
• 

• 

• 

.. 

People Are Our l\1ost Important Product 

TR86-01 5 

July, 1986 

Frederick P. Brooks. Jr . 

The University of North Carol ina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall , 083A 
Chapel Hill, NC 27599-3175 

~ / 

i 

' 
r 

.. 
' ! 



" 

• 

• 

• 

UN C is an Equal Opportunity/ Affirmat ive Act ion Institution . 
• 

• 



• 

• 

• 

• 

• 

People Are Our Most Important Product 

Frederick P. Brooks, Jr. 
University or North Carolina ·at Chapel Hlll 

1. Introduction 

The function of a keynote speech (if any) should be to give perspective. Coming from outside 
the software engineering research field, but from within the computer field, I would like to offer an 
outsider's perspective on some current software engineering curricula proposals. 

Let me start with a disclaimer. Since writing The Mythico.l Man-Month, I have not worked 
in software engineering management nor in software engineering research. Everyone here is more 
current in the field than I. I am a lifetime fan of computers and of software engineering; I teach a 
course in the subject, and I try to stay up-t~date in the field. But I am not really working in it . 

The peak year in sales for The Mythico.l Man-Month was only two years ago. Yet the book was 
written in 1975, about an experience in 1963-65. The fact that it has the slightest relevance now is 
a sad comment on the progress of the discipline. 

Wave After Wave 

In the some 40 years since I first became interested in computers, we have seen seven revolutions, 
the first of which is the computer revolution represented by the Harvard Mark I. I was 13 when the 
Mark I was introduced, and watching with big eyes. That was the first I had ever heard of the idea 
of a computer. I decided that it was the exciting thing, and I started heading that way, [Figure 1] . 

Second, came electronic computers and the invention of assemblers and interpreters. In 1952, I 
had a chance to learn to program (in octal absolute) on the not-quite-delivered, vacuum-tube-based 
IBM 701. That experience was a major milestone for me. 

The third revolution was brought by the transistor and Fortran - for me, that meant three 
years helping design Stretch. The Syetem/360 was another major milestone for me. It represented 
the fourth revolution - integrated circuits and mandatory operating systems. 

The fifth revolution brought minicomputers and the concurrent development of communications 
as an inherent part of most computer systems. The most recent revolution involves microcomputers 
and - one of the most important factors today - the mass marketability of microcomputer software 
and its corollary, packaged application prograrru~. 

F.P. Brooks, Jr . People Are Our Most Important Product 1 



• 

• 

• 

Revolutions 

Hardware Software 

1. Computers 

2. Electronics Assemblers 

3. Transistors Compilers 

4. Integrated Circuits Operating Systems 

5. Minicomputers Communications 

6. Microprocessors Programming Environments 

7. Mass-Market PC's Packaged Applications 

Figure 1 

Twenty Tries at a Software Project Course 

One of the things I did as soon as I got to Chapel Hill, was to start the kind of one-semester, 
small-team, classical project course that John Bentley,1 says in his paper is not the right way to do 
it. I think everyone agrees it would be better as a two-aemester project course. 

Except for two years on sabbatical, I have taught that course every year for 22 years. Twice 

1 Dr. Jon Bentley is a Member of the Technical Staff, A.T.&T. Bell Laboratories. See Proceedings 
paper by Bentley . 

F .P. Brooks, Jr. People Are Our Most Important Product 2 



• 

• 

• 

• 

• 

I have team-taught it with David Parnas, which ia .phenomenally exciting. One year, I taught it 
with Bernard Witt, of IBM's Federal Systems Division, and another year with Constance Smith, 
who taught at Duke. The evolution of the course has been intereatingl . 

I am teaching the software engineering project course this term, u for the last two years, over 
our statewide television network. I can ~tee the students at the remote lites, and they can eee me . 
That has an unexpected advantage: although I would normally be teaching live over the network , 
I can give them a videotaped lecture. That is what I am doing there this afternoon . 

