
Fast Constructive-Solid Geometry Display
in the Pixel-Powers Graphics System ·

Technical Report 86-003

January, 1986

Jack Gold(ea.tber, Je!I P. M.
Hultquist and Henry Fucbs

The University of North Carolina at Chapel Hill
Department of Computer Science
New West Hall 035 A
Chapel Hill. N.C. 27514

Submitted for PublieatioD

Fast Constructive-Solid Geometry Display
In the Pixel-Powers Graphics System

Jack Goldfeather
Carleton College, Northfield, MN

Jeff P.M. Hultquist
Henry Fuchs

University of North Carolina at Chapel Hill

ABSTRACT

We present two algorithms for the display of CSG-defined objects on Pixel-Powers, an extension of the

Pixel-Planes logic-enhanced memory architecture, which calculates for each and every pixel on the screen (in

parallel) the value of any quadratic function in the screen coordinates (x,y). The first algorithm restructures

any CSG tree into an equivalent, but possibly larger, tree whose display can be achieved by the second

algorithm. This second algorithm traverses the restructured tree and generates quadratic coefficients and

opcodes for Pixel-Powers. These opcodes instruct Pixel-Powers to generate the boundaries of primitives

and perform set operations using the standard Z..bulfer algorithm. Although we have not yet needed to

invoke the restructuring algorithm, since all the CSG trees we have analyzed so far have turned out to be

"simply-structured" already, the restructuring algorithm may also be useful for other systems that wish to

guarantee the display, with limited pixel storage, of a.ny pOt!sible CSG tree.

Several externally-supplied CSG data sets have been processed with the new tree-traversal algorithm

and an associated Pixel-Powers simulator. The resulting images indicate that good results ca.n be obtained

very rapidly with the new !!Yl'tem. For example, the commonly ued Meeserschmitt bracket [Okino 85] with

24 primitives is translated into approximately 1900 quadratic coefficients. On a Pixel-Powers system running

at lOMHz (the speed at which our current Pixel-Planes memories run), the image should be rendered in

about 7.5 milliseconds.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 1

I. Introduction

We are designing a graphics system called Pixel-Powers, which enhances the Pixe1-Planes system !Fuchs

85] [Poult 85] by replacing the multiplier tree that evaluated linear expressions by one that evaluates quadratic

expressions !Goldf 86]. This quadratic expression evaluator (QEE) is used to evaluate expressions of the form

Ax'+ Bzy+ O"lf + Dx + Ey + F simultaneously for each pixel (x,y) on the screen. We estimate that the

QEE will calculate bit-sequentially a SO bit value of this expression for each and every pixel on the screen

in under 4 microseconds. The speed at which Pixel-Powers can render convex polyhedra, as well as smooth

shaded cylinders, cones, and ellipsoids, has led us to explore the possibilities of using Pixel-Powers for real

time rendering of smooth .. haded CSG objects constructed from quadratic primitives. A Constructive Solid

Geometry (CSG) object is defined by starting with a set of solid primitives and constructing a binary tree

in which the leaves are primitives and the non-leaf nodes are set operations. The CSG object is constructed

recursively by performing the set operation on the objects defined by the left and right subtrees. {Requi 80]

In this paper we describe a general method for displaying any CSG object using a frame buffer .that is

128 bite deep. Our method dilfers from other CSG display methods fAther 83) in that we compute on the fly

the boundary representation of each primitive in terms of the viewpoint. While this can be a disadvantage

in some systems, we will show how it can be implemented efllcient)y in Pixel-Powers by making use of the

quadratic expression evaluator and the general parallelism of the system. In particular, we will describe an

algorithm for fast rendering of smooth-shaded CSG objects based on quadratic primitives. Our approach,

parallel on all pixels but processing CSG primitives sequentially, contrasts with another system by Kedem

[Kedem 84] that allocates a processing element for each primitive and renders the images sequentially by

pixel in raster-sean order.

Just as in the development of the Pixel-Planes system, we have implemented software simulators that

enable us to develop display algorithms before the actual chip is completely designed a.nd committed to

silicon. All of the images in this paper are from the Pixel-Powers simulator.

