
Filtering Monitoring Data

Richard Snodgrass

Department of Computer Science
University of North Carolina

Chapel Hill, North Carolina 27514

January, 1986

Abstract

TR 86-001

Monitoring is an essential part of many program development tools and plays a central
role in de bugging, optimization, and reconfiguration. One aspect of monitoring, that of
collecting only needed information and discarding irrelevant data, termed filtering, is
becoming more important. By specifying monitoring in a relational database query
language before the data is collected, it is possible to selectively enable only the particu
lar sensors needed. A high degree of filtering results from incorporating a new operator
into the algebraic form of the query and transforming the expression into a more efficient
one that enables fewer sensors.

Copyright (C) 1985 Richard Snodgrass

Table or Contents

10 Introduction oooooooooooooOOoOOOOOOOOOOooo 1

20 Relational Monitoring oo 2

30 A Sensor Enabling Mechanism oooooooooooOOOOOoOoOOOOOoOOOOOOOOOoOOOOOOOOOOOOOOOOOOoooOOoOOoooOOoOOoOooOoOooooooo 5

4o An Example ooooooooooooooOoooOOoOOooOoOoooOoOOOOOOoOO ooo OOOOoOOOOOOOOOOoooooo 7

5o The Relational Algebra oOooooooooooooooooooooOoOOOOOOOOOooOOOOOOOOOOOoOoOOOOOOOOoOOOOOOOOOOOOOOoooOOooooo.•oooooooo•o 13

60 Incorporating Primitive Relations in the Algebra oo••oooooo 14

6ol. The 0< Operator ooooooo••ooooooo••o••••ooooooooooooooooooooo••o•oooooooooo••ooo•••ooooooooooooooooooooooooooo 15

6o2o Entity Sources oooooooooo•o••oooooooooooooooo••oo•••oo•••oooooo••o••ooooooooooooooooooooOoo•oooooooooo••o••oooooo 17

6o3o Data Generation and Analysis 000000000000000 oooooooooooooooooooooooooooooooooo 000000000 ooooo·ooooooooooo 18

6.4o Algebraic Transformations oo•oooooooooo •• ooo 20

7o Conclusions and Future Work oooooooooooooooooooo•ooooooooooooo•oo.o 25

8o Acknowledgements oooooooooooooo•oo•o•ooooooooooooo•oooooooo•ooooooooooooooooooooooooooooooooooooooo•oooooooooooooooooo.oo 27

9o Bibliography ooooooooooooooooo••oo•oooooooooooooo•oooo•oooooooooooo•o•oo 27

I

List ot Figures

Flsure 11 Entity Relations .. 9

Flsure :t1 An Event Relation .. 10

Flsure 81 Remaining Primitive Relations .. 11

Flsure 41 A Derived Event Relation .. 12

u

1. lntroduetlon

Monitoring is the extraction of dynamic information concerning a computational process, as

that process executes. This definition encompasses aspects of measurement, observation, and test-

ing.l Monitoring is a fundamental component of many computing activities. One use of monitoring

is to facilitate debugging. Monitoring is a first step in understanding a computational process, for it

provides an indication of whol happened, thus serving as a prerequisite to ascertaining wh11 it hap-

pened. A second use of monitoring tools is in making efficient use of limited computing resources.

Tuning requires feedback on the program's efficiency, which is determined from measurements on

the application while it is running. Finally, monitoring information may also be used internally by

the application program. For example, monitoring information is valuable for programs which must

be reliable; the fact that a processor (executing proceases belonging to a program) has failed, for

example, is important to the program if it must be able to recover from such failures. In one study

of program development tools [llJ, a quarter of these tools were highly dependent upon monitoring,

including those under the categories of tracing, tuning, timing, and resource allocation. Monitoring

is thus an essential function.

Much has been written about monitoring on uniproceasor systems (e.f., the bibliographies [1,

17!) and the general techniques of tracing and sampling are well established. However, one aspect of

monitoring, that of collecting only needed information and removing irrelevant dynamic data,

termed jilterin1, is becoming more important as programs and their environments become more

complex and are distributed to a greater degree. Previous work avoided this iasue, either by unreal-

istically limiting the number of sensors (e.g., [2, 8, 15!), by requiring the user to manually specify the

filtering (e.g., [3, 6!), or by accepting the high overhead of permanently enabled sensors as inevitable

(e.g., [14!). In this paper, we show that the sophisticated filtering of monitoring data is poasible if the

sensors and desired analysis are precisely specified before the data collection.

