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The Multiprocessor Adaptive Histogram Equalization Machine (MAHEM) is a parallel SIMD 
architecture for image processing. MAHEM is especially effective for those applications where 
the computed intensity of each pixel is a function of a large region of neighboring pixel values. 
The machine can also perform pixel local algebraic operations and neighborhood operations at a 
comparable speed to other processor-per-pixel architectures. 

The driving problem that led to this design is computation of Adaptive Histogram Equalization 
[Pizer et al., 1984] in near real time (a few seconds at most). An original machine design could 
compute only AHE, but we have generalized the design so that a wider range of image processing 
problems can be solved. We are continually finding other algorithms that can be computed 
efficiently with this architecture. 

Two features distinguish this architecture from other processor-per-pixel image processing 
architectures: 

1. Typically, processor-per-pixel architecture have a nearest neighbor communication scheme. To 
compute an output intensity, each pixel accesses information from its four or eight nearest 
neighbors and computes the output value. In MAHEM, pixels are selectively enabled for 
computation, and a neighboring value is broadcast simultaneously to all enabled pixels, which 
then compute that pixels contribution to the output intensity. After all pixels have been 
broadcast, each of these incremental computations have produced the final output intensity. 
This structure greatly reduces the number of communication paths required, and is especially 
efficient when computing functions that require data from pixels spatially distant from a given 
pixel. 

2. Many image processing architectures require data transfer from the host computer to the 
engine, computation in the engine, and then data transfer back to the host computer. The 
special purpose engine computes the new image rapidly, but the total user time is much greater 
because of the slow data transfers. In contrast, MAHEM appears as a bulge in the pipeline 
between the host computer and the frame buffer. In an alternative design, with the addition of 
video scan-out circuits, MAHEM could be the frame buffer. In either MAHEM design, one data 
t ransfer is eliminated from the total time required for computation to display. 

As an example of how algorithms are computed on this machine, we describe in detail 
t he parallel method for AHE computation. We then present the machine architecture and the 
formulation of other image processing algorithms for this machine. Finally, we compare performance 
to other image processing architectures. 
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Figure 1: Comparison of an original image and an image processed by Adaptive 
Histogram Equalization. 

2. Adaptive Histogram Equalization 

2 

Adaptive Histogram Equalization (AHE) is a powerful contrast enhancement technique. It 
is used for the display of images where the range of significantly different recorded intensities is 
greater than the number of intensity levels that can be displayed. Extremely effective results 
(Figure 1) have been produced from several medical imaging modalities (Computed Tomography 
(CT), Magnetic Resonance Imaging (MRI), and Digital Radiography) . 

A complete description of the AHE algorithm is given in (Pizer et al., 1984] . Briefly here, for 
each x;,y; point in the image 

1. A 'contextual region ' centered at x;, Yi is chosen, and the histogram of recorded intensit ies in 
this region is computed. 

2. In this histogram, the fractional rank, r, of the recorded intensity at Xj, Yi is determined. 

3. This rank is used to compute an intensity level, i, in some grey scale ranging between h and 
i2, that is : i = it + r(i2- it). 
The calculation of a histogram at each point in the image is too inefficient for most uses, 

requiring approximately 20 minutes to compute a 512 x 512 image on a VAX 11/780. An alternative 
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method, 'interpolated' AHE, computes the histogram at a small set of sample points across the 
image and uses a linear interpolation scheme to approximate the mappings at the other points. 
The interpolated method requires approximately two minutes on a VAX 11/ 780, but for certain 
images may produce undesired artifacts not produced by uninterpolated AHE. Either method 
requires storage of the computed AHE image for later display, and use of AHE on computers with 
small amounts of mass storage would not be practical. MAHEM will compute ' real' AHE, not the 
' interpolated' version. 

3. A Parallel Algorithm for AHE Computation 

This section describes an AHE algorithm specially suit ed for computation by MAHEM . It also 
serves as an example of how other algorithms can be recast to take advantage of its unique features. 
The architect ure is described in the next section; for now it is sufficient to understand that MAHEM 
has a small ALU and memory at each pixel location to process many pixels simultaneously. 