Goldfeather, Hultquist, Fuchs: Faot CSG Display in Pixel,. Powers- page 2

n. A Simple Example

In this section we describe a method for displaying any CSG object with the aid of a. deep frame buffer.

The present working Pixel-Planes syatem has a 72 bit deep frame buffer. A Pixel-Powers system with a depth

of 128 bits was our model when we were analyzing the problem, but there is no reason that the a.lgorithm

could be implemented in any computer with a deep frame buffer. The memory requirements are (figures

l(a), l{b), and 1(c):

(a) Two depth buffers: ZTEMP and ZMIN (20..30 bits each)

(b) Three ftag registers: Fl, F2, and F3 (one bit each)

(c) One Color buffer: COLOR {24 bits) (If double buffering is desired

two color buffers are needed)

We defer until Section ill and V the discussion of the particular Pixel-Powers implementation of these

algorithms for CSG objects defined with convex primitive solids whose boundary surfaces can be defined

using quadratic and/or linear equations in x,y, and z (e.g. cylinders, ellipsoids, and cones). In this section

we outline a general method of display that will work for any set of convex primitives and any display system

that can do both of the following:

(a) Scan convert front and back facing surfaces of each primitive in screen space. That is, a llag F at

each pixel can be set to 1 if it is inside the region on the screen determined by the projection of the surface

on the screen. Note that the front and back face of a aurface depends on the viewpoint. In this paper,

the front surface of a cylinder consists of all points on the cylinder surface (including the ends) which face

toward the viewer.

(b) Calculate and store in each pixel me,mory with F=l the depth and color values of the front or back

facing surfaces of a primitive.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers -page 3

In Section In, a general a.lgorithm is derived b ... ed only on the ""sumptions (a) and (b) above. We

illustrate the ide"" behind this algorithm by examining the simple cases of union, difference, and intersection

of two cylinders.

D. a. Cylinderl U Cylinder2

This is displayed by applying the standard Z-buffer a.lgorithm. H Front(obj) denotes the (viewpoint

dependent) visible part of the surface of an object, then Front(Cylinderl} will, in general, be the visible

part of the curved portion of the cylinder together with one of the two planar ends (figure 2(a)}. We begin

by calculating the Z values and color values of Front(Cylinderl) and storing them in ZMIN and COLOR.

Because later in this paper we will be decomposing more complicated objects into unions of simpler ones,

we will describe carefully now how Cylinder2 is added to the partial image:

Step 1: At each pixel, set the flag Fl ii it is inside the region determined by Front(Cylinder2), and

dear it otherwise (figure 2(a.)).

Step 2: Calculate and store Z values for Front(Cylinder2} in ZTEMP.

Step 3: For each pixel with Fl set, compare ZTEMP to ZMIN and if ZTEMP > ZMIN then dear Fl.

Step 4: For each pixel with Fl still set, replace the contents of COLOR with the color of Cylinder2

(ligures 2(b) and 2(c)).

Note that this algorithm does not depend on the nnioned objects being primitive. As long as scan

conversion, depth values, and colors ean be calculated, any objects ean be unloned together by this simple

method. This same technique of composing objects with •-buffers has been used in many previous systems.

Goldfeather, Hultquist, Fuehs: Fast CSG Display in Pixel-Powers -page <l

II. b. Cylinderl- Cylinder2

This can be displayed by first recognising that its image is identical to the image of (Front(Cylinderl J

Cylinder2) U (Back(Cylinder2) n Cylinder!). The general algorithm for generating ouch decompositions is

described in Section IV. AB we saw in the union process above, it suffices to generate the first term in the

union and then add the second term to this partial image. The first term, Front(Cylinder1)- Cylinder2 is

generated as follows:

Step 1: Set Fl for all pixels inside the projection of Cylinderl onto the screen (figure 3(a)).

Step 2: Store the depth of Front(Cylinderl) in ZTEMP for pixels at which Fl is set.

Step 3: Clear Flat any pixel which is inside Cylinder2. A pixel (x,y) is inside Cylinder2 if its ZTEMP

lies between the Z values of Front(Cylinder2) and Back(Cy/inder2) (figure 3(h)). What now remains is

the front boundary of the first cylinder.

