. 148
7.2.2. Performance on a Temporal Database ... 151

7 .3. Secondary Indexing ...•.............•....•................................ 156

vii

PART IV. Conclusions ... 163

Chapter 8. Conclusions and Future Worl< ... 165
8.1. Conclusions ... 165
8.2. Future Work .. 167

Bibliography .. 169

Appendix A. TQuel Syntax in BNF .. 177
Appendix B. NonlinearHashing ... 181
Appendix C. Benchmark Results .. 187
Appendix D. Performance Analysis (1) .. 193
Appendix E. Update Algorithms ... 205
Appendix F. performance Analysis (2) ... 213

viii

ix

List of Figures

Figure 3-1: A Snapshot Relation .. 24
Figure 3-2: A Rollback Relation ...•.. 25
Figure 3-3: A Rollback Relation ..•..•.. 26
Figure 3-4: Historical Relation•.........•... 29
Figure 3-5: A Historical Relation ..•.............•.............•............................ 30
Figure 3-6: A Temporal Relation ..•.. 33
Figure 3-7: A Temporal Relation•.....................•...•... 33
Figure 3-8: A 1RM Relation•...............................•... 35
Figure 3-9: Types of Databases .. 37
Figure 3-10: Time to be Supported by Databases .. 37
Figure 4-1: BNF Syntax for Algebraic Expressions .. 42
Figure 4-2: BNF Syntax for File Primitive Expressions .. 44
Figure 4-3: IDL Description for the Model of Database/Relations ... 51
Figure 4-4: BNF Syntax for File Path Expressions (Single File) ... 54
Figure 4-5: Structures for an Inverted File and a MultilistFile (n = 3) ... 56
Figure 4-6: Access Paths with Three Files ... 60
Figure 4-7: BNF Syntax for Access Path Expressions (Multiple Files) .. 60
Figure 4-8: Access Path Graphs (n = 3) ... 61
Figure 4-9: Time (in msec) to Access a Block... 63
Figure 4-10: Performance Analysis with the Four Models.. 64
Figure4-ll: Performance Analyzer forTQuel Queries .. 69
Figure 5-1: A Delete Statement.. 76
Figure 5-2: Base Interval vs. Update Interval for Delete ... 76
Figure 5-3: Base Interval vs. Update Interval for Replace ... 78
Figure 5-4: Reverse Chaining .. 84
Figure 5-5: Accession List ... 86
Figure 5-6: Indexing ... 89
Figure 5-7: Clustering .. 91
Figure 5-8: Insertions in Nonlinear Hashing .. 97
Figure 5-9: Insertions in Nonlinear Hashing .. 98
Figure 5-10: Insertions in Nonlinear Hashing .. 99
Figure5-ll: DeletionsinNonlinearHashing .. 101
Figure 5-12: Deletions in Nonlinear Hashing .. 102
Figure 5-13: Stacking (depth d = 3) ... 105
Figure 5-14: Cellular Chaining (cell size c = 3) ... 107
Figure 5-15: Types of Secondary Indices for Each Type of Databases ... 109
Figure 5-16: A Relation in Tuple V ersioning .. 111

Figure 5-17: A Relation in Attribute Versioning ... 112
Figure 5-18: Partial UNNEST'ing of A Relation with Attribute Versions ... 112

Figure 5-19: Full UNNEST'ing of the Relation in Figure 5-17 .. 113
Figure 5-20: Attribute Versions ... 116

Figure 5-21: Structures for the History Store... 117

X

Figure 6-1: Internal Structure ofiNGRES ... 122
Figure 6-2: A TQuel Query .. 123
Figure 6-3: A Syntax Tree .. 123
Figure 6-4: Creating a Temporal Database .. 127
Figure 6-5: Benchmark Queries ... 129
Figure 6-6: Space Requirements (in Blocks) ... 132
Figure 6-7: Input Costs for the Temporal Database with 100% Loading .. 133
Figure 6-8: Input Costs for Four Types of Databases .. 134
Figure 6-9: Graphs for Input Costs .. 134
Figure 6-10: Fixed Costs, Variable Costs, and Growth Rates ... 137
Figure 6-11: Analysis Results using Performance Models .. 140
Figure 6-12: Error Rates in the Analysis Results ... 141
Figure 6-13: Elapsed Time (in sec).. 142
Figure 7-1: Space Requirements for the Rollback_hRelation ... 148
Figure 7-2: The Rollback Database with 100% Loading ... 149
Figure 7-3: Space Requirements for the Temporal_ h Relation ... 152
Figure 7-4: The Temporal Database with 100% Loading.. 153
Figure 7-5: Fixed Costs, Variable Costs, and Growth Rates ... 155
Figure 7-6: Space Requirements for a Secondary Index.. 157
Figure 7-7: Secondary Indexing as Snapshot or Rollback... 158
Figure 7-8: Secondary Indexing as Historical or Temporal ... 160
Figure C-1: I/0 Cost for the Rollback DBMS with 100% Loading ... 187
Figure C-2: Space for the Rollback DBMS with 100% Loading ... 187
Figure C-3: I/0 Cost for the Rollback DBMS with 50% Loading ... 188
Figure C-4: Space for the Rollback DBMS with 50% Loading ... 188
Figure C-5: I/0 Cost for the Historical DBMS with 100% Loading ... 189
Figure C-6: Space for the Historical DBMS with 100% Loading ... 189
Figure C-7: I/0 Cost for the Historical DBMS with 50% Loading ... 190
Figure C-8: Space for the Historical DBMS with 50% Loading ... 190
Figure C-9: I/0 Cost for the Temporal DBMS with 100% Loading ... 191
Figure C-10: Space for the Temporal DBMS with 100% Loading ... 191
Figure C-11: I/0 Cost for the Temporal DBMS with 50% Loading ... 192
Figure C-12: Space for the Temporal DBMS with 50% Loading ... 192

PART I

Introduction

Temporal databases with the capability to record and process time-dependent data expand the area of

database applications, bringing a wide range of benefits. The thesis of this dissertation is that new access

methods can be developed to provide temporal support in database management systems without

penalizing conventional non-temporal queries and the performance of such systems can be analyzed by a

set of models forming a hierarchy.

Part one consists of two chapters. The first chapter describes the background, motivation, and

approach of this dissertation. The second chapter summarizes previous work in the area of this research

and describes TQuel, a temporal query language used throughout this dissertation.

Chapter 1

Overview

This chapter describes the motivation for database management systems with temporal support and

discusses the benefits and applications for such systems. It then identifies the problems involved in

providing temporal support and presents the approach taken in this dissertation.

1.1. Motivation

Time is an essential part of information concerning the real world, which is constantly evolving.

Facts or data need to be interpreted in the context of time. Causal relationships among events or entities

are embedded in temporal information. Time is a universal attribute in most information management

applications and deserves special treatment as such.

Databases are supposed to model reality, but conventional database management systems (DBMS's)

lack the capability to record and process time-varying aspects of the real world. With increasing

sophistication of DBMS applications, the lack of temporal support raises serious problems in many cases.

For example, conventional DBMS's cannot support temporal queries about past states, nor can they

perform trend analysis over a series of history data. There is no way to represent retroactive or proactive

changes. Support for error correction or an audit trail necessitates costly maintenance of backups,

checkpoints, or transaction logs to preserve past states. There is a growing interest in applying database

methods for version control and design management in computer aided design, requiring capabilities to

store and process time-dependent data. Without temporal support from the system, many applications have

been forced to manage temporal information in an ad hoc manner.

The need for providing temporal support in database management systems has been recognized for at

least a decade. A bibliographical survey contained about 70 articles relating time and information

processing [Bolour et al. 1982]; at least 90 more articles have appeared in the literature since 1982

[MCKENZIE 1986]. In addition, the steady decrease of secondary storage cost, coupled with emergence

4

of promising new mass storage technologies such as optical disks [Hoagland 1985], have amplified interest

in database management systems with temporal support or version management G. Copeland asserted that

..• as the price of hardware continues to plumme~ thresholds are eventually reached at which these
compromises [to achieve hardware efficiency] must be rebalanced in order to minimize the total cost of a
system. ... If the deletion mechanism common to most database systems today is replaced by a non-deletion
policy ... , then these systems will realize significant improvements in functionality, integrity, availability,
and simplicity. [Copeland 1982]

G. Wiederhold also observed, in a review of the present state of database technology and its future, that

The availability of ever greater and less expensive storage devices has removed the impediment that
prevented keeping very detailed or extensive historical informstion in on-line databases •.•. An immediate
effect of these changes will be the retention of past data versions over long periods. [Wiederhold 1984]

As a result, numerous schemes have been proposed to provide temporal support in database

management systems by incorporating one or more time attributes in recent years. However, there has

been some confusion concerning terminology and definitions on several concepts in this area, and many

issues remain to be investigated for implementing such systems with adequate performance.

1.1.1. Terminology

The first question concerning temporal databases is the definition of the term temporal database

itself. The term in the generic sense, as used in the title of this dissertation, refers to databases with any

degree of support for recording and processing temporal or time-dependent data. Databases in this

category are, for example, an engineering database with a collection of design versions, a personnel

database with a history of employee records, or a statistical database with time series data from scientific

experiments.

If we look into the characteristics of time supported in these databases, we can identify three distinct

kinds of time with different semantics, as will be discussed further in Chapter 3: valid time, transaction

time, and user-defined time [Snodgrass & Ahn 1985, Snodgrass & Ahn 1986]. Valid time is the time when

an event occurs in an enterprise. Transaction time is the time when a ttaosaction occurs in a database to

record the event. User-defined time is defined by a user, whose semantics depends on each application.

This taxonomy of time naturally leads to the next question of what kind of time is to be supported.

Depending on the capability to support either or both of valid time and transaction time, databases are

classified into four types: snapshot, rollback, historical, and temporal. Rollback databases support

5

transaction time, recording the history of database activities. Historical databases support valid time,

recording the history of a real world. Databases supporting both kinds of time are termed temporal

databases in the narrower sense to emphasize the importance of both kinds of time in database management

systemS. In the remainder of this dissertation, the term temporal databases is used in this narrower sense,

unless indicated otherwise.

1.1.2. Applications for Databases with Temporal Support

Providing temporal support in database management systems brings about many benefits and

interesting applications. For example, it is possible to make historical queries to ask the status of an

enterprise valid at a past or even future moment, or to perform rollback operations shifting the reference

point back in time and inquiring the state of a database in the past [Snodgrass & Ahn 1985, Snodgrass &

Ahn 1986]. These capabilities help in understanding the dynamic process of state evolution in an

enterprise, and in identifying temporal or causal relationships among events or entities.

The capability for retrospective analysis is essential in decision support systems to evaluate planning

models based on the frozen state of knowledge about the world at the time of planning [Ariav 1984]. It is

possible to ask what if questions on the past events, to perform trend analysis over a series of data, to

forecast the future based on the past and the current data, and to plan resources over time.

Temporal databases can record retroactive changes which occurred in the past, or proactive changes

which will take effect in the future. Correct handling of time is important in modeling temporal constraints

or writing complex rules such as those in legislation or high level system specifications [Jones & Mason

1980]. Maintaining history data without physical deletion facilitates error correction, audit trail, and

accounting applications. The ability to control the configuration of a series of versions is useful for version

management in engineering or textual databases [Katz & Lehman 1984].

Supporting time in database management systems not only adds to the functionality for various

applications, but also benefits system operations. Temporal information or time stamps can be utilized for

concurrency control of multiple transactions, recovery after systems crashes, and synchronization of

distributed databases [Bernstein & Goodman 1980]. Enforcing the no-update-in-place paradigm increases

reliability, facilitates error recovery, reduces burdens on backups, check-points, or transaction-logs, and

6

results in lower system cost [Copeland 1982, Schueler 1977]. Retention of history data is also attractive for

utilizing low cost and large capacity write-once media such as optical disks.

1.2. The Problem

Despite the benefits of database systems with temporal support as described above, there are several

problems to be overcome before implementing such systems with adequate performance. This section

describes the characteristics of databases with temporal support and then discusses whether conventional

access methods are appropriate for such databases.

1.2.1. Characteristics of Databases with Temporal Support

Database systems with temporal support follow the non-deletion policy in one way or another to

preserve past information needed for historical queries or rollback operations. It means that no record will

ever be deleted once it is inserted, except to correct errors in the case of historical databases. For each

update operation, a new version is created without destroying or over-writing existing ones. This strategy

solves many of the problems caused by the update-in-place practice common in conventional DBMS's

[Schueler 1977], but also introduces several new problems.

An immediate concern is the large volume of data to be maintained on line. Storage requirements

will increase monotonically, potentially to an enormous amount, no matter what data compression

technique is utilized. This problem is one of the major reasons why databases with temporal support have

not been put into practice even though their benefits have been long recognized. It is often impractical to

store all the states of a database while it evolves over time. It is necessary to devise mechanisms dealing

with the ever-growing storage size effectively, and to represent temporal versions into physical storage in

such a way that past states of a database can be maintained with little redundancy.

The large amount of data to be maintained also causes performance problems. For example, the

number of block accesses to get a record from an unordered file with m blocks is 0 (m). Storing temporal

data in such a file will require a large m, significantly degrading the performance. In addition, each update

operation adds a new version, generating multiple versions for some tuples. Unless temporal information is

utilized as a part of a key, there will be multiple records for a single key value. However, time attributes

are in general not suitable to be used as a key for storing and accessing records. A time attribute alone

7

cannot be used as a key in most applications. Including time attributes in a key results in a multi-attribute

key, which complicates the maintenance of the key. Even though time attributes are maintained as a part

of a key, it is difficult to make a point query (exact match query), which requires a single point in time

specified as a predicate, especially when the resolution of time values is fine. Thus, we should be able to

support a range query on time attributes, which is not possible with many access methods, e.g. various

fonns of hashing. These issues present serious problems for most conventional access methods, as will be

further discussed in the next section and in Chapter 6.

On the other hand, there are several interesting characteristics unique in databases with temporal

support. There are two distinct types of data, the cu"ent and the history, which exhibit clear differences in

their characteristics on many aspects. There is only one current version for each tuple at one time, yet

multiple versions exist for some tuples in history data. Storage requirements for history data may be

potentially enormous, while the size of current data is relatively static once it has stabilized. Unlike current

data, history data need not be updated except when errors are corrected in the case of historical databases,

,which makes write-once optical disks attractive as the storage media.

There is also a correlation between the age of data and their access frequencies or access urgencies.

Conventional databases store only the latest snapshot of an enterprise being modeled, which represents the

current data. Hence all the conventional database applications deal with only the current data. Retaining

history data for temporal support will encourage new applications to process history data together with

current data, such as historical queries, rollback operations, and trend analysis. But in general,

conventional applications dealing with current data are still expected to dominate new applications

concerning history data. Therefore, history data are accessed less frequently than current data. Likewise,

history data are needed less urgently than current data. Since databases with temporal support have these

unique characteristics, not found in conventional databases, it is a challenge to exploit them in system

implementation for better performance.

1.2.2. Conventional Access Methods

Access methods such as sequential, hashing, indexing, and /SAM are static in the sense that they do

not accommodate growth of files without significant loss in performance. Accessing data in a sequential

8

file requires sequential scanning, which is often too expensive. Access methods such as hashing and ISAM

also suffer from rapid degradation in performance due to ever-growing overflow chains caused not only by

key collisions but also by the existence of multiple versions for a single key, as will be demonstrated in

Chapter 6. Reorganization does not help to shorten overflow chains, because all versions of a tuple share

the same key. Hence performance will deteriorate rapidly not only for temporal queries but also for non

temporal queries [Ahn & Snodgrass 1986].

There are dynamic access methods that adapt to dynamic growth better, such as B-trees [Bayer &

McCreight 1972], virtual hashing [Litwin 1978], linear hashing [Litwin 1980], dynamic hashing [Larson

1978], extendible hashing [Fagin et al. 1979], K-D-B trees [Robinson 1981], or grid files [Nievergelt et al.

1984]. These methods maintain certain structutes as records are added or deleted. But the performance is

still dependent on the count of all versions, which is significantly higher than the count of current versions.

Furthermore, a large number of versions for some tuples will require more than a bucket for a single key,

causing similar problems to those exhibited in conventional hashing. It is also difficult to maintain

secondary indices for these methods, because they often split a bucket and rearrange its records.

Performance problems of conventional access methods in the environment of databases with temporal

suppon will be further discussed in Chapter 6.

Secondary storage cost has been decreasing rapidly and consistently, and various new technologies

are emerging in recent years. In particular, optical disks are becoming commercially available from

several manufacturers at a reasonable cost [Fujitani 1984, Hoagland 1985]. A single disk provides storage

capacity of up to 5 Gbytes, whose per byte cost is about four orders of magnitude lower than magnetic

disks. Data can be accessed randomly, though about an order of magnitude slower, with data transfer rate

comparable to magnetic disks. It takes about a minute to mount a new disk manually, but there is a system

which houses 64 disks with the total capacity of 128 Gbytes and changes a disk in less than 5 sec [Ammon

et a!. 1985]. One limitation of optical disks is that they are currently write-once, not allowing

reorganization or rewriting of data once they are stored. This peculiarity makes many of the conventional

storage structures, especially the dynamic ones such as B-trees or dynamic hashing, unsuitable for optical

disks, and requires new storage structures to utilize their potential benefits.

9

1.3. The Approach

These observations on the inadequacy of conventional access methods lead to the conclusion that

new access methods need to be developed to provide fast access paths for a wide range of temporal queries

without penalizing conventional non-temporal queries. Therefore, this dissertation investigates new access

methods tailored to the particular characteristics of database management systems with temporal support,

and also develops a set of models to analyze the performance of query processing in such systems.

For this research, TQuel (Temporal QUEry Language) [Snodgrass 1986] was chosen as the query

language, because it is the only temporal language to support both historical queries and rollback

operations. A description of TQuel will be given in Section 2.3.

1.3.1. Temporally Partitioned Store

The solution proposed in this dissertation to the problems discussed in Section 1.2 is the temporally

partitioned store to divide current data and history data into two storage areas. The current store holds

current data and possibly some history data, while the history store contains the remaining history data.

This scheme to separate current data from the bulk of history data can minimize the overhead for

conventional non-temporal queries, and at the same time provide a fast access path for temporal queries.

The two stores can utilize different storage formats, and even different storage media, depending on

individual data characteristics.

There are many issues to be investigated about the temporally partitioned storage structure. The

main issues are the split criteria on how to divide data between the current and the history store, update

procedures for each type of databases with temporal support, methods to bandle retroactive changes,

proactive changes, or key changes, and the performance with regard to the update count. This research

addresses these issues in general, then concentrates on the details of various formats for the history store.

It investigates various forms of the history store, studies their characteristics, analyzes their performance,

and implements one of them to obtain performance data for comparison with analysis results. Relative

advantages and disadvantages of the various formats will be evaluated in this process to determine the cost

of supporting temporal queries. Issues on how to support secondary indexing and attribute versioning in

the temporally partitioned storage structure are also studied

10

1.3.2. Performance Models

Models of the various phases of query processing in database management systems can facilitate the

process of investigating access methods by reducing the need to implement each method for performance

evaluation. Though significant contributions have been made for models and systems to analyze the

performance of file organizations and database management systems as will be described in Section 2.1,

the general problem of evaluating the access cost given a query as an input has not been addressed

adequately. Furthermore, particular characteristics of query processing and access methods considered in

this research for database management systems with temporal support demand a new set of models

different from those for conventional systems.

Therefore, this research develops four models, forming a hierarchy, to characterize the process of

temporal query processing: one each for algebraic expressions, database/relations, access paths, and

storage devices. The model of algebraic expressions maps the algebraic expression to the file primitive

expression, based on information represented by the model of database/relations. The model of access

paths maps the file primitive expression to the access path expression, which is converted to the access

path cost by the model of storage devices.

These models combined can estimate the input and output cost for a collection of TQuel queries, and

analyze various alternatives in the design of new access methods without the time consuming process of

case by case implementation or simulation.

1.3.3. Experiments

As a test-bed to evaluate the access methods and the models, a prototype of a temporal DBMS was

built by modifying a snapshot DBMS. Since TQuel is a superset of Que!, INGRES [Stonebraker et a!.

1976] was a natural choice as the host system for this purpose.

The initial prototype uses the conventional access methods available in INGRES. Therefore, it can

be used to identify problems with conventional access methods, and to suggest possible improvements.

One of the temporally partitioned storage structures is actually implemented and incorporated in the

prototype to enhance its performance. Performance data measured from the prototype will be compared in

Part ill with the analysis results from the models described above to check the accuracy of models.

11

1.3.4. Summary

This research investigates various forms of temporally partitioned storage structures for database

management systems with temporal support. and develops models to analyze the performance of query

processing in such systems. It also demonstrates the feasibility of providing temporal support in database

management systems without penalizing conventional non-temporal queries. By investigating performance

models and access methods for database management systems with temporal support, this research will

contribute to expanding the capabilities and application areas of database management systems.

1.4. Structure of the dissertation

This chapter described the background, motivation, and the approach of this research. The second

chapter summarizes previous work related with this research, and briefly describes TQuel, a temporal

query language used throughout this dissertation.

Part II consists of three chapters. Chapter 3 defines the types of databases in terms of temporal

support. Chapter 4 describes the models developed to analyze the performance of query processing in

database systems with temporal support. Chapter 5 discusses various issues for the temporally partitioned

storage structure, and investigates the formats of the history store.

Part m presents the benchmark results, measured from the prototype implementation. Chapter 6 is

for the prototype with the conventional access methods, and Chapter 7 is for the the prototype with the

temporally partitioned storage structure developed in Chapter 5.

Finally, Part IV presents the conclusions of this research and suggests areas of future work.

Chapter 2

Previous Work

This chapter reviews previous research in the area of access methods and performance analysis for

conventional database systems, and in the area of database management systems with temporal support

emphasizing the aspects of implementation.

2.1. Access Methods and Performance Analysis

Contributions in this area are described below in three categories, access methods, access cost

estimation, and systems and models for performance analysis.

2.1.1. Access Methods

There has been a massive amount of research on the design and analysis of specific file structures

with various characteristics. Some examples are ISAM files [Larson 1981), B-trees [Bayer & McCreight

1972, Comer 1979, Held 1978), prefix B-trees [Bayer & Unterauer 1977), and a performance comparison

between !SAM and B-trees [Batory 1981).

Hashing schemes can be classified into fixed size and variable size, depending on the adaptability to

the change of the file size. For fixed size hashing [Bloom 1970, Coffman & Eve 1970, Lum eta!. 1971),

schemes such as linear probing [Mendelson 1980) and coalesced hashing [Chen & Vitter 1984) were

studied to handle overflow records. Perfect hashing attempts to eliminate overflow records for a given set

of keys by selecting a perfect hash function [Cichelli 1980, Larson & Ramakrishna 1985, Sprugnoli 1977).

Various methods have been proposed to extend the hashing technique to maintain high performance even

when the file size changes dynamically. Among those are virtual hashing [Litwin 1978), dynamic hashing

[Larson 1978), extendible hashing [Fagin et a!. 1979, Mendelson 1982), linear hashing [Litwin 1980),

linear hashing with partial expansions [Larson 1982), and recursive linear hashing [Ramamohanarao &

Sacks-Davis 1984).

14

Differential files [Aghili & Severance 1982, Gremillion 1982, Severance 1976] were proposed to

increase data availability by localizing modifications to a separate file. Grid files [Nievergelt et al. 1984]

and multi-dimensional K-D-B-trees [Robinson 1981] have been developed for random access through

multiple keys. Many of these structures are applicable to the cmrent store, and some variations may also

be useful for the history store of the temporally partitioned storage structure, as will be discussed in

Chapter 5.

2.1.2. Access Cost Estimation

There are two basic problems to be solved for evaluating the cost of a query. One is to determine the

size of the response set which satisfies the query, and the other is to estimate the number of block accesses

required to retrieve those records.

[Yu eta!. 1978] studied the problem of estimating the number of records accessed for a given query

from a clustered database. They compared empirical data with the estimations under the assumption of

attribute independence, and improved the accuracy of the estimations by relaxing the assumption of

independence. [Richard 1980] presented a probabilistic model for evaluating the size of derived relations

from a query expressed in relational algebra, given the expected size of all projections of each relation in a

database.

The problem to estimate the number of block accesses for retrieving k records out of n records stored

in m blocks was first addressed by [Cardenas 1975]. [Yao 1977A] noted that the solution of [Cardenas

1975] was for the case where records might have duplicates, and gave a solution when all records were

distinct. [Cheung 1982] presented a formula for the case where requested records might have duplicates

but their ordering was immaterial. [Whang et a!. 1983] derived a closed, noniterative formula for fast

computation of this problem, and analyzed resulting errors. [Luk 1983] exantined the case where the

variables k. n, and m were stochastic and non-uniform. [Christodoulalds 1983] provided estimates of the

number of sequential and random block accesses for retrieving a number of records from a file when the

distribution of records was not uniform. and applied the result to estimating the size of the join operation.

[Christodoulalds 1984] noted that most performance analyses assumed uniformity and independence

of attribute values, uniformity of queries, a fixed number of records per block, and random placement of

15

qualifying records. He showed that these assumptions predicted the upper bound of expected system cost,

and led to the choice of worst-case strategies.

2.1.3. Systems and Models

There have been several systems to analyze the performance of file organizations based on a

collection of individual models. [Cardenas 1973] designed and implemented a system to evaluate and

select file organizations. The system estimated disk access time and storage requirements given a measure

of query complexity for a single file retrieval. It contained file structure modules derived from analytical

analysis for inverted files, multilists, and doubly chained tree files. [Siler 1976] implemented a stochastic

model of data retrieval systems to analyze inverted list, threaded list, cellular list organization, and hybrid

combinations under varying degrees of query complexity.

[Scheuermann 1977] presented a simulation model to compute a weighted cost function of storage

and retrieval time for a hierarchical DBMS given descriptions of workload and storage structure. Data

definition and query definition sublanguages described the workload, and a mapping sublanguage

represented several levels of mappings to storage structures. [Satyanarayanan 1983] developed a

methodology and a simulator for modeling storage systems with device modules and hierarchy

descriptions.

[Hawthorn & Stonebraker 1979] measured the performance of INGRES with a benchmark query

stream, rather than a performance modeling approach. They studied YO reference and CPU usage patterns

for each of data-intensive, overhead-intensive, and multi-relation query types. The result was used to

discuss the effect of storing temporary relations in a cache, using multiple processors, and prefetching data

blocks.

On the other hand, a series of generalized models have been proposed with varying complexity and

descriptive power for the past 15 years. Hsiao and Harary proposed a formal model to analyze and

evaluate generalized file organizations [Hsiao & Harary 1970]. The model represents the directory of a file

with a set of sequences (K1, n1, h;; a11 , a1:z, ... , au.,) for each keyword K1, where n1 is the number of records

containing the keyword, h1 the number of sublists holding such records, and au., the starting address of the

h1 'th sublist. By varying the number and the length of sublists for each keyword, it can represent structures

16

such as multilist files, inverted illes, indexed sequential files, and some combinations of those.

Severance noted that this one dimensional model is unable to represent illes which are not strictly list

oriented, so introduced a two-dimensional model [Severance 1975]. One dimension is whether the

successor node is physically contiguous (address sequential), or connected through a pointer (pointer

sequential). The other dimension is whether there is an index for the data (data indirect), or not (data

direct). The four corners of this two-dimensional space represent sequential files, inverted files, list files,

and pointer sequential inverted illes.

Yao observed that Severance's model represents only a one-level index, imprecisely models indexed

sequential illes, and cannot model cellular list organizations [Yao 1977B]. Instead, he represented the

process of searching a ille by an access tree composed of hierarchical levels such as attributes, keywords,

accession lists, and virtual records. Additional parameters to characterize the access path were the average

number of records, overflow ratio, loading factor, and maximum overflow ratio for each level. Based on

this access path model, generalized access algorithms and cost functions for search and retrieval were

presented. He also presented a file retrieval algorithm and an associated cost function for a single file

query in a disjunctive normal form. Some of the parameters for the query were the total number of

attributes and the average number of conjuncts in a query. Since this model has the underlying structure of

the tree shaped access path, it is suitable for directory based file organizations such as inverted files, but is

less applicable to illes with other structures.

Based on this generalized model of [Yao 1977B], a file design analyzer was built to evaluate storage

structures and access methods such as sequential, direct, inverted, multilist, and network structures [Teorey

& Das 1976]. It estimated I/0 cost and storage requirements given a user workload expressed in terms of

the number of retrievals and updates on a single record type. [Teorey & Fry 1980] presented a logical

record access (LRA) approach as a practical stepwise database design methodology, and [Teorey & Fry

1982] used the physical block access (PBA) approach to estimate I/0 performance of various file structures

for a set of typical query types.

Yao also proposed a model for systematic synthesis of a large collection of access strategies for two

relation queries [Yao 1979]. He identified 11 basic access operators such as restriction, join, record access,

and projection, then presented without derivations cost equations for each operator measured in terms of

li

page accesses. Pennuting these operators gave 7 classes of evaluation algorithms for each relation, and

339 different algorithms for two relation queries, whose cost could be computed from cost equations of

each operator. He modeled the storage structures with parameters indicating the existence of clustering,

parent, child or chain links among relations, and the existence of clustering or non-clustering index for

each attribute of relations. However, the model of [Y ao 1977B] was not used for this study.

[Yao & DeJong 1978] built the model of [Yao 1979] described above into a system which can

calculate access path costs given parameters for the model and particular algorithms to be evaluated. Some

examples of typical parameters were attributes per record, records per page, levels of index, fraction of file

after projection, restriction selectivity, and join selectivity.

Batory and Gotlieb proposed a unifying model, which decomposes physical databases into simple

files and linksets [Batory & Gotlieb 1982]. The model for simple files characterizes file structures with a

set of parameters grouped as design parameters, file parameters, and cost parameters. The model for

linksets describes relationships between records in two simple files with parameters such as parent, child,

cell size, and implementation methods. Basic operations and associated cost functions were also defined

for simple files and linksets. This model relies on a collection of parameters to describe various file

organizations, rather than mapping their characteristics to an abstract structure. Batory augmented the

unifying model later with transformation model which defines a set of elementary transformations [Batory

1985] to aid the process of decomposing physical databases into simple files and linksets.

As described above, significant contributions have been made for models and systems to evaluate the

performance of file organizations and database management systems. [Yao 1977B], [Yao 1979] and

[Batory & Gotlieb 1982] are particularly relevant to this research, but none of these actually addressed the ,

whole problem of evaluating the access cost given relational queries as an input. Furthermore, particular

characteristics of query processing and access methods considered in this research for the database

management systems with temporal support are not adequately handled by any of the above models.

2.2. Databases with Temporal Support

There have been vigorous research activities in formulating the semantics of time at the conceptual

level [Anderson 1982, Breutmann et al. 1979, Bubenko 1977, Hammer & McLeod 1981, Klopprogge

18

1981], developing models for time varying databases analogous to the conventional relational model

[Clifford & Warren 1983, Codd 1979, Semadas 1980], and the design of temporal query languages [Ariav

& Morgan 1981, Ben-Zvi 1982, Jones & Mason 1980, Snodgrass 1986]. We will discuss these efforts in

Chapter 3, grouping them into three types based on the capability for temporal support. However, there has

been no major effort to investigate implementation aspects for either historical or temporal database

systems, let alone performance analysis of such systems.

2.3. TQuel

For this research, TQuel (Temporal QUEry Language) [Snodgrass 1986] was chosen as the query

language, because it is the only temporal language to support both historical queries and rollback

operations. TQuel supports two types of relations, interval relations and event relations. An interval

relation, with two time attributes, consists of tuples representing a state valid during a time interval. An

event relation, with a single time attribute, consists of tuples representing instantaneous occurrences.

TQuel extends several Que! [Held et a!. 1975] statements to provide query, data definition, and data

manipulation capabilities supporting all four types of databases. It expresses historical queries by

augmenting the retrieve statement with the when predicate to specify temporal relationships among

participating tuples, and the valid clause to specify how the implicit time attributes are computed for

result tuples. The rollback operation is specified by the as of clause for the rollback or the temporal

databases. These added constructs handle complex temporal relationships such as precede,

overlap, extend, begin of, and end of. They are composed of a reserved word followed by

an event expression or a temporal expression, whose syntax is derived from path expressions [Andler

1979].

The append, delete, and replace statements were augmented with the valid and the

when clauses in a similar manner. Finally, the create statement was extended to specify the type of a

relation, whether snapshot, rollback, historical or temporal, and to distinguish between an interval and an

event relation if the relation is historical or temporal.

In addition, temporal aggregates for TQuel have been developed to provide a rich set of statistical

functions that range over time [Snodgrass & Gomez 1986]. Aggregates are either instantaneous or

19

cumulative, are either unique or not, and may be nested. The formal semantics for the aggregates were

defined in the tuple relational calculus. TQuel also defines how to handle indeterminacy or incomplete

information, but this dissertation focuses on the core of the language without aggregates and

indeterminacy. Since TQuel is a superset of Que!, both syntactically and semantically, all legal Que!

statements are also valid TQuel statements. Statements have an identical semantics in Que! and TQuel

when the time domain is fixed. The semantics of TQuel was formalized using tuple relational calculus and

transformation rules [Snodgrass 1986], demonstrating that when and valid clauses are direct semantic

analogues of Que!' s where clause and target list. The complete syntax of TQuel is given in Appendix A.

PART II

Temporal Database Management Systems

Part two consists of three chapters, describing the conceptual aspects of this research. Chapter 3

defines the types of databases in terms of their capability for temporal support. Chapter 4 develops four

models forming a hierarchy to analyze the process of query processing in database management systems

with temporal support Chapter 5 investigates various issues for the temporally partitioned storage

structure which can provide temporal support for database management systems without penalizing

conventional non-temporal queries.

Chapter 3

Types of Databases

As presented in [Snodgrass & Ahn 1985, Snodgrass & Ahn 1986], there are three distinct kinds of

time with different semantics in databases: valid time, transaction time, and user-defined time. Valid time

is the time when an event occurs in an enterprise. Transaction time is the time when a transaction to

account for the event is executed in a database modeling the enterprise. User-defined time is defined by a

user, whose semantics depends on each application. This taxonomy of time naturally leads to the next

question of what kind of time is to be supported. Depending on the capability to support either or both of

transaction time and valid time, databases are classified into four types: snapshot, rollback, historical, and

temporal. This chapter, a summary of [Snodgrass & Ahn 1985], first discusses representational

inadequacies of snapshot databases, and then coml'ares three types of databases with temwral support.

Though the following discussion is based on the relational model, analogous arguments readily apply to

hierarchical or network models.

3.1. Snapshot Databases

Conventional databases model an enterprise, as it changes dynamically, by a snapshot at a particular

point in time. A state or an instance of a database is its current contents, which does not necessarily reflect

the current status of the enterprise. The state of a database is updated using data manipulation operations

such as append, delete or replace, taking effect as soon as they are committed. In this process,

past states of the database, representing those of the enterprise, are discarded. We term this type of

database a snapshot database.

In the relational model, a database is a collection of relations. Each relation consists of a set of

tuples with the same set of attributes, and is usually represented as a two dimensional table (see Figure 3-

1). As changes occur in the enterprise, this table is updated appropriately.

24

Figure 3-1: A Snapshot Relation

For example, an instance of a relation 'Faculty', with two attributes Name and Rank, at a certain

moment may be

Name Rank
Merrie Full
Tom Associate

and a query in Que!, a tuple calculus based language for the INGRES database management system [Held

et al. 1975], inquiring Merrie's rank,

yields

range of f is Faculty

retrieve (f.Rank)
where f~Name = "Merrie"

~
~

There are many situations where this snapshot database relying on snapshots is inadequate. For

example, it cannot answer queries such as

What was Merrie's rank 2 years ago? (historical query)

How did the number of faculty change over the last 5 years? (trend analysis)

nor record facts like

Merrie was promoted to a full professor starting last month. (retroactive change)

James is joining the faculty next month. {proactive change)

Without system support in these respects, many applications have been forced to manage temporal

information in an ad hoc manner. For instance, many personnel databases attempt to record the entire

employment history of the company's employees. The facts that some of the attributes record time, and

that only a subset of the employees actually work for the company at any particular point in time are not

25

the concerns of the DBMS itself. The DBMS provides no facility for interpreting or manipulating this

information; such operations must be handled by specially-written application programs. The fact that data

changes values over time is not application specific, but should be recognized as being universal. It is

possible to identify the properties and the semantics of time common to all database applications,

distinguish different kinds of time in databases, and provide the capability to handle each kind of time.

These aspects should be supported in a general fashion by the database management systems, rather than

by application programs.

3.2. Rollback Databases

One approach to resolve the above deficiencies is to store all past states, indexed by time, of the

snapshot database as it evolves. Such an approach requires the support of transaction time, the time when

the information is stored into the database. A relation under this approach can be illustrated conceptually

in three dimensions with transaction time serving as the third axis (Figure 3-2). The relation can be

regarded as a sequence of snapshot relations (termed snapshot states) indexed by time, and provides the

capability to return to any previous state to execute a (snapshot) query. By moving along the time axis and

selecting a particular snapshot state, it is possible to retrieve a snapshot of the relation as of some time in

the past, and to make queries upon it. The operation of selecting a snapshot state is termed rollback, and a

database supporting the operation is termed a snapshot rollback database, or simply a rollback database.

II Ill II I I I
transaction

ume
Figure 3-2: A Rollback Relation

Changes to a rollback database may be made only to the most recent snapshot state. The relation

illustrated in Figure 3-2 had three transactions applied to it, starting from the null relation:

(1) three tuples were added,

26

(2) one tuple was added, and

(3) one tuple (entered in the first transaction) was deleted, and another tuple was added.

Each transaction results in a new snapshot state being appended to the front of the time axis. Once a

transaction is committed, the snapshot states in a rollback relation may not be altered.

A typical relation in this approach looks like Figure 3-3. The double vertical bars separate the non-

temporal attributes from the implicit time attributes transaction start and transaction stop. The latter

attributes do not appear in the relation scheme, but may rather be considered as a part of the overhead

associated with each tuple. Note the fact that Merrie was previously an associate professor, a fact which

could not be expressed by a snapshot relation. The value '-' for the transaction stop attribute denotes 'on-

going' or 'still true'.

Name Rank transaction time
(start) (stop)

Merrie Associate 08/25177 12115/82
Merrie Full 12115/82 -

Tom Associate 12107/82 -

Mike Assistant 01/10/83 02/25/84

Figure 3-3: A Rollback Relation

Any query language may be extended to one for rollback databases by adding a clause effecting the

rollback operation. TQuel (Temporal QUEry Language) [Snodgrass 1986], an extension of Que! for

temporal databases, augments the retrieve statement with an as of clause to specify the point of

reference in time. The TQuel query

range of f is Faculty

retrieve (f.Rank)
where foName = "Merrie"
as of "12/10/82"

on a 'Faculty' relation shown in Figure 3-4 will find the rank of Merrie as of 12110/82:

27

Note that the result of a query on a rollback database is a pure snapshot relation.

One limitation of supporting transaction time is that the history of database activities, rather than the

history of the real world, is recorded When a tuple is entered into a database, the transaction start time is

set to the current time, making the tuple effective immediately as in a snapshot database. There is no way

to record retroactive/proactive changes, nor to correct errors in past tuples. Errors can sometimes be

overridden (if they are in the current state) but cannot be forgotten or corrected. For instance, if Merrie's

promotion date was later found to be "12/0l/82" instead of "12/15/82", this error could not be corrected in

a rollback database.

There have been several systems which can be classified as rollback database systems. MDMIDB

(Model Data Management/Database) presented the history and dynamics in the source data by maintaining

cumulative, append-only, time ordered lists of transactions [Ariav & Morgan 1982]. Each transaction

contains a time stamp and a pointer to the previous transaction related to the same entity. The status of an

entity at any given moment is computed from the collection of transactions for the entity, which have been

'recorded prior to that moment.

ln [Lum et al. 1984], current tuples are stored in a table carrying a time stamp and a pointer to

history tuples in reverse time order. History tuples are of the same structure, but are stored in a separate

table, and may be compacted to save space. A module to walk through the data and deliver appropriate

tuples according to the specified time is created in the database system. To support access of random data,

history information for the index is maintained with two trees, a cu"ent index tree and a history index tree.

The former contains all the index values from current tuples, the latter for those that existed in the past but

no longer in current tuples. These trees are of conventional structures, such as B-trees or B*-trees, with

leaves containing pairs of an index value and a pointer. The pointer references a pointer list stored in a

separate area having a similar structure to the data area. Each pointer list and its history chain correspond

to only one index value from one of the two trees.

GemStone [Copeland & Maier 1984], an extension of Smal/ta/k-80 [Goldberg & Robson 1983] for

database management applications, uses transaction time as an index to map an element name to its

28

associated value. It supports navigation through history tuples using a notation

E!rank@"l2/05/82"

which retrieves E's rank as of 12/05/82. It represents an object as a block of contiguous memory, which

grows with time to retain history data. An object is broken into elements, each of which is represented as

an element name and a table of associations. This table, composed of pairs of transaction times and object

pointers, provides the mapping from arbitrary time to an element value. Each pair represents that the

element acquired the object as its value at the moment shown in the transaction time. This system was

implemented with special purpose hardware.