Instead of using the 'contextual region ' described in Pizer's algorithm, the 'context-affecting 
region ' is used. At each pixel Xj,Yi in the image, this region includes all pixels xm,Ym whose 
contextual region contains the pixel at Xj,Yj· The 'context-affecting region' is the same size as the 
contextual region. The method proceeds as follows: 

1. Zero the rank counter R(xm,Ym) at all pixels. 

2. For all i, in parallel calculate the effect of pixel Xj, Yi on all pixels in the image: 

a. Let the addresses Ximin• Ximax• Yimin. and Yimax specify upper and lower address limits of 
the 'context-affecting region' of pixel Xi,Yi· All pixels Xm,Ym such that Xjmin ~ Xm ~ Ximax 
and Yimin ~ Ym ~ Yimax are within the 'context-affecting region'. 

b. For all pixels Xm, y m in the 'context-affecting region', if the intensity N ( Xm, y m) is greater 
than the intensity N(Xj,Yi), the rank counter R(xm,Ym) is incremented. 

3. After all pixels have been processed by step 1, the rank counters R(xhYi) contain the rank of 
each pixel's intensity within its contextual region. The rank counter data is output and scaled 
to an appropriate value for display. 

If one time unit is required to perform step 1 for each pixel, n 2 time units are required to compute 
AHE for all pixels in an n x n image. The time to execute the algorithm grows only linearly with 
image size and is constant for different contextual region sizes. 

Note tl)at the MAHEM algorithm is somewhat more limited than the general AHE algorithm in 
that only rectangular contextual regions are allowed. However, non-rectangular contextual regions 
have almost never been used, even with the already existing AHE software. 

The AHE algorithm developed for conventional computers requires computation of a histogram 
for every pixel in the image to determine its ranking. Performance gains by MAHEM are a result 
of 1) direct computation of each pixel's rank , and 2) simultaneous computation of the ranks by 
many pixels. A rough estimate of the time to compute 'real' AHE can be made by considering 
the number of comparisons required . Each pixel must be compared to every pixel in its contextual 
region. Using a square m x m region, m2 comparisons are required. For an n x n image, n2 m2 
comparisons must be made, requiring n2 m2 time units on a conventional computer. With MAHEM 
the regio~ compar~son and i~tensity compar ison_ are done during the same ste,p of the algorithm, 
so the m compansons requtred by the conventtonal computer increases to n . However, the n2 
comparisons made by the conventional computer are all performed simultaneously, so the time 
required on MAHEM is n 2 time units, a speedup of m 2 . Since m is usually in the range of 64 - 128 
for a 512 x 512 image, a speedup of 3 - 4 orders of magnitude is achieved in this common case. Note 
also that the MAHEM time is dependent only on image size, whereas the conventional algorithm 
grows with region size as well. 
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Figure 2: MAHEM system and pixel-processors. 

4. Overview of the MAHEM Architecture 

The present MAHEM architecture evolved from a simple machine that could only compute 
AHE and the architecture of the Pixel-planes raster graphics engine [Poulton et al., 1985]. The 
Pixel-planes engine has a small processor and 72 bits of memory at each pixel, as well as a tree 
connecting structure that allows selection of a polygonal region of pixels. This design retains much 
of the individual pixel ALU architecture, but replaces the tree with a simple means of selecting 
rectangular regions. A block diagram of the system and the pixel-processors is shown in Figure 2. 

Each pixel has a tiny one-bit ALU similar to the ALU in the Pixel-planes engine. Each pixel 
may contain from 48 to 72 or more bits of memory that are addressed individually by the processor, 
or byte-wise for readout by the central controller and/or video display circuits. The exact amount 
of memory at each pixel will be determined after a more thorough analysis of different image 
processing algor ithms and their memory requirements is made. There is a direct tradeoff between 
the amount of memory at each pixel and the size of the final system. A mechanism is provided to 
selectively enable or disable the processing at a rectangular region of pixels. 

Pixel data. is scanned out and displayed directly on the monitor. This method of output means 
that only one DMA t ransfer, that from the host computer to the engine is required before display. 
If the data is required by the host for further processing, it can be read back from the machine. 
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Approximately 128 of these pixel processors can be placed on one chip using the current MOSIS 
3 micron NMOS technology. Approximately 2000 VLSI chips would then be required for a complete 
512 x 512 system. Reductions in feature size will allow a considerable reduction in system size. 
Based on our experience ·with Pixel-planes we estimate that t he chips will operate between 5 and 
10 MHz. The resulting time to compute AHE on a 512 x 512 image will be between 0.5 and 1 
second. 