Step 4: We now tranafer the value of ZTEMP to ZMIN for each pixel at which Fl is set. For these

same pixels, we update the contents of COLOR with the color of the Front(Cylinder1) at that location.

This completes the display of Front(Cy/inder1)-Cylinder2. Next we a.dd Back(Cylinder2)nCylinder1

to this partial image.

Step 5: Set Fl for all pixels inside the projection of Oylinder2 on the screen (figure 3(d)).

Step 6: Store the depth of Back(Cylinder2) in ZTEMP for those pixels in which Fl is set.

Step '1: Clear Fl for all pixels which are outside Cylinder!. These are the pixels for which ZTEMP does

not lie between the eorresponding values of Front(Cylinder!) and Back(C!!linder1). What now remains

are the pixels which display th<> back wall of the hole whleh Cylinder2 bores into Cylinder! (figure S(e)).

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 5

Step 8: For th- pixels, we clear Fl if ZTEMP > ZMIN. We now transfer the value of ZTEMP to

ZMIN for "ach pixel at which Fl rema.in.B set. For these same pixels, we npda.te the contents of .COLOR

with the color of the Bacle(Cylinder2) a.t that location (figure 3(f)).

ll.c. Oylinder1 n Cylinder2

This can be decomposed into (Front(Cylinderl) n Cylinder2) u (Front(Cylinder2) n Cylinderl). The

terms in this union are generated in a ma.nner similar to the terms in the decomposition of the difference of

the cylinders.

This procedure generalises for arbitrary objects defined by CSG trees. The basic idea is that an arbitrary

CSG tree ca.n be quickly modified so tha.t nothing more complicated tha.n a. primitive is ever removed from or

intersected with the object that is crea.ted by traversing the CSG tree. However, before describing in Section

IV how this is done, we wa.nt to outline how the display algorithm can be implemented in Pixel-Powers.

m. The Example Implemented with Pixel-Powers

We will see in the following sections that this method is particularly llllitable for implementation in

a machine such as PixeJ,.Powers that has a small fixed amount of memory at each pixel. The dramatic

speed in Pixel-Powers is due in large part to the Quadratic Expreasion Evaluator which evalua.tes quadratic

expressions in x andy simultaneously at each pixel The architecture of this Evaluator is more fully described

in !Goldf 86]. For the purposes of this discuasion, it is sufficient assert that the Pixel-Powers system will

consist of a enhanced frame buffer memory. Each pixel is loeated at a leaf of the Evaluator, which receives

the coefficients A,B,C,D,E,F as input and evaluates the expression Q(x, y) = Ax'+B:ty+Clf+Dx+Ey+F.

The speed of Pixel-Powers is due in large part to the fact that this calculation is done simultaneously at each

pixel when the coefficients are broadcast to the system. One bit of the function value is calculated for each

and every pixel at each clock cycle. As with the current Pixel-Planes chips in 8 micron nMOS, we expect

a 100 Jl8 clock cycle. Each pixel will have a eingle-bit ALU and 128-hits of randomly-addreasable memory.

This memory is also scanned out by the video controller.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 6

For the particular algorithms described here, the memory ill logically configured into ZMIN, ZTEMP,

and COLOR registers, and also one-bit flags Fl, F2, and F3. The Host processes the CSG tree to produce a

eequence of instructions that drive the Evaluator and the AL Us. All geometric tra.nsformations and clipping

are ca.leulated in the host as well as the translating of the information in the CSG tree into the sequence of .

opcodeo and the quadratic equations for the Evaluator (figure 4).

II:

In thio section, we will describe a way to implement in Pixel-Powers the basic operations listed in Section

(l) Sean conversion of primitives

(2) Computation of depth values

(3) Determination of "inside• or "outside" of a primitive.

(4.) Calculation of color

We illustrate the procedure with part of the proceeding example: Front(Ourved part of Oylinderl)

Oylinder2. We omit the calculations involving the end of the cylinder as they are sim.Uar. (figure 5).

Step 1: Scan Conversion

We begin by writing the equations of the bounding curves of Front(Oylinderl) in oereen coordinates,

(x,y), (figure S(a)). The two elliptical ends are defined by quadratieequations Q1 (z, y) = 0 and Q2(z, y) = 0.