Version Storage is a component for a distributed data storage system called SW AUOW, rather than a

database system, but it is mentioned here because it maintains the history of data objects and information

necessary for concurrency control and crash recovery [Svobodova 1981]. Each time an object is updated, a

tentative version called token is created, and eventually saved as a current version if comntitted. Each

version carries a pointer to its immediate predecessor in the history, and a time attribute to specify its range

of validity. The start time of a version is the time specified in the write request that created the token. A

read operation selects a version that has the highest start time lower than the time specified in the read

request. The object header contains pointers to the current version and a po!ential token together with

information for synchronization and recovery.

[Katz & Lehman 1984] applied database methods to support versions and alternatives in compu!er

aided design. It uses record level versioning to reduce the redundancy of stored records, where each

logical record in a design file is identified by a sys!em generated surroga!e. A versioned file consists of a

history index and two separate files. The history index is a s+-tree with leaf nodes containing poinrers

(version history) to records stored in either of the two separa!e files. Though time domain addressing is not

supported explicitly, it is possible to access all records within a version, or all versions of a certain logical

record. But it is not clear how to handle inserted records which disrupt the logical ordering of surrogate

values.

Compared to historical or temporal DBMS's, there have been more efforts for the actual

implementation of rollback DBMS's. Some of the sys!ems described above are being implemented, or

have already been built. All of these support transaction time explicitly or implicitly for rollback

29

operations. However, there is no query language to express complex relationships among history data,

which is only reasonable considering the simple semantics of rollback databases.

3.3. Historical Databases

Another alternative is the historical database which records the history of the real world by

supporting valid time, the time when the relationship in the enterprise being modeled is valid. While a

rollback database records a sequence of snapshot states, a historical database records a single historical

state per relation. As errors are discovered, they are corrected by modifying the database. Previous states

of the database itself are not retained, so it is not possible to view the database as it was at a past moment.

No record is kept about errors that have been corrected. Historical databases are similar to snapshot

databases in this respect

c~ , "__

c"r-....... '-"
.....___

,....._
"

id "
Figure 3-4: Historical Relation

Another distinction between historical and rollback databases is that historical databases support

arbitrary modification, whereas rollback databases only allow snapshot states to be appended. The same

sequence of transactions which led to the rollback relation in Figure 3-2 followed by a change of the valid

from time will result in the historical relation in Figure 3-4, where the label of the time axis indicates the

valid time. However, the historical relation can represent that a later transaction has changed the time

when a tuple takes effect in the relation, which is not possible on a rollback relation. Rollback DBMS's

can rollback to an incorrect previous snapshot relation; historical DBMS's can represent the current

knowledge about the past

30

As with rollback databases, implementing a historical relation directly as a sequence of snapshot

states is impractical. Figure 3-5 illustrates an alternative: appending the implicit time attributes valid from

and valid to to each tuple, indicating the period while the tuple was actually in effect. Like the transaction

time attributes in rollback databases, the valid time attributes are not included in the relation scheme. Note

that the relation in Figure 3-5 models an interval. A relation modeling an event needs only one attribute

valid from. The value '~· for the valid to attribute denotes 'forever', distinguished from the value '-' for

the transaction stop attribute. Handling incomplete information is beyond the scope of this dissertation.

Name Rank valid time
(from) (to)

Merrie Associate 09/01/77 12/01/82
Merrie Full 12/01/82 00

Tom Associate 12/05/82 00

Mike Assistant 01101/83 03/01/84

Figure 3-5: A Historical Relation

The semantics of valid time is closely related to reality, hence more complex than the semantics of

transaction time concerned with database activities. Therefore, historical databases need sophisticated

operations to manipula!e the complex semantics of valid time adequarely. TQuel supports such queries

(!ermed historical queries) by augmenting the retrieve statement with a valid clause to specify how

the implicit temporal attributes are computed, and a when predicate to specify the temporal relationship of

tuples participating in a derivation. These added constructs handle complex remporal relationships such as

precede, overlap, begin of, and end of. The TQuel query requesting Merrie's rank when

Tom arrived,

range of fl is Faculty
range of f2 is Faculty

retrieve (fl.Rank)
where fl.Name = "Merrie" and f2.Name
when fl overlap begin of f2

on the historical relation 'Faculty' in Figure 3-5 yields

nTom•u

31

Rank valid time
(from) I <to>

Full 12101182 1 ~

Note that the derived relation is also a historical relation, which may be used in further historical

queries. While both this query and the example given for a rollback relation seem to ask Merrie's rank on

12105/82, the answers are different. The reason is that Merrie was promoted on 12/01/82, but this

information was reconled into the rollback database of Figure 3.3 two weeks later. The historical database

of Figure 3.5 represents the correct information, but it is not possible to determine whether some error had

ever been corrected

Historical databases have been the subject of several research efforts, especially on the conceptual

aspects such as formal semantics and the design of query languages. LEGOL 2.0 [Jones & Mason 1980]

was developed for writing complex rules such as those in legislation or high level system specifications

where the correct handling of time is important. It augments each tuple with two time attributes, start time

and end time, which delimit the period of existence for the associated member of the entity set. Its query

language is based on the relational algebra with temporal operators such as while, during, since, until,

begin of, and end of.

Clifford and Warren presented a formal semantics for time in databases [Qifford & Warren 1983]

based on the intensional logic (IL,), where a database is a collection of relations idealized as a cube fully

specified over a set of states.

CSL (Conceptual Schema Language) is a high level data definition language to define conceptual

schemas, not only for static but also for dynamic aspects of the database universe. It has the option of

embedding database instances into the time axis based on an application specific calendar system

[Breutmann et al. 1979].

TERM (Time-extended Entity Relationship Model) augments the entity-relationship model to include

the semantics of temporal aspects into the database schema. It provides facilities for data definition and

manipulation of problem dependent representation structures for time, values and histories [Klopprogge

1981].

32

[Findler & Chen 1971] built a question answering system which understands explicit or implicit

temporal relations and causal relationships among time-dependent events based on information entered by

a user. It used AMPPL-Il (Associative Memory Parallel Language II), and stored data in list structures or

as a sequence of content-addressable relations.

HTQue/ (Homogeneous Temporal Query Language) is based on the representation of a historical

database where the time intervals are associated with attributes [Gadia & Vaishnav 1985]. The language

introduces the temporal domain which is finite unions of intervals, and is based on the homogeneity

requirement that the temporal domaius of all the attributes in a tuple should be the same. The semantics of

temporal operators were defined using snapshots.

As described above, significant contributions have been made to the conceptual aspects, such as

formal semantics and the design of query languages of the historical DBMS. But little work has been done

towards the actual implementation, except that an earlier version of lEGOL 2.0 [Jones et a!. 1979] was

implemented.

3.4. Temporal Databases

Benefits of both approaches can be combined by supporting both kinds of time in a database. Such a

database supporting both transaction time and valid time is termed a temporal database in the narrower

sense to emphasize the need for both kinds of time in handling temporal information. The rollback

database views stored tuples, whether valid or not, as of some moment in the past, and the historical

database views tuples valid at some moment as of now. But the temporal database can view tuples valid at

some moment seen as of some other moment, thereby completely capturing the history of retroactive and

proactive changes. Users of a temporal DBMS can examine historical information from the viewpoint of a

previous state of the database by specifying both kinds of time in a query.

Since there are two orthogonal time axes involved now, a temporal relation should be illustrated in

four dimensions. Figure 3-6 shows a single temporal relation which may be regarded as a sequence of

historical states, each of which is a complete historical relation.

33

.PlU.B
tune tune tune

v~
time

transaction
ttme

Figure 3-6: A Temporal Relation

The rollback operation on a temporal relation selects a particular historical state, on which a

historical query may be executed. Each transaction causes a new historical state to be created. Thus,

temporal relations are append-only. The temporal relation in Figure 3-6 is the result of four transactions,

starting from a null relation:

(1) three tuples were added,

(2) one tuple was added,

(3) one tuple was added and an existing one deleted, and

(4) one tuple was modified so that it became effective at a later valid time.

Name Rank valid time transaction time
(from) (to) (start) (end)

Merrie Associate 09/01177 ~ 08/25/77 12/15/82
Merrie Associate 09/01177 12/01182 12/15/82 -
Merrie Full 12/01/82 ~ 12/15/82 -
Tom Full 12/05/82 ~ 12/01182 12/07/82
Tom Associate 12/05/82 ~ 12/07/82 -

Mike Assistant 01/01/83 .. 01/10/83 02/25/84
Mike Assistant 01/01183 03/01/84 02/25/84 -

Figure 3-7: A Temporal Relation

For example, the relation in Figure 3-7 combines information represented in Figures 3-3 and 3-5,

supporting both valid time and transaction time. It has four implicit time attributes: valid from, valid to,

transaction start, and transaction stop. It shows that Merrie started as an assistant professor on 09/01/77,

which was recorded into the database on 08/25/77 as a proactive change. Then she was promoted on

12/01/82, but the fact was recorded retroactively on 12/15/82. Tom was entered into the database on

34

12/01182, joining the faculty as a full professor on 12/05/82, but the fact that his rank was actually an

associate professor was corrected on 12/07/82. Mike left the faculty effective on 03/01/84, which was

recorded proactively on 02/25/84. Note all the details of history captured here, which were not expressible

in other databases with less temporal support.

There are only three examples which can be cited as temporal databases. TQuel (femporal QUEry

Language) [Snodgrass 1986] is an extension of a relational calculus query language Que I [Held eta!. 1975]

for supporting temporal queries. TQuel uses the as of clause to perform rollback operation, and the

when clause for specifying historical queries. Further details on TQuel were given in Section 2.3.

Since TQuel supports both historical queries and rollback operations, it can be used to query

temporal databases. The TQuel query

range of fl is Faculty
range of f2 is Faculty

retrieve (fl.Rank)
where fl.Name ="Merrie" and f2aName
when fl overlap begin of f2
as of "12/10/82"

on this relation retrieves Merrie's rank when Tom arrived, according to the state of the database as of

12/10/82. The result is

Rank valid time transaction time
(from) I (to) (start) J (end)

Associate 09!0 1111 1 .. 08125177 1 12115/82

This derived relation is a temporal relation, so further temporal relations can be derived from it. If a

similar query were made as of 12/20/82, the answer would be Full because the fact was recorded

retroactively by that time.

TRM (Temporal Relational Model) [Ben-Zvi 1982] is another example of a temporal database,

though it was not actually implemented. It maintains 5 time attributes:

Tes/Tee : effective-time-start/end
Trs/Tre :registration-time-start/end
Td : deletion time

in each tuple, where deletion time is used to correct erroneous data [Ben-Zvi 1982]. It extends SQL [IBM

35

1981] with the time view operator to search data effective at some moment seen as of some other point in

time.

name rank Tes Tee Trs Tre Td
Merrie Associate 09/01177 12/01/82 08/25177 12/15/82 -
Merrie Full 12/01!82 - 12/15/82 -

Tom Full 12/05/82 - 12/01/82 - 12/07/82
Tom Associate 12/05/82 - 12/07/82 - -
Mike Assistant 01/01/83 03/01/84 01/10/83 02/25/84 -

Figure 3-8: A 1RM Relation

The relation in Figure 3-8 shows the same information contents as in Figure 3-7. Note that "Tom"

was mistakenly entered as a full professor on 12/01/82 (which was a proactive enuy), but corrected later

using the deletion time. A query

TIME-VIEW E-TIME=12/5/82 AS-OF=l2/10/82
SELECT RANK
FROM FACULTY
WHERE NAME = "Merrie"

on the relation in Figure 3-8 gives the answer Assist011t since her promotion was not recorded until

12/15/82. If a sintilar query is made as of 12/20/82,

TIME-VIEW E-TIME=12/5/82 AS-OF=12/20/82
SELECT RANK
FROM FACULTY
WHERE NAME = "Merrie'v

the answer is Associate because the fact was recorded retroactively by that time. However, this is not a

true temporal query language, because it can derive only snapshot relations.

TODMS (Temporally Oriented Data Management System) is similar to 1RM in that it supports both

valid and transaction time, and its query language is an extension of SQL [Ariav 1984]. Unlike 1RM, it is

a true temporary query language, supporting both historical queries and rollback operations. The major

lintitation is that only one relation may be referenced in a query, and no implementation has been

36

attempted.

3.5. User-defined time

User-defined time is necessary when additional temporal information, not handled by transaction or

valid time, is stored in the database. Such an attribute needs to be specified in the relation scheme. The

values of user-defined temporal attributes are not inteipreted by the DBMS, and thus are easy to support.

The system only needs to provide definitions of external and internal representations, and input/output

functions to convert one form to the other. Multiple representations with varying resolutions, each

associated with input and output, are also useful. As an example of user-defined time, consider a

'Promotion' relation with three attributes: Name, Rank, and Approval-Date. Approval-Date

is the user-defined time indicating when the promotion was approved. The valid time is the date when the

promotion takes effect, and the transaction time is the date when the promotion was recorded into the

database.

Supporting user-defined time is orthogonal to supporting rollback operations or historical queries.

Hence the three kinds of time actually define eight different types of databases. However, we note that

user-defined time is much closer to valid time than to transaction time, in that both valid time and user

defined time are concerned with reality itself, as opposed to transaction time which is concerned with the

representation of reality (i.e., the database). Database management systems and their query languages

purporting to provide full temporal support should handle all three kinds of time.

3.6. Summary

Four types of databases in terms of temporal support were defined and compared with one another.

Snapshot databases provide no temporal support. Rollback databases provide rollback operations requiring

the support of transaction time, which records the history of database activities. Historical databases

provide historical queries requiring the support of valid time, which is associated with the history of the

real world. Temporal databases provide both rollback operations and historical queries, supporting both

transaction time and valid time. Figure 3-9 shows the four types of databases differentiated by the

capability to support rollback operations and historical queries: snapshot, rollback, historical and temporal.

Each of these types may or may not support user-defined time.

37

No Rollback Rollback

Snapshot Queries Snapshot Rollback

Historical Queries Historical Temporal

Figure 3-9: Types of Databases

Figure 3-10 summarizes the kinds of time to be supported in each type of database management

systems.

Transaction Valid Uset-defined

Snapshot

Rollback ...J

Historical ...J ...J

Temporal ...J ...J ...J

Figure 3-10: Time to be Supported by Databases

It is interesting to note that those concerned with the physical implementation leaned towatds

transaction time, while those more interested in conceptual aspects favored valid time. Most

implementation oriented efforts have been on the version management systems [Katz & Lehman 1984,

Svobodova 1981], or rollback DBMS's [Ariav & Morgan 1982, Copeland & Maier 1984, Lum et al. 1984].

To the author's knowledge, there has been no major effort to investigate implementation aspects for either

the historical or the temporal DBMS, let alone the performance analysis of such systems.

Chapter 4

Models and Performance Analysis

As described in Section 2.1, there have been several models and systems attempting to analyze the

performance of database management systems with various forms of access methods. However, none of

those actually address the whole problem of evaluating the access cost given queries as input, nor can

adequately handle the particular characteristics of query processing and access methods for databases with

temporal support considered in this dissertation. Therefore, a set of new models to analyze the

performance of database management systems with temporal support were developed. The first section of

this chapter describes the models, and the second section discusses how these models can be combined

together to estimate the I/0 cost given one or more TQuel queries as input.

4.1. Models

Performance analysis of a database management system requires models, whose quality determines

the effectiveness of the analysis. We want to analyze the input and output cost for temporal queries on a

database with temporal support using various access methods. Thus we need models which can

characterize various phases of query processing in database management systems with temporal support.

For this purpose, four models forming a hierarchy were developed: one each for algebraic expressions,

database/relations, access paths, and storage devices.

4.1.1. Model of Algebraic Expressions

TQuel is a language based on the tuple calculus, and hence is non-procedural. There are many

different ways to evaluate a TQuel query and obtain the same answer, each exhibiting different I/0 cost.

This section first defines the algebraic expression to describe procedurally the process of evaluating TQuel

queries. Next, the file primitive expression is defined to characterize the input and output activities

involved in evaluating the algebraic expression. Finally, the model of algebraic expressions is constructed

to represent the mapping between the algebraic expression and the file primitive expression.

40

4.1.1.1. Algebraic Expressions

Ao algebraic expression consists of algebraic operators and connectives. Algebraic operators are of

three types: snapshot, temporal, and auxiliary.

Snapshot operators are the conventional relational operators such as Select, Project,

Join, Union and Difference. Select has two parameters: a relation and a predicate to specify

the constraint that result tuples must satisfy. Project takes as parameters a relation and a set of

attributes to be extracted from the relation. Join is to perform 9-join of two relations given as the first

two parameters. The third parameter, the join method, specifies how to perform the join operation, since

there are many ways to perform the operation. The fourth parameter is the predicate specifying how to

combine information from two relations. Both Union and Difference take two relations as

parameters, performing set addition and set subtraction respectively.

Temporal operators are included for temporal query constructs in TQuel. When performs temporal

selection on a relation according to a temporal predicate applied to the values of valid time attributes.

AsOf also performs temporal selection on a relation, but takes two time constants as parameters to

compare with the values of transaction time attributes. valid performs temporal projection,

determining the value of the attribute valid from, valid to, or valid at.

Auxiliary operators are introduced to account for miscellaneous operations which do not change the

query result but affect the query cost significantly. Telli'orary is used to create and access a temporary

relation for the result of the operation marked by the parameter label. Sort is used to sort tuples in

the relation specified by the first parameter, using the remaining parameters as the key attributes for sorting.

Refo:mat is used to change the structure of the relation specified by the first parameter to the form given

by the second parameter, using the remaining parameters as the key attributes.

These algebraic operators can be combined together through connectives which specify information

on ordering and grouping of the component operators. Two operators may be ordered in sequence,

expressed as

Opl ; Op2

41

when Opl should complete execution before Op2 starts. Or they may be in parallel, denoted by

Opl Op2

when two operations can proceed concurrently. Grouping of operators to delimit a query is denoted by a

pair of braces, '{' and '}', while a pair of square brackets, '[' and ']', represent a set of operators which can

be evaluated simultaneously for each tuple. These connectives can characterize different strategies for

evaluating a query expressed by a combination of algebraic operators.

An operator may have a label which can be referred to in other operators such as Temporary. By

using labels, we can eliminate deeply nested parentheses common in algebraic descriptions of a query.

Thus an algebraic expression, describing TQuel queries in a procedural form, is a combination of labels,

algebraic operators with appropriate parameters, and connectives.

For example, an algebraic expression, to be referred to as AE-1,

{ Ll: Select
Project

(h, h.id = 500);
(Ll, h.id, h.seq)

specifies that it is for a single query that selects tuples with id = 500 from the relation h, then extracts

attributes id and seq from the result of the previous operation labeled as Ll.

Another example is AE-2:

{ [Ll: Select
Project

(h, h.id = 500);
(Ll, h.id, h.seq) l)

This is similar to AE-1, but specifies that Select and Project can be evaluated together for each

tuple. Thus the need for a temporary file to store intermediate results between the two operations is

explicitly eliminated.

Abbreviated BNF syntax for the algebraic expression is shown in Figure 4-1. In this description,

<temporal pred> is a temporal predicate involving time attributes and temporal predicate operators

such as precede and overlap in TQuel. <event expr> is an event expression involving time

42

attributes and temporal constructor operators such as extend and ove>:lap in TQuel, which yields a

time value as its result. Complete syntax for the temporal predicate and the event expression is given in

Appendis A. <star spec> specifies one of the storage structures such as Heap, Hash, I sam,

Bt ree, etc., or one of the new access methods to be developed in Chapter 5.

<alg exp> : :=

<query> : :=
<access> : :=

<ace term> : :=

<term> :: =

<order> : :=

<1 oper> : :=

<label> : :=

<oper> : :=

<Snapshot> : :=

<Temporal> : :=

<Auxiliary> : :=

<FTA> : :=

<attr list> : :=

<rel> : :=

<query>
<alg exp> <query>
{ <access> }

<ace term>
<access> <ace term>
<term>
[<term>

<1 oper>
<term> <order> <1 oper>
; I I

<oper>
<label>
<id>

<Snapshot>
<Temporal>
<Auxiliary>

Select
Project
Join

Union
Difference

<oper>

<rel> 1

<rel> ,
<rel> ,

' <rel> ,
<rel> ,

<predicate>)
<attr list>)
<rel> , <join method>

<predicate>)
<rel>)
<rel>)

When
As Of
Valid

<rel> , <temporal pred>
<rel> , <event expr> , <event expr>
<rel> , <FTA> , <event expr>)

T~orary

Sort
Ref annat
From
To
At

<attribute>
<attr list>

<rel id>

<label>
<rel> , <attr list>
<rel> , <star spec> , <attr list>)

<attribute>

<label>

Figure 4-1: BNF Syntax for Algebraic Expressions

A more complex example is AE-3:

Ll: Join
L2: When

Project

(h, i, TS, h.id = i.amount & h overlap i);
(Ll, i overlap "now");
(L2, h.id, i.id, i.amount)

43

This specifies Join of two relations, h and i, followed by temporal selection When, followed by

Project, all in sequence. Another example is AE-4:

Ll: When
12: Project
13: Join

Project

(i, i overlap "now");
(11, i.id, i.amount, i.valid_from, i.valid_to);
(h, 12, TS, h.id = i.amount & h overlap i);
(13, h.id, i.id, i.amount) J

This is functionally equivalent to AE-3, but differs in evaluation procedures. AE-4 specifies that the

When operation is first executed to select tuples from the relation i whose valid to attribute is

"now", then four attributes are extracted from the result tuples, then the result is joined with the relation h

using tuple substitution (TS), and finally three attributes are extracted. However, AE-4 does not provide

information on what operations can proceed together and whether a temporary relation is needed. Adding

such information leads to AE-5:

{ [11:
12:
13:
14:

When
Project
Temporary
Join
Project

(i, i overlap "now") ;
(11, i.id, Larnount, i.valid_from, i.valid to)];
(L2) ;
(h, 13, TS, h.id = i.amount & h overlap i);
(14, h.id, i.id, i.amount)])

This is similar to the previous expression AE-4, but specifies that When and Project can be evaluated

together on each tuple, the intermediate result is stored into a temporary relation, and Join and

Project can also be performed together.

4.1.1.2. File Primitive Expressions

In this section, we define the file primitive expression which represents the process of accessing a file

in terms of two file primitives: Read and Write. Both of the primitives take parameters such as the

access method, the size of a file, or the length of the overflow chain. The access method may be one of

44

Heap, Hash, I sam, Btree, etc., or one of the new access methods to be developed in the next

chapter.

Primitives are combined to form an arithmetic expression, called the file primitive expression, to

describe the situation when one or more primitives are repeated or executed together to perform an

algebraic operation. Abbreviated BNF syntax for the file primitive expression is shown in Figure 4-2,

where <expr> is evaluated to a constant, and <parm> is a constant to denote the size of a file, or the

length of the overflow chain.

<fpe> : := <term>
<fpe> <a op> <term>

<term> : ~= <primitive>
<term> <m op> <primitive>

<primitive> : := <oper> <ace method> <parm list>
(<fpe>

<oper> ~ := Read
Write

<parm list> : := <parm>
<parm list> <parm>

<a op> : := +

<m op> : := * I

Figure 4-2: BNF Syntax for File Primitive Expressions

For example, a file primitive expression may be as simple as FPE-1:

Read (Hash, 0)

specifying one hashed access without any overflow records, or more complex like FPE-2:

Read (Heap, 128) +
Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1 +
Read (Heap, 19) +
Read (Hash, 0) * 1024

45

specifying one read from the heap of 128 blocks, two read's from the heap of 19 blocks, three write's to

the heap of 19 blocks, another read from the heap of 19 blocks, and finally a hashed access repeated 1024

times.

4.1.1.3. Model of Algebraic Expressions

Now that the algebraic expression and the file primitive expression have been defined, the model of

algebraic expressions is constructed to represent how the algebraic expression can be evaluated in terms of

the file primitive expression. For example, the algebraic expression AE-2 can be mapped to the file

primitive expression FPE-1 shown earlier, assuming that the relation his hashed on the attribute id with

no overftow records.

There are a large number of valid combinations for algebraic expressions even for conventional

snapshot databases. The problem gets more complicated with inttoducing historical queries and rollback

operations for temporal databases. It is neither possible nor useful to list all the possible algebraic

expressions and evaluate their costs one by one. Rather, we identify basic constructs occurring in snapshot

and temporal queries, and map the subset of algebraic expressions, composed of such consttucts, to file

primitive expressions. The mapping is also dependent on the characteristics of data such as the structure

and the size of each relation, selectivity and distribution of each attribute value, and the update count in

case of a database with temporal support, as will be represented by the model of database/relations in the

next section.

Algebraic operators involve either one relation or two relations. Select, Project, When,

AsOf, Valid, Temporary, Sort, and Refo:anat operate on one relation, while Join,

Union, and Difference operate on two relations. The characteristics of each operator is discussed

one by one in terms of the file primitive expression.

• Select (relation, predicate)

The first parameter relation is the base relation for the operation, and the second parameter predicate

specifies consttaints on the relation that result tuples must satisfy. Performance of Select

depends on vatious factors such as the structure of the relation, the type of the predicate, and the

characteristics of data stored in the relation.

46

(1) If the predicate fully specifies a key for a random access path existing for the relation, the file

primitive expression is:

Read (access path, n)

where the access path may be one of Hashing, I sam, Btree, or one of the new access

methods to be developed in the next chapter. The second parameter n is the length of the

overflow chain, which is determined from the model of database/relations.

(2) Otherwise, the file primitive expression is:

Read (Heap, b)

where b is the size of the relation in blocks, meaning the relation is sequentially scanned.

• Project (relation, attr list)

This operation scans the relation to extract a list of attributes, attr list, hence its file primitive

expression is:

Read (Heap, b)

where b is the size of the relation in blocks.

• Join (relation 1, relation 2, join method, predicate)

There are several methods to perform a join, such as TS, as, and SM. Let

t 1 : the number of tuples in relation 1
t 2 : the number of tuples in relation 2
b 1 : the size of relation 1 in blocks
b 2 : the size of relation 2 in blocks

Each method is briefly described with the corresponding file primitive expression.

(1) TS : tuple substitution method

Each tuple in the smaller relation is substituted to select tuples from the other relation

satisfying the predicate.

Read (Heap, b 1) +
FPE 2 * t 1

assuming t 1 < t 2• FPE 2 is the file primitive expression for

Select (relation 2, predicate ')

47

where predicate' is the predicate with the tuple variable for relation 1 replaced by each tuple in

relation 1•

(2) BS : block substitution method

For each block in the smaller relation, the other relation is scanned. In this process, all tuples

in one block of each relation are joined according to the predicate. It is faster than tuple

substitution especially when there is no random access path to evaluate the predicate.

(3) SM

Read (Heap, b 1) +
Read (Heap, b 2) * b 1

: sort & merge method

Each relation is sorted first, then the resulting relations are scanned in parallel to merge tuples

satisfying the predicate.

Read (Heap, b 1) +
Read (Heap, b2) +
FPE (Sort (relation u attr list)) +
FPE (Sort (relation 2, attr list))

where FPE (Sort (...)) is the file primitive expression for Sort to be described later, and

attr list is the list of attributes participating in the predicate. If both relations are already in

order, the file primitive expression is simply

• Union (relation 1, relation 2>

• Difference (relation 1> relation 2)

Read
Read

(Heap, b 1) +
(Heap, b 2)

Both operators need to scan two relations, so the file primitive expression is:

Read (Heap, b 1) +
Read (Heap, b 2)

where b 1 and b 2 are the sizes of relation 1 and relation 2, respectively, in blocks.

• When (relation, temporal pred)

48

When is similar to Se1ect, where the temporal predicate, temporal pred, is restricted to a siogle

variable predicate specifying the constraint on the valid time attributes that result tuples must satisfy.

Hence the file primitive expression is, like Se1ect:

Read (access path, b)

or

Read (Heap, b)

depending on the type of the predicate, and the existence of a random access path to satisfy the

temporal predicate.

AsOf is similar to Select with the predicate of:

where 1 1 ~ transaction_stop and transaction_start ~1 2

Hence the file primitive expression is similar to that for Se1ect.

• Va1id (relation, From/To/At, temporal expr)

Va1id is similar to Project, where the temporal expression, temporal expr, is restricted to a

49

single variable expression with the domain of time values. The file primitive expression is

Read (Heap, b)

where b is the size of the relation in blocks.

• Temporary (label)

This operator, as shown in AE-5, is to create a temporary relation, and to store the intermediate result

from the previous operation marked by the label. Its file primitive expression is in general:

Read (Heap, b) * k, -I, +
Write (Heap, b) * kw -lw

where b is the number of blocks in the resulting relation, and k,, 1,, kw, lw are implementation

dependent constants. For the prototype to be used in Chapters 6 and 7, each block, except the last

one, of a temporary relation is read twice and written three times, so k, = 2, lew = 3, and 1, = lw = I.

Read (Heap, b) * 2 - 1 +
Write (Heap, b) * 3 - 1

• Sort (relation, attr list)

This is used to sort the relation using a list of attributes, attr list, as key attributes for sorting. Since

it takes 0 (b x log .. b) block accesses to sort a file of b blocks using the m-way sort-merge, the file

primitive expression is in general:

Read
Write
Read
Write

(Heap,
(Head,
(Heap,
(Head,

• Reformat (relation, stor spec, attr list)

* 0 (log., b 1)

* 0 (log .. b 2)

* 0 (log .. b 2)

* 0 (log.,b 2)

+
+
+

This is to reformat the relation to the storage structure, stor spec, using a list of attributes, attr list, as

key attributes. Its file primitive expression is in general:

so

Read (Heap, b) +
Write (Heap, b) +
FPE (Sort (relation, attr list))

where FPE (Sort (...))is the file primitive expression for Sort in case we need to sort the relation

for refprmating.

Thus far, each operator has been discussed in terms of file primitive expressions. An algebraic

expression with multiple operators can be mapped to the file primitive expression which is the sum of the

file primitive expressions for the component operators. An exception to this rule is the case when

Project or Valid follows Select, Join, or When, and the two operations are grouped together

by a pair of square brackets. In this case, the file primitive expression is simply that of the first operation.

For example, an algebraic expression

is mapped to

{ [Ll : Select
Project

(h, id = 500);
(Ll, h.id, h.seq)]}

Read (Hash, 0)

performing Project effectively for free.

4.1.2. Model of Database/Relations

The second model in the hierarchy is the model of database/relations which characterizes

information on the relations composing a database. Typical catalog relations in conventional DBMS's hold

information for all relations such as relation names, temporal types, storage structures, attribute counts,

attribute names, attribute formats, attribute lengths, key attributes, tuple lengths, and tuple counts.

Additional information on data contents is needed to provide data for the model of algebraic

expressions so that the algebraic expression can be mapped to the file primitive expression. Examples are

selectivity and distribution of attribute values, volatility of data, and the update count in case of a database

with temporal support. Figure 4-3 shows an abbreviated IDL (Interface Description Language [Nestor et

a!. 1982]) description of information to be represented by the model of database/relations.

Structure DbRel Root database

database => name
relations

relation => name
temporal Type
attributes
tupleCount
updateCount
storageType
keys
loadingFactor
blockSize

TemporalType ::=snapshot
historical Interval
temporal Interval

key

snapshot =>;
historicalinterval =>;
temporalinterval =>;

=> name
attributes

attribute => name

ValueType : :=

type
length
selectivity
volatility

type Integer
typeString

Is

String,
Set Of relation;

String,
Temporal Type,
Seq Of attribute,
Integer,
Integer,
StorageType,
Seq Of key,
Rational,
Integer;

rollback
historicalEvent
temporalEvent;

rollback =>;
historicalEvent =>;
temporalEvent =>;

String,
Seq Of attribute;

String,
ValueType,
Integer,
Rational,
Rational;

typeRational
typeBoolean

typeTime;
typeinteger =>;
typeString =>;
typeTime =>;

typeRational =>;
typeBoolean =>;

End

Figure 4-3: IDL Description for the Model of Database/Relations

51

In this description, a database consists of a name and a set of relations. Each relation consists of a

name and various information on the relation. For example, temporalType specifies one of six

possible temporal types: snapshot, rollback, historical interval, historical event, temporal interval, and

temporal event. storageType specifies the storage structure of the relation, whether it is a heap, a

hashed file, an ISAM file, or one of the structures to be discussed in Chapter 5. An example of a database

52

represented in IDL's ASCII external representation is found in Appendix D.

It is a difficult problem to estimate the response set of a query and the number of block accesses

without actually examining stored data, though there has been significant research on the subject as

summarized in section 2.1.2. This problem may account for a large portion of the discrepancy between the

analysis result and the actual performance data.

4.1.3. Model of Access Paths

The third model in the hierarchy is the model of access paths (MAP) which represents the path taken

through the storage structure to satisfy an access request represented by a rue primitive expression. Ao

access path is usually confined to a single file, but it may involve more than one file, which is the case with

storage structures for temporal databases discussed in the next chapter. This section first describes how the

model of access paths represents a single file path, and then extends it for a multiple file path.

The conceptual unit of an access in this model is a node, which consists of one or more physically

contiguous records participating in the access. The node itself consists of one or more records, depending

on the underlying storage structure.

A set of nodes are connected together to make up an access path either directly or indirectly. In

simple cases, an access path is directly represented as a set of nodes. In other cases, it helps to

conceptualize an access path as being composed of some components, each of which is itself a set of

nodes. This process of hierarchical decomposition may proceed for as many levels as useful.

The process of decomposition is restricted to three levels, which is sufficient to describe the storage

structures ·discussed in this dissertation. However, it is straightforward to extend it to incorporate more

levels. In this three level hierarchy, a set of nodes are grouped to make up a chain, and a set of chains

compose an access path. Therefore, an access path through a single file, or simply a file path, is

represented as a set of chains, each of which is a set of nodes. As mentioned above, each node itself

consists of one or more records.

The model of access paths identifies a fixed number of modes, specifying how components such as

nodes, chains, or file paths are connected with one another. We can classify the modes as either guided or

searched.

Guided : If a random access mechanism exists to locate the component

H : the address is computed by a hash function

P : the address is provided by a pointer

A: the component is physically adjacent to its predecessor

s : the component shares the same starting address with its higher level component

M : the component is in the main memory

Searched : If no random access mechanism exists

0 : the file is ordered, so logarithmic search is possible

U: the file is unordered, so sequential search is necessary.

53

This process of hierarchical decomposition, decomposing an access path or a file path into chains, a

chain into nodes, and a node into records, is all captured into a single expression called the access path

expression (APE). A canonical form for an access path expression, whose syntax is shown in Figure 44, is

where

(Mode count 1 (Mode count 2 (Mode count 3 t t)

count 1 is the number of chains in the file path,

count 2 is the number of nodes in the chain, and

count 3 is the number of records in the node.

As described earlier, the components in the three level hierarchy are the access path, chains, and nodes.

Each component is described by a 'mode-count' pair, where the mode tells how to locate the componen~

and the count shows the number of subcomponents in it. Then the 'mode-count' pair is followed by a list

of descriptors for its subcomponents enclosed in parentheses. The level of a component in the hierarchy is

determined by the depth of enclosing parentheses. The outermost parentheses represent the access path,

while the innermost parentheses represent a node which is defined to consist of records.

54

<APE> : := <FilePath>

<FilePath> : := <desc> <chains>
<desc> : := <Mode> <count>

<chains> : := <chain>
<chains> <chain>

<chain> : := (<desc> <nodes>

<nodes> : := <node>
<nodes> <node>

<node> : := <desc>)

<Mode> : := H
p

A
s
M
0
u

<count> : := <integer>

Figure 4-4: BNF Syntax for File Path Expressions (Single File)

Each subcomponent is described one by one in sequence, but if all the successors of a certain

subcomponent are the same, they need not be repeated. Therefore, if the number of descriptors is smaller

than the specified count, the remaining subcomponents are assumed to have the same descriptor as the last

one. When a component has only one subcomponent and the mode of the subcomponent is s (meaning

the subcomponent shares the same starting location), the extra level of decomposition does not provide any

further information, and may be omited.

In the access path expression, a set of file parameters are used to quantify physical properties of a

file. Some of the parameters are:

I: number of records in a file

b : number of records in a block

r : number of bytes in a record, and

n : number of records to be accessed

Some examples of access path expressions are described now for various access methods.

Example-1. Scanning a sequential file:

The access path can be considered as an unordered collection of I records. The access path

55

expression is:

(U /*records)

or simply:

(U j)

Since the head of the path expression is u, the path needs to be searched sequentially. The access

path can also be regarded as consisting of a single node, which hasjrecords. Then the expression

becomes:

(U 1 (S j))

We can follow the three level hierarchy by introducing the level of chain. Then the access path has a

single chain, which has one node. The node itself consists off records.

(U 1 (S 1 (S j)))

Exarnple-2. Accessing a hashed file without an overflow:

(H 1) • (H 1 (S 1)) • (H 1 (S 1 (S 1)))

This is similar to Exarnple-1 except that the head of the access path is located through hashing, and

that a node is of one record.

Exarnple-3. Accessing an inverted file as shown in Figure 4-5 (a):

(P 3 (P 1 (S 1)) (P 1 (S 1)) (P 1 (S 1)))

The path, whose head is located through a pointer, contains a key value and three chains. Each chain

is also located through a pointer, and each has one node. Each node shares the same address with the

56

chain, and is of one record. Since all the chains are identical, we need not repeat the descriptor for

each chain. Then the expression is abbreviated to:

(1' 3 (1' 1 (s 1)))

In general, there will be n chains:

(P n (P 1 (S 1)))

(a) an Inverted File (b) a Multilist File

Figure 4-5: Structures for an Inverted File and a Multilist File (n = 3)

Example-4. Accessing a cellular inverted file, where each node is a cellular block of size b:

n
(P b (P 1 (S b)))

Similar to Example-3, but the path has ~ chains. Each chain has one node, which consists of b

records.

Example-S. Accessing a multilist file as shown in Figure 4-5 (b):

(P 1 (P 3 (S 1) (P 1) (P 1)))

The path, whose head is located through a pointer, has one chain. The chain is located through a

57

pointer, and has three nodes, each of which has one record. The first node shares the same address as

the chain, and the subsequent nodes are located through pointers. Since the second node and the

third node are identical, the expression can be abbreviated to:

{P 1 {P 3 {S 1) {P 1)))

In general, there will be a chain of n nodes:

{P 1 {P n {S 1) {P 1)))

Note the difference from the expression for an inverted file in Example-3.

Example-6. Accessing a cellular multilist file, where each node is a cellular block of size b:

{P 1 {P = {S b) {P b)))

Similar to Example-S, but the chain has ; nodes, each of which consists of b records. Note that we

can repeat the descriptor for the second node, (P b), ; - l times.

Example-7. Accessing an ISAM file with the master index in core:

{M 1 {P 1 {P 1)))

An entry in the master index, which resides in the main memory, points to the head of a single chain,

corresponding to a directory entry. The chain consists of a node, which consists of a single record.

The head of the node is located through a pointer. If the file has an overflow chain of n nodes, each

of which is a single record, the access path expression is:

{M 1 {P n + l {P 1)))

58

Example-S. Accessing a hashed file with an ovedlow chain of n records:

(H 1 (P n (S 1) (P 1)))

The access path is located by hashing, and has a single chain. The chain has n nodes, each of which

has a single record. The head of the chain is located through a pointer, and shares the same address

with the head of the first node.

Thus far, we have discussed access paths involving only one file. When two or more files are

involved in an access, the composite access path is represented by the combination of the individual file

paths. There are two criteria to determine the relationship between two files. One is ordering, which

determines whether two files are ordered or noL If ordered, they are accessed in serial, where one file path

always precedes the other one. If unordered, there is no restriction on ordering, so two files may be

accessed in parallel. The other criterion is whether only one file needs to be accessed, or both files should

be accessed. Obviously, if both files should be accessed, the ordering information between the two files

must be known. With this restriction, the two criteria lead to five possible combinations as follows.

(1) [FilePath 1 ; Fi/ePath 2 l

Two files are accessed in serial, like the temporally partitioned storage structure to be discussed in

the next chapter.

(2) [FilePath 1 , FilePath 2]

Both files need to be accessed, but there is no fixed ordering, like a hori2ontally partitioned relation

[March & Severance 1977].

(3) [FilePath 1 ?; FilePath 2

The first file is accessed. If it is unsuccessful, then the second file is accessed. An example is a

differential file [Severance 1976].

(4) [FilePath 1 ? , Fi/ePath 2

Either of the two files is accessed. If it is unsuccessful, then the other file is accessed. An example is

to retrieve a record from a vertically partitioned relation [Ceri & Pelagatti 1984].

59

(5) [FilePath 1 ? FilePath 2 J

Only one of the two files needs to be accessed, and which one to access is known. An example is

found inside the access path expression of the differential file with the Bloom filter in main memory

[Gremillion 1982]:

[(M 1) [Fi/ePath 1 ? FilePath 2]]

It is also possible to involve more than two files in various combinations.

(a) a tree (b) a graph

Figure 4-6: Access Paths with Three Files

Exarnple-9. Accessing a path composed of three files:

If they are accessed in sequence like a three level store, the access path expression is:

[[Fi/ePath 1 FilePath 2] ; FilePath 3]

If they are in the shape of a tree, as in Figure 4-6 (a), file 1 is accessed first, then the other two files

are accessed in any order. The access path expression is:

[FilePath 1 [FilePath 2 , FilePath 3 l l

In Figure 4-6 (b), files 1 and 2 are accessed in any order, then then the third file is accessed. The

access path expression is:

60

[[FilePath 1 , FilePath 2 l ; FilePath 3]

BNF syntax for the access path expression involving multiple files is given in Figure i·7, where

<F ileP ath> was defined in Figure 4-4.

