Fast Constructive-Solid Geometry Display -
in the Pixel-Powers Graphics System -

Technical Report 86-003
January, 1986

Jack Goldfeather, Jeff P. M.
Hultquist and Henry Fuchs

The University of North Carofina at Chapel Hill
Department of Computer Science

New West Hall 035 A

Chapel Hill. N.C. 27514 T

Submitted for Publication

Fast Constructive-Solid Geometry Digplay
in the Pixel-Powers Graphics System

Jack Gloldfeather
Carleton College, Northfield, MN

Jeff P.M. Hultquist
Henry Fuche
University of North Carclina at Chapel Hill

ABSTRACT

We present two algorithms for the display of C8G-defined objects on Pixel-Powers, an extension of the
Pixel-Planes logic-enhanced memory architecture, which calculates for each and every pixel on the screen (in
parallel] the value of any quadratic function in the screen coordinates (x,y}. The first algorithm restructures
any C3{ tree intc an equivalent, but possibly larger, tree whose display can be achieved by the second
algorithm. This second algorithm traverses the restructured tree and generates quadratic coefficients and
opcodes for Pixel-Powers. These opcodes instruct Pixel-Powers to generate the boundaries of primitives
and perform set operations using the standard Z-buﬁ’ér algorithm. Although we have not yet needed to
invoke the restructuring algorithm, since all the CSG trees we have analyzed so far have turned out to be
“gsimply-structured” already, the restructuring algorithm may also be useful for other systems that wish to

guarantee the display, with limited pixel storage, of any possible C8G tree.

Several externally-supplied CSG data sete have been proceased with the new tree-traversal algorithm
and an associated Pixel-Powers simuiator. The resulting images indicate that good results can be obtained
very rapidly with the new system. For example, the commonly used Messerschmitt bracket [Okino 85] with
24 primitives is translated into approximately 1900 quadratic coefficients. On :;. Pixel-Powers system running
at 10MHz {the speed at which our current Pixel-Planes memories run), the image should be rendered in

about 7.5 millizeconds.

Goldfeather, Hultquiat, Fuchs: Fast CSG Display in Pixel-Powers «— page 1

I. Introduction

We are designing a graphics system called Pixel-Powers, which enhances the Pixel-Planes system [Fuchs
85] [Poult 85] by replacing the multiplier tree that evaluated linear expressions by one that evaluates quadratic
expressions [Goldf 86]. This quadratic expression evaluator (QEE) is nsed to evaluate expressions of the form
Az? + By + Cy? + Dz + Ey + F simultaneously for each pixel (x,y} on the screen. We estimate that the
QEE will calculate bit-sequentially a 30 bit value of this expression for each and every pixel on the screen
In under {4 microseconds. The speed at which Pixel-Powers can render ¢convex polyhedrs, as well as smooth-
ghaded cylinders, cones, and ellipacids, has led us to explore the possibilities of nsing Pixel-Powers for real-
time rendering of amooth-shaded OSG objects constructed from guadratic primitives, A Constructive Solid
Geometry {CSG) object is defined by starting with a set of solid primitives and constructing a binary tree
in which the leaves are primitives and the non-leaf nodes are set eperations. The USG object is constructed

recursively by performing the set operation on the objects defined by the left and right subtrees. {Requi 80]

In this paper we describe a general method for displaying any CSG object using a frame buffer that is
128 bits deep. Cur method differs from other USG display methods [Ather 83) in that we compute on the fly
the boundary representation of each primitive in terms of the viewpoint. While this can be a disadvantage
in some systemas, we will show how it can be implemented efficiently in Pixel-Powers by making use of the
quadratic expression evaluator and the general parallelism of the system. In particular, we will describe an
algorithm for fast rendering of smooth-shaded CSG objects based on quadratic primitives. Our approach,
parallel on all pixels but processing OSG ﬁx'imitives sequentially, contrasts with another system by Kedem
[Kedem 84] that allocates a processing element for each primitive and renders the images sequentially by

pixel in raster-scan order.