The lines of intersection of the front facing and back facing surfaces have linear equations L1 (z, y) = 0 and

~(z,y) = 0. In addition, the lines Ls and Lt indicated in figure 5(a) have linear equations Ls{x,y) = 0

and L,(x,y) = 0. We combine L1 and~ to create the quadratic equation Q(x,y) = L1 (z, y)L;(z,y) = 0,

and we combine Ls and Lt to create the quadratic equation Q3(z, y) = Ls(x, y)L4 (z, y) = 0.

Each of the curves Q, Q1 , q,, Q3 separate the plane into pieces and a pixel can determine which piece

it is in by simply cheddng the sign of Q(z, y), Q1 (:t, y), etc. Different choices of the coefficients will produce

different signs for these expressions, so the selection must be made to conform to the signs indicated in figure

Goldfeather, Hultquist, FUchs: Fast CSG Display in Pixel-Powers -page 7

5(a). The Host computes the coefficient sets for each of the four quadratic curves and broadcasts them to

the quadratic expression evaluator. Three one-bit l!ags are used to enable or disable pixels according to the

sign of the evaluated expression at that location.

The specific sequence in our example is:

(a) Clear l!a.gs Fl, F2, and F3 everywhere.

(b) For each pixel (x,y): set Fl if Q3(x, y) > 0, and set F2 if Q1 (:r, y) > 0. Replace Fl by Fl AND F2

(figures S(b) and 5(c)).

(c) For each pixel (x,y): set F3 if Q,(z, y) < 0. Replace Fl by Fl OR F3 (figures 5(d) and 5(e)).

(d) For each pixel (x,y): Set Fl if Q(x, y) < 0 (figure 5(f)).

Note that this scan conversion process nquires that the coefficient sets for Q, Q1 , Q2 , and Q3 be

broadcast only once each.

Step 2: Z-Buffer

The equation of Front(curved part of Cylinder!) when solved for 1 is of the form z = L- ytj, where L

is linear and Q is quadratic in x and y. The function Q is the same one from step 1. Since the QEE cannot

directly evaluate square roots, an apprOJdmation to ,fQ must be made. This approximation is of the form

s + tQ whOl"< s and t are constants, and we replace z = L- ,fQ by Zappro:r = L- s- tQ which is quadratic

in (x,y). By choosing s and t carefully, this approximation is very accurate in strips of the scan converted

region ofthe kind ii!Ulltrated in figure 6(a.). Gecmetrically, the surface with equation Zo.pproz = L- s- tQ

is a •parabolic• cylinder and figure 6(b) ii!Ulltrates how it passes near to the actual cylinder surface. The

magnitude of the error tolerance determines the size of the strips in which the approximation is within this

tolerance.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 8

We begin by choosing a.n error tolerance for the Z approximation. The Host determines the number of

strips needed to guarantee this accuracy across the entire scan converted region (figure 6(c)). The constants

• and t are computed for each such strip pair. Geometrically, the set of parabolic cylinders (one for each

(s,t}) forms an •envelope" of the actual cylinder (figure 6(d)). Further, as indicated in figure 6(d), for ea.ch

(x,y), the largest Zapprox is the one that best approximates the actual Z for that pixel (x,y). The Host

limply broadcasts the coefficients for all of the parabolic cylinder approximations and each pixel (x,y) saves

in ZTEMP the largest Zapprox for that pixel. Note that for back facing surfaces, the pixel saves the smallest

Zapprox.

It might seem that many strips are needed to guarantee reasonable accuracy, but in many images that

we have generated using the functional simulator, a high degree of accuracy can be achieved with a small

number of strips (1 to 8). The precise number of strips depsnds on the size of the object in screen space.

Thiz small number is due to the fact that we are in effect approximating a curved surface by another curved

surface, so that we do not need nearly as many subdivisions as would he necessary if we were approximating

a curved surface with polygons (figure 6(b)).

Step 3: Subtracting Cylinder2

From section I we saw that we must determine a way to decide if a point is inside or outside of this

cylinder. This ean be accomplished by using the same parabolic envelope method of step 2. Specifically:

(a) Subdivide aylind<r2 into strips for acelll'ate Z calcnlation as in Step 2. Compute the quadratic

expression Q; that represent the parabolic cylinder approximations for these strips.

