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Abstract 

Adaptive histogram equalization (abe) is a contrast enhancement method designed to 

be broadly applicable and having demonstrated effectiveness. However, slow speed and the 

overenhancement of noise it produces in relatively homogeneous regions are two problems. 

We report algorithms designed to overcome these and other concerns. These algorithms 

include interpolated ahe, to speed up the method on general purpose computers; a version 

of interpolated ahe designed to run in a few seconds on feedback processors; a version of 

full ahe designed to run in under one second on custom VLSI hardware; weighted ahe, 

designed to improve the quality of the result by emphasizing pixels' contribution to the 

histogram in relation to their nearness to the result pixel; and clipped ahe, designed to 

overcome the problem of overenhancement of noise contrast. We conclude that clipped ahe 

should become a method of choice in medical imaging and probably also in other areas of 

digital imaging, and that clipped ahe can be made adequately fast to be routinely applied 

in the normal display sequence. 
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1. INTRODUCTION 

Adaptive histogram equa.liza.tion ( a.he) is an excellent contrast enhancement method 

for both natural images and medical and other initia.lly nonvisual images. In medical 

imaging its automatic operation and effective presentation of a.ll contrast a.va.ila.ble in the 

image data. make it a. competitor to the standard contrast enhancement method, interactive 

intensity windowing. In fact, observer studies [Zimmerman, 1985; ter Ha.ar Romeny, 1985] 

indicate that for certain image classes, intensity windowing has no significant a.dva.nta.ges 

in local contrast presentation in a.ny contrast range, while a.he has a.dva.nta.ges of being 

automatic and reproducible, and requiring the observer to examine only a. single image. 

The basic form of the method was invented independently by Ketcham [1976], Hummel 

[1977], and Pizer [1981]. In this basic form the method involves applying to each pixel the 

histogram equalization mapping based on the pixels in a. region surrounding that pixel (its 

contextual region). That is, each pixel is mapped to a.n intensity proportional to its rank 

in the pixels surrounding it. But the basic method is slow, and under certain conditions 

the enhanced image has undesirable features. Therefore, this paper presents algorithms 

for a.he that increase its speed on various processors, and it presents variations on a.he that 

are intended to improve the enhanced image, along with summaries of the effectiveness of 

these variations. 

2. SPEEDUP BY SAMPLING AND INTERPOLATION 

In its basic form a.he requires time O(n2 (m + k)) for an n x n image with a range of k 

intensity levels and an m x m contextual region size. A major speedup can be obtained by 

calculating the desired mapping only at a sample of pixels and interpolating the mapping 

between these sample locations. In our work the sample locations at which the mapping 

is computed are on a. grid, and the resulting mapping a.t any pixel is interpolated from the 

sample mappings at the four surrounding sample-grid pixels (see figure 1). Thus, if the 

pixel mapped is at location (z, y) and has intensity i, and m+- is the mapping at the grid 

pixel (z+,!l-) to the upper right of (z,y) and similarly with subscripts++,-+, and-

for the mappings and locations of the grid pixels to the 



lower right, lower left, and upper left respectively of(::, y), then the interpolated ahe reeult 

is given by 

· m(i) = a(bm++(i) + (1- b)m+_(i)] + (1- a](bm_+(i) + (1- b}m--(&1], 

where a= (y- r-)/(Y+ - r-) and b = (::- ::-)/(::+ - ::-)· 

Pixels in the borders of the image outside of the sample pixels need to be handled specially, 

using linear interpolation of the mappings at the two closest points or, in the corners where 

there is only a single close sample pixel, application of only one mapping. 

* * * * 
(x_, y _) (x+' y_) 

* * * * • (x,y) 

* * * * (x_, Y+) (x+' y +) 

* * * * 

Figure 1. Sample points(*) for mapping computation, and evaluation point (•). 

With such an interpolated ahe there are two parameters, the sise of the contextual 

regions and the spacing of the sample grid. We will discuss each of these in turn. 
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2.1. Contextual Region Size 

In the interpolative mapping procedure each result pixel is derived by applying four 

mappings, those associated with four surrounding sample points. Each of those sample 

points has an associated contextual region, so it can be said that the result pixel in question 

has a region affecting its value that is the union of the four associated contextual regions 

of its sample points. Let us call this affecting region the equivalent contextual region, or 

ECR. We have found empirically (see figure 2) that different versions of the method with 

the same ECR produce approximately the same result. Thus, for example, if the sample 

grid point spacing is the same as the contextual region linear dimension, thus forming a 

mosaic of contextual regions within the image (see figure 3a), then uninterpolated (basic) 

ahe with contextual region area A (and thus ECR A) produces approximately the same 

results as interpolated ahe with contextual region area A/4 (and thus ECR A). Similarly, 

if the sample grid point spacing is half that of the contextual region linear dimension (see 

section 2.2 and figure 3b}, interpolated ahe with contextual region area 4A/9 will produce 

about the same result as the just mentioned two cases. As a result of this fact, we will 

henceforth refer to sample-based methods in terms of their ECR. 