Just as in the development of the Pixel-Planes system, we have implemented software simulators that
enabie us to develop display algorithms before the actual chip i= completely designed and commitied to

silicon. All of the images in this paper are from the Pixel-Powers simulator,

Goldfeather, Hultquist, Fuchs; Fast CSG Display in Pixel-Powers — page 2

I A Simple Example

In this section we describe a method For displaying any CSQ object with the aid of a deep frame buffer.
The present working Pixel-Planes system has a 72 bit deep frame buffer. A Pixel-Powers system with a depth
of 128 bits was our model when we were analysing the problem, but there is no reason that the algorithm
could be implemented in any computer with a deep frame buffer. The memory requirements are {figures

1{a}), 1{b), and 1{c}:

{2} Two depth buffers: ZTEMP and ZMIN {20-30 bitz each)
{b) Three flag registers: F1, F2, and F3 {one bit each)
{c} One Color buffer: COLOR {24 bits} {If double buffering is dezired

two color buffers are needed)

We defer unti] Section IH and V the discussion of the particular Pixel-Powers implementation of these
algorithma for C8G objects defined with convex primitive solids whose boundary surfaces can be defined
using quadratic and/or linear equations in x,y, and = {e.g. cylinders, ellipsoids, and cones). In this section
we outline a general method of diaplay that will work for any set of convex primitives and any display system

that can do both of the following:

(a) Bcan ‘convert front and back facing surfaces of each primitive in screen space. That is, a flag F at
each pixel can be set to 1 if it is inside the region on the screen determined by the projection of the surface
on the screen. Note that the front and back face of a surface depends on the viewpoint. In this paper,
the front surface of a cylinder consists of all points on the cylinder surface (including the ends) which face

toward the viewer.

(b} Calculate and store in each pixel memory with F==1 tke depih and color values of the front or back

facing surfaces of a primitive.

Goldfeather, Hultquist, Pechs: Fast CSG Display in Pixel-Powers — page 3

In Section III, a genera! algorithm is derived based only on the assumptions {a) and {(b] above. We
illustrate the ideas behind this algorithm by examining the simple cases of union, difference, and intersection

of two cylinders.
a. Cylinderl U Oylinder2

This iz displayed by applying the standard Z-buffer algorithm. K Front{ob;) denotes the {viewpoint
dependent) visible part of the surface of an object, then Front{Cylinderl} will, in general, be the visible
- part of the curved portion of the cylinder together with one of the two planar ends (figure 2(a)). We begin
by calculating the Z values and color values of Front{Cylinderl} and storing them in ZMIN and COLOR.
Becz;use later in this paper we will be decomposing more complicated objects into unions of simpler ones,

we will describe carefully now how Cylinder2 is added to the partial image:

Step 1: At each pixel, set the flag F1 if it is inside the region determined by Front(Cylinder2), and

clear it otherwise {figure 2(a)).
Step 2: Calculate and store Z values for Front{Cylinder2} in ZTEMP.
Step 3: For each pixel with F1 set, compare ZTEMP to ZMIN and if ZTEMP » ZMIN then clear F1.

Step 4: For each pixel with F1 still set, replace the contents of COLOR with the color of Cylinder2
(figures 2{b) and 2(c)).

Note that this algorithm does not depend on the unioned objecte being primitive. As long as scan

conversion, depth values, and colors can be calculated, any objects can be unioned together by this simple

method. This same technique of composing ohjects with s-buffers has been used in many previous systems.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 4

ILb, Cylinder} — Cylinder2

This can be displayed by first recognizing that itz image is identical to the image of [Front{Cylinderi) —
Cylinder2) U {Back{Cylinder2) 0 Cylinder1). The general algorithm for generating such decompositions is
described in Section IV. As we saw in the union process above, it suffices to generate the first term in the

union and then add the second term to this partial image. The first term, Front{Cylinder1} — Cylinder2 is

generated as follows:

Step I: Set F1 for all pixels inside the projection of Cylinderl onto the screen {figure 3(a}).

Step 2: Store the depth of Front{Cylinderl) in ZTEMP for pixels at which F1 is set.

Step 8: Clear F1 at any pixel which is inside Cylinder2. A pixel (x,y) ia inside Cylinder2 if its ZTEMP
Lies between the Z values of Frront{Cylinder2) and Back{Cylinder2) (figure 3(b})). What now remains is

the front boundary of the first cylinder.