(b) Set F2 at each pixel. For each parabolic cylinder, a,, broadcast the coefficients of Q; and clear F2

if the ZTEMP .tored at the pixel (x,y) is less than Q;(z,y) if a, is front facing or if ZTEMP > Q;(x, y)

and a; is hack facing (figure 6(c)).

(c) Only thoee pixels with both Fl and F2 still set are inside aylindtr2. Replace Fl with (Fl xor F2).

Goldfeather, Hultquist, Fuchs: Fast CSG Displa,y in Pixel-Powers- page 9

Step .£: Shading

If we compute the exact dill'use shade at (x,y) using the unit normal to the surface then the expression

we have to evaluate is of the form &hade(z,u) = (L + ..ftJ)/v'W where Lis linear, Q io quadratic in x,y

and W is a relatively complicated expression in x and y that comes from turning an arbitrary normal to the

ourface into a unit vector. We approximate the numerator as in the Z buffer step except that we only use

a single parabolic cylinder for Q • We approximate the denominator by a single constant. Although these

approximations may seem coarse, the effect is smooth shaded.

IV. The Algorithm

In this section we describe a method for transforming any CSG tree into an equivalent one that is a

union of simpler subtrees [Sato 85]. We will then describe how each of these simple subtrees can be displayed

by further dividing them into the union of pieces which can be displayed by starting with the boundary

of a primitive and paring it with other primitives. This transformation and display process builds up the

image without the use of large amounts of intermediate information stored at each pixel. This method is

particularly appropriate for a system like Pixel-Powers because of the limited memory available at each pixel.

There are two major difficulties with trying to display arbitrary CSG trees without any transformation.

First, the paring part, that is, the piece that is subtracted or intersected with a previously constructed piece,

might be complicated. In particular, it might be hard to determine the inside or outside in an efficient

manner. Second, paring may reveal parts of a.n object previously obscured. Both of these difficulties can be

overcome by the transformation process that restructures th~ CSG tree into a.n equivalent one in which the

paring objects are always primitives.

The transformation produces a new tree which we call a normal form for the tree which has the properties

(i) at every node where there is an intersection or difference the right branch is primitive, and (ii) no node

whore there is a union is on a path from a dill'erence or intersection. This new tree can be broken into simpler

subtrees that are unioned together. Although the transformation process may increase the size of the tree,

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers - page 10

each of the simple subtrees can be displayed with a minimum of calculation and merged into a single image

using the union process described in Section II. The simple subtrees are of the form:

Xoop,X,op, ... opkXk

where each X; is a. primitive, op; is either - or n, and the a.bsence of parentheses indicates that a.ssociation

is from left to right. A normal form for a CSG tree is crea.ted using the 8 bal!ic equivalences in figure 7

together with the following recursive algorithm:

procedure redo(T)

begin

if T does not have any of the patterns in figure 7(I)

then return T

end;

else

begin

restructure Tusing equivalent pattern in figure 7(II);

return newT

end

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 11

•

procedure Normalize (T);

begin

:redo (T);

case (T.type) of begin

primitive:

u

return T;

Ncrmali~e (T.L);

llc:rmalize (T .R)

-,n :

vhile (T.type ¥primitive or (T 'FU) or (T.R.type ¥primitive)

end;

end;

redo (T);

Normalize (T.R);

Normalize (T.L);

redo(T);

Figure 8 illustraies the nonnalization process.

Once the tree has been normalized, the problem of display is reduced to that of simple trees. Let D(X),

D1 (X), and Db(X) denote the boundary of a solid X, the front-facing bonndary of X, and the back-facing

bonndary of X, respectively. In order to display a solid X it suffices, of course, to display D(X). We are left

then with the problem of displaying

D(Xoop1X1of>2 •.. op•X•)

In order to derive the general display algorithm, it is necessary to know how the CSG operations interact

with the boundary operators D, Df> and Db.