Figure 2. Results for interpolative ahe of a chest CT scan, with the same ECR's. a) Full 

sampling (no interpolation), b) Mosaic sampling. 
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As the ECR area increases, the method becomes less and less locally sensitive but for 

interpolative abe more and more efficient As the ECR area decreases, the image contrast 

improves up to a point For a wide range of medical images this optimal ECR area is 

between 1/16 and 1/64 of the image, with the smaller region chosen only when the feature 

size of interest is quite small. ECR areas intermediate between 1/16 and 1/64 of the 

image area produce results not ~poriantly different from that using 1/16 of the image, 

because the image appearance changes only slowly with ECR area. H the ECR is much 

less than 1/64 of the image, the contrast becomes too sensitive to very local variations and 

in particular to image noise. This oversensitivity to local variations can cause artifacts, 

which have never been experienced with the preferred ECR's. 

With these values for ECR interpolative abe of a 512 x 512 image requires less than. 

two minutes for a C program on a VAX 11/780 or an assembly language program on a 

small16-bit minicomputer. This is a savings of well over an order of magnitude over abe 

with full sampling. · 

2.2. Contextual Region Sampling Rate 

We have evaluated sampling in each dimension at a distance equal to the contextual 

region linear dimension (so that the sample regions divide the image into a mosaic - see 

figure 3a), at half this distance (see figure 3b), and at one pixel (full sampling). The 

advantage of sampling at half the contextual linear dimension is that, unlike with mosaic 

sampling, each pixel contributes to the histograms of all four sample contextual regions 

whose mappings are applied to that pixel (Herman, 1984]. 

Of course, the coarser the sampling, the faster the results are computed. Although test 

pattern images can be created where finer than mosaic sampling is desirable to produce 

adequate quality, we have never found an image of the complexity of clinical medical images 

for which mosaic sampling was not effectively equivalent to the finer sampling for the same 

ECR. 
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Figure 3. Contextual regions and their centers: a) Mosaic, b) Half-overlapped. 
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a. ALGORITHMS FOR SPECIAL IMAGE PROCESSING DEVICES 

a.l Peedbaek Architecture 

Image processing devices with a feedback architecture, such as those manufactured 

by Comtal, DeAnza, and Vicom, can do simple operations on one or more whole images 

in a frame display time, commonly 1/30 sec. The following algorithm for interpolated ahe 

appears to be especially well suited to such devices. The algorithm is based on computing 

and applying each histogram equalization mapping from a contextual region !4,. before 

moving on to the next. After all of the mappings have been applied, each pixel will 

contain the result of each of the four mappings applicable to it. A bilinearly weighted 

average of these four results is then calculated at each pixel. We will assume mosaic 

sampling, although the program can be modified to work for other samplings. 

With mosaic sampling and bilinear interpolation of the mapping, the region made 

up of pixels to which a given mapping must be applied is a rectangle concentric with 

the corresponding contextual region but twice its size in each dimension (see figrire 4). 

Let us call this region the mapping region, S;;. corresponding to the m., x m, contextual 

region !4,- and the mapping L;,-. Let i = 1, 2, ... , N., index the contextual regions in the z 

dimension, and j = 1, 2, ... , N, index the contextual regions in the y dimension. 

Consider the following four sets of mapping regions: {S;,-1 i odd, j odd}, 

{S;,-1 i even, j odd}, {S;il i even, j odd}, {S;,-1 i even, j even}. Each of these form 

an image that is a mosaic of mapped results from alternate contextual regions in each 

dimension (see figure 5). We name these four intermediate mosaic images: M~o~(z, y), for 

k = 0, 1 and l = O, 1; oddness or evenness of k and 1, respectively, corresponds to S;,- with 

odd or even i and j, respectively. The four mapped values M~o~(z,y) at pixel z,y are the 

four values to be combined with bilinear weights to produce the final value M(z, y). The 

borders of the images where some M~o~ is undefined must be treated specially. 

In the center region A where all of the M,., are defined (see figure 5), the bilinear 

weights as a function of z, y are the same for each intermediate image M~o~(z, y) except that 

each is shifted with respect to the other, in : for different k and in y for different l, by the 

distance between two adjacent contextual region centers in the respective dimension. Also, 

for any k,l the bilinear weights are cyclic with a period in each dimension equal to twice 
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* R36 

Figure .C. Region and parameter definitions for Program 1. R38 is a contextual region, 

and S3e is the corresponding mapping region. Nz = Nw = 8 is equivalent in ECR to full 

ahe with Nz = Nw = 4. 

the distance between two adjacent contextual region centel'!l in the respective dimension, 

2 mz or 2 m.. The weight function for one period is the product of triangles in z and 

y, each going from 0 to 1 and then back to 0 acrosa one period: the full two-dimensional 

period is defined by zyperiod(z, y) = zperiod(z) • yperiod(y), where 

:~:period(z) = :~:/mz, for :1: between 0 and mz, 

zperiod(2 * mz- :~:) = :~:period(z), for :1: between 1 and mz- 1, 

and 1fperiod(y) is defined by a similar expression, with 11 replacing :1: throughout. 

Assume that a single tWo-dimensional period of the weights has been computed. Ap-

plication of these weights can be accomplished directly by reference to this period, or from 
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Figure 5. The image area divided into the mosaic images M00 (--- ), M01 ( • • • ), , 

M10 (- -). and M., (-·-). theirco~ncenterarea A.; _their.borderregions,, 

BkH and Btv• and the comer regions Ctl . 

an image W(z, y) consisting of (N., + 1)/2 x (N, + 1)/2 periods of zyperiod(z, y). The 

weighting functions for ~he M~;~ are each a subimage of W(z, y), each specifiable by its 

upper left pixel (origin) in W. 

· In ~he m.,/2 x m,/2 corners of the image, 0~;~, the result image has ~he values of 

the mosaic images M~;~. In the remaining border areas Bu and Bw, the result is a 

weighted average of the two M~;~ that overlap in that border, wi~h weights respectively 

being zperiod(z) and a shif~ed version of zperiod(a:), for horizontal border areas, and 

yperiod(y) and a shifted version of yperiod(y), for vertical border areas. 

Letting l(z, r) be the in~ensity at z, y in the inpu~ image, and assuming the •image• 

W(z, y) as well as ~he arrays zperiod(z) and yperiod(y) have already been computed, the 

program to apply ahe on feedback proceseors is summarized in Program 1. 
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Program 1: A he for fwlba.ck proceaaor1 

/* Compute and apply mappings, histogram by histogram. * / 

k=O 
-Fori = 1 to N,. 

}} 

{k = k + 1 (modulo 2); l = 0 

Forj=ltoN• 

{l = l + 1 (modulo 2) 

Compute H = histogram(R;;) 

Compute L = lookup table which is histogram equalization 

mapping corresponding to H =(cumulative 

histogram* output display range/ (m,.m,)) 

For all :~:, 11 E S;; 

{Mkl(:~:, y) = L(I(:~:, y))} 

I* Weight temporary images by modified bilinear weighting function, and sum results. *I 
Zero M(:~:, y) 

For k = 0 to 1 {For l = 0 to 1 

}} 

/* Multiply Mkl by the appropriate part of W, and a.dd the result into M • / 

{For all 2:, 11 

{M(:~:,y) = M(:~:,y) +Mkl(:~:,y) • W(m,./2 + k • m .. + :~:, m,/2 +h m, + y)} 

/* Fix up comers and borders. */ 
For k = 0 to 1 {For l = 0 to 1 

{For all :~:, 11 E Ckl 

} 

{M(:~:,y) = M.r(:~:,y)} 

} 

For all :~:, 11 E B~:H 

{M(:~:, y) = :~:period(m .. /2 + :~:) • M1c0(2:, y) + :~:period(3 • m .. /2 + 2:) • M~;1 (:~:, 11)} 

For all :~:, J1 E B~;v 

{M(:~:, 11) = yperiod(m,/2 + y) • M0~;(:~:, y) + yperiod(3 • m,/2 + y) • M1~;(:~:, y)} 

12 



Note that only two conaecutive rows of contextual regions are necessary to compute 

m, pixel rows of the final resuU M. Each additional conaecutive row of contextual regions 

suffices to complete the computation of m, additional pixel rows of the M~o~ and thus 

M, as well as the computation of m, pixel rows of two additional M~o~. Thus with the 

storage necessary for 2m,. pixel rows of each of the M~o~, M, and I, the ahe resuU could 

be successively computed. Ther~fore, this method can apply ahe to an image N,/2 times 

as large as would be needed if Program 1 were applied directly. In fact, since one could 

step one contextual region at a time in the horizontal direction, as well, while handling 

the second m, pixel rows of the various images, the factor by which the image size could 

be increased could be even N,.N11 f(N,. + 2). 