Step 4: We now transfer the value of ZTEMP to ZMIN for each pixel at which F1 is set. For these

same pixels, we update the contents of COLOR with the color of the Front{Cylinder1) at that location,

This completes the display of Front(Cylinder1)—Cylinder2. Next we add Back(Cylinder2)nCylindert

to this partial image.
Step B: Set F1 for all pixels inside the projection of C{;lindarQ on the screen (figure 3(d)).
Step 6: Store the depth of Back(Cylinder2) in ZTEMP for those pixels in which F1 is set.
Step 7: Clear F1 for all pixels which are cutside Oylénderl. Theze are the pixels for which ZTEMP does

not lie between the corresponding values of Front{Cylinderl) and Back(CgIs‘ndari}'. What now remains

are the pixels which display the back wall of the hole which Cylinder2 bores into Cylinderl (figure 3(e)).

(Goldfeather, Hultquist, Fuchs: Fast OS¢ Display in Pixel-Powers — page 5

Step 8: For these pixels, we clear ¥1 if ZTEMP > ZMIN. We now transfer the value of ZTEMP to
ZMIN for each pixel at whick F1 remains set. For these same pixels, we npdate the contents of COLOR

with the color of the Back{Cylinder2) at that location {figure 3{f}).
Ilc. Cylinder1 N Cylinder2

This can be decomposed into {Front(Cylinderl) M Cylinder2) U (Front(Cylinder?) N Cylinder1). The
terms in this union are generated in a manner similar to the termns in the decomposition of the difference of

the cylinders,

This procedure generalives for arbitrary cbjects defined by CSG trees. The basic idea is that an arbitrary
CSG tree can be quickly modified =o that nothing more complicated than a primitive is ever removed from or
intersected with the object that is created by traversing the CSG tree. Bowever, before describing in Section

1V how this is done, we want to outline how the display algorithm can be implexﬁente& in Pixel-Powers.
I0l. The Example Implemented with Pixel-Powers

We will see in the following sections that this method is particularly suitable for implementation in
a machine such as PixelPowers that has 3 small fixed amount of memory at each pixel. The dramatic
speed in Pixel.Powers is due in large part to the Quadratic Expression Evaluator which evaluates quadratic
expressions in x and ¥ simultaneously at each pixel The architecture of this Evaluator is more fully described
in [Goldf 86]. For the purposes of this discussion, it is sefficient assert that the Pixel-Powers system will
coneist of a enhanced frame buffer memory. Each pixel is located at a leaf of the Evaluator, which receives
the coefficients A, B,C,D,E,F as input and evaluates the expression Q{z,y) = Az?+Bzy+Cy +Dx+ Ey+F.
The apeed_ of Pixel-Powers is due in large part to the fact that this calculation is done -simultazzeousiy at each
pixel when the coefficients are broadcast to the system. One bit of the function value is calculated for each
and every pixel at each clock cycle. As with the current Pixel-Planes chips in 3 micron nMOS, we expect
a 100 ns clock cycle. Each pixe] will have a single-bit ALU and 128-bits of randomly-addressable memory.

This memory is also scanned out by the video controller.

Goldfeather, Hultquizt, Fuchs: Fast C3G Display in PixelPowers - page 6

For the particular algorithms described here, the memory iz logically configured into ZMIN, ZTEMP,
and COLOR registers, and also one-bit Hags F1, F2, and F3. The Host processes the C8G tree to produce a
sequence of inatructions that drive the Evaluator and the ALUs. All geometric ¢ransformations and clipping
are calculated in the host as well as the translating of the information in the CSG tree into the sequence of

opendes and the quadratic equations for the Evaluator {figure 4).