Goldfeather, Hnltquist, Fuchs: Fast CSG Display in Pixel-Powers- page 12

Theorem 1: From the point of view of 2-D display:

(a} D(X) = D1 (X)

(h) D(XUY) = Df(X) uD1Y

(c) D(X n Y) = (D1(X) n Y) U (D1(Y) n X)

(d) D(X- Y) = (D1(X)- Y) U (Db(Y) n X)

For example, if we wa.nt to display the simple tree A-B-C, we apply Theorem l(d) twice and use the set

identity X n (Y - Z) = X n Y - Z :

D(A-B-0)=

= (D1 (A- B)- C) U (Db(C) n (A- B))

by applying Theorem l(d) with X= A-Band Y = 0

= (D1(A)- B- C) u (D.(B) nz- C) u (D.(C) nA-B)

by applying Theorem l(d) again and using the above set identity.

The terms in the union are generated one at a time and merged into the partial object being built up.

The fint term is generated by storing D1(X) and paring it down with the objects Y and Z. This is essentially

how the example in Section 1 was done. The other terms are generated similarly.

We will adopt the convention that there is a.n operator opo equal to n preceding Xo in the simple tree

XooplXlCJP2···0PoXo and define for each i = 0, ... , lo:

D(X·) _ {D,(X),
• - D.(X),

Then we can apply the theorem recursively to obtain:

if op; = n
if op; = -

The individual terms in this union are displayed as in the example in Section I. To summarise, the nor

malisation process that reduces an arbitrary CSG tree to a union of simple trees together with the further

Goldfeather, Hultquist, Fuchs: Fast CSG Display in PixeJ,.Powen- page 13

subdivision using Theorem 2 produces a decomposition that a.Jlows images to be drawn without sending any

thing more complicated than a primitive to the oystem. This is essential for grapltics systems with limited

frame buffer memory.

V. Implementation on Pixel-Powers

In this section, we apply the general results from Section IV to implement the display algorithm in

Pixel-Powers. The following pseudo-code outlines the general procedure for rendering an arbitrary CSG

object T with Pixel-Powers. Basica.Jly T ill first restructured into "normal" form, then each of its "simple'

subtrees is rendered separately, then combined into the partial object that is built up by a succession of union

operations. Each simple tree is traversed and built up a single primitive at a time. Each primitive is built

by scan-converting it and subtracting the appropriate parts of it. (The section numbers in the comments

refer to areas of this paper which describe that part of the procedure.)

procedure displayCSG (T)

begin

normalize (T); Section IV

for each simple subtree in normal form of T

for each primitive X in the simple subtree

Use the QEE to turn off pixels which are outside of the projection

of Dp(X) on the screen(Fl eet inside region); III, Step 1

Subdivide the sean converted region into strips and use the QEE to

compute Z values of parabolic approximations; III, S~p e

Store appropriate value in ZTEMP;

for each additional primitive Y in simple subtree

Subdivide D,(Y) end D~(Y) into subregions; II a.

Compute the parabolic approximations for these subregions;

Set F2 everywhere;

Case (op preceding Y) of begin III, Sup 8

-: Turn off F2 for pixels inside envelope of approximating surfaces;

Coldfeather, Hultquist, Fuchs: Fast CSC Display in Pixel-Powers -·- page 14

end

n: Turn off F2 for pixels outside envelope;

endj

Disable Pixels for which ZMIN <ZTEMP; II, Step 8

Replace ZMIN by ZTEMP for ENABLED pixels;

Compute shade for Enabled pixels; III, Step -1

Add to partially built image using Z-bnffer; IV, paragraph 9

Results

We have implemented (in C on a VAX-11/780 running 4.2bsd UNJX) and show results here of 1) a

tree traverser that processes a union of "simple" trees and generates opcodes and quadratic coefficients to a

Pixel-Powers memory system, and 2) a simulator for a Pixel-Powers memory system that accepts opcodes

and quadratic coefficients and generates for each pixel the various image buffer-related values (r,g,b, z, flags,

etc.) for display on a. conventional raster screen. This set of software modules was exercised with externally

supplied data sets from the US Army Ballistic Research Laboratory (by Paul Stay and Paul Deitz) and

Hokkaido University [Okino 84].

