
MICROARRAS: An Overview 

TR86-017 

August, 1986 

John B. Smith, Stephen F. 
Weiss, Gordon J. Ferguson 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
Sitterson Hall. 083A 
Chapel Hill. NC 27599-3175 

A TextLab Report 



UNC is an Equal Opportunity f Affirmative Action Institution. 



Introduction 

Text editors are now the standard means for producing all sorts of documents, from the 

shortest memo to complete books. Sophisticated word processing software facilitates the 

entire writing process, from creation and revision to production of the final copy. In fact, 

electronic text is becoming a new medium for communicating documents. The growth in 

electronic publishing combined with the maturing technology for converting printed text 

to electronic form (e.g., the Kurzweil Scanner) assure a. large and rapidly growing pool 

of machine readable documents. When developments in optical disks are added to the 

equation, we can safely predict that individuals will soon be able to acquire, store, and 

access very large databases of textural information at a reasonable cost. What is now 

needed are more sophisticated systems that can operate on a variety of hardware, ranging 

from microcomputers to mainframes, to provide efficient effective management, retrieval, 

and analysis of textual data. 

This paper describes one such system, called MICRO ARRAS, that we are developing 

at the University of North Carolina with funding from the National Endowment for the 

Humanities and additional funding from Northern Telecom. We have designed the system 

to operate on large, hard disk microcomputers, such as the IBM PC/ AT, on professional 

workstations, such as the SUN, and on mainframes, such as the Vax. The system supports 

flexible, efficient retrieval of text from arbitrarily large textual databases in response to a 

wide variety of query types. It can perform various statistical and other analytic functions 

on text and is designed to permit easy addition of new analytic capabilities. The system 

also provides for distributed textual databases and a variety of user interfaces. 

The goal of our development effort is to produce a "next generation" system that 

extends the number and kind of resources provided the knowledge worker whose working 

materials include documents. Consequently, we have based our system on two driving 

problems. The first is the sophisticated, often esoteric needs of academic professionals, 

ranging from literary scholars and anthropologists to chemists and computer scientists. 

Analytic tools that can determine subtle relationships within and among texts, such as 

1 



thematic or stylistic differences, ca.n serve as the basis for a. much broader collection of 

measures a.nd functions for general use. Our second goa.l, then, is to develop a.n expanded 

(prototype) system for these more genera.! applications, particularly office automation and 

document retrieval in research and development environments. 

Existing Systems 

Virtua.lly a.ll word processing systems provide some degree of retrieval function for the 

text being created. However, queries a.re typica.lly very restricted (e.g. exact matching of 

a character string) and search time in large texts may be prohibitively long. Furthermore, 

most provide few, if any, analytic tools. 

Systems designed specifica.lly for retrieval and a.na.lysis of large full-text databases are 

a relatively new development, but are already having a significant influence in a variety of 

fields. For example, the LEXIS [1] a.nd WESTLAW [2] systems have had a fundamental 

effect on legal research. The BRS-America.n Chemica.! Society system [3] may soon do 

the same for chemistry. The University of Chicago is making ava.llable a collection of 

some 1,500 full-length texts for French studies [4]. And the New York Times [5] offers its 

database of current journalism in a. full-text form. 

These systems are for the most part derived from a. single early system, STAIRS [6]. 

The exception is the University of Chicago project which is using an earlier version of 

our system, ca.lled ARRAS [7]. While the STAIRS-based systems have made significant 

contributions, certain fundamental features limit what they ca.n do now and what they 

will be able to do in the future. First, they offer no unifying concept of text and database; 

a.ll rely on ad hoc combinations of file designs, access, and maintenance techniques. Sec­

ond, they logica.lly separate the multi-text database from the individual texts contained 

within it. Consequently, once a document or set of documents has been selected through a 

database search, the user cannot do secondary searches for other combinations of words in 

the selected documents. Fina.lly, current production systems cannot efficiently provide the 

underlying access support needed to develop more powerful analytic functions. They do 

2 



not have the necessary "hooks" onto which new features can be added easily. We believe 

that the utility of full-text database systems would be increased greatly if the user could 

apply automatic indexing, content analysis, statistical, or AI-based models to the database 

and to the texts contained within it. MICRO ARRAS is our attempt to alleviate these and 

other restrictions. 

