
A REPRESENTATION OF SOLID
OBJECTS FOR PERFORMING

BOOLEAN OPERATIONS

Tecbnical Reporl 86-006

Sandra H. Bloomberg

The University of North Carolina at Chapel Hill
Department of Computer Science
New West Hall 035 A
Chapel Hill. N.C. 27514

A polyhedron can be represented as a binary tree whose nodes
contain oriented planes containing the faces of the polyhe­
dron. The set of null eons represents a partition of three­
space into convex components, distinguishing the inside and
outside of the polyhedron. This representation allows sim­
ple algorithms for performing regularized union, intersection,
and difference of polyhedra, and for determining if a point i8
contained in a polyhedron.

A Representation of Solid Objects
for Performing Boolean Operations

Sandra Bloomberg

University of North Carolina at Chapel Hill

1

The Boolean operations union, intersection, and difference are encountered frequently

in the computer design and manipulat ion of solid objects. These operations are necessary

for obtaining a boundary representation from a Constructive Solid Geometry (CSG) rep­

resentation, and are useful for simulating manufacturing processes such as milling and for

detection of spatial interference in applications like VLSI and CA.D /CAM. The procedures

for performing Boolean operations tend to be quite complicated, and have been called the

• ... most complex and delicate software modules in a solid modeler" [Requicha and Voel­

cker, 1985) . This paper presents a representation for polyhedra with which Boolean

operations are simple. This representation also allows simple algorithms for classifying

points and lines (as inside or outside of an object). The representation may be extended

to solid objecta whose faces are more general than polygons but meet criteria given in

Section 4.

There are many algorithms in use for performing Boolean operations. It is not too

difficult to come up with an algorithm that works most of the time; the hard part is dealing

with exceptional cases such as when two solids have overlapping faces or when a vertex

or edge of one polyhedron lies within a face of the other polyhedron. The most attractive

aspect of the representation and algorithmB presented here is that they eliminate the need

for special consideration of these cases.

· Section 1 -of this. paper describes the tree representation, called a planetree. Sec­

tion 2 tells how to determine if a point, line, or polygon is contained in a solid object.

Section 3 gives algorithms for finding regularized intersection, union, and difference, and

2

indicates how to deal with overlapping faces. Section .(diacuaaea general concerns about

the r'epresentation, including the size of a planetree, converting a planetree to a bound­

.ary representation (getting faces of a subdivision of the object and ita complement into

convex subparts along the way), performing sequential Boolean operationa, and extending

the representation to more general solids. Section 5 gives results.

In this paper, a polybedron ia a solid three-dimenaional object whose boundary ia an

(orientable) surface made up of planar polygonal faces which intersect only at edges and

vertices. It is not neceuary that the polygonal faces be convex, but I will aBSume the faces

are convex to simplify descriptions.

1. The Planetree

A planetree baaed on a polyhedron is a binary tree whose nodes contain the oriented

planes containing the faces of the polyhedron. The orientation can be chosen so that the

normal vector to the plane points away from the polyhedron. Call the open half~pace

pointed to by the normal vector the outside of the plane; call the other open half apace

the inside of the plane. For a given node in a planetree, the right subtree ·represents a

subdivision of a certain subspace on the inside of that node's plane, and the left subtree

represents a subdivision of a certain subspace on the outside of the plane. We shall see

that the set of null sons represents a partition of three-space into convex polyhedral parts

(not all bounded). The null right sons are associated with regions inside the polyhedron,

while the null left sons correspond to the regions outside of the polyhedron.

A convex polyhedron could be represented by a list of the oriented planes containing

faces of the polyhedron, so that the interior of the polyhedron is the space that lies on

the inside of all of these planes. A planetree for a convex polyhedron with n faces is a one

dimensional tree of height n, the maximum height of a planetree for a polyhedron with

n faces, as in Figure 1. (Figure 1 really shows a tree for a polygon and a partition of

tw~pace. I will continue to refer to "planes containing faces of a polyhedron" as. in 3-d,

while the figures will actually show the 2-d analog, •linea containing edges of a polygon• .

In the figures, lower case letters are faces, upper case are the corresponding planes. So, A

ia the plane containing face a, for example.) The space partition for a convex polyhedron

with n faces will haven+ 1 components: one will be the interior of the polyhedron, and the

.rest of space will be divided into n parts. Each node of the planetree will have a null left

son, and all but the single leaf node will have a non-empty right son. In the example, the

root node has a null left son because none of the polyhedron's interior ia outside of plane

poiYJOD

space partj lion

~I

Figure 1: A convex polygon, its tree , and the corresponding partition
of space. (A ie the line containing edge a. ln 3-d, A would be the plane
containing face a.)

3

A. The null left aon of the node labelled A corresponds to the half-space outside of plane

A, region 1 in the figure. The right subtree of the root node represents the half-space

inside of plane A. The null left eon of the node labelled B corresponds to the space that

is both inside of plane A and outside of plane B, region 2. The interior of the polyhedron

ia region 4, which ia inside planes A, B, and C.

The subspace associated with a null eon ia the intersection of half-spaces determined

by all the planes in nodes between the root and the null eon, and eo must be convex. At

each node between the root and the null eon, if you travel down a right eon to go from

the node toward the null eon, use the half-space on the inside of that node's plane. H you

travel down a left eon to go toward the null eon, use the outside of that node's plane. The

union of all the eubspacee associated with null eons ie all of three-space.

When the polyhedron ia not convex, ita interior may not lie entirely on a single side of

a face-containing plane. Thus, the resulting planetree ia no longer linear. Figure 2 ehowa

one poasible planetree for a nonconvex polyhedron and the corresponding space partition.

The left subtree of the node labelled D represents a division of the part of apace that ia

both inside planes A, B, and C, and outside planeD (regiona 4 and 5 in the apace partition

of Figure 2), while the null right eon of the node labelled D, region 6, ia aaeociated with

the region of space inside planes A, B, C, and D.

A c

3

2

Figure 2: A nonconvex polygon, its tree, and the corresponding partition
of space when the edges are ordered a-b-c-d-e.

The procedure for building a planetree for a polyhedron uses the polyhedron's polygo­

nal faces for comparison, but planetree nodes contain only the oriented plane containing a

face. Each node of a plane tree contains the coordinates c1, c2, c3, .c4 of the plane equation

c1x + c2y + c3s + C4 = 0 where the vector (c1,C2,c3) points toward the outside of the

plane.

The tree-building procedure, and other operations in the rest of this paper, repeatedly

call for finding th.e part of a polygon on a given side of a plane. Clipping a polygon against a

plane can be done easily and efficiently using the Sutherland/Hodgman reentrant clipping

algorithm (Sutherland and Hodgman, 1974J. If the polygon is convex, the procedure is

particularly straightforward. The result will be a single convex polygon. If an edge of the

polygon lies within the clipping plane, the result will be either the entire original poly~on,

or will have fewer than three vertices and so can be discarded.

To build a tree for a polyhedron, list the faces in any order and, for each face, insert

the plane containing that face into the tree. Let P be the plane containing face p . P is

inserted into an empty tree by placing it into the root node. To insert P into a nonempty

·tree, use face p by using the plane in the root node to divide p into two pieces: the part

outside of the root's plane, Pout.lde 1 and the part inside of the root's plane, Pin•lde· If

Pln•lde is nonempty, use Pin.Ide to insert Pinto the right subtree. If Pouulde is nonempty,

.-

5

3

B

Figure 3: Regions formed by changing the order of the faces to d-e-b-a-c.

use Pout.Jde to insert P into the left subtree. If the face, p, ia contained in the root's plane,

P need not be added to either subtree.

This algorithm for building a planetree is given in the following routine, bulldtree.