In this section, we will deseribe a way to implement in Pixel-Powers the basic operations listed in Section

II:
1} Scan conversion of primitives

{

{(?2) Computation of depth values

{3} Determination of “inside” or “outside” of a primitive.
(

4) Calenlation of color

We illustrate the procedure with part of the preceeding example: Front{Curved part of Cylinderl) -

Cylinder2. We omit the calculations involving the end of the cylinder as they are similar, (figure 5},
Step 1: Scan Conversion

We begin by writing the equations of the bounding curves of Front(Cylinderl) in screen coordinates,
(x,y); (Bgure 5(a}). The two elliptical ends are defined by quadratic equations Q;{z,y) = 0 and Qz{z,y) = 0.
The lines of intersection of the front facing and back facing surfaces have linear equations L {z,y) = 0 and
Lz{z,y) = 0. In addition, the lines Ly and L, indicated in figure 5{a) have linear equations L3(z,y) = 0
and L4(z, 4} = 0. We combine Ly and Ly o create the quadratic equation Q{z,y) = Ly(z, ¥} La(z,y) = 0,

and we combine L3 and Ly to create the quadratic equation Qs{z, y) = Ls(z, y)Li{z,y) = 0.

- Each of the curves Q, Q1, Q2, Qs separate the plane into pieces and a pixel can determine which piece
it i in by simply checking the sign of Q{z, ¥}, Q1{z, ¢, etc. Different choices of the coefficients will produce

different signs for these expressions, so the selection must be made to conform to the signs indicated in figure

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers ~ page 7

5{a}. The Host computes the coefficient sets for each of the four quadratic curves and broadcasts them to
the quadratic expression evaluator. Three one-bit flags are used to enable or disable pixels according to the

sign of the evaluated expression at that Iocation.
The specific sequence in our example is:
{a) Clear flags F1, F2, and F3 everywhere.

(b} For each pixel {x,y): set F1if Q3(z,y) > 0, and set F2 if Q;(z,y) > 0. Replace F1 by F1 AND F2

{figures 5{b} and 5{c}}.
(¢} For each pixel (x,y): set F3 if @z, y) < 0. Replace F1 by Fi OR F3 (figures 5(d) and 5{e})}.
{d} For each pixel {x,y): Set F1 if Q{z,y) < 0 (fgure 5{f})}.

Note that this scan conversion process requires that the coefficient sets for 9, @1, @, and ¢35 be

broadeast only once each.
Step 2: Z-Buffer

The equation of Front{curved part of Cylinderl) when solved for 5 is of the form 2 = L — /Q, where LV
is linear and Q is quadratic in x and y. The function Q is the same one from step L. Since the QEE cannot
directly evaluate square roots, an approximation to /¢ must be made. This approximation ig of the form
&+ t(} where 8 and ¢ are constanis, and we replace z = L — /@ by Zapproz = L~ 5~ $Q which is quadratic
in {x,y}). By choosing & and t carefully, this approximation iz very accurate in strips of the scan converted
region of the kind illuatrated .i;z figure 6{a}. Geometrically, the surface with equation Zapproz = L — 5 — ()
- i= a3 “parabolic” cylinder and figure 6(b} illustrates how it passes mear to the actual cylinder surface. The
magnitude of the srror tolerance determines the size.cf the strips in which the appmxixﬁation iz within this

tolerance.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 8

We begin by choosing an error tolerance for the Z approximation. The Host determines the number of
strips needed to guarantee this accuracy across the entire scan converted region (figure 6{c}). The constants
s and t are computed for each such strip pair. Geometrically, the set of parabolic cylinders (one for each
(8,6)) forms an “envelope” of the actual cylinder {figure 6(d)). Further, as indicated in figure 6{d), for each
{x,), the largest Zapprox is the one that best approximates the actual Z for that pixel {x,y}. The Host
simply broadcasts the coefficients for all of the parabolic cylinder approximations and each pixel {x,y) saves
in ZTEMP the largest Zapprox for that pixel. Note that for back facing surfaces, the pixel saves the smallest

Zapprox.

It might seem that many strips are needed to guarantee reasonable accuracy, but in many images that
we have generated using the functional simulator, & high degree of accuracy can he rachieved with & small
number of strips (1 to 8). The precise number of sirips depends on the size of the object in screen space.
This small number is due to the fact that we are in effect approximating a curved surface by ancther curved
surface, 8o that we do not need nearly as many subdivisions as would be neceasary if we were approximating

a curved surface with polygons {Sgure 6{b)).