The speed of Program 1 on a feedback processor depends on whether each pixel in a 

single pass through the image can contribute to or be mapped by a different mapping or 

all the pixels must share the same mapping. On the latter, more conservative assumption, 

N,.N, passes through the image would be required to calculate all of the histograms, and 

the same number of passes would be required to apply the mappings. Four additional passes 

would be necessary to compute the bilinearly weighted M~o~, and three more to sum these 

results. Neglecting the time in computing the mappings from the histograms, 2N,.N11 + 7 

passes would be required; for the common value for mosaic-sampled interpolative .ahe of 

N,. = N11 = 8 and pass time of 1/30 sec., about 4.5 seconds would be required to apply 

this algorithm. If each pixel could contribute to or be mapped by a different mapping in 

a single pass through the image, the histograms could be computed in one pass and the 

mappings applied in four passes (both independent of N,. and N,), for a total of 12 passes 

or about 0.4 seconds. 

a.2 Processor-per-Pixel Architecture 

Another interesting architecture involves a small processor at each pixel and the ability 

to broadcast a value to all pixels simultaneously (Austin, 1986]. With such devices the 

following algorithm for uninterpolated ahe, based on computing each pixel's rank in its 

contextual region, is very fast. 

Let Q,., be the set of pixels u, t1 for which the pixel at (z, y) is in the contextual 

region of that at (u, v). (For contextual regions that are symmetric, Q.,, is the same as 

13 
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the con~~ual region aboui (s,r).) Let rank., be the rank of pixel s,r in ita contextual 

region, the value to be computed. 

ProgNm 1: AAt for per-piul parallel proee11or• 

For s, r in ~he image 

{Zero rank.,} 

For s, r in ~he image 

{For u,v in Q., 
{If i(s,y) < i(u,v) 

~hen rank •• = rank •• + 1} 

} 

The ~otal. algorithm lakes a lime proportional to the number of pixels, if one uses . 

an engine in which each pixel value l(z, r) ia broadcast in parallel to all the o~her pixels, 

and ~hose in Q., which have greater intensity values have a rank counter incremented in 

parallel. We presently have a design of a VLSI-baaed engine tha~ could accomplish ahe 

for a 512 x 512 image in under 1 second. This engine can opera~e with a memory large 

enough ~o hold only m, pixel rows of ~he image, i.e. one 11" of ~he total image. 

4. QUALITY IMPROVEMENTS 

4.1 Weighted Ahe 

It seems unattractive for the contextual region of abe to end abruptly. If it does, one 

pixel ia in the region, affecting the mapping of ~he pixel at the cen~er of ~he region, and ita 

neighbor baa no effect on tha~ mapping. fUrthermore, it teems reasonable that the pixels 

near the pixel whose mapping ia being calculated (the •center pixel•) ahould affect the 

mapping more than those farther away. Therefore, we have created and evaluated a form 

··of abe in which pixels' contribu~ion to a histogram decreases wi~h their distance from the 

center pixel. 

In this weighted ahe the ECR waa calculated with the area of each pixel weighted by 

Nwa/W, where N ia the number of pixels in the contextual region,"'' ia the the weight the - ------
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pixel contribute~~ to the histogram, and W is the sum of the w;. This method of calculating 

the ECR proved to give a value that made ihe effect of a contextual region with a given 

weighting scheme very close to that of an unweighted contextual region with the same 

ECR. 

Weighted ahe with a conical weighting function was ·applied to a number of CT scans 

of various types, including those with sharp, strong boundaries. Little difference was 

noticeable when compared to ordinary ahe with the same ECR. Because weighted ahe is 

much more time consuming, we do not recommend its use. 