5. Traditional Processor per Pixel Approaches 

Medical image processing applications typically deal with images of approximat.ely 512 x 512 
pixels, while some applications (such as LANDSAT imaging and digital rad iography) deal with 
images as large as 4000 x 4000 pixels. Speedups of several orders of magnitude are therefore possible 
by parallel computation, and many architectures have been proposed and several have been built. 
Opportunities for parallelism also exist at the operation level, and pipelined architectures also can 
improve throughput While the speedup may not as dramatic, there is generally less special hardware 
required because a processor is not needed for every pixel. While these speedups are impressive, 
two factors, the communication scheme and input/output are considerations in determining the 
total amount of time required to execute a given algorithm. 

5.1 Communication Scbemes 

One of the principal design decisions with processor per pixel architectures is selection of an 
appropriate interprocessor communication scheme - how one efficiently t ransmits to and from the 
processors at each pixel dramatically affects the total time to perform the computation. 

Nearest neighbor communication schemes (e.g. the CLIP4 image processor [Preston et 
al., 1979]) allow each processor to directly communicate with its four or eight nearest neighbors. 
This scheme is effective when t he processing operations require intensities from the nearest neigh
bors, but is cumbersome when information is required from pixels some distance away. As the 
region size grows, processing time increases because the data required for the operat.ion must. be 
shifted from pixels some distance from the pixel of interest. For common image sizes, AHE generally 
requires information from pixels in a region 64 x 64 pixels or more. It may require information 
from all pixels in the image, when the largest possible contextual region, that needed by ordinary 
histogram equalization, is used. 

Nearest neighbor communication schemes are not good candidates for small-grained processor 
systems such as MAHEM . The number of wires required for communication may actually limit 
the numbe~ of processors that can be placed on one VLSI chip before the available chip area is 
completely used. For example, if a processor requires two wires for data communication with a 
neighbor, the processor will require eight wires to connect to all processors in a four-connected 
communication scheme. An 84 pin grid array package is the largest package currently used in 
the MOSIS community. If one assumes that approximately 40 pins on the chip are required for 
instructions, control and power, the remaining 44 pins would only allow communication to only 5 
processors on a chip. A complete 512 x 512 system would then require about 50,000 chips. 

Systolic arrays [Kung, 1982J limit the communication required between processors. Unfor
tunately systolic arrays are limited in that they are designed to compute one function at each 
processor and lack the flexibility required for a general purpose machine . 

Pipelined processors such as the Cytocomputer [Lougheed et al., 1980J also do not require com
munication with many neighbors. The processing time for algorithms on a pipelined architectures 
must include a latency time as the pipeline is filled, and this contributes significantly to the total 
computation time of a one-pass algorithm such as AHE. Furthermore, although the operations 
on each pixel occur simultaneously, each pixel must pass individually through the pipeline for 
processing. With the Cytocomputer informat ion is available only from the eight nearest neighbors. 
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5.2 Input/Output 

Many processor per pixel architectures are also prone to long delay times as data is loaded 
into the machine and results are read from the machine. The resultant image must then be 
transmitted to the frame buffer for display. These 3 required data transfers generally take place 
at the computer's DMA rate. These data transfers can severely reduce any speedup gained by 
performing the computation on the special purpose architecture. Since MAHEM will be either the 
frame buffer itself, or a pipeline to the frame buffer, the results do not have to be read from the 
machine. 

6. Other Algorithms on MAHEM 

6.1 Clipped Adaptive Histogram Equalization 

Recent experiments have shown that a modified version of AHE, Clipped Adaptive Histogram 
Equalization (CLAHE), produces much improved results. As can be seen from the images in 
Figure 1, in regions where there is not much variation in the intensity of the original image, there 
can be large variations of the intensity in the output image. CLAHE prevents this by not allowing 
more than a preset number of pixels to be placed in a single bin. 