1 There are &~ lead two other de&nitiou of •oailor thai should be mentioaed: a eyaoaym for opera.ii;q &y!tem ud u
a.rbiter of access to a d&t& Rradure in order io ennre 1peciied invariuts, aeu&lly relating to BYDthroD.i~&tioa !tOJ. Both
definitioDS emphui1e the eofllrol, rather thu the o6tert•1Ut .. l upecta of monitoriq:. Monitoriq is cloeely anociated with,
but strictly sepa.ra.ie from, a.ctivitiee which chance the coa.ne of the comput&tioul activity. The term mollitor aa used in thi11
paper is the (usually software) agent performiq the mouitoriq.

The fundamental problem is that traditional monitoring systems do not have sufficient infor

mation to automatically perform substantial filtering over a large number or sensors. In Section 2,

we present a new approach to monitoring that provides the monitor with this information. The third

section discusses a data collection mechanism that is very flexible in terms or the filtering it sup

ports. Section 4 introduces an example that will be used throughout this paper. The next two sec

tions show how the monitor is able to utilize the information provided by the user to perform

sophisticated filtering. A final section summarizes the approach and points to further research.

2. Relational Monltorlns

The purpose or this section is to provide an overview or a new approach to monitoring, the

relational approach, within which sophisticated filtering is possible. This approach utilizes an exten

sion or a conventional relational database to formalize the information processed by the monitor. A

few definitions are useful. The subject BI/Biem is the software system being monitored, usually the

operating system or the user's program. A B<nBor is a. section or code within the subject system

which transfers to the monitor information concerning a.n event or state within the system. Ir the

sensor is lr4ced, then a data packet is· transferred to the monitor each time a particular event

occurs. Ir the sensor is B4mpled, then a data packet is transferred each time the monitor requests

the sensor to do so. This d414 pacllel may be as simple as a bit that is complemented when the

event occurs, or as complex as a long record containing the contents or system queues. The removal

or irrelevant data packets is termed filtering.

The relational model provides both a structuring or the information and manipulations on that

structure J5J. A relation may be thought or as a table having a number or rows (called tuples) and

columns (called allrihules). New relations ca.n be derived from existing ones using one or several

data manipulation languages developed for the relational model; these quer11l•nguages are syntacti

cally concise, yet are remarkably powerful JU!Ima.n82J. One important aspect or some query

languages is that they are declarative rather than procedural: they allow the user to specify who/

information is desired, rather than loow this information is to be derived.

I

The conceptual design or a d&t&base is aided by the enlillf·relalion8hip mode/]4]. In this model

relations are classified as entillf relations or relationship relations. Each tuple or an entity relation

contains an entity identifier along with attributes describing that entity; an ex&mple is the entity

relation Employee with attributes Name, Department, Salary, &nd YearsServiee. Each tuple or a

relationship relation contains two or more entity identifiers along with attribut~ describing that

relationship between the entities; an example is the relationship relation Manage~~, with attributes

Manager, Subordinate, and YearsUnderManager.

Conventional databases are static, in that they represent the state or an enterprise at a single

moment or time. Although their contents continue to ch&nge as new inform&tion is added, these

changes &re viewed as modifications to the state, with the old, out or date data being deleted from

the database. The current contents or the database may be viewed as a snapshot or the enterprise

at a particular moment or time.

For relational databases to be relevant to monitoring, there must be a means or recording facts

that are true only for a certain period or time. Historical databases, which record the history of the

real world 125], can model this dynamic computation. Historical databases require more sophisti

cated query languages than static databases; TQuel (Temporal QUEry Language) is one that

includes constructs for historical queries 123, 26]. Examples or TQuel queries will be given after the

new approach to monitoring is presented.

We have proposed a new approach to monitoring in which an historical database formalizes

the information processed by the monitor]21, 22]. The benefits include a simple, consistent structure

for the information, the use or powerful declarative query languages, and the availability or & catalo

gue or optimiz&tions. In this approaeb, the user is presented with the conceptual view that the

dynamic behavior or the monitored system is a.vailable as a. collection or historical rel&tions, ea.ch

associ&ted with one or more sensors in the subject system. In m&king historical queries on this con

ceptual d&t&base, the user is in ra.ct specifying in a. non-procedural fashion the sensors to be enabled,

the &nalysis to be carried out, &nd even the gra.phical present&tion or the derived d&t&.

a

Note that we are not proposing to actually represent the dat& &S relations in & database.