4.2 Contrast Limitation 

Ahe has produced excellent results in enhancing the signal component of an image, but 

noise in the image is enhanced, too. There has been considerable debate about whether 

or not enhancing noise is really a problem. Controlled tests with simple test patterns 

indicate that enhancing noise proportionately with signal does not impair an observer's 

ability to detect information in an image [Burgess, 1982). However, clinicians who routinely 

examine images have indicated that noise enhancement is very disturbing and does cause 

problems. We decided to investigate the effects of limiting contrast enhancement in cases 

when the noise would otherwise become too apparent. This occurs when the range of 

image intensities in a contextual region is not a good deal greater than the noise level, i.e. 

in relatively homogeneous regions. 

Contrast enhancement can be defined as the slope of the function mapping input 

intensity to output intensity (see figure 6). We will assume that the range of input and 

output intensities are the same. Then a slope of 1 involves no enhancement, and higher 

slopes give increasingly higher enhancement. Thus the limitation of contrast enhancement 

can be taken to involve restricting the slope of the mapping function. 

With histogram equalization the mapping function m(i) is proportional to the cumu

lative histogram [e.g Castleman, 1979): 

m(i) = (Display..Range) • (Cumulative.Hiatogram(i)/ Region-Size). 

Since the derivative of the cumulative histogram is the histogram, the slope of the mapping 
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fundion at any input intensity, i.e. the contrast enhancement, il proportional to the height 

of the hiltogram at that intensity: 

dmfdi = (Dilplay.RangefRegion_Size) * hi1togram(i). 

Therefore, limiting the slope of the mapping function il equivalent to clipping the height 

of the histogram. 

. .. _ 
Histogram 

............ tty 

Mapping 
function 

Recorded ..... ., Aldlltrtnlled _,.,. ... 

............ tty 

""''"""" ..... ., 

Figure 6. Contrast mapping functions and their associated original and clipped histograms. 

High peaks in the hiltogram are normally caused by nearly uniform regions. In such 

a case, with the mapping due to ordinary hiltogram equaliJation a narrow range of input 

intensity values is mapped to a wide range of output intensity values, perhaps overenhanc

ing the noise. But enforcing a maximum on the counts in the hiltogram will limit the 

amount of contrast enhancement and thus the enhancement of noise. 
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When contrast enhancement ia reduced at one location it mut be increased in other 

areas so that the entire input intensity range will be mapped to the entire output intensity 

range. This corresponds to renormalizing the histogram after clipping so that its area 

returns to its original value. We think of this as redistributing the clipped pixels. 

We have tried two means of redistributing the clipped pixels: uniformly distribut

ing them in all histogram bins, and distributing them into bins with contents less than 

the clipping limit in proportion to their contents. The latter technique shares the intu

itive advantage with ahe that contrast enhancement ia in proportion to need for contrast 

enhancement, but it is complex and results in an undesired property: that the mapped 

intensity throughout the image can be strongly changed by moving one pixel from its orig

inal intensity to another in a bin that was formerly empty. Therefore, we have chosen the 

option of uniform redistribution of clipped pixels - across the full intensity range of the 

whole image. This option can be thought of as adding the contrast mapping due to the 

clipped histogram to a linear mapping that achieves just the height at the maximum image 

intensity such that the height of the sum is equal to the intensity range in the original 

image (see figure 6). 

Incorporation of histogram clipping into the existing ahe algorithm is straightforward. 

One need only insert a histogram modification step into the algorithm. After each his

togram for a contextual region is computed, it ia clipped to some value before the mapping 

function is computed from it by calculating a cumulative histogram, or equivalently, ranks. 

The user determines the clipping limit by specifying the limiting slope S of the inten

sity mapping. The clipping limit C can be shown to be S times the average histogram bin 

contents, since a slope of 1 corresponds to all bins having the same (average) value and 

slope is proportional to the value of a histogram bin. 

Adding a uniform level L to the clipped histogram will push the clipped histogram 

again above the clipping limit, so the original histogram needed to be clipped at a lower 

limit P such that P + L(P) is equal to the clipping ·limit (L is written as a function of P 

because it depends on P)- The value of P that satisfies this equation can be found by the 

binary search given in Program 3. 