We have devised a method to approximate CLAHE on MAHEM. The method requires several 
passes through the image, and is not as straightforward as the implementation of regular AHE. 
This algorithm requires a method where the rank counter at each pixel is incremented by a value 
less than one if the histogram bin of the broadcasting pixel is too large. 

6.2 Algebraic and Logical Operations 

On MAHEM, the computation of algebraic operations on two images is essentially t he same as 
on other processor-per-pixel SIMD architectures. 

The two images are loaded into different bit locations in each pixel's memory. All pixels are 
enabled, and instructions to perform the operation at all pixels are broadcast. The instructions will 
read bits from the pixel memory and perform bit serial operations on them. Using this method , 
MAHEM can add or subtract two images, compute the absolute value of an image, perform an image 
offset (addition of a constant value to all pixels), logical operations between several binary images , 
determine the maximum or minimum of two images, and threshold an image. 

6.3 Image Smoothing 

MAHE~ can do both averaging and weighted averaging. 

To compute the average at each pixel, the original image is first loaded into the array. Each 
pixel is then sequentially read back from the array (or rebroadcast from the host). The region 
about which the smoothing is to take place is then enabled. All enabled pixels add the current 
pixel value to a partial sum of the surrounding pixels. After all pixels have been broadcast, each 
pixel contains the sum of the pixels that effect its average. All pixels in the image are enabled, and 
the sum is rescaled to an appropriate output value . 

A weighted average is computed by an iteration of the above procedure. For example, let the 
intensity of the pixels immediately adjacent to the center pixel have weight 3, those distance 2 away 
have weight 2, and those distance 3 away have weight 1. The procedure above is repeated three 
times, each time increasing the region size to include the next "ring" of pixels. After all passes are 
complete, the sum is rescaled to an appropriate output value. 

It is also possible to change the region depending on where the pixel is in the image. The 
same procedure is used, except different region sizes are broadcast for different pixels in the image. 
The rescaling step is slightly different than the previous cases because each pixel must be rescaled 
based on the r~gion used for it. The rescaling must be carried out sequentially for all pixels, or the 
scaling factor for each pixel can be stored in pixel memory and all pixels scaled simultaneously. 
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6.4 Selecting odd shaped regions 

It may be desirable to have the capability to enable regions that are not rectangular , for 
example to select the region of an image that corresponds to liver tissue in a CT scan. This can be 
accomplished by successively enabling square regions similar to the way that a quad-tree divides up 
an image for segmentation purposes. First, a large square region within the desired area is enabled, 
and a bit in memory set to one. Another square region is enabled, and all enabled pixels OR the 
previously set (or cleared) bit with a one. This process is repeated until the entire area has been 
enabled. Further processing on this odd shaped area can then proceed. 

6.5 Other Processing 

Methods are being investigated to perform edge strength calculatio~atiai-o-ffb't!"ts-orirmtg'e"S"; 
and other image processing functions. 

7. Comparisons With Existing Architecture 

We compare MAHEM to a pipelined processor with access to its eight nearest neighbors such 
as the Cytocomputer and a 128 x 128 array of processors such as CLIP4. We estimate that these 
systems would be similar in cost and complexity to a 512 x 512 MAHEM array, but the comparisons 
are quite general because this architecture has not been finalized, and detailed analysis of the other 
architectures must still be completed. 

7.1 AHE 

AHE computation on MAHEM was discussed earlier. 

A nearest neighbor architecture such as CLIP4 could be configured as a large shift register, 
and data shifted through the array and a similar type of context-affecting computation performed 
as is done in MAHEM. Given an array large enough to hold the entire image, this computation 
would be on the order of that required for MAHEM. However, since the array is much smaller than 
the image, the image must be divided into subimages and each subimage passed through the array 
several times (to account for the affects of those pixels that are near the boundary of the subimage). 
Therefore MAHEM will compute AHE faster. 

Since this architecture must divide the image into subimages already, it may be more appro
priate to compute the interpolated version of AHE. An analysis of the speed of this algorithm is 
not complete. 

The technique of loading subimages must also be used with MAHEM when the image is larger 
than the array, but since the array is larger, this will not be required as often. 

A Cytocomputer implementation would probably be more suited for the interpolated version 
as well. 