One of the laymen at the Microelectronics Center of North Carolina3 , who had been watching 
a lecture on a monitor installed in the lobby, said, •You don't eeem to be teaching. You seem to 
be preaching." Indeed so. There are two reasons why. Firat, we do not really know that much to 
teach. Gordon Bradley4 and Mary Shaw 6 in their papers apeak about the lack of identification of 
principles. Second, we are trying to teach practices that we believe- and this is an article of faith­
involve abort-run pain for long-run benefit. Preaching alway• involves persuading people to undergo 
short-run discipline for long-run benefit. That is what preaching is all about. So it ia no accident 
that a great deal of what we do when we teach software engineering is, in fact, exhortation. We are 
trying to motivate the will of the students, rather than merely to inform the mind. I expect some 
element of exhortation to be neceaaary forever. The conversion of our students' long-run ambitions 
into daily motivation is always an important function of the teacher . 

Today, I want to talk about the state of software engineering u I understand it, and some 
opinions on the curricula issues that are before ua . The viewpoint, I fear, will be that of the 
leper at the feast . After reading the pre-distributed posit ion papers, I find I am in fundamental 
disagreement with a good deal of what is proposed, described, and practiced. 

2. On Software Engineering 

Engineering 

I will start with my definition of software engineering. I like to distinguish four things: a 

2 The course handouts defining the step-by-step a.ssignments and intermediate documents for 
the projects, and outlines of some of the lectures , are available as a UNC Technical Report. Write 
the author. 

3 The Microelectronics Center of North Carolina is located at Research Triangle Park, and serves 
six member institutions 

4 Prof. Gordon Bradley ia a member of the Computer Science Department, Naval Postgraduate 
School, Monterey, CA. See Proceedings paper by Bradley. 

6 Dr. Mary Shaw is Chief Scientist at the Software Engineering Inst itute. See Proceedings paper 
by Shaw. 

F .P. Brooks, Jr. People Are Our Most Important Product 3 



• 

• 

• 

program, a programming system, a programming product, and a programming system product , 
[Figure 2]. Software engineering is concerned with building programming products and program­
ming system products. In other words, it is proper to call it software engineering. It is indeed an 
engineering discipline - it focuses on building . 

Figure 2 

F.P. Brooks, Jr. People Are Our Most Important Product 4 



• 

• 

• 

• 

In graduate school I roomed with a high-energy physicist. He spent a year building the 
electronic apparatus for his experiments. He then spent two weeks at Brookhaven National 
Laboratory taking pictures of events in a cloud chamber, then a year looking at his 100,000 pictures. 
If you looked at the way he spent his time, you would have said he was doing engineering. On the 
other hand, I have known engineers who eeem to spend most of their time taking measurements 
about hitherto unknown phenomena. If you were asked what he was, judging by how he spends his 
time, you might say, •He looks like a physicist." 

The difference lies in the motivation and not in the activity. The aclentist builds in order 
to learn; the engineer learns in order to build. That distinction we can accurately use 
to characterize software engineering. AB an engineering discipline , it ia concerned with quality, 
effectiveness, cost , and schedule - concepts that, if not alien , are at least of little concern to the 
underlying science. 

Arbitrary Complexity 

What is peculiar about the engineering of computer software objects? How does it differ from 
the classical disciplines? It differs in an important way from two of the supporting disciplines , 
mathematics and physics, from which electrical engineering derives. Most mathematicians and 
physicists dislike real-world computer science problems. The reason ia that our problems are 
characterized by what I call arbitrary complerity. Anyone who has wrestled with an operating 
system and had to interface 44 different kinds of input-output devices; or a payroll system and 
had to deal with the income tax for 50 states, plus the federal government, plus innumerable cities 
that have peculiar income tax laws; or wrestled with the other forms of artifact that we have to 
build and the environments into which we have to build them, will recognize this as a common 
characteristic. 

Mathematicians and physicists dislike this for different reasons. The mathematician dislikes 
complexity, and the mathematician's fundamental attack on complexity ia to abstract. One forms 
an abstract model of the problem, solves the abstract model, and then applies the solution back 
to the original problem. That paradigm has been phenomenally successful. The history of applied 
mathematics, intertwined with the physical aciencea for more than two centuries, ia one of the 
rich results produced by that model. Increasingly, however, as one comes up against intrinsic 
complexity, we find that smooth models of classical mathematics do not work. So we come t o 
fractal mathematics for describing or abstracting rC?ughness. We continually have to invent new 
mathematics to deal with deeper levels of complexity. 