In the remainder of this paper, we discuss MICROARRAS. Section 2 shows MI­

CROARRAS from the user's perspective. This includes the search, retrieval, and analysis 

functions that are currently available. Section 3 presents the underlying architecture of 

the system including file organization, search strategies, and the formal language used for 

communication between the user interface and the underlying retrieval engine. We also 

show the provisions in MICROARRAS that allow easy expansion. Section 4 describes 

several future directions for MICRO ARRAS that we intend to explore. 

User's View 

Overview 

In this section we describe the user's logical view of the system. By "logical" view we 

mean the mental model the user constructs in order to understand how the system operates. 

It does not mean the literal visual appearance of the user interface. (MICROARRAS is 

designed to support multiple user interfaces that can be tailored for different applications 

and different groups of users; this feature is described in more detail in the Architectural 

View section). The overall environment is described first followed by descriptions of six 

key concepts: passages, te:d display, lezical display, categories, searching, and arithmetic 

analysu. 

Environment 

We envision the user working on a microcomputer or professional workstation in a 

distributed computing environment in which some form of network links the user to other 

3 



users and to remote mainframes or other compute- and file-servers. MICRO ARRAS can be 

operated within a single, isolated microcomputer, but for the remainder of this description 

we will assume a distributed environment. In that environment, the user will have access 

to one or more file systems (e.g., a local hard disk, a remote file-server, and/or a remote 

mainframe file system) and to conventional text editors. He or she will also have access 

to one or more textual databases maintained by MICROARRAS. With MICROARRAS 

functions, the user can insert a text into one of the databases, delete a text, and move or 

copy a text from one database to another. The user can also logon to a remote system. 

Since MICROARRAS works on both mainframes and workstations/microcomputers, the 

user can work with texts stored in a remote database with MICROARRAS operating on 

that machine and the user's workstation functioning as an intelligent terminal; or the 

user can work with texts stored in a database on the user's own machine and operate 

MICRO ARRAS completely within that environment. Or he or she can transfer texts back 

and forth from one environment to the other. In the current version of the system, the 

user must direct these operations; but in future versions, the system will hide much of this 

from the user. 

Working with a textual database is frequently an iterative process. While the user 

sometimes knows exactly which text he or she wishes to access, more often identifying 

relevant texts involves some form of search. MICROARRAS will provide two database 

search modes: bibliographic search and content search. The first uses conventional biblio­

graphic methods to help the user locate documents by author, title, descriptive keywords, 

etc.; however, in addition to retrieving bibliographic citations, the search also builds in­

ternal pointers to the associated documents stored in the textual database. In some cases, 

the search may locate a single document, but frequently it produces a list of candidate 

documents (e.g., the documents with certain words in their titles). In content search, 

MICROARRAS will support full Boolean search for words or sets of words to produce a 

similar candidate list. 

Once a candidate list of documents has been identified, MICROARRAS provides 

extensive capabilities for secondary searches of selected documents (or parts of documents) 

4 



from this list. In the remainder of this paper we will emphasize MICRO ARRAS's secondary 

search and analysis capabilities since they represent some of the more unusual aspects of 

the system. Thus, we will presume that the user has identified a candidate list of texts and 

now wishes to begin narrowing the focus to find or analyze the specific passages relevant 

to his or her needs. A key concept in this process is the notion of a textual passage. 

Passages 

Passages are named sets of texts or portions of texts. They are used to direct MI­

CRO ARRAS's attention for subsequent searches and analyses. For example, following a 

global search of the textual database, the user interested in structure editors might select 

five technical reports, two journal articles, a book, and two papers contained in the pro­

ceedings of a conference and then name the group structure-editors. The reports, articles, 

and book are likely to be complete documents in the database, but the two conference 

.. papers would be contained within a proceedings document. The user could now retrieve 

and analyze text in this structure-editor passage. At any time the user may shift the focus 

of the analysis to another set of texts (or portions of texts). Thus, during a session, the 

user may create (and save for subsequent use) many different passages and easily move 

from one to another. 

One of MICRO ARRAS's strengths is its flexibility in handling context specifications. 

The system generally views a document as composed of two overlapping hierarchies of 

text segments. The first denotes logical divisions, such as volume, chapter, paragraph, 

sentence, and word within sentence; the second, physical divisions such as page, line, and 

word -within line. Whenever a textual database is established, the definition includes sets 

of canonical segments for that collection. Ad hoc segmentations may be used for individual 

documents, but the user must define any hierarchical relations that are to be recognized. 