The resulting value of bottom is an integer, to which the remaining excess S divided by 

17 



Program S: Calculation of tu:tual clipping limit 

Let C be the clipping limit and R the number of histogram bins in the total image 

top=C 

6oUom =0 

while (top- bottom > 1) 

{middle= (top+ bottom)/2 · 

} 

S = sum over all histogram bins of the excess in that 

bin over middle, if any 

if S > (C- middle) * R 

then top = middle 

else bottom = middle 

the number of bins R must be added to produce the desired P. Lis equal to the clipping -

limit minus P. Then the modified histogram value t1 in any bin is calculated from original 

value tlorig by . 

tl = { tlorig +. L if tlorig < P 
C sf tlorig ~ P 

The clipped ahe technique has been applied to several different medical images, and 

the results to date have been encouraging. In Figure 7 an original image and images 

processed with ordinary and clipped abe, and interactive windowing are compared. Figure 

8 compares interactively windowed images with those processed with clipped ahe. Note 

not only the contrast in all organs simu1taneously, but also the ability to lessen the effects 

of nonuniform sensitivity, as in MRI images from surface coils. 
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Figure 7. a) Original image, b) interactively windowed result, c) unclipped ahe reSult, d) 

clipped ahe result with clipping limit 10, for a CT of the abdomen. 
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Figure 8. Results of clipped ahe (left) vs. results of intensity windowing (right) a) CT of 

chest, b) surface coil MRI of spine, c) x-ray angiogram. 
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6. SUMMARY 

Numerous improvements to adaptive histogram equalization in speed or quality have 

been auggested. AI for quality, clipped ahe has had great auccesa in both 

a) showing in a single image all contrast in electronically recorded images whose range 

is too wide for a nonadaptive mapping to succeed, and 

b) ahowing contrast bidden in images initially recorded on film. 

This method seems to have the potential of being applicable to all medical images, although 

the clipping level must vary (apparently in a presettable way) with the imaging modality, 

body region imaged, and imaging variables. The method has been used with considerable 

auccess with light images as well. 

As for speed, 

a) if you have a general purpose computer, interpolative clipped ahe with mosaic sam

pling is the method of choice, requiring a few minutes per megapixel on. common 

minicomputers. 

b) if you have access to a system with a feedback processor, a considerable increase in 

speed can be obtained by using Program 1, with each histogram calculation followed by 

the clipping step before the corresponding mapping is computed. This requires around 

twenty seconds per megapixel with standard feedback processors doing arithmetic on 

a full frame in 1/30 sec. 

c) looking toward the future, a VLSI-based processor-per-pixel design aeems to be very 

attractive, because not only can it compute ahe in a few seconds per megapixel, but 

also it can do a wide range of other image processing operations fast [Austin, 1986]. 

ACKNOWLEDGEMENTS 

We thank Paul F. G. M. van Waes, John R. Perry, Julian G. Rosenman, and Edward 

V. Staab for their collaboration on clinical application of ahe. We are indebted to Joan 

Savrock for manuscript preparation, to Leigh Pittman for figure preparation, and to Bo 

Strain and Karen Curran for photography. This paper was prepared with the partial 

eupport of NIH grants R01-CA39059 and R01-CA39060. 

21 



'' 

REFERENCES 

Austin, J. D. and S. M. Pizer, "An Architecture for Fast Image Processing", Technical 

Report #TR86-002, Dept. of Computer Science, University of North Carolina, 1986. 

Burgess, A. E., R. F. Wagner, and R. J. Jennings, "Human Signal Detection Performance 

for Noisy Medical Images," Proc. International Workshop on Physics and Engineering in 

Medical Imaging, Asilomar, IEEE Computer Society, 99-105, March 10·18, 1982. 

Castleman, K. R., Digital Image Processing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 

1979. 

Herman, G., Personal Communication, 1984. 

Hummel, R. A., "Image Enhancement by Histogram Transformation", Computer Graphics 

and Image Processing 6: 184-195, 1977. 

Ketcham, D. J., R. W. Lowe and J. W. Weber, "Real-time Image Enhancement Tech

niques", Seminar on Image Processing, l-6, Pacific Grove, California: Hughes Aircraft 

Company, 1976. 

Pizer, S.M., "Intensity Mappings for the Display of Medical Images", Functional Mapping 

of Organ Systems and Other Computer Topics, Society of Nuclear Medicine, 1981. 

Zimmerman, J. B., "Effectiveness of Adaptive Contrast Enhancement", Ph.D. Disserta

tion, Department of Computer Science, University of North Carolina, 1985. 

Zimmerman, J. B. and S. M. Pizer, •Evafuation of the Effectiveness of Adaptive His

togram Equalization", Proc. £5th Fall Symposia - Imaging, November 17-22, 1985, Soc. 

of Photographic Scientists and Engineers, 189-190, 1985. 

22 