Step 3: Subtracting Cylinder2

From section I we saw that we must determine a way to decide if 3 point is inside or outside of this

cylinder. This can be accomplished by using the eame parabolic envelope method of step 2. Specifically:

(a) Subdivide Cylinder2 into strips for accurate Z calculation as in Step 2. Compute the quadratic

expression §; that represent the parabalic ¢ylinder approximations for these strips.
{b) Set F2 at each pixel. For each parabolic cylinder, C;, broadcast the coefficients of {; and clear F2
if the ZTEMP stored at the pixel (x,y) is less than Q:{z,y) if C; is front facing or if ZTEMP > Qi(z,y)

and C; is back facing {figure 6[c)).

{c) Ouly those pixels with both F1 and F2 still set are inside Cylinder2. Replace F1 with (F1 xor F2].

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 9

Step 4 Shading

If we compute the exact diffuse shade at {x,y) using the unit normal to the surface then the expression
we have to evaluate is of the form ehade{z,y) = (L + Q)/vW where L iz linear, Q is quadratic in x,y
and W iz a relatively complicated expression in x and y that comes from turning an arbitrary normal to the
surface Into & unit vector. We approximate the numerator ag in the Z buffer step except that we only use
a single parabsolic cylinder for § . We approximate the dencminator by 2 single constant. Although these

approximations may geem coarse, the effect i3 smooth shaded.

IV. The Algorithm

In this section we degcribe a method for transforming any UBG tree into an equivalent one that is a
unicn of simpler subtrees {Sato 85]. We will then describe how each of these simple subtrees can be displayzd
by further dividing them into the union of pieces which can be displayed by starting with the boundary
of a primitive and paring it with other primitives. This transformation and display process builds up the
image without the use of large amounnts of intermediate information stored at each pixel. This method is

particularly appropriate for a system like Pixel-Powers because of the limited memory available st each pixel.

There are two major difficulties with trying to display arbitrary CSG trees without any transformalion.
First, the paring part, that is, the piece that is subtracted or intersected with a previously constructed piece,
might be complicated. In particular, # might be hard to determine the inside or outside in an efficient
manner. Second, paring may revesl parts .of an object previously obscured. Both of these difficulties can be
overcome by the transformation process that restructures the CSG tree into an equivalent one in which the

paring objects are always primitives.

The transformation produces a new tree which we call a normal form for the tree which has the properties
{i) at every node where there iz an intersection or difference the right branch is primitive, and (i) no node
where there is a union is on a path from a difference or intersection. This new tree can be broken info simpler

subtrees that are unioned together. Although the transformation process may increase the size of the tree,

Goldfeather, Huliquist, Fuchs: Fast C8G Display in Pixel-Powers — page 10

each of the simple subtrees can be displayed with 2 minimum of calculation and merged inte a single image

using the union process described in Section II. The simple subtrees are of the form:

Xoopy X10pg...opx X
where each X; iz a primitive, op; is either — or N, and the absence of parentheses indicates that association
“i5 from left to right. A normal form for a CSG ¢ree is created using the 8 bgsic equivalences in figure 7

together with the following recursive algorithm:

procedure redo{T)
begin
if T does pot have any of the patterns in figure 7{I)
then return T
else
begin
. restructure T using equivalent pattern in figure 7(II);
return newT
end

end;

Goldfeather, Hultquist, Fuchs: Fast C5G Display in Pixel-Powers — page 11
»

procedure Normalize (T);
begin
redo (T};
cese {(T.type) of begin
primitive:

returp T;

Normzlize {T.L);
Normalize (T.R)
wo {1
vhile (T.type # primitive oxr (T # U} or (T.R.type # primitive)
redo {T}:

Nermalize {T.R);

Normalize {T.L}:

rede{T);

end;

end;

Figure 8 illustrates ihe normalization process.

Once the tree has been normalized, the problem of dizplay is reduced to that of simple trees. Let D(X]),
D;(X), and Dp{X) denote the boundary of a solid X, the front-facing boundary of X, and the back-facing
boundary of X, respectively. In order to display a solid X it suffices, of course, to display D{X}. We are left
then with the problem of displaying

D{Xoopy1 Xy 0p2...0px Xi)
In order to derive the general display algorithm, it is necessary to know how the C8G operations interact

with the boundary operators D, Dy, and D;.