These segmentation schemes are used by MICROARRAS to format the display. They are 

also used in a number of other operations, such as searching, that involve context. Some 

of these are discussed below. 

5 



Text Display 

Having established some set of passages (identifying one or more documents cr parts 

of documents), the user can quickly and easily move around in them. This is done by first 

specifying the desired passage and then indicating the place in that passage to be displayed. 

At a system level, indicating a place for display is done by specifying the appropriate 

segment, as described above. At the user interface level, the user might indicate that 

he or she would like to see the first section, entitled Overview, in the second journal 

article within the passage. We are currently designing a graphics-based interface in which 

this information may be selected directly from a tree diagram showing the segmentation 

hierarchy for a given document or passage. 

A second way of moving around in the text is by displaying all occurrences of a given 

word along with some designated context around each. Essentially, this is an interactive 

concordance or keyword in context (kwic) listing. MICROARRAS can produce such dis­

plays i=ediately, no matter how large the document or how scattered the occurrences. 

The context around each occurrence can be varied at will, from one or two words on each 

side to the full section or even the entire document. If the user wishes to see a wider 

context for any particular occurrence, he or she may simply point to that occurrence on 

the display and ask for additional context. Thus, a typical user might specify a rather 

limited context - say, four or five words on each side - and then ask for additional context 

for those passages that seem most relevant. 

Lexical Display 

Just as MICROARRAS can i=ediately go to any place in a document to display 

text, it can also go to any place in an alphabetical lexicon of the words that appear in 

a document or passage. Lexical information may be displayed in three primary ways: 

by alphabetic sequence, by pattern of characters, and by frequency of occurrence in the 

document or passage. In the first instance, the user may display the lexicon or part of 

it by indicating an alphabetical range, such as all those words beginning with the letters 

6 



a through c. The display can be shown separately for each document within the current 

passage or interleaved to form a single alphabetic sequence. The second option searches 

for sequences of characters, including "wildcards". Thus, the user can locate all words 

with a. given stem or a given prefix or suffix. The third option displays word-types sorted 

by their frequencies within the passage. The user can then locate the most frequent words, 

the least frequent, or those falling within some portion of the frequency spectrum. 

Categories 

In text analysis, it is often useful to define a group of words and then refer to that group 

by a single name. We call such groups categories. MICRO ARRAS supports three types of 

categories: type lists, token lists, and recursive lists. Type lists represent all occurrences 

of a specified set of word types for a particular passage; for example, each instance of the 

word-types processor and cpu. Token lists are sets of text positions representing individual 

occurrences of words; for example, the specific places in a document where processor refers 

to a computer, not a human processor of information. Recursive categories are sets of other 

categories; for example, a new category consisting of the cpu-category and the memory­

category. 

A category definition includes the name by which it is identified and the expression 

that defines it. The expression can be a list of word-types, tokens, or category names. 

(It can also be a Boolean expression, as described in the next section.) Actual internal 

definition <?f a category is a two-step process: the expression is scanned and stored inter­

nally; then it is evaluated with respect to a given passage. Thus, for example, a set of 

categories may be derived from a thesaurus that has been tailored to the user's research 

interests. When the categories in the thesaurus are initially defined (or obtained) by the 

user, they are stored as expressions (sets of word-types) independent of any document or 

set of documents. But when they are applied to a given text (or passage), the expressions 

are evaluated with respect to that document. Consequently, word-types that are in the 

category but don't appear in the text (or passage) are eliminated from the internal working 

instance of that category. 

7 



Search 

MICROARRAS provides very flexible and very fast search of a document. To con­

duct a search, the user must specify three components: a Boolean contextual expression, 

a passage in which to evaluate the expression, and a category in which to store the re­

sulting set of positions where the expression occurs (a token list). The expression is any 

Boolean combination of words or category names. H categories are used, they imply every 

occurrence of any word-type included. Contexts in which search expressions are evaluated 

can be specified in terms of any text segment units valid for the text database and can 

be specified in any number. Thus, one can look for all occurrences of cpu-category & 

memory-category within, say, three words of one another, or within the same sentence, 

or within three sentences, or in the same sub-section, etc. Different contexts can also be 

specified for subexpressions (e.g., cpu-category & memory category within three words of 

one another but not in the same sentence with hardware-category). The result of a search 

is a list of text locations. They are stored as a token-list category, as described above. 