<APE>

<term>

<a op>
<m op>

<AccPath>

<one>
<ord>

: :=

: :=

: :=
: :=

: :=

: :=
: :=

<term>
<APE> <a op>

<AccPath>
<term>

+
*

<m op>

I

<FilePath>
[<AccPath>
(<APE>)

?
;

<term>

<AccPath>

<one> <ord> <FilePath>

Figure 4-7: BNF Syntax for Access Path Expressions (Multiple Files)

Given an access path expression, it is possible to parse the expression, and derive an access path

graph (APG). In the graph, each component is denoted as a vertex, while relationships among components

are denoted as an edge marked with the associated mode. For an access path involving a single file, the

graph results in a tree, with the vertex for file path as the root. Access path graphs for the access path

expressions in Example-3 and Example-S are shown in Figure 4-8. While there is a similarity between the

physical structure in Figure 4-5 and the access path graph in Figure 4-8, this is not always the case. The

access path graph is only conceptual, and not necessarily tied to the physical structure itself.

61

~
0 access path

/lp~
0 0 0 chains

·J ·J ·l
CJ CJ CJ nodes

(a) an inverted file (Ex-2) (b) a multilist file (Ex-4)

Figure 4-8: Access Path Graphs (n = 3)

The access path graph not only visualizes the process of accessing files, but also represents the cost

incurred in traversing an access path by the length of the path. In fact, it is possible to estimate the access

path cost (APC) from the access path expression, based on the modes to connect components. The rule to

estimate the upper bound for the access path cost is:

H (Hashing) : (1 +a) random accesses
where a is determined by the overtlow handling method

P (Pointed) : 1 random access

A (Adjacent) : 1 sequential access

s (Same-as-before) : no access cost

I (Main-memory) : no access cost

0 (Ordered) : logarithmic search (0 (log f»
u (Unordered) : sequential search cf....:3: . .£. >

2b

In summary, the model of access paths (MAP) represents access paths, taken through a storage

structure to satisfy a request represented by a file primitive expression, with the access path expression

augmented with a set of file parameters. The access path expression is simple and well-defined, yet

versatile in representing a variety of access methods which may involve more than one file. Given an

access path expression, it is also possible to derive the associated access path graph and the access path ·

62

cost. The model of access paths is loosely based on four models described in Section 2.1.3. It captures the

concepts of the sublist in [Hsiao & Harary 1970], data direct/indirect & address/pointer sequential in

[Severance 1975], hierarchy of levels in [Yao & Merten 1975] and a set of parameters in [Batory &

Gotlieb 1982], but extends them significantly in a systematic framework.

4.1.4. Model of Storage Devices

The last model in the hierarchy is the model of storage devices which represents physical

characteristics of storage media. There are many parameters affecting the performance of storage devices,

such as the medium type, fixed or moving heads, read/write or write-once, seek time, transfer rate, number

of cylinders-tracks-sectors, sector size, etc. Though it is difficult to model exact behaviors of storage

devices under typical time sharing environments, significant contributions have been made to analyze their

characteristics [Satyanarayanan 1983]. For the purpose of this research, we adopt a model of storage

devices characterizing the performance with two parameters. They are t,., time needed to access a block

randomly, and t,., time needed to access a block sequentially. Given the count of random and sequential

accesses, e.g. from the model of access paths, it is possible to calculate the time required to satisfy the

request

For a typical moving head disk, time needed to access a block randomly is the sum of seek time,

rotational delay, and data transfer time.

The average seek time, 1,.,1, assuming uniform distribution of seek distances is [Wiederhold 1981]:

c-1 2(c -i)
E (/.,.,,)= L t, X =

2
;;--.::..t...

i=l c - c

where t, is the seek time for distance over i cylinders, and c is the total number of cylinders for the disk.

The average rotational delay, t,d, is the time for one revolution divided by two, and the data transfer time,

t,, is the block size divided by the data transfer rate.

Ideally, accessing a block sequentially is free of any head movement and even -the rotational delay.

63

However, a logically sequential block may not be physically adjacent under many operating systems, e.g.

Utrix, which may allocate a block to a file randomly from the pool of free pages [Stonebraker 1981]. Even

when the block is physically adjacent, it is highly probable in a multi-process system that another process

sharing the disk disrupts the sequentiality by moving the head to another sector or cylinder.

Another factor to be considered is the difference between the block size of the database management

system and the page size of the operating system. Let bJb be the block size of the database management

system, and let p08 be the page size of the operating system. 1f bJb is bigger than p08 , it takes extra disk

accesses to retrieve one database block. In the opposite case, which is actually the case in the prototype to

be described in Chapters 6 and 7, some sequential blocks are already in the main memory with the effect of

read-ahead. If we let n = Pos , the average 180 in a multi-process environment will be:
bJb

An experiment was run to measure the average t,. and 180 on a moving head disk connected to a

V ax/780. Here, the file used for sequential access was in fact physically contiguous. The results were:

Low Load High Load Average

Sequential 16.9 19.9 18.4

Random 24.8 37.8 31.3

Figure 4-9: Time (in msec) to Access a Block

Figures for the average time were used successfully in estimating the elapsed time to process sample

queries, as will be described in Chapter 6.

4.2. Performance Analysis

With the four models described in the previous section, it is possible to analyze the input and output

cost to process TQuel queries. Any complex query involving more than two relations can be decomposed

into simpler queries of two or less relations [Wong & Youssefi 1976]. Hence a TQuel query can be

64

represented by an algebraic expression, which consists of algebraic operators involving one or two

relations, reflecting the strategy used to process the query. The algebraic expression is then mapped into

the file primitive expression according to the model of algebraic expressions and the model of

database/relations.

TQuel
Query

File Primitive
Expression

Input/Output
Cost

r-----------------,
Evaluation

1 Straregy 1

~-----------------~

Model of
Algebraic Expressions

Model of
Database/Relations

Model of
Access Paths

Model of
Storage Devices

Algebraic
Expression

Access path
Expression

Figure 4-10: Performance Analysis with the Four Models

Next, the model of access paths maps the file primitive expression into the access path expression,

and eventually to the access path cost in rerms of the number of random and sequential block accesses.

Finally, the access path cost is converted to the time required to satisfy the request according to the model

of storage devices. These steps are illustrated in the Figure 4-10, where we show the evaluation strategy in

a dotted box to denote that the evaluation strategy is not a part of the models.

65

4.2.1. Examples

This section describes how the performance of two sample queries in TQuel can be analyzed using

the four models developed in Section 4.1. For example, both of the algebraic expressions AE-1 and AE-2,

shown in Section 4.1.1.1, represent the TQuel query:

range of

retrieve

h is relation_h

(h.id, h.seq) where h.id = 500

Since AE-2 provides more information on how to process the query, let's evaluate the input and output cost

for AE-2 using the four models. We first try the case where the model of database/relations shows that

relation_h is a hashed file with no overfiow records. Then from the model of algebraic expressions,

we get the file primitive expression:

Read (Hash, 0)

which is the same as FPE-1 shown in Section 4.1.1.2. This is converted, according to the model of access

paths, to the access path expression:

(H 1)

whose access path cost is

APC = C (APE)= C ((H 1)) = 1 random access

Now the average time to perform 1 random access is found to be about 31.3 msec according to the model

of storage devices.

If the model of database/relations shows that relation h is a hashed file with 14 overfiow

records, then its file primitive expression becomes:

66

Read (Hash, 14)

Now the corresponding access path expression is:

(H 1 (P 14 (S 1) (P 1)))

Its access path cost is

APC = C (APE)= C ((H 1 (P 14 (S 1) (P l)))) = 15 random accesses

which is equivalent to 470 msec according to the model of storage devices.

For another example, algebraic expressions AE-3, AE-4, and AE-5 can all be considered as

representations of the TQuel query:

range of
range of

h is relation_h
i is relation_i

retrieve (h.id, i.id, i.amount)
where h.id = i.amount
when h overlap i and i overlap 11 now"

Let's evaluate the input and output cost for AE-5:

{[Ll:
L2:
L3:
L4:

When
Project
Temporary
Join
Project

(i, i overlap nnow'~);
(Ll, i.id, i.amount, i.valid_from, i.valid to)];
(L2);
(h, L3, TS, h.id = i.amount & h overlap i);
(L4, h.id, i.id, i.amount)])

First, the model of database/relations is assumed to show that relation _h is a hashed file and

relation_i is an ISAM file, each without any overllow records. It is also assumed that the size of

relation_i is 128 blocks, the size of the temporary relation is 19 blocks, and there are 1024 tuples in

the temporary relation. Then the model of algebraic expressions maps AE-5 to the file primitive

expression:

67

Read (Heap, 128) +
Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1 +
Read (Heap, 19) +
Read (Hash, 0) * 1024)

.

which is in fact the same as FPE-2 shown earlier. The first Read primitive accounts for the When and

the Project operations, the second Read and the Write primitives account for the Temporary

operation, and the third and the fourth Read primitives account for the Join and the Project

operations.

According to the model of access paths, the Read operations in the file primitive expression are

mapped to the access path expression for input:

(U 128)
(U 19) * 2 - 1
(U 19)
(H 1) * 1024

+
+.
+

Likewise, the Write operation in the file primitive expression is mapped to the access path expression for

output:

(U 19) * 3 - 1

Now, the access path cost for input is:

APC; = C ((U 128)) + C ((U 19) * 2- I)+ C ((U 19)) + C ((H I)) * 1024
= 1028 random accesses+ 180 sequential accesses

and the access path cost for output is:

APC. = C ((U 19) * 3- I)
= 3 random accesses+ 53 sequential accesses

Hence it takes 35.5 sec for input, and 1.07 sec for output according to the model of storage devices.

68

Let's consider the case where relation_ h is a hashed file, and relation_ i is an !SAM file,

but both of them are temporal relations with the update count of 14 according to the model of

database/relations. Then on the average, there are 28 overllow records for each tuple, since eacb

replace operation inserts two versions into a temporal relation. We also assume that the size of

relation_i is 3712 blocks, which is 128 blocks multiplied by 29, that the size of the temporary relation

is 19 blocks, and that there are 1024 tuples in the temporary relation. Now the file primitive expression

corresponding to the algebraic expression AE-5 becomes:

Read (Heap, 3712) +
Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1 +
Read (Heap, 19) +
Read (Hash, 28) * 1024

As in the previous example, the first Read primitive accounts for the When and the Project

operations, the second Read and the Write primitives account for the Temporary operation, and the

third and the fourth Read primitives account for the Join and the Project operations. This is

mapped to the access path expression for input:

(U 3712) +
(U 19) * 2 - 1 +
(U 19) +
(H 1 (P 28 (S 1) (P 1))) * 1024

and the access path expression for output:

(U 19) * 3 - 1

Then, the access path cost for input is:

APC1 ~ C ((U 3712)) + C ((U 19) * 2- 1) + C ((U 19))
+ C ((H 1 (P 28 (S 1) (P l)))) * 1024

= 29700 random accesses + 37 64 sequential accesses

and the access path cost for output is:

69

APC. = C((U 19) * 3 -1)
= 3 random accesses + 53 sequential accesses

which is equivalent to 999 sec for input, and 1.07 sec for output according to the model of storage devices.

1n fact, these queries, among others, were run on the prototype temporal database management

system, which was built by extending a snapshot DBMS INGRES. Measuring input and output cost for

sample queries on the prototype provided performance figures, which were quite close to the analysis

results obtained by using the four models as discussed in this section. Further descriptions and the results

of the benchmark will be presented in Chapter 6.

4.2.2. Performance Analyzer

Based on the four models forming a hierarchy, it is possible to construct the Performance Analyzer

for TQuel Queries (PATQ), which can automate computation of the input and output cost given a

collection of TQuel queries as input. The internal structure of the P ATQ is shown in Figure 4-11.

Parser Sequencer Evaluator

I
I I
I I

'----- -,----- .J

I.

Algebraic

Models
Expressions

Database/
Relations

Access
Paths

Storage
Devices

Figure 4-11: Performance Analyzer for TQuel Queries

70

The parser will take TQuel queries and generate a parse tree. The sequencer converts the tree into

an algebraic expression consisting of algebraic operators and connectives as described in Section 4.1.1.1.

Since TQuel is a non-procedural language based on the tuple calculus, there are many ways to process a

TQuel query, and many variations of algebraic expressions. The sequencer is the embodiment of the query

evaluation and optimization strategy for a particular database management system. Four models described

above are all available to it, but the extent of utilizing such information depends upon the system being

modeled.

The resulting algebraic expression will be processed by the evaluator to compute the input and

output cost based on information represented by the set of models. The evaluator converts the algebraic

expression to the file primitive expression according to the model of algebraic expressions and the model of

database/relations. Next, it converts the file primitive expression to the access path expression, and

eventually to the access path cost, using the model of access paths. Finally, it calculates the time required

to satisfy the access path cost according to the model of storage devices.

PATQ can be used to test and analyze various alternatives in the design of new access methods,

database configurations, or query processing strategies, eliminating the tedious process of case by case

implementation or simulation. However, actual implementation of P ATQ is beyond the scope of this

dissertation, and is left as a future work. In this dissertation, we analyzed the performance of sample

queries manually, but in the same manner PATQ would have employed.

PATQ can be extended to be an optimization tool by providing a feedback path, as shown by a

dotted line in Figure 4-11, from the evaluator output to the sequencer. The sequencer can generate all

possible algebraic expressions for an input parse tree, and can choose the one with the lowest input and

output cost as computed by the evaluator. The algebraic expression chosen that way represents the best

strategy to minimize the cost of processing the query.

Chapter 5

New Access Methods

As discussed in Section 1.2, databases with temporal support face problems in terms of both space

and performance, due to the need for maintaining history data together with current data on line.

Conventional access methods such as hashing or ISAM are not expected to be effective for such databases

with a large number of temporal versions, which will be demonstrated by the benchmark results in Chapter

6. Other access methods that adapt to dynamic growth better also have various problems as described in

Section 1.2.2. Therefore, new access methods and storage structures tailored to the particular

characteristics of database management systems with temporal support need to be developed to provide

fast response for a wide range of temporal queries without penalizing conventional non-temporal queries.

The first section of this chapter addresses general issues of the temporally partitioned storage

structure. The second section investigates various formats for the history store which can improve the

performance of temporal queries. Then the third section studies issues on how to support secondary

indexing for databases with temporal support, and the fourth section discusses attribute versioning in

contrast with tuple versioning. Uuless specified otherwise, tuple versioning is assumed throughout this

dissertation.

5.1. Temporally Partitioned Store

A database with temporal support maintains the history of an enterprise, or the history of activities on

the database modeling an enterprise, or the history of both, depending on the type of temporal support In

any case, there can be multiple versions to represent a single entity over a period of time. Thus, the term

version set is defined to identify a set of versions for one entity. A version set usually has a single key

value for all of its versions. But a version set may have multiple keys if there has been key changes, as will

be discussed in Section 5.1.4.

72

As discussed in Section 1.2.1, databases with temporal support contain two distinct types of data,

current data and history data The characteristics of current data and history data exhibit clear differences

in tenns of the version count, storage requirements, access frequency, access urgency, and update pattern.

These differences make it natural to store and process them separately depending on their individual

characteristics. It leads us to the temporally partitioned storage structure with two storage areas, the

current store and the history store. The current store contains current versions which can satisfy all non

temporal queries, and possibly some of frequently accessed history versions. The history store holds the

remaining history versions.

This scheme to separate current data from the bulk of history data can minimize the overhead for

non-temporal queries, and at the same time provide a fast access path for temporal queries. It is possible to

use different access methods for each of the two. The current store may utilize any conventional access

method suitable for a snapshot relation, such as hashing, ISAM, or B-tree. The history store may also use

any conventional access method, but several variations are conceivable to exploit the concept of version

inherent in history data. It is even possible to use different types of storage media for each of the two. For

example, history data may be stored on optical disks, while current data are kept on magnetic disks. ·

This temporally partitioned storage structure can also be regarded as the reverse differential file. The

scheme of differential file represents two versions of data with the main file and the differential file

[Severance 1976]. The main file contains the reference version (R), and is never modified. All changes to

the main file are recorded in the differential file, which are either additions (A) or deletions (D). Thus, the

current version (C) can be found by R u A - D. Note that accessing the current version is slower than

accessing the old version. On the other hand, the scheme of reverse differential file directly represents the

current version in the file C. It also records additions (A) and deletions (D) to and from a reference version

in a separate file. Then, the current version is readily available from C, and the reference version (R) can

be found by C u D - A. Since A ~::: C, A need not be stored separately. They can, instead, be represented

as a part of C by marking them with appropriate information, e.g. attaching time attributes to each record to

show when it was appendecl Attaching time attributes to each record also generalizes the number of

versions from two to any number.

73

Storage structures similar to this temporally partitioned scheme have been mentioned in other papers

[Ben-Zvi 1982, Katz & Lehman 1984, Lum et al. 1984], but none of them has investigated various

characteristics and possible variations, nor has analyzed their performance. There are many issues to be

investigated about the temporally partitioned storage structure [Ahn 1986]. This section discusses the split

criteria specifying how to divide data between the current and the history store, update procedures for each

type of databases with temporal support, methods to handle retroactive changes, proactive changes, and

key changes, and the performance with regard to the update count.

5.1.1. Split Criteria

The main objective of the temporally partitioned storage structure in this dissertation is to separate

current data from history data so that the overhead for supporting temporal queries can be minimized.

Hence the basic criterion is to keep current versions in the cu"ent store, and to keep history versions in the

history store. All non-temporal queries can be evaluated by consulting only the current store without any

interference from the bulk of history versions. This criterion appears to be quite simple, but there are many

complications especially with a historical or a temporal database.

The term current version has different implications depending on the temporal type of databases.

For a rollback database, the current version of a version set is the version entered into the database most

recently for the version set, and has '-' as the value of the transaction stop attribute. Such tuples are put

into the current store, and the other tuples are put into the history store.

But determining current versions for a historical or a temporal database is complicated by retroactive

or proactive changes, which will be discussed further in Section 5.1.3. For a historical database, the

current version has the attributes valid from and valid to overlapping with the current time. For a temporal

database, the current version has the attributes valid from and valid to overlapping with the current time,

and a transaction stop value of '-'. If we ignore retroactive or proactive changes for the moment, the

current store keeps tuples with a valid to value of·~· for a historical database, and tuples with a valid to

value of·~· and a transaction stop value of'-' for a temporal database. An extension to the temporally

partitioned storage structure with the current and the history stores would be to add the third store, called

the archival store, which contains tuples with values other than '-' for the transaction stop attribute. The

74

archival store will be consulted only for queries as of some moment in the past.

As discussed in Section 1.2.1, current data are in general smaller in volume, but accessed more

frequently and urgently, than history data Thus, the current store can be more efficient than the history

store in accessing data To take advantage of this property, we can relax the basic criterion by keeping

some history data, which tend to be accessed rather frequently, in the current store. In this case, care

should be taken to limit the amount of history data in the current store so that the performance of non

temporal queries would not suffer from the increased size of the current store. For example, the current

store may keep up to two, instead of one, most recent versions for each version set. Furthermore, deletions

or proactive changes can be handled following this criterion, as will be discussed later.

It is also possible to adopt the strategy of vertical partitioning [Ceri & Pelagatti 1984] which moves

some of the current versions, with relatively low access frequencies, to the history store. Though it is not

pursued any further in this research, a special case related with this scheme is later described for proactive

changes. Another factor affecting the criteria is the availability of an access path to history versions, since

a version in the history store needs an access path either through some index or through a corresponding

version in the current store.

5.1.2. Update Procedures

Unlike snapshot databases relying on update in place, databases with temporal support update

existing information in a non-destructive way, and maintain out of date information as history data. Hence

the semantics of append, delete and replace are particularly important in databases with

temporal support. Handling delete and replace is more complicated with the temporally pattitioned

storage structure, which divides data between the current and the history store according to a split criterion.

This section discusses the update procedures for the temporally pattitioned storage structure in each type of

databases with temporal support. The formal semantics of modification statements for TQuel has been

defined elsewhere [Snodgrass 1986].

According to the basic criterion of current data on the current store and history data on the history

store, deleted tuples ought be moved to the history store. This reduces the size of the current store, but it

becomes necessary to provide an access path to the version set which has no current version, lest the whole

75

history store be scanned to locate it. The path may be a separate index of deleted tuples, or a combined

index involving both the current and the history store, as will be discussed in Section 5.2.3. If the basic

criterion is relaxed so that the current store may hold some of history data, deleted tuples may be left in the

current store. In this case, there is no need to maintain a separate access path for deleted tuples.

For a rollback database, append inserts a tuple with time attributes:

transaction start f- the current time

transaction stop f- '-'

meaning that the tuple is effective from the current time on. Delete finds a tuple which satisfies the

where predicate and has a transaction stop value of'-', then terminates it by changing the transaction stop

attribute to the current time. The deleted tuple has been in the current store, and may or may not be moved

to the history store depending on the split criteria. Deletion or correction of past tuples, whose transaction

stop attribute is not'-', is not allowed in a rollback database.

Replace can be described as delete followed by append in any database. In this delete and

append scheme, the base tuple is first deleted (in the sense of non-snapshot databases) as described above,

then a copy of the base tuple with some attributes changed according to the replace statement is

appended. Tltis scheme works well with conventional storage structures, and is used by the prototype to be

described in Chapter 6. But the delete and append scheme is not strictly applicable to a rollback database

with the temporally partitioned storage structure. The problem is that the base tuple still stays in its place,

while the newer version is put into a different location. An alternative is to append into the history store a

copy of the base tuple with its transaction stop attribute changed to the current time, then change the base

tuple according to the replace statement. This append and change scheme works well for a rollback

database with the temporally partitioned store, and is also better than the delete and append scheme for

concurrency control and error recovery in that it reduces the critical period while the base tuple is not

available.

For a ltistorical database, append, delete, and replace statements have the valid clause

to specify the period while any of the modification statements will be in effect

range of h .ia historical h

delete h
val.id from t 1
where (h. id =

to t 2
500)

Figure S-1: A Delete Statement

76

The TQuel statement in Figure 5-1 can be regarded as having the update interval [t 1, t z), effective between

t 1 and t 2. If no val.id clause is specified for any modification statement, the default update interval is

[now,~), where'=' stands for 'forever'. Let's call a tuple satisfying the where predicate the base

tuple, and assume it has the base interval [t,., t.,), effective. between t,1 and t,,, where t,. and t., are the

values of attributes valid from and valid to. Since t 1<t2 and t,1 <t,,, there are six possible relationships

between the base interval and the update interval as shown in Figure 5-2.

base

update

result 1--i (none)

(l) (2) (3)

base

update

result H H

(4) (5) (6)

Figure 5-2: Base Interval vs. Update Interval for Delete

Delete needs to be handled differently for each case, except for cases (1) and (6) which require no

77

action.

• case (1): t 2 < tvf

The base interval and the update interval do not overlap, so nothing needs to be done.

•case(2): t 1 <lvtAivt <t2At2 <t,,

The pottion [tvf, tv gets deleted. The result is to change the valid from atlribute of the base tuple to

t 2• The base tuple still stays in its place, whether it is in the current or the history store.

• case (3): t 1 < tvf At,< t 2

The base tuple is physically deleted. But the immediate predecessor version of the base tuple, if any,

needs to be recogni2ed as the most recent version of the version set in order to maintain an access

path to history versions. If the base tuple is in the current store, and deleted tuples are kept in the

current store, then the immediate predecessor needs to be moved from the history store to the current

store.

• case (4): tvf < t 1 A 1 2 < t,

The portion [I 1, 1 V• which falls on the middle of the base interval, gets deleted. The result is to

change the valid from atlribute of the base tuple to t 2, which stays in its place. Then a new tuple,

which is the same as the base tuple but with the valid to atlribute of 11, is inserted into the history

store.

•case(5): tvf <t1At, <t2

The portion [I 1, t,) gets deleted, which changes the valid to atlribute of the base tuple to t 1• If the

base tuple is in the current store, it may be necessary to move it into the history store depending on

the split criteria.

• case (6): t, < t 1

The base interval and the update interval do not overlap, so nothing needs to be done.

Thus delete in a historical database is similar to replace in a snapshot database, except for the case

(4) which also involves an append, and for the cases (I) and (6) which requires no action. Note that

delete in a rollback database only deals with the case (5), where the time axis represents transaction

time.

78

Handling replace is more complicated in a historical database than in a rollback database,

especially with the temporally partitioned "store. To perform replace in a historical database with the

temporally partitioned store, there are also six cases to be exantined as shown in Figure 5-3, depending on

the relationship between the base interval and the update interval. However, handling replace is more

complicated than delete, because we need to determine the proper location of the current version and to

maintain a history chain, whether explicit or not, for each version set. Basically, we follow the append and

change scheme, but detailed steps vary significantly for each case.

base

update 1----ll:

result f---+1--l 1-------~

(1) (2) (3)

base

update

result 1-+---+-l 1--+- --!

(4) (5) (6)

Figure S-3: Base Interval vs. Update Interval for Replace

• case (1): t 2 < tvf

The base interval and the update interval do not overlap, so nothing needs to be done.

• case (2): 1 1 < 1,1 A t,1 < t 2 A t 2 < lvr

The portion [tvf, t 2) gets replaced. First, the new version changed by replace is put into the

history store. Its valid from attribute is set to to t,1 , and its valid to attribute is set to t 2• Then, the

79

base tuple gets its valid from attribute changed to t :z, but still stays in its place, whether it is in the

current or the history store.

• case (3): 11 < tvf At.,< t 2

The new version changed by replace is put into the place of the base tuple. Its valid from

attribute is set to to tvf, and its valid to attribute is set tot,,.

• case (4): tvf < t 1 A t 2 < t,,

The portion [I I> t 2), which falls on the middle of the base interval, gets replaced. First, the new

version changed by replace is put into the history store. Next, a copy of the base tuple is inserted

into the history store with the valid to attribute set to t 1• Then, the base tuple gets its valid from

attribute changed to t :z, but still stays in its place, whether it is in the current or the history store.

•case(5): t,1 <t1At,, <t2

The portion [t 1, t,,) gets replaced. First, a copy of the base tuple is insetted into the history store

with the valid to attribute set to t 1• Then, the new version changed by replace is put into the

place of the base tuple, whether it is in the current or the history store, with t, as the value of its

valid to attribute. This case is particularly troublesome to the delete and append scheme, because the

base tuple needs to be moved to the history store. Note that this corresponds to the case of the

default vali.d clause for a historical database. This case also corresponds to the only case for a

rollback database, except that the time axis for the rollback database represents transaction time.

• case (6): t,, < t 1

The base interval and the update interval do not overlap, so nothing needs to be done.

Though a temporal database supports transaction time in addition to valid time, modification

statements for a temporal database have the same format as those for a historical database. Since the as

of clause is not allowed in modification statements, transaction time does not participate in append,

delete, or replace, except that the transaction stop attribute of the base tuple to be deleted or

replaced should have the value of '-'. There are also six possible relationships between the base interval

and the update interval in terms of valid time, as shown in Figures 5-2 and 5-3. For each case, delete

and replace for a temporal database are handled in a similar manner to those for a historical database,

80

but with two exceptions. First, a copy of the base tuple is inserted into the history store with the transaction

stop attribute set to the current time, before the base tuple is changed in any manner. This results in adding

up to three versions for each replace, but provides the capability to capture the history of retroactive

and proactive changes completely, as described in Section 3.4. Second, any tuple inserted in the process,

except for the copy of the base tuple mentioned above, has the attributes transaction start and transaction

stop set to the current time and '-', respectively. In addition, we need to maintain a chain of history

versions for each version set, which is further complicated by the fact that each replace in a temporal

database inserts at least two versions. We order versions affected in each update in reverse order of valid

from time, then in reverse order of transaction start time. This ordering allows us to retrieve recent

versions more quickly, especially for queries with the default clause as of "now".

5.1.3. Retroactive or Proactive Changes

For a rollback database, each change is effective from the moment of the transaction, but not so for a

historical or a temporal database with the valid clause. In the delete statement in Figure 5-1 for a

historical or a temporal database, if t 1 is earlier than the current time, the change is retroactive from, and if

t 2 is earlier than the current time, the change is retroactive to. If t 1 is later than the current time, the

change is proactive from, and if t 2 is not 'oo' but later than the current time, the change is proactive to.

Thus a change may be retroactive from and proactive to at the same time.

Retroactive changes deal with both current and past versions, and can be handled by following the

steps outlined for each case of the delete and replace statements in the previous section. However,

proactive changes may involve future versions or versions to be expired which require special treatment for

the temporally partitioned store. For a proactive from change, the base tuple is still current for the

moment, but will expire in time. Proactive from append or replace introduces a future version

which will become current some time later. Proactive to replace introduces both a future version and a

version to be expired. A question is how to handle future versions and versions to be expired. It is possible

but expensive to maintain a separate index for future versions, and to monitor constantly which versions

are becoming current or expired. An alternative is to keep future versions and versions to be expired

together with current versions in the current store. When any of those versions is accessed in the course of

query processing, it is possible to determine if it has changed its status from future to current or from

81

current to expired, then move the expired version to the history store.

5.1.4. Key Changes

A key of a relation is a smallest set of attributes whose values uniquely identify a tuple, which

corresponds to an entity in the entity set modeled by the relation. Formally, a key of a snapshot relation r

over schemeR is defined as a subset K of R such that for any distinct tuples t 1 and t 2 in r, t 1 (k),. t 2 (K),

and no proper subset of K has this property [Maier 1985]. Thus a relation in a conventional snapshot

database should not hold two tuples that agree on all the attributes of the key. However, databases with

temporal support, which maintain a sequence of versions for each entity, can contain multiple tuples that

agree on all the attributes of the key. Hence, the definition of the key needs to be extended for databases

with temporal support

A key of a relation r over scheme R in databases with temporal support is a subset K of R such that

for any distinct tuples t 1 and t 2 overlapping in time in r, t 1 (k) ,. t 2 (K), and no proper subset of K has this

property. Two tuples t 1 and t 2 overlap in time if:

• for a rollback relation

t 1 [transaction start] S t 2 [transaction stop] A

t 2 [transaction start] S t 1 [transaction stop]

• for a historical relation

t 1 [valid from] S t 2 [valid to]

12 [valid from] S t dva/id to]

• for a temporal relation

tdvalid from] S t 2 [valid to] A

t 2 [valid from] S t 1 [valid to] A

t 1 [transaction start] S t 2 [transaction stop] A

t 2 [transaction start] S t 1 [transaction stop]

The data definition statement create in both Que! and TQuel does not enforce the concept of the

key, in that it does not specify what attributes constitute a key for a relation. Though the formal semantics

for append defined for TQuel prevents two tuples identical in all the explicit attributes from overlapping

82

in time [Snodgrass 1986], it is still up to discretion of users to observe the key constraint that any new key

value entered into a relation either through append or replace does not overlap with any existing

tuple with the same key value. If append or replace does not insert a new key value overlapping

with any existing tuple with the same key value, update procedures for the temporally partitioned store

described in Section 5.1.2 ensure that there is at most one active version for each key value at any moment,

and thus no two tuples with the same key value overlap in time.

Though the key value identifying an entity is not supposed to change, there are always exceptions,

which cause nasty problems in conventional databases when tracking the history of changed identities.

However the problem can be handled gracefully in the databases with temporal support, where a sequence

of versions for each entity is maintained through physical or virtual links. If the key value of a tuple

changes, a new version with the changed key becomes the current version, and the old version is kept as a

history version. Thus the history of key values is captured in the same way as the history of other attribute .

values. But it may be necessary to rearrange the storage structure for the changed key value, if the storage

structure depends on the key attributes.

5.1.5. Performance

A query is called current or non-temporal if it involves only current data and does not concern

history data. A non-temporal query for a rollback database has the clause as of "now". For a

historical database, a non-temporal query has the clause when (1 1 overlap ... overlap t;)

overlap "now" for all the range variable 11• For a temporal database, a non-temporal query has the

clause when (t 1 overlap ... overlap 11) overlap "now" for all the range variable 11, and the

clause as of "now". Hence it is possible to detennine at compile time if a query is non-temporal.

According to the split criteria discussed in Section 5.1.1, all non-temporal queries can be evaluated

by consulting only the current store without going through the history store. Therefore, maintaining history

versions for temporal support does not affect the performance of conventional non-temporal queries

concerning only current data The only overhead is the extra space to hold implicit time attributes and

possibly a physical link to history versions, which may increase the relation size and hence the cost to scan

the relation when necessary.

83

For a temporal query, it may be necessary to retrieve history versions from the history store. The

basic algorithm accesses the current version first through the primary access path. If the temporal predicate

of the query does not contain a tuple variable, we can determine the interval which satisfies the predicate.

If the interval is found to be a subset of the interval denoted by the time attributes of the current version,

there is no need to access the history store, because members of a version set in the history store do not

overlap in time with the members of the version set in the current store. Otherwise, it is necessary to

follow the chain of history versions through physical or virtual links depending on the format of the history

store. However, many variations are conceivable for the structure of the history store, which greatly

affects the performance of temporal queries. We can organize the history store in such a way that the cost

of accessing the history store can be reduced significantly, as will be discussed next

5.2. Structures of the History Store

The algorithms and the performance for accessing or updating relations with the temporally

partitioned store vary significantly depending on the .format of the history store. This section investigates

various forms of the history store which can enhance the performance for various types of temporal

queries, and analyzes their characteristics. Relative advantages and disadvantages of the various formats

are evaluated to determine the cost of supporting temporal queries. In particular, a new method of hashing

called nonlinear hashing is proposed in Section 5.2.4.2. Note that some formats can be combined together,

though each format is discussed here individually.

5.2.1. Reverse Chaining

If history data are stored as a heap without any access mechanism, each request for a history version

must scan the whole store, which is often impractical. One solution is reverse chaining to link in reverse

order all history versions of each version set starting with the current version. Once the current version is

located in the current store, its predecessors can be retrieved without scanning the whole history store.

For this purpose, each tuple is augmented with an extra field nvp (next version pointer). When a

tuple is first inserted into a relation, it is put into the current store with the field nvp of null. When a tuple is

replaced, the version existing in the current store is moved to some other place as described in Section

5.1.2, then a new version is put into its place with the field nvp pointing to the predecessor just moved.

84

This scheme maintains the chain from the most recent to the oldest, and does not change any of existing

versions in the history store, except for error correction in historical databases. Since the history store in

this scheme works in an append-only mode, it can use write-once media like optical disks. If it is possible

to identify attributes which will remain unchanged, e.g. keys, those attributes may be excluded from history

versions to save space. But unexpected situations such as key changes can cause complications in that

case.

K, 81

K, 86) 1\ K, 83

K, 84

Figure 5-4: Reverse Chaining

For a retrieve operation, the current version is located using any access mechanism available for

the current store. If the query is temporal, the field nvp is exantined. If the pointer is null or the query is

non-temporal, there is no need to go through the history store. Otherwise, all its predecessors can be found

by following the chain of pointers, until a version with the nvp of null is reached.

If the interval represented by the temporal predicate can be evaluated as constant, then the

performance can be improved by exploiting the fact that all versions are ordered in the reverse order.

Instead of following the chain to the end, we can stop traversing history versions when a history version is

retrieved whose interval denoted by its time attributes exceeds the constant interval specified by the

temporal predicate.

The lower bound for the number of block accesses to perform retrieve is : , when there are n

history versions to be retrieved and b is the blocking factor of the history store. This occurs when all

history versions are clustered together in the minimum number of blocks. The upper bound for the same

85

case is n, when no two versions are on the same block.

When a single version set with n history versions is retrieved, the average number of block accesses,

assuming uniform distribution, can be evaluated by the formula given by [Yao 1977A].

Average Block Accesses (n,f, b) = ~ _ L [·-'f-b-i] - t- II .
b i=O f-z

where f is the number of records in the history store, and b is the number of records in a block of the history

store. Note that reverse chaining maintains an ordering among versions belonging to the same version set,

so there is no need to access a block more than once while scanning a chain of versions for a version set

When several version sets are retrieved to process a query, the procedure to access a chain of

versions is repeated for each version set. ln this case, a block which contains versions belonging to several

version sets may be accessed more than once. Hence the number of block accesses can exceed t, which

is the cost to scan the history store sequentially. Let's assume that each version set has m versions, and that

v version sets are retrieved. From the formula (5-1) above, it is possible determine the breakeven point

when repeated traversal of history chains is still better than scanning the history store.

Thus the number of version sets v' to favor repeated traversal of history chains can be calculated

numerically for a given m, the number of versions for each version set

The access path expression for this format is:

[FilePath 1 ; (P n (S 1) (P 1))]

where FilePath 1 is for the current store, and n is the number of history versions. This expression shows

that there is a single chain. The head of the chain is located through a pointer, and the chain has n nodes.

Each of the node is of one record, and is connected to the predecessor by a pointer.

86

5.2.2. Accession Lists

If the length of the chain grows long in reverse chaining, it may be too slow to traverse the chain,

even when only a small portion of the history versions are of interest. An alternative is to maintain

accession lists between the current store and the history store.

""
K,

K, 86 ~~I~IWJ

\ K,

K,

Figure .S-5: Accession List

A tuple is first entered into the current store, with an extra field alp (accession list pointer) of null.

When a new version replaces the current version, the new version is put into the current store with the field

alp pointing to an accession list, which is initialized to point to the history version just inserted into the

history store. If another version is added into the version set, an entry corresponding to the version is also

added into the accession list. Thus the accession list is a full index to history versions for each version set

It is desirable to include some temporal information for each entry in accession lists, so that temporal

predicates can be evaluated without actually accessing history versions. Deciding on the amount of

temporal information to be included into accession lists is a question of space time tradeoff.

For a rollback relation, accession lists may contain both of the attributes transaction start and

transaction stop ifull accession lists). Space can be saved by storing only the transaction start attribute

(partial accession lists) without significant loss of performance, because most version sets are contiguous,

meaning that the value of the transaction stop attribute is the same as the value of the transaction start

attribute of its successor. (Clifford & Warren defined a formal semantics of a historical database based on

the continuity assumption [Clifford & Warren 1983].) Similar arguments apply to a historical relation, with

87

the attributes valid from and valid to instead of the attributes ttansaction start and transaction stop.

For a temporal relation, accession lists may contain up to four time attributes, or some subset of the

four attributes, or only one of the four attributes for each version. If two time attributes are included, the

attributes valid from and transaction start are recommended for the reason of contiguity mentioned above.

If only one time attribute is included, the attribute valid from is favored over the attribute ttansaction start,

assuming that the selectivity of the when clause is smaller than that of the as of clause, which is often

the case. ·

For full accession lists, only those versions that satisfy the given temporal constraints need to be

retrieved from the history store. For partial accession lists, it is not possible to evaluate the temporal

constraints completely. Hence, all versions which can satisfy the constraints based on the partial

information are retrieved from the history store to resolve the missing information. Still, the ratio of false

hits can be significantly reduced compared with the case of no temporal information in accession lists.

Ordering of history versions in accession lists is less critical than reverse chaining, but we still

recommend that they be kept in such an order that allows recent versions to be accessed. more easily.

Hence for a rollback database, versions are maintained in reverse order of transaction start time. For a

rollback database, versions are maintained in reverse order of valid from time. For a temporal database,

versions are maintained in reverse order of valid from time, then in reverse order of transaction start time.

Including temporal information in accession lists is not an overltead, as it may appear to be. When

some time attributes are stored in accession lists as described above, it is not necessary to store the same

information in the history store. History versions do not need an extta field nvp, as in reverse chaining.

Accession lists are also useful to handle future versions resulting from proactive changes. The future

version may be put either in the current or the history store, pointed to by an entty with appropriate

temporal information in accession lists.

Since accession lists are accessed more frequently than history versions, and may be clustered or

reorganized for performance reasons, it is better to keep them on magnetic disks. History versions are

append only, so they may be stored on optical disks.

88

The access path expression for this format is:

[FilePath 1 (P n (P 1))]

meaning that there are n chains. Each chain has one node, which in tum is of one record.

The upper bound for the number of block accesses to retrieve all n records is one bigger than that of

reverse chaining, owing to an extra disk access for accession lists. Since temporal predicates can be

evaluated without accessing the history store, the lower bound for the number of block accesses is just two

including a block access for an accession list. On the average, the number of history versions actually

retrieved will be much smaller than reverse chaining, though its quantification is difficult due to the variety

of temporal predicates.

5.2.3. Indexing

For a snapshot relation, the index is a set of <Value, pointer> pairs where value is a key value and

pointer is the unique identifier or the address of a tuple containing value as. the key. For databases with

temporal support, the index can be extended to include pointers to history versions. Each entry is of the

form <Value, Pc• Ph,• · · · P~o.,>. where Pc points to the current version, and P~o, with 1 ,:;; i ,:;; n points to the

i-th history version.

The index entry can even include some temporal information to evaluate temporal predicates without

actually accessing data tuples. Then the issue of space time tradeoff on the amount of temporal

information discussed above for accession lists similarly apply to this scheme. For example, a temporal

relation may have an index with a pointer and four time attributes for each version, or an index with a

pointer and just one attribute, e.g. valid from, for each version. Figure 5-6 illustrates this scheme, which

can be regarded as a combination of conventional indexing and accession lists described above.

89

Figure S-6: bulexing

Indexing is also useful to handle deleted tuples or future versions. Since history versions have an

independent access path without going through the current store, all deleted tuples can be put into the

history store. The future version may be put either in the current or the history store, pointed to by an

index entry.

Its access path expression is:

[FilePath 1 ; [(S 1 (P 1)) ? , (S n (P 1))]]

Fi/ePath 1 is for the index, which may take any appropriate storage format itself, and n is the number of

history versions. From t.'le index entrj, either t.'le cw-rent or U'ie history store is accessed. If it is not

successful, then the other store is accessed.

Instead of maintaining a pointer for each history version, space can be saved by storing only one

entry for the list of history versions. Then each entry is of the form <value, p., P•>, where Pc points to the

current version. P• may be the starting address of the chain of history versions, or the address of an

accession list for history versions.

A generalization of this scheme is to apply the temporally partitioned structure to the index itself,

maintaining two separate indices, one for the current store and the other for the history store. The benefits

of the temporally partitioned store considered for storing data similarly apply to this temporally partitioned

indexing. By separating current entries from the bulk of history entries, the current index becomes smaller

90

and more manageable, minimizing the overhead of maintaining history versions on non-temporal queries.

The history index can utilize any format developed for the history store to enhance the performance of

temporal queries. For example, the current index may be hashed, while the history index has the format of

accession lists. Then each entry in the current index is of the form <Value, Pc•Ph>, as mentioned above.

In any case, history versions are append only for a rollback or a temporal relation, so they may be stored on

optical disks.

Performance characteristics of the indexing scheme is similar to that of accession lists. The upper

bound for the number of block accesses to retrieve all n records is n, one less than that of accession lists,

without counting the cost to access the mdex itself. The lower bound for the number of block accesses is

just one, without counting the cost to access the index itself. Since temporal predicates can be evaluated by

temporal information included in the index, the number of history versions actually retrieved will be much

smaller than reverse chaining, though its quantification is difficult due to the variety of temporal predicates.

One problem with indexing is that the format of the current store is tied to indexing, while other

schemes allow any format for the current store. Another problem is to handle a query which needs to

access records through non-key attributes. It is necessary to maintain the same ordering for the index and

the current store, so that the current store can be scanned synchronously with the index.

5.2.4. Clustering

One problem with the schemes discussed thus far is that history versions belonging to a version set

are scattered over several blocks. A solution is to cluster all versions of each version set into the minimum

number of blocks (See Figure 5-7). Clustering significantly reduces the number of disk accesses to retrieve

history versions, and thereby improve the performance of temporal queries. However, its update

mechanism is more complicated to maintain clustering while achieving a high degree of storage utilization.

Clustering can be combined with other schemes described earlier, such as reverse chaining, accession lists,

or indexing.

91

K. 81

K. 86 ~-~
,. If~83
f-~- 84"

K, 85

-~- .,.. -- ~-~4
r-----

Figure 5-7: Clustering

If we maintain a pointer from each of the current version to its clustered blocks, its access path

expression is:

[Fi/ePath 1 (P f; l (S b) (P b))]

There are ; blocks to be accessed to retrieve n history versions, where b is the number of records in a

block. Since this scheme requires splitting of blocks when ovedlow occurs, it is not strictly applicable to

optical disks. There are many variations for this scheme, as will be discussed next.

5.2.4.1. Variations

The simplest method is to assign a whole block to each version set with history versions, which

results in unacceptably low storage utilization in most cases. This is a special case of cellular chaining to

be described later, where a cell is a whole block.

A better method is to share the same block for history versions of several version sets. When an

ovedlow occurs, the block is split into two, moving all versions of some selected version sets to a new

block. If all versions in the overfiowed block belong to one version set, a new block is added as a

successor and chained to the original block. In this scheme, ; blocks need to be accessed to retrieve n

history versions, where b is the number of records in a block.

92

In the temporally partitioned storage structure, there needs to be a link between the current version

and its history versions to avoid scanning the whole history store. The link may be either physical or

virtual. A physical link is a pointer physically stored as an implicit attribute of the current version. If some

history versions are moved to other location as a result of an overllow, physical pointers in the current store

pointing to those versions need to be adjusted accordingly. It is better to move the version set that has

caused the overflow in this case, because it is easier to identify the version in the current store which

corresponds to the versions being moved in the history store. If it is still necessary to move or compact

other versions remaining in the original block, history versions need to maintain back pointers to the

corresponding versions in the current store to adjust their pointers.

A virtual link is a conceptual link implied by some structural information. For example, history

versions can be hashed on the primary key so that all versions belonging to a version set are put into one

block or its overflow blocks. But the performance of conventional hashing with reasonable storage

utilization deteriorates rapidly, as will be discussed further in Chapter 6, if there are excessive key

collisions causing long overllow chains.

One way to resolve this problem is to introduce a scatter table between the current store and the

history store, which can serve as a combination of the physical link and the virtual link [Morris 1968]. A

scatter table may have the form of an index or a directory. Each entry in a scatter table corresponds to a

value hashed from the primary key of tuples in the current store, and holds a pointer to a block in the

history store. When an overllow occurs to a block in the history state, the block is split into two according

to a hash function which generates a sequence of different values for each occurrence of overllows. Then a

new entry pointing to the new block is added to a scatter table. A scatter table plays a similar role to

accession lists, but an entry in a scatter table is shared by several synonymous tuples through a hash

function, while an accession list is only for one tuple through a physical link.

Actual implementation of this scheme using a scatter table may adopt one of variable size hashing

methods based on an index or a directory which can accommodate dynamic growth of a file by splitting a

block upon overllow. Examples of such methods are dynamic hashing, eXJendible hashing, and grid files,

where an index or a directory can be regarded as a scatter table described above.

93

Dynamic hashing [Larson 1978] maintains an index on hashed keys, where each entry of the index is

a pointer to a disk block. Whenever an overflow occurs in a disk block. the block is split into two, and the

corresponding index entry is also split into two. The index entries form a forest of binary trees while

undergoing a sequence of overflows.

Extendible hashing [Fagin et a!. 1979] maintains a directory of 2d entries on hashed keys, where dis

the directory depth. Several directory entries may share the same disk block, but about half of those entries

are changed to point to a new block when an overflow occurs to the block and causes a split. The directory

is doubled when the number of overflows for a block exceeds the directory depth.

Grid files [Nievergelt eta!. 1984] of one dimension can also be used here by maintaining a directory

on the hash values of keys. The directory consists of a linear scale and a grid array. Each element of the

grid array holds a pointer to a data block. When an overflows occurs to a block, the block is split by adding

a new block. If the overflowed block is shared by more than one grid array elements, one of the elements

is changed to point to the new block. Otherwise, one of the intervals denoted by the linear scale is split by

adding a new entry, and all the elements of the grid array corresponding to the split interval are also split to

accommodate the new block.

All three methods make it possible to retrieve a record at the cost of one block access by locating the

index or directory entry for a given key, assuming that the index or the directory is small enough to reside

in the main memory. If the index or the directory does not fit into the main memory, one additional disk

access is necessary.

There are other variable size hashing methods which can accommodate dynamic growth of the file

without maintaining an index or a directory. They are virtual hashing, linear hashing, and modified

dynamic hashing. Virtual hashing [Litwin 1978] doubles the whole file when an overflow occurs, and

modifies the hash function for a block which had an overflow. It needs to maintain a bit map to indicate

whether each bucket had an overflow or not, and suffers from low storage utilization.

Linear hashing [Litwin 1980] splits a block when an overflow occurs. But the block being split is not

the one which had an overflow, but the one marked by the split pointer which increases one by one from

the initial value of 0. The record which caused an overflow to a block is put into an overflow block chained

to the original block, until the split pointer reaches the original block and splits all records in the chain of

94

the original and the overfiow blocks. Though linear hashing extends the file size by one block at a time

while maintaining only the split pointer, it still depends on overfiow chains which degrade the overall

performance.

Linear hashing with partial expansions [Larson 1980] is similar to linear hashing, except that two or

more blocks are grouped together in adding a new block upon an overfiow. It can improve storage

utilization while exhibiting comparable performance. Another way to improve storage utilization is to

defer splitting until a certain storage utilization is achieved (controlled split).

Modilied dynamic hashing [Kawagoe 1985] attaches a logical address to each block in addition to a

physical address. When an overfiow occurs to a block, the block is split into two, and the logical address

of the block is stored into a lisl At the same time, all logical addresses equal to or smaller than that of the

split block are changed. This method can locate a block for a given key at the cost of one block access, but

needs to maintain a logical address for each block.

5.2.4.2. Nonlinear Hashing

As an improvement over these hashing methods which achieve the effect of clustering for each

version set, a new method of hashing termed nonlinear hashing is proposed. Its objective is to retrieve

records at the cost of exactly one block access, even when the file size grows or shrinks dynamically. It

maintains a list of overfiow addresses, called overflow list. Since the overfiow list stores an address only

when an overfiow occurs, it is smaller than a directory or an index which maintains the addresses of all the

buckets, and is expected to fit into the main memory. If the size of the overfiow list grows too big, it is

possible to reduce its size by reorganization.

Nonlinear hashing is similar to linear hashing in that it need not maintain the addresses of all the

buckets. But it is better than linear hashing, because it splits an overfiowed block, not a block selected in a

linear order (hence the name nonlinear hashing).

In nonlinear hashing, each record is hashed on the primary key through a hash function h 0 first,

whose range is {1, 2, ... , n 0} where n 0 is the size of history blocks initially allocated. If a record needs to

be inserted into a block which does not have enough free space, an overfiow occurs. When an overfiow

occurs, a new block is appended to the end of the file. Then the overfiowed block is split into two by

95

rehashing records in the block through a splitfllllction s,, i > 0, where i, termed the order of overftow for

the block, is the number of overfiows that had occurred on the way to locate the block including the latest

one. The split function s, has the range of {0, 1}, and detennines whether a record stays in the original

block or is moved to the new block. Hence, the hash function h 0 and the split functions s1 should satisfy

·the constraints:

h 0 :K~{1,2, ... ,n 0}

s,: K ~ {0, 1} fori> 0

where K is an arbitrary key, and n0 is the initial file size in blocks.

At this time, the address of the overdowed block is stored into a list, called the overflow list, which is

initially empty. The overflow list is simply a list of addresses where overllows occurred, but it also

represents information on the order of overllow for a block, and where a new block was added upon an

overfiow. Such information maintained by the overllow list is in fact sufficient to retrieve a record at the

cost of exactly one block access, given the key of the record.

To determine the address of the block for a given key K, h0 is first applied to K. If h0 (K)= b0,

where 1 :5 b 0 :5 n 0 , b 0 is called the initial address. If b 0 is not an active member of the overllow list, it

becomes the final address of the block for K. Otherwise, determine the position p 0 of b 0 in the overllow

list, and temporarily deactivate b 0 from the list Then depending on whether s 1 (K) is 0 or 1, the next

intermediate address b 1 becomes b 0 or n 0 + p 0 , respectively. Now if b 1 is not an active member in the

overllow list, it becomes the final address of the block for K. If b 1 is again an active member of the

overfiow list, then repeat the steps similat to those for the case of b 0 being a member of the overftow list,

except that each subscript of p 0, b 0, s" b 1 is incremented by 1 respectively on each iteration. Note that the

subscripts ate detennined by the order of overllows for the block in question, which is the number of

overfiows which had occurred along the path to the block. The final address of the block for K is

determined when b; for some i is found not to be an active member of the overfiow list. At that moment,

all inactive members of the overftow list ate reactivated.

Once the final address of the block for K is determined, retrieving a record with such a key needs

only to seateh the corresponding block. Whether the seateh is successful or not, its cost is just one block

access, assuming that the overfiow list can be kept in main memory. Thus the access path expression is

96

simply:

[FilePath 1 ; (H 1)]

To insert a record with a key K, the block at the final address for the key is checked if it has enough

free space to receive the record. If so, the record is simply put into the block. Otherwise, a new block is

appended to the end of the file, the original block is split into two, and the address of the original block is

added to the overllow list, as mentioned earlier. The cost of an insertion is one or two block accesses

depending on whether it involves an overflow.

A series of insertions into a file, whose initial size n0 is 3, will illustrate how nonlinear hashing

handles insertions. A sample hash function h 0 and the split functions s, to satisfy the constraints of

nonlinear hashing are:

h0 (K)= K mod n 0 + 1

K
s, (K) = .

1
mod 2

n0 x2'-

Some of the split functions for n 0 = 3 are:

K
st(K)= 3mod2

K
s 2 (K)=

3
x

2
mod2

K
s 3 (K)= --

2
mod2

3X2

fori> 0

Let's assume that each block can hold up to three records, and call a record with n as the key simply

record n. If records 12, 29, 10, 30, 16, 25 are inserted in sequence, the file looks like Figure 5-8 (a). Thus

far, the overflow list is null.

lul8b
LJ~lJ

Overfiow List
<>

(a) after inserting 12, 29, 10, 30, 16, 25

lult-:lb
LJLJlJ
t-:l
LJ Overfiow List

<2>

(b) after inserting 19

Figure S-8: Insertions in Nonlinear Hashing

97

To insert record 19 next, h 0 (19) = 19 mod 3 + 1 = 2. Since block 2 is already full, an overfiow

occurs. So a new block is appended as block 4, and records 10, 16, 25 are rehashed through s 1• Since

s 1 (25) = 0 and s 1 (10) = s 1 (16) = 1, record 25 stays in the original block 2, and records 10 and 16 are

moved to the new block 4. The new record 19 is now put into block 2, since s 1 (19) = 0. The file now

looks like Figure 5·8 (b), and the overfiow list becomes <2>. Note that the line between block 2 and block

4 is only conceptual, and does not denote any physical link.

For record 13, h 0 (13) = 2. But there is the address 2 at the position 1 of the overfiow list, which is

now temporarily deactivated. Since s 1 (13) = 0, its next intermediate address is still2. There is no active

member with the address 2 in the overfiow list, so the final address for record 13 is 1. The record is put

into block 2, and the member 2 of the overfiow list is reactivated.

To insert record 28, h 0 (28) = 2. Since block 2 is at the position 1 of the overfiow list, and

s 1 (28) = 1, its next intermediate address is n 0 + p 0 = 3 + 1 = 4. There is no member with address 4 in the

overfiow list, so the final address for record 28 is 4. Figure 5·9 (a) shows the current status of the file.

Overllow List:
<2>

(a) after inserting 13, 28

4 . 5 .

w ~ Overflow List:

~ LJ <2,2>

(b) after inserting 31

Figure S-9: Insertions in Nonlinear Hashing

98

To insert record 31, h 0 (31) = 2. But there is the address .2 at the position 1 of the overllow list,

which is now temporarily deactivated. Since s 1 (31) = 0, its next intermediate address is still 2. There is

no more active member with address 2 in the overllow list, so the final address for record 31 is 2. But

block 2 is already full. Thus a new block is appended as block 5, and records 25, 19, 13 are rehashed

through s 2• Since s 2 (25) = s 2 (13) = 0 and s 1 (19) = 1, records 25 and 13 stay in the original block 2, and

record 19 is moved to the new block 5. The new record 31 is now put into block 5, since s 2 (31) = 1. The

file now looks like Figure 5-9 (b), and the overflow list is <2, 2>.

If we insert record 22 next, ho (22) = 2. Since block 2 is at the position 1 of the overllow list, and

s 1 (28) = 1, its next intermediate address is n 0 + p 0 = 3 + 1 =4. There is no member with address 4 in the

overllow list, so the final address for record 28 is 4. But block 4 is already full, so a new block is appended

as block 6, and records 10, 16, 28 are rehashed through s 2• Since s 2 (16) = s2 (28) = 0 and s 2 (10) = 1,

records 16 and 28 stay in the original block, and record 10 is moved to the new block. The new record 22

is put into block 6, since s 2 (22) = 1, and the overllow list now becomes <2, 2, 4>. Inserting records 22, 34

and 49 next results in Figure 5-10 (a).

~hilb
LJ~LJ

t-:lt-:l
LJLJ

6rn 2
4 Overflow Lise

<2, 2,4>

(a) after inserting 22, 34, 49

~t-::lb
LJLJLJ . .

t-:lt-:lt-:l
LJLJLJ

600.
2
4

Overflow List:
<2,2,4,2>

(b) after inserting 37

Figure 5-10: Insertions in Nonlinear Hashing

99

To insert record 37 as a final example, h 0 (37) = 2. There is the address 2 at the position 1 of the

overflow list, which is now temporarily deactivated. Since s 1 (37) = 0, the next intermediate address is 2.

But there is still the address 2 at the position 2 of the overflow list, which is also temporarily deactivated.

Now s 2 (37) = 0, so the next intermediate address is still 2. Block 2 is no longer an active member of the

overflow list, so the final address becomes block 2. Since block 2 is already full, a new block is appended

as block 7, and records 25, 13, 49 are rehashed through s 3• Since s 3 (25) = s 3 (49) = 0 and s 3 (13) = 1,

records 25 and 49 stay in the original block, and record 13 is moved to the new block. The new record 37

is put into the new block, since s 3 (37) = 1. The result is Figure 5-10 (b), and the overfiow list now

becomes <2, 2, 4, 2>.

Now we define some tenninology for nonlinear hashing. When an overflow occurs to a block, and a

new block is added as a result, we call the original block the parent block, and call the new one the child

block. Children with the same parent are called siblings, and a block without a child is called a leaf

100

The order of overflow for a block is the number of overflows that had occurred along the path to

locate a record in the block. It is identical to the order of the split function to be used to determine the final

address of a record in the block. Now the order of a block can be defined as the number of blocks

corresponding to its ancestors, its older siblings, and its own children.

In Figure 5-10 (b), for example, block 2 is the parent of blocks 4, 5 and 7. The order of blocks 1 and

3 is 0. Block 2 has 3 children, so its order is 3. Block 4 has one ancestor and one child, so its order is 2.

The order of block 5 and 6 is also 2, since the former has an ancestor and an older sibling, while the latter

has two ancestors. Block 7 has an ancestor and two older siblings, so its order is 3.

The children of a block can be found by locating all occurrences of the block number in the overflow

list. If the block number is found at a position p, of the overflow list, the address of the child block

corresponding to the position is n 0 + p,, where n 0 is the initial file size. Block 2 in Figure 5-10 (b) occurs

at positions I, 2 and 4 of the overflow list. Since n0 = 3, the children of block 2 are blocks 4, 5 and 7.

The parent[; of a block b; can also be determined from the overflow list.

{

none
[; = OL [b;- n0]

ifb,<no

otherwise

where OL [k] denotes the k-th member of the overflow list. The parent of block 6 in Figure 5-10 (b) is

block 4, since OL [6 - n ol = OL [3] = 4.

It is also possible to delete a record, and merge two blocks into one if space permits. To delete a

record with a key K, the block at the final address is retrieved 1f there is no such record, the request fails.

Otherwise, such a record is removed from the block. At this moment, we can check the possibility of

merging the block with its parent or its child.

If a block is both a leaf and the youngest sibling, and if space permits, then the block can be merged

easily into its parent block. This happens when a record is deleted from a parent block whose youngest

child is a leaf, or when a record is deleted from a block which is both the leaf and the youngest child. In

this case, the address of the parent block is removed from the overflow list, and the addresses of blocks

added after the child block are decremented by one each.

101

For example, deleting records 16 and 28 from Figure 5-10 (b) results in Figure 5-11 (a). Since block

6 is a leaf and the youngest (only) sibling of block 4, we can merge block 6 into block 4, as shown in

Figure 5-11 (b). Note that we do not merge block 4 with block 2, though they are also in a parent child

relationship.

1 2 3 1 2

0 0 0 9 G 0 0 0 9
29

000
4 5 .

00 13
31 37 31 37 34

rn 2 Overfiow List Overfiow List 4 <2, 2,4, 2> <2, 2, 2>

(a) after deleting 16, 28 (b) after merging

Figure 5-11: Deletions in Nonlinear Hashing

Merging a block which is not the youngest child or not a leaf is more complex. For example,

deleting records 10 and 34 from Figure 5-11 (b) resnlts in Figure 5-12 (a). Block 4, which is not the

youngest child, can be merged into block 2, moving record 22 to the parent block. But we can't remove

the address 2 from the position 1 of the overfiow list, because it contains information on the orders of split

functions for its younger siblings. Thus we mark such an address by negating it. Note that we have used

the scheme in which the address counts from 1, not 0. Now the file and the overfiow list look like Figure

5-12 (b).

~t-:lb
LJLJlJ . .

bl:l~
lJLJLJ

Overfiow Lise
<2, 2, 2>

(a) after deleting 10, 34

~
LJ

2rn 9
2 G

00
Overllow Lise

<-2, 2, 2>

(b) after merging

Figure S-12: Deletions in Nonlinear Hashing

102

Merging a block which is the youngest child but not a leaf follows the same procedures. A negative

member, e.g. -j, of the overfiow list represents that there had been an overfiow on block j, but the child

block, which is not both a leaf and the youngest child, was later merged back into block j. Such a member

participates in determining the order of overfiows, but is not counted in determining the position of an

overfiow. If block j is an initial or an intermediate address for a key, and the next intermediate address is

its child block, thenj is the final address for the key. Note that record 22 in Figure 5-12 (b) should not be

rehashed to a new child block, even when another overfiow occurs to block 2. Detailed algorithms to

retrieve, insert, and delete a record in nonlinear hashing are given in Appendix B.

The size of each enlly is dependent on the the total size of a file. For a file with up to about 32,7 67

blocks, each enlly takes 2 bytes. An enlly of 4 bytes can handle up to about 2X109 blocks, which is about

Sx1012 = 8 Tera bytes for the block size of 4,096. But the size of the overfiow list depends on the number

of overfiows, not the size of the whole file. Hence the overfiow list is small enough to fit into the main

memory for most applications. For example, the size of the overllow list is only 32 K bytes for a file of

128 Mega bytes, assuming that a block holds 4 K bytes, the initial size was 16,000 blocks, and there were

16,000 overfiows. With the overfiow list of 256 K bytes, about 65,000 overfiow blocks, or 256 Mega bytes

103

of overflow blocks, can be supported.

Nonlinear hashing needs to maintain two kinds of information. One is the address of each block

which had an overflow, and the other is the occurrence number for each overflow. The over:llow list

represents such information compactly as a sequential list. Scanning the list to determine the final address

of a key is not too expensive either, even when there were many overflows. If we assume that the average

order of overflows is d, and that there are m entries in the over:llow list, the number of entries to be

examined appears to be 0 (d x m). However, the maximum number of entries to be examined is just m.

Since the over:llow list is maintained in the order of overflow occurrences, and no child block gets

overflowed before its parent, no entry for a child block is ahead of the entry for its parent block in the

overflow list. Thus we need to scan the overflow list only once, no matter what the order of overflows is.

The same information can be represented in the form of the overflow set, which is a set of [address,

position] pairs. The first element address is the address of a block which had an overflow. There are two

alternatives for the format of the second element position. First, position can be a list of numbers to

represent the positions of the address in the overflow list Then the overflow set for Figure 5-10 (b) is {[2,

(1, 2, 4)], [4, (3)]}. The second alternative is that position is a single position number for the address, and

there are as many entries for each address as there are overflows on the address. Then the overflow set for

Figure 5-10 (b) becomes {[2, 1], [2, 2], [2, 4], [4, 3]}. Comparing the two alternatives, the first has to

maintain a variable length list for each address, while the second repeats some addresses multiple times.

In either case, the overflow set takes more space than the overflow list But it is possible to store the

overflow set in a randomly accessible format Hence the number of entries to be examined for determining

the final address of a key is reduced to 0 (d). Various methods of hashing are obvious candidates for this

purpose, and nonlinear hashing itself can be applied to maintain the overflow set using the address as the

key (termed nested nonlinear hashing). If the overflow set does not fit into the main memory, the overflow

set has to reside on the disk, but the overfiow set of the overflow set will be small enough to stay in the

main memory.

For example, an over:llow list of 20 K bytes can support 10,000 overflow blocks, each of which has

512 entries, assuming that the second alternative above is used with the block size of 4 K bytes. Thus we

can support about 5x106 overflow blocks, or a file of 2x1010 = 20 Giga bytes. In this case, the average

104

number of disk accesses to retrieve a record given a key is d + 1, where d is the average order of

overflows.

We can detennine the average storage utilization for nonlinear hashing from the analysis result of the

extendible hashing [Fagin et al. 1979). Assuming uniform distribution of keys, the average number of

blocks to store n records is m :In
2

, when a block holds up to m records. Since the minimum number of

blocks to store n records is.!!., the average storage utilization is In 2 = 69.3%.
m

Now the average number of overflow blocks is m :In
2

-no. where n 0 is the initial size of the file.

Then the average order of overfiow is log2 [m xn In
2

n0], assuming uniform distribution.

If the size of overflow list grows big enough to degrade the performance, it is possible to reduce or

even eliminare the overflow list through reorganization, using a new hash function h 0 with a larger n0•

Nonlinear hashing combined with periodic reorganization can provide excellent performance

characteristics with high storage utilization.

As discussed thus far, nonlinear hashing handles dynamic growth and shrinkage of a file through

splitting and merging of data blocks. Compared with other variable size hashing methods, it has the

advantage of retrieving a record at the cost of exactly one block access, whether successful or not, simply

by maintaining the overflow list in main memory.

One problem is the case when a split function fails to divide records of an overfiowed block into two

groups, e.g. when all records have the same key. In that case, we need to maintain a chain of overfiow

blocks. But accessing the chain of overfiow blocks sequentially is not wastt!ful, because data records were

already clustered, and it is usually necessary to retrieve all records belonging to a version set anyhow.

It is conceivable to use time attributes as a part of a key, but there are serious problems with this

approach. A time attribute alone cannot be used as a key in most applications. Including time attributes in

a key results in a multi-attribute key, which complicates the maintenance of the key. Even though time

attributes are maintained as a part of a key, it is difficult to make a point query (exact match query), which

requires a single point in time to be specified as a predicate, especially when the resolution of time values is

lOS

fine. Hence, we should be able to support a range query on time attributes, which is not possible with some

access methods, e.g., hashing. Access methods such as grid files [Nievergelt et al. 1984] and K-D-B trees

[Robinson 1981] can support a multi-attribute key and range queries better, but there is an overhead to

maintain the necessary structures.

5.2.5. Stacking

Stacking is a two dimensional implementation of a conceptual cube where all the version sets have

an equal number of versions. This is useful when we are interested in the fixed number of most recent

versions, where updates are rather periodic and uniformly distributed For example, Postgres stores history

data, but discards data older than a specified amount of time [Stonebraker 1986].

When the first history version is put into the history store for a version set, space for d versions is

allocated, where dis termed the depth of stacking. Subsequent versions are put into the remaining portion

of the allocated space. Mter the predetermined limit d to the number of versions is reached, the next

version is put into the place of the oldest version, which becomes lost as if being pushed through the

bottom of a stack.

~ -':1.------1'·
-~------'1!

~ - ------ ,!•_ --------

Figure 5-13: Stacking (depth d = 3)

This scheme is not strictly applicable to optical disks, since it assumes rewriting of existing data. Its

access path expression is:

106

[Fi/ePath 1 (P d)]

where FilePath 1 is for the current store, and dis the allocated depth of a stack.

Since the number of history versions to be maintained is predetennined, it is simple to cluster all

versions belonging to a version set. Thus, the number of block accesses for retrieving n history versions is

just one. Storage utilization is ; with the maximum of 100%, where u is the update count. Increasing the

depth d enables a larger number of versions to be maintained, but storage utilization can be as low as ! .
The data being replaced by newer versions may not actually be lost, but can be archived to a lower level

storage. Another interesting possibility is to organize the current store as a shallow stack, a stack with a

small d, then store overfiow data into the history store which may use any of the formats discussed in this

section.

5.2.6. Cellular Chaining

Cellular chaining is similar to reverse chaining, but attempts to improve the performance by

collecting several versions into one cell. The current version initially has an extra field nvp (next version

pointer) of null. When the first version is inserted into the history store for a version set, a cell is allocated

with the size of c 2: 1 in the history store. The field nvp of the current version now points to the cell, and

subsequent versions will be put into the remaining space of the cell. If this space is filled up, another cell is

allocated and chained to the predecessor cell.

Its access path expression is:

[FilePath 1 ; (P r; 1 (S c) (I? c))]

where n is the number of history versions, and c is the cell size in records. Since the history store operates

in the append only mode, this scheme can use optical disks as well.

107

-~ - - - - - - i;-

!\
.c;--------g,

)
., ______ ,!"_

Figure 5-14: Cellular Chaining (cell size c = 3)

This can be regarded as a combination of reverse chaining and stacking. It also has the benefit of the

clustering scheme, in that the number of blocks to be accessed is reduced as many as c times. The lower

bound for the number of block accesses in retrieving n history versions is ; , where b is the blocking factor

of the history store. The upper bound for the same case is .!!,. , where c is the cell size of the history store.
c

Thus increasing the cell size c improves the performance.

But a larger cell size tends to lower storage utilization. If the number of version sets are uniformly

distributed, expected storage utilization can be calculated as:

c

E (Storage Utilization) = (.!_ + ~ + · · · + .E.) X .!_ =
c c c c

l;i
i=! c + 1
7 = "2c""""

This shows that the average storage utilization is 100% for c = 1, which is the same as reverse chaining,

ignoring the partially filled block at the end of the history store But the storage utilization falls to about

50% for a reasonably large c. It is possible to improve storage utilization by adjusting the cell size

dynamically. The size of the cell can be increased linearly. For example, the first cell of each version set

has the size of one, but each time a new cell is allocated for one version set, the cell size increases by one.

Or the cell size may be multiplied by some factor, whenever a new cell is allocated for one version set

c:

108

5.3. Secondary Indexing

Perfonnance of queries retrieving records through non-key attributes can be improved significantly

by secondary indexing. This section discusses the types and the structures of secondary indices for

databases with temporal support.

5.3.1. Types of Secondary Indices

For a snapshot relation, a secondary index is a set of <value, pointer> pairs, where value is a

secondary key and pointer is the unique identifier or the address of the corresponding tuple. Since the

value is not expected to be unique, there may be several entries for a single value. There will be more

entries for each value in a secondary index for a relation with temporal support, because it maintains

history versions in addition to current data. A typical query retrieves only a small subset of all the versions

for a given value, but temporal predicates to detennine which versions satisfy the query can be evaluated

only after accessing the data themselves. The number of false hits can be reduced if some or all of

temporal information is also maintained in a secondary index. Therefore, extension of the conventional

secondary index is desirable for each type of databases with temporal support.

For a rollback database, a secondary index itself can be a rollback relation augmented with attributes

transaction start and transaction stop. Then each index entry is a quadruple <Value. pointer. transaction

start. transaction stop>. There is the overhead of 8 bytes for each entry, but the as of clause can be

evaluated from the information in the secondary index. Only the tuples satisfying the as of clause need

to be retrieved, significantly enhancing the performance. If the version sets are contiguous or nearly

contiguous, storing only the transaction start attribute can save space without significant loss of

performance. The same argument applies to a historical database, when the valid clause is substituted

for the as of clause, and the attributes valid from and valid to are used instead of the attributes

transaction start and transaction stop.

For a temporal database, a secondary index may be a rollback relation, a historical relation, or a

temporal relation itself. If the index is a rollback relation, the as o:f clause can be evaluated from the

information in the -index. Then those versions that satisfy the as o:f clause are retrieved from the current

or the history store to resolve the valid predicate. If the index is a historical relation, those tuples that

' ' t
I
' • '

109

fail the valid clause need not be accessed to resolve the as of predicate. If the index is itself a

temporal relation, each index entry is a sextuple <value, pointer, valid from, valid to,

transaction start, transaction stop>. There is the overhead of 16 bytes for each entry,

but temporal predicates of the valid and the as of clauses can be evaluated completely from the

information in the secondary index. It is also possible to store some subsets of the four time attributes, e.g.

valid from and transaction start, or only one of the two. Storing only a subset saves space, but the number

of false hits will increase.

Snapshot Rollback Historical Temporal

Snapshot Database " Rollback Database " "
Historical Database " " Temporal Database " " " "

Figure 5-15: Types of Secondary Indices for Each Type of Databases

The type of secondary indices available for each type of databases is summarized in the Figure 5-15.

Deciding which type of secon(ruy index to use for a database with temporal support is a typical question of

space time tradeoff.

5.3.2. Structures of Secondary Indices

The size of databases with te•:1poral support is monotonically increasing, and so is the size of

secondary indices for such databases. F~r a large relation especially with temporal support, its secondary

index becomes so large that it is important to design a suitable structure which can reduce the access cost

for the index. Any conventional storage structures such as heap, hashing, !SAM, etc. can be used, but care

should be taken for non-temporal queries so that the cost of using the index does not overwhelm the

savings achieved from the temporally partitioned store.

110

Instead of storing all index entries for all the versions into a single file, the index itself can be

maintained as a temporally partitioned structure having the current index for current data and the history

index for history data. The benefits of the temporally partitioned store considered for storing data similarly

apply to secondary indices with the temporally partitioned structure. By separating current entries from the

bulk of history entries, the current index becomes smaller and more manageable, minimizing the overhead

of maintaining history versions on non-temporal queries. The history index can utilize any format

developed for the history store to enhance the performance of temporal queries. For example, the current

index may be hashed, while the history index is cellularly chained. Performance comparisons of various

structures for secondary indices will be given in Chapter 7.

5.4. Attribute Versioning

The discussion thus far has implicitly assumed tuple versioning which maintains multiple versions

for updated tuples. The other alternative is attribute versioning to maintain versions for each attribute

[Clifford & Tansel1985, Gadia & Vaishnav 1985].

In tuple versioning, each tuple is augmented. with time attributes specifying the period while the tuple

is in effect The number and kind of time attributes vary depending on the type of the relation, and whether

the relation models an interval or an event. For simplicity of presentation, we will denote the time

attributes as [time Jrom, time _to). When a tuple is first inserted, the time _to component of the interval is

set to ·~·, indicating that the tuple is currently valid. A delete operation on an existing tuple changes

the time _to component of the tuple from 'oo' to some t 1• The value oft 1 is usually the current time, but it

can be specified explicitly by the delete statement for a historical database. For a replace operation,

a new version of the tuple augmented with an appropriate interval is inserted after a virtual delete

operation is executed as above.

For example, an Employee relation in a historical database may look like Figure 5-16, showing 4

versions for "John" who received a series of promotions, and a version for "Tom" who quit. An obvious

drawback with this approach is the high degree of redundancy owing to duplication of an entire tuple,

especially when the changed portion is relatively small compared with the unchanged portion.

111

Name Title Salary [time from, time to)

John Programmer 25 [Jun_l!l, Sep 82)
John Programmer 30 [Sep 82, Mar 83)
John Manager 30 [Mar 83, Dec 84)
John Manager 35 [Dec 84, oo)
Tom Programmer 27 [Sep 83, Jun 84)

Figure 5-16: A Relation in Tuple Versioning

In attribute versioning, an attribute is either static or dynamic, depending on whether its value

changes over time. Static attributes, e.g. Name in Figure 5-17, are constant and simple-valued. On the

other hand, each dynamic attribute of a tuple is a set of <value. interval> pairs, where handling of the

interval [time .from, time _to) is similar to tuple versioning except that the interval is associated with each

version of an attribute value. When a tuple is first appended, the time _to component of the interval for

each attribute value is set to 'oo'. A delete operation on an existing tuple changes the time _to

component for each of the current version of dynamic attributes in the tuple from 'oo' to some t 1, as

described for tuple versioning. Append and delete operate on the whole tuple, but the resolution of

replace is the attribute. For a replace operation, new versions of the changed attributes are inserted

with the appropriate time attributes after the delete operation is executed on the affected attributes.

Thus a tuple in attribute versioning corresponds to a version set in tuple versioning. This results in a non

first normal form relation [J aeschke & Sebek 1982]. One restriction on attribute versioning is that the time

interval associated with each attribute should be the same for all attributes in a tuple (homogeneity

requirement [Gadia & Vaishnav 1985]). The remainder of this section describes how to convert one form

to the other, compares storage requirements, and discusses how to support attribute versioning with the

temporally partitioned storage structure.

5.4.1. Conversion

Attribute versioning and tuple versioning are equivalent in terms of their information contents, which

can be proved by induction on the number of updates. Therefore, it is possible to derive one form from the

other. One can convert a relation in tuple versioning to one in attribute versioning by following the

description above for insert, delete and replace operations. Figure 5-17 is the result of

converting the relation in Figure 5-16 to attribute versioning.

112

Name Title Salary
John Programmer [Jun 81, Mar 83) 25 [Jun 81, Sep 82)

Manager [Mar83, ~) 30 [Sep 82, Dec 84)
35 [Dec 84, oo)

Tom Programmer [Sep 83, Jun 84) 27 [Sep 83, Jun 84)

Figure 5-17: A Relation in Attribute Versioning

Conversion of a relation from attribute versioning to tuple versioning can be formalized by two

operations, UNNEST and SnlCH, disregarding computational efficiency. The UNNEST operation was

first introduced by J aeschke and Sebek to transform a non first normal form relation to a first normal form

relation [Jaeschke & Sebek 1982], and later adopted as the UNPACK operation for a historical relation

[Clifford & Tansel 1985, Ozsoyoglu et a!. 1985]. Let rA (R} be a relation over scheme R in attribute

versioning. Let P e R be a particular attribute, and Cp = R- {P} be the remaining attributes. Then the

TJNNEST operation on the attribute P for r A is:

UNNEST p (rA) = U (UNNEST p (roman {t }))
rer"

where

{

{ t } if Pis static (simple-valued)
T.lNNEST P ({I})= { t' 1 t'[P] e t [P] A t'[Cp] = t [Cp] } otherwise

Note that the result of an UNNEST operation is a relation preserving the same relation scheme. Applying

the UNNEST operation to all attributes of a relation results in a relation in first normal form.

Name Title Salary
John Programmer [Jun lSI, Mar lSj) 25 [Jun lS 1, :sep lS:l)

30 [Sep 82, Dec 84)
35 [Dec 84, oo)

John Manager [Mar 83, oo) 25 [Jun 81, Sep 82)
30 [Sep 82, Dec 84)
35 [Dec 84, oo)

Tom Programmer [Sep 83, oo) 27 [Sep 83, oo)

Figure 5-18: Partial TJNNEST'ing of A Relation with Attribute Versions

For example, UNNEST N (Employee) on the relation in Figure 5-17 returns the same relation, but

113

UNNEST Titl< (UNNEST Name (Employee)) results in the relation in Figure 5-18. Note that Figure 5-17

shows 2 tuples, one each for "John" and "Tom", but Figure 5-18 shows 3 tuples, one more for "John".

Repeating the UNNEST operation on each dynamic attribute of a relation results in a relation in first

normal form. For example, UNNESTsalary (UNNESTn11• (UNNESTN..,. (Employee))) obtains a fully

unnested relation as shown in Figure 5-19, which shows 7 tuples, four more for "John".

Name Title Salary
John Programmer [Jun ~ 1, Mar 83) 25 [Jun 81, Sep 82)
John Programmer [Jun 81, Mar 83) 30 [Sep 82, Dec 84)
John Programmer [Jun 81, Mar 83) 35 [Dec 84, oo)
John Manager [Mar83, oo) 25 [Jun 81, Sep 82)
John Manager [Mar 83, oo) 30 [Sep 82, Dec 84)
John Manager [Mar83, oo) 35 [Dec 84, oo)
Tom Programmer [Sep 83, Jun 84) 27 [Sep 83, Jun 84)

Figure 5-19: Full UNNEST' ing of the Relation in Figure 5-17

Another way to obtain a relation in first normal form is to apply, for each tuple, a series of cartesian

products of unary relations, each of which is an attribute of the tuple. Let t e r A, A i e R, a,; =

{p I p = t [A;]}, 1 ~i~n, andn =Degree (R}, then

= U (a,,1 x a,;J. · · · x a,_.)
fETot

In order to obtain a relation in tuple versioning, the result of a series of UNNEST operations needs to

be processed by the SYNCH operation. The SYNCH operation on a tuple in the unnested form detennines

the largest interval during which all the attribute values of the tuple are in effect. A tuple which gives the

null interval upon the SYNCH operation may be removed. Let ru be a relation unnested from rA in

attribute versioning, both over the same relation scheme R. Let further t e ru, A; e R, 1 :s; i S n, n =

Degree (R}, and t [A;]= <V;, [timeJrom,,time_to;)>. Then

where

{

[tJrom,t_to)
SYNCH (t) = () : the null interval

if tJrom < t_to
otherwise

114

t_from =max (time Jrom;), 1 s i S n

t to =min (time_to1), lSiSn

Results of s:mCH operations on the first three rows in Figure 5-19 are [Jun 81, Sep 82), [Sep 82, Mat 83),

and the null interval (), respectively. By applying the s:mCH operation to each row of the unnested

relation, and removing tuples with null intervals, a relation in attribute versioning can be transformed into

one in tuple versioning as in Figure 5-16.

5.4.2. Storage Requirements

Though attribute versioning avoids duplication of static data, !here is additional overhead in

associating time information with each attribute and maintaining a list of versions for each attribute. Given

t, : total size of static attributes

nd : number of dynamic attributes

ad : average size of dynamic attributes

o A : size of overhead for each attribute version

or : size of overhead for each tuple version

c : average number of updates for each version set

a : average number of attributes modified by an update operation

it is possible to calculate storage requirements for tuple versioning and attribute versioning, sr and sA>

respectively.

The number of updates for each version set to favor attribute versioning, c ',is one to make sA smaller than

sr. Therefore,

Since each update modifies at least one attribute (a;:, 1),

115

When or = o A• which is often the case,

c, >

This result shows that c ' is proportional to oA> inversely proportional to ad, and relatively unaffected by

n4 , which is somewhat surprising. If t, is 0, or small compared with (nd- 1) * ad, c ' turns out to be

simply~. Note that oA is fixed for a particular implementation, so the only variable is the average size
ad

of dynamic attributes. In the special case of nd = 1, c 'becomes 0, meaning that in this particular situation

attribute versioning always wins.

For example, if we have t, = 12, ad = 8, and n4 = 2, as in Figure 5-15, and assume 2 time attributes

of 4 bytes each with 2 bytes for linking overhead (oA = 10), then c '> 0.5 updates per version set would

favor attribute versioning.

An advantage for databases in tuple versioning is that the relational theory developed for

conventional DBMS's can be utilized to some extent, as they are at least in first normal form. There has

been some effort to formalize the concepts and algebra for attribute versioning [Clifford & Tansel 1985,

Gadia & Vaishnav 1985, Gadia 1986, McKenzie 1986], but further research is needed in various aspects of

query processing in such databases.

5.4.3. TemporaUy Partitioned Store

Now we look into the question of how to support attribute versioning in the temporally partitioned

storage structure to process TQuel queries efficiently. As shown in Figure 5-20, a relation in attribute

versioning can be conceptualized as a sparse matrix of nodes, each of which is an attribute version. There

are three types of links connecting nodes to one another:

t link : link between tuples

a link : link between attributes

v link: link between attribute versions.

116

Each of these links can be implemented either physically or virtually. A physical/ink is a physical pointer

stored into a node. A virtual link is a conceptual link implied by physical contiguity, by physical

information such as lengths of tuples and attributes, or even by a hash function. Note that the most current

tuple can be found by collecting the most current version from each attribute.

attr 1 attr 2 attr3 attr4

tuple 1 I
a a a

I
v v v

I I I I I I
t v v

I I I I

tuple 2 I
a a a

I

Figure 5-20: Attribute Versions

The formats of the history store discussed in Section 5.2 assumed tuple versioning, but most of them

are easily extendible to support attribute versioning. Each tuple in the current store contains exactly one

current version for each member attribute. Thus, the t link and the a link are virtual. Only the v link needs

to be maintained for each version of dynamic attributes in the history store. For reverse chaining, a field

nvp (next version pointer) is attached to each version of dynamic attributes, and a chain of versions is

maintained following similar procedures as described in Section 5.2.1 for tuple versioning. For clustering,

versions for the satne attribute, and then attributes for the satne tuple, are clustered together. For stacld.ng,

space is reserved for a certain number of versions for each dynamic attributes, making the v link virtual.

For cellular chaining, each dynamic attribute maintains a chain of cells whose size is either fixed or

variable. For accession lists, however, each dynamic attribute in a tuple needs a separate list, which makes

management of those lists overly complicated. Indexing or secondary indexing on the history store is not

strictly applicable either, because indices need to be maintained for each version of an attribute, not for

117

each version of a tuple.

5.5. Summary

Section 5.2 investigated six structures for the history store, and Section 5.3 and 5.4 discussed related

issues such as secondary indexing and attribute versioning. Various characteristics of those six structures

for the history store are compared in Figure 5-21.

Structure Append- Attribute
Only Versioning

Reverse Chaining v v
Accession Lists v

Indexing v
Clustering v
Stacking v

Cellular Chaining v v

Notes:
n : number of history versions for the version set
b : number of tuples in a block
c : number of tuples in a cell
(1) Given in Equation (5.1).
(2) Depending on the given temporal predicate.

Block Accesses
Lower Bound

n -
b

2

1

n
b

1

n
b

Figure 5-21: Structures for the History Store

Upper Bound Average

n See (1)

n+l See (2)

n See (2)

n n -
b b

1 1

n
c

See (2)

This table shows for each format whether the format can be implemented as append only, and whether it

can support attribute versioning. The table also compares the lower bound, the upper bound, and the

average number of block accesses for each method, when there are n history versions for a versions set.

Reverse chaining was implemented to obtain performance data for comparison with the analysis results, as

will be discussed in Chapter 7.

PART ill

Benchmarks

A prototype temporal database management system has been implemented by extending the snapshot

DBMS INGRES. Part three discusses the major features of the prototype and describes the results of the

benchmarks run on the prototype. In particular, Chapter 6 is on the prototype with conventional access

methods, and Chapter 7 is on the prototype with the new access methods discussed for the temporally

partitioned store in Chapter 5.

Chapter 6

Prototype with Conventional Access Methods

A prototype temporal database management system was built by extending the snapshot DBMS

INGRES [Stonebraker et al. 1976]. It supports the temporal query language TQuel, described in Section

2.3, and handles all four types of databases: snaps/wt, rollback, historical and temporal. A set of queries

were run as a benchmark to study the performance of the prototype on the four types of databases using

conventional access methods, and to identify major factors affecting the performance of the prototype.

This chapter describes the major features of the prototype, and presents the results of the benchmark as

reported in [Ahn & Snodgrass 1986].

6.1. Prototype

There are several approaches to implementing a database management system with temporal support.

One initial strategy would be to interPose a layer of code between the user and a conventional snapshot

database system. This layered approach has a significant advantage of not requiring any change to the

complex data structures and algorithms within the snapshot DBMS. However, the performance of such a

system will deteriorate rapidly not only for temporal queries but also for non-temporal queries, due to

peculiar characteristics of databases with temporal support. There is also an overhead to translate, if

possible at all, a temporal query in!o an equivalent non-temporal query supported by the underlying

snapshot DBMS.

An alternative is to integrate temporal support into the DBMS itself, developing new query

evaluation algorithms and access methods to achieve reasonable performance for a variety of temporal

queries, without penalizing conventional non-temporal queries. There are several issues that must be

addressed for this integrated approach, such as handling of ever-growing storage size, use of low cost high

capacity write-once storage, representation of temporal versions with little redundancy, and efficient access

methods for temporal and non-temporal queries [Ahn 1986]. This approach clearly involves substantial

122

research and implementation effort, yet holds promise for significant performance enhancement.

As an intermediate step towards a fully integrated system, a prototype temporal DBMS was built by

extending the snapshot DBMS INGRES [Stonebraker et al. 1976]. Many routines in INGRES to parse,

decompose, and interpret queries were modified, and several routines were added for new temporal

constructs, but access methods available in INGRES were kept. Thus the performance of the prototype

was expected to be less than ideal, rapidly deteriorating for both temporal and non-temporal queries. But it

is still useful to identify problems with conventional access methods, and to suggest possible mechanisms

for addressing those problems. In addition, the prototype can serve as a comparison point for fully

integrated DBMS's to be developed later.

The prototype supports all the augmented TQuel statements: retrieve, append, delete,

replace and create. Temporal clauses in TQuel, such as valid, when and as of, are fully

supported. The prototype also supports all four types of databases: snapshot, rollback, historical and

temporal.

Que! Monitor text Parser parse Decomposition modified Interpreter & result
statements stnng tree parse tree Access Methods

Figure 6-1: Internal Structure of INGRES

Figure 6-1 shows the internal structure of INGRES, and also the structure of the prototype. To

handle temporal extensions in TQuel, the parser was modified so that it accepts TQuel statements and

generates an extended syntax tree with extra subtrees for temporal clauses valid and when.

retrieve (h.id, i.id)
valid from begin
where h.id = 500
when h overlap i
as of nl981IV

of (h overlap i) to end of (h extend i)
and i.amount = 73700

Figure 6-2: A TQuel Query

123

For example, a sample query in Figure 6-2 inquires the state of a database as of 1981. Retrieved

tuples satisfy not only the where clause, but also the when clause specifying that the two tuples must

have coexisted at some moment, The valid clause specifies the values of the time attributes valid from

and valid to for result tuples.

The syntax tree for this query looks like Figure 6-3, where the left subtree denotes the target list, and

the right subtree represents the predicates when and where. However, the prototype does not supply

default values for the valid and when clauses if they are omitted in the retrieve statement.

Figure 6-3: A Syntax Tree

The retrieve statement uses the clause as of t 1 or as of t 1 through t 2 to specify

rollback operations for a rollback or a temporal database. The as of clause is not represented in the

syntax tree, but sets the external variables AsOf_start and AsOf_stop to the value of tl and t 2

respectively. The default value for AsOf_start is the current time, and the default for AsOf_stop is

the value of AsOf_start. These variables specify an interval on the axis of transaction time as

illustrated in Figure 3-2 and 3c6, and select tuples overlapping with the interval when a rollback or a

temporal relation is scanned to interpret the query.

124

As discussed in Section 5.1.2, data manipulation statements append, delete and replace

use the valid clause to specifY the update interval. If the valid clause is ontitted, the prototype

supplies the default valid from "now" to "forever". Though the formal semantics of the

append statement defined in [Snodgrass 1986] requires to check if there already exists a tuple identical in

the explicit attributes during the update interval, the prototype does not perform the integrity checking

presently.

For the delete or replace statement, there are six different cases depending on the relationship

between the base interval and the update interval (Figures 5-2 and 5-3). The prototype properly handles

the six different cases for the delete statement, using the function of snapshot replace to update time

attributes appropriately for all types of relations. The replace statement is performed following the

delete and insert scheme, as described in Section 5.1.2.

TQuel does not use the as of clause in modification statements such as append, delete, and

replace, but the prototype allowed the as of clause in those statements to specify values of the

ttansaction start and the transaction stop attributes in creating synthetic relations to be used for a

benchmark.

The create statement in TQuel specifies the type of a relation, whether snapshot, rollback,

historical or temporal, and to distinguish between an interval and an event relation if the relation is

historical or temporal. This information on the temporal type of a relation can be represented in three bits.

The system relation was modified to store this information for each relation, and to perform appropriate

actions depending on the type of a relation in all phases of query processing.

A temporal variable in TQuel can be associated with an interval or an event relation. An interval

relation contains two implicit time attributes valid from and valid to, while an event relation has only the

valid from attribute. To support temporal variables, the prototype added a new data type i .Jime, which

consists of two time values for the attributes valid from and valid to. For an event variable, the value of the

valid to field is set to the value of the valid from field

Time attributes, whether explicit or implicit, are assigned a distinct data type, TIME T. A time

value is represented internally as a 32 bit integer with the resolution of one second, but externally as a

character string. The prototype provides automatic conversion between the internal and the external

125

representations so that input and output operations can be performed in human readable form. For input,

the prototype accepts various fonnats of character strings commonly used to represent date and time, and

recognize values such as 'now', 'forever', and 'oo' (denoting 'forever'). For output, it can express

time values with a resolution ranging from a second to a year, as selected by an option. The copy

statement was also modified to perform input and output operations in batch for relations having time

attributes, whether explicit or implicit, represented in various formats.

Some of the decomposition modules were changed to handle the temporal constructs and implicit

time attributes. For example, it is necessary to include both time attributes valid from and valid to for a

historical or a temporal relation during one variable detachment operation [Wong & Youssefi 1976],

though only one may be specified in the query itself.

TQuel has temporal operators begin of, end of, precede, overlap, and extend.

Functions to handle these operators were added in the one variable query processing portion of the

interpreter. Temporal operators compose two types of temporal expressions, temporal constructor and the

temporal predicate. The range of the temporal constructor is an interval of the i_time type, while the

range of the temporal predicate is a boolean value. Instead of determining whether a temporal expression

is of one type or the other, the prototype evaluates each expression for both cases, and uses the appropriate

value depending on the semantics of the expression.

INGRES provides access methods such as heap, hashing, ISAM, and indexing. In this chapter, the

prototype uses them without any modification. A new access method, reverse chaining discussed in

Chapter 5, was added to the prototype, as will be described in the next chapter.

. .
One of the most important decisions was how to embed a four-dimensional temporal relation into a

two-dimensional snapshot relation as supported by INGRES. There are at least five such embeddings

[Snodgrass 1986]. The prototype adopts the scheme of augmenting each tuple with two transaction time

attributes for a rollback and a temporal relation, and one or two valid time attributes for a historical and a

temporal relation depending on whether the relation models events or intervals.

For a rollback relation, an append operation inserts a tuple with the transaction start and the

transaction stop attributes set to the current time and "forever" respectively. A delete operation on

a tuple simply changes the transaction stop attribute to the current time. A replace operation first

U6

executes a delete operation, then inserts a new version with the transaction start attribute set to the

current time. A historical relation follows similar steps for append, delete and replace operations

with the valid from and the valid to attributes as the counterparts of the transaction start and the transaction

stop attributes. Values of the valid from and the valid to attributes are defaulted to the current time and

"forever" respectively, but also can be specified by the valid clause.

For a temporal relation, an append operation inserts a tuple with the transaction start attribute of

the current time, and the transaction stop attribute of "forever". Attributes valid from and valid to are

set as specified by the valid clause, or defaulted if is is absent. A delete operation on a tuple sets the

transaction stop attribute to the current time indicating that the tuple was virtually deleted from the relation.

Next a new version with the updated valid to attribute is inserted indicating that the version has been valid

until that time. A replace operation first executes a delete operation as above, then appends a new

version ll1lllked with appropriate time atttibutes. Therefore, each replace operation in a temporal

relation inserts two new versions. This scheme has a high overhead in terms of space, but captures the

history of retroactive and proactive changes completely._ In addition, all modification operations for

rollback and temporal relations in this scheme are append only, so write-once optical disks can be utilized.

A more detailed discussions of these operations can be found elsewhere [Snodgrass 1986].

The prototype was constructed in about 3 person-months over a period of a year; this figure does not

include familiarization with the INGRES internals or with TQuel. About half the changes were

modifications, and the rest were additions. The source was increased by 2,900 lines, or about 4.9% of

INGRES version 7.10, which is approximately 58,800 lines long.

6.2. Benchmarking the Prototype

We define the update count for a tuple as the number of update operations on the tuple, and the

average update count for a relation as the average of the update counts over all tuples in the relation. We

hypothesized thai, as the average update count increases, the performance of the prototype with

conventional access methods would deteriorate rapidly not only for temporal queries but also for non

temporal ones. We postulated that major factors to affect the performance of a temporal DBMS were the

type of a database, the query type, the access methods, the loading factor, and the update count

127

A benchmark was run to confirm these hypotheses in various situations, and to determine the rate of

performance degradation as the average update count increased. This section describes the details of the

benchmark, presents its results, and analyzes the performance data from the benchmark.

6.2.1. A Benchmark

We wanted to compare the performance of the four types of databases described in Chapter 3. For

each of the four types, we created two databases, one with a 100% loading factor and the other with a 50%

loading factor. As the sample commands for a temporal database in Figure 6-4 show, each database

contains two relations, Type_h and Type_i, where Type is one of Snapshot, Rollback,

Historical, and Temporal.

create persistent interval Temporal_h
(id = i4, amount = i4, seq = i4,

modify Temporal_h to hash on id

create persistent interval Temporal i
(id i4, amount = i4, seq = I4,

modify Temporal_i to isam on id

string = c96)
where fillfactor

string = c96)
where fillfactor

Figure 6-4: Creating a Temporal Database

100

100

Type_ h is stored in a hashed file, and Type_ i is stored in an ISAM file. The loading factor of a file is

specified with the fillfactor parameter in a modify statement [Woodfill eta!. 1981].

Each tuple has 108 bytes of data in four attributes: id, amount, seq and string. Id, a

four byte integer, is the key in both relations. The attributes Amount and string are randomly

generated as integers and strings respectively, and the seq attribute is initialized as zero. In addition,

rollback and historical relations carry two time attributes, while temporal relations contain four time

attributes. The transaction start and the valid from attributes are randomly initialized to values between

Jan. 1 and Feb. 15 in 1980, with the transaction stop and the valid to attributes set to 'forever'

indicating that they are the current versions. The evolution of these relations will be described shortly.

Each relation is initialized to have 1024 tuples using a copy statement The block size in the

prototype is 1024 bytes. With 100% loading, there are 9 tuples per block for snapshot relations, and 8

tuples per block for rollback, historical, or temporal relations. Therefore, we need at least 114 blocks for

128

each snapshot relation, and 128 blocks for each of the others. The actual size depends on the database

type, the access method, the loading factor, and the average update count

range of h is temporal_h
range of i is temporal_i

I* hashed on id */
/* ISAM on id */

Q03
Q04

QOS

Q06

Q07

Q08

Q09

Q10

retrieve (h. id,
retrieve (i. id,

h.seq)
i.seq)

500
500

retrieve (h. id,
retrieve (i.id,

h. seq)
i.seq)

as of "08:00 1/1/80"
as of "08:00 1/1/80"

retrieve (h.id, h.seq) where h.id
when h over1ap "now"

retrieve (i.id, i.seq) where i.id
when i overlap "now"

500

500

retrieve (h.id, h.seq) where h.amount
when h overlap "now~~~

retrieve (i.id, i.seq) where i.amount
when i overlap "nown

69400

73700

retrieve (h.id, i.id, i.amount)
when h overlap i and i

retrieve (i.id, h.id, h.amount)
when h overlap i and h

where h.id
overlap "now"

where i.id
overlap "now"

Q11 retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of h to end of i
when begin of h precede i
as of "4:00 1/1/80"

Q12 L seq, i.amount)

ioamount

h.amount

retrieve (h.id, h.seq, i.id,
valid from begin of (h
where h.id = 500 and
when h overlap i

overlap i) to end of (h extend i)
i.amount = 73700

as of "now"

Q13 retrieve (h.id, h.seq) where h.id = 455
when "1/1/82" precede end of h

Q14 retrieve (h.id, h.seq) where h.amount 10300
when "1/1/82" precede end of h

Q15 retrieve (h.id, h.seq) where h.amount = 10300
as of "1/1/83"

Q16 retrieve (h.id, h.seq) where h.amount 10300
when "1/1/82" precede end of h
as of "1/1/83"

Figure 6-5: Benchmark Queries

129

Sixteen sample queries with varying characteristics comprise the benchmark as shown in Figure 6-5.

These queries were chosen in an attempt to exercise the access methods available in INGRES, to isolate the

effects of various TQuel clauses, and to demonstrate the possibility of performance enhancement The

number of output tuples were kept constant regardless of the update count, except for queries QOl, Q02

andQ12.

QOl retrieves all versions of a tuple (version scan) from a hashed file given a key. Q03 is a rollback

query, applicable only to rollback and temporal databases, retrieving the state of a relation as of some

moment in the past QOS retrieves the most recent version from a hashed file given a key, while Q07

retrieves the most recent version from a hashed file through a non-key attribute, requiring a sequential

scanning of the whole file. Queries Q02, Q04, Q06 and Q08 are counterparts of QOl, Q03, QOS, and Q07

respectively, where the even numbered queries access an ISAM file and the odd numbered access a hashed

file. Both Q09 and QlO join current versions of two relations; Q09 goes through the primary access path of

a hashed file and QlO goes through an ISAM file.

Queries QOS through Q 10 all refer to only the most recent versions. They are termed non-temporal

queries in the sense that they retrieve the current state of a database as if from a snapshot database. For a

snapshot database, the when clause in these queries are neither necessary nor applicable. For a rollback

database, we use the as of clause instead of the when clause. For example, when x over lap

nnOW 11 will become as of ''now".

Qll is a query involving a temporal join, a join of two tuples based on temporal information. In this

query, the as of clause specifies the rollback operation shifting the reference point to a past moment.

The when clause specifies a temporal relationship between two versions, where the value of the valid

from attribute in the version from Type_ h relation is earlier than the corresponding value in the version

from Type_ i relation. The valid clause specifies that the transaction start attribute of the result tuple be

set to the value of the transaction start attribute in the version from Type_ h relation, and that the

transaction stop attribute of the result tuple be set to the corresponding value in the version from Type_ i

relation. Q12 contains all types of clauses in TQuel, inquiring the state of a database as of 'now' given

both temporal and non-temporal constraints. Obviously, Qll and Ql2 are relevant only for a temporal

database.

130

Queries Q 13 through Q 16 exercise various combinations of the when and the as of clauses.

Query Ql3 retrieves tuples whose valid to value is later than "1/1/82" through the hashed key. Query Q14

also retrieves tuples whose valid to value is later than "1/1/82", but through a non-key attribute. Query

Q15 retrieves tuples from the Temporal_ h relation as of "111183" through a non-key attribute. Query

Q16 is similar to Q15, but also requires that the valid to value is later than "1/1/82".

These sixteen queries were run on each of eight test databases as described earlier; two databases,

with the loading factor of 100% and 50% respectively, for each of Snapshot, Rollback,

Historical, and Temporal. We focused solely on the number of disk accesses per query at a

granularity of a block, as this metric is highly correlated with both CPU time and response time. There are

a few pitfalls to be avoided with this metric. Disk accesses to system relations are relatively independent

of the database type or the characteristics of queries, but more dependent on how a particular DBMS

manages system relations. Also, the number of disk accesses varies greatly depending on the number of

internal buffers and the algorithm for buffer management. To eliminate such variables, which are outside

the scope of this research, we counted only disk accesses to user relations, and allocated only 1 buffer for

each user relation so that a block resides in main memory only until another block from the same relation is

brought in.

Once performance statistics were collected for all the sample queries, we simulated the uniformly

distributed evolution of each database by incrementing the value of seq attribute in each of the current

versions. The time attributes were appropriately changed for this replace operation using the default of

valid from "now" to "forever" as described in Section 4. Thus a new version (two new

versions for temporal relations) of each tuple is inserted, and the average update count of the database is

incremented by one. Performance on the sample queries were measured after determining the size of each

relation appended with new versions. This process was repeated until the average update count reached 15,

which we believed high enough to show the relationship between the growth of I/0 cost and the average

update count. The benchmark was run on a Vax 111780, consuming approximately 20 hours of CPU time.

131

6.2.2. Performance Data

Space requirements for various databases were measured as the average update count ranged from 0

to 15. Figure 6-6 shows the data for the average update count of 0 and 14 along with the growth per

update. The table also shows the growth rate, obtained when dividing the growth per update by the size for

the update count of 0. These data were useful for analyzing the I/0 costs measured in the benchmark.

Type Snapshot Rollback Historical Temporal

Loading 100% 50% 100% 50% 100% 50% 100% 50%

Relation H I H I

Size, UC=O 166 !15 257 259

Size, UC=14 - - - -

Growth per - - - -Update

Growth - - - -
Rate

I

Notes:
Relation H is a hashed file.
Relation I is an ISAM file.

H I

129 129

1927 1921

128.4 128.0

1 1

H

257

2048

127.9

0.5

I H I H I

259 129 129 257 259

2051 1927 1921 2048 2051

128.0 128.4 128.0 127.9 128.0

0.5 1 1 0.5 0.5

'UC' denotes Update Count.
'-' denotes not applicable.

Fignre 6-6: Space Requirements (in Blocks)

From this table, we find that:

• The rollback and the historical databases have the same space requirements.

H I H I

129 129 257 259

3717 3713 3839 3843

256.3 256.0 255.9 256.0

1.99 2 1 1

• The temporal database consumes the same amount of space as the rollback and the historical
databases for the update count of 0.

• The temporal database, following the embedding scheme described in Section 6.1, requires almost
twice the additional blocks as the update count increases.

• The growth per update for a hashed file varies slightly due to key collisions in hashing.

Input costs for the sample queries on each database were measured as the average update count

increased from 0 to 15. Some queries also incurred output costs, which accounted for creating temporary

relations to store intermediate results. For example, queries Q09 and QlO wrote out 56 blocks each, and

132

Q12 on the historical or the temporal database wrote 4 blocks. Output costs were constant for these queries

regardless of the update count, because the size of temporary relations were kept the same for the sample

queries. Since the output costs are negligible compared with the input costs, we concentrate on the analysis

of the input costs. Appendix C shows the measurement data from the benchmarlc for the rollback,

historical, and temporal databases, each with 100% and 50% loading. Figure 6-7 shows the input costs for

the temporal database with 100% loading.

Update
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Count

Q01 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Q02 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Q03 129 387 645 903 1153 1411 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975
Q04 128 384 640 896 1152 1408 1664 1920 2176 2432 2688 2944 3200 3456 3712 3968
QOS 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3!
Q06 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Q07 129 387 645 903 1153 1411 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975
Q08 128 384 640 896 1152 1408 1664 1920 2176 2432 2688 2944 3200 3456 3712 3968
Q09 1200 3512 5816 8120 10386 12690 14994 17298 19564 21868 24172 26476 28742 31046 33350 35654
QlO 2233 4539 6845 9151 11449 13755 16061 18367 20665 22971 25277 27583 29881 32187 34493 36799
Qll 385 1155 1925 2695 3457 4227 4997 5767 6529 7299 8069 8839 9601 10371 11141 11911
Q12 131 389 647 905 1163 1421 1679 1937 2195 2453 2711 2969 3227 3485 3743 4001
Q13 I 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Q14 129 387 645 903 1153 14!1 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975
Q15 129 387 645 903 1153 1411 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975
Q16 129 387 645 903 !153 1411 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975

Figure 6-7: Input Costs for the Temporal Database with 100% Loading

Similar tables, a total of 8, were obtained for each database of different types and loading factors.

We summarize the input costs for the sample queries on various databases with the average update count of

0 and 14 in Figure 6-8.

Figure 6-8 shows that the rollback and the historical databases exhibit similar performance, while the

temporal database is about twice more expensive than rollback and historical databases for the update

count of 14. If we dtaw a graph for the input costs shown in Figure 6-7, we get Figure 6-9 (a). Figure 6-9

(b) is a similar graph for the rollback database with 50% loading, showing jagged lines caused by the odd

numbered updates filling the space left over by the previous updates before adding overfiow blocks.

Type Snapshot

Loading 100% 50%

Query uc uc
0 0

QOI 2 I
Q02 2 3
Q03 - -
Q04 - -
Q05 2 I
Q06 2 3
Q07 166 257
Q08 114 256
Q09 1585 1276
Q10 2214 3329
Qll - -
Q12 - -
Q13 - -
Q14 - -
Q15 - -
Q16 - -

IIi put

Blocks

30000

20000

Rollback Historical

100% 50% 100% 50%
uc uc uc uc

0 14 0 14 0 14 0 14

I 15 I 8 I 15 I 8
2 16 3 10 2 16 3 10

129 1927 257 2048 - - - -
128 1920 256 2048 - - - -

I 15 I 8 I 15 I 8
2 16 3 10 2 16 3 10

129 1927 257 2048 129 1927 257 2048
128 1920 256 2048 128 1920 256 2048

1141 17242 1271 10240 1197 17298 1327 10296
2177 18311 3329 12288 2233 18367 3385 12344
- - - - - - - - -
- - - - - - - -
- - - - I 15 I 8
- - - - 129 1927 257 2048
129 1927 257 2048 - - - -
- - - - - - - -

Figure 6-8: Input Costs for Four Types of Databases

QIO

Q09

Qll

Q03,4,7,8,12,14,15,16

Q01,2,5,6,13

uc

Input

Blocks

15000

s

133

Temporal

100% 50%
uc uc

0 14 0 14

I 29 I 15
2 30 3 17

129 3717 257 3839
128 3712 256 3840

1 29 I 15
2 30 3 17

129 3717 257 3839
128 3712 256 3840

1200 33350 1333 19256
2233 34493 3385 21303
385 11141 769 11519
131 3743 259 3857

I 29 I 15
129 3717 257 3839
129 3717 257 3839
129 3717 257 3839

QIO

Q09

Q03,4,7,8,1S

12 6

10 15 uc

(a) Temporal Database with 100% Loading (b) Rollback Database with 50% Loading

Figure 6-9: Graphs for Input Costs

134

6.2.3. Analysis of Performance Data

The graphs in Figure 6-9 show that input costs increase almost linearly with the update count, but

with varying slopes for different queries. A question is whether there are any particular relationships

independent of query types between the input cost and the average update count, and between the input

cost and the database type. To answer this question, we now analyze how each sample query is processed,

and identify the dominant operations which can characterize each query.

Though queries QOl and Q05 are functionally different from each other, one being the version

scanning and the other a non-temporal query, the prototype built with conventional access methods uses

the same mechanism to process them. Both queries are evaluated by accessing a hashed file given a key

(hashed access). Likewise, Q02 and Q06 requires the access to an ISAM file given a key (/SAM access).

Queries Q03, Q04, Q07 and Q08 all need to scan a file, whether hashed or ISAM (sequential scanning).

Processing Q09 first scans an ISAM file sequentially doing selection and projection into a temporary

relation (one variable detachment). It then performs one hashed access for each of 1024 tuples in the

temporary relation (tuple substitution). Here the dominant operation is the hashed access, repeated 1024

times. QlO is similar to Q09 except that the roles of the hashed file and the ISAM file are reversed. Hence

the dominant operation for QlO is the ISAM access.

Q 11 is evaluated by sequentially scanning one file to find versions satisfying the as of clause. For

such a version, the other file is sequentially scanned for versions satisfying both the as of clause and the

when clause. Here the dominant operation is the sequential scanning. Processing Ql2 requires a

sequential scanning and a hashed access to find versions satisfying the where clause, then joins them on

time attributes according to the when clause. Since the number of versions extracted for the join is small

enough to fit into one block each, the dominant operation is the sequential scanning.

Query Ql3 is similar to queries QOl and QOS in that it retrieves a record through the hashed key.

Queries Q14 through Q16 are similar to query Q07, which requires sequential scanning, though they have

different temporal predicates.

From this analysis, we can divide the input cost into the fixed cost and the variable cost. The fixed

cost is the portion which stays the same regardless of the update count It accounts for traversing the

135

directory in the ISAM, or for creating and accessing a temporary relation whose size is independent of the

update count. On the other hand, the variable cost is the portion which increases with the update count. It

is the result of subtracting the fixed cost from the cost of a query on a database with no update. Operations

contributing to the variable cost will grow more expensive as the number of updates on the relation

increases.

where

Now we can define the growth rate of the input cost on a database with the update count of n as:

c. -Co
Growth Rate. = ..,.--,-..,::..-...::...,-

(variable cost) X n

c.= input cost for update countofn

C 0 = input cost for update count of 0

The growth rate is the key aspect of an implementation, characterizing the performance degradation as the

update count increases. Clearly the ideal would be a growth rate close to 0.

Fixed costs, variable costs. and growth rates for the sample queries on various types of databases

were calculated. The growth rate was relatively independent of the update count n, as suggested by the

linearity of cost curves shown in Figure 6-9. Figure 6-10 shows fixed costs, variable costs, and growth

rates for the sample queries on the rollback and the temporal databases with the loading factor of 100% and

50% each. The historical database shows the same variable costs and the growth rates as the rollback

database, except for Q03, Q04, and Q15 which are not applicable to historical databases. But its fixed costs

are the same as the temporal database, except for Q03, Q04, Qll, Ql2, Q15, and Q16 which are not

applicable.

136

Type Rollback Temporal
Loading 100% 50% 100% 50%

Query
Cost (in Blocks) Growth Cost (in Blocks) Growth Cost (in Blocks) Growth Cost (in Blocks) Growth
Fixed Variable Rate Fixed Variable Rate Fixed Variable Rate Fixed Variable Rate

QOI 0 1 1 0 1 0.5 0 I 2 0 I 1
Q02 1 1 I 2 1 0.5 1 1 2 2 1 1
Q03 0 129 1 0 257 0.5 0 129 1.99 0 257 1
Q04 0 128 1 0 256 0.5 0 128 2 0 256 1
QOS 0 1 I 0 1 0.5 0 1 2 0 1 1
Q06 1 1 1 2 1 0.5 1 1 2 2 1 1
Q07 0 129 I 0 257 0.5 0 129 1.99 0 257 I
Q08 0 128 1 0 256 0.5 0 128 2 0 256 1
Q09 0 1141 1.01 0 1271 0.5 56 1144 2.01 56 1277 I
QlO 1024 1153 1 2048 1281 0.5 1080 1153 2 2104 1281 I
Qll - - - - - - 0 385 2 0 769 I
Ql2 - - - - - - 2 129 2 2 257 1
Ql3 - - - - - - 0 1 2 0 1 I
Q14 - - - - - - 0 129 1.99 0 257 1
Q15 0 129 I 0 257 0.5 0 129 1.99 0 257 1
Q16 - - - - - - 0 129 1.99 0 257 1

Note:
'-' denotes not applicable.

Figure 6-10: Fixed Costs, Variable Costs, and Growth Rates

Rather swprisingly, the growth rate turned out to be independent of the query type and the access

method as far as access methods of sequential scanning, hashing or ISAM are concerned. It was, however,

highly dependent on the database type and the loading factor. For example, the growth rates for operations

such as sequential scanning, hashed access, and access of data blocks in ISAM are all 2.0 in case of the

temporal database with 100% loading. On the other hand, the growth rates for similar operations are

approximately 0.5 in case of the rollback or the historical database with 50% loading.

From these analyses, we can make several observations as far as access methods of sequential

scanning, hashing or ISAM are concerned.

•

•

•

The fixed and the variable costs are dependent on the query type, the access method and the loading
factor, but relatively independent of the database type.

The growth rate is approximately equal to the loading factor of relations for rollback or historical
databases.

The growth rate of input cost is approximately twice the loading factor of relations for temporal
databases.

137

• The growth rate is independent of the query type and the access method.

The fact that the growth rate can be determined given the database type and the loading factor

without regard to the query type or the access method has a useful consequence. From the definition of the

growth rate, we can derive the following formula for the cost of a query when the update count is n.

c. = C 0 + (growth rate) X (variable cost) X n

= (fixed cost)+ (variable cost)+ (growth rate) x (variable cost) x n

=(fixed cost)+ (variable cost) X [1 +(growth rate) X n]

Therefore, when the cost of a query on a database with the update count of 0 is known and its fixed portion

is identified, it is possible to predict future performance of the query on the database when the update count

grows to n. Note that the fixed cost, and hence the variable cost, can even be counted automatically by the

system, except when the size of a temporary relation varies greatly depending on the update count

6.2.4. Non-uniform Distribution

Thus far, we have assumed unifotrn distribution of updates where each tuple will be updated an

equal number of times as the average update count increases. Since the assumption of uniform distribution

may appear rather unrealistic, we also ran an experiment with a non-uniform distribution. To simulate a

maximum variance case, only 1 tuple was updated repeatedly to reach a certain average update count We

measured performance of queries on the updated tuple and on any of remaining tuples, then averaged the

results weighted by the number of such tuples. Since it takes 0 (n 2) block accesses to update a single

tuple for n times, owing to the overflow chain ever lengthening, we repeated the process only up to the

update count of 4, which was good enough to confirm our subsequent analysis.

Perfotrnance of a query is highly dependent upon whether the tuple participating in the query has an

overflow chain. We hypothesized that updating tuples with a high variance would affect the growth rate

significantly, owing to the presence of long overflow chains for some tuples and the absence of such chains

for others. However, the growth rate averaged over all tuples turned out to remain the same as the unifotrn

distribution case. For example, if we update one tuple in a temporal relation 1024 times, the average

update count becomes one. For a query like Q01, a hashed access to any tuple sharing the same block as

the changed tuple costs 257 block accesses, while a hashed access to any tuple residing on a block without

138

an overflow costs just one block access. Therefore, the average cost becomes three block accesses, the

same as the uniform distribution case.

We can extend this result to a more general case. If the number of primary blocks is x with 100%

loadiog, there will be approximately 2x overflow blocks for the average update count of one in a temporal

relation. Let y be the number of primary blocks which have overflow blocks, and z be the number of

primary blocks which do not have an overflow, then y + z = x . Since the average length of overflow

chains is 2x blocks, the average cost of a hashed access to such a relation will be:
y

v 2x v+z
--"------=""-X-+.<......:....::= 3

2x
y X(-+ 1) + Z X 1

y+z X J X

showing the same result as the more restricted case discussed above.

This reasoning can be generalized for other database types, access methods, loadiog factors, query

types, and update counts in a similar fashion. Now one more observation about the growth rate can be

added:

• The growth rate is independent of the distribution of updated tuples.

We conclude that the results from the benchmark we ran under the assumption of uniform distribution are

still valid for any other distribution.

6.3. Analysis from Models

The sample queries in Figure 6-5 were also analyzed using the four models discussed in Chapter 4.

Full description of the analysis results is given in Appendix D, and Figure 6-11 shows the summary of the

input costs for each type of databases with the update count of 0 and 14.

139

Type Snapshot Rollback Historical Temporal
Loading 100% 50% 100% 50% 100% 50% 100% 50%

Query
uc uc uc uc uc uc uc uc

0 0 0 14 0 14 0 14 0 14 0 14 0 14

Q01 1 1 1 15 1 8 1 15 1 8 1 29 1 15
Q02 2 3 2 16 3 10 2 16 3 10 2 30 3 17
Q03 - - 128 1920 256 2048 - - - - 128 3712 256 3840
Q04 - - 128 1920 256 2048 - - - - 128 3712 256 3840
QOS 1 1 1 15 1 8 1 15 1 8 1 29 1 15
Q06 2 3 2 16 3 10 2 16 3 10 2 30 3 17
Q07 114 228 128 1920 256 2048 128 1920 256 2048 128 3712 256 3840
Q08 114 228 128 1920 256 2048 128 1920 256 2048 128 3712 256 3840
Q09 1194 1308 1152 17280 1280 10240 1208 17336 1336 10296 1208 33464 1336 19256
QlO 2218 3356 2176 18304 3328 12288 2232 18360 3384 12344 2232 34488 3384 21304
Qll - - - - - - - - - - 384 11136 768 11520
Q12 - - - - - - - - - - 131 3743 259 3857
Q13 - - - - - - 1 15 1 8 1 29 1 15
Q14 - - - - - - 128 1920 256 2048 128 3712 256 3840
Q15 - - 128 1920 256 2048 - - - - 128 3712 256 3840
Q16 - - - - - - - - - - 128 3712 256 3840

Notes:
'UC' denotes Update Count. '-' denotes not applicable.

Figure 6-11: Analysis Results using Performance Models

To compare the analysis results (Figure 6-11) with the measurement data from the benchmark

(Figure 6-8), we calculate the error rate as:

a -b
E"or Rate = -- x 100 %

b

where

a = cost estimated from the analysis

b = cost measured from the benclunark

Figure 6-12 shows the error rate for each data point It shows that error rates are generally within

about 1% for the rollback, historical, and temporal databases. Interestingly, the biggest errors are found for

the snapshot database. The reason is that a snapshot relation with 100% loading can hold 9 tuples,

compared with 8 tuples for other types of relations, but the larger number of tuples per block caused extra

key collisions due to imperfect nature of the hash function used for hashing. For example, a snapshot

relation which can hold 9 tuples per block consumed 166 blocks for 1024 tuples, not 114 tuples as expected

140

for a perfect hashing [Sprugnoli 1977]. As a result, query Q07 costs 166 blocks accesses to scan a hashed

relation, and query Q01 costs two block accesses, not one as expected for hashing, to retrieve a tuple

through a hashed key. The unpredictability of key collisions is less visible for other types of relations,

which hold a smaller number of tuples per block to incorporate time attributes, but it still contributes to

discrepancies between the analysis results and the measurement data

Type Snapshot Rollback Historical Temporal

Loading 100% 50% 100% 50% 100% 50% 100% 50%

Query
uc uc uc uc uc uc uc uc

0 0 0 14 0 14 0 14 0 14 0 14 0 14

QO! -50 0 0 0 0 0 0 0 0 0 0 0 0 0
Q02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q03 - - -1. -0. -0. 0 - - - - -1. -0. -0. +0.
Q04 - - 0 0 0 0 - - - - 0 0 0 0
QOS -50 0 0 0 0 0 0 0 0 0 0 0 0 0
Q06 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q07 -31. -11. -1. -0. -0. 0 -1. -0. -0. 0 -1. -0. -0. +0.
QOS 0 -11. 0 0 0 0 0 0 0 0 0 0 0 0
Q09 -25. +3. +1. +0. +1. 0 +1. +0. +1. 0 +1. +0. +0. 0
Q!O -0. +I. -0. -0. -0. 0 -0. -0. -0. 0 -0. -0. -0. +0.
Qll - - - - - - - - - - -0. -0. -0. +0.
Q12 - - - - - - - - - - 0 0 0 0
Q!3 - - - - - - 0 0 0 0 0 0 0 0
Q14 - - - - - - -1. -0. -0. 0 -1. -0. -0. +0.
Q15 - - -1. -0. -0. 0 - - - - -1. -0. -0. +0.
Q16 - - - - - - - - - - -1. -0. -0. +0.

Notes:
'UC' denotes Update Count. '-' denotes not applicable.
~o~ denotes the true zero. G +0.~ denotes a small positive fraction.
'-0.' denotes a small negative fraction.

Figure 6-12: Error Rates in the Analysis Results

We also measured the elapsed time to process the sample queries on the prototype. Figure 6-13

compares the measurement data with the time estimated from the analysis described in Appendix D. This

table shows that the differences between the measurement and the estimation is mostly 10 to 20%. There

are many factors to affect the elapsed time to process a query, other than input and output costs. Examples

are the CPU speed, machine load, scheduling policy, buffer management algorithms, etc. Though we

analyzed only input and output costs in this research, we could still estimate the elapsed time rather closely.

141

Query
Update Count - 0 Update Count- 14

Measured Estimated Measured Estimated

Q09 44.8 36.5 1277 1001
QlO 612 68.5 1187 1031
Qll 7.8 7.1 140 205
Q12 4.0 2.5 62 69.2

Figure 6-13: Elapsed Time (in sec)

6.4. Summary

A prototype of a temporal database management system was built by extending the snapshot DBMS

IN ORES. It supports the temporal query language TQuel, a superset of Que!, and handles all four types of

databases: snapshot, rollback, historical and temporal. A benchmark with sixteen sample queries was run

to study the performance of the prototype on the four types of databases with two loading factors. We

analyzed the results of the benchmark, determined the fixed cost and the variable cost for each query, and

identified major factors that have the greatest impact on the performance of the system. We also found that

the ·growth rate can be determined by the database type and the loading factor, regardless of the query type,

the access method, or even the distribution of updated tuples, as far as the access methods of sequential

scanning, hashing or ISAM are concerned. A formula was obtained to estimate the cost of a query on a

database with multiple temporal versions, when the cost of a query on the database with a single version is

known and its fixed portion is identified.

Input and output costs of the sample queries were also analyzed using the four models discussed in

Chapter 4. Estimated costs from the analysis were compared with the measurement data from the

benchmark, which showed that the cost of a query in terms of block accesses can be estimated quite

accurately (generally within about 1 %) using the four models. The elapsed time to process a query,

estimated using the models, was within about 10 to 20% of the measurement data.

Chapter 7

Temporally Partitioned Store

As the results of the benchmark discussed in Chapter 6 indicate, sequential scanning is expensive.

Access methods such as hashing and ISAM also suffer from rapid performance degradation due to ever

growing overflow chains. Reorganization does not help to shorten overflow chains, because all versions of

a version set share the same key.

A lower loading factor results in a lower growth rate, by reducing the number of overflow blocks in

hashing and ISAM. Hence better performance is achieved with a lower loading factor when the update

count is high. But there is an overhead for maintaining a lower loading factor both in space and

performance when the update count is low. A lower loading factor requires more space for primary blocks.

Scanning such a file sequentially (e.g. for query Qr:t7 or Q08 in Chapter 6) is more expensive than scanning

a file with a higher loading factor. For ISAM, a lower loading factor requires more directory blocks, which

may increase the height of the directory. As shown in Figure 6-8 of the previous chapter, for example,

query QlO on the temporal database with the update count of 0 reads in 3385 blocks for 50% loading,

significantly higher than 2233 blocks for 100% loading.

We conclude that access methods such as sequential scanning, hashing, or ISAM are not suitable for

a database with temporal support. There are other access methods that adapt to dynamic growth better

such as B-trees [Bayer & McCreight 1972], virtual hashing [Litwin 1978], linear hashing [Litwin 1980],

dynamic hashing [Larson 1978], extendible hashing [Fagin et al. 1979], K-D-B trees [Robinson 1981], or

grid files [Nievergelt et a!. 1984], but they also have various problems as indicated in Section 1.2.2.

Therefore, new access methods tailored to the particular characteristics of database management systems

with temporal support need to be developed to provide fast response for a wide range of temporal queries

without penalizing conventional non-temporal queries.

Our solution is the temporally partitioned storage structure discussed in Chapter 5, with various

formats for the history store, such as reverse chaining, accession lists, indexing, clustering, stacking, and

144

cellular chaining. This chapter describes how the temporally partitioned storage structure was

implemented into the prototype, and discusses the performance improvement achieved for the prototype by

using the various methods developed in Chapter 5. Issues on secondary indexing will also be discussed.

7.1. Implementation of the Temporally Partitioned Store

The prototype described io Section 6.1 supported TQuel and all four types of databases, yet used the

conventional access methods available in INGRES. To improve its performance, reverse chaining, among

the temporally partitioned storage structures, was subsequently added to the prototype.

The default storage format of a relation io INGRES, and hence io the prototype, is a heap. The

modify statement in Que! converts the storage structure of a relation from one format to another. Major

storage options available io INGRES are:

heap

hash

is am

: for a sequential file

: for a hashed file

: for an ISAM file

For example, a statement in Figure 6-4

modify Temporal_h to hash on id where fillfactor

converted the Temporal_h relation to a hashed file with the loading factor of 100%.

100

New options were added to the modify statement to specify the format of the history store for the

temporally partitioned storage structure. They are:

chain

accessionlist

index

cl.uster

stack

cell.ular

For example, the statement

: for reverse chaining

: for accession lists

: for indexing

: for clustering

: for stacking

: for cellular chaining

145

modify Temporal_h to chain on id

changes the Temporal_ h relation to the temporally partitioned store, if it is not already in such a

structure. The history store uses reverse chaining with the id attribute as the key, while the current store

maintains the previous format

Though the fillfactor parameter is not relevant for the history store considered here, some

formats require additional parameterS. Accession lists and indexing have the parameter time to specify

the amount of temporal information to be maintained in accession lists or index entries. Allowed values for

the time parameter are all to maintain information on all the time attributes, or a list of time attributes

such as valid from, valid to, transaction start, and transaction stop. For

example, we use the following statement to change the history store to the format of accession lists with all

the time attributes:

modify Temporal_h to accessionlist on id where time (all)

Stacldng and cellular chaining have the parameter cellsize to specify the stacking depth or the size of

a cell. To change the history store to the format of cellular chaining with up to four tuples in each cell, we

use the statement:

modify Temporal_h to cellular on id where cellsize 4

Issuing another modify statement with one of the options heap, hash, or isam will change

the format of the current store accordingly, but the history store will be unaffected The option single

was also added to convert a relation from the temporally partitioned structure to the single file structure.

Therefore, we can specify that the structure of a relation be changed from a single file to another single file

structure, from a single file structure to a temporally partitioned store, from a temporally partitioned store

to another temporally partitioned store, or from a temporally partitioned to a single file structure. In this

process, we can change the formats of the current and the history store independently of each other.

Complete syntax of the extended modify statement is given in Appendix A.

146

The system relation was modified to maintain information on the structure of each relation: whether

a relation is of the temporally partitioned structure, and if so, what format is used for the history store. A

relation with the temporally partitioned storage structure consists of two physical files, when indices, if

any, are not counted: one for the current store and the other for the history store. Opening or closing a

relation opens or closes both files together. When a relation is accessed, it is necessary to track the current

position for each file.

We can determine at compile time if a query is non-temporal. For a rollback database, a query is

non-temporal if it has the clause as of "now". For a historical database, a query is non-temporal if it

has the clause when (I 1 overlap ... overlap I;) overlap "now" for all the range variables t,.
For a temporal database, a query is non-temporal if it has the clause when (I 1 overlap ... overlap

t;) overl.ap "now" for all the range variables t,, and the clause as of "now". For a non-temporal

or current query, the query is evaluated by consulting only the current store without going through the

history store, using the conventional access methods provided by INGRES.

For the delete or the replace statement on a rollback database, there is only one case to be

examined for the relationship between the base interval and the update interval. For the delete or the

replace statement on a historical or a temporal database, there are four cases to be examined, ignoring

two null cases, for the relationships between the base interval and the update interval as discussed in

Section 5.1.2. In the prototype described in Section 6.1, the replace operation was performed by

following the delete and append scheme, because this scheme was simple to implement for all cases.

However, the delete and append scheme was found to be inapplicable to the temporally partitioned

store, because the base tuple remains in its place, while the newer version is put into a different location; ·

Thus, the system was changed to follow the append and change scheme as discussed in Section 5.1.2. We

had to examine each case of the relationships between the base interval and the update interval carefully to

determine the proper location of the current version, and to maintain a history chain, whether explicit or

not, for each version set. Maintaining a chain of history versions for each version set is more complicated

for a temporal database, since each replace inserts at least two versions. We ordered versions affected

in each update in reverse order of valid from time, then in reverse order of transaction start time. Thus, we

can retrieve recent versions more quickly, especially for queries with the default clause as of "now".

147

Accessing a relation with the single file structure involves two steps: one for the main block and the

other for overflow blocks. Accessing a relation with the temporally partitioned structure involves another

step: following the history chain, whether explicit or implicit Hence we need to maintain global

information on which store provides the tuple being processed now and the tuple to be retrieved next.

Algorithms to handle the delete and the replace statements on different types of relations are given

in Appendix E.

•

•

•

•

For simplicity, the split criterion adopted in implementing the temporally partitioned store was:

The current store contains current versions, while the history store holds history versions .

Deleted tuples are kept in the current store .

Versions to be expired, discussed in Section 5.1.3, are kept in the current store until a new version is
inserted.

Future versions are stored in the current store .

At present, the structure of reverse chaining has been actually implemented. The prototype's parser accepts

the full BNF syntax, but the remaining components do not support the other options.

7.2. Performance Analysis

This section discusses performance improvement achieved for the prototype by using the various

access methods developed in Chapter 5. Performance figures were obtained through performance analysis,

as described in Appendix F using the models in Chapter 4. The figures for reverse chaining were also

compared with the measurement data from the actual implementation to check its validity.

We studied the performance of the access methods on both rollback and temporal databases. We

assume that accession lists and indexing maintain complete temporal information, both transaction time

and valid time as appropriate, separate from history data. The index itself is assumed to be a hashed file,

but note that indexing restricts the format of the current store to indexing, as discussed in Section 5.2.3.

We also assume that the depth for stacking is four, and the cell size for cellular chaining is four.

As for clustering, we use the method of nonlinear hashing. The average storage utilization for

nonlinear hashing is 69.3 %, as discussed in Section 5.2.4.2. However, databases considered in this

analysis have high update counts, so each version set consists of more versions than a block can hold.

148

When a block. gets full with versions belonging to a single version set, we need to maintain a chain of

overfiow blocks. As a result, storage utilization becomes 100% ignoring the last block of each chain.

7.2.1. Performance on a Rollback Database

Space requirements when the update count is 0 or 14 are shown in Figure 7-1 for the Rollback h

relation in hashing with 100% loading, and for the same relation with various formats of the temporally

partitioned structure. Space requirements for the Rollback_i relation are similar to the Rollback_ h

relation except that the !SAM file requires additional space for directories. The table also shows the

growth rate, which is obtained when the growth per update is divided by the size for the update count of 0.

Type
Hashing Reverse Accession

Indexing Clustering Stacking
Cellular

(100%) Chaining Lists Chaining

Size, UC=O 129 129 129 133 129 129 129

Size, UC=l4 1927 1921 1922 1982 1921 (641) 2177

Growth per 128.4 128 128.1 128 128 (36.6) 146.3
Update

Growth 1.0 1.0 1.0 l.O 1.0 (0.28) 1.13
Rate

Notes:
'UC' denotes Update Count.
'(n)' denotes that only a partial history is stored.

Figure 7-1: Space Requirements for the Rollback_h Relation

From this table, we can make the following observations on the storage requirements of a rollback

relation with the temporally partitioned storage structure:

• The temporally partitioned storage structures have the same space requirements as the single file
structure when the update count is 0.

• When the update count is not 0, space requirements for reverse chaining, accession lists, indexing,
and clustering are about the same.

149

• When the update count is not 0, space requirements for cellular chaining is larger than the other
formats due to unfilled cells.

• When the update count is not 0, storage size for stacking remains the same, but older versions are
lost due to stack overflows.

Figure 7-2 shows the input costs for the benchmark queries of Figure 6.5 on the rollback database

with 100 % loading. Two columns under the label Conventional show the queries costs for the update

count of 0 and 14. Then there are six columns to show the costs of queries for the update count of 14 for

each fonnat of the history store: reverse chaining, accession lists, indexing, clustering, stacking, and

cellular chaining. When the update count is 0, the cost for any of the temporally partitioned structures is

the same as the cost for the conventional case.

Conventional Temporally Partitioned Store for Update Count= 14
Query Update Count Reverse Accession Indexing Clustering Stacking

Cellular
0 14 Chaining Lists Chaining

Q01 1 15 15 16 16 3 (2) 5
Q02 2 16 16 17 16 4 (3) 6
Q03 129 1927 129 334 280 129 X 129
Q04 128 1920 128 333 280 128 ·x 128
QOS 1 15 1 1 2 1 1 1
Q06 2 16 2 2 2 2 2 2
Q07 129 1927 129 129 129 129 129 129
Q08 128 1920 128 128 128 128 128 128
Q09. 1141 17242 1141 1141 2162 1141 1141 1141
QIO 2177 18311 2177 2177 2162 2177 2177 2177
Q15 129 3717 129 129 129 129 X 129

Notes:
'X' denotes not applicable.
'(n)' denotes that only a partial answer is retrieved

Figure 7-2: The Rollback Database with 100% Loading

The advantage of the temporally partitioned store is evident in processing current queries such as

Q05 through Q10. No matter what format is used for the history store, the cost remains constant for any

update count. For example, QlO on the rollback database costs 2177 blocks instead of 18311 blocks when

the update count is 14. Query Q05 for indexing costs two block accesses, one more than the other formats,

because the current store is also restricted to indexing, while the other formats allow hashing for the current

store.

150

The. performance of temporal queries like Q01 and Q02 can be improved by clustering, which

collects history veiSions of each version set into a minimum number of blocks. Since there are 14 history

versions for the update count of 14, and each block holds up to 8 tuples according to the assumption in

Chapter 6, scanning all history versions for a version set costs two block accesses. Counting the cost to

locate the current version in the current store, QOl costs three block accesses, and Q02 costs four block

accesses.

Cellular chaining also provides the benefit of clustering to a certain degree. It takes four cells to

hold 14 history veiSions with the cell size of four according to the assumption. Hence, Q01 costs five block

accesses, and Q02 costs six block accesses.

By stacking, we can retrieve history versions for each veiSion set at the cost of one block access, but

only a limited number of the most recent veiSions are maintained. Thus, Q01 costs two block accesses, and

Q02 costs three block accesses, but those figures are put in parentheses to denote that the answers are only

partial. Note that stacking cannot answer queries Q03 and Q04 inquiring the old status of the database,

because older veiSions of history data were discarded due to stack overflow.

Accession lists or indexing with temporal information in each accession list or an index entry can

facilitate temporal queries Q03 and Q04 by evaluating the temporal predicate without accessing history

data. If we assume that accession lists maintain complete temporal information for the time attributes

transaction start and transaction stop, each enlry' consumes 12 bytes for two time attributes and a pointer to

a history version, thus 72 entries are contained in each block of 1024 bytes allowing for some overhead.

Since there are 14 history veiSions times 1024 version sets for the update count of 14, the size of the entire

accession lists is 200 blocks. Scanning the current store and the accession lists for the Temporal_h

relation, entries satisfying the as of clause are extracted. If we assume that the number of such entries

is five, the total cost for Q03 is 334 block accesses (= 129 + 200 + 5). Likewise, the cost for Q04 is 333

block accesses (= 128 + 200 + 5).

Similar improvement is also achieved by indexing, where each index entry maintains complete

temporal information for transaction time. Since each entry with two time attributes plus a key and a

pointer takes 16 bytes, and there are 15 versions times 1024 version sets for the update count of 14, the size

of the entire index is 275 blocks. We need not scan the current store in indexing, so entries satisfying the

151

as of clause are extracted while canning the index for the Tempora1_h relation. Under similar

assumptions to the case of accession lists above, the total cost for Q03 or Q04 is 280 block accesses (= 275

+ 5).

The same arguments apply to the historical database with 100% loading, except that queries Q03 and

Q04 are not applicable to a historical database. The costs for queries Q09 and Q10 are higher by 56 block

accesses each on the historical database than on the rollback database, because one variable detachment

operation is performed to evaluate the when clause for the queries Q09 and Q10, apparently without any

benefit

7.2.2. Performance on a Temporal Database

Space requirements when the update count is 0 or 14 are shown in Figure 7-3 for the Tempora1_h

relation in hashing with 100% loading, and for the same relation with various formats of the temporally

partitioned structure. Space requirements for the Tempo ra 1_ i relation are similar to the Tempo r a 1_ h

relation except that the !SAM file requires additional space for directories. The table also shows the

growth rate, which is obtained when the growth per update is divided by the size for the update count of 0.

From Figure 7-3, we can make the following observations on the storage requirements of a temporal

relation with the temporally partitioned storage structure:

•

•

•

•

•

The temporally partitioned storage structures consume slightly more space than the single file
structure when the update count is 0, due to extra space for a physical link to the history chain.

The temporally partitioned storage structures consume more space than the single file structure when
the update count is not 0, due to extra space for maintenance of chaining, indexing or accession lists.

When the update count is not 0, space requirements for reverse chaining, accession lists, indexing,
and clustering are about the same.

When the update count is not 0, space requirements for cellular chaining can be larger than the other
formats if there are unfilled cells.

When the update count is not 0, storage size for stacking remains the same, but older versions are
lost due to stack overfiows.

152

Type
Hashing Reverse Accession Indexing Clustering Stacking Cellular
{100%) Chaining Lists Chaining

Size, UC= 0 129 147 147 141 147 147 147

Size, UC=14 3717 4243 3957 4082 4243 (733) 4243

Growth per 256.3 292.6 272.1 281.5 292.6 (419) 292.6
Update

Growth
1.99 1.99 1.85 2.0 1.99 (0.28) 199

Rate

Notes:
'UC' denotes Update Count.
'(n)' denotes that only a partial history is stored.

Figure 7-3: Space Requirements for the Temporal_ h Relation

Compared with the table in Figure 7-1, we find that

• When the update count is 0 with the temporally partitioned storage structure, a temporal relation can
consume more space than a corresponding rollback relation due to additional time attributes.

• When the update count is not 0 with the temporally partitioned storage structure, a temporal relation
consumes about twice the space of a corresponding rollback relation, because each replace
operation inserts two new versions.

Figure 7-4 shows the input costs for the temporal database with 100% loading. We make the same

assumptions as those for the rollback database in Figure 7-2, except that accession lists and indexing also

maintains information on valid time as well as transaction time. The discussion concerning queries Q01

through QlO on the rollback database with 100% loading similarly applies to those queries on the temporal

database with 100% loading.

Performance improvement with the temporally partitioned storage structure is even striking for the

temporal database. For queries Q05 through Q10 on any temporally partitioned structure other than

indexing, the cost remains constant regardless of the update count. For example, QlO on the temporal

database costs 2251 blocks instead of 34493 blocks when the update count is 14. Note, however, that the

costs of queries Q07 through Q10 on a temporally partitioned structure are slightly higher than the

corresponding costs on a conventional structure with the update count of 0, because the size of the current

153

store is bigger than the conventional structure with the update count of 0. As for query Q09 or Q10 on the

temporal database with indexing, we need to scan the index and the current store of the Temporal_i

relation, then repeatedly access the Temporal_ h relation through the index. The resulting cost is

significantly higher than other formats, but is still lower than the conventional case.

Conventional Temporally Partitioned Store for Update Count= 14
Query Update Count Reverse Accession

Indexing Clustering Stacking
Cellular

0 14 Chainine Lists Chainine

QOl 1 29 29 30 30 5 (2) 8
Q02 2 30 30 31 30 6 (3) 9
Q03 129 3717 4243 776 787 4243 X 4243
Q04 128 3712 4243 776 787 4243 X 4243
Q05 1 29 1 1 2 1 1 1
Q06 2 30 2 2 2 2 2 2
Q07 129 3717 147 147 141 147 147 147
Q08 128 3712 147 147 141 147 147 147
Q09 1200 33350 1227 1227 2218 1227 1227 1227
Q10 2233 34493 2251 2251 2218 2251 2251 2251
Qll 385 11141 12729 2317 2350 12729 X 12729
Q12 131 3743 4274 3989 4114 4250 (737) 4253
Q13 1 29 29 8 8 5 X 8
Q14 129 3717 4243 3957 4082 4243 X 4243
Q15 129 3717 4243 3957 4082 4243 X 4243
Q16 129 3717 4243 3957 4082 4243 X 4243

Notes:
'X' denotes not applicable.
'(n)' denotes that only a partial answer is retrieved.

Figure 7-4: The Temporal Database with 100% Loading

As for query Ql1 which requires a join operation on time attributes, the performance can be

improved by accession lists, where each accession list maintains complete temporal information for the

time attributes transaction start, transaction stop, valid from, and valid to. Since each entry with four time

attributes and a pointer to a history version consumes 20 bytes, and there are 28 history versions times 1024

version sets for the update count of 14, the size of the entire accession lists is 624 blocks. Scanning the

current store and the entries in the accession lists for the Temporal_h relation, the entries satisfying the

as of clause are extracted. If we assume that the number of such entries is two, and that tuple

substitution is used to perform a join, then the current store and the accession lists for the Temporal_ i

relation are scanned twice to find entries satisfying the as of and the when clauses. Thus we end up

154

with scanning the current store and the accession lists three times: once for the Temporal_ h relation and

twice for the Temporal_i relation. If we assume that two entries in the accession lists for the

Ternporal_i relation satisfy the as of and the when clause, then four history versions are actually

retrieved from the history store: two from the Temporal_ h relation and two from the Temporal_ i

relation. So the total cost is 2317 block accesses(= (147 + 624) x 3 + 4), which is a marked improvement

from 11141 of the conventional method The improvement resulted from performing a temporal join on

the accession lists, whose size is much smaller than the history data.

Similar improvement is also achieved by indexing, where each index entry maintains complete

temporal information for the four time attributes. Since each entry with four time attributes plus a key and

a pointer takes 24 bytes, and there are 29 versions times 1024 version sets for the update count of 14, the

size of the entire index is 782 blocks. Scanning the index for the Temporal_ h relation, the index entries

satisfying the as of clause are extracted. Under similar assumptions to the case of accession lists above,

the index for the Temporal_ i relation is scanned twice to find the entries satisfying the as of and the

when clauses. Then the total cost is 2350 block accesses (= 782 x 3 + 4).

Query Q12 is facilitated by clustering or cellular chaining for the portion of scanning a version set,

as discussed for queries Q01 and Q02, but the overall performance is dominated by scanning the

Temporal_ i relation sequentially. Query Q 12 will be further discussed in the next section for secondary

indexing. Note that stacking cannot answer query Qll, and provides only a partial answer to query Ql2.

Query Q13 is similar to QOl, but Ql3 can be improved by accession lists or indexing. The when

clause can be evaluated without accessing history data, then only the tuples satisfying the temporal

predicate are retrieved. If we assume there are seven such tuples, the cost is eight block accesses, where

one extra block accounts for accessing an accession list or an index entry.

Queries Q14 through Ql6 retrieve tuples through a non-key attribute, which requires sequential

scanning of the entire relation. Maintaining a secondary index can improve the costs of these queries, as

will be discussed in the next section.

155

Access
Conventional

Reverse Accession Indexing
Method Chaining Lists

Query
Cost (in Blocks) Growth Cost (in Blocks) Growth Cost (in Blocks) Growth Cost (in Blocks) Growth

Fixed Variable Rate Fixed Variable Rate Fixed Variable Rate Fixed Variable Rate

Q01 0 1 2 0 1 2 1 1 2 1 1 2

Q02 1 1 2 1 1 2 2 1 2 1 1 2

Q03 0 129 1.99 0 146.3 2 129 223 2 5 27 2

Q04 0 128 2 0 146.3 2 129 22.3 2 5 27 2

Q05 0 1 2 0 1 0 0 1 0 1 1 0

Q06 1 1 2 1 1 0 1 1 0 1 1 0

Q07 0 129 1.99 0 146.3 0 0 146.3 0 0 140.7 0

Q08 0 128 2 0 146.3 0 0 146.3 0 0 140.7 0

Q09 56 1144 2.01 56 1170.3 0 56 1170.3 0 56 2162 0

QlO 1080 1153 2 1080 1170.3 0 1080 1024 0 56 2162 0

Qll 0 385 2 0 438.9 2 376 66.9 2 4 81 2
Q12 2 129 2 2 147.3 2 13 137.0 2 3 141.7 2

Q13 0 1 2 0 1 2 1 0.24 2 1 0.24 2
Q14 0 129 1.99 0 146.3 2 0 146.3 2 0 146.3 2
Q15 0 129 1.99 0 146.3 2 0 146.3 2 0 146.3 2
Q16 0 129 1.99 0 146.3 2 0 1463 2 0 1463 2

Access
Conventional Clustering Stacking

Cellular

Method Chaining

Query
Cost (in Blocks) Growth Cost (in Blocks) Growth Cost (in Blocks) Growth Cost (in Blocks) Growth
Fixed Variable Rate Fixed Variable Rate Fixed Variable Rate Fixed Variable Rate

Q01 0 I 2 0 1 0.29 (0) (1) (0.07) 0 1 05
Q02 1 1 2 1 1 0.29 (1) (1) (0.07) 1 1 0.5
Q03 0 129 1.99 0 146.3 2 X X X 0 146.3 2
Q04 0 128 2 0 146.3 2 X X X 0 146.3 2
Q05 0 1 2 0 1 0 0 1 0 0 1 0

Q06 1 1 2 1 1 0 1 I 0 1 1 0

Q07 0 129 1.99 0 146.3 0 0 146.3 0 0 146.3 0
Q08 0 128 2 0 146.3 0 0 146.3 0 0 146.3 0

Q09 56 1144 2.01 56 1170.3 0 56 1170.3 0 56 1170.3 0

QIO 1080 1153 2 1080 1170.3 0 1080 1170.3 0 1080 1170.3 0
Qll 0 385 2 0 438.9 2 X X X 0 438.9 2
Q12 2 129 2 2 146.5 2 (2) (25.3) (2) 2 146.6 2
Q13 0 1 2 0 1 0.29 X X X 0 I 0.5
Q14 0 129 1.99 0 1463 2 0 146.3 2 0 146.3 2

Q15 0 129 1.99 0 146.3 2 0 146.3 2 0 146.3 2

Ql6 0 129 1.99 0 146.3 2 0 146.3 2 0 146.3 2

Note:
'X' denotes not applicable.

Figure 7-5: Fixed Costs, Variable Costs, and Growth Rates

In section 6.2.3, we divided the cost of a query into the fixed portion and the variable portion, then

calculated the growth rate of the query cost. Following the same procedure, we obtained Figure 7-5 which

shows the fixed costs, variable costs, and growth rates for each query on the temporal database with

156

different formats of the history store. The table shows that:

•

•

•

For non-temporal queries such as QOS through Q 10, the growth rate can be reduced to 0 by using
any of the temporally partitioned storage structures.

For version scanning, e.g. queries QOl and Q02, clustering and cellular chaining reduce the growth
rate, improving the performance.

For rollback queries such as Q03, Q04, and Qll, accession lists and indexing reduce the variable
cost, improving the performance as the update count increases.

For queries which require sequential scanning, e.g. queries Q03, Q04, Qll, and Q12, reverse
chaining, clustering, or cellular chaining exhibits a slightly inferior performance, due to the
overhead of storing temporal information.

In conclusion, the temporally partitioned storage structure improve the retrieval performance of databases

with temporal support by reducing either the growth rate or the variable cost.

7 .3. Secondary Indexing

Queries retrieving records through non-key attributes can be facilitated by secondary indexing. For

example, we can create a secondary index, Temp_h_inx, on the amount attribute of the

Temporal_ h relation using the index statement in Que!:

index on Temporal_h is Temp_h_inx (amount)

Maintaining a secondary index on the attribute amount can improve the performance of queries such as

Q07, Q08, Q12, and Q14 through Ql6.

As discussed in Section 5.3, there are several types of secondary indices, especially for a temporal

relation. A secondary index for a temporal relation may be any of snapshot, rollback, historical, or

temporal. To specify the type of a secondary index, we extend the index statement with the as type

clause, where type can be any of snapshot, rollback, historical, and temporal. For

example, a statement:

index on Temporal_h is Temp_h_inx (amount) as temporal

creates a secondary index as a temporal relation.

157

The default storage structure for a secondary index is a heap, but like any regular relation, its

structure can be changed to other format using the modi.fy statement. An index may be stored into a

single file for all the versions (single file), or may itself be maintained as a temporally partitioned structure

having a current index for current data and a history index for history data. In each case, we may choose

any access> methods such as a heap, hashing, ISAM, etc. At present, our prototype supports only the

secondary indices as snapshots. The other options were not implemented into the prototype.

Space requirements for various types of secondary indices on the Temporal_ h relation are shown in

Figure 7-6, when the update count is 0 or 14. The table also shows the growth rate, which is obtained

when the growth per update is divided by the size for the update count of 0. Compared witli the table in

Figure 7-3, a secondary index consumes from 8% to 21% of the space required by the relation itself.

TvPe as Sn3];lshot as Rollback as Historical as Temporal

Size, UC=O 11 19 19 27

Size, UC=14 295 531 531 782

Growth per 20.3 36.6 36.6 53.9 Update

Growth 1.85 1.93 1.93 2.0 Rate

Note:
'UC' denotes Update Count.

Figure 7-6: Space Requirements for a Secondary Index

For the snapshot index, each entry needs eight bytes, four for the secondary key and four for a

pointer. Since a block of 1024 bytes can store 101 entries, 11 blocks are needed for 1024 tuples when the

update count is 0. When the update count is 14, there are 29 versions multiplied by 1024 tuples; hence 295

blocks are needed for the single file index.

For the rollback or the historical index, each entry needs 16 bytes, four for the secondary key, four

for a pointer, and eight for two attributes of transaction time or valid time. So a block of 1024 bytes can

158

store 56 entries, and there are 29 versions multiplied by 1024 tuples when the update count is 14; hence

531 blocks are needed for the single file index.

For the temporal index, each entry needs 24 bytes, four for the secondary key, four for a pointer,

eight for two attributes of valid time, and eight for two attributes of transaction time. So a block of 1024

bytes can store 38 entries, and there are 29 versions multiplied by 1024 tuples when the update count is 14;

hence 782 blocks are needed for the single file index.

Figure 7-7 compares the snapshot index with the rollback index in terms of the costs of sample

queries on the temporal database with the update count of 14. Performance figures in this table were

derived analytically; as an example, the cost of query Q16 is analyzed in Appendix F. Note that the

existence or the structure of secondary indices do not affect the performance of other queries which do not

involve the secondary access path.

Conventional Indexed as Snapshot Indexed as Rollback
Query Update Count as Single as Partitioned as Single as Partitioned

0 14 as Heap as Hash as Heap as Hash as Heap as Hash as Heao as Hash

Q07 129 3717 324 30 12 2 560 30 20 2
Q08 128 3712 324 30 12 2 560 30 20 2
Q12 131 3743 355 61 355 62 591 61 591 62
Q14 129 3717 324 30 324 31 560 30 560 31
Q15 129 3717 324 30 324 31 543 13 543 14
Q16 129 3717 324 30 324 31 543 13 543 14

Note:
All values are for a temporal database with a 100% loading and the update count of 14.

Figure 7-7: Secondary Indexing as Snapshot or Rollback

If the index is stored as a heap, queries Q07 and Q08 cost 324 block accesses each, 295 index blocks

plus 29 data blocks. This is in fact more expensive than the simple temporally partitioned store without

any index, though better than the conventional structure. Hence, we must take care that the cost of using

an index does not overwhelm the saving obtained from using the temporally partitioned store. If the index

is hashed, the cost is reduced to 30 block accesses with 1 index block and 29 data blocks.

If we follow the temporally partitioned scheme maintaining a separate index for current data, there

are only 1024 entries in the current index, requiring 11 index blocks. Each of Q07 and Q08 costs 12 blocks

159

with a heap index, while it costs only 2 blocks with hashing. Note the difference between 3717 blocks and

2 blocks for processing the same query.

Query Q12 can also benefit from secondary indexing, since it is no longer necessary to scan the

Temporal_i relation sequentially. If the index is stored as a single heap, Q12 costs 355 block accesses,

where 295 block accesses are needed to scan the index. If the index is stored as a single hash, the cost is

reduced to 61 block accesses.

Queries Q14 through Q16 are similar to queries Q!J7 and Q08 in that they are one relation queries

and their costs can be reduced significantly with secondary indexing. However, queries Q14 through Ql6,

like Q 12, are temporal queries, and need to access history data regardless of the storage structure. Thus the

temporally partitioned index is not better than the single file index for queries Q12 and Q14 through Q16.

In fact, the index as a temporally partitioned hash costs one more block access than the index as a single

hash, because each index needs to be hashed separately.

The rollback index is effective for processing queries with the as of clause, such as Q15 and Q16.

The as of predicate can be evaluated with information from index entries, and only the tuples that

satisfy the predicate need to be retrieved.

If the index is stored as a single hash, query Q15 costs 13 block accesses, assuming that there are 12

tuples satisfying the as of clause among 29 candidates. Storing the index as a temporally partitioned

hash, query Q15 costs 14 block accesses, one block access more than as a single hash, since each index

needs to be hashed separately. However, storing the rollback index as a heap increases the query costs

over the snapshot index, due to the bigger size of the rollback index.

Figure 7-8 compares the historical index with the temporal index in terms of the costs of sample

queries on the temporal database with the update count of 14. The discussion on the rollback index

similarly applies to the historical index, except that the historical index maintains two attributes of valid

time instead of transaction time, and that the historical index is effective for processing queries with the

when clause like Q14 and Q16. If the index is stored as a single hash, Q14 or Q16 costs 8 block accesses,

assuming that there are 7 tuples satisfying the when clause among 29 candidates.

160

Conventional Indexed as Historical Indexed as Temporal
Query Update Count as Single as Partitioned as Single as Partitioned

0 14 as Heap as Hash as Heap as Hash as Heap as Hash as Heap as Hash

Q07 129 3717 532 2 20 2 783 2 28 2
Q08 128 3712 532 2 20 2 783 2 28 2
Q12 131 3743 563 61 563 62 814 61 814 62
Ql4 129 3717 538 8 538 9 789 8 789 9
Q15 129 3717 560 30 560 31 794 13 794 14
Q16 129 3717 538 8 538 9 786 5 786 6

Note:
All values are for a temporal database with a 100% loading and the update count of 14.

Figure 7-8: Secondary Indexing as Historical or Temporal

The temporal index combines the benefits of the rollback index and the historical index, effective for

processing queries with the as of or when clause. The temporal predicate can be evaluated completely

with information from index entries, and only the tuples that satisfy the predicate need to be retrieved.

If the index is stored as a single hash, Q16 costs only 5 block accesses, assuming that there are 4

tuples satisfying both the when and the as of clauses among 29 candidates. However, storing the

temporal index as a heap increases the cost of queries over any other types of indices, due to the bigger size

of the temporal index.

Now we can make the following observations on the types of secondary indices, based on the

analysis of query costs as shown in Figures 7-7 and 7-8.

•

•

•

•

•

•

The temporally partitioned index is good for non-temporal queries •

For temporal queries, the cost of a query for the temporally partitioned heap index is equal to the cost
of the query for the single heap index.

For temporal queries, the cost of a query for the temporally partitioned hash index is more expensive
by one block access than the cost of the query for the single hash index.

The rollback secondary index is good for queries with the as of clause .

The historical secondary index is good for queries with the when clause .

The temporal secondary index is good for queries with either or both of the when and the as of
clauses.

•

•

161

It is desirable to provide a secondary index with the random access mechanism such as hashing .

If there is no random access mechanism for a secondary index, storing a large amount of temporal
information in index entries degrades the performance due to the bigger size.

PART IV

Conclusions

Thus far, various issues on database management systems with temporal support have been

examined with emphasis on the implementation aspects. Chapter 8 presents the summary and conclusions

of this dissertation and discusses the future work to be pursued in the area.

Chapter 8

Conclusions and Future Work

8.1. Conclusions

The thesis of this research is that new access methods can be developed to provide temporal support

in database management systems without penalizing conventional non-temporal queries and the

performance of such systems can be analyzed by a set of models.

To demonstrate this thesis, we have developed a set of models to characterize the various phases of

query processing in database management systems with temporal support. We have investigated various

formats of the temporally partitioned storage structures, and analyzed their performance using the

performance models. We also implemented a prototype temporal database system incorporating one of the

temporally partitioned structures, and ran a benchmark to measure the performance of sample queries on

the prototype.

The measurement data and the analysis results indicate that the temporally partitioned store can

improve the performance of various temporal queries, while eliminating a performance penalty on

conventional non-temporal queries. Query costs estimated from the analysis were compared with the

measurement data in Section 6.3, which showed that the performance of database systems with temporal

support can be analyzed quite accurately using the four models.

Major contributions of this research achieved in this process are:

• A taxonomy of time to classify database types in terms of temporal support was developed.

• Three distinct kinds ~f time with orthogonal semantics in database management systems were
identified. They are transaction time, valid time, and user-defined time.

• Depending on the capability to support either or both of transaction time and valid time,
databases were classified into four types: snapshot, rollback, historical, and temporal.

•

•

166

Four models fanning a hierarchy were developed to characterize query processing in database
systems with temporal support.

• The algebraic expression was defined to describe procedurally the process of evaluating
TQuel queries.

• The file primitive expression was defined to characterize the input and output operations.

• The model of algebraic expressions was developed to map the algebraic expression to the file
primitive expression.

• The model of database/relations was developed to represent the characteristics of a database
and relations.

• The access path expression was defined to characterize a path taken through a storage
structure to satisfy an access request

• The model of access paths was developed to map the file primitive expression to the access
path expression.

• The model of storage devices was developed to represent the characteristics of storage devices,
and to map the access path expression to the access path cost.

The temporally partitioned storage structure was investigated to improve the performance of
temporal queries without penalizing conventional non-temporal queries.

• Various issues on the temporally partitioned structure were examined.

• Update procedures for delete and replace were developed and analyzed

• Six formats of the history store were developed, analyzed, and compared with one another.
They are reverse chaining, accession lists, indexing, clustering, stacking, and cellular
chaining.

• A new form of hashing, termed nonlinear hashing, was developed.

• Tuple versioning and attribute versioning were compared with each other, and the conversion
process from one form to the other was formalized.

• Issues on secondary indexing for databases with temporal support were examined

• As a test-bed to evaluate the access methods and the models, a prototype of a temporal DBMS was
built by modifying a snapshot DBMS INGRES.

• A benchmark was run on the prototype to identify problems with conventional access methods.

• The benchmark also provided performance data to be compared with analysis results from the
performance models.

167

* Among the temporally partitioned storage structures, reverse chaining was incmporated in the
prototype to enhance its performance.

• The feasibility of providing temporal support for database management systems without penalizing
conventional non-temporal queries was demonstrated

8.2. Future Work

This research has addressed some of the major issues on providing temporal support for database

management systems, yet many issues still remain to be investigated.

The first area of further work is to implement various formats of the history store developed in

Section 5.2. We have implemented reverse chaining as described in Chapter 7. The other structures can

be added incrementally to the system.

We need to analyze the cost to update temporally partitioned storage structures. A preliminary study

indicates that the output cost for such an operation is slightly higher due to the overhead for maintaining a

specific structure, but its input cost can be lower than conventional srructures. The actual cost will be

heavily dependent on the number of buffers and buffering algorithms. The CPU cost involved in

maintaining the temporally partitioned storage structures also needs to be considered.

This research has dealt with only the core of TQuel. It will be interesting to investigate

implementation issues on temporal aggregates [Snodgrass & Gomez 1986], implement them, and analyze

their performance.

Throughout this research, we assumed that all temporal information is complete and accurate, which

is not true in many cases. Some work has been done to classify information as determinant or

indeterminant, and to define the before predicate using three-valued logic [Snodgrass 1982]. We still need

to study issues on bow to handle different semantics of null, unknown, or uncertain, and on how to support

incomplete temporal information.

Though this research has studied new access methods to improve the performance of temporal

queries, further work is needed to develop new query processing algorithms for optimization of temporal

queries. For example, our prototype database system performs the temporal join operation using the

method of tuple substitution, as INGRES computes the conventional join. New methods tailored to the

particular characteristics of temporal join may be developed to improve the performance.

168

We described the Performance Analyzer for TQuel Queries (PATQ) in Section 4.2.2, which utilizes

the four models developed to characterize the various phases of temporal query processing. We analyzed

the performance of sample queries manually in Chapters 6 and 7. However, this analysis could be

automated by implementing the PATQ. In addition, the PATQ could be extended to be an optimization

tool as discussed in Section 4.2.2.

Nonlinear hashing was developed in this research to cluster tuples belonging to the same version set,

but it can be used for other applications to retrieve a record at the cost of one disk access. Further work is

needed to analyze characteristics of split functions, study its performance in a highly dynamic environment,

and extend it to nested nonlinear hashing briefly described in Section 5.2.4.2.

Supporting time in database management systems not only adds to the functionality for various

applications, but also can benefit internal DBMS operations. Though this research has not addressed issues

on concurrency control, recovery, or synchronization of distributed databases, such issues need to be

studied to utilize the temporal information inherent in databases with temporal support.

As discussed in Section 1.1.2, database management systems with temporal support expand the area

of database applications, bringing a wide range of benefits. However, many interesting issues remain to be

investigated, some of which were listed in this section. It is a challenge to pursue these issues for realizing

the full potential of such systems.

Bibliography

[Aghili & Severance 1982) Aghili, J. and D. Severance. A Pratical Guide to the Design of Differential
Files for Recovery of On-Line Databases. ACM Transactions on Database Systems, 7, No.4, Dec.
1982, pp. 540-565.

[Ahn 1986) Ahn, I. Towards an Implementation of Database Management Systems with Temporal Support,
in Second International Conference on Data Engineering, IEEE. Feb. 1986, pp. 374-381.