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 12

Theorem 1: From the point of view of 2-D dizplay:

{a} D(X] = D(X)

(b} D(XUY)=Df(X)uD,Y

£} DXNY) = (D{X)nY) U (DY} N X)
(d) DIX -Y) = (Ds(X) - Y) U (DY) N X)

For example, if we want to display the simple tree A-B-C, we apply Theorem 1{d} twice and use the set
identity Xn{Y - Z)=Xn¥ -2
DA~B-0Q) = |
= (Ds(4- B) - C)U(D4(C) N (4~ B))
by applying Theorem 1{d) with X = A~ Band Y =C
= (Dy{4) — B- CYU{Du(B)NZ - CYU(D(C) N A~ B)

by applying Theorem 1{d) again and neing the above set identity.

The terms in the union are generated one at 4 time and merged into the partial object being built up.
The first term is generated by storing Dy (X)) and paring # down with the objects Y and Z, This iz essentially

how the example in Section 1 waz done. The other terms are generated similarly.

We will adopt the convention that there is an operator op; equal to N prezeding Xy in the simple tree

Xoop) Xy0pz...0px X and define for each s =0,..,,k

. J DXy if op
D)= {D:(X)s if op;

Then we can apply the theorem recursively to obtain:

o

Theorem 2:D{Xoop; X1...0piXy) is the union {§ =0, .., k) of
Do{X;i)op1 X1.0pie1 Xi-10Di41 Xig 1. 00pp X
The individual terms in this union are displayed 2s in the example in Section I To summarize, the nor-

malisation process that reduces an arbitrary CSG tree to a union of simple trees together with the further

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 13

subdivision using Theorem 2 produces a decomposition that allows images to be drawn without sending any-
thing more complicated than a primitive to the system. This is essential for graphics aystems with limited

frame buffer memory.
VY. Implementation on I’ixél-Pcwers

In thiz section, we apply the general results from Section IV to implement the display algorithm in
Pixel-Powers. The following pseudo-code outlines the general procedure for rendering an arbitrary CSC
object T with Pixel-Powers. Bazically T is first restructured into “normal” form, then each of its “simple”
subtrees is rendered separately, then combined ints the partial object that is built up by a succession of union
operations. Each simple tree is traversed and built up a single primitive at a time. Each primitive is built
by scan-converting it and subtracting the appropriate parts of it. [The section numbers in the comments
refer to areas of this paper which describe that part of the procedure.)
procedure displayC8¢ (T)
begin

rormalize (¥); Sectton IV
for each simple subtree in normal form of T
for eack primitive X in the simple subtree
Use the QEE to turn off pixels which xire outside of the projection
of Dp(X) on the ecreen(Fi set inside region); I/, Step 1
Bubdivide the scan converied region inte sirips and wse the QEE to
compute Z values of perabolic spproximations; Il Step £
Btore appropriate value in ZTEWP;
for each additional primitive ¥ in simple subtree
Bubdivide Dy{¥) and D,(Y) into subregions; Il a.
Compute the parabolic spproximations for these subregions;
Bet F2 everyvhere;
Case {op preceding Y) of begin III, Step 8

—: Turn off F2 for pixels inside envelope of approximating murfaces;

Goldfesthex, Hultquist, Fuchs: Fast CS5G Displey in Pixel-Powers --- page 14

M Turn off F2 for pivels outside envelope;
end;
™
Diseble Pixels for which ZMIN <ZTEMP; If, Step 8
Replace ZNIN by ZTEMP for ENABLED pixels;
Corpute shade for Enabled pixels; IIT, Step §
Add to partially built imsge using ZI-buffer; IV, peragroph 8

end
Results

We have implemented (in C on a VAX-11/780 running 4.2bsd UNIX) and show results here of 1} a
tree traverser that procesges a union of “sbmple” trees and generates opcodes and quadratic coefficients to 2
Pixel-Powers memory system, and 2} a simulator for a Pixel-Powers memory system that accepis opcodes
and quadratic coefficients and generates for each pixel the various image buffer-related values {r,g.b, 2, flags,
etc.) for display on a conventional raster screen. This set of software modules was exercised with externally
supplied data sets from the US Army Ballistic Research Laboratory {by Paul Stay and Paul Deite) and

Hekkaido University {Okino 84].