On the other hand, physiciata dislike the ~bitrarinesa. They are no strangers to complexity. 
Anyone with 26 elementary particles recognises that the world ia complex. What they dislike is 
that it is arbitrary, because physicists, no matter how atheistic, are fundamentally convinced that 
there are not 26 elementary anythingT, that there ia a fundamental, unified theory to be found . It 

F .P. Brooks, Jr. People Are Our Moat Important Product 5 



• 

• 

i 

is that faith that keeps the physicist going forward . 

No such faith comforts the computer scientist. Our complexities are arbitrary, because they 
are the fruits of many independent minds acting independently. Consider the task of interfacing 
to an operating system "4 different input-output devices, each designed by a different engineering 
team. Unless there was a pre-existing interface, there is no reason to believe those designers acted 
under any unifying principle at all. This arbitrary complexity of interfaces characterizes much of 
what we do. It is a reason why we had to develop a new science, with approaches and techniques 
different from those of the classical disciplines. 

What About Software Makes Its Engineering Hard? 

A natural question is, "Does it have to be this hard?" Is it not just that we have not yet found 
the key to unlock the door? Studying the nature of these arbitrary complexities, we see that the 
essence of building software products is the complexity of the conceptual structures we are working 
with, rather than the labor of representing them. This complexity is compounded by the necessity 
to conform to an external environment that is Gr6itrGry, vntada.pto.ble, and ever-changing. 

If we ask ourselves, "How have the big gains in productivity and effectiveness in software 
engineering come in the past," I think we will see those gains- in high-level languages, time-sharing, 
unified programming environments - all broke major artificial roadblocks to upreuing the com­
plexities of our solutions and our problems. The high-level languages remove the artificial roadblock 
of coding programs in machine-level instructions in zeroes and ones. Time-sharing removed 
the artificial roadblock of limited access to hardware. The unified programming environments 
remove the artificial roadblocks that were caused by a lack of common file formats and command 
philosophies . 

We will make progress by continuing to remove these artificial roadblocks, via workstations, 
better languages, richer programming environments, etc. I think , however , that fundamental 
progress can only come by really attacking the underlying complexity, not the difficulties of 
expression. There are many promising attacks, aa Figure 3 suggests. I will not take the time to 
talk about them, because I really want to go on to curriculum. But I must remark that we vastly 
underestimate the work, the difficulty, and the error-proneness of setting system requirements in 
the first place. 

F .P . Brooks, Jr. People Are Our Moat Important Product 6 



Key ideas: 

• ToJrdown design - N. Wirth 

• Outside-in design, system architecture- G. Blaauw 

• Incremental growing on a.n executable driver - H. Mills 

• Information-hiding modules - D. Pa.rnas 

• Chief programmer teams - H. Mills 

• Verification- E. Dijkstra, Floyd, Hoare 

useful, but limited by costliness 

• GOTO-less programming - E. Dijkstra 

structure, yes; avoiding GOTO, no. 

• Structured walk-throughs 

Figure 3 

Iterative Development 1a Cruclal 

I like Christopher Alexander's maxim in Note~ on the Synthe6u of Form: •The only way to 
define fit, is as the absence of mufit.• Hone wants to grind a steel plate flat, one takes an optically 
flat standard plate, paints the whole works with purple goo, slaps it up against the plate one is 
going to grind, then grinds all the purple places. Then one paints the optical flat with goo again , 

F .P. Brooks, Jr. People Are Our Most Important Product 7 



• 

slaps the two together again, and grinds the places that are still purple with a finer wheel until, 
finally, instead of none of it being purple, 411 of it is purple. So, the only operational way to define 
this optically flat plate, is u having no bulge• or t14lleys. Correspondingly, I believe the process 
of dealing with arbitrary complexity, in terms of the user's requirements, is iterative: we build 
prototypes, put purple paint on them, slap them up against real users, and pi.nd the places that 
are still purple- in the products, not in the users . 

Iteration on a programming product specification is an inherent, proper part of the profes­
sional's job. We cannot stand back and gripe that the user didn't know what he wanted. We 
must take it as given that the user does not and cannot know what he wants about artifacts as 
complex u those we now build. The mind of man cannot imagine all the ramifications of such 
artifacts. There must be an iterative cycle in which the professional works with the user to define 
the requirements; demonstrates their consequences in human factors , cost, and performance; then 
in a prototyping phase iterates with the user to develop a product that is, in fact, satisfactory. 

The Failure of the "Standard Software Development Process" 

Let me offer a discouraging observation on the state of the art. I did a little mental study in 
which I wrote down a set of what I call "exciting software products." These are ones that have 
avid fan clubs, ones that people are crazy about. You can add names to this list, shown in Figure 
4. We typically call the fans 6igou: APL bigot., for instance. I think the ancestral group should 
be Fortran's. Those of us who work with physicists and chemists today, recognize that there are 
still Fortran bigots about! Each of theae exciting products baa such a group. I put Visicalc as the 
latest, but not the last. 

I put a different set of things, which you can call the "work horses" of the field , in another 
category. This group is made up of things that are immensely useful, in many cases immensely 
successful, and have made major contributions to getting work done. People appreciate some of 
their successful characteristics and don't appreciate others, but it is very hard to find bigots, excited 
fans , about any of them. I have trouble finding any exciting software product - one that arouses 
passion on the part of its users - that wu developed inside a normal product process . What does 
that tell us about the normal product process? About the state of the art? About the importance 
of teaching the normal product process? I think it tells us something about software products and 
designs in general: the thing that makes exciting software products is conceptual integrity, and 
conceptual integrity comes from individuals. 

One can elaborate a little bit. Committee design is a minimax strategy. It limits the losses 
and goofs. It also limits the upper reach of quality, elegance, function, and speed. This is true 
of bridges, cars, movies, novels, paintings, mus1c, etc. So the theorem I would leave you with, 
because I can't prove it, is that a product that •urely excites •omdody is more likely to excite a lot 
of people than a product that more or le .. Illite et~ery6ody. The -work hones• I referred to, the 

F.P. Brooks, Jr. People Are Our Most Important Product 8 



: 

ones that do not have fan clubs, can be characterized as having "homogenized designs," and the 
ones with bigots, "idiosyncratic designs." The homogenized design process is aimed at producing 
products that more or less suit everybody. You may want to propose other candidates, and you 
might challenge some of my choices of candidates, but I thin.k that the thrust of those two sets is 
unmistakable, [Figure 5). 

3. On Software Engineering Curriculum 

Standard vs. Individualistic 

I think this theorem is also true of curricula. We may be richer, in the process of evolving 
a generally accepted software engineering curriculum, if we have a lot of places forming a l_ot of 
curricula and publishing them, than if we move too rapidly toward any kind of ltandard curriculum. 
H you look in many different college catalogs, you will see that there has developed a great dea.l 
of standardization among undergraduate physics curricula, for example .. In the middle two years 
of undergraduate physics, one takes the same courses anywhere one goes, and one may take them 
from the same text books. Ia this done through standard curriculum development by the American 
Physical Society? No. The similarity exists because the importance of the subject matter is 
self-evident: there ia a consensus in the field of what the principles are . I suggest that a standard 
curriculum be grown .organically by developing a set of principles. That is the only way to make it 
durable, important, and portable. 

Does that mean it is not useful to develop model curricula? Of course it is useful . In any 
branch of art, the people who went through it first, and learned what not to do, can be of great 
service to those who come on the scene by explaining where the pitfalls and minefields are. Sharing 
experience with curriculum development saves people from making the same mistakes again . 

The most important principle to teach a software engineer is, "Don't build software (if you can 
help it)." It is almost always cheaper to buy it if you can, and it is almost always cheaper to buy it 
even if its price is about the same as your estimated cost for you to build it. That is, one generally 
underestimates the effort required to build product-quality software. Even by buying it, you may 
not get product-quality software, but your odds are much better . 

F .P. Brooks, Jr. People Are Our Most Important Product 9 



• 

F .P. Brooks, Jr . 

• 

Exciting Software Products 

Outside Product Houses 

Fortran 

From Product Houses 

APL 

COBOL 

Pascal 

LISP 

c 

UNIX 

Ten ex 

Visicalc 

VM-CMS 

System R 

OS/ 360 

Algol 

DEC's VMS 

PL/ 1 

Ada 

IMS 

Figure 4 

People Are Our Moat Important Product 10 



• 

Committee Design is a Minimax Strategy 

• Limits losses and goofs 

• Also limits the upper reach of 

quality /elegance 
function 
speed 

• Bridges, cars, movies, novels, theorems , 
paintings, music 

• Idiosyncratic vs. Homogenized 

A product that surely excites somebody is more likely 
to excite 
a lot of people 

than one that more or less suits everybody. 

