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ABSTRACT 

We present two algorithms for the display of CSG-defined objects on Pixel-Powers, an extension of the 

Pixel-Planes logic-enhanced memory architecture, which calculates for each and every pixel on the screen (in 

parallel) the value of any quadratic function in the screen coordinates (x,y). The first algorithm restructures 

any CSG tree into an equivalent, but possibly larger, tree whose display can be achieved by the second 

algorithm. This second algorithm traverses the restructured tree and generates quadratic coefficients and 

opcodes for Pixel-Powers. These opcodes instruct Pixel-Powers to generate the boundaries of primitives 

and perform set operations using the standard Z..bulfer algorithm. Although we have not yet needed to 

invoke the restructuring algorithm, since all the CSG trees we have analyzed so far have turned out to be 

"simply-structured" already, the restructuring algorithm may also be useful for other systems that wish to 

guarantee the display, with limited pixel storage, of a.ny pOt!sible CSG tree. 

Several externally-supplied CSG data sets have been processed with the new tree-traversal algorithm 

and an associated Pixel-Powers simulator. The resulting images indicate that good results ca.n be obtained 

very rapidly with the new !!Yl'tem. For example, the commonly ued Meeserschmitt bracket [Okino 85] with 

24 primitives is translated into approximately 1900 quadratic coefficients. On a Pixel-Powers system running 

at lOMHz (the speed at which our current Pixel-Planes memories run), the image should be rendered in 

about 7.5 milliseconds. 
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I. Introduction 

We are designing a graphics system called Pixel-Powers, which enhances the Pixe1-Planes system !Fuchs 

85] [Poult 85] by replacing the multiplier tree that evaluated linear expressions by one that evaluates quadratic 

expressions !Goldf 86]. This quadratic expression evaluator (QEE) is used to evaluate expressions of the form 

Ax'+ Bzy+ O"lf + Dx + Ey + F simultaneously for each pixel (x,y) on the screen. We estimate that the 

QEE will calculate bit-sequentially a SO bit value of this expression for each and every pixel on the screen 

in under 4 microseconds. The speed at which Pixel-Powers can render convex polyhedra, as well as smooth

shaded cylinders, cones, and ellipsoids, has led us to explore the possibilities of using Pixel-Powers for real

time rendering of smooth .. haded CSG objects constructed from quadratic primitives. A Constructive Solid 

Geometry (CSG) object is defined by starting with a set of solid primitives and constructing a binary tree 

in which the leaves are primitives and the non-leaf nodes are set operations. The CSG object is constructed 

recursively by performing the set operation on the objects defined by the left and right subtrees. {Requi 80] 

In this paper we describe a general method for displaying any CSG object using a frame buffer .that is 

128 bite deep. Our method dilfers from other CSG display methods fAther 83) in that we compute on the fly 

the boundary representation of each primitive in terms of the viewpoint. While this can be a disadvantage 

in some systems, we will show how it can be implemented efllcient)y in Pixel-Powers by making use of the 

quadratic expression evaluator and the general parallelism of the system. In particular, we will describe an 

algorithm for fast rendering of smooth-shaded CSG objects based on quadratic primitives. Our approach, 

parallel on all pixels but processing CSG primitives sequentially, contrasts with another system by Kedem 

[Kedem 84] that allocates a processing element for each primitive and renders the images sequentially by 

pixel in raster-sean order. 

Just as in the development of the Pixel-Planes system, we have implemented software simulators that 

enable us to develop display algorithms before the actual chip is completely designed a.nd committed to 

silicon. All of the images in this paper are from the Pixel-Powers simulator. 

Goldfeather, Hultquist, Fuchs: Faot CSG Display in Pixel,. Powers- page 2 



n. A Simple Example 

In this section we describe a method for displaying any CSG object with the aid of a. deep frame buffer. 