Instead, we will show that historical database provides a convenient and powerful fiction that guides

the processing but does not constrain the representation. In fact, in most c&Ses the relations will

never actually collectively exist as data stored either in main memory or on secondary storage.

In this approach monitoring proceeds in live consecutive steps:

Step 1: Sensor configuration
This step results in a specification of the data to be collected and the placement of the sensors.
Such sensors can be quite flexible; the user is only concerned with specifying the high level pro
perties of the sensor. Conceptually, each sensor declared in this manner defines an historical
relation available for later use in defining other, derived relations. The relations directly asso
ciated with sensors are termed primitive relations, as contrasted with derived relations, which
are not associated directly with sensors. The specification of the primitive relations identify the
information available to the monitor.

Step e: Sensor installation
This step occurs automatically: the sensor is produced by the monitor from the specifications.
Relevant aspects of the sensor are communicated to the components of the monitor that need
to know this information. The sensor code handles all the necessary interaction with the moni
tor, including enabling and buffering, and may be customized to the task it is to accomplish
and the environment in which it is to execute.

Step 9: Analysis specification
In this step, the user provides one or more historical queries, defined on the primitive relations
specified in Step 1.

Step 4: Display specification
This step occurs concurrently with analysis specification. By associating entities and relation
ships with graphical icons (e.g, a square for a processor, a circle for a process, and spatial inclu
sion (circle within a box) for the relationship "running in"), sophisticated illustrations of
dynamic behavior can be generated by the monitor.

Step 5: Execution
This step, comprised of enabling the sensors, generating the data, analyzing the data, and
displaying the results, occurs automatically once the queries have been specified. The monitor
first analyses the query to determine precisely the sensors that must be enabled to collect the
requisite low level information needed to satisfy the query, thereby guaranteeing that extrane
ous information is not collected. These sensors may be subsequently disabled, and other sensors
enabled during the monitoring session b&Sed on the data that was collected. All the techniques
previously developed for data collection are applicable. Data analysis can occur either locally,
on the same processing node as the sensor that collected the data, or at a centralized location,
or at an intermediate location, depending on the precise query and the capacity of the com
munication mechanism. The monitor h&S sufficient information through the sensor
specification and the user's query to make the decision as to where the processing will occur.
The monitor can also perform optimizations on the query, mapping it into a different query
with an identical semantics but improved performance. Information display can also be made
more efficient by capitalizing on the fact that only a small portion of the state changes during
each transition and by utilizing incremental display algorithms.

4

Filtering occurs in Step 5, using the speeiflc&tions provided by the user in Steps 1 &nd 3. The

primary distinctions between the traditional &pproa.eb to monitoring and the rel&tional approach

outlined here are

• In the relational &pproa.eh, sensor installation precedes automatically from the specification pro
vided in Step 1. Most traditional systems either present a predefined collection or sensors or insist
that the user handle all details or sensor installation manually.

• In traditional systems, the analysis is quite constrained; usually the user is given a short menu or
predefined analysis options.

• In traditional systems, the data is first collected and stored for later analysis. In the relational
approach, the queries are first specified by the user, with the filtering, data analysis, and information
display occurring automatically, driven by the queries.

Details or the relational approach, es~eeially bow TQuel may be used to specify the analysis

and how the analysis proceeds rrom the queries, is presented elsewhere [22). Aspects or the display

specification and the incremental display or historical relations are under active study [19). In this

paper we will focus on one component or Step 5, enabling the sensors. The next section will examine

in detail how this is accomplished.

3. A Sensor Enabling Meehanl•m

The sensors operate within an environment comprised or a collection or tgped entities, both

passive (i.e., data structures, such as ready queues and semaphores) and active (e.g., processes).

Entities have identifiers, which are system-dependent names. For instance, in Unix [18), processes are

indicated with process-ids; in StarOS [13) entities are named using capabilities, and in Medusa [16)

by descriptor-list/offset pairs. Instances or entity types are displayed to the user as character strings;

we assume that the operating system supports the mapping between user-oriented character strings

and internal entity identifiers. The entity identifiers are assumed to be unique across space and time.

Finally, we assume that the monitor can locate an entity given its identifier.