Like any other category, token-lists resulting from a search can be used in any way 

that categories are normally used, including within a subsequent search expression. Thus, 

the user may search for patterns of words, patterns of patterns, patterns of patterns of 

patterns, etc. Search expressions can also be saved from one session to another and they 

can be applied to different passages. Consequently the user can develop expressions that 

define a specific set of interests and use them at will on different documents or sets of 

documents. 

Arithmetic Functions 

MICRO ARRAS provides facilities to compute various textual measures and then dis­

play the results, analyze then with an internal arithmetic interpreter, or pass then to an 

external statistical analysis package. Two basic kinds of data can be computed. The first 

is frequencies of words or sets of words (categories) within a specified passage. Thus, the 

user can compute and display the frequency with which a word or category appears in a 

8 



document, a set of documents, or some pari of a document. For example, the user can 

display the number times the words in the cpu-category appear in the passage described 

above: e.g., in five technical reports, the two articles, the book, and the two conference 

papers •. The second major class of statistical data are segmental measures. These deter­

mine the number of times one segmental measure occurs within another. For example, the 

number of words in a sentence or the sentences in a document. 

These measures become more interesting when combined in various ways to compute 

ratios, distributions, and lists of various kinds such as the distribution of a word or category 

over a text passage divided into a set of uniform intervals. The resulting vector of values 

can be displayed as a bar graph or passed out for statistical analysis. For example, one can 

perform a Fourier analysis on the vector to see if the word or category tends to appear at 

regular intervals. Or one can accumulate several such vectors, view them as the columns 

of a matrix, and perform a factor analysis to identify clusters of words or categories that 

consistently appear together in the passage. 

These measures can also be stored as numeric variables. Types recognized by MI­

CROARRAS are scalers and vectors of both integers and reals. These variables can be 

used in arithmetic expressions to compute any statistic for which the user can write the 

equation. For example, one can evaluate in real time a number of different retrieval for­

mulae to compare the matches between search requests and sets of documents identified. 

Architectural View 

Overview 

In this section, we provide a general overview of the system's architecture and then 

describe, brielly, some of its more unusual features. The discussion is divided into two 

main parts: the preparation of a document for use by MICROARRAS and the structure 

of the system itself. 

9 



Document Plow 

Preparing a document for use by MICROARRAS is a four step process (see Figure 

1). First, it must be transcribed into a. machine readable form with internal marks in­

dicating segments (boundaries, such as chapters, sections, and paragraphs). Second, it 

is converted into a canonical form, identical to that reconstructed by MICROARRAS for 

textual display. Third, it is scanned and inverted. Finally, the inverted text is inserted 

into the textual database. 

The machine readable form ca.n come from several different sources. It ca.n be text 

written with a. conventional word processor or editor. It ca.n be extracted off a. network. It 

could be text "read" by an optical scanner, such as the Kurzweil Data Entry Machine. Since 

MICROARRAS indexes major segment boundaries, it expects to see marks in the text 

that indicate chapters, sections, paragraphs, etc. Currently, MICROARRAS recognizes 

marks that follow TEX conventions. While MICROARRAS does not support full TEX, 

a. text that includes macros denoting these features ca.n be recognized. We will extend 

the conventions accepted by MICROARRAS in the near future to include popular word 

processing software, such as Microsoft Word, NROFF, and Script. 

The machine readable text is processed by a. presca.n program to produce a. canon­

ical form. This format is identical to that produced by the analytic engine during text 

reconstruction and sent to the interface for display. It provides a. formal means for MI­

CROARRAS to recognize similarities in segmental structures for documents encoded in 

different systems as well as true idiosyncrasies of documents. This version of the text is 

still readable but is highly structured a.nd is well-defined in terms of format conventions. 

As such, it also serves as a portable form for transferring documents from one environment 

to another. 

The canonical form of the document is then scanned. During this stage, the text 

is inverted and a number of separate indices created. The details of these indices are 

discussed in relation to the Analytic Engine, below. The result of this process is a single 

10 



"file" that constitutes the inverted text and all its associated indices. This form, again, is 

well defined and can be transported from one environment to another. 

Finally, the inverted document is inserted into the textual database. This operation 

includes adding a citation to the bibliographic database for subsequent search. We are 

also in the process of developing facilities for consolidating the lexicons for the individual 

documents into a composite lexicon for the entire textual database. Once a document is 

in the database, it may be analyzed directly or it may be extracted in inverted form and 

transmitted to another MICROARRAS database or another system. 

System View 

Overview 

.;.From a development standpoint, our immediate goal was to convert a text analysis 

system running on large IDM mainframes (in PL/1) to a microcomputer version in C. 

We took advantage of the opportunity to substantially rethink and redesign the system. 

Not only have we extended its function, we have also broached fundamental questions 

about the formal models underlying text analysis and recast some traditional questions 

about efficient representation schemes and search algorithms for large textual databases. 

The next several sections describe the MICRO ARRAS implementation and touch on these 

larger questions. 

MICROARRAS has three main modules linked - but also separated - by two well­

defined interfaces (see Figure 2). Properly speaking MICRO ARRAS is a family of systems 

- each distinguished by a. particular interface. The module that controls the User Interface 

interacts with a Command Processor module using a formal two-way language. This 

language provides a virtual machine, or facade, to the User Interface that we call FLANGE 

(Facade Language). The Command Processor parses FLANGE, checks it for errors, and 

then calls on the Analytic Engine to compute results. The Analytic Engine can be viewed as 

a collection of abstract data types; we treat the C functions that provide access to these sub­

modules as a language, which we call Arrish. Thus, the typical cycle of operation is for the 

11 



User Interface to transmit FLANGE to the Command Processor. The Co=and Processor 

interprets the FLANGE co=and to produce a sequence of calls to the Analytic Engine. 

The Analytic Engine does the work and returns the data to the Command Processor which 

encodes it into FLANGE and sends it back to the User Interface. The User Interface 

unpacks the FLANGE-encoded data and displays the results. 

The User Interface Module 

Had we followed a conservative, top down approach to designing MICRO ARRAS, we 

would have first specified a User Interface and then incrementally elaborated the functions 

necessary to support that specification. Rather, the actual emphasis in our project was on 

designing a system to be viable across a range of different user environments. The rela­

tive portability of C code made this a reasonable goal and the volatility of the computer 

market made it almost a necessity. We wanted to run not only on microcomputers but on 

professional workstations, minicomputers, and mainframes, as well. MICROARRAS cur­

rently runs on the PC/ AT (with the EGA Card) under MS-DOS, on the SUN workstation, 

and on the VAX 11/785- the last two under BSD 4.2 UNIX. The fruits of this approach 

include the three quite distinct User Interfaces described below. 

The first is a forms based User Interface on the PC/ AT using the Lattice Windows 

package and the Panel software from Round Hill Computer Systems, Ltd. This interface 

directly supports the FLANGE concepts and functions outlined above. Its intended pur­

poses are to drive the Command Processor and Analytic Engine for system testing and 

for helping the user learn FLANGE for developing other systems that can interact with 

textual databases. 

A menu of commands is shown at the top of the screen. Command parameters are 

entered in a separate area of the screen (window). Results are displayed in another. Error 

messages are displayed in a fourth fixed area. A category, for, example is defined by filling 

in a single form; concordances can be requested using another. The user creates and sends 

12 



commands to MICROARRAS one at a time. Each co=and is processed and the results 

displayed immediately. 

The great advantage of a forms-based user interface like this one over a command 

language is user convenience. The user can select an available option rather than having 

to first Jearn a.lJ the things the system can do. Thus, necessary control information can 

be entered on the associated forms. The on-line help is also keyed to particular fields in 

particular forms, errors can be pinpointed exactly, and commands altered by changing a. 

single highlighted field. 

The second interface was also done for the PC/ AT but within Microsoft's Windows. 

Whereas the first interface was designed around the structure of FLANGE with an ap­

proximate one-to-one correspondence between user commands and FLANGE commands, 

the second interface is designed around the kinds of operations that users will typically 

perform. There is frequently a. one-to-three or -four ratio between user command and 

those of FLANGE. Thus, we are beginning to use FLANGE as a. programming language_. 

This interface is also menu-based and was designed to include a. minimum set of control 

features. One particula.r feature worth noting is its ability to transfer parameters from one 

window to another. For example, the user can display a. concordance, select a. particular 

occurrence, and then transfer the word token identifier to a. second window in which he or 

she is constructing an analytic category of text positions. While this interface in consid­

erably more powerful than the first and will be put into actual use, it will also serve a.s a. 

stepping stone to a. third. 

We are currently designing a. more sophisticated graphics-based User Interface. It will 

be highly iconic and support a. visual command language. Features include: 

• Iconic representation of textual objects - words, categories, contexts, Boolean config­

urations, etc. 

• Convenient visual tools for combining and manipulating textual objects. 

13 



• A tree drawing of the text - showing the chapter and section organization - through 

which the user can navigate using the mouse to select portions for viewing or for 

further analysis. 

• Separate windows for reviewing the current state of the system - the categories that 

are active, the format options available, etc. These can be opened or closed at will. 

• Graphs (bar or line) of frequency distributions and other statistical data. computed 

by the system. 

• Formatted text showing bold face and special fonts for titles, etc; this text can be 

scrolled through and also stored for later display. 

By using FLANGE as a primitive programming language, we can develop a succession 

of more sophisticated interfaces as well as specialized interfaces tailored to particular groups 

of users or particular applications. 

FLANGE 

FLANGE serves two major functions: it provides a formal specification for the MI­

CROARRAS System and it provides an internal two-way command language. Formal 

specification of MICRO ARRAS was desirable for several reasons. MICRO ARRAS is part 

of an ongoing research project in natural language and text analysis. Consequently, we 

need to build tools that will outlive particular systems. We also envision MICROARRAS 

as one component of a. larger system. MICROARRAS is intended to run on one or more 

nodes in a distributed text analysis network. We are also developing an expert system 

component to support intelligent user functions - e.g., more powerful search facilities. MI­

CROARRAS will be used in that configuration as a compute-server communicating with 

the expert system through FLANGE. 

FLANGE is based on the command language of mainframe ARRAS. But we have 

made several substantial extensions. FLANGE has a formal syntax; its grammar is spec­

ified using a. BNF-like notation. Consequently, programs can easily construct command 

14 



expressions which, in turn, can easily be parsed. The components of a FLANGE sen­

tence are strongly typed to simplify processing and to ensure reliable transmission across 

a communication interface. 

FLANGE is used for all communications between a User Interface and the processing 

modules. Thus, for example, a request for a concordance is encoded into FLANGE by the 

User Interface. Then, as the results are computed they are encoded within the conventions 

of the "return" part of FLANGE and sent to the User Interface for display. Opportunities 

for interruption and cancellation of long outputs as well as error reporting are provided. 

Thus, FLANGE makes it possible to run the processing modules on one system and to drive 

a User Interface through a co=unications link running on another. We are developing 

logic to support multiple users sharing access to a single processing module and to view 

these users and support modules as nodes in a general network. 

Command Processor 

The second major component of MICRO ARRAS is the Co=and Processor module. 

It examines the FLANGE message for errors and then calls Arrish functions to actually 

perform the computations. In addition, the Command Processor contains the code to 

actually receive and transmit FLANGE to the User Interface. This section describes some 

of the techniques used in the Co=and Processor and identifies areas of continuing interest. 

Although FLANGE is a formal language, no effort was made to generate a parser 

automatically. Each co=and has a small hand written parser; because the syntax is 

simple, these are easy to build without tables or external data structures. The advantage 

of using custom parsers on this constrained syntax is that detailed error diagnostics can 

be generated. Typically an error can be located by co=and line and syllable and can be 

identified as the wrong type of syllable or as a syllable whose contents are incorrect. The 

balance between detailed error handling and the elegance of language constructs continues 

to be a major issue as we consider new versions of FLANGE. 

15 



During execution the command is viewed as an expression to be evaluated. The evalu­

ation entails building a parameter list and then ca.lling functions provided by the Analytic 

Engine. Often this requires evaluating separate subexpressions and then combining their 

individual results. For example, the command to create a passage may designate several 

portions of a text - each by volume, chapter, and section. The command processor must 

first translate 'chapter', 'volume', and 'section' into their internal codes, then find the 

beginning and end of the first section, compute in a similar way the boundaries for the 

others, then combine these to form the passage. 

Some evaluations may require several steps. A concordance, say, might be requested 

for a list of words. The command processor would first locate all the occurrences of the 

word, then recreate the context requested, and finally return the textual data to the User 

Interface via FLANGE. Intelligent ordering of these operations can improve system per­

formance; such optimizations are of increasing concern for large collections of documents. 