We have been surprised to find no peed yet for the CSQ restructuring algorithm, se we have not as
yet implemented it. Of the handful of data sets we have received we have found none yet whose CSG tree
needed to be restructured before processing for Pixel-Powers. That is, all the trees were already “simple”
according to the definition described in Section IV above. Thus the tree traverser could process all of these

data sets directly and generate opcodes and coefficients for Pixel-Powers.

Weran the tree fraverser on the various data sets and ran the Pixel-Powers simulator on the output from
the tree traverser. Table 1 gives, for various data sets, the number of Pixel-Powers operations generated
Ey the tree traversal process and the estimated time for Pixel-Powers to generate the images from these
data sets shown in the photographs. It is important to note when considering these reénlts, however, that

the estimated image generation times given in the table are for the I0MH: Pixel-Powers logic-enhanced

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 15

memories themselves, It is aseumed that the rest of the system, the “front end® (the viewing transformation
engine and the tree traverser) can run fast enough $o keep up with the 10MHy Pixel-Powers memories. We
kope to achieve this by transferring the implementation to our fast arithmetic processors, which are Mercury

Systems ZIP 3232s.

Table 1: Estimated Image Generation Time

Part Name Bource Primitives Opcodes Equations Time

Union local 2 54 46 .19 msec
Diff local 2 182 176 .68

Int local 2 178 170 B8
Tube Okine 11 1205 1065 4.3

Cut Tube Okine 12 1969 1733 7.0

MBB . ‘ Okino 24 2139 1854 7.5

Tie Rod BRL 17 2660 2309 9.3

Future Wark

We hope to implement a Pixel-Powers systern in stages by enhancing the next generation Pixel-Planes
chips and by casting much of the CSG tree traverser into microcode for our fast arithmetic processors, The
enhancement ¢o the Pixel-Planes chips involves substituting the Quadratic Expression Evaluator tree for the
current Linear Expression Evaluation tree and likely increasing the memory per chip from the 72 bits in the
present aMOS Pixel-Planes chips to 128 bits.

N

We aleo hope to develop more sophisticated algorithms for C5G.defined objects: algorithims for gener.
ating shadows and algorithms for more rapidly caloalating shadings on curved surfaces according to more
sophisticated lighting models such as the popular one due to Phong. We also hope to develop techniques
for rendering higher order surfaces such as cubic patches, Already two approaches for this are evident: the
quadratic expression evaluator on the memory chip could be expanded into a cubic expression evaluator (we

can already see how to do this, but the sige wonld be enormous) or we can approximate each of the cubic

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 16

curves by combination of many quadratic curves. We also plan {o implement with the USG restructuring
algorithm the well-known “bounding-box” techniques to trim the restructured tree to the smallest possible

size. For example A—B when their bounding boxes do not intersect become A.

Summary

We have shown that C8G-defined objecis can be efficiently rendered in a logic-enbanced frame bufler
memory with fast quadratic expression evaluation for each pixel. Such rendering can be efficiently generated
by first restrucéuring the tree, # necessary, into a union of simple trees and then traversing these trees to
generate a sequence of quadratic coefficients and operation codes for the logic-enkanced memories. Resuiting
imagee from & software implementation of the tree traverser and display simulator illustrate the methods
| and allow estimation of its speed with an expected hardware implemeniation. The method’s speed promises
realtime interactions for quite complex CBG-defined objects and the ability to handle objects of a:bitfary

complexity by building up the image during the traversal of the CSG tree.
Acknowledgements

We thank the other members of the Pixel-Planes team — particularly John Poulton, John Eyles, John
Austin, and Wayne Dettloff — for stimulating discussions and suggestionz. We thank Jokn Eyles also for
developing a detailed logic-level simulator of the Quadratic Expression Evaluator and improving the QEE

design in the process.

We also wish to thank our colleagues who gracicusly sent us CSG data sets: Paul Stay and Payl Deily
of the US Army Ballistic Research Laboratory and Profe;sor Ari Reguicha, Director of the Produciion
Automation Project at the University of Rochester. Testing our algorithms on these externally-sﬁppiied
data sets considerably increazed our confidence in the algorithms and their implementations. Also we thank
Norio Okino and his colleagnes for publishing their data. Finally, we thank Mary Hultquist for her help with

the photographs, figures, and text.

Goldfeather, Huliguist, Fuchs: Fast CSG Display in Pixel-Powers —— page 17

Bibliography

Atherton, P.R., “A Scan-line Hidden Surface Removal Procedure for Conatructive Solid Geometry™ Computer
Graphics, Vol. 17, No. 3, pp. 7382, 1983. {Proceedings of SIGGRAPH ’83)

Fuchs, H,, 1. Goldfeather, J.P, Hultquist, 8. Spach, J.D. Austin, F.P. Brooks, Jr., J.G. Eyles, and J.Poulton,
“Fast Spheres, Textures, Transparencies, and Image Enhancements in Pixel-Planes® Computer Graphics,

Vol. 19, No. 3, pp. 111-120, 1985, (Proceedings of SIGGRAPH '85)

Goldfeather, J., H. Fuchs, *Quadratic Surface Rendering on a Logic-Erhanced Frame-Buffer Memory” IEEE

Computer Graphics and Applications, pp. 48-59, January, 1986.

Kedem, G., L.L. Ellis. “*Computer Structures for Curve-Solid Classification in Geometric Modelling® Tech-

nical Report TR&4-37, Microelectronic Center of North Carolina, Research 'Eriaﬁgie Park, N.C,, 1084,

Okino, N., Y. Kakasu, M. Morimoto. “Extended Depth Buffer Algorithms for Hidden Surface Visualization”

IEEE Computer Graphics and Applications, pp. 79-88, May, 1984,

Poulton, J.,, H. Fachs, J.D. Austin, J.G. Eyles, J. Heinecke, C. Hsieh, J. Goldfeather, 1.P. Hultquist, and 8,
Spach. *PIXEL-PLANES: Building a VLSI Based Raster Graphics System™ Proceedings of the 1985 Chapel
Hill Conferenee on VLI .

Requicha, A.A.G. “Representation for Rigid Objects: Theory, Methods, and Systems®™ ACM Computing

Surveys, Vol. 12, No. 4, Dec. 1980, pp. 437464,

Sato, H., H. Ishihata, M. Izhii, M. Kakimoto, X. Sato, K. Hirofa, M. Ikesaks, K. Inoue. *Fast Image
Generation of Constructive Sclid Geometry Using A Cellular Array Processor® Computer Graphics, Vol. 19,

No. 8, pp. 95-102, 1985. (Proceedings of SIGGRAPH ’85)

(end)

Goldfeather, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers — page 18

112

L 7
°°gg 2 toackground)

[

Figure ta: Fiag Butters {thres) Figure 1b; Denth Buffers {iwo) Figure 16 Color Buftors {iwo)

Fy=0

Temp Old Partial Object New Padial Obiect

Figurs 2a Figure 2b Figure 2o
Figurs 21 Adding to Padial Images

Figure 3a Figura b

Temp

Figure ad Figure 3o Figura 3

mem address & control

op codes

A
B
[~
b
£ chip's X.Y adddress
F {high order)
coeflicients
{bi-serial)

Quadrafic
Exprossion
Evaluator
Tree

Y

128 bils of memeory at sach pixel

128 x 128 bit
memaory grid

HEEENREE

L1 L1

128 one-bil le—p |, o7fOM
AlLUs : video coniroller
2 2
Ax +Bry+Cy +Dx+Ey+F

Figure 4: Conceptual organization of Pixel-Powers mamory chip

Figure 5d

Figure 5¢

F =0

S

Figure 5e

Figure 5¢

T T T T T T
'Z Z=L- VO

Figure 6a Figure 6b

Figure 6¢c Figure 6d

)
(b) = _
X X
Y Z X Y X Z Y Z
(@)
(c)
X
Y
(d)
X
Y

Figure 7: restructuring operations { u= union, n= intersection)

X-(Yn(Z-(W-V))=X-Y u X-Z u XnW-V

Display X-Y as (FX-Y) u (BYn X)
X-Z as (FX-Z)u (BZn X)
XnW-V a (FXnW-V)u(FWnX-V)u (BYn X nW)

Figure 8: An example of the tree restructuring ("normalization”) process
(u= union; n=intersection; Bx = Back of x; Fx =Frontof x)

MBB

Tie Rod

Tube

Union

Difference

Intersection