7.2 Algebraic and Logical Operations 

Since the CLIP4 array does not have enough processors to cover the whole image, the original 
image must be loaded by sections into the array, and the processed image must be removed in 
sections. The time to do the actual computation would be similar to the time required by MAHEM. 
MAHEM would be slightly faster because of the reduced loading and unloading time required . A 
pipeline processor can perform this computation in one pass through the image and so would be 
slower than the parallel approach, but not as slow as a serial computer. In the case where the 
algorithm has many steps, this approach will come closer to the parallel implementation. 
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7.3 Image Smoothing 

The CLIP4 can compute all pixels at once, and so it only requires 0(8*communication cycles 
+ number of steps in algorithm). MAHEM has to broadcast all pixels to t he processor array, and 
requires O(n) steps where n is the number of pixels in the image. As the region size increases, 
the times required to compute the image begin to approach one another, but MAHEM will still be 
somewhat slower. Intuitively, this can be seen to be due to the fact that so many of the MAHEM 
processors will be disabled at the same time. The Cytocomputer would be about t he same speed 
as MAHEM because it must pass the whole image past the processor. It is limited to a region size 
of 3 x 3 however. 

8. Future Work 

This design is very preliminary, and both algorithms and alternative architectures must be 
studied: 

1. The context-affecting region concept seemed at first to be only useful in computing AHE. We 
have extended it to several other image processing techniques, and are investigating others such 
as spatial image displacement and edge detection. 

2. CLAHE has shown considerable improvement over AHE and we believe it will become the 
method of choice. Our present algorithm for computing CLAHE is awkward and slow. We will 
investigate alternative algorithms and t he affects of approximations on CLAHE. 

3. The algorithms discussed in this paper must be simulated to verify that they in fact work 
properly and to suggest possible architectural improvements. The primary result of this 
investigation will be determination of the instruction set and the amount of memory required 
at each pixel. 

4. The cost tradeoffs of using MAHEM as the frame buffer itself vs. a bulge in the pipeline to a 
regular frame buffer must be evaluated. Several design decisions must be made as to make 
MAHEM a frame buffer vs. a bump in the pipeline to a regular frame buffer. 

5. The comparisons with existing image processing architectures in this paper is very preliminary. 
A detailed analysis of these architectures must be completed to determine where this design is 
advantageous and if any aspects of these designs could be useful to MAHEM. 

9. Conclusions 

This aD:hitecture shows excellent promise for high speed computation of AHE. The difficulties 
encountered with data transfer and communication between pixel-processors are minimized by this 
design. Other algorithms are computed at the same speed or nearly the same speed as other 
processor-per-pixel architectures. As VLSI feature sizes decrease, this architecture appears more 
attractive than the current designs that require nearest-neighbor communication. The finer-grained 
processors of MAHEM allow many to be placed on a single chip, resulting in a reduced system cost 
as many identical chips are replicated. Finally, the interface to the host computer is smoother 
because of the similarities of MAH EM to a standard frame buffer . 

Austin and Pizer 6 February 1986 



References 

Kung, H. T . January 1982. "Why Systolic Architectures?," Computer, 15(1), 37-46. 

Lougheed, R. M., D. L. McCubbrey, and S. R Sternb.e~g ... A1.1gust · 1980. "Cytocomputers: 
Architectures for Parallel Image Processing," IEEE Workshop on Picture Data Description 
and Management. 

Pizer, S. M., J. B. Zimmerman, and E. V. Staab. 1984. "Adaptive Grey Level Assignment in CT 
Scan Display," Journal of Computer Assisted Tomography, 8(2), 300-305. 

Poulton, J ., H . Fuchs, J . D. Austin, J. G. Eyles, J . Heinecke, C. Hsieh, J. Goldfeather, J. P. 
Hultquist, and S. Spach. May, 1985. "PIXEL-PLANES: Building a VLSI Based Raster Graphics 
System," Proceedings of the 1985 Chapel Hill Conference on VLSI, Chapel Hill, NC, Computer 
Science Press, 35-60. 

Preston, K., M. J . B. Duff, S. Levialdi, P. E. Norgren, and J. Toriwaki. May 1979. "Basics of Cellular 
Logic with Some Applications in Medical Image Processing," Proceedings of the IEEE, 67(5), 
826-856. 

Austin and Pizer 6 February 1986 