T11pe managers export operations to be applied to entities or the type(s) supported by the

manager; all operations on an entity are performed by the type manager through well-defined inter-

races, implying the existence or a type-checking mechanism. This model thus identifies the operation

s

being perrormed on the target by the performer (the type manager) as a result or a request by an

initiator (any process). Each sensor is placed in a type manager, and is associated with an operation

(or set or operations) provided by the type manager. For example, the file system (a type manager

ror the file entity type) may have a ReadFile sensor located in the code perrorming the read opera

tion. Other sensors, such as OpenFile, Physica!BlockRead, and ModiryProtection, may also be

present in the file system. Each sensor is associated with a unique integer, the BenBor identifier,

which is combined with the collected inrormation when it is retrieved by the monitor. The model

applies to all levels or granularity; in particular, a type manager and its sensors may be implemented

in hardware, firmware, or software.

Sensors may be enabled by setting an enable flag. The placement or this ftag allows ftexibility

in the enabling or events. Enable Hags associated with a passive entity, such as a file, arbitrate the

collection or monitoring information ror that entity. Setting the block write event Hag associated

with a particular file causes information to be collected for file block writes onl11/or this file by any

file system process. On the other hand, setting the file block write enable Hag associated with a par·

ticular file system process (a portion or the type manager) causes inrormation to be collected ror file

block writes on any file performed only b11 this file ayatem proceBI. The placement or the Hags allows

filtering along three dimensions, by target, performer, or initiator; the placement or the sensor allows

filtering along the fourth dimension: the operation. Each sensor supports filtering in two or this

dimensions: the operation and one other dimension. However, several sensors can be associated with

an operation (such as the file block write operation in the previous example), each designating a

different Hag to enable the sensor.

Ingber degrees or filtering are also possible. An event may be enabled on a combination or

three or the components or the operation, such as a block write operation by this file system on this

file. Filtering on all rour aspects represents total control over which event records get generated: a

block write operation by this file system process on this file, as requested by this initiator. Achieving

higher degrees or filtering requires additional inrormation to be stored and additional processing to

•

determine it the event is indeed enabled. Thill extension requires greater than linear space and/or

time in the number of entities, and thus is expensive in an environment supporting many entities.

The enable flag can be generalized to an integer counter it multiple enable requests are made

by the monitor before the sensor executes. In this ease, enabling involves incrementing the counter

and disabling involves decrementing the counter.

In the preceding discussion, the assumption was made that the operation is sensed and the

information communicated to the rest or the monitor when the operation occurs. Such data packets

are called lr4ced data packets, since their generation is •gncllronou• with the operation, and thus

with the operation whose target, performer, and initiator is named in the data packet.

S4mpled data packets, on the other hand, are generated at the request or the monitor, aegn·

ehronoue/g with the operation. As an example, a sensor located in the scheduler or an operating sys

tem could generate lr4ced data packets pertaining to context switching: process z started running at

time 1
1
, process 11 started running at time t,. etc. Another sensor located in the scheduler could gen

erate umpled data packets at the request or the monitor: process z is now running. A sampled sen

sor will usually, but not necessarily, clear the enable flag after generating the data packet, thereby

causing only one data packet to be generated per request or the monitor.

4. An Example

In this section, we introduce an example subject system (an operating system) and discuss some

sensors that might be defined in this system. Since the user is encouraged to think or sensors as

defining historical primitive relations, we will employ the entity-relationship model to describe the

sensors. In practice, the user employs a sensor description language to specify these primitive rela

tions.

In this example, there are three types of operating system entities known to the monitor: Pro

cessor, Process, and Mailbox. In this example, there are several processors, which execute the

processes. At any point in time, a process may be executing on only one processor, though processes

7

can execute on more than one processor over their lifetime. A process may send messages to a mail

box, where they will be queued until a process executes the receive operation on the mailbox. H a

receive operation is executed on an empty mailbox, the process will block until a message is sent to

that mailbox. Several processes may be blocked on a ma.ilbox. Although this example is of necessity

oversimplified in comparison with actual operating systems, it should be sufficient for the purposes

of this paper. We will now attempt to capture the behavior of this system within the relational

model.

Entity relations must be made available for each entity type. The name of each is identical to

the name of the type. The Proeeuor entity relation contains one attribute, the processor identifier.

This relation is always enabled; its associated sensor is placed in the configuration manager which

handles the restarting of crashed processors. The Proeