MICROARRAS: An Overview

TR86-017
August, 1986

John B. Smith, Stephen F.
Weiss, Gordon J. Ferguson

The University of North Carolina at Chapel Hill
Department of Computer Science

Sitterson Hall, 083A

Chapel Hill, NC 27599-3175 C

A Textlab Report




UNC is an Equal Opportunity/Aflirmative Action Institution.



Introduction

Text editors are now the standard means for producing all sorts of documents, from the
shortest memo to complete bocks. Sophisticated word processing software facilitates the
entire writing process, from creation and revision to production of the final copy. In fact,
electronic text is becoming a new medium for communicating documeﬁts. The growth'i.n
electronic publishing combined with the maturing technology for converting printed text
to elecironic form {e.g., the Kurzweil Scanner) assure a large and rapidly growing pool
of machine readable documents. When developments in optical disks are added to the
equation, we éa;n gafely predict that individuals will soon be able to a.cduire, store, and
access very large databases of textural information at a reasonable cost. What is now
needed are more sophisticated systems that can operate on a variety of hardware, ranging

from microcomputers to mainframes, to provide efficient effective management, retrieval,

and analysis of textual data.

This paper describes one such system, calied MICROARRAS; that we are developing
at the University of North Carolina with funding from the National Endowment for the
Humanities and additional funding from Northern Telecom. We have designed the system
to operate on large, hard disk microcomputers, such as the IBM PC/AT, on professional
workstations, such as the SUN, and on mainframes, such as the Vax. The system supports
flexible, efficient retrieval of text from.a.rbitrarily.la.rge textual databases in response to a
wide variety of query types. It can perform various statistical and other analytic functions
on text and is designed {o permit easy addition of new analytic capabilities. The sys_terh

also provides for distributed textual databases and a variety of user interfaces.

The goal of our development effort is to produce a “next generation” system that
extends the number and kind of resources provided the knowledge worlker. whosé working
materials include documents. Consequently, we have based our system on two driving
problems. The first is the sophisticated, often esoteric needs of academic professionals,
ra.ngihg from literary scholars and anthropologists to chemists and computer scientists.

~ Analytic tools that can determine subtle relationships within and among texts, such as

1



thematic or stylistic differences, can serve as the basis for a much broader collection of
measures and functions for general use. Our second goal, then, is to develop an expanded
(prototype) system for these more general applications, particularly office automation and

document retrieval in research and development environments.

Existing Systems

Virtually all word processing systems provide some degree of retrieval function for the
text being created. However, queries are typically very restricted {e.g. exact matching of
a character string) and search time in large texts may be prohibitively long. Furthermore,

most provide few, if any, analytic tools.

Systems designed specifically for retrieval and analysis of large full-text databases are
a relatively new development, but are already having a significant influence in a variety of
fields. For example, the LEXIS [1} and WESTLAW [2] systems have had a fundamental
effect on legal research. The BRS-American Chemical Society system [3] may soon do
the same for chemistry. The University of Chicago is making available a collection of
some 1,500 full-length texts for French studies [4]. And the New York Times [5] offers its

database of current journalism in a full-text form.

These systems are for the most part derived from a single early system, STAIRS [6].
The exception is the University of Chicago project which is using an earlier version of
our system, called ARRAS [7]. While the STAIRS-based systems have made significant
contributions, certain fundamental features limit what they can do now and what they
will be able to do in the future. First, they offer no unifying concept of text and database;
all rely on ad hoc combinations of file designs, access, and maintenance techniques. Sec-
ond, they logically separate the multi-text database from the individual texts contained
within it. Consequently, once a document or set of documents has been selected through a
database search, the user cannot do secondary searches for other combinations of words in
the selected documents. Finally, current production systems cannot efficiently provide the

underlying access support needed to develop more powerful analytic functions. They do

2



not have the necessary “hooks” onto which new features can be added easily. We believe
that the utility of full-text database systems would be increased greatly if the user could
apply automatic indexing, content analysis, statistical, or AI-based models to the database

and to the texts contained within it. MICROARRAS is our attempt to alleviate these and

other restrictions.

In the remainder of this paper, we discuss MICROARRAS. Section 2 shows MI-
CROARRAS from the user’s perspective. This includes the search, retrieval, and analysis
functions that are currently available. Section 3 presents the underlying architecture of
the system including file organization, search strategies, and the formal language used for
communication between the user interface and the underlying retrieval engine. We also
show the provisions in MICROARRAS that allow easy expansion. Section 4 describes
several future directions for MICROARRAS that we intend to explore.

User’s View

Overview

In this section we describe the user’s logical view of the system. By “logical” view we
mean the mental model the user constructs in order to understand how the system.operates.
It does not mean the literal visual appearance of the user interface. (MICROARRAS is
desigﬁed to support multiple user interfaces that can be tailored for different applications
and different groups of users; this feature is described in more detail in the Architectural
View section). The overall environment is described first followed by descriptions of six
key concepts: passages, text display, lezscal display, categories, searching, and arithmetic

analysss.

Environment

We envision the user working on a microcomputer or professional workstation in a

distributed computing environment in which some form of network links the user to other

3



users and to remote mainframes or other compute- and file-gervers. MICROARRAS can be
operated within a single, isolated microcomputer, but for the remainder of this description
we will assume a distributed environment. In that environmént, the user will have access
to one or more file systems (e.g., a local hard disk, a remote file-server, and/or a remote
mainframe file system) and to conventional text editors. He or she will also have access
to one or more textual databases maintained by MICROARRAS. With MICROARRAS
functions, the user can insert a text into one of the databases, delete a text, and move or
copy a text from one database to another. The user can also logon to a remote system.
Since MICROARRAS works on both mainframes and workstations/microcomputers, the
user can work with texts stored in a remote database with MICROARRAS operating on
that machine and the user’s workstation functioning as an intelligent terminal; or the
user can work with texts stored in a database on the user’s own machine and operate
MICROARRAS completely within that environment. Or he or she can transfer texté back
and forth from one environment to the other. In the current version of the system, the

user must direct these operations; but in future versions, the system will hide much of this

from the user.

Working with a textual database is frequently an iterative process. While the user
sometimes knows exacily which text he or she wishes to access, more often identifying
relevant fexts involves some form of search. MICROARRAS will provide two database
search modes: bibliographic search and content search. The first uses conventional biblio-
graphic methods to help the user locate documents by author, title, descriptive keywords,
etc.; however, in addition to retrieving bibliographic citations, the search also builds in-
ternal pointers to the associated documents stored in the textual database. In some cases,
the search may locate a single document, but frequently it produces a list of candidate
documents (e.g., the documents with certain words in their titles). In content search,
MICROARRAS will support full Boolean search for words or sets of words to produce a

similar candidate list.

Once a candidate list of documents has beer identified, MICROARRAS provides

extensive capabilities for secondary searches of selected documents (or parts of documents)

4



from this list. In the remainder of this paper we will emphasize MICROARRAS’s secondary
search and analysis capabilities since they represent some of the more unusual aspects of
the system. Thus, we will presume that the user has identified a candidate list of texts and
now wishes to begin narrowing the focus to find or analyze the specific passages relevant

to his or her needs. A key concept in this process is the notion of a textual passage.

Passages

Passages are named sets of texts or portions of texts. They are used to direct MI-
CROARRAS’s attention for subsequent searches and analyses. For example, following a
global search of the textual database, the user interested in structure editors might select
five technical reports, two journal articles, a book, and two papers contained in the pro-
. ceedings of a conference and then name the group structure-editors. The reports, articles,
and book are likely to be complete documents in the database, but the two conference
- papers would be contained within a proéeedings document. The user could now retrieve
and analyze text in this structure-editor passage. At any fime the user may shift the focus
of the analysis to another set of texts (or portions of texts). Thus, during a session, the
‘user may create (and save for subsequent use) many different passages and easily move

from one to another.

One of MICROARRAS’s strengths is its flexibility in handling context specifications.
The system generally views a document as composed of two overlapping hierarchies of
text segments. The first denotes logical divisions, such as volume, chapter, paragraph,
sentence, and word within sentence; the second, physical divisions such as page, line, and
word within line. Whenever a textual database is established, the definition includes sets
of canonical segments for that collection. Ad hoc segmentations may be used for individual
documents, but the user must define any hierarchical relations that are to be recognized.
These segmentation schemes are used by MICROARRAS to format the display. They are
. also uged in a number of other operations, such as searching, that involve context. Some

of these are discussed below.



Text Display

Having established some set of passages (identifying one or more documents cr parts
of documents), the user can quickly and easily move around in them. This is done by first
specifying the desired passage and then indicating the place in that passage to be displayed.
At a system level, indicating a place for display is done by specifying the appropriate
segment, as described above. Af the user interface level, the user might indicate that
bhe or she would like to see the first seciion, entitled Overmew, in the second journal
article within the passage. We are currently designing a graphics-based interface in which
this information may be selected directly from a tree diagram showing the segmentation

hierarchy for a given document or passage.

A second way of moving around in the text is by displaying all occurrences of a given
word along with some designated context around each. Essentially, this is an interactive
concordance or keyword in context (kwic) listing. MICROARRAS can produce such dis-
plays immediately, no matter how 'large the document or how scattered the occurrences.
The context around each occurrence can be varied at will, from one or two words on each
side to the full section or even the entire document. If the user wishes to see a wider
context for any particular occurrence, he or she may simply point to that occurrence on
the display and ask for additional context. Thus, a typical user might specify a rather
limited context — say, four or five words on each side — and then ask for additional context

for those passages that seem most relevant.

Lexical Display

Just as MICROARRAS can immediately go to any place in a document to display
text, it can also go to any place in an alphabetical lexicon of the words that appear in
a document or passage. Lexical information may be displayed in three primary ways:
by alphabetic sequence, by pattern of characters, and by frequency of occurrence in the
document or passage. In the first instance, the user may display the lexicon or part of

it by indicating an alphabetical range, such as all those words beginning with the letters

6



a through ¢. The display can be shown separately for each document within the current
passage or interleaved to form a single alphabetic sequence. The second option searches
for sequences of characters, including *wildcards®. Thus, the user can locate all words
with a given stem or a given prefix or suffix. The third option displays word-types sorted
by their frequencies within the passage. The user can then locate the most frequent words,

the least frequent, or those falling within some portion of the frequency spectrum.

Categories

In text analysis, it is often useful to define a group of words and then refer to that group
by a single name. We call such groups categortes. MICROARRAS supports three types of
categories: type lists, token lists, and recursive lists. Type lists represent all occurrences
of a specified set of word types for a particular passage; for example, cach instance of the
v;ord-types processor and cpu. Token lists are sets of text positions representing individual
oceurrences of words; for example, the specific places in 2 document where processor refers
{0 a computer, not a human processor of information. Recursive categories are sets of other
categories; for example, a new category consisting of the cpu-category and the memory-

c;dtegory .

A category definition includes the name by which it is identified and the expression
that defines it. The expfession can be a list of word-types, tokens, or category names.
(It can also be a Boolean expression, as described in the next section.) Actual internal
definition of a category is a two-step process: the expression is scanned and stored inter-
nally; then it is evaluated with respect to a given passage. Thus, for example, a set of
categories may be derived frofn a thesaurus that has been tailored to the user’s research
interests. When the categories in the thesaurus are initially defined (or obtained) by the
user, they are stored as expressions (sets of word-types) independent of any document or
get of documents. But when they are applied to a given text (or passage), the expression.;.
are evaluated with respect fo that document. Consequently, word-types that are in the
category but don’t appear in the text (or passage) are eliminated from the internal working

instance of that category.



Search

MICROARRAS provides very flexible and very fast search of a document. To con-
duct a search, the user must specify three components: a Boolean contextual expression,
a passage in which to evaluaie the expression, and a category in which fo store the re-
sulting set of positions where the expression occurs {a token list). The expression is any
Boolean combination of words or category names. If categories are used, they imply every
occurrence of any word-type included. Contexts in which search expressions are evaiuated
can be specified in terms of any text segment units valid for tlie text database and can
be specified in any number. Thus, one can lock for all occurrences of cpu-category &
memory-category within, say, three words of one another, or within the same sentence,
or within three sentences, or in the same sub-gection, etc. Different contexts can also be
specified for subexpressions (e.g., cpu-category & memory category within three words of
one another but not in the same sentence with hardware-category). The result of a search

is a list of text locations. They are stored as a token-list category, as described above.

Like any other category, token-lists resulting from a search can be used in any way
that categories are normally used, including within a subsequent search expression. Thus,
the user may search for patterns of words, patterns of patterns, patterns of patterns of
patterns, etc. Search expressions can also be saved from one session to another and they
can be applied to different passages. Consequently the user can develop expressions that
define a specific set of interests and use them at will on different documents or sets of

documents.

Arithmetic Functions

MICROARRAS provides facilities to compute various textual measures and then dis-
play the results, analyze then with an internal arithmetic interpreter, or pass then fo an
external statistical analysis package. Two basic kinds of data can be computed. The first
is frequencies of words or sets of words (categories) within a specified passage. Thus, the

user can compute and display the frequency with which a word or category appears in a

8



document, a set of documents, or some part of a document. For example, the user can
display the number times the words in the cpu-category appear in the passage described
above: e.g., in five technical reports, the two articles, the book, and the two conference
papers. - The second major class of statistical data are segmental measures. These deter-
mine the number of times one segmental measure occurs within another. For example, the

number of words in a sentence or the sentences in a document.

‘These measures become more interesting when combined in various ways to compute
ratios, distributions, and lists of various kinds such as the distribution of a word or category
over a text passage divided into a set of uniform intervals. The resulting vector of values
can be displayed as a bar graph or passed out for statistical analysis. For example, one can
perform a Fourier analysis on the vector to see if the word or category tends to appear at
regular intervals. Or one can accumulate several such vectors, view them as the columns
of a matrix, and perform a factor analysis to identify clusters of words or categories that

com.;istently appear together in the passage.

These measures can also be stored as numeric variables. Types recognized by MI-
CROARRAS are scalers and vectors of both integers and reals. These variables can be
useg in arithmetic expressions to compute any statistic for which the user can write the
equa#ion. For example, one can evaluate in real time a number of different retrieval for-

mulae to compare the matches between search requests and sets of documents identified.

Axrchitectural View

Overview

In this section, we provide a general overview of the system’s architecture and then
describe, briefly, some of its more unusual features. The discussion is divided into two
ma.in parts: the preparation of a document for use by MICROARRAS and the structure
of the system itself.



Document Flow

Preparing a document for use by MICROARRAS is a four step process (see Figure
1). First, it must be transcribed into a machine readable form with internal marks in-
dicating segments (boundaries, such as chapters, sections, and paragraphs). Second, it
is converted into a canonical form, identical fo that reconstructed by MICROARRAS for
textual display. Third, it is scanned and inverted. Finally, the inverted text is inserted

into the textual database.

The machine readable form can come from several diﬂ'erent sources. It can be text
written with a conventional word processor or editor. It can be extracted off a network. It
could be text “read” by an optical scanner, such as the Kurzweil Data Entry Machine. Since
MICROARRAS indexes major segment boundaries, it expects to see marks in the text
that indicate chapters, sections, paragraphs, etc. Currently, MICROARRAS recognizes
marks that follow TEX conventions. While MICROARRAS does not support full TEX,
a {ext that includes macros denoting these features can be recognized. We will extend
the conventions accepted by MICROARRAS in the near future to include popular word
processing software, such as Microsoft Word, NROFF, and Script.

The machine readable text is processed by a prescan program to produce a canon-
ical form. This format is identical to that produced by the analytic engine during text
reconstruction and sent to the interface for display. It provides a formal means for MI-
CROARRAS fo recognize similarities in segmental structures for documents encoded in
different systems as well as true idiosyncrasies of documents. This version of the text is
still readable but is highly structured and is well-defined in terms of format conventions.
As such, it also serves as a portable form for transferring documents from oné environment

to another.

The canonical form of the document is then scanned. During this stage, the text
is inverted and a number of separate indices created. The details of these indices are

discussed in relation to the Analytic Engine, below. The result of this process is a single

10



“file” that constitutes the inverted text and all its associated indices. This form, again, is

well defined and can be transported from one environment to another.

Finally, the inverted document is inserted into the textual database. This operation
includes adding a citation to the bibliographic database for subsequent search. We afe
also in the process of developing facilities for consolidating the lexicons for the individual
documents into a composite lexicon for the entire {extual database. Once a document is
in the database, it may be analyzed directly or it may be extracted in inverted form and

transmitted to another MICROARRAS database or another system.

System View
Overview

(From a development standpoint, our immediate goal was to convert a text analysis
systemi_ running on large IBM mainframes (in PL/1) to a microcomputer version in C.
We took advantage of the opportunity to substé.ntially rethink and redesign the system.
Not of’iiy' have we extended its function, we have also hroached fundamental quéstions
about the formal models underlying text analysis and recast some traditional questions
about efficient representation schemes and search algorithms for large textual databases.

The next several sections describe the MICROARRAS implementation and touch on these

larger questions.

MICROARRAS has three main modules linked ~ but also separated - by two well-
defined interfaces (see Figure 2). Properly speaking MICROARRAS i a family of systems
- each distinguished by a particular interface. The module that conirols the User Interface
interacts with a Command Processor module using a formal two-way language. This
language provides a virtual machine, or facade, to the User Interface that we call FLANGE
(Facade Language). The Command Processor parses FLANGE, checks it for errors, and
then calls on the Analytic Engine to compute results. The Analytic Engine can be viewed as
a collection of abstract data types; we treat the C functions that provide access to these sub-

modules as a language, which we call Arrish. Thus, the typical cycle of .opera,tion is for the

11



User Interface to transmit FLANGE to the Command Processor. The Command Processor
interprets the FLANGE command to produce a sequence of calls to the Analytic Engine.
The Analytic Engine does the work and returns the data to the Command Processor which

encodes it into FLANGE and sends it back to the User Interfzce. The User Interface
unpacks the FLANGE-encoded data and displays the resulis.

The User Interface Module

Had we followed a conservative, top down approach to designing MICROARRAS, we
would have first specified a User Interface and then incrementally elaborated the functions
necessary to support that specification. Rather, the actual emphasis in our project was on
designing a system to be viable across a range of different user environmenté. The rela-
tive portability of C code made this a reasonable goal and the volatility of the computer
market made it almost a necessity. We wanted to run not ouly or microcomputers but on
professional workstations, minicomputers, and mainframes, as well. MICRCARRAS cur-
rently runs on the PC/AT (with the EGA Card) under MS-DOS, on the SUN workstation,
and on the VAX 11/785 — the last two under BSD 4.2 UNIX, The fruits of this approach
include the three quite distinet User Interfaces described below.

The first is a forms based User Interface on the PC/AT using the Lattice Windows
package and the Panel software from Round Hill Computer Systems, Ltd. This interface
directly supports the FLANGE concepts and functions outlined above. Its intended pur-
poses are to drive the Command Processor and Analytic Engine for system testing and
for helping the user learn FLANGE for developing other systems that can interact with

textual databases.

A menu of commands is shown at the top of the screen. Command parameters are
entered in a separate area of the screen {window). Results are displayed in another. Error
messages are displayed in a fourth fixed area. A category, for, example is defined by filling

in a single form; concordances can be requested using another. The user creates and sends

12



commands to MICROARRAS one at a time. Each command is processed and the results

displayed immediately.

The great advantage of a forms-based user interface like this one over a command
language is user convenience. The user can select an available option rather than having
to first learn all the things the system can do. Thus, necessary control information can
be entered on the associated forms. The on-line help is also keyed to particular fields in
particular forms, errors can be pinpointed exactly, and commands altered by changing a

single highlighted field.

The second interface was also done for the PC/AT but within Microsoft’s Windows.
Whereas the first interface was designed around the structure of FLANGE with an ap-
proximate one-io-one correspondence between user commands and FLANGE commands,
the second interface is designed around the kinds of operations that users will typically
perférm. There is frequently a one-to-three or -four ratio between user coxﬁmaﬁd and
those_,of FLANGE. Thus, we are beginning o use FLANGE as a programming language.
This interface is also menu-based and was designed to include a minimum set of control
fea.tuf;as. One particular feature worth noting is its ability to iransfer parameters from one
window to another. For example, the uéer can display a concordance, select a particular
occurrence, and then transfer the word foken identifier to a second window in which he or
she is constructing an analytic category of text positions. While this interface in counsid-
erably more powerful than the first and will be put into actual use, it will also serve as a

stepping stone to a third.

We are currently designing a more sophisticated graphics-based User Interface. It will

be highly iconic and support a visual command language. Features include:

¢ Jconic representation of textual objects — words, categories, contexts, Boolean config-

urations, etc.

¢ Convenient visual tools for combining and manipulating textual objects.

13



e A iree drawing of the text — showing the chapter and section organization - through

which the user can navigate using the mouse to seleci portions for viewing or for

further analysis.

e Separate windows for reviewing the current state of the system - the categories that

are active, the format options available, efc. These can be opened or closed at will.

e Graphs {bar or line) of frequency distributions and other siatistical data computed

by the system.

o Formatted text showing bold face and special fonts for titles, etc; this text can be

scrolled through and also stored for later display.

By using FLANGE as a primitive programming language, we can develop a succession
of more sophisticated interfaces as well as specialized interfaces tailored to particular groups

of users or particular applications.

FLANGE

FLANGE serves two major functions: it provides a formal specification for the MI-
CROARRAS System and it provides an internal two-way command language. Formal
specification of MICROARRAS was desirable for several reasons. MICROARRAS is part
of an ongoing research project in natural language and text analysis. Consequently, we
need to build tools that will outlive particular systems. We also envision MICROARRAS
as one component of a larger system. MICROARRAS is intended to run on one or more
nodes in a distributed text analysis network. We are also developing an expert system
component to support intelligent user functions - e.g., more powerful search facilities. MI-
CROARRAS will be used in that configuration as a compute-server communicating with

the expert system through FLANGE.

FLANGE is based on the command language of mainframe ARRAS. But we have
made geveral substantial extensions. FLANGE has a formal syntax; its grammar is spec-

ified using a BNF-like notation. Consequently, programs can easily construct command

14



expressions which, in turn, can easily be parsed. The components of a FLANGE sen-

tence are strongly typed to simplify processing and to ensure reliable transmission across

a communication interface.

FLANGE is used for all communications between a User Interface and the processing
modules. Thus, for example, a request for a concordance is encoded into FLANGE by the
User Interface. Then, as ‘the results are computed they are encoded within the conventions
of the “return” part of FLANGE and sent to the User Interface for display. Cpportunities
for interruption and cancellation of long outputs as well as error reporting are provided.
Thus, FLANGE makes it possible to run the processing modules on one system and to drive
a User Interface through a communications link running on another. We are developing
logic to support multiple users sharing access to a single processing module and to view

these users and support modules as no.des in 2 general network.

Command Processor

The second major component of MICROARRAS is the Command Processor module.
It examines the FLANGE message for errors and then calls Arrish functions to actually
perform the computations. In addition, the Command Processor contains the code to
actually receive and transmit FLANGE to the User hteﬂace. This section describes some

of the techniques used in the Command Processor and identifies areas of coutinuing interest.

Although FLANGE is a formal language, no effort was made to generate a parser
automatically. Each command has a small hand written parser; because the syntax is
simple, these are easy to build without tables or external data structures. The advantage
of using custom parsers on this constrained syntax is that detailed error diagnostics can
be generated. Typically an error can be located by command line and syllable and can be
- identified as the wrong type of syllable or as a syllable whose contents are incorrect. The
balance between detailed error handling and fhe elegance of language constructs continues

to be a major issue as we consider new versions of FLANCE,

15



During execution the command is viewed as an expression {o be evaluated. The evalu-
ation entails building a parameter list and then calling functions provided by the Analytic
Engine. Often this requires evaluating separate subexpressions and then combining their
individual results. For example, the command to create a passage may designate several
portions of a text - each by volume, chapter, and section. The command processor must
first transiate ‘chapter’, ‘volume’, and ‘section’ into their internal codes, then find the
beginning and end of the first section, compute in a similar way the boundaries for the

others, then combine these to form the passage.

Some evaluations may require several steps. A concordance, say, might be requested
for a list of words. The command processor would first locate all the occurrences of the
word, then recreate the context requested, and finally return the textual data to the User
Interface via FLANGE. Intelligent ordering of these operations can improve system per-

formance; such optimizations are of increasing concern for large collections of documenis.

The Command Processor maintains a symbol table, providing a name space for
FLANGE. Consequently, objects can not only be defined and reused during a session,
they can be reconstructéd through FLANGE commands stored in a file. This allows sav-
ing the complete state of a session on secondary storage. It also allows communication

between two MICROARRAS programs.

In light of our interest in FLANGE as a formal description of text analysis, the routines
used by the Command Processor take on considerable significance. These functions get the
job done, but they also constitute a second formal description of text. The next section

introduces that perspective.
Arrish

Arrish is the symbolic interface between the Command Processor and the Analytic
Engine that does the actual computing and data manipulation. That interface can be
viewed as a set of abstract data types, implemented in accord with good software engi-

neering practices. However, it is more interesting to think of them as ‘objects’ implemented

16



in C. While this says that text analysis programs can be written in an object-oriented style,
it also suggests that text analysis itself can be described in an object-oriented way. An
exciting perspective of the Arrish language is that it molds the user’s ideas about the
formal propertieé of texts. That is, it provides a set of {extual primitives that can be
used not just in computing measures of a text but for thinking about what constitutes a
text. Thus, it i3 a step toward defining a ezt processing language, rather than a siring
processing language. For example, the user can think formally about the distribution of
certain classes of words across various sections of a document, the shifting of sentence and

paragraph lengths as an author matures, or about various patterns or rhythms of concept

co-occurrence across a text.
Analytic Engine

The Analytic Engine (sometimes called the Arrish Engine) is embodied in some dozen
abstract data types: spans, passages, mark-sets, segments-in-effect tables, type lists, token
lists, text access and the like (Figure 3 shows the basic system modules and their depen-
dencies). These modules contain text and data, with no (known) hidden iterations. This
provides security and reliability at the cost of interfering occasionally with some kinds of

optimizations. However, we believe these problems can be overcome in future refinements

of the systems.

The actual text is stored as an inverted file. Since the original text format is not
kept, any text displayed is reconstructed from this index structure. The index structure
congists of three main components. The dictfonary is an alphabetic list of every word-type
occurring in the fext, its frequency, and a pointer to an occurrence list. The occurrence
list contains the position of each word token in the sequence of words that constitute
the text. A linear smage of the text contains an entry for each token position in the
original text. The integer in the i-th position of the linear image is the index into the
dictioﬁa.ry of the word in that position. In addition to these main components, there are

several secondary structures. Each position in the text has an associated format code for

17



upper/lower case information. Additional structures index the segmental organization of
the document (e.g., chapters, paragraphs, sentences). For each segment mark there is 2
list of all its occurrences. Segment titles (e.g., chapter titles) are stored in a string table.
These structures for a single text are stored contiguously within the database file. That
file also includes header blocks which locate these various components for a particular text.
MICROARRAS reads this header data at the start of a session but accesses textual data
as it is needed. The buffering techniques are beyond the scope of this description.

The abstract data types provide both a symbolic interface to these data as well as
the actual computational functions to access or to use them. In the current version of
the system, data structures are determined at the time a document is inserted into the
database. Consequently, examining multiple documents for secondary searches is done
iteratively. We are developing algorithms for extracting and consolidating collections of
documents into integrated data structures. This will permit the same immediate access to

larger collections that is now possible for small collections.

Fature Plans

As we have mentioned throughout, MICROARRAS is part of a continuing program
of research in natural language and text analysis. Below we describe four areas of future

development directly linked to MICROARRAS.

We are particularly interested in techniques for building large textual databases using
emerging low-cost, high-volume media. Especially attractive are the new write-once optical
disks. - We are exploring alternative strategies for indexing large volumes of textual data
appropriate for these devices. We are also interested in efficient means for transferring
documents from one environment to another, strategies for determining relative efficiencies
for local vs. remote processing, and other issues that accrue from recent advances in storage

and networking technologies.

In describing the MICROARRAS engine, we mentioned that we use the two-way com-
munication language, FLANGE, as a primitive programming language. That is, the User

18



Interface interprets the user’s intentions and then constructs commands in FLANGE which
are sent to the Analytic Engine for execution. Results are packaged in FLANGE and send
back to the Interface for display. We plan to reconsider FLANGE with the intention of
turning it into a true object-oriented programming language for text processing and anal-
ysis. While several string-processing languages {e.g., SNOBOL) have been viewed as espe-
cially appfopria.te for text applications, they are siring langnages, not lezt languages. A
true text language would provide as primitive objects such entities as words, sets of words,
sentences, paragraphes, documents, sets of documents, etc. Primitive operations would in-
clude search, pattern-matching, counting, associating, and other functions. Implemented
as an interpreter, the language would become a high-level general purpose programming
language for text applications analogous to APL for numeric applications. Implemented

as a compiler, it could be used as a development language for building specialized text

processing systems.

We are currently developing a graphics-based structure editor for hzlping authors
during the design and drafting stages of writing. The system is an extension of the outline
processors such as Thinktank. Instead of working within the linguistic structure of the
outline, users of our system work within an abstract space of nodes and arcs, where nodes
represent concepts and arcs associations between them. The writer transforms a network
of concepts into a hierarchy and then writes the document by writing blocks of text for each
node in the tree. The result is better management of the writing process and documents

with more coherent structures.

After we complete basic versions of MICROARRAS and the structure editor, we will
merge the two systems to form a comprehensive environment for the textual knowledge
worker. That is, the user — particularly during the exploratory and planning stages of
writing - will be able to search the MICROARRAS textual database. When relevant
passages are located, he or she will import them into the writing environment, encapsulate
them within a node, and link that node into the overall structure of ideas being built.
When the document being written is complete, the user will transfer it from the structure

editor to the MICROARRAS textual database where it will become another document

19



that can be searched and used, by the original user but also by other workers with access

to the database. Thus, we will complete the cycle of document creation, storage, search,

retrieval, and reuse.

Finally, we have begun developing intelligent functions to be embedded in the inte-
grated environment just described. As we have stressed throughout, the FLANGE two-way
communication language gives us considerable flexibility. Just as different interface pro-
grams can preseni different visual appearances to the user but still translate the user’s
expressed intentions into FLANGE commands, so we can write other programs that can
communicate with the MICROARRAS engine through FLANGE. One such program we
are developing is an intelligent search function using an expert system as a compute server.
The problem we are addressing is the laboricusness of searching a full text database in
which the user must compose long, often complex Boolean contextual search expressions,
examine the resulting documents, decide what is important and what is not, store relevant
passages for future use, and then repeat the process to follow new ideas as they emerge.
We believé that at the exploratory stage of thinking, s network of associated concepts may
model the user’s intentions more accurately than more precise Boolean expressions. In the
system we are developing, the user will first sketch an associative network of concepts using
the structure editor. The expert system will then expand those concepts into categories
of words and phrases using a thesaurus tailored to that individual’s interests. It will then
form search expressions in FLANGE, submit them to MICROARRAS, and analyze the
resulting passages. The sysiem will then rank them according to relevance criteria, update
the associative network to indicate additional concepts found in the retrieved passages but
not in the original network, and otherwise mediate the user’s encounter with the system.

This work is progressing and we expect to have concrete results during 1987.

In our continuing program of research, MICROARRAS constitutes a major corner-
stone. We hope that others will find it a useful tool. But it will also serve as a foundation

for future work. -

20



Hotes:

[1] Lezis Handbook (Interim Version), New York: Mead Data Central, Inc., 1980.

[2] Westlaw Reference Manual: Revised Edition, St. Paul: Westlaw Publishing Co.,
Inc., 1982.

[3] User’s Guide: American Chemical Sociely Ezperimenial Full-lext Primary Journal
Database, Columbus: American Chemical Society, 1981.

[4] Morrissey, R. and Del Vigna, C., A Large Natural Longuage Datalase: American
and French Research on the Treasury of the French Language, EDUCOM Bulletin 18, 1

(Spring 1983).

.- |5] The Information Bank-11: BRS/SEARCH Protocol User Guide, New York: The
New York Times, 1981.

[6] STAIRS/VS: General Information, IBM publication 12-GH 12-5114-2, New York:
The IBM Corp., Inc., 1974.

[7] Smith, J.B., ARRAS, Perspectives in Computing 4, 2/3 (Summer/Fall, 1984).

21