The Command Processor maintains a symbol table, providing a name space for 

FLANGE. Consequently, objects can not only be defined and reused during a session, 

they can be reconstructed through FLANGE commands stored in a file. This allows sav­

ing the complete state of a session on secondary storage. It also allows communication 

between two MICROARRAS programs. 

In light of our interest in FLANGE as a formal description of text analysis, the routines 

used by the Command Processor take on considerable significance. These functions get the 

job done, but they also constitute a second formal description of text. The next section 

introduces that perspective. 

Anish 

Arrish is the symbolic interface between the Command Processor and the Analytic 

Engine that does the actual computing and data manipulation. That interface can be 

viewed as a set of abstract data types, implemented in accord with good software engi­

neering practices. However, it is more interesting to think ofthem as 'objects' implemented 

16 



in C. While this says that text analysis programs can be written in an object-oriented style, 

it also suggests that text analysis itself can be described in an object-oriented way. An 

exciting perspective of the Arrish language is that it molds the user's ideas about the 

formal properties of texts. That is, it provides a set of textual primitives that can be 

used not just in computing measures of a text but for thinking about what constitutes a 

text. Thus, it is a step toward defining a te:r:t processing language, rather than a string 

processing language. For example, the user can think formally about the distribution of 

certain classes ofwords across various sections of a document, the shifting of sentence and 

paragraph lengths as a.n author matures, or about various patterns or rhythms of concept 

co-occurrence across a text. 

Analytic Engine 

The Analytic Engine (sometimes called the Arrish Engine) is embodied in some dozen 

abstract data types: spans, pas&agu, m_arlc-sets, segments-in-effect tables, type lists, token 

list&, te:r:t access and the like (Figure 3 shows the basic system modules and their depen­

dencies). These modules contain text and data, with no {known) hidden iterations. This 

provides security and reliability at the cost of interfering occasionally with some kinds of 

optimizations. However, we believe these problems can be overcome in future refinements 

of the systems. 

The actual text is stored as an inverted file. Since the original text format is not 

kept, any text displayed is reconstructed from this index structure. The index structure 

consists of three main components. The dictionary is an alphabetic list of every word-type 

occurring in the text, its frequency, and a pointer to an occurrence list. The occurrence 

list contains the position of each word token in the sequence of words that constitute 

the text. A linear image of the text contains an entry for each token position in the 

original text. The integer in the i-th position of the linear image is the index into the 

dictionary of the word in that position. In addition to these main components, there are 

several secondary structures. Each position in the text has an associated format code for 

17 



upper flower case information. Additional structures index the segmental organization of 

the document (e.g., chapters, paragraphs, sentences). For each segment mark there is a 

list of all its occurrences. Segment titles (e.g., chapter titles) are stored in a string table. 

These structures for a single text are stored contiguously within the database file. That 

file also includes header blocks which locate these various components for a particular text. 

MICRO ARRAS reads this header data at the start of a session but accesses textual data 

as it is needed. The buffering techniques are beyond the scope of this description. 

The abstract data types provide both a symbolic interface to these data as well as 

the actual computational functions to access or to use them. In the current version of 

the system, data structures are determined at the time a document is inserted into the 

database. Consequently, examining multiple documents for secondary searches is done 

iteratively. We are developing algorithms for extracting and consolidating collections of 

documents into integrated data structures. This will permit the same immediate access to 

larger collections that is now possible for small collections. 

Futve PlllDll 

As we have mentioned throughout, MICROARRAS is part of a continuing program 

of research in natural language and text analysis. Below we describe four areas of future 

development directly linked to MICROARRAS. 

We are particularly interested in techniques for building large textual databases using 

emerging low-cost, high-volume media. Especially attractive are the new write-once optical 

disks. · We are exploring alternative strategies for indexing large volumes of textual data 

appropriate for these devices. We are also interested in efficient means for transferring 

documents from one environment to another, strategies for determining relative efficiencies 

for local vs. remote processing, and other issues that accrue from recent advances in storage 

and networking technologies. 

In describing the MICRO ARRAS engine, we mentioned that we use the two-way com­

munication language, FLANGE, as a primitive programming language. That is, the User 

18 



Interface interprets the user's intentions and then constructs co=ands in FLANGE which 

are sent to the Analytic Engine for execution. Results are packaged !n FLANGE and send 

back to the Interface for display. We plan to reconsider FLANGE with the intention of 

turning it into a true object-oriented programming language for text processing and anal­

ysis. While several string-processing languages (e.g., SNOBOL) have been viewed as espe­

cially appropriate for text applications, they are 6tring languages, not tezt languages. A 

true text language would provide as primitive objects such entities as words, sets of words, 

sentences, paragraphes, documents, sets of documents, etc. Primitive operations would in­

clude search, pattern-matching, counting, associating, and other functions. Implemented 

as an interpreter, the language would become a high-level general purpose programming 

language for text applications analogous to APL for numeric applications. hnplemented 

as a compiler, it could be used as a development language for building specialized text 

processing systems. 

We are. currently developing a graphics-based structure editor for hzlping authors 

during the design and drafting stages of writing. The system is an extension of the outline 

processors such as Thinktank. Instead of working within the linguistic structure of the 

outline, users of our system work within an abstract space of nodes and arcs, where nodes 

represent concepts and arcs associations between them. The writer transforms a network 

of concepts into a hierarchy and then writes the document by writing blocks of text for each 

node in the tree. The result is better management of the writing process and documents 

with more coherent structures. 

After we complete basic versions of MICRO ARRAS and the structure editor, we will 

merge the two systems to form a comprehensive environment for the textual knowledge 

worker. That is, the user- particularly during the exploratory and planning stages of 

writing - will be able to search the MICROARRAS textual database. When relevant 

passages are located, he or she will import them into the writing environment, encapsulate 

them within a node, and link that node into the overall structure of ideas being built. 

When the document being written is complete, the user will transfer it from the structure 

editor to the MICROARRAS textual database where it will become another document 

19 



that can be searched and used, by the original user but also by other workers with access 

to the database. Thus, we will complete the cycle of document creation, storage, search, 

retrieval, and reuse. 

Finally, we have begun developing intelligent functions to be embedded in the inte­

grated environment just described. As we have stressed throughout, the FLANGE two-way 

communication language gives us considerable flexibility. Just as different interface pro­

grams can present different visual appearances to the user but still translate the user's 

expressed intentions into FLANGE commands, so we can write other programs that can 

communicate with the MICROARRAS engine through FLANGE. One such program we 

are developing is an intelligent search function using an expert system as a compute server. 

The problem we are addressing is the laboriousness of searching a full text database in 

which the user must compose long, often complex Boolean context11al search expressions, 

examine the resulting documents, decide what is important and what is not, store relevant 

passages for future use, and then repeat the process to follow new ideas as they emerge. 

We believe that at the exploratory stage of thinking, a network of associated concepts may 

model the user's intentions more accurately than more precise Boolean expressions. In the 

system we are developing, the user will first sketch an associative network of concepts using 

the structure editor. The expert system will then expand those concepts into categories 

of words and phrases using a. thesaurus tailored to that individual's interests. It will then 

form search expressions in FLANGE, submit them to MICROARRAS, and analyze the 

resulting passages. The system will then rank them according to relevance criteria, update 

the associative network to indicate additional concepts found in the retrieved passages but 

not in the original network, and otherwise mediate the user's encounter with the system. 

This work is progressing and we expect to have concrete results during 1987. 

In our continuing program of research, MICROARRAS constitutes a major corner­

stone. We hope that others will find it a useful tooL But it will also serve as a foundation 

for future work. 

20 



Notes: 

[1] Lezis Handbook (Interim Version), New York: Mead Data Central, Inc., 1980. 

[2) Westlaw Reference Manool: Revised Edition, St. Paul: Westlaw Publishing Co., 

Inc., 1982. 

[3) User's Guide: American Chemical Society Ezperimental Full-tezt PrimartJ Journal 

Database, Columbus: American Chemical Society, 1981. 

[4) Morrissey, R. and Del Vigna, C., A Large Natural Language Database: American 

and French Research on the Treasury of the French Language, EDUCOM Bulletin 18, 1 

(Spring 1983). 

[5) The Information Bank-11: BRS/SEARCH Protocol User Guide, New York: The 

New York Times, 1981. 

[6) STAIRSjVS: General Information, IDM publication 12-GH 12-5114-2, New York: 

The IBM Corp., Inc., 1974. 

(7) Smith, J.B., ARRAS, Perspectives in Computing 4, 2/3 (Summer/Fall, 1984). 

21 