Assumed available ia a subroutine, dlvide(R,p,pj116Jde 1Pout.ide), which takes a plane, R,

and a polygon, p, and finds the parts of p on the inside, Pin•idet and on the outside,

Pou t.Jde, of R.

buUdtree(poly.bedron, tree)
let tree be an empty tree
for (each face, p, of polyhedron)

lnsert(p, tree)

insert (p, tree)
if (tree is empty)

put the plane containing p into tree
return

R = plane in root node of tree
dlvlde(R, p, Pin•ide• Pout.ide)
if (plntlde not empty)

if (tree-+ rightson is NULL) create a rightson containing P
else lnsert(pin•ide• tr~ -+ rigbtson)

if (p0 uttide not empty)
if (tree -+ leftson ia NULL) create a leftson containing P
else 1nsert(p0 ut.ide• tree-+ leftson)

For a non-convex polyhedron, the size and shape of the tree 'depends upon the order in

which face-containing planes are added to the tree. Figure 3 shows the resulting planetree

and subregions when the faces of the polyhedron of Figure 2 are ordered d-e-b-a-c.

Notice that the left subtree of the node containing E is empty, even though a part of face

b is outside of E, and B is added after E. That is because only the part of b that is

outside of D . is used for comparison with E in building the tree.

' '•.

6

2. Classifying Points, Lines, and Polygons

Claaeifying pointe, line segments, and polygons with respect to a polyhedral region

can be done uaing the planetree representation of the polyhedron. To compare a point to

a planetree, compare the point with the plane at the root. H the point ia inside the root,s

plane, it must lie in the region represented by the right subtree, ao paae the point down

to the right subtree; if the point is outside, paaa the point down to the left subtree. Now

compare the point with the appropriate subtree. H the point ia paaeed down to a null left

subtree, the point ia outside the polyhedral region; if a null right subtree is encountered,

the point is inside the region. (Choose a point and try it for the trees in the figures.)

For a point that is coplanar with a face, the situation is slightly messier because that

point could be inside, outside, or on the surface of the polyhedron. When a point lies

within a node's plane, pass the point down to both left and right subtrees. A point lying

on the surface of the polyhedron will be eventually puaed to both a null left eon and a

null right eon. Even if a point does not lie on the surface, but is contained in a plane of the

tree, the point may be passed down to more than one nullaon. In thia case, if the point

is inside the polyhedron, it will always be passed to null right eons, and if it is outside, it

will always be passed to null left aons.

The point classification procedure described above is given in the following code:

classlfypolnt(point, tree)
R = oriented plane in root node of tree
if (point ia inside or on R)

if (tree- rightson is NULL) print(•point ia inside")
else classlfypolnt(point, tree- rigbtson)

if (point is outside or on R)
if (tree- leftson is NULL) print("point is outside")
else classlfypolnt(point, tree - leftson)

Comparing a line aegment with a planetree determines which parte of the line segment

are inside a polyhedral region. At each node, compare the line segment to the plane at that

node. Pass the part of the line segment that is inside the plane down to the right subtree,

and the part of the line segment that ia outside the plane down to the left subtree. H only

one endpoint of the line segment ia within a plane, the line is considered to be completely

inside or completely outside of that plane, depending upon where the other endpoint lies.

H the whole line segment lies within a plane, it is considered to be both inside and outside

that plane. Pieces of the line inside the polyhedron will eventually be passed to a null right

aon, while pieces of the line that are outside the polyhedron will eventually be puaed to

7

a null left aon. The results are not guaranteed to be minimal; that is, a line segment that

is completely within a polyhedron could, for example, be divided into multiple pieces, but

all of these pieces would be labelled as being inside the polyhedron by being paaaed to null

right aon.a. When a line segment lies within a plane of the tree, there may be overlapping

pieces in the result, and sections on the boundary will be both inside and outside the

polyhedron.

A similar algorithm is used to compare a polygon with a planetree. At each node,

divide1 the polygon into pieces inside and outside of the node's plane. If the right subtree

is empty, this inside part of the polygon (if any) is inside the polyhedron. Otherwise,

pass the inside part of the polygon (if any) down to the right subtree. If the left subtree

is empty, the outside part of the polygon (if any) is outside the polyhedron. Otherwise,

pass the outside part of the polygon (if any) down to the left subtree. As in the case of a

line segment, the answer may be in pieces. This is illustrated in Figure 4. Again, when a

polygon ia contained in a plane of the plane tree, the polygon needs to be considered to be

both inside and outside of a plane it lies within. Thus, there may be overlapping pieces

in the output, and sections that are on the boundary will be indicated as both inside

and outside the polyhedron. The algorithms for Boolean operations will be able to avoid

generating overlapping faces.

3. Intersection, Union, and Difference

Consider the intersection of two solid polyhedra, A and B, where each polyhedron ia

defined by a list of oriented planar polygonal faces. The problem ia to find the polygonal

faces of the surface of the intersection. Each face of the intersection, An B, is contained

in one of the faces of A or B. Thus, the faces of the intersection are just the parte of the

faces of A that are inside of B and the parts of tbe faces of B, that are inside of A. So,

the problem of intersection can be done by comparing each polygonal face of A to the

planetree for B, and comparing each face of A to the planetree for B. To find the parts

of a polygon inside the polyhedron represented by a planetree, do a comparison similar

to that described in Section 2, keeping pieces passed to a null right son, and discarding

pieces passed to a null left son2.

Thia same idea works for other Boolean operations. To find the union of two polyhe­

dra, C = AUB, it is still true that each face of Cis contained in a face of A or one of B. In

1 Again, the Sutherland/ Hodgman clipping algorithm works well here.
2 I am ignoring overlapping faces temporarily.

•

•

·r~ .

- __,...,---

• e

treenode A
I

I I . I
I

discard

A r~=J::::i:l:!t\::1
discard

discard

I
I

B

\
treenode B A
I

I
I

\~
treenode C

I
empty

treenode F
I \

I '\

/ A~E
empty u

pert of the answer

e

c
8 .

8

•tj'
D

Figure 4: These are the steps in finding the parts of the shaded rectangle .
that ate inside of the L-shaped region. The planetree for the L-shaped
region was built from faces ordered a-b-c-d-e-f. To get an idea of the 3-d
situation, think of the shaded rectangle as a polygon which lies within
the plane of this page. Think of the L-shaped region as if it were really a
polyhedron in 3-d extending above and below the page. A is then a plane
that intersects the page along the line containing a.

8

•

••

..

Set theoretic
Intersection of A end 8

8

Reguler1zed
Intersection of A end 8

Figure 5: (a) Two closed sets, A and B. (b) The intersection of A and B.
(c) The •regularized" intersection of A and B.

A 8 A union 8

Figure 6: The union of two solids with overlapping faces has interior
"dangling faces" with opposite orientation.

g

the union case, however, the faces of C are the parts of the faces of A that lie outside of B

and the parts of the faces of B that lie outside of A . When doing the polygon to planetree

comparison to find the parts of the polygon outside of a polyhedron, discard parts passed

to a null right eon and keep parts passed to a null left eon. To find the difference of two

polyhedra, C =A- B, we need the faces of A outside of B and the faces of B that are

inaide A. Again, this can be done by polygon/planetree comparisons .

The hard part of doing Boolean operations cleanly ia dealing with exceptional cues.

The special cases of two polyhedra intersecting at a vertex or an edge disappear with the

Sutherland/Hodgman clipping, eo the only concern ia for coplanar overlapping faces. In

the previous section, a polygon ia assumed to be both inside and outside of a plane it

lies within. When doing Boolean operations, this assumption includes unnecessary faces

which are undesirable for many applications. For example, faces of the intersection of two

10

polyhedra resulting from overlapping faces of the original polyhedra will be contributed

twice. This assumption also yields the "dangling faces" resulting from nonregularized3

intersection, as illustrated in Figure 5. The result of the union of two adjacent polyhedra

will include faces in its interior, as in Figure 6.