We have been surprised to nnd no need yet for the CSG restructuring algorithm, so we have not as

yet implemented it. Of the handful of data sets we have received we have found none yet whoS<! CSG tree

needed to be restructured before processing for Pixel-Powers. That is, all the trees were already "simple"

according to the dennition described in Section IV above. Thus the tree traverser could process all of these

data sets directly and generate opcodee and coefficients for Pixel-Powers.

We ran the tree traverser on the various data sets and ran the Pixel-Powers simalator on the output from

the tree traverser. Table 1 gives, for various da.ta sets, the number of Pixel-Powers operations generated

by the tree traversal process a.nd the estimated time for Pixel-Powers to generate the images from these

data. 1ets thown in the photographs. It is important to note when considering these results, however, that

the estimated image generation times given in the table are for the lOMlli Pixel-Powers logic-enhanced

Goldfea.ther, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 15

memories themselves. It is umed that the rest, of the system, the •front end" (the viewing transformation

engine and the tree traverser) can run fast enough to keep up with the lOMHz Pixel-Powers memories. We

hope to achieve this by trll.llllferring the implementation to our fast arithmetic processoi'S, which are Mercury

Systems ZIP 3232s.

Table 1: Estimated Image Generation Time

Part Name Source Primitives Opcodes Equations Time

Union local 2 54 4.6 .19 msec

Diff local 2 182 170 .68

Int local 2 178 170 .68

Tube Okino 11 1205 1065 4..3

Cut Tube Okino 12 1969 1733 7.0

MBB Okino 24 2139 1854 7.5

Tie Rod BRL 17 2660 2309 9.3

Future Work

We hope to implement a Pixel-Powers system in stages by enhancing the next generation Pixel-Planes

chips and by casting much of the CSG tree traverser into microcode for our fast arithmetic processors. The

enhancement to the Pixel-Planes chips involves substituting the Quadratic Expression Evaluator tree for the

current Linear Expression Evaluation tree and likely increasing the memory per chip from the 72 bits in the

present nMOS Pixel-Planes chips to 128 bits.

\

We also hope to develop more aophistieated algorithms for CSG-defined objects: algorithms for gener

ating shadows and algorithms for more rapidly calculating shadings on curved surfaces according to more

aophisticated lighting models such u the popalar one due to Phong. We also hope to develop techniques

for rendering higher order surfaces nch as cubk patches. Already two approaches for this are evident: the

quadratic expression evaluator on the memory chip could be expanded into a cubic expression evaluator (we

can already see how to do this, but the size would be enormous) or we can approximate each of the cubic

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 16

curves by combination of many quadratic curves. We also plan to implement with the CSG restructuring

algorithm the well-known *bounding-box• techniques to trim the restructllted tree to the smallest possible

size. For example A-B when their bounding boxes do not intersect become A.

Summary

We have shown that CSG-defined objects can be efficiently rendered in a logic-enhanced frame buffer

memory with fast quadratic expression evaluation for each pixel. Such rendering can be efficiently generated

by first restructllting the tree, if necessary, into a union of simple trees and then traversing these trees to

generate a sequence of quadratic coefficients and operation codes for the logic-enhanced memories. Resulting

images from a software implementation of the tree traverser and display simulator illustrate the methods

and allow estimation of its speed with an expected hardware implementation. The method's speed promises

real.time interactions for quite complex CSG-defined objects and the ability to handle objects of arbitrary

complexity by building up the image during the travenal of the CSG tree.

Acknowledgements

We thank the other members of the Pixel-Planes team - particularly John Poulton, John Eyles, John

Austin, and Wayne Dettloff- for stimulating discussions and suggestions. We thank John Eyles also for

developing a detailed logic-level simulator of the Quadratic Expression Evaluator and improving the QEE

design in the process.