[Ahn & Snodgrass 1986) Ahn, I. and R. Snodgrass. Performance Evaluation of a Temporal Database
Management System, in Proceedings of ACM SIGMOD International Conference on Management
of Data, Washington, DC: May 1986, pp. 96-107.

[Ammon et al. 1985) Ammon, G., J. Calabria and D. Thomas. A High-Speed, Large-Capacity, Jukebox
Optical Disk System. IEEE Computer, 18, No.7, July 1985, pp. 36-46.

[Anderson 1982) Anderson, TL. Modeling Time at the Conceptual Level, in Improving Database Usability
and Responsiveness, Ed. P. Scheuermann. Jerusalem, Israel: Academic Press, 1982, pp. 273-297.

[Andler 1979) Andler, S. A. Predicate Path Expressions: A High-level Synchronization Mechanism. PhD.
Diss. Computer Science Department, Carnegie-Mellon University, Aug. 1979.

[Ariav & Morgan 1981) Ariav, G. and HL. Morgan. MDM: Handling the time dimension in generalized
DBMS. Working Paper. The Wharton School, University of Pennsylvania. May 1981.

[Ariav & Morgan 1982) Ariav, G. and H.L. Morgan. MDM: Embedding the Time Dimension in
Information Systems. TR 82-03-01. Department of Decision Sciences, The Wharton School,
University of Pennsylvania. 1982.

[Ariav 1984) Ariav, G. Preserving the Time Dimension in Information Systems. PhD. Diss. The Wharton
School, University of Pennsylvania, Apr. 1984.

[Batory 1981) Batory, D. B+ Trees and Indexed Sequential Files: A Performance Comparison, in
Proceedings of ACM SIGMOD International Conference on Management of Data, May 1981, pp.
30-39.

[Batory & Gotlieb 1982) Batory, D. and C. Gotlieb. A Unifying Model if Physical Databases. ACM
Transactions on Database Systems, 7, No.4, Dec. 1982, pp. 509-539.

[Batory 1985) Batory, D. Modeling The Storage Architecture Of Commercial Database Systems. ACM
Transactions on Database Systems, 10, No.4, Dec. 1985, pp. 463-528.

[Bayer & McCreight 1972) Bayer, R. and E. McCreight. Organization and Maintenance of Large Ordered
Indexes. Acta Informatica, I, No.3 (1972), pp. 173-189.

[Bayer & Unterauer 1977) Bayer, R. and K. Unterauer. Prefix B-Trees. ACM Transactions on Database
Systems, 2, No.1, Mar. 1977, pp. 11-26.

[Ben-Zvi 1982) Ben-Zvi, J. The Time Relational Model. PhD. Diss. UCLA, 1982.

170

[Bernstein & Goodman 1980] Bemstein, P. and N. Goodman. Timestamp-Based Algorithms for
Concurrency Control in Distributed Database Systems, in Proceedings of the Conference on Very
Large Databases, Oct 1980.

[Bloom 1970] Bloom, B. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications
of the Association of Computing Machinery, 13, No.7, July 1970, pp. 422-426.

[Bolour et al. 1982] Bolour, A., T.L. Anderson, LJ. Debeyser and H.K.T. Wong. The Role of Time in
Information Processing: A Survey. SigArt Newsletter, 80, Apr. 1982, pp. 28-48.

[Breutmann et al. 1979] Breutmann, B., E. F. Falkenberg and R. Mauer. CSL: A language of defining
conceptual schemas, in Data Base Architecture. Amsterdam: North Holland, Inc., 1979.

[Bubenko 1977] Bubenko, J .A., Jr. The Temporal Dimension in Information Modeling, in Architecture and
Models in Data Base Management Systems. North-Holland Pub. Co., 1977.

[Cardenas 1973] Cardenas, A. Evaluation and Selection of File Organization - A Model and System.
Communications of the Association of Computing Machinery, 16, No.9, Sep. 1973, pp. 540-548.

[Cardenas 1975] Cardenas, A. Analysis and Performance of Inverted Data Base Structures.
Communications of the Association of Computing Machinery, 18, No. 5, May 1975, pp. 253-263.

[Ceri & Pelagatti 1984] Ceri, S. and G. Pelagatti. Distributed Databases Principles & Systems. NY:
McGraw-Hill, 1984.

[Chen & Vitter 1984] Chen, W. and J. Vitter. Analysis of New Variants of Coalesced Hashing. ACM
Transactions on Database Systems, 9, No.4, Dec. 1984, pp. 616-645.

[Cheung 1982] Cheung, T. Estimating Block Accesses and Number of Records in File Management.
Communications of the Association of Computing Machinery, 25, No.7, July 1982, pp. 484-487.

[Christodou1akis 1983] Cbristodoulakis, S. Estimating Block Transfers and Join Sizes, in Proceedings of
ACM SIGMOD International Conference on Management of Data, May 1983, pp. 40-54.

[Christodoulakis 1984] Cbristodoulakis, S. Implications of Certain Assumptions in Database Performance
Evaluation. ACM Transactions on Database Systems, 9, No.2, June 1984, pp. 163-186.

[Cichelli 1980] Cichelli, R. Minimal perfect hash functions made simple. Communications of the
Association of Computing Machinery, 23, No.1, Jan. 1980, pp. 17-19.

[Clifford & Tansel 1985] Gifford, J. and A. Tansel. On An Algebra For Historical Relational Databases:
Two Views, in Proceedings of ACM SIGMOD International Conference on Management of Data,
1985, pp. 247-265.

[Clifford & Warren 1983] Gifford, J.A. and D.S. Warren. Formal Semantics for Time in Databases. ACM
Transactions on Database Systems, 8, No.2, June 1983, pp. 214-254.

[Codd 1979] Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems, 4, No.4, Dec. 1979, pp. 397-434.

[Coffman & Eve 1970] Coffman, E. andJ. Eve. File Structures Using Hashing Functions. Communications
of the Association of Computing Machinery, 13, No.7, July 1970, pp. 427-432.

[Comer 1979] Comer, D. The UbiquitousB-tree. Computing Surveys. 11, No.2 (1979), pp. 121-138.

[Copeland 1982] Copeland, G. What If Mass Storage Were Free?. IEEE Computer, 15, No.7, July 1982,
pp. 27-35.

171

[Copeland & Maier 1984] Copeland, G. and D. Maier. Making Sma/ltalk a Database System, in
Proceedings of ACM SIGMOD International Conference on Management of Data, Ed. B.
Yormark. Association for Computing Machinery. Boston, MA: June 1984, pp. 316-325.

[Fagin et a!. 1979] Fagin, R., J. Nievergelt, N. Pippenger and H. Strong. Extendible Hashing - A Fast
Access Method for Dynamic Files. ACM Transactions on Database Systems, 4, No. 3, Sep. 1979,
pp. 315-344.

[Findler & Chen 1971] Findler, N. and D. Chen. On the problems of time retrieval, temporal relations,
causality, and coexistence, in Proceedings of the International Joint Conference on Artificial
Intelligence, Imperial College: Sep. 1971.

[Fujitani 1984] Fujitani, L. Laser Optical Disk: The Coming Revolution in On-Line Storage.
Communications of the Association of Computing Machinery, 27, No.6, June 1984, pp. 546-554.

[Gadia & Vaishnav 1985] Gadia, S. and J. Vaishnav. A Query Language For A Homogeneous Temporal
Database, in Proceedings of the ACM Symposium on Principles of Database Systems, Apr. 1985.

[Gadia 1986] Gadia, S. Toward a Multihomogeneous Model For a Temporal Database, in Second
International Conference on Data Engineering, IEEE. Feb. 1986, pp. 390-397.

[Goldberg & Robson 1983] Goldberg, A. and D. Robson. Sma/ltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[Gremillion 1982] Gremillion, L. Designing a Bloom Filter for Differential File Access. Communications
of the Association of Computing Machinery, 25, No.9, Sep. 1982, pp. 600-604.

[Hammer & McLeod 1981] Hammer, M. and D. McLeod. Database Description with SDM: A Semantic
Database Model. ACM Transactions on Database Systems, 6, No. 3, Sep. 1981, pp. 351-386.

[Hawthorn & Stonebraker 1979] Hawthorn, P. and M. Stonebraker. Performance Analysis of a Relational
Data Base Management System, in Proceedings of ACM SIGMOD International Conference on
Management of Data, 1979, pp. 1-12.

[Held 1978] Held, G. and M. Stonebraker. B-trees Re-examined. Communications of the Association of
Computing Machinery, 21, No. 2, Feb. 1978, pp. 139-143.

[Held eta!. 1975] Held, GD., M. Stonebraker and E. Wong. INGRES--A relational data base management
system. Proceedings of the 1975 National Computer Conference, 44 (1975), pp. 409-416.

[Hoagland 1985] Hoagland, A. Information Storage Technology: A Look at the Future. IEEE Computer,
18, No.7, July 1985, pp. 60-67.

[Hsiao & Harary 1970] Hsiao, D. and F. Harary. A Formal System for Information Retrieval from Files.
Communications of the Association of Computing Machinery, 13, No.2, Feb. 1970, pp. 67-73.

[IBM 1981] ffiM SQL!Data-System, Concepts and Facilities. Technical Report GH24-5013-0. ffiM. Jan.
1981.

[Jaeschke & Schek 1982] Jaeschke, G. and H. Schek. Remarks on the Algebra of Non First Normal Form
Relations, in Proceedings of the ACM Symposium on Principles of Database Systems. 1982, pp.
124-137.

[Jones eta!. 1979] Jones, S., P. Mason imd R. Stamper. LEGOL 2.0: a relational specification language for
complex rules. Information Systems, 4, No.4, Nov. 1979, pp. 293-305.

[Jones & Mason 1980] Jones, S. and P J. Mason. Handling the Time Dimension in a Data Base, in

172

Proceedings of the InterMtional Conference on Data Bases, Ed. S.M. Deen and P. Hammersley.
British Computer Society. University of Aberdeen: Heyden, July 1980, pp. 65-83.

[Katz & Lehman 1984] Katz, R.H. and T. Lehman. Database Support for Versions and Alternatives of
Large Design Files. IEEE Transactions on Software Engineering, SE-10, No. 2, Mar. 1984, pp.
191-200.

[Kawagoe 1985] Kawagoe, K. Modified DyMmic Hashing, in Proceedings of ACM SIGMOD International
Conference on MaTUlgement of Data, May 1985, pp. 201-213. ·

[Klopprogge 1981] Klopprogge, M.R. TERM: An approach to include the time dimension in the entity
relationship model, in Proceedings of the Second InterMtiona/ Conference on the Entity
Relationship Approach, Oct 1981.

[Larson 1978] Larson, P. Dynamic Hashing. BIT. 18 (1978), pp. 184-201.

[Larson 1980] Larson, P. Linear Hashing with Partial Expansions, in Proceedings of the Conference on
Very Large Databases, 1980, pp. 224-232.

[Larson 1981] Larson, P. ATiillysis of Index-Sequential Files with Overflow Chaining. ACM Transactions on
Database Systems, 6, No.4, Dec. 1981, pp. 671-680.

[Larson 1982] Larson, P. Peiformance AMlysis of Linear Hashing with Partial Expansions. ACM
Transactions on Database Systems, 7, No.4, Dec. 1982, pp. 566-587.

[Larson & Ramakrishna 1985] Larson, P. and M. Ramakrishna. ExterMl Peifect Hashing, in Proceedings
of ACM SIGMOD InterMtioMl Conference on MaTUlgement of Data, May 1985, pp. 190-199.

[Litwin 1978] Utwin, W. Virtual Hashing: A DyMmically Changing Hashing, in Proceedings of the
Conference on Very Large Databases, 1978, pp. 517-523.

[Litwin 1980] Litwin, W. Linear Hashing: A New Tool For File And Table Addressing, in Proceedings of
the Conference on Very Large Databases, 1980, pp. 212-223.

[Luk 1983] Luk, W. On Estimating Block Accesses In Database Organizations. Communications of the
Association of Computing Machinery, 26, No. 11, Nov. 1983, pp. 945-947.

[Lum et al. 1971] Lum, V., P. Yuen and M. Dodd. Key-to-Address Transform Techniques: A Fundamental
Study on Large Existing Formatted Files. Communications of the Association of Computing
Machinery, 14, No.4, Apr. 1971, pp. 228-239.

[Lum et al. 1984] Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and J.
Woodfill. Designing DBMS Support for the Temporal Dimension, in Proceedings of ACM
SIGMOD InterMtioMl Conference on Management of Data, Ed. B Yormark. Association for
Computing Machinery. Boston, MA: June 1984, pp. 115-130.

[Maier 1985] Maier, D. The Theory of Relational Databases. Computer Science Press, 1985.

[March & Severance 1977] March, D. and D. Severance. The DetermiMtion of Efficient Record
Segmentations and Blocking Factors for Shared Files. ACM Transactions on Database Systems, 2,
No.3, Sep. 1977, pp. 279-296.

[MCKENZIE 1986] McKenzie, E. Bibliography: Temporal Databases. 1986. (Unpublished paper.)

[McKenzie 1986] McKenzie, L.E. and R. Snodgrass. An Incremental Temporal Relational Algebra. 1986.
(In preparation.)

173

[Mendelson 1980] Mendelson, H. A New Approach to the Analysis of Linear Probing Schemes. Journal of
the Association of Computing Machinery, 27, No.2, July 1980, pp. 474-483.

[Mendelson 1982] Mendelson, H. Analysis of Extensible Hashing. IEEE Transactions on Software
Engineering, 8, No. 6, Nov. 1982, pp. 611-619.

[Morris 1968] Morris, R. Scatter Storage Techniques. Communications of the Association of Computing
Machinery, 11, No. 1, Jan. 1968, pp. 38-43.

[Nestor et al. 1982] Nestor, J., W. Wulf and D. Lamb. IDL - Interface Description Language. Technical
Report. Computer Science Department, Carnegie-Mellon University. June 1982.

[Nievergelt et al. 1984] Nievergelt, J., H. Hinterberger and K. C. Sevcik. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Transactions on Database Systems, 9, No. 1, Mar. 1984,
pp. 38-71.

[Ozsoyoglu et al. 1985] Ozsoyoglu, G., Z. Ozsoyoglu and F. Mata. A Language and a Physical
Organization Technique for Summary Tables, in Proceedings of ACM SIGMOD International
Conference on Management of Data, 1985, pp. 3-16.

[Ramamohanarao & Sacks-Davis 1984] Ramamohanarao, K. and R. Sacks-Davis. Recursive Linear
Hashing. ACM Transactions on Database Systems, 9, No. 3, Sep. 1984, pp. 369-391.

[Richard 1980] Richard, P. Evaluation of the Size of a Query Expressed in Relational Algebra, in
Proceedings of ACM SIGMOD International Conference on Management of Data, May 1980, pp.
155-163.

[Robinson 1981] Robinson, J. The K-D-B Tree: A Search Structure for Large Multidimensional Dynamic
Indexes, in Proceedings of ACM SIGMOD International Conference on Management of Data,
May 1981, pp. 10-18.

[Satyanarayanan 1983] Satyanarayanan, M. A Methodology for Modelling Storage Systems and its
Application to a Network File System. PhD. Diss. Computer Science Department, Carnegie
Mellon University, Mar. 1983.

[Scheuermann 1977] Scheuermann, P. Concepts of a data base simulation language, in Proceedings of
ACM SIGMOD International Conference on Management of Data, Aug. 1977, pp. 145-155.

[Schueler 1977] Schueler, B. Update Reconsidered, in Architecture and Models in Data Base Management
Systems. Ed. G. M. Nijssen. North Holland Publishing Co., 1977.

[Semadas 1980] Sernadas, A. Temporal Aspects of Logical Procedure Definition. Information Systems, 5,
No.3 (1980), pp. 167-187.

[Severance 1975] Severance, D. A Parametric Model of Alternative File Structures. Information Systems,
1, No.2 (1975), pp. 51-55.

[Severance 1976] Severance, D. Differential Files: Their Application to the Maintenance of Large
Databases. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp. 256-267.

[Siler 1976] Siler, K. A Stochastic Evaluation Model for Database Organizations in Data Retrieval
Systems. Communications of the Association of Computing Machinery, 19, No. 2, Feb. 1976, pp.
84-95.

[Snodgrass 1982] Snodgrass, R. Monitoring Distributed Systems: A Relational Approach. PhD. Diss.
Computer Science Department, Carnegie-Mellon University, Dec. 1982.

174

[Snodgrass & Ahn 1985] Snodgrass, R. and I. Ahn. A Taxonomy of Time in Databases, in Proceedings of
ACM SIGMOD International Conference on Management of Data, Ed. S. Navathe. Association
for Computing Machinery. Austin, TX: May 1985, pp. 236-246.

[Snodgrass 1986] Snodgrass, R. The Temporal Query Language TQuel. ACM Transactions on Database
Systems (to appear), (1986).

[Snodgrass & Ahn 1986] Snodgrass, R. and I. Ahn. Temporal Databases. IEEE Computer, 19, No. 9, Sep.
1986.

[Snodgrass & Gomez 1986] Snodgrass, R. and S. Gomez. Aggregates in the Temporal Query Language
TQuel. Technical Report TR86-009. Computer Science Department, University of North Carolina
at Chapel Hill. Mar. 1986.

[Sprugnoli 1977] Sprugnoli, R. Perfect hash functions: A single probe retrieving method for static sets.
Communications of the Association of Computing Machinery, 20, No. 11, Nov. 1977, pp. 841-850.

[Stonebraker et a!. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and
Implementation of INGRES. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp.
189-222.

[Stonebraker 1981] Stonebraker, M. Operating System Support for Database Management.
Communications of the Association of Computing Machinery, 24, No. 7, July 1981, pp. 412-418.

[Stonebraker 1986] Stonebraker, M. Inclusion of New Types in Relational Data Base Systems, in
Proceedings of the International Conference on Data Engineering, IEEE Computer Society. Los
Angeles, CA: IEEE Computer Society Press, Feb. 1986, pp. 262-269.

[Svobodova 1981] Svobodova, L. A reliable object-oriented data depository for a distributed computer, in
Proceedings of the ACM Symposium on Operating System Principles, Dec. 1981, pp. 47-58.

[Teorey & Das 1976] Teorey, T. and K. Das. Application of an analytical model to evaluate storage
structures, in Proceedings of ACM SIGMOD International Conference on Management of Data,
June 1976, pp. 9-19.

[Teorey & Fry 1980] Teorey, T. and J. Fry. The Logical Record Access Approach to Database Design.
ACM Computing Surveys, 12, No.2, June 1980, pp. 179-211.

[Teorey & Fry 1982] "feorey, T. andJ. Fry. Design of Database Structures. Prentice-Hall, Inc., 1982.

[Whang et al. 1983] Whang, K. Estimating Block Accesses in Database Organizations: A Closed
Noniterative Formula. Communications of the Association of Computing Machinery, 26, No. 11,
Nov. 1983, pp. 940-944.

[Wiederhold 1981] Wiederhold, G. Databases for Health Care. New York, NY: Springer-Verlag, 1981.

[Wiederhold 1984] Wiederhold, G. Databases. IEEE Computer, 17, No. 10, Oct. 1984, pp. 211-223.

[Wong & Youssefi 1976] Wong, E. and K. Youssefi. Decomposition- A Strategy for Query Processing.
ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp. 223-240.

[Woodfill et al. 1981] Woodfill, J., P. Siegal, J. Ranstrom, M. Meyer and E. Allman. /ngres Reference
Manual. Version 7 ed. 1981.

[Yao & Merten 1975] Yao, S. and A. Merten. Selection Of File Organization Using An Analytic Model, in
Proceedings of the Conference on Very Large Databases, Sep. 1975, pp. 255-267.

175

[Yao 1977A] Yao, S. Approximating Block Accesses in Database Organizations. Communications of the
ASsociation of Computing Machinery, 20, No.4, Apr. 1977, pp. 260-261.

[Y ao 1977B] Yao, S. An Attribute Based Model for Database Access Cost Analysis. ACM Transactions on
Database Systems, 2, No.1, Mar. 1977, pp. 45-67.

[Yao & DeJong 1978] Yao, S. and D. Dejong. Evaluation of Database Access Paths, in Proceedings of
ACM SIGMOD International Conference on Management of Data, 1978, pp. 66-77.

[Yao 1979] Yao, S. Optimization of Query Evaluation Algorithms. ACM Transactions on Database
Systems, 4, No.2, June 1979, pp. 133-155.

[Yu et a!. 1978] Yu, C., W. Luk and M. Siu. On the Estimation of the Number of Desired Records with
Respect to a Given Query. ACM Transactions on Database Systems, 3, No. 1, Mar. 1978, pp. 41-
56.

Appendix A

.TQuel Syntax in BNF

TQuel is a superset of Que!, so a legal Que! statement is also a legal TQuel statement. TQuel

augments five Que! statements: retrieve, append, delete, replace, and create. The

syntax for these statements are shown below, as defined in the appendix of [Snodgrass 86].

In addition, two Que! statements, · modify and index, have been extended in Chapter 7 to

accomodate the temporally partitioned storage structure and secondary indexing for databases with

temporal support We note that the prototype currently supports a very limited subset of the allowed

options.

<TQuel> : :=

<create stmt> : :=

<persistent> : :=

<history> : :=

<retrieve stmt> : :=

<retrieve head> : :=

<retrieve tail> : :=

<into> : :=

<target list> : :=

<t_list> : :=

<t_elem> : :=

<is> : :=

<append stmt> : :=

<retrieve stmt>
<append stmt>
<delete stmt>
<replace stmt>
<create stmt>

create <persistent> <history> <attribute spec>

e persistent

interval event

<retrieve head> <retrieve tail>

retrieve <into> <target list> <valid clause>

<where clause> <when clause> <as of clause>

E
into

unique
<relation>

<relation>
I to <relation>

(<tuple variable>.all)

<t_elem> <t_list> , <t elem>

<attribute> <is> <expression>

is by

<t list>

append <to> <target list> <mod tail>

<to> ~ :=

<delete stmt> : :=

<replace stmt> : :=

<mod tail> : :=

<valid clause> : :=

<valid> : :=

<from clause> : :=

<to clause> : :=

<at clause> : ':=

<where clause> : :=

<when clause> : :=

<as of clause> : :=

<through clause> : :=

<event expr> : :=

<interval expr> ::=

<either expr> ::=

<event elem> ::=

<interval elem> ::=

<temporal canst>::=

<temporal pred> ::=

<modify stmt> : :=

178

<relation> to <relation>

delete <tuple variable> <mod tail>

replace <tuple variable> <target list> <mod tail>

<valid clause> <where clause> <when clause>

<valid> <from clause> <to clause>
<valid> <at clause>

e valid

£ from <event expr>

£ to <event expr>

at <event expr>

e where <boolean expr>

£ when <temporal pred>

E as of <event expr> <through

E through <event expr>

<event elem>
begin of <either expr>
end of <either expr>
(<event expr>)

clause>

<interval elem>
<either expr> overlap
<either expr> extend
(<interval expr>)

<either expr>
<either expr>

<event expr> <interval expr>

<tuple variable> associated with an event relation

<tuple variable> associated with an interval relation
<temporal canst>

<string>

<interval elem>
<event elem>
<either expr> precede
<either expr> overlap
<either expr> eqaal
<temporal pred> and
<temporal pred> or
(<temporal pred>)
not <temporal pred>

<either expr>
<either expr>
<either expr>
<temporal pred>
<temporal pred>

modify <relation> to <store spec>

<store spec> : :-

<on attr> : :=

<key list> : :=

<key order> : :=

<order> ~ :=

<ascend> : :=

<descend> : :=

<parameters> : :=

<parrn list> : :=

<parrn> : :=

<time list> : :=

<time attr> : :=

<index stmt> : :=

<attr list> : :=

<index type> : :=

<temporal type> ::=

179

<on attr> <parameters>

is am cis am hash chash
heap cheap heapsort cheapsort
truncated
chain I index accessionlist
cluster I stack cellular

£ on <key list>

<key order>
<key list> , <key order>

<attribute> <order>

<ascend> <descend>

a ascending

d descending

£ where <parrn list>

<parm>
<parrn list> , <parrn>

fillfactor <integer>
minpages <integer>
maxpages <integer>
cellsize <integer>
time (<time list>

<time attr>
<time list> , <time attr>

all
valid from
transaction start

valid to
transaction stop

index on <relation> is
(<attr list>)

<index name>
<index type>

<attribute>
<attr list> <attribute>

£ as <temporal type>

snapshot rollback historical temporal

In this description, the following non-terminals, which are identical to their Que! counterparts, were

used:

<relation> the name of a relation

<tuple variable> the name of a tuple variable

<attribute> the name of an attribute

<at tribute spec> a list of names and types for the user specified attributes

<string>

<boolean expr>

<expression>

a string constant

returns a value of type boolean

returns a value of type integer, string, fioating point, or temporal

180

Appendix B

Nonlinear Hashing

Algorithms for nonlinear hashing to insert, delete, and retrieve a record given its key K are presented

in this appendix. Procedures described here are in bold fonts. The algorithms have been implemented and

tested in the C language.

There are two parameters for nonlinear hashing: n 0 and rninLoading. n 0 is the initial size of the

file, and rninLoading is the minimum loading factor for a block, below which a merge operation is

triggered on deleting a record from the block. Procedure compute has the parameter order which is

treated as a call-by-reference or a call-by-result parameter.

(*

*
*
*
*
*
*)

Retrieve a record with key K.
parameters

K key of the record
return value

record K:
ERROR

when successful
when failed

function retrieve (K) :
begin

end;

b 1 +- compute (K) ;
getBlock (b 1); (* read block b 1 *)

if (record K in block b 1) then
return (record K);

else
return (ERROR) ;

(* Insert a record with key K.
*
*
*
*
*)

parameters
K

return value
address

key of the record

final address of the inserted block

function insert (K) :

begin
b 1 +- compute (K, order);
getBlock (b 1); (* read block b1 *)

if (block b 1 is full) then
final +- split (bu K, order);

end;

(*

*
*
*
*
*
*)

else (* enter record K into block b 1 *)
begin

final ~ b!;
enterRec (K, b 1) ;

end;
ret urn (final) ;

Delete a record with key K.
parameters

K key of the
return value

record

OK when successful
ERROR when failed

function delete (K) :
begin

end;

(*

*
*
*
*
*
*)

b 1 ~ cOIDpute (K, order);
getBlock (b 1); (*read block b 1 *)

if (K in block b 1) then (* remove record K from block b 1 *)

remove (K, b 1) ;

else
return (ERROR);

if (loading of b 1 < minLoading) then
try_merge (b 1);

return (OK) ;

Determine the address for key K.
parameters

K
order

return value
bt

key of the record
variable parameter for order of overflow

final address for key K

function compute (K, VAR order) :
begin

b 1 ~ hashFn
count ~ 1;
marker ~ 0;

(K) ;

while (TRUE) do
begin

(* to count the order of overflow *)
(* to mark a position in OverflowList *)

~~r ~ (first b 1 or -b 1 after the position
pointed to by marker in OverflowList);

if (no such nw~r) then
break;

else
begin

p 1 ~ (position of ~mber in OverflowList
without counting negative entries);

marker ~ p 1;

end;

182

end;

(* b 1 had an overflow *)
if (spli.tFn (K, count) = 0) then

end;

else
begin

if (member < 0) then
break;

else
b 1 ~ child (bu p 1);

end;

count ~ count + 1;

order ~ count;
return (b 1) ;

(* original block *)

(* child block *)
(* merged back *)

(* Hash function.

*
*
*
*
*)

parameters
K : key

return value
hashed address { 1 .. n 0 }

function hashFn (K) :
begin

end;

(*

*
*
*
*
*
*)

return (K mod n0 + 1);
(* Addresses start from 1
* so that they can be negated for merging *)

Split functions.
parameters

K
ord

return value

key
order of overflow

split value : { 0, 1 }

function splitFn (K, ord) :
begin

K
return (rd 1 mod 2) ;

n 0 x2• -
end;

(* Split block b 1 into two.

*
*
*
*
*
*
*)

parameters
b,
K;
order

return value
address

address of the block to be split
key of the record to be inserted
order of overflow

final address for record K1

function split (b" K., order):
begin

append b 1 to OverflowList;

183

end;

append a new block bz at the end;

for each record K, in block bt do
begin

if (splitFn (Krr order) = 0)

enterRec (Krr b t) ;
else

enterRec (Krr bz);
end;

if (spl.itFn (Ku order) = 0) then
begin

end;

else
begin

end;

enterRec (K,, btl;
return (btl;

enterRec (K,, b2);

return (bz);

then

(* Try merging block bt with its parent or child.

*
*
*
*
*
*)

parameters
bt

returp. value
OK
ERROR

address of the block

when successful
when failed

function try_merge (b 1):

begin
young +-- TRUE;
if (leaf (b 1))

begin

end

if (parent (b 1) = ERROR) then
return (ERROR); /*one of initial blocks*/

if (b 1 is not the youngest child) then
young +-- FALSE;

return (merge (b 1, parent (b 1), young));

(* b 1 is not a leaf *)
children +-- (a list of all child of bt in reverse order);

(* youngest child is at the head of the list *)
for each child ch 1 in children do
begin

end;

if (merge (chu b 11 young) = OK) then
return (OK);

young +-- FALSE;

return (ERROR);

184

end;

(* Merge block b 1 into block b2.

*
*
*
*
*
*
*
*)

parameters
bl
bz
young

return value
OK
ERROR

address of block b1
address of block b2
TRUE if b 1 is the youngest child

when successful
when failed

function merge (b 11 b 2 , young) :
begin

if (block b 2 has room for all records in block b 1) then
begin

move all records of block b 1 to b 2;

discard block b 1;

185

adjust addresses for blocks whose address is higher than b 1:

end;

(*

*
*
*
*
*
*)

function
begin

end;

end;

if (young = TRUE) then
remove b 2 from OverflowList;

else
negate b 2 in OverflowList;

return (OK) ;

else return (ERROR);

Find the the child of block b 1 •

parameters
bl

return value

address of the block
position of b 1 in OverflowList

address of the child block

(* Find the the parent of block b 1.

*
*
*
*
*
*)

parameters
bl

return value
address
ERROR

function parent (b 1):

begin

: address of the block

of the parent block
: when there is none

if (b 1 <n 0) then return (ERROR);
else return (OverflowList [b 1 -n 0]):

end;

(* Check if block b 1 is a leaf.

*
*

parameters
bl : address of the block

*
*
*
*)

return value
TRUE
FALSE

when b 1 is a leaf
when b 1 is not a leaf

function leaf (btl:
begin

end;

if (there is b 1 in OverflowList) then
return (FALSE);

else
return (TRUE);

186

Appendix C

Benchmark Results

This appendix presents the measurement data from the benchmark discussed in Chapter 6.

Update Count
Query 0 1 2 3 4 5 6 7

In Out In Out In Out In Out In Out In Out In Out In Out
Q01 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q02 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
Q03 129 0 258 0 387 0 516 0 645 0 774 0 903 0 1024 0
Q04 128 0 256 0 384 0 512 0 640 0 768 0 896 0 1024 0
Q05 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q06 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
Q07 129 0 258 0 387 0 516 0 645 0 774 0 903 0 1024 0
Q08 128 0 256 0 384 0 512 0 640 0 768 0 896 0 1024 0
Q09 1141 0 2304 0 3456 0 4608 0 5760 0 6912 0 8064 0 9178 0
Q10 2177 0 3330 0 4483 0 5636 0 6789 0 7942 0 9095 0 10240 0
Q15 129 0 258 0 387 0 516 0 645 0 774 0 903 0 1024 0

Update Count
Query 8 9 10 11 12 13 14 15

In Out In Out In Out In Out In Out In Out In Out In Out
Q01 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0
Q02 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0
Q03 1153 0 1282 0 1411 0 1540 0 1669 0 1798 0 1927 0 2048 0
Q04 1152 0 1280 0 1408 0 1536 0 1664 0 1792 0 1920 0 2048 0
Q05 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0
Q06 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0
Q07 1153 0 1282 0 1411 0 1540 0 1669 0 1798 0 1927 0 2048 0
Q08 1152 0 1280 0 1408 0 1536 0 1664 0 1792 0 1920 0 2048 0
Q09 10330 0 11482 0 12634 0 13786 0 14938 0 16090 0 17242 0 18356 0
Q10 11393 0 12546 0 13699 0 14852 0 16005 0 17158 0 18311 0 19456 0
Q15 1153 0 1282 0 1411 0 1540 0 1669 0 1798 0 1927 0 2048 0

Figure C-1: J/0 Cost for the Rollback DBMS with 100% Loading

Update Count
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rollback h 129 258 387 516 645 774 903 1024 1153 1282 1411 1540 1669 1798 1927 2048
Rollback-i 129 257 385 513 641 769 897 1025 1153 1281 1409 1537 1665 1793 1921 2049

sum 258 515 772 1029 1286 1543 1800 2049 2306 2563 2820 3077 3334 3591 3848 4097

Figure C-2: Space for the Rollback DBMS with 100% Loading

188

Update Count
Query 0 1 2 3 4 5 6 7

ln Out In Out ln Out ln Out ln Out ln Out ln Out In Out
Q01 1 0 1 0 2 0 2 0 3 0 3 0 4 0 4 0
Q02 3 0 3 0 4 0 4 0 5 0 5 0 6 0 6 0
Q03 257 0 257 0 514 0 514 0 767 0 771 0 1024 0 1024 0
Q04 256 0 256 0 512 0 512 0 768 0 768 0 1024 0 1024 0
QOS 1 0 1 0 2 0 2 0 3 0 3 0 4 0 4 0
Q06 3 0 3 0 4 0 4 0 5 0 5 0 6 0 6 0
Q07 257 0 257 0 514 0 514 0 767 0 771 0 1024 0 1024 0
Q08 256 0 256 0 512 0 512 0 768 0 768 0 1024 0 1024 0
Q09 1271 0 1271 0 2560 0 2560 0 3840 0 3840 0 5120 0 5120 0
Q10 3329 0 3329 0 4610 0 4610 0 5887 0 5891 0 7168 0 7168 0
Q15 257 0 257 0 514 0 514 0 767 0 771 0 1024 0 1024 0

Update Count
Query 8 9 10 11 12 13 14 15

ln Out ln Out In Out ln Out ln Out ln Out ln Out In Out
Q01 5 0 5 0 6 0 6 0 7 0 7 0 8 0 8 0
Q02 7 0 7 0 8 0 8 0 9 0 9 0 10 0 10 0
Q03 1281 0 1281 0 1538 0 1538 0 1791 0 1795 0 2048 0 2048 0
Q04 1280 0 1280 0 1536 0 1536 0 1792 0 1792 0 2048 0 2048 0
Q05 5 0 5 0 6 0 6 0 7 0 7 0 8 0 8 0
Q06 7 0 7 0 8 0 8 0 9 0 9 0 10 0 10 0
Q07 1281 0 1281 0 1538 0 1538 0 1791 0 1795 0 2048 0 2048 0
Q08 1280 0 1280 0 1536 0 1536 0 1792 0 1792 0 2048 0 2048 0
Q09 6400 0 6400 0 7680 0 7680 0 8960 0 8960 0 10240 0 10240 0
Q10 8449 0 8449 0 9730 0 9730 0 11007 0 11011 0 12288 0 12288 0
Q15 1281 0 1281 0 1538 0 1538 0 1791 0 1795 0 2048 0 2048 0

Figure C-3: I/0 Cost for the Rollback DBMS with 50% Loading

Update Count
0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rollback_h 257 257 514 514 767 771 1024 1024 1281 1281 1538 1538 1791 1795 2048 2048
Rollback i 259 259 515 515 771 771 1027 1027 1283 1283 1539 1539 1795 1795 2051 2051

sum 516 516 1029 1029 1538 1542 2051 2051 2564 2564 3077 3077 3586 3590 4099 4099

Figure C-4: Space for the Rollback DBMS with 50% Loading

189

Update Count
Query 0 1 2 3 4 5 6 7

In Out In Out In Out In Out In Out In Out In Out In Out
Q01 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q02 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
Q05 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q06 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
Q07 129 0 258 0 387 0 516 0 645 0 774 0 903 0 1024 0
Q08 128 0 256 0 384 0 512 0 640 0 768 0 896 0 1024 0
Q09 1197 56 2360 56 3512 56 4664 56 5816 56 6968 56 8120 56 9234 56
Q10 2233 56 3386 56 4539 56 5692 56 6845 56 7998 56 9151 56 10296 56
Q13 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q14 129 0 258 0 387 0 516 0 645 0 774 0 903 0 1024 0

Update count
Query 8 9 10 11 12 13 14 15

In Out In Out In Out In Out In Out In Out In Out In Out
Q01 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0
Q02 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0
Q05 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0
Q06 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0
Q07 1153 0 1282 0 1411 0 1540 0 1669 0 1798 0 1927 0 2048 0
Q08 1152 0 1280 0 1408 0 1536 0 1664 0 1792 0 1920 0 2048 0
Q09 10386 56 11538 56 12690 56 13842 56 14994 56 16146 56 17298 56 18412 56
Q10 11449 56 12602 56 13755 56 14908 56 16061 56 17214 56 18367 56 19512 56
Q13 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0
Q14 1153 0 1282 0 1411 0 1540 0 1669 0 1798 0 1927 0 2048 0

Figure C-5: I/0 Cost for the Historical DBMS with 100% Loading

Update Count
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Historical h 129 258 387 516 645 774 903 1024 1153 1282 1411 1540 1669 1798 1927 2048
Historical- i 129 257 385 513 641 769 897 1025 1153 1281 1409 1537 1665 1793 1921 2049

sum 258 515 772 1029 1286 1543 1800 2049 2306 2563 2820 3077 3334 3591 3848 4097

Figure C-6: Space for the Historical DBMS with 100% Loading

190

Update Count
Query 0 1 2 3 4 5 6 7

In Out In Out In Out In Out In Out In Out In Out In Out
QOl 1 0 1 0 2 0 2 0 3 0 3 0 4 0 4 0
Q02 3 0 3 0 4 0 4 0 5 0 5 0 6 0 6 0
Q05 1 0 1 0 2 0 2 0 3 0 3 0 4 0 4 0
Q06 3 0 3 0 4 0 4 0 5 0 5 0 6 0 6 0
Q07 257 0 257 0 514 0 514 0 767 0 771 0 1024 0 1024 0
Q08 256 0 256 0 512 0 512 0 768 0 768 0 1024 0 1024 0
Q09 1327 56 1327 56 2616 56 2616 56 3896 56 3896 56 5176 56 5176 56
QlO 3385 56 3385 56 4666 56 4666 56 5943 56 5947 56 7224 56 7224 56
Q13 1 0 1 0 2 0 2 0 3 0 3 0 4 0 4 0
Q14 257 0 257 0 514 0 514 0 767 0 771 0 1024 0 1024 0

Update Count
Query 8 9 10 11 12 13 14 15

In Out In Out In Out In Out In Out In Out In Out In Out
Q01 5 0 5 0 6 0 6 0 7 0 7 0 8 0 8 0
Q02 7 0 7 0 8 0 8 0 9 0 9 0 10 0 10 0
Q05 5 0 5 0 6 0 6 0 7 0 7 0 8 0 8 0
Q06 7 0 7 0 8 0 8 0 9 0 9 0 10 0 10 0
Q07 1281 0 1281 0 1538 0 1538 0 1791 0 1795 0 2048 0 2048 0
Q08 1280 0 1280 0 1536 0 1536 0 1792 0 1792 0 2048 0 2048 0
Q09 6456 56 6456 56 7736 56 7736 56 9016 56 9016 56 10296 56 10296 56
QlO 8505 56 8505 56 9786 56 9786 56 11063 56 11067 56 12344 56 12344 56
Q13 5 0 5 0 6 0 6 0 7 0 7 0 8 0 8 0
Q14 1281 0 1281 0 1538 0 1538 0 1791 0 1795 0 2048 0 2048 0

Figure C· 7: I/0 Cost for the Historical DBMS with 50% Loading

Update Count
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Historical h 257 257 514 514 767 771 1024 1024 1281 1281 1538 1538 1791 1795 2048 2048
Historical-i 259 259 515 515 771 771 1027 1027 1283 1283 1539 1539 1795 1795 2051 2051

sum 516 516 1029 1029 1538 1542 2051 2051 2564 2564 3077 3077 3586 3590 4099 4099

Figure C-8: Space for the Historical DBMS with 50% Loading

191

Update Count
Query 0 1 2 3 4 5 6 7

In Out In Out Iu Out Iu Out Iu Out In Out Iu Out Iu Out
Q01 1 0 3 0 5 0 7 0 9 0 11 0 13 0 15 0
Q02 2 0 4 0 6 0 8 0 10 0 12 0 14 0 16 0
Q03 129 0 387 0 645 0 903 0 1153 0 1411 0 1669 0 1927 0
Q04 128 0 384 0 640 0 896 0 1152 0 1408 0 1664 0 1920 0
Q05 1 0 3 0 5 0 7 0 9 0 11 0 13 0 15 0
Q06 2 0 4 0 6 0 8 0 10 0 12 0 14 0 16 0
Q07 129 0 387 0 645 0 903 0 1153 0 1411 0 1669 0 1927 0
Q08 128 0 384 0 640 0 896 0 1152 0 1408 0 1664 0 1920 0
Q09 1200 56 3512 56 5816 56 8120 56 10386 56 12690 56 14994 56 17298 56
Q10 2233 56 4539 56 6845 56 9151 56 11449 56 13755 56 16061 56 18367 56
Q11 385 0 1155 0 1925 0 2695 0 3457 0 4227 0 4997 0 5767 0
Q12 131 4 389 4 647 4 905 4 1163 4 1421 4 1679 4 1937 4
Q13 1 0 3 0 5 0 7 0 9 0 11 0 13 0 15 0
Ql4 129 0 387 0 645 0 903 0 1153 0 1411 0 1669 0 1927 0
Q15 129 0 387 0 645 0 903 0 1153 0 1411 0 1669 0 1927 0
Q16 129 0 387 0 645 0 903 0 1153 0 1411 0 1669 0 1927 0