To avoid generating overlapping faces, a polygon being compared to a planetree cannot

be considered to be both inside and outside a plane it lies within. A polygon that is a face of

a polyhedron is oriented like the plane it is contained in; the inside normal points into the

polyhedron, and the outside normal points away from the polyhedron. This orientation is

unique because faces are only allowed to intersect at edges and vertices. When comparing

an oriented polygon to a planetree, whether the polygon should be considered inside or

outside of a plane it lies within depends upon the operation being done and whether or

not both the plane and the polygon have the same orientation. When finding the part of

a polygon that is inside or outside of a polyhedron for performing a Boolean operation,

the classifying routine needs to know how to classify a polygon that lies within a plane.

The remainder of this section presents appropriate classifying routines, and programs for

performing Boolean operations.

The routine findlnslde(p, tree,insideorientation) finds the part of a polygon, p, in­

side of a polyhedron represented by a planetree, tree. The subroutine sameplane(R,p)

returns TRUE if the plane, R, contains the polygon, p; returns FALSE otherwise. The

subroutine orlentatlon(R,p) returns SAME if the plane, R, and the coplanar polygon,

.p, have the same orientation; returns OPPOSITE otherwise. As before, the subroutine

dlvlde(R,p,pl.rnJde•Pout.ide) takes a plane, R, and a polygon, p, and finds the parts of p

on the inside, Pln•lde1 and on the outside, Pout.jde 1 of R. The findlnslde routine deter­

mines what parts of a polygon are inside an object by repeatedly determining which part

is inside the plane in a node of the tree. In findinslde, the argument insideorientation

indicates when a polygon should be considered to be inside of a plane it lies wit~in (=

is coplanar with). Its values may be SAME, OPPOSITE, or NONE. If insideorientation

is SAME, a polygon is considered to be inside a plane with the same orientation, and

outside a plane with opposite orientation. If insideorientation is NONE, a polygon always

outside the plane it lies within. H insideorientation is OPPOSITE, a polygon is inside a

plane with the opposite orientation, and outside a plane with the same orientation.

3 A set resulting from a regularized operation is equal to the closure of its interior. (See

(Requicha and Voelcker, 1984).)

flndinslde(p, tree, illsideorientation)
R = plane in root node of tree
if (sameplane(R,p))

if (orlentatlon(R,p) = insideorientation)
Pln1ide = P

else
Pout.Jde =empty

Pout.ide = P
Pinside = empty

else dlvlde(R,p,pJn•ide,Pou t.dde)
if (pinslde not empty)

if (tree- rigbtson is NULL) add Pineide to the result
else findlnslde(piuide• tree - rigbtson, insideorientation)

if (p0 ut.ide not empty)
if (tree - leftson is NULL) do nothing
else findlnslde(p0 ut.Jde• tree - left.son, insideorientation)

11

The next routine, findoutalde, finds the part of a polygon outside of the polyhe­

dron represented by a planetree. It is very much like flndlnslde, except in this case,

since we are looking for the part of the polygon outside of the planetree, the argument

outsideorientation indicates when a polygon should be considered to be outside of a plane

it lies within.

findoutslde(p, tree, outsideorientation)
R = plane in root node of tree
if (sameplane(R,p))

if (orlentatlon(R,p) = outsideorientation)
Pout.Jde = P

else
Pht•lde = empty

Pm•lde = P
Pout.ide = empty

else dlvlde(R,p,pJn1 ide,Pout.Jde)
if (pout.Jde is not empty)

if (tree -Jeftson is NULL) add Pout.ide to the result
else findoutslde(p0 ut.Jde• tree - left.son, outsideorientation)

if (pinside is not empty) ·
if (tree- rigbtson is NULL) do nothing
else findoutalde(pin•ide • tree- rigbtson, outsideorientation)

Let A and B be polyhedra. To find the intersection, we need to find the faces of A that

are inside B, and the faces of B that are inside A. This amounts to two calls to flndlnslde,

and the only question is how to set insideorientation. Consider Figure 7. The inside of

A n B was originally inside of both A and B , so we want parts of original overlapping

faces that had the same orientation. Thus, we set insideorientation to SAME for finding

~ljP
A unton 8 A tnler11et 8 A - 8

Figure 7: Union, intersection, and difference of objects with overlappins
boundaries.

12

the faces of A that are inside of B. Since we will have all the parts of overlapping faces

we need from A, we set insideorientation to NONE when finding faces of B inside of A .

lntersect{A, B)
bulldtree(B, Btree)
for each face, a, of A

ftndlnside{ a, Btree,SAME)
buildtree{A, Atree)
for each face, b, of B

ftndlnslde(b, Atree,NONE)

Union is very similar to intersection. This time we want faces of A outside of B, and

faces of B outside of A. Overlapping faces with the same orientation (= same "inside")

will be part of the result; overlapping faces with opposite orientation would be internal

in the result, so they should not be included. As before, we only keep overlapping faces

from one of the original figures. So, here we set outsideorientation to SAME for one set

of faces, and set it to N<?NE for the other set of faces.

unlon(A,B)
bulldtree(B,Btree)
for each face, a, of A

findoutside(a, Btree,SAME)
buildtree(A, Atree)
for each face, b, of B

ftndoutslde(b, Atree,NONE)

13

The difference, A - B, ia the aet inside of A, but outside of B. (This is not the same

thing aa B- A.) So this time, we want to keep overlapping parts of faces with opposite

orientation. Intersection and union are symmetric operators, eo in those caaea it did not

matter whether part of an original face of A orB was kept; we were always keeping faces

with same orientation. In the difference case, for A- B , we need to keep the overlapping

face from A, not B, 10 that the face in the result will have the correct orientation. If we

were finding B- A, we would keep the faces of B instead. The next routine finds A- B .

difference(A, B)
bulldtree(B, Btree)
for each face, a, of A

flndoutslde(a, Btree,OPPOSITE)
bulldtree(A, Atree)
for each face, b, of B

findlnslde(b, Atree,NONE)

4. Other Properties of the Planetree Representation

This section deals with properties of the planetree repreeentation and the algorithms

for Boolean operations. Methods are given for determining when two planetreea represent

the same aolid, and for converting a planetree to a boundary reP.reaentation of the aolid or

to a convex subdivision of the aolid. Sequential Boolean operations, the size of the treea,

and extensions to nonpolyhedralaolids are discusaed.

In general, a boundary representation for a polyhedron is not unique. Even the same

·set of faces can yield different planetree representations when the order of the faces is

changed. If, for two given planetrees, there exists for each a clean boundary representation

(= liat of nonoverlapping faces), the difference operator can be used to teat for equality.

That is, A and Bare the same aolid if and only if A- B ia empty.

If a liat of {aces ia not available, it is poaaible to convert a planetree representation

into a boundary representation. The faces will all be contained in planes in the plane­

tree, 10 first make a list of all the planes in the tree, including each plane twice, once

for its own orientation and once for the opposite orientation. (Recall that the building

procedwe discards a plane that is already in the tree, even if it baa the opposite orien­

tation. Thus, we have to include both orientations to be sure to get all the faces.) For

each oriented plane, first find the parts that are inside the polyhedron represented by the

planetree using findlnalde, considering a face to be inside a plane of the same orient~

tion (inaideorientatio.a = SAME). This yields all parts of planes that are inside or on the

·.

14

boundary .or the object. Since we do not want to include the parts of theee facee that

are strictly inside the object, next apply the routine findoutalde to this new aet of faces,

considering a face to be outside a plane it is in (outaideorientation = SAME). The result

will be a aet of nonoverlapping faces that are the boundary of the polyhedron. It will not

necessarily be the same eet of faces that was used to build the tree.

The set of facee obtained halfway through the boundary finding proceaa is a set of

faces that are on or inside the original solid. These faces are the faces of a subdivision of

the original object into convex aubobjects. It is still neceeeary to divide this set of faces

into subsets corresponding to subobjects in order to have a subdivision of the original

object.