We also wish to thank our colleagues who graciously sent us CSG data sets: Paul Stay and Paul Deitz

of the US Army Ballistic Research Laboratory and Professor Ari Requicha, Director of the Production

Automation Project at the University of Rochester. Testing our algorithms on these externally-supplied

dab. aets considerably increased our confidence in the algorithms and their implementations. Also we thank

Norio Okino and his colleagues for publishing their data. Finally, we thank Mary Hultquist for her help with

$he photographs, figures, and text.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Plxel-Powers- page l'f

Bibliography

Atherton, P.R., • A Scan-line Hidden Surface Removal Procedure for Constructive Solid Geometry" Computer

Graphic•, Vol. 17, No. 3, pp. 73-82, 1983. (Proceedings of SIGGRAPH '83)

Fuchs, H., J. Goldfeather, J.P. Hultquist, S. Spach, J.D. Austin, F.P. Brooks, Jr., J.G. Eyles, aud J.Poulton.

•Fast Spheres, Textures, Transparencies, and Image Enhancements in Pixel-Planes" Oomp!tter Graphics,

Vol. 19, No. 3, pp. 111-120, 1985. (Proceedings of SIGGRAPH '85)

Go!dfeather, J., H. Fuchs. "Quadratic Surface Rendering on a Logic-Enhanced Frame-Buffer Memory• IEEE

Computer Graphic• and Applications, pp. 48-59, January, 1986.

Kedem, G., J.L. Ellis. "Computer Structures for Curve-Solid Classification in Geometric Modelling" Tech

nical Report TR84-37, Microelectronic Center of North Carolina, Research Triangle Park, N.C., 1984.

Okino, N., Y. Ka.kazu, M. Morimoto. "Extended Depth Buffer Algorithms for Hidden Surface Visualization"

IEEE Computer Graphica and Applications, pp. 79-88, May, 1984.

Poulton, J., H. Fuchs, J.D. AllStin, J.G. Eyles, J. Heinecke, C. Hsieh, J. Goldfeather, J.P. Hultquist, and S.

Spach. "PIXEL-PLANES: Building a VLSI Based Raster Graphics System• Proceedings of !he 1985 Chapel

Hill Ccnference on VLSI

Requicha, A.A.G. "Representation for Rigid Objects: Theory, Methods, and Systems• ACM Computing

Surveys, Vol. 12, No. 4, Dec. 1980, pp. 437-464.

Sato, H., H. Iahihata, M. Ishii, M. Ka.kimoto, K. Sato, K. Hirota, M. Ikesaka., K. lnoue. "Fast Image

Generation of Constructive Solid Geometry Using A Cellular Array Processor" Computer Graphics, Vol. 19,

No. 3, pp. 95-102, 1985. (Proceedings of SIGGRAPH '85)

(end)

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 18

0000
00
0

0
00

0000
00

Figure 1a: Flag Buffers (three)

Temp

Agum 2a

F,.o

1'"'11<11'8 3a

Temp

Figure 3d

FigUre 1b: Oopth Buffers (two) Figure 1c: Color Buffo"' (two)

Old Partial Ol>joel New Partial Object

Figure 2b Agure 2c

Figure 2: Adding to Partiallmagos

8
F,.o

F1=0

F"oguno 3b Rgum 3c

~
F•..O

Flguno 3a F~~~Um 31

1\
B
c·
0
e
F

coefficients
(bil-serial)

Figure Sa

Rgure 5d

mom address& control------------,

1 op codes ---------,* t

Figure 4: Conceptual organization of Pixel-Powers memory chip

FigureSb

Figure Se

Figure Sc

Figure 51

to!trom
video controller

L

L

z z~L- .Ja

Figure 6a Figure 6b

Figure 6c Figure 6d

I rr I II

(a) -- (e) -

Y Z X Y Y Z X Y

(b) -- --

Y Z X Y X Z Y Z X Y X Z

(g)

(c) --

Y Z X Y X y X Z Y Z

(d) (h)

--
Y ZX Y X Z X Y X Z Y Z

Figure 7: restructuring operations (U• union, n= intersection)

w v

w v

X-(Yn(Z-(W-V))=X-Y u X-Z u XnW-V

Display X - Y as (FX - Y) u (BY n X)

X-Z as (FX-Z) u (BZ n X)

w v

X W

X n W - V as (FX n W - V) u (FW n X - V) u (BV n X n W)

Figure 8: An example of the tree restructuring ("normalization") process
(U= union; n= intersection; Bx = Back of x; Fx = Front of x)

MBB ,.

I Tie Rod

I Tube I

I Cut Tube

Union

•

j Difference

Intersection