• True of software systems 

• Of software engineering curricula, too. 

Figure 5 

F .P. Brooks, Jr. People Are Our Most Important Product 11 



• 

Permanent va. Tran.alent Truths 

From the perspective of looking at eeven computer revolutions over the past 40 years, the 
first thing that strikes me is that one has happened about every six years. Second, most of what 
we learned and talked about in the 1950's, we would not think of teaching today. Much of what 
we taught is no longer true, or if true, no longer relevant. An we training people for an initial 
job or educating them for a career? If we are educating for a career, I wholeheartedly support 
Mary Shaw's identification from the Carnegie Plan of what ia involved in professional education 
for a career. We need to teach them to think like software engineers, rather than to train them 
in 27 programming languages, 15 methodologies, and 30 tools. That means they will have to be 
exposed to some methodologies, some tools, and some programming languages. But those are not 
our ohjective1. Our objectives are to shape ways of thinking, and, by experience at wielding some 
tools, to develop and facilitate the implementation of new tools in the field. 

That brings me to the pointe about which I would argue. It seems to me that all the central 
questions about software engineering curricula can be summarized by a set of dichotomies, as in 
Figure 6. 

Thin vs. Fat 

Let me put forth another theorem: if you do not know what to teach in a software engineering 
curriculum and, if in· putting one together, you find a lot of modules that are abort on principles 
-where one can teach only tools or methodologies, or today'a practices- instead of most of t hose 
modules, teach nothing at all. Instead, encourage students to spend those hou.ra learning somet hing 
such as physics, mathematics, or accounting, which they do know what to teach. One of the most 
valuable courses I had as an undergraduate, and today use regularly, was a one-semester course in 
accounting for nqn-accountanta. 

I would not offer an undergraduate software engineering curriculum at all . I would offer un­
dergraduates a two-semester software engineering course, as part of a computer science curriculum. 
And I would recommend an undergraduate computer science curriculum only to thoee planning to 
stop with the B.S. Young people come to me and say, •I want to be a computer professional." I 
reply, "Do you want to go to graduate school, and become a real professional?" If they say "yes," 
I say, "Do not take a computer science major as your undergraduate. Get educated." 

Our oldest eon fell into that fiery passion for computers which often strikes in the teen years . 
It is very much like being engaged and being married. You want to experience and enjoy that 
initial passion, but you would like to grow out of it into a more mature relationahip, one that will 
always be fired with momenta of the passion. I encouraged each of our children to do that with the 
computer passion while they were in high school: because it can ruin a college year if it first strikes 
then. 

F.P. Brooks, Jr. People Are Our Moat Important Product 12 



I. 

-: 

Software Engineering Curricula 

Standard vs. Individualistic 

Transient vs. Permanent 

Fat vs. Thin 

Narrow vs. Broad 

Hollow vs. Solid 

B.S. vs. M.S. 

Science vs. Design 

Projects vs. Exercises 

Figure 6 

When that son got ready to go to college, he wanted to study computer science. I said "Well, if 
you really want to work with computers, do a physics major. Study all of the sciences. Do not fal l 
into this one just because it is handy.• (He had been exposed to a lot of computers during his life.) 
"Then, when you are a senior, if you still want to become a computer scientist, I will quit hindering 
and start helping. But first, sample all of the sciences to see if your infatuation with computers 
comes merely that from propinquity.• The aumpler after his junior year we were walking on the 
beach and I aaid , •well, aon, what do you think? Which aubject interats you most?• And he 
aaid, •You go into a room, and you look around, and you aay, 'Look at all the pretty girls.' Then 

F.P. Brooks, Jr. People Are Our Moat Important Product 13 



you say, 'But thu is the one I love.'• I said, *I quit.• He is now in a Ph.D. program in computer 
science at Stanford. 

Look at your undergraduate college experience. Which parts do you retain as most valuable? 
For me, it is a Shakespeare course, a French literature course, a lot of experience in public speaking, 
a lot of training - extracurricu1ar and curricular - in how to run meetings, writing training, an 
accounting course, and especially some courses in electricity and magnetism. Those experiences 
are still very useful to me. I can tell you Iota of things I spent hours on that I have not used . Some 
of them were in the liberal arts, but many others were in the major. 

