
.. 
OSSI 

A Portable Operating System Interface 
and Utility Library for Modula-2 

Technical Report 86-005 

February, 1986 

E. Biagioni, G. Heiser, K. Hinricbs, C. Muller 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
New West Hall 035 A 
Chapel Hill. N.C. 27514 



• 
Abstract 

The absence of a standard layer between operating systems and Modula-2 programs 
makes most software written in Modula-2 non-portable. We propose OSSI, a set of 
library modules which hides the machine-dependent details from Modula-2 
application programs. OSSI, for Operating System Standard Interface, has been 
implemented on several computers and operating systems, and allows us to port 
large Modula-2 programs without any changes to their source code. OSSI 
standardizes 110 operations, memory management, and utilities such as string 
handlers and large-set operations. 

Keywords 

modules and interfaces, software libraries, programming environments 

current addresses of authors: 

E. Biagioni, K. Hinrichs 
Department of Computer Science, University of North Carolina, Chapel Hill, NC 27514, USA 

G. Heiser 
Institut ftir Informatik, ETH, CH-8092 Zurich, Switzerland 

C. Muller 
BBC Brown Boveri & Co. Ltd., Research Center, Dept. KLR-CI, CH-5405 Baden, Switzerland 



2 

1 Introduction 

The main emphasis in the design of Modula-2 has been put on ease of 
implementation and efficiency. This results in a compact language that is easy to 
master and can be implemented on practically any computer. The disadvantage of 
this approach is that essential features - such as 1/0 and memory management - have 
been left out or are not sufficiently defined. Hence the interface to the host system 
differs between various implementations of the language. This poses serious 
problems when trying to write portable software, as can be seen in Example 1. 

Since the language only supports a few commonly required operations, most 
Modula-2 programmers have to implement their own libraries containing the 
functions they need most frequently. This results in unnecessary duplication of 
effort and a proliferation of very specialized, non-standard libraries. Further 
complications arise due to small but significant differences among existing 
compilers. For instance the type WORD is sometimes defined according to the 
original definition of the language - WORD is compatible with types CARDINAL , 
INTEGER and POINTE R -and sometimes according to the revised definition­
WORD is the smallest addressable unit of storage. Both problems, i. e. the lack of 
functionality and the differences among compilers, can be solved by providing a 
generally available standard library. It is one of the strengths of Modula-2 that 
standard libraries can be easily and efficiently incorporated into existing Modula-2 
environments. 

The need for a standard, machine-independent library was made obvious to us when 
porting the interactive system XS-21 from the Lilith personal computer-2 to a 
V AXTMNMS system (work done by H. Sugaya of the Brown Boveri Research 
Center and one of the authors). The compilers on both computers were derived 
from the same PDP-11 compiler. However, the libraries supplied with the 
compilers were different, incompatible and system dependent. In each case they 
mirrored the capabilities provided by the underlying operating system. In the XS-2 
project, the portability of input and output had been carefully analyzed; for these, 
we defined a machine-independent interface. XS-2 however used other features of 
the Lilith library including runtime loading of programs, bit sets defining cursor 
patterns, and polling to track cursor movements. It took over four man-months to 

• produce a running version of XS-2 on the VAXTM. Every time a new version was 
installed on the V AXTM, it took several days to adapt the non-portable features of the 
Lilith library which were used throughout the code. 

As a solution to this kind of 'problems we specified OSSI - Operating System 
Standard Interface. OSSI is a set of standard modules to be used by portable 
programs; these modules define a virtual machine and supply a set of commonly 
needed standard operations. This minimal programming environment suffices for a 
large class of applications. By adding further modules, it can be extended to support 
any kind of portable application. The programmer is assured that the features 



3 

provided by this library are portable. OSSI provides program portability, not data 
portability. 

In section 2 we discuss the basic requirements for a standard Modula-2 library. 
Section 3 presents the ideas behind our concept of a standard library and evaluates 
other proposed standard libraries. In section 4 we describe our implementation in 
more detail. In section 5 we relate our experience with OSSI. 

2 Requirements for an operating system interface 
and standard library 

A standard programming support library consists of several building blocks. First 
there must be some low-level support to ensure the programmer can write 
applications independent of hardware and operating system characteristics. Typical 
operating system services such as input and output must also be included. A third 
building block is a library of general utilities. Finally an optional part should 
support the use of special hardware and software that may not be available on all 
systems. 

2.1 Low-level system interface 

A standard library must provide a shell that insulates applications from low-level 
hardware and operating system features. This includes constants defining the 
storage requirement of simple types. Some of these constants are often required in 
type declarations, precluding usage of the predefined function sYSTEM . T sIZE . 
The ranges of standard types, e.g. CARDINAL or REAL , should also be defined. 
This eases type declarations and the writing of programs that need to know 
parameters such as the relative precision of reals or the number of bits available in a 
bit set. 

Data base systems and other applications often need to pack and unpack data to 
optimize storage utilization. This must be done differently for different types; while 
it is sufficient to drop the most significant bytes when packing a CARDINAL value, 
the sign bit has to be treated separately in the case of I NTEGER values. Data 
packing is not supported by the language and must therefore be incorporated into 
the library. 

Dynamic memory allocation is not sufficiently specified in Modula-2. Most 
environments provide the procedures ALLOCATE and DEALLOCATE , but their 
implementations differ in the way they respond to memory requests that cannot be 
satisfied. Some will do nothing,' others will return a NIL pointer, some will simply 
crash. 

Furthermore the size of the allocation unit is highly system-dependent; it can be 



• 

4 

anything from a single bit to a number of memory words. This implies that there is 
no general way to compute the size of an object, as is often necessary in constant 
declarations and in storage-management applications. To allocate memory for a 
string of say 100 characters, it is necessary to determine the number of storage units 
corresponding to 1 00 bytes. 

22 Standard input/output interface 

It is clearly necessary to have ~properly defined interface for terminal input and 
output. The Modula-2 report does not include such an interface, and the modules 
Terminal and InOut as described in Wirth3 are not available in most Modula-2 
environments or are incompatible in their specifications. 

The situation is worse in the case of file 110, as illustrated by Example 1. Portable 
application programs must be based on a consistent, hardware- and operating 
system-independent view of secondary storage. The 110 interface should provide 
simple and convenient sequential file operations, sufficient for a large class of 
applications. More sophisticated programs require record-oriented random access 
files. Access to the underlying file management system is also necessary for such 
operations as rename, delete and file search. Finally, programs that implement their 
own disk storage management, e.g. database systems, must be able to build their 
own access structures and make full use of the physical properties of disk storage 
such as block structure and asynchronous random access. 

A standard library should therefore provide several entry points to the 110 system, 
differing in the level of abstraction they represent and the convenience of their 
usage. To ensure portability, the library modules must not depend on a particular 
operating system, but implement the underlying abstract model, e.g. the stream 
concept. 

23 Standard utilities 

Many programming languages provide built-in string operations. Modula-2 does 
not, so the standard library should offer the necessary functionality . The basic 
string operations are: 

• - determining the length of a string; 
-copying and concatenating strings; 
- inserting, deleting and extracting substrings; 
- comparing strings; 
- searching for an occurrence of a string within another one. 
Conversions between numbers and strings are useful for formatted input and output 
of numbers and should also be included. 

A library of mathematical functions standardizing the computations with the 
Modula-2 numerical types should include: 



5 

- functions returning the largest or smallest of two or more numbers; 
- square root; 
-exponential; 
- function for real numbers raised to integral powers; 
- logarithms; 

.. - trigonometric and hyperbolic functions and their inverses; 
- random number generators. : 

• 

Most implementations of the language only support sets up to a cardinality equal to 
the computer's word size in bits. This is unsatisfactory for two reasons: the 
maximum set size is implementation-dependent, and in general too small for most 
applications. To make full use of the powerful set concept without modifying the 
language, a library module should define a set type of large cardinality which 
supports all the usual set operations. 

2.4 Support for advanced 110 devices 

In recent years powerful new devices such as graphic displays and analog input 
devices have come into widespread use. While keyboard and typewriter-like devices 
are supported by most programming languages, these new interactive features are 
not yet integrated into most programming environments. 

A comprehensive Modula-2 library should therefore contain optional modules 
implementing concepts such as screen windows or pointing devices. The latter can 
be used for input selections via menus and for manipulating objects in highly 
interactive application programs. Many physical devices could play the role of a 
pointing input device, for instance mouse, trackball, lightpen or even cursor keys. 
Because of this variety it is necessary to give the programmer a unified view of 
these concepts and to implement them with device-independent modules. 

25 Error handling 

An error condition occurs when an operation cannot be performed as intended due 
to either lack of resources or invalid inputs. The caller of a library procedure must 
be able to detect such errors. This should be achieved by the called procedure 
signalling an error to the caller. There are cases, however, where this is too 
inefficient, e.g. in time critical procedures like mathematical functions. If such an 
operation cannot be completed with the correct result, the calling program must be 
able to check the validity of the call beforehand. 

3 The philosophy behind OSSI 

OSSI consists of a set of modules created to meet the above-mentioned 
requirements. Its design is based on several fundamental ideas: 



• 

• 

6 

Consistent programmer interface 
Convenience of usage as well as clarity and reliability of the applications are 
enhanced by clear and consistent definitions. Names are chosen in a systematic 
manner, errors are treated systematically via result parameters, and side effects are 
avoided. : 

Independence 
The modules are complete in the sense that they can be used independently of each 
other. Functions that operate on different types of objects, e. g. strings or sets, are 
provided by independent modules. 

Stability 
Great care was taken to prevent the library procedures from crashing due to user 
program bugs, lack of system resources or meaningless input parameters. The data 
packing routines are excepted from this rule, since they only operate on resources 
that can be controlled by the user program, and they need to be extremely efficient. 
The same holds for the mathematical function library, for which efficiency 
precludes checking the validity of the input on each call. 

Efficiency and minimality 
The procedures are defined in such a way that they can make efficient use of system 
resources on almost any system. The unavoidable penalty for using the standard 
library, in terms of memory usage and execution time, has been kept to a minimum. 
This was made possible by providing minimal but comprehensive services based on 
simple concepts, rather than building a huge system that does everything, as for 
example GKS, the graphical kernel system standard. 

Extensibility 
The system is open: it can easily be expanded to meet requirements posed by new 
hardware or special applications, e. g. robot control or sound generation. 

Portability 
The library has been implemented to make portability easy. System-dependent 
constructs, e. g. operating system services, are used only where necessary. This 
allows re-use of large portions of the library without changes when transporting 
OSSI to another computer or ORerating system. The remainder can be adapted with 
little effort, so that an experienced programmer familiar with the target 
environment can port OSSI- and test it- in a week's time. Testing and debugging 
efforts are greatly reduced by providing system-independent test programs for 
many of the OSSI modules. Th~ test programs perform mostly automated checks on 
all procedures exported by a specific OSSI module. The tests have been carefully 
selected to check a wide range of typical and borderline cases. If a test fails, the test 
program gives an indication of where to look for the problem. With these tools, the 
trustworthiness of a new implementation of OSSI can be established quickly, 
typically in less than an hour. 



• 

• 

7 

Other library proposals 

Other proposals for Modula-2 :standard libraries can be found in Modus4 and in 
Craig et al. 5• The goals of the Modus proposal are, among others, to "allow one to 
write portable Modula-2 programs", "allow one to describe algorithms which refer 
to a standard environment", "do not specify the operating system ... ". Craig et. al. 
specify their goals as "(1) provide enough facilities to write general purpose 
applications programs which are intended to be portable, (2) allow efficient 
implementation on many different systems, (3) allow expansion of the kernel as 
needed" . 

The specification of OSSI includes all these features and goes beyond them to 
specify a virtual machine. This allows OSSI to be considerably more uniform in its 
appearance to the programmer: all the modules share the same naming conventions 
and error handling is uniform. Each module corresponds to a single abstract 
concept. 

This is not the case with the other libraries. In the Modus proposal for instance, 
separate modules provide for text and binary 1/0 to files; however, they· use a single 
type File defmed in a third module. Hence, several modules must be imported to 
perform conceptually related operations. Files can be manipulated by operations 
provided by several modules, and these can influence each other via side effects. 
This implies that misuse of files cannot be detected, leading to an unsafe system. For 
instance, writing binary information onto a text file can make the file unusable for 
text editors. 

Craig et al. do not distinguish between text files and binary files: "FileiO provides 
procedures for reading, writing, and positioning files. These procedures are 
patterned after the best of the Ada KAPSE packages, UNIX™ file functions and 
UCSD Pascal 1/0 procedures." This is contrary to the OSSI philosophy of supplying 
operating system independent concepts rather than accumulating "nice" features 
from different operating system. Not distinguishing between text and binary files 
works fine in the UNIX™ world, on other systems, e.g. V AX™ /VMS, it is 
impossible to implement files that can store any kind of data while still being 
compatible with standard text editors . 

Probably the least portable feature found in Modus is the module Program. This 
module cannot be implemente'd on some virtual memory systems (for instance 
V AX™/VMS). Moreover both libraries fail to provide many of the features we 
consider essential (cf. section 2). These include a complete set of hardware or 
compiler dependent constants, packing and consistent error handling. 



• 

8 

4 Description of OSSI modules 

We now describe the basic features of our library. Currently OSSI consists of 
roughly a dozen modules, each covering one logical domain. The structure of the 
OSSI modules is shown in Figure 1. The names of all modules start with the letters 
"SI". This is to avoid name clashes with system or library modules of particular 
Modula-2 environments. The first six letters of the module names are all unique, to 
avoid problems with operating systems that only allow relatively short file names. 

Error handling is uniform across the library: every procedure which may fail due 
to conditions not under control of the calling program returns a result variable. 
This variable is of a global result type. Its value reflects the completion status of the 
operation. If it is equal to a global constant SIDone, the operation has completed 
successfully; in all other cases an error has occurred. The mapping from errors to 
error results is system-dependent; a global procedure SIMessage converts error 
results into message strings. This allows easy detection of errors and provides a 
convenient mechanism for reporting them to the user. In general one cannot expect 
that each possible error condition can be mapped onto a predefined set of errors, 
and many operating systems do not allow user programs to distinguish between 
different errors. OSSI's concept of error handling is sufficient because a 
programmer can always test all error conditions for which recovery is possible, i.e. 
testing the existence of a file before trying to open it. 

41 Low-level system interface 

The low level interface consists of the modules SISystem, SIMemory and 
SIPacking . 

The module s I System exports generally useful, system-dependent constants, 
types and functions. These include constants for defining the range of the standard 
types and their storage requirements as postulated in section 2.1. Storage 
requirements are always given in units of bytes rather than the system-dependent 
storage units. Further constants define such compiler-dependent features as the size 
of a storage unit and the maximum range allowed for an array index. Exported 
functions include IntTrunc and IntFloat as well as Cap and UnCap. The 
former two are the INTEGER· equivalents of the predefined functions TRUNC 
and FLOAT , which are defined for CARDINAL values only. Cap is like the 
predefined function CAP, but defined on the whole range of the type CHAR, not 
only for letters. UnCap performs the inverse operation. Finally, the type BYTE 
can be used in place of the implementation-dependent type WORD • 

s I Memory provides memory allocation and deallocation procedures. It exports 
the procedures ALLOCATE and DEALLOCATE which most compilers substitute 
for the predefined macros NEW and DISPOSE. ALLOCATE returns a NIL 



• 

• 

• 

9 

pointer if a memory request cannot be satisfied, so the client program can recover 
from a heap overflow. Both procedures use the same storage unit as the standard 
procedures S I ZE and TSIZE . 

In addition SIMemory provides the procedures AllocateBytes , 
Deal l ocate Bytes and P a rtialDe alloca teBytes . The first two are like 
ALLOCATE and DEALLOCATE, except for the storage unit, which is the byte. This 
is compatible with the size constants exported by the module SISystem. The 
procedure PartialDeallocateBytes lets the programmer return to the 
system a part of a storage segment - previously allocated by a call to 
AllocateBytes - without having to perform system-dependent address 
computations. 

The module SIPacking satisfies the requirements for data packing and standard 
type conversions stated in section 2.1. It exports procedures which allow packing of 
CARDINAL and INTEGER values, and the storage of any kind of structured or 
unstructured data into an ARRAY OF BYTE . 

42 Input/output interface 

Standard terminal 1/0 is done using the module SITerminal . It exports 
procedures for reading single characters from the keyboard with or without echo 
on the screen, and for writjng single characters to the screen. In addition 
s ITerminal also supports reading and writing of strings. Another procedure 
tells the read routine that the last character returned from the keyboard should be 
buffered and returned again on the next read operation. Finally the function 
Keypress reports whether a key has been pressed, i.e. whether a character is 
available for reading. The inpuUoutput procedures of the module SITe rminal 
are all exported as procedure variables. This lets the user redefine the procedures to 
operate on alternate devices or according to different specifications. The default 
procedures may support system conventions for input/output redirection, to 
improve integration of the Mod1Jla-2 programs in a given environment. 

The modules SISt r eams , SIRandomiO and SIBlock iO represent 
conceptually different ways of accessing secondary storage. SIStrea ms is a 
convenient interface to sequential files, supporting line-oriented text files and 
byte-oriented binary files (see Example 2). s I RandomiO implements 
record-oriented random access files, allowing the use of more complex but more 
useful file system capabilities. s I Block IO defines a virtual disk, allowing 
block-oriented, asynchronous random access to secondary storage. It is tailored to 
the requirements of database systems, which implement their own disk access 
structures. The overriding consideration is minimization of the number of physical 
110 operations needed to perform block reads and writes. 



• 

10 

43 Utilities 

The utility library consists of the modules sIs t r ings , s IF i 1 e s , 
SIConversions , SINumberi O, SISets and SIMathLib. 

SIStrings provides all the basic string operations given in section 2.3. 

S IFile s views files as atomic units and gives access to the file managementofthe 
underlying operating system. It allows searching, deleting, renaming and copying 
of files and provides a portable means to convert logical into physical filenames. 

SIConversions allows conversions between strings and numbers, that is, 
between binary and human-readable representations. Result parameters give the 
user program the opportunity to recover from invalid inputs. When converting 
strings to numeric types, the caller can distinguish whether the number exceeds the 
range of the particular type or whether the string is syntactically incorrect. With the 
inverse conversions, the user has extensive control using well-defined formatting 
parameters. An additional procedure determines whether or not a particular REAL 
can be represented as a CARD I NAL or INTEGER . This is done by checking 
whether or not it has an integral value (within the numerical accuracy of type 
REAL) and lies within the range of the respective types. SINumberiO allows 
formatted I/0 of numeric types. It essentially combines the functions of the modules 
SIConversions and SITermi nal . 

sIs et s exports operations on large sets of cardinals. This allows for instance sets 
of character codes. All the operations available for standard SET types are 
available for these large sets. In addition there are procedures which return the 
complement and the cardinality (the number of elements) of a set. 

sIMa t hLib is a library of mathematical functions which satisfies the 
requirements stated in section 2:3. 

4.4 Optional modules 

Advanced hardware and software which is not available everywhere is supported by 
the optional modules SIFullScreen , SIWindows, SIText Windows and 
S I Graph icWindows . Other modules support special features such as menus and 
cursors. SIFullScreen allows random access to an alphanumeric display such 
as provided by most terminals. s IW i ndo ws supports the creation and 
management of windows on a raster display. The management functions include 
moving and resizing windows and control of window visibility. The windows are 
refreshed automatically after these operations. s I Text Windows and 
SIGraphicWindows are built on top of SIWindows and provide the. functions 
needed for text and graphic input and output, respectively. 



11 

5 Experience with OSSI. 

5.1 The virtual machine OSSI 

OSSI is an improvement over libraries supplied with current Modula-2 compilers, 
because those libraries often make use of operating system dependent details. OSSI 
was developed on the basis of our experience porting software across a variety of 
computers and operating systems, for instance Lilith, VAX™, PDP-11, IBM-PC, 
Apple Macintosh™, Sun and other 68000-based systems; under VMS, UNIX™, 
MS-DOS. This experience guided us in deciding what features are truly common to 
most systems and what features, possibly useful, are too specific to be included in 
the library. The resulting set of modules defines a virtual machine that can be 
realized on most physical machines in use today. 

A programmer planning to write a portable application must keep in mind that the 
language Modula-2 offers many features that lead to non-portable programs. The 
complete program design should therefore be based on a virtual machine defmed by 
the modules of a standard library. OSSI provides enough functionality for writing 
general-purpose portable application programs. Even large and complex software 
packages from the domain of systems programming can be built on top of OSSI, 
because the virtual machine can be accessed at a level close to the hardware 
(modules SISystem, SIMemory and SIPacking). The next section gives an 
example of such a software package. 

If an application needs facilities that are too specialized to be included in the library, 
one should proceed as follows: 
- set up precise specifications of the non-standard requirements; 
- use the module concept of Modula-2 to concentrate the non-portable facilities in a 

separate special module; : 
- build the application on top of the virtual machine which is now extended by this 

special module. 
If the application has to be installed on a different computer system, only the special 
module needs to be adapted. A programmer familiar with the target machine can 
adapt the module without knowing anything about the application, because the 
definition part of the special module provides exact specifications of what the 
module is supposed to do. 

52 Software packages based on OSSI 

The Smart Data Interaction package6 IS an interactive software tool for 
deductive data manipulation. It allows 
- efficient access to data on secondary storage; 
-deductive queries and data manipulations; 
-effective human-computer interaction. 



12 

The package is built on top of the virtual machine OSSI and runs on several 
different computer systems. It is based on three software building blocks that can be 
used alone or in various combinations: 

The grid file is a data structure for secondary storage designed to efficiently handle 
large amounts of multidimensional data. Efficient access to secondary storage is 
achieved by minimizing the number of disk read and write operations required to 
accomplish a given task. The grid file system 7 is implemented in Modula-2 and 
based on OSSI. Since the grid file views secondary storage as a randomly accessible, 
block-structured device, it uses SIBlockiO to access the disk. 

Modula--Prolog8 is an interpreter for the logic programming language Pro log. It 
can interact in many ways with other Modula-2 programs, e.g. it provides tools for 
including new built-in predicates (written in Modula-2) in the Prolog language, or it 
can be used by Modula-2 progiams as a deductive problem solving component in the 
background. It is completely based on OSSI, and within the Smart Data Interaction 
package it plays the role of a deductive query and manipulation language. 

Easy9 is a user interface for Interactive applications. The user sees structured 
commands and data, a command history and a set of universal commands applicable 
to both commands and data for all applications that use Easy. The application 
receives commands with their appropriate parameters, and can display data and 
feedback in a window reserVed for it. Since Easy is meant to work satisfactorily 
using only a minimal hardware configuration, it uses SIFullScreen for screen 
output and positioning. 

Current software development using OSSI includes the kernel of an extended 
relational data base system for storing geometric objects. It incorporates the grid 
file system and uses only OSSI modules otherwise. 

53 Portability ofOSSI 

OSSI was developed between the fall of 1984 and fall of 1985, with minor revisions 
since. The size of the source files of the OSSI kernel (definition and implementation 
modules, including all comments) adds up to some 330 KByte. 

The library was developed on the Lilith and was ported to a V AXTM under VMS 
during the early stages of development. Since its completion versions have been 
produced for a variety of computer systems, including IBM-PC under MS-DOS, 
MacintoshTM using the MacLogimo compiler and a general UNIXTM version. The 
implementation of the UNIXTM version took one of the authors, already familiar 
with the system, just a week, testing included. The MacintoshTM version was 
developed by a student (C. Gianotti) with no prior knowledge of either OSSI or the 
MacintoshTM as part of a two month project. This made all the OSSI based packages 



• 

13 

immediately available on the new computer systems. The reader is encouraged to 
compare these results with the time and effort usually required for porting large 
systems, as shown for example in the introduction. 

6 Concluding remarks 

It is clearly desirable to have one generally available standard library for Modula-2. 
In order for any library to be accepted as a standard, it must be based on a consistent 
and clean design. The library modules should be implementations of abstract 
concepts. Most present libraries suffer from the lack of a consistent design 
philosophy and appear to be collections of modules which simply reflect the 
underlying operating system. The examples given show OSSI to be well suited for 
large and complex system programs, as well as application programs. Unlike other 
proposals, OSSI consists of a kernel and an optional part. The kernel reflects the 
features generally provided by operating systems, the optional part interfaces to 
hardware that is not available on all systems. OSSI is easily ported and provides 
most of the commonly-used features of present operating systems, in addition to 
many common utility routines. As such, OSSI is a valid candidate for a standard 
Modula-2 library . 



14 

References 

1. J. Stelovsky, J. Nievergelt, H. Sugaya, and E. S. Biagioni, "Can an Operating 
System Support Consistent User Dialogs? - Experience with the Prototype XS-2," 
Proc. 1985 ACM Annual Conf., 1985, Denver CO, pp. 476-483. 

2. N. Wirth, "The personal computer Lilith," Proc. 5th Intern. Conf. on Software 
Engineering, IEEE Computer Society Press, 1981 , pp. 2- 15. 

3. N. Wirth, "Programming in Modula-2," 3rd ed., Springer Verlag, Berlin, 
Heidelberg, New York, Tokyo, 1985. 

4. "Modula-2 Standard Library Definition Modules," Modula-2 News, Issue # 1, 
January 1985, pp. 22 - 34. Modus, the Modula-2 Users Association, c/o Pacific 
Systems, PO Box 51778, Palo Alto, CA 94303, USA. 

5. J. M. Craig, J. M. Martel, and K. B. Richan, "Design of a Modula-2 Standard 
Library," Journal of Pascal, Ada and Modula-2, Vol. 4, No. 2, 1985, pp. 33-46. 

6. E. S. Biagioni, K. Hinrichs, C. Muller, and J. Nievergelt, "Interactive deductive 
data management - the Smart Data Interaction package," Wissensbasierte 
Systeme, GI - Kongress 1985, Miinchen, Informatik - Fachbericht 112, Springer 
Verlag, Berlin, Heidelberg, New York, Tokyo, 1985, pp. 208 - 220. 

7. K. Hinrichs, "Implementation of the grid file: design concepts and experience," 
BIT, Vol. 25, 1985, pp. 569 - 592. 

8. C. Muller, "Modula--Prolog," Report No. 63, Institut fiir Informatik, ETH, 
CH-8092 Zurich, Switzerland, July 1985. 

9. E. S. Biagioni, "Easy - a front end for interactive programs," diploma thesis, 
Institut fiir Informatik, ETH, CH-8092 Zurich, Switzerland, February 1985. 



15 

Example 1: PDP-11 and Lilith file interfaces 

Wirth3 describes two different Modula-2 interfaces to file systems. One provides 
access to the DEC PD P-11/RT -11 system and consists of the modules Fi l es and 
Streams, the other is the module FileSystem of the Medos-2 operating 
system for the personal computer Lilith2. The module Files mirrors the 
structure of the RT -11 file system and is restricted to block-oriented inputloutput. 
Streams is a sequential file interface based on the module Files . A user of 
Streams must explicitely use procedures exported by Files , e. g. Create or 
Lookup. The Medos-2 module F i leSystem , in contrast, provides the 
functionality of both streams and F i 1 e s ; its syntax and semantics differ from 
those of the RT-11 implementation. 
In order to open one file for input and one for output, the code for RT -11 might 
look like 

VAR fl , f2 : FILE ; (*FILE CARDI NAL*) 
sl , s2: STREAM; 
reply : INTEGER; 

fl : = 1; f2 : = 2; : 
Lookup (fl , inNarne , rep ly); 
Create (f2 , out Narne, repl y) ; 
Connect (sl , fl , TRUE) ; Connect (s2 , f2 , TRUE); 

The same is achieved under Medos-2 using the following statements: 

VAR fl , f2 : File ; (* F ile = RECORD ... END ; * ) 

Lookup (fl , inNarne , FALSE) ; 
Lookup (f2 , outNarne , TRUE) ; 

(* open exis ting file * ) 
(* create new file *) 

In the first case fl and f2 denote RT-11 channel numbers, while sl and s2 
are variables of an abstract type STREAM associated with the channels. A result 
status is returned via the parameter rep 1 y . In the Lilith case, f 1 and f 2 are 
variables of a structured type F i 1 e , which contains a field that represents the 
result status of the last operation on the file. This record also contains fields that are 
highly specific to the Lilith file system, such as <address, boolean> pairs that are 
used as byte pointers, since Lilith can only directly address two-byte words; 
similarly, pairs of cardinals are used for file read/write positions since a single 
16-bit cardinal is not sufficient to define a file position. It is obvious that neither 
module is system-independent, nor easily portable. Even though the above two 
program fragments are equivalent, it is clear that neither would compile in the other 
environment. This is just a simple example to show that programs which use 
different interfaces are generally not portable. 



• 

16 

Example 2: The OSSI module SIStreams 

As an example of an OSSI module we give the definition module s I Streams . It 
implements the abstract concept stream; it is a simple interface to sequential files. 
The procedure ConnectStream connects a stream to a file on secondary 
storage. This stream can then be used for input or for output to the file. Only 
sequential file access is supported and a given stream can only be used either for 
input or for output. We also distinguish between text streams and binary streams . 
The former are compatible with standard text editors available on the host system 
but may contain padding or formatting characters required by the system. Table 1 
shows the procedure calls that are valid for a stream variable of a given mode and 
type. 

StreamType 

text Stream 
t ext Stream 
binaryStream 
binaryStream 

StreamMode 

input Stream 
outputStream 
inputStream 
outputStream 

valid procedure calls 

SRead, SReadString , EndOfStream 
SWrite , SWriteString, SWriteLine 
SReadByte , SReadRecord, EndOfStream 
SWriteByte, SWriteRecord 

Table 1 

In addition to the above, a call to Disconnect Stream is always possible. It 
disconnects the stream from the physical file and closes the latter. 
Each procedure returns a result status through the result parameter. The value 
returned in the result parameter will be SISystem. SIDone if and only if the 
operation was successful. Otherwise result has a different value, which can be 
converted to a textual description of the error by a call to 
SISystem . SIMessage. 

The definition module, with all comments edited out, is: 

DEFINITION MODULE SIStreams ; 

FROM SYSTEM IMPORT WORD; 
FROM SISystem IMPORT BYTE, SIResult; 

TYPE StreamType (textStream, binaryStream) ; 
StreamMode = (inputStream, outputStream); 
Stream; 

PROCEDURE ConnectStream (VAR s: Stream; 
VAR fileName : ARRAY OF CHAR; 
type: StreamType; mode: StreamMode ; 
VAR result: SIResult); 

PROCEDURE DisconnectStream (VAR s : Stream; VAR result : SIResult); 

PROCEDURE EndOfStream (s : Stream; VAR eos: BOOLEAN; 
VAR result: SIResult) ; 



• 

r 

17 

PROCEDURE SRead (s: Stream; VAR ch : CHAR; VAR result : SIResult); 

PROCEDURE SReadString (s: Stream; VAR string : ARRAY OF CHAR; 
VAR result: SIResult); 

PROCEDURE SReadRecord (s : Stream; VAR record: ARRAY OF WORD; 
VAR result: SIResult); 

PROCEDURE SReadByte (s: Stream; VAR byte: BYTE; 
VAR result : SIResult); 

PROCEDURE SWrite (s : Stream; ch: CHAR ; VAR result: SIResult); 

PROCEDURE SWriteString (s: Stream; VAR string: ARRAY OF CHAR; 
VAR result: SIResult); 

PROCEDURE SWriteLine (s: Stream; VAR result: SIResult); 

PROCEDURE SWriteRecord (s: Stream; VAR record : ARRAY OF WORD; 
VAR result : SIResult); 

PROCEDURE SWriteByte (s: Stream; byte: BYTE; VAR result : SIResult) ; 

END SIStreams. 



• 

utilities 

SIMathLib 
SISets 
SIFiles 
SINumberiO 
SIConversions 
SIStrings 

kernel 

low level part 

SIPacking 
SIMemory 
SISystem 

18 

OSSI 

110 

SITerminal 
SIStreams 
SIRandomi O 
SIBlockiO 

optional part 

SIGraphicWindows 
SITextWindows 
SIWindows 

SIFu l lScreen 

SIMenu 

SICursor 

Fig. 1: module structure of the OSSI library 