Update Count
Query 8 9 10 11 12 13 14 15

Iu Out Iu Out In Out Iu Out In Out Iu Out In Out Iu Out
Q01 17 0 19 0 21 0 23 0 25 0 27 0 29 0 31 0
Q02 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0
Q03 2177 0 2435 0 2693 0 2951 0 3201 0 3459 0 3717 0 3975 0
Q04 2176 0 2432 0 2688 0 2944 0 3200 0 3456 0 3712 0 3968 0

. Q05 17 0 19 0 21 0 23 0 25 0 27 0 29 0 31 0
Q06 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0
Q07 2177 0 2435 0 2693 0 2951 0 3201 0 3459 0 3717 0 3975 0
Q08 2176 0 2432 0 2688 0 2944 0 3200 0 3456 0 3712 0 3968 0
Q09 19564 56 21868 56 24172 56 26476 56 28742 56 31046 56 33350 56 35654 56
Q10 20665 56 22971 56 25277 56 27583 56 29881 56 32187 56 34493 56 36799 56
Qll 6529 0 7299 0 8069 0 8839 0 9601 ·o 10371 0 11141 0 11911 0
Q12 2195 4 2453 4 2711 4 2969 4 3227 4 3485 4 3743 4 4001 4
Ql3 17 0 19 0 21 0 23 0 25 0 27 0 29 0 31 0
Q14 2177 0 2435 0 2693 0 2951 0 3201 0 3459 0 3717 0 3975 0
Q15 2177 0 2435 0 2693 0 2951 0 3201 0 3459 0 3717 0 3975 0
Q16 2177 0 2435 0 2693 0 2951 0 3201 0 3459 0 3717 0 3975 0

Figure C-9: I/0 Cost for the Temporal DBMS with 100% Loading

Update Count
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Temporal_h 129 387 645 903 1153 1411 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975
Temporal i 129 385 641 897 1153 1409 1665 1921 2177 2433 2689 2945 3201 3457 3713 3969

sum 258 772 1286 1800 2306 2820 3334 3848 4354 4868 5382 5896 6402 6916 7430 7944

Figure C-10: Space for the Temporal DBMS with 100% Loading

192

Update Count
Query 0 1 2 3 4 5 6 7

In Out In Out In Out In Out In Out In Out In Out In Out
Q01 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q02 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0
Q03 257 0 514 0 767 0 1024 0 1281 0 1538 0 1791 0 2048 0
Q04 256 0 512 0 768 0 1024 0 1280 0 1536 0 1792 0 2048 0
QOS 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q06 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0
Q07 257 0 514 0 767 0 1024 0 1281 0 1538 0 1791 0 2048 0
Q08 256 0 512 0 768 0 1024 0 1280 0 1536 0 1792 0 2048 0
Q09 1333 56 2616 56 3896 56 5176 56 6456 56 7736 56 9016 56 10296 56
Q10 3385 56 4666 56 5943 56 7224 56 8505 56 9786 56 11063 56 12344 56
Qll 769 0 1538 0 2303 0 3072 0 3841 0 4610 0 5375 0 6144 0
Q12 259 4 516 4 773 4 1030 4 1287 4 1544 4 1801 4 2058 4
Q13 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
Q14 257 0 514 0 767 0 1024 0 1281 0 1538 0 1791 0 2048 0
Q15 257 0 514 0 767 0 1024 0 1281 0 1538 0 1791 0 2048 0
Q16 257 0 514 0 767 0 1024 0 1281 0 1538 0 1791 0 2048 0

update Count
Query 8 9 10 11 12 13 14 15

In Out In Out In Out In Out In Out In Out In Out In Out
Q01 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0
Q02 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0
Q03 2305 0 2562 0 2815 0 3072 0 3329 0 3586 0 3839 0 4096 0
Q04 2304 0 2560 0 2816 0 3072 0 3328 0 3584 0 3840 0 4096 0
Q05 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0
Q06 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0
Q07 2305 0 2562 0 2815 0 3072 0 3329 0 3586 0 3839 0 4096 0
Q08 2304 0 2560 0 2816 0 3072 0 3328 0 3584 0 3840 0 4096 0
Q09 11576 56 12856 56 14136 56 15416 56 16696 56 17976 56 19256 56 20536 56
QlO 13625 56 14906 56 16183 56 17464 56 18745 56 20026 56 21303 56 22584 56
Qll 6913 0 7682 0 8447 0 9216 0 9985 0 10754 0 11519 0 12288 0
Q12 2315 4 2572 4 2829 4 3086 4 3343 4 3600 4 3857 4 4114 4
Q13 9 0 10 0 11 0 12 0 l3 0 14 0 15 0 16 0
Q14 2305 0 2562 0 2815 0 3072 0 3329 0 3586 0 3839 0 4096 0
Q15 2305 0 2562 0 2815 0 3072 0 3329 0 3586 0 3839 0 4096 0
Ql6 2305 0 2562 0 2815 0 3072 0 3329 0 3586 0 3839 0 4096 0

Figure C-11: I/0 Cost for the Temporal DBMS with 50% Loading

Update Count
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Temporal_h 257 514 767 1024 1281 1538 1791 2048 2305 2562 2815 3072 3329 3586 3839 4096
Temporal i 259 515 771 1027 1283 1539 1795 2051 2307 2563 2819 3075 3331 3587 3843 4099

sum 516 1029 1538 2051 2564 3077 3586 4099 4612 5125 5634 6147 6660 7173 7682 8195

Figure C-12: Space for the Temporal DBMS with 50% Loading

Appendix D

Performance Analysis (1)

Cost of each query in Figure 6.5 is analyzed using the four models discussed in Chapter 4. We

assume that the queries are executed on the temporal database with 100% loading, as described in Section

6.2.1. The database can be described as follows in IDL's ASCII external representation [Nestor et a!.

1982] according to the model of database/relations, where uc denotes the update count, either 0 or 14.

database
[name "Temporal_100";

relations

relation
[name

temporal Type
attributes

"Temporal_h";
temporalinterval;

< Al:
[

l
A2:
[

l
A3:
[

l
A4:
[

attribute
name
type
length

selectivity

"Id";
typeinteger;
4;

1
1024;

volatility 0;

attribute
name "Amount";
type type Integer;
length 4;

selectivity
1

1024;
volatility 0;

attribute
name "Seq";
type typeinteger;
length 4;
selectivity 1;
volatility 1;

attribute
name "String";
type typeString;
length 96;
selectivity 0;
volatility 0;

>;
tupleSize
tupleCount
updateCount
storageType
keys
< key

[name
attributes

>;
loadingFactor
blockSize

relation
[name

temporal Type
attributes

108;
1024;
uc;
Hash;

"hash_keyn;
< A1'; >

1;
1024;

"Temporal_i";
temporal Interval;

< Al:
[

attribute
"Id'11

; name
type
length

selectivity

type Integer;
4;

1
1024;

volatility 0;
l
A2:
[

attribute
name
type
length

selectivity

volatility

nAmount 9';
type Integer;
4;

l
1024;
0;

l
A3:
[

attribute
name
type
length
selectivity
volatility

"Seqn;
typeinteger;
4;
1;
1;

l
A4:
[

attribute

l

name
type
length
selectivity
volatility

>;
tupleSize
tupleCount
updateCount
storageType
keys
< key

[name

nstring";
typeString;
96;
0;
0;

108;
1024;
uc;
I sam;

"isam_key";

194

l

*

attributes

>;
loadingFactor
blockSize

< A1 A; >

1;
1024;

195

The cost to process a query can be analyzed using the four models developed in Section 4.1. A

TQuel query is represented by an algebraic expression, which is mapped to the file primitive expression

according to the model of algebraic expressions and the model of database/relations. Then the model of

access paths maps the file primitive expression into the access path expression, which is converted to the

elapsed time according to the model of storage devices. The analysis here was performed manually, and

subscripts i and o, as in APE, and APE., denote input and output, respectively.

§ Q01

0 if UC= 0

• if uc = 14

retrieve (h.id, h.seq) where h.id 500

• Algebraic Expression
{ [Ll : Select

Project
(h, h.id = 500);
(L1, h.id, h.seq)

• File Primitive Expression
Read (Hash, 0)

• Access Path Expression
APE1 :

(H 1)

• Access Path Cost
APC1 = C (APE1) = C ((H 1))

= 1 random access = 31.3 msec

• File Primitive Expression
Read (Hash, 28)

• Access Path Expression
APE; :

(H 1 (P 28 (S 1) (P 1)))

• Access Path Cost
APC; = C (APE;)= C ((H 1 (P 28 (S 1) (P 1))))

= 29 random accesses = 908 msec

]}

§ Q02:

•ifuc=O

• if uc = 14

§ Q03:

• if uc = 14

retrieve (i.id, i.seq) where Lid 500

• Algebraic Expression
{[Ll: Select

Project
(i, Lid = 500);
(Ll, i.id, i.aeq)

• File Primitive Expression
Read (Isam, 0)

• Access Path Expression
APE1 :

(P 1 (P 1))

• Access Path Cost
APC; = C (APE;)= 2 random accesses= 62.6 msec

• File Primitive Expression
Read (Isam, 28)

• Access Path Expression
APE; :

(P 2 9 (P 1))

• Access Path Cost
APC; = C (APE;)= 30 random accesses= 939 msec

retrieve (h.id, h.seq) as of "08:00 1/1/80"

•

J }

Algebraic Expression
{ [Ll: AsOf

Project
(h, "08:00 1/1/80", "08:00 1/1/80");
(Ll, h.id, h.seq)]}

• File Primitive Expression
Read (Heap, 128)

• Access Path Expression
APE; :

(U 128)

• Access Path Cost
APC1 = C (APE;)

= 1 random access + 127 sequential accesses = 2,370 msec

• File Primitive Expression
Read {Heap, 3712)

196

§ Q04:

• Access Path Expression
APE, :

(U 3712)

• Access Path Cost
APC1 = C (APE;)

= 1 random access+ 3,711 sequential accesses= 68,300 msec

retrieve (i.id, i.seq)

• Algebraic Expression
{[Ll: AsOf

Project

as of "08:00 l/l/80"

(i, "08: 00 l/l/80", "08: 00 l/l/80");
(Ll, i.id, i.seq)] }

• the rest is the same as Q03.

§ Q05:
retrieve (h.id, h.seq) where h.id 500

•
when h overlap "now"

Algebraic Expression
{[Ll: Select

L2:When
Project

(h, h.id = 500);
(Ll, h overlap "now");
(L2, h.id, h.seq)

• the rest is the same as QOl.

§Q06:
retrieve (i. id, i. seq) where i. id = 50 0

when i overlap "now"

•
(i, id = 500);

l }

Algebraic Expression
{ [Ll: Select

L2: When
Project

(Ll, Ll overlap "now");
(12, 12.id, 12.seq) ll

• the rest is the same as Q02.

§ Q07:
retrieve (h. id, h. seq) where h. amount 69400

•
when h overlap "now"

Algebraic Expression
{ [11 : Select

12: When
Project

(h, h.arnount = 69400);
(11, h overlap "now");
(12, h.id, h.seq)

• the rest is the same as Q03.

§ Q08:

l)

197

retrieve (i ~ id, i G seq) where i. amount 73700

•
when 1 over1ap "now"

Algebraic Expression
{ [Ll : Select

L2: When
P:r:oject

(i, i.arnount = 69400);
(Ll, i overlap "now");
(L2, i. id, i. seq)

198

l)

• the rest is the same as Q04.

§ Q09

•ifuc=O

•if UC= 14

retrieve (h. id,
where
when

i. id, i. amount)
h.id = i.amount
h overlap i and i overlap "now"

•

*

Algebraic Expression
{ [L1: When

L2: Project

L3 : Temporary
[L4: Join

Project

(i, i overlap "now");
(Ll, i.id, i.amount,

i.valid_frorn, i.valid_to)];
(L2);
(h, L3, TS, h.id = i.arnount & h overlap i);
(L4, h.id, i.id, i.amount)])

File Primitive Expression
Read (Heap, 128) +
Read (Heap, 19) * 2 1 +
Write (Heap, 19) * 3 - 1 +
Read (Heap, 19) +
Read (Hash, 0) * 1024)

• Access Path Expression
APE; :

APE.:

(U 128)
(U 19) * 2 - 1
(U 19)
(H 1) * 1024

(U 19). 3- 1

+
+
+

• Access Path Cost

•

APC; = C ((U 128)) + C ((U 19) * 2- 1) + C ((U 19)) + C ((H 1)) * 1024
= 1,028 random accesses + 180 sequential accesses= 35,500 msec

APC0 = C ((U 19) * 3 - 1)
= 3 random accesses + 53 sequential accesses= 1,070 msec

File Primitive Expression
Read (Heap, 3712) +
Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1 +
Read (Heap, 19) +

§ Q10:

•ifuc=O

• if uc = 14

Read (Hash, 28) * 1024

• Access Path Expression
APE, :

(U 3712) +
(U 19) * 2 - 1 +
(U 19) +
(H 1 (I? 28 (S 1) (I? 1))) * 1024

APE.:
(U 19) * 3- 1

• Access Path Cost
APC1 = C ((U 3712)) + C ((U 19) * 2- 1) + C ((U 19))

+ C ((H 1 (I? 28 (S 1) (I? 1)))) * 1024

199

= 29,700 random accesses+ 3,764 sequential accesses= 999,000 msec
APC0 = C ((U 19) * 3 - l)

= 3 random accesses +53 sequential accesses= 1,070 msec

retrieve (i.id, h.id, h.amount) where
and

i. id = h. amount
h over~ap "now"

•

•

•

when h overlap i

Algebraic Expression
{ [L1: When

L2: Project
(h, h overlap "now");
(L1, h.id, h.amount,

h.valid_from, h.valid_to)];
(L2); L3 : Temporary

[L4: Join
Project

(i, L3, TS, i.id = h.amount & h overlap i);
(L4, i.id, h.id, h.amount)])

File Primitive Expression
Read (Heap, 128) +
Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1 +
Read (Heap, 19) +
Read (I sam, 0) * 1024)

Access Path Expression
APE1 :

(U 128) +
(U 19) * 2 - 1 +
(U 19) +
(I? 1 (I? 1)) * 1024

APE.:
(U 19) * 3- 1

• Access Path Cost
APC1 = C (APE1)

= 2,052 random accesses+ 180 sequential accesses= 67,500 msec
APC0 = C ((U 19) * 3- 1)

= 3 random accesses +53 sequential accesses= 1,070 msec

§ Qll:

• if uc = 14

• File Primitive Expression
Read (Heap, 3712)
Read (Heap, 19) * 2 - 1
Write (Heap, 19) * 3 - 1
Read (Heap, 19)
Read (I sam, 28) * 1024

• Access Path Expression
APE; ;

(U 3712) +
(U 19) * 2 - 1 +
(U 19) +
(P 29 (P 1)) * 1024

APE0 :

(U 19) * 3- 1

• Access Path Cost
APC; = C (APE;)

+
+
+
+

200

= 30,724 random accesses+ 3,764 sequential accesses= 1,030,000 msec
APC0 = C ((U 19) * 3 - 1)

= 3 random accesses +53 sequential accesses= 1,070 msec

retrieve (h.id,
valid
when
as of

i.amount) h.seq, i.id, i.seq,
from begin of h
begin of h precede i
"4:00 1/1/80"

to end of i

• Algebraic Expression

•

{ Ll: AsOf (h, "4:00 1/1/80", "4:00 1/1/80");
[L2: Join (Ll, i, TS, beignOf (h) precede i);

(Project (L2, h.id, h.seq, i.id, i.seq, i.amount),
Valid (L2, From, beginOf (h)),
Valid (L2, To, endOf (i))

l l I

File Primitive Expression
Read (Heap, 128)
Read (Heap, 128) * 2

+

• Access Path Expression
APE; :

(U 128) +
(U 128) * 2

• Access Path Cost
APC, = C (APE;)

= 3 random accesses+ 381 sequential accesses= 7,100 msec

• File Primitive Expression
Read (Heap, 3712) +

§ Q12:

•ifuc=O

Read (Heap, 3712) * 2

• Access Path Expression
APE, :

(U 3712) +
(U 3712) * 2

* Access Path Cost
APC1 = C (APE1)

201

= 3 random accesses + 11,133 sequential accesses= 205,000 msec

retrieve (h. id,
valid
where
when
as of

h.seq, i.id, i.seq, i.arnount)
frmn begin of (h overlap i) to end of (h extend i)
h.id = 500 and i.arnount = 73700
h overlap i
"now"

•

•

•

Algebraic Expression
{(([L1: Select (h, h.id = 500);

L2: Project (L1, h.id, h.seq)
L3: Temporary (L2)

) '
([L4: Select (i, i.arnount = 73700);

l ;

L5: Project (L4, i.id, i.arnount, i.seq)];
L6:

));
[L 7:
(

) l

Temporary (L5)

Join
Project
Valid
Valid
I

(L3, L6, TS, h overlap i);
(L7, h.id, h.seq, i.id, i.seq, i.arnount),
(L7, From, beginOf (overlap (h, i))),
(L7, To, endOf (extend (h, i)))

File Primitive Expression
Read (Hash, 0) +
Read (Heap, 1) * 2 - 1 +
Write (Heap, 1) * 3 - 1) +
Read (Heap, 128) +
Read (Heap, 1} * 2 - 1 +
Write (Heap, 1) * 3 - 1) +
Read (Heap, 1) * 0 +
Read (Heap, 1) * 0

Access Path Expression
APE1 :

(H 1) +
(U 1) * 2 - 1 +
(U 128) +
(U 1) * 2 - 1 +
(U 1) * 0 +
(U 1) * 0

APE.:
(U 1) * 3- 1) +

(U l). 3- l)

• Access Path Cost
APC, = C (APE1)

= 4 random accesses + 127 sequential accesses = 2,460 msec
APC. = C (APE0)

= 2 random accesses + 2 sequential accesses = 99.4 msec

• if uc = 14

§ Ql3:

• File Primitive Expression
Read (Hash,
Read (Heap,
Write (Heap,
Read (Heap,
Read (Heap,
Write (Heap,
Read (Heap,
Read (Heap,

• Access Path Expression
APE1 :

(H 1 (P 28 (S
(U 1) • 2 - 1
(U 3712)
(U 1) * 2 - 1
(U 1) • 0
(U 1) • 0

APE.:
(U 1). 3- 1)
(U 1) * 3- 1)

28)
1) * 2 - 1
1) * 3 - 1)
3712)
1) * 2 - 1
1) * 3 - 1)
1) * 0
1) * 0

1) (P 1))) +
+
+
+
+

+

+
+
+
+
+
+
+

• Access Path Cost
APC1 = C (APE;)

= 32 random accesses+ 3,711 sequential accesses= 69,300 msec
APC. = C (APE.)

= 2 random accesses+ 2 sequential accesses= 99.4 msec

retrieve (h. id, h. seq) where h. id = 455

•

when "1/1/82" precede end of h

Algebraic Expression
{ [L1: Select

L2: When
Project

(h, h.id = 455);
(L1, "1/1/82" precede
(L1, h.id, h.seq)

endOf (h));
])

• the rest is the same as QOL

§ Ql4:
retrieve (h. id, h. seq) where

when "1/1/82" precede

• Algebraic Expression

h.amount = 10300
end of h

202

{ [11:
12:

Select
J!hen
Project

(h, h.arnount = 10300);
(11, "1/1/82" precede endOf (h));
(12, h.id, h.seq)])

• the rest is the same as Q!J7.

§ Ql5:
retrieve (h.id, h.seq) where

as of "1/1/83"
h.arnount 10300

• Algebraic Expression
{ [11 : Select

12: AsOf
Project

(h, h.arnount = 10300);
(11, "1/1/83", "1/1/83");
(12, h.id, h.seq) l l

• the rest is the same as Q07.

§ Ql6:
retrieve (h. id,

when
as of

h. seq) where
"1/1/82" precede
"1/1/83"

h.arnount = 10300
end of h

• Algebraic Expression
{ [11 : Select

12: When
13: AsOf

Project

(h, h.arnount = 10300);
(11, "1/1/82" precede endOf (h));
(12, "1/1/83", "1/1/83");
(13, h.id, h.seq)])

• the rest is the same as Q07.

203

Appendix E

Update Algorithms

This appendix shows the algorithms to handle delete and replace on rollback, historical, or

temporal relations using the temporally partioned store, as discussed in Section 5.1.2.

(*

*
*
*
*
*
*
*
*
*
*)

Update a relation
parameters

mode
rel
baseTup
base Tid
updateTup

return value
OK
ERROR

with a temporally partitioned store.

mdDELETE or mdREPLACE
relation to be updated
base tuple (to be updated)
tuple-id of the base tuple
new tuple to replace the base tuple

when successful
when failed

function update_t (mode,. rel, baseTup, baseTid, updateTup):
begin

end;

case (mode) of
mdREPLACE:

begin
saveTid f- baseTid;
cc f- delete_t (rel, baseTid, baseTup,

updateTup, mdREPLACE);
baseTid +- saveTid;

case (cc) of
NoRep:

;
(* no overlaping interval for replace *)
(* no action needed *)

BaseTup:
cc f- replace (rel, baseTid, baseTup, TRUE);

OK:
cc f- replace (rel, baseTid, updateTup, TRUE);

ERROR:
return (cc);

end;
end;

mdDELETE:
cc f- delete_t (rel, baseTid, baseTup, updateTup, mdDELETE);

end;
return (cc);

(* Delete a tuple from a temporally partitioned store.

* parameters
* rel relation to be updated
* baseTup base tuple (to be updated)
* baseTid tuple-id of the base tuple
* updateTup new tuple to replace the base
* mode mdDELETE or mdREPLACE
* return value

* OK when successful
* ERROR when failed
*)

function delete_t (rel, baseTup, baseTid, updateTup, mode) :
begin

(* determine the temporal type *)
if (rel->temporalType = S_HISTORICAL) then
begin

206

tuple

if (rel->temporalType = S_PERSISTENT) then (* temporal *)

end;

(*
*
*
*
*
*
*
*
*
*

*
*
*)

return (delete_temporal
(rel, baseTid, baseTup, updateTup, mode));

else (* historical *)
return (delete historical

(rel, ibaseTid, baseTup, updateTup, mode));
end;

else if (rel->temporalType = S_PERSISTENT) then (* rollback *)

else

return (delete rollback
(rel, ibaseTid, baseTup, updateTup, mode));

(* snapshot relation *)
return (ERROR);

Delete a tuple from a historical relation.
parameters

rel
baseTup
baseTid
updateTup
mode

return value
OK
No Rep
BaseTup
ERROR

relation to be updated
base tuple (to be updated)
tuple-id of the base tuple
new tuple to replace the base tuple
mdDELETE or mdREPLACE

when successful
when no need to replace
when baseTup is to be replaced
when failed

function delete_historical (rel, baseTup, baseTid, updateTup, mode) :
begin

base validFrom f- (valid from value of the base
base_validTo f- (valid to value of the base
update_validFrom f- (valid from value of the update
update_validTo f- (valid to value of the update

cc f- OK;
if (update_validFrom S base validFrom) then
begin

tuple);
tuple);
tuple);
tuple);

update validFrom f- base validFrom;
if (update_validTo S base_validFrom) then (* case (1) *)

cc +-- NoRep;

end;

207

else if (update_validTo < base_validTo) then
begin (* base_validFrom < update_validTo <

base_validFrom +- update_validTo;

(* case (2) *)
base_validTo *)

end;

if (mode = mdDELETE) then
begin

ins_rep ~ replace;
tmptup +- baseTup;

end;
else
begin

(* mdREPLACE *)

end;

ins_rep +- insert_history;
tmptup +- updateTup;

cc +- ins_rep (rel, baseTid, tmptup, TRUE);
if (mode = mdREPLACE) then
begin

end;

cc +- BaseTup;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid);

else (* base_validTo < update_validTo *)
begin (* case (3) *)

update_validTo +- base_validTo;
if (mode= mdDELETE) then cc +-delete (rel, baseTid);

end;

else if (update_validFrom < base_validTo) then
begin (* case (4) or (5) *)

(* base_validFrom < update_validFrom < base_validTo *)
if (mode = mdDELETE A base_validTo S update_validTo) then

ins rep +- replace;
else - (* mdREPLACE or (4) of mdDELETE *)
begin

end;

ins rep +- insert_history;
tmp=tid +- baseTid;

tmp_t +- base_validTo;
base_validTo +- update_validFrom;
cc +- ins_rep (rel, baseTid, baseTup, TRUE);
base_validTo +- tmp_t;

if (update_validTo < base_validTo) then
begin

base_validFrom +- update_validTo;

if (mode = mdDELETE) then
begin

ins_rep +- replace;
tmptup +- baseTup;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid);

(* case (4) *)

end;

end;

baseTid f- tmp_tid;
end;
else (* mdREPLACE *)
begin

end;

ins_rep ~ insert_history;
tmptup f- updateTup;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, updateTup, baseTid);

cc f- ins_rep (rel, baseTid, tmptup, TRUE);
if (mode = mdREPLACE) then
begin

end;

cc f- BaseTup;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid);

else if (mode = mdREPLACE) then
begin (* base_validTo ~ update_v : case (5) *)

end;

update_validTo f- base_validTo;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, updateTup, baseTid);

else (* base_validTo < update_validFrom case (6) *)
cc f- NoRep;

return (cc);

208

end;

Delete a tuple from a temporal relation.
parameters

rel relation to be updated
baseTup base tuple (to be updated)
baseTid tuple-id of the base tuple

(*

*
*
*
*
*
*
*
*
*
*
*

updateTup new tuple to replace the base tuple
mode mdDELETE or mdREPLACE

*)

return value
OK
No Rep
BaseTup
ERROR

function delete_temporal.
begin

base validFrom f-

base validTo f-

base_transStart f-

base_transstop f-

update_validFrom f-

update_validTo f-

update_transStart f-

update_transStop f-

when successful
when no need to replace
when baseTup is to be replaced
when failed

(rel, baseTup, baseTid, updateTup, mode):

(valid from value of the base tuple) ;
(valid to value of the base tuple) ;
(transaction start value of the base tuple);
(transaction stop value of the base tuple) ;

(valid from value of the update tuple) ;
(valid to value of the update tuple);
(transaction start value of the update tuple);
(transaction stop value of the update tuple) ;

cc +- OK;
if (update_validFrom ~ base_validFrom) then
begin

update validFrom +- base validFrom;

209

if (update_validTo ~ base_validFrom) then
cc +- NoRep;

(* case (1) *)

else if (update validTo < base validTo) then (* case (2) *)
begin (* base~validFrom < upCiate_validTo < base_validTo *)

end;

base_transStop +- update_transStart;
tmp_tid +- baseTid;
cc +-insert history (rel, baseTid, baseTup, TRUE);
base_validFrom t- update_validTo;
base_transStart +- update_transStart;
base_transStop t- TIME_MAX;

if (mode = rndDELETE) then
begin

ins_rep +- replace;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid);
tmptup +- baseTup;
baseTid +- tmp_tid;

end;
else
begin

(* mdREPLACE *)

end;

ins_rep +- insert_history;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, updateTup, baseTid);
tmptup +- updateTup;

cc +-ins rep (rel, baseTid, tmptup, TRUE);
if (mode--;, mdREPLACE) then
begin

end;

cc +- BaseTup;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid);

else (* base_validTo < update_validTo *)
begin (* case (3) *)

end;
end;
else if
begin

update_validTo +- base_validTo;
base_transStop +- update_transStart;

if (mode = mdDELETE) then ins_rep +- replace;
else ins_rep +- insert_history; (* mdREPLACE *)

cc +- ins_rep (rel, baseTid, baseTup, TRUE);
if (mode = mdREPLACE A rel->storeSpec = ReverseChaining) then

set_nva (rel, updateTup, baseTid);

(update_validFrom < base_validTo) then
(* case (4) or (5) *)
(* base validFrorn < update_validFrorn < base validTo *)

base_transStop f- update_transStart;
tmp_tid +- baseTid;
cc f- insert_history (rel, baseTid, baseTup, TRUE);

base_transStart f- update_transStart;
base_transStop +- TIME_MAX;
if (mode = mdDELETE A base_validTo S update_validTo) then
begin

ins_rep f- replace;
if (rel->storeSpec = ReverseChaining) then

set nva (rel, baseTup, baseTid);
baseTid-+- tmp_tid;

end;
else
begin

(* mdREPLACE *)

end;

ins_rep f- insert_history;
if (rel->storeSpec = ReverseChaining) then

set nva (rel, baseTup, baseTid);

tmp t +- base_validTo;
base_validTo f- update_validFrom;
cc f- ins_rep (rel, baseTid, baseTup, TRUE);
base_validTo f- tmp_t;

210

if (update validTo < base_validTo) then (* case (4) *)
begin -

end;

base validFrom +- update validTo;
if (;ode = mdDELETE) then
begin

ins_rep +- replace;
if (rel->storeSpec = ReverseChaining) then

set nva (rel, baseTup, baseTid);
baseTid-f- tmp_tid;
tmptup f- baseTup;

end;
else
begin

(* mdREPLACE *)

end;

ins_rep f- insert_history;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, updateTup, baseTid);
tmptup f- updateTup;

cc f- ins_rep (rel, baseTid, tmptup, TRUE);
if (mode = mdREPLACE) then
begin

end;

cc +- BaseTup;
if (rel->storeSpec = ReverseChaining) then

set_nva (rel, baseTup, baseTid);

else (* base_validTo S update_validTo
begin

update validTo f- base validTo;
if (rel->storeSpec = ReverseChaining) then

case (5) *)

end;

(*

*
*
*
*
*
*
*
*
*
*)

set_nva (rel, updateTup, baseTid);
end;

end;

else (* base_validTo < update_validFrom case (6) *)

cc r NoRep;
return (cc) ;

Delete a tuple
parameters

rel

from

baseTup
baseTid
updateTup
mode

return value
OK
ERROR

a rollback relation.

relation to be updated
base tuple (to be updated)
tuple-id of the base tuple
new tuple to replace the base tuple
mdDELETE or rndREPLACE

when successful
when failed

function delete_rollback (rel, baseTup, baseTid, updateTup, mode) :
begin

211

base_transStart
base_transStop
update_transStart
update_transStop

r (transaction
r (transaction
r (transaction
r (transaction

start
stop
start
stop

value of the base
value of the base
value of the update
value of the update

tuple);
tuple) ;
tuple);
tuple) ;

end;

(* in a rollback relation, base transStart S update_transStart *)
base_transStop r update_transStart;

if (mode = mdDELETE) then ins rep r replace;
else ins_rep r insert_history; - (* mdREPLACE *)

cc r ins rep (rel, baseTid, baseTup);
if (mode -;;, mdREPLACE A rel->storeSpec

set nva (rel, updateTup, baseTid);
return (cc);

ReverseChaining) then

(* Insert a tuple into the history store, if partitioned.

*
*
*
*
*
*
*
*)

parameters
rel relation to be updated
tuple tuple to be inserted
tid tuple-id to be set on insertion

return value
OK when successful
ERROR when failed

function insert_history (rel, tid, tuple) :
begin

if (rel->storeSpec = ReverseChaining) then
begin

end;
else

insert tuple into the history store;
set tid to the tuple-id of the inserted tuple;

end;

begin
insert tuple into the single store;
set tid to the tuple-id of the inserted tuple;

end;
end;
if (successful) then return (OK);
else return (ERROR);

(* Set the field nva (next version address) .

*
*
*
*
*)

parameters
rel
tuple
tid

relation to be updated
tuple whose nva field is to be set
value of the nva field

procedure set_nva (rel, tuple, tid) :
begin

set the nva field of tuple to tid;
end;

212

213

Appendix F

Performance Analysis (2)

Costs of some sample queries on the temporal database with the update count of 14 are analyzed
using the four models discussed in Chapter 4. We analyze the query costs for various formats of the
history store, as discussed in Chapter 7, assuming that the database uses the temporally partitioned storage
structure. Analysis of query costs for the temporal database with the conventional structure was given in
Appendix D.

§ QOl
retrieve (h.id, h.seq)

• Algebraic Expression
{[L1: Se~ect

Project

where h.id 500

(h, h.id = 500);
(L1, h.id, h.seq)

• for Reverse Chaining

• File Primitive Expression
Read (Hash, 0) +
Read (Chain, 28)

• Access Path Expression
APE; :

[(H 0) ; (P 28 (S 1) (P 1))]

• Access Path Cost
APC, = C (APE,) = 29 random accesses= 908 msec

• for Accession Lists

• File Primitive Expression
Read (Hash, 0) +
Read (Accession1ist, 28)

• Access Path Expression
APE, :

[(H 0) ; (P 28 (P 1))]

• Access Path Cost
APC, = C (APE,)= 30 random accesses= 939 msec

• for Indexing

• File Primitive Expression
Read (Hash, 0) +
Read (Index, 29)

• Access Path Expression
APE, :

l }

[(H 0) ; [(S 1 (P 1)) ? , (S 28 (P 1))]]

• Access Path Cost
APC; = C (APE;)= 30 random accesses= 939 msec

• for Clustering

• File Primitive Expression

•

•

Read (Hash, 0) +
Read (Cluster, 28, 8)

Access Path Expression
APE, :

[(H 0) ; (P r ~Sl (S 8) (P 8))]

Access Path Cost
APC; = C (APE;) = 5 random accesses= 157 msec

• for Stacking

• File Primitive Expression
Read (Hash, 0) +
Read (Stack, 28, 4)

• Access Path Expression
APE; :

[(H 0) ; (P 4)]

• Access Path Cost
APC; = C (APE;)= 2 random accesses= 62.6 msec

• for Cellular Chaining

§ Q03:

* File Primitive Expression

•

*

Read (Hash, 0) +
Read (Cellular, 28, 4)

Access Path Expression
APE; :

[(H 0) ; (P r ~Sl (S 4) (P 4))]

Access Pa:h Cost
APC; = C (APE;) = 8 random accesses = 250 msec

retrieve (h. id, h. S-"3q) as of "08:00 1/1/80"

• Algebraic Expression
{ [L1: AsOf

Project
(h, "08:00 1/1/80", "08:00 1/1/80");
(Ll, h.id, h.seq)]}

• for Reverse Chaining, Clustering, or Cellular Chaining

• File Primitive Expression

214

Read (Heap, 147) +
Read (Heap, 40 96)

• Access Path Expression
APE; :

(U 147) +
(U 4096)

• Access Path Cost
APC1 = C (APE;)

= 2 random access+ 4,241 sequential access= 78,100 msec

• for Accession Lists

• File Primitive Expression
Read (Heap, 147) +
Read (Heap, 624) +
Read (Accessionlist, 5)

• Access Path Expression
APE; :

(U 147) +
(U 624) +
(S 5 (P 1))

* Access Path Cost
APC1 = C (APE;)

= 7 random access+ 769 sequential access= 14,400 msec

• for Indexing

§ Q09

* File Primitive Expression
Read (Heap, 782)
Read (Index, 5)

• Access Path Expression
APE; :

(U 782) +
(S 5 (P 1))

• Access Path Cost
APC1 = C (APE;)

+

= 6 random access+ 781 sequential access= 14,600 msec

retrieve (h. id,
where
when

i. id, i. amount)
h. id = i. amount
h overlap i and i overlap "now 11

* Algebraic Expression
{ [Ll: When

L2: Project
(i, i overlap "now");
(Ll, i.id, i.amount,

i.valid_from, i.valid_to)];
(L2);

215

L3: T~orary
[L4: Join (h, L3, TS, h.id=i.amount & h overlap i);

216

Project (L4, h.id, i.id, i.arnount) l }

• for Reverse Chaining, Accession Lists, Clustering, Stacking, or Cellular Chaining

• File Primitive Expression
Read (Heap,
Read (Heap,
Write (Heap,
Read (Heap,
Read (Hash,

• Access Path Expression
APE; :

APE.:

(U 147)
(U 19) * 2 - 1
(U 19)
(H 1) * 1024

(U 19) * 3- 1

• Access Path Cost

147)
19) * 2 -
19) * 3 -
19)
0) * 1024)

1
1

+
+
+

+
+
+
+

APC, = c ((U 147)) + c ((U 19) * 2- 1) + c ((U 19)) + c ((H 1)) • 1024
= 1,028 random accesses + 199 sequential accesses= 35,800 msec

APC0 = C ((U 19) * 3- 1)
= 3 random accesses +53 sequential accesses= 1,070 msec

• for Indexing

§ Qll:

• File Primitive Expression
Read (Heap,
Read (Heap,
Write (Heap,
Read (Heap,
Read (Index,

• Access Path Expression
APE; :

APE.:

(U 114)
(U 19) * 2 - 1
(U 19)
(H 1 (P 1))

(U 19). 3- 1

• Access Path Cost
APC1 = C (APE,)

114)
19)
19)
19)

1)

* 2 - 1
• 3 - 1

* 1024)

+
+
+

+
+
+
+

= 2,052 random accesses+ 166 sequential accesses =43,000 msec

APC0 = C ((U 19) * 3 • 1)

retrieve (h. id,
valid
when

= 3 random accesses +53 sequential accesses= 1,070 msec

i.amount) h.seq, i.id, i.seq,
from begin of h
begin of h precede i

to end of i

217

as of "4:00 1/1/80"

• Algebraic Expression
{ Ll: AsOf (h, "4: 00 1/1/80", "4: 00 1/1/80");

[L2: Join (Ll, i, TS, beignOf (h) precede i);
(Project (L2, h.id, h.seq, i.id, i.seq, i.amount),

Valid (L2, From, beginOf (h)),
Valid (L2, To, endOf (i))

) l)

• for Reverse Chaining, Clustering, or Cellular Chaining

• File Primitive Expression
Read (Heap,
Read (Heap,
Read (Heap,
Read (Heap,

• Access Path Expression
APE1 :

(U 147)
(U 4096)
(U 147)

147)
4096)
147)
4096)

(U 4096)) * 2

• Access Path Cost
APC1 = C (APE1)

) *

+
+
+
2

+
+
+

= 6 random accesses+ 12,723 sequential accesses= 234,000 msec

• for Accession Lists

•

•

File Primitive Expression
Read (Heap, 147)
Read (Heap, 624)
Read (Heap, 147)
Read (Heap, 624)) * 2
Read (Accessionlist, 4)

Access Path Expression
APE; :

(U 147) +
(U 624) +
(U 147) +
(U 624)) * 2 +
(S 4 (P 1))

+
+
+
+

• Access Path Cost

• for Indexing

•

APC1 = C (APE1)

= 10 random accesses+ 2,307 sequential accesses = 42,800 msec

File Primitive Expression
Read (Heap, 782)
Read (Heap, 782) * 2

+
+

§ Q16:

Read (Index, 4)

• Access Path Expression
APE, :

(U 782)
(U 7 82)) * 2
(S 4 (P 1))

+
+

• Access Path Cost
APC, = C (APEi)

= 7 random accesses + 2,343 sequential accesses= 43,300 msec

retrieve (h. id,
when
as of

h.seq) where h.amount = 10300
"1/1/82" precede end of h
"1/1/83"

• Algebraic Expression
{[Ll: Select

L2: When
L3: AsOf

Project

(h, h.amount = 10300);
(Ll, "1/1/82" precede endOf (h));
(L2, "1/1/83", "1/1/83");
(L3, h.id, h.seq)]}

• with a Secondary Index, on the Amount Attribute, as a Snapshot Single Heap

• File Primitive Expression
Read (Heap, 295)
Read (Index, 2 9)

• Access Path Expression
APE; :

(U 295) +
(S 29 (P 1))

• Access Path Cost
APC1 = C (APE1)

+

= 30 random accesses + 294 sequential accesses = 6,350 msec

• with a Secondary Index, on the Amount Attribute, as a Snapshot Single Hash

• File Primitive Expression
Read (Hash, 0) +
Read (Index, 29)

• Access Path Expression
APE, :

(H 0) +
(S 2 9 (P 1))

• Access Path Cost
APC, = C (APEi) = 30 random accesses= 939 msec

• with a Secondary Index, on the Amount Attribute, as a Temporal Partitioned Heap

218

• File Primitive Expression
Read (Heap, 27) +
Read (Heap, 755) +
Read (Index, 4)

* Access Path Expression
APE; :

(U 27) +
(U 755) +
(S 4 (P 1))

• Access Path Cost
APC; = C (APE;)

= 6 random accesses + 780 sequential accesses= 15,500 msec

• with a Secondary Index, on the Amount Attribute, as a Temporal Partitioned Hash

• File Primitive Expression
Read (Hash, 0) +
Read (Hash, 0) +
Read (Index, 4)

• Access Path Expression
APE; :

(H 0) +
(H 0) +
(S 4 (P 1))

• Access Path Cost
APC; = C (APE;)= 6 random accesses= 188 msec

219