In like manner, we must train profeuionala who have been educated to be citizens, leaders, and 
communicators. The software product today consista of more documentation than code, and the 
good software product today includes good documentation. How will you learn to write if you have 
not studied the good models of writing and practiced the techniques? Do we want to displace a 
broad and useful undergraduate education with training in software engineering tool! and methods? 
Surely not! 

Broad vs. Narrow 

At the graduate level means I would recommend a particularized •oftwa.re engineering cur­
riculum only to practitioners who have had field experience and are coming for career upgrade 
education, who know they are getting a specialized, technical training , not graduate education. 
For all new software engineers, I would recommend a master's in computer science, with several 
courses in software engineering, but not a software engineering curriculum. Why? Because much 
of what we teach today will not be true ten years from now, and a great deal of the rest will not 
be relevant. More important, they will need the broader knowledge. 

Can anyone in the software-building business really operate without understanding simple 
accounting? Can anyone in software engineering really operate without understanding the principles 
of at least the first course in numerical analysis: concepts, error propagation, and the vagaries of 
floating point? 

Most curricula being put forth for software engineering - and there are exceptions in the 
Proceedings - give a one-course, at most , discussion of computing machines. Undergraduate 
exposure, which typically ia one course in machine architecture, is assumed for the graduate 
courses - and those may include another one. Axe we going to build all of this software without 
understanding the enginee with which it will run, the trends shaping those engines, and the ability 
to project the correeponding advancee for hardware that will revolutionize the kind of software we 
have to build? So, I would argue very strongly for broad vs. narrow. 

F .P. Brooks, Jr. People Are Our Most Important Product 14 



.. 

Solid vs. Hollow 

All the university departments I know want to create a lot of courses that address topics at the 
very forefront of the field. Why? Because that is what the faculty wants to teach. So we construct, 
particularly at the graduate level, what I call "hollow curriculum": in football terms, no blocking, 
no tackling, but Statue-of-Liberty playa all over the place. We ahuffie the core curriculum courses 
off to the most junior faculty members to teach, and we elders teach the advanced ones. A solid 
curriculum is one in which those intermediate-level things that seem like old hat to u.s, but are 
not old hat to the students, fill in the interior. These are the established principles represented by 
algorithms, data structures, operating aystelll8, languages, machines, and compilers . 

Design vs. Science 

The science va. design debate rages in engineering schools everywhere, all the time. I think 
the papers in the Proceedings properly emphasize that if the motivation is to build , we have to 
teach the art of design and not merely the supporting sciences. It is in this respect that software 
engineering courses differ from many of the underlying computer science courses. We must teach 
people to design. The only way to teach people to design is to have them design , criticize, have 
them redesign, and then to have them build the designs. 

Projects vs. Exercise 

What they design brings us to the exercises vs. projects question: How little and how big? 
I think the answer is you really want to do some of both. The real issue is the precise balance 
between exercises and projects. 

Great Designers 

Now one more thought: H we go back to the list of great software products, exciting ones , we 
observe that they have a conceptual integrity that comes from very small design teams: Fortran 
with half a dozen people, APL with two people, and so on. These design teams are not only small , 
but also comprise really first claaa minds. 

Let me suggest one more principle: Great designs come from great designers . Good 
designs, as distinguished from bad designs, can be produced by teaching people good principles 
and proper methods. We take the step from goOd designs to great designs, however, by finding the 
people who have the talent to do the great designs. 

F.P. Brooks, Jr. People Are Our Moat Important Product 15 



• 

• 

Look over the whole body of clusical music. How much bas survived? On any classical music 
station yo~ can hear obscure selections from the 16th to the 19th centuries. When you listen to 
them, you know why they are obecure. You can count on your ten fingers the sreat composers in 
each centu.ry. Indeed, even they have written 10me losers, but there really is a qualitative difference 
between the great and the obscure. 

That is true of bridges, and that is true of 10ftware products. So an important part of our 
emphasis on teaching must be to identify and to equip, by special means if necessary, those who 
will be the great designers. We ahould make it part of our business to find them, and then to 
provide whatever is necessary in education, nurturing , sheltering, and diversified experience, to 
enable them to make, their contributions in their turn. 

One last comment about great designers : I am not one, but I have spent a lifetime trying to 
find them and enable and focus their efforts. That, too , is fun , and an immensely satisfying part 
of the teacher's reward . 

F.P. Brooks, Jr. People Are Our Most Important Product 16 