The present working Pixel-Planes syatem has a 72 bit deep frame buffer. A Pixel-Powers system with a depth 

of 128 bits was our model when we were analyzing the problem, but there is no reason that the a.lgorithm 

could be implemented in any computer with a deep frame buffer. The memory requirements are (figures 

l(a), l{b), and 1(c): 

(a) Two depth buffers: ZTEMP and ZMIN (20..30 bits each) 

(b) Three ftag registers: Fl, F2, and F3 (one bit each) 

(c) One Color buffer: COLOR {24 bits) (If double buffering is desired 

two color buffers are needed) 

We defer until Section ill and V the discussion of the particular Pixel-Powers implementation of these 

algorithms for CSG objects defined with convex primitive solids whose boundary surfaces can be defined 

using quadratic and/or linear equations in x,y, and z (e.g. cylinders, ellipsoids, and cones). In this section 

we outline a general method of display that will work for any set of convex primitives and any display system 

that can do both of the following: 

(a) Scan convert front and back facing surfaces of each primitive in screen space. That is, a llag F at 

each pixel can be set to 1 if it is inside the region on the screen determined by the projection of the surface 

on the screen. Note that the front and back face of a aurface depends on the viewpoint. In this paper, 

the front surface of a cylinder consists of all points on the cylinder surface (including the ends) which face 

toward the viewer. 

(b) Calculate and store in each pixel me,mory with F=l the depth and color values of the front or back 

facing surfaces of a primitive. 
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In Section In, a general a.lgorithm is derived b ... ed only on the ""sumptions (a) and (b) above. We 

illustrate the ide"" behind this algorithm by examining the simple cases of union, difference, and intersection 

of two cylinders. 

D. a. Cylinderl U Cylinder2 

This is displayed by applying the standard Z-buffer a.lgorithm. H Front(obj) denotes the (viewpoint 

dependent) visible part of the surface of an object, then Front(Cylinderl} will, in general, be the visible 

part of the curved portion of the cylinder together with one of the two planar ends (figure 2(a)}. We begin 

by calculating the Z values and color values of Front(Cylinderl) and storing them in ZMIN and COLOR. 

Because later in this paper we will be decomposing more complicated objects into unions of simpler ones, 

we will describe carefully now how Cylinder2 is added to the partial image: 

Step 1: At each pixel, set the flag Fl ii it is inside the region determined by Front(Cylinder2), and 

dear it otherwise (figure 2(a.)). 

Step 2: Calculate and store Z values for Front(Cylinder2} in ZTEMP. 

Step 3: For each pixel with Fl set, compare ZTEMP to ZMIN and if ZTEMP > ZMIN then dear Fl. 

Step 4: For each pixel with Fl still set, replace the contents of COLOR with the color of Cylinder2 

(ligures 2(b) and 2(c)). 

Note that this algorithm does not depend on the nnioned objects being primitive. As long as scan 

conversion, depth values, and colors ean be calculated, any objects ean be unloned together by this simple 

method. This same technique of composing objects with •-buffers has been used in many previous systems. 
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II. b. Cylinderl- Cylinder2 

This can be displayed by first recognising that its image is identical to the image of (Front( Cylinderl J

Cylinder2) U (Back(Cylinder2) n Cylinder!). The general algorithm for generating ouch decompositions is 

described in Section IV. AB we saw in the union process above, it suffices to generate the first term in the 

union and then add the second term to this partial image. The first term, Front(Cylinder1)- Cylinder2 is 

generated as follows: 

Step 1: Set Fl for all pixels inside the projection of Cylinderl onto the screen (figure 3(a)). 

Step 2: Store the depth of Front(Cylinderl) in ZTEMP for pixels at which Fl is set. 

Step 3: Clear Flat any pixel which is inside Cylinder2. A pixel (x,y) is inside Cylinder2 if its ZTEMP 

lies between the Z values of Front(Cylinder2) and Back(Cy/inder2) (figure 3(h)). What now remains is 

the front boundary of the first cylinder. 

Step 4: We now tranafer the value of ZTEMP to ZMIN for each pixel at which Fl is set. For these 

same pixels, we update the contents of COLOR with the color of the Front(Cylinder1) at that location. 