Lists of faces obtained from planetree operations have no adjacency information for

faces. The 20 analogs of the polyhedron comparison algorithms thus have the disad­

vantage that the list of edges of the resulting polygon is no longer in order around the

polygon, ao the process of comparing boundary elements to trees must be followed with

a tracking step if adjacency information is desired. Converting a CSG representation to

a boundary representation can involve a long sequence of Boolean operations. Planetrees

are built from a list of faces, 10 no adjacency information needs to be reconstructed in the

intermediate steps. H repeated operations are being done on objects with many faces, the

result may have many more faces.

It is not always necessary to do multiple Boolean operations sequentially. For ex­

ample, AU B U C can be found from the faces and planetrees of A, B , and C without

computing an intermediate tree by finding the parts of faces of each outside of both of

the other two. To find the part[s] of a face outside of both of two trees, first find the

parts outside of one tree, then find the parts of that result that are outside of the sec­

ond tree. To find AU B U C, find the parts of faces of A on the outside of B's tree

and C'a tree (use outaideorientation = SAME for both). Next, find the parts of faces

of B that are outside of A's tree (outaideorientation = NONE) and outside of C'a tree

(outaideorientation =SAME). Finally, find the parts of faces of C that are outside of A's

tree and B 'a tree (use outaideorientation = NONE for both).

The size of a planetree is similar to the size of the BSP- tree, introduced as part of a

visible-eurface algorithm (Fuchs et al., 1980). The size of the BSP-tree was addressed in

an article by Fuchs, Abram, and Grant (Fuchs et al., 1983), where they present evidence

that the number of nodes need not be much greater than the number of faces. To minimize

the number of nodes in the tree, they first add faces that do not "split" many other faces.

•

15

Nodes of a BSP-tl'ee contain a list of vertices of a polygon, while nodes of a planetree

contain the coefficients of a plane equation. Coplanar faces need only be represented by

one plane in a planetree.

If the tree representation is to be used for objects whose faces are not planar polygons,

the form of the faces must allow three computations. You need to be abl~ to find the ori­

ented surface containing a face, decide which side of such a surface another face is on, and

clip a face against a side of a surface. (For non-convex faces, thia could cause more than

one piece of a face to be passed down to a subtree for clipping or tree building.) The ease

of performing these operations would determine the usefulness of the tree representation.

Obviously, the algorithm for finding convex subpieces is not valid for all such extensions.

5. Results

The intersection, union, and difference algorithms, and the algorithm for converting a

planetree to a boundary representation were implemented inC under UNIX. 4 The objects

used for testing were tiled from contours. The implementation was straightforward; it did

not take advantage of locality.

6. Acknowledgements

This work was supported in part by NIA grant R91-CA39060. I thank Steve Pizer and

Henry Fuchs for useful conversations and encouragement, Steve Pizer and Ed Bloomberg

for reading many drafts, and Ari Requicha and Lee Nackman for encouragement to write

up these results.

References

Aristides A. G. Requicha and Herbert B. Voelcker. January, 1985. •Boolean Operations in
Solid Modeling: Boundary Evaluation and Merging Algorithms," Proceedings of the
IEEE, '13, 30- 44.

Ivan E. Sutherland and Gary W. Hodgman. January, 1974. •Reentrant Polygon Clipping,"
Communications of the ACM, 1 '1(1), 32-42.

Ariatides A. G . Requicha and Herbert B. Voelcker. January, 1984. Boolean Operations in
Solid Modelling: Boundary Evaluation and Merging Algorithms, TM-26, Production
Automation Project, University of Rochester, Rochester, New York.

Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. July, 1980. •on Visible Surface
Generation by A Priori Tree Structures," Computer Graphics, 1((3), 124-133.

Henry Fuchs, Gregory Abram, and Eric Grant. July, 1983. •Near Real-Time Shaded
Display of Rigid Objects," Computer Graphics, 1'1(3), 65-72.

4 UNIX is a trademark of Bell Laboratories.