This completes the display of Front(Cy/inder1)-Cylinder2. Next we a.dd Back(Cylinder2)nCylinder1 

to this partial image. 

Step 5: Set Fl for all pixels inside the projection of Oylinder2 on the screen (figure 3(d)). 

Step 6: Store the depth of Back(Cylinder2) in ZTEMP for those pixels in which Fl is set. 

Step '1: Clear Fl for all pixels which are outside Cylinder!. These are the pixels for which ZTEMP does 

not lie between the eorresponding values of Front( Cylinder!) and Back(C!!linder1). What now remains 

are the pixels which display th<> back wall of the hole whleh Cylinder2 bores into Cylinder! (figure S(e)). 
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Step 8: For th- pixels, we clear Fl if ZTEMP > ZMIN. We now transfer the value of ZTEMP to 

ZMIN for "ach pixel at which Fl rema.in.B set. For these same pixels, we npda.te the contents of .COLOR 

with the color of the Bacle(Cylinder2) a.t that location (figure 3(f)). 

ll.c. Oylinder1 n Cylinder2 

This can be decomposed into (Front(Cylinderl) n Cylinder2) u (Front(Cylinder2) n Cylinderl). The 

terms in this union are generated in a ma.nner similar to the terms in the decomposition of the difference of 

the cylinders. 

This procedure generalises for arbitrary objects defined by CSG trees. The basic idea is that an arbitrary 

CSG tree ca.n be quickly modified so tha.t nothing more complicated tha.n a. primitive is ever removed from or 

intersected with the object that is crea.ted by traversing the CSG tree. However, before describing in Section 

IV how this is done, we wa.nt to outline how the display algorithm can be implemented in Pixel-Powers. 

m. The Example Implemented with Pixel-Powers 

We will see in the following sections that this method is particularly llllitable for implementation in 

a machine such as PixeJ,.Powers that has a small fixed amount of memory at each pixel. The dramatic 

speed in Pixel-Powers is due in large part to the Quadratic Expreasion Evaluator which evalua.tes quadratic 

expressions in x andy simultaneously at each pixel The architecture of this Evaluator is more fully described 

in !Goldf 86]. For the purposes of this discuasion, it is sufficient assert that the Pixel-Powers system will 

consist of a enhanced frame buffer memory. Each pixel is loeated at a leaf of the Evaluator, which receives 

the coefficients A,B,C,D,E,F as input and evaluates the expression Q(x, y) = Ax'+B:ty+Clf+Dx+Ey+F. 

The speed of Pixel-Powers is due in large part to the fact that this calculation is done simultaneously at each 

pixel when the coefficients are broadcast to the system. One bit of the function value is calculated for each 

and every pixel at each clock cycle. As with the current Pixel-Planes chips in 8 micron nMOS, we expect 

a 100 Jl8 clock cycle. Each pixel will have a eingle-bit ALU and 128-hits of randomly-addreasable memory. 

This memory is also scanned out by the video controller. 
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For the particular algorithms described here, the memory ill logically configured into ZMIN, ZTEMP, 

and COLOR registers, and also one-bit flags Fl, F2, and F3. The Host processes the CSG tree to produce a 

eequence of instructions that drive the Evaluator and the AL Us. All geometric tra.nsformations and clipping 

are ca.leulated in the host as well as the translating of the information in the CSG tree into the sequence of . 

opcodeo and the quadratic equations for the Evaluator (figure 4). 

II: 

In thio section, we will describe a way to implement in Pixel-Powers the basic operations listed in Section 

(l) Sean conversion of primitives 

(2) Computation of depth values 

(3) Determination of "inside• or "outside" of a primitive. 

(4.) Calculation of color 

We illustrate the procedure with part of the proceeding example: Front(Ourved part of Oylinderl) 

Oylinder2. We omit the calculations involving the end of the cylinder as they are sim.Uar. (figure 5). 

Step 1: Scan Conversion 

We begin by writing the equations of the bounding curves of Front(Oylinderl) in oereen coordinates, 

(x,y), (figure S(a)). The two elliptical ends are defined by quadratieequations Q1 (z, y) = 0 and Q2(z, y) = 0. 

The lines of intersection of the front facing and back facing surfaces have linear equations L1 (z, y) = 0 and 

~(z,y) = 0. In addition, the lines Ls and Lt indicated in figure 5(a) have linear equations Ls{x,y) = 0 

and L,(x,y) = 0. We combine L1 and~ to create the quadratic equation Q(x,y) = L1 (z, y)L;(z,y) = 0, 

and we combine Ls and Lt to create the quadratic equation Q3(z, y) = Ls(x, y)L4 (z, y) = 0. 

Each of the curves Q, Q1 , q,, Q3 separate the plane into pieces and a pixel can determine which piece 

it is in by simply cheddng the sign of Q(z, y), Q1 (:t, y), etc. Different choices of the coefficients will produce 

different signs for these expressions, so the selection must be made to conform to the signs indicated in figure 
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5(a). The Host computes the coefficient sets for each of the four quadratic curves and broadcasts them to 

the quadratic expression evaluator. Three one-bit l!ags are used to enable or disable pixels according to the 

sign of the evaluated expression at that location. 

The specific sequence in our example is: 

(a) Clear l!a.gs Fl, F2, and F3 everywhere. 

(b) For each pixel (x,y): set Fl if Q3(x, y) > 0, and set F2 if Q1 (:r, y) > 0. Replace Fl by Fl AND F2 

(figures S(b) and 5(c)). 

(c) For each pixel (x,y): set F3 if Q,(z, y) < 0. Replace Fl by Fl OR F3 (figures 5(d) and 5(e)). 

(d) For each pixel (x,y): Set Fl if Q(x, y) < 0 (figure 5(f)). 

Note that this scan conversion process nquires that the coefficient sets for Q, Q1 , Q2 , and Q3 be 

broadcast only once each. 

Step 2: Z-Buffer 

The equation of Front( curved part of Cylinder!) when solved for 1 is of the form z = L- ytj, where L 

is linear and Q is quadratic in x and y. The function Q is the same one from step 1. Since the QEE cannot 

directly evaluate square roots, an apprOJdmation to ,fQ must be made. This approximation is of the form 

s + tQ whOl"< s and t are constants, and we replace z = L- ,fQ by Zappro:r = L- s- tQ which is quadratic 

in (x,y). By choosing s and t carefully, this approximation is very accurate in strips of the scan converted 

region ofthe kind ii!Ulltrated in figure 6(a.). Gecmetrically, the surface with equation Zo.pproz = L- s- tQ 

is a •parabolic• cylinder and figure 6(b) ii!Ulltrates how it passes near to the actual cylinder surface. The 

magnitude of the error tolerance determines the size of the strips in which the approximation is within this 

tolerance. 
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We begin by choosing a.n error tolerance for the Z approximation. The Host determines the number of 

strips needed to guarantee this accuracy across the entire scan converted region (figure 6(c)). The constants 

• and t are computed for each such strip pair. Geometrically, the set of parabolic cylinders (one for each 

(s,t}) forms an •envelope" of the actual cylinder (figure 6(d)). Further, as indicated in figure 6(d), for ea.ch 

(x,y), the largest Zapprox is the one that best approximates the actual Z for that pixel (x,y). The Host 

limply broadcasts the coefficients for all of the parabolic cylinder approximations and each pixel (x,y) saves 

in ZTEMP the largest Zapprox for that pixel. Note that for back facing surfaces, the pixel saves the smallest 

Zapprox. 

It might seem that many strips are needed to guarantee reasonable accuracy, but in many images that 

we have generated using the functional simulator, a high degree of accuracy can be achieved with a small 

number of strips (1 to 8). The precise number of strips depsnds on the size of the object in screen space. 

Thiz small number is due to the fact that we are in effect approximating a curved surface by another curved 

surface, so that we do not need nearly as many subdivisions as would he necessary if we were approximating 

a curved surface with polygons (figure 6(b)). 

Step 3: Subtracting Cylinder2 

From section I we saw that we must determine a way to decide if a point is inside or outside of this 

cylinder. This ean be accomplished by using the same parabolic envelope method of step 2. Specifically: 

(a) Subdivide aylind<r2 into strips for acelll'ate Z calcnlation as in Step 2. Compute the quadratic 

expression Q; that represent the parabolic cylinder approximations for these strips. 

(b) Set F2 at each pixel. For each parabolic cylinder, a,, broadcast the coefficients of Q; and clear F2 

if the ZTEMP .tored at the pixel (x,y) is less than Q;(z,y) if a, is front facing or if ZTEMP > Q;(x, y) 

and a; is hack facing (figure 6(c)). 

(c) Only thoee pixels with both Fl and F2 still set are inside aylindtr2. Replace Fl with (Fl xor F2). 
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Step .£: Shading 

If we compute the exact dill'use shade at (x,y) using the unit normal to the surface then the expression 

we have to evaluate is of the form &hade(z,u) = (L + ..ftJ)/v'W where Lis linear, Q io quadratic in x,y 

and W is a relatively complicated expression in x and y that comes from turning an arbitrary normal to the 

ourface into a unit vector. We approximate the numerator as in the Z buffer step except that we only use 

a single parabolic cylinder for Q • We approximate the denominator by a single constant. Although these 

approximations may seem coarse, the effect is smooth shaded. 

IV. The Algorithm 

In this section we describe a method for transforming any CSG tree into an equivalent one that is a 

union of simpler subtrees [Sato 85]. We will then describe how each of these simple subtrees can be displayed 

by further dividing them into the union of pieces which can be displayed by starting with the boundary 

of a primitive and paring it with other primitives. This transformation and display process builds up the 

image without the use of large amounts of intermediate information stored at each pixel. This method is 

particularly appropriate for a system like Pixel-Powers because of the limited memory available at each pixel. 

There are two major difficulties with trying to display arbitrary CSG trees without any transformation. 

First, the paring part, that is, the piece that is subtracted or intersected with a previously constructed piece, 

might be complicated. In particular, it might be hard to determine the inside or outside in an efficient 

manner. Second, paring may reveal parts of a.n object previously obscured. Both of these difficulties can be 

overcome by the transformation process that restructures th~ CSG tree into a.n equivalent one in which the 

paring objects are always primitives. 

The transformation produces a new tree which we call a normal form for the tree which has the properties 

(i) at every node where there is an intersection or difference the right branch is primitive, and (ii) no node 

whore there is a union is on a path from a dill'erence or intersection. This new tree can be broken into simpler 

subtrees that are unioned together. Although the transformation process may increase the size of the tree, 
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each of the simple subtrees can be displayed with a minimum of calculation and merged into a single image 

using the union process described in Section II. The simple subtrees are of the form: 

Xoop,X,op, ... opkXk 

where each X; is a. primitive, op; is either - or n, and the a.bsence of parentheses indicates that a.ssociation 

is from left to right. A normal form for a CSG tree is crea.ted using the 8 bal!ic equivalences in figure 7 

together with the following recursive algorithm: 

procedure redo(T) 

begin 

if T does not have any of the patterns in figure 7(I) 

then return T 

end; 

else 

begin 

restructure Tusing equivalent pattern in figure 7(II); 

return newT 

end 
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procedure Normalize (T); 

begin 

:redo (T); 

case (T.type) of begin 

primitive: 

u 

return T; 

Ncrmali~e (T.L); 

llc:rmalize (T .R) 

-,n : 

vhile (T.type ¥primitive or (T 'FU) or (T.R.type ¥primitive) 

end; 

end; 

redo (T); 

Normalize (T.R); 

Normalize (T.L); 

redo(T); 

Figure 8 illustraies the nonnalization process. 

Once the tree has been normalized, the problem of display is reduced to that of simple trees. Let D(X), 

D1 (X), and Db(X) denote the boundary of a solid X, the front-facing bonndary of X, and the back-facing 

bonndary of X, respectively. In order to display a solid X it suffices, of course, to display D(X). We are left 

then with the problem of displaying 

D(Xoop1X1of>2 •.. op•X•) 

In order to derive the general display algorithm, it is necessary to know how the CSG operations interact 

with the boundary operators D, Df> and Db. 
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Theorem 1: From the point of view of 2-D display: 

(a} D(X) = D1 (X) 

(h) D(XUY) = Df(X) uD1Y 

(c) D(X n Y) = (D1(X) n Y) U (D1(Y) n X) 

(d) D(X- Y) = (D1(X)- Y) U (Db(Y) n X) 

For example, if we wa.nt to display the simple tree A-B-C, we apply Theorem l(d) twice and use the set 

identity X n (Y - Z) = X n Y - Z : 

D(A-B-0)= 

= (D1 (A- B)- C) U (Db(C) n (A- B)) 

by applying Theorem l(d) with X= A-Band Y = 0 

= (D1(A)- B- C) u (D.(B) nz- C) u (D.(C) nA-B) 

by applying Theorem l(d) again and using the above set identity. 

The terms in the union are generated one at a time and merged into the partial object being built up. 

The fint term is generated by storing D1(X) and paring it down with the objects Y and Z. This is essentially 

how the example in Section 1 was done. The other terms are generated similarly. 

We will adopt the convention that there is a.n operator opo equal to n preceding Xo in the simple tree 

XooplXlCJP2···0PoXo and define for each i = 0, ... , lo: 

D(X·) _ {D,(X), 
• - D.(X), 

Then we can apply the theorem recursively to obtain: 

if op; = n 
if op; = -

The individual terms in this union are displayed as in the example in Section I. To summarise, the nor

malisation process that reduces an arbitrary CSG tree to a union of simple trees together with the further 
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subdivision using Theorem 2 produces a decomposition that a.Jlows images to be drawn without sending any

thing more complicated than a primitive to the oystem. This is essential for grapltics systems with limited 

frame buffer memory. 

V. Implementation on Pixel-Powers 

In this section, we apply the general results from Section IV to implement the display algorithm in 

Pixel-Powers. The following pseudo-code outlines the general procedure for rendering an arbitrary CSG 

object T with Pixel-Powers. Basica.Jly T ill first restructured into "normal" form, then each of its "simple' 

subtrees is rendered separately, then combined into the partial object that is built up by a succession of union 

operations. Each simple tree is traversed and built up a single primitive at a time. Each primitive is built 

by scan-converting it and subtracting the appropriate parts of it. (The section numbers in the comments 

refer to areas of this paper which describe that part of the procedure.) 

procedure displayCSG (T) 

begin 

normalize (T); Section IV 

for each simple subtree in normal form of T 

for each primitive X in the simple subtree 

Use the QEE to turn off pixels which are outside of the projection 

of Dp(X) on the screen(Fl eet inside region); III, Step 1 

Subdivide the sean converted region into strips and use the QEE to 

compute Z values of parabolic approximations; III, S~p e 

Store appropriate value in ZTEMP; 

for each additional primitive Y in simple subtree 

Subdivide D,(Y) end D~(Y) into subregions; II a. 

Compute the parabolic approximations for these subregions; 

Set F2 everywhere; 

Case (op preceding Y) of begin III, Sup 8 

-: Turn off F2 for pixels inside envelope of approximating surfaces; 
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end 

n: Turn off F2 for pixels outside envelope; 

endj 

Disable Pixels for which ZMIN <ZTEMP; II, Step 8 

Replace ZMIN by ZTEMP for ENABLED pixels; 

Compute shade for Enabled pixels; III, Step -1 

Add to partially built image using Z-bnffer; IV, paragraph 9 

Results 

We have implemented (in C on a VAX-11/780 running 4.2bsd UNJX) and show results here of 1) a 

tree traverser that processes a union of "simple" trees and generates opcodes and quadratic coefficients to a 

Pixel-Powers memory system, and 2) a simulator for a Pixel-Powers memory system that accepts opcodes 

and quadratic coefficients and generates for each pixel the various image buffer-related values (r,g,b, z, flags, 

etc.) for display on a. conventional raster screen. This set of software modules was exercised with externally 

supplied data sets from the US Army Ballistic Research Laboratory (by Paul Stay and Paul Deitz) and 

Hokkaido University [Okino 84]. 

We have been surprised to nnd no need yet for the CSG restructuring algorithm, so we have not as 

yet implemented it. Of the handful of data sets we have received we have found none yet whoS<! CSG tree 

needed to be restructured before processing for Pixel-Powers. That is, all the trees were already "simple" 

according to the dennition described in Section IV above. Thus the tree traverser could process all of these 

data sets directly and generate opcodee and coefficients for Pixel-Powers. 

We ran the tree traverser on the various data sets and ran the Pixel-Powers simalator on the output from 

the tree traverser. Table 1 gives, for various da.ta sets, the number of Pixel-Powers operations generated 

by the tree traversal process a.nd the estimated time for Pixel-Powers to generate the images from these 

data. 1ets thown in the photographs. It is important to note when considering these results, however, that 

the estimated image generation times given in the table are for the lOMlli Pixel-Powers logic-enhanced 

Goldfea.ther, Hultquist, Fuchs: Fast CSG Display in Pixel-Powers- page 15 



memories themselves. It is .... umed that the rest, of the system, the •front end" (the viewing transformation 

engine and the tree traverser) can run fast enough to keep up with the lOMHz Pixel-Powers memories. We 

hope to achieve this by trll.llllferring the implementation to our fast arithmetic processoi'S, which are Mercury 

Systems ZIP 3232s. 

Table 1: Estimated Image Generation Time 

Part Name Source Primitives Opcodes Equations Time 

Union local 2 54 4.6 .19 msec 

Diff local 2 182 170 .68 

Int local 2 178 170 .68 

Tube Okino 11 1205 1065 4..3 

Cut Tube Okino 12 1969 1733 7.0 

MBB Okino 24 2139 1854 7.5 

Tie Rod BRL 17 2660 2309 9.3 

Future Work 

We hope to implement a Pixel-Powers system in stages by enhancing the next generation Pixel-Planes 

chips and by casting much of the CSG tree traverser into microcode for our fast arithmetic processors. The 

enhancement to the Pixel-Planes chips involves substituting the Quadratic Expression Evaluator tree for the 

current Linear Expression Evaluation tree and likely increasing the memory per chip from the 72 bits in the 

present nMOS Pixel-Planes chips to 128 bits. 

\ 

We also hope to develop more aophistieated algorithms for CSG-defined objects: algorithms for gener

ating shadows and algorithms for more rapidly calculating shadings on curved surfaces according to more 

aophisticated lighting models such u the popalar one due to Phong. We also hope to develop techniques 

for rendering higher order surfaces nch as cubk patches. Already two approaches for this are evident: the 

quadratic expression evaluator on the memory chip could be expanded into a cubic expression evaluator (we 

can already see how to do this, but the size would be enormous) or we can approximate each of the cubic 
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curves by combination of many quadratic curves. We also plan to implement with the CSG restructuring 

algorithm the well-known *bounding-box• techniques to trim the restructllted tree to the smallest possible 

size. For example A-B when their bounding boxes do not intersect become A. 

Summary 

We have shown that CSG-defined objects can be efficiently rendered in a logic-enhanced frame buffer 

memory with fast quadratic expression evaluation for each pixel. Such rendering can be efficiently generated 

by first restructllting the tree, if necessary, into a union of simple trees and then traversing these trees to 

generate a sequence of quadratic coefficients and operation codes for the logic-enhanced memories. Resulting 

images from a software implementation of the tree traverser and display simulator illustrate the methods 

and allow estimation of its speed with an expected hardware implementation. The method's speed promises 

real.time interactions for quite complex CSG-defined objects and the ability to handle objects of arbitrary 

complexity by building up the image during the travenal of the CSG tree. 
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Figure 7: restructuring operations ( U• union, n= intersection ) 
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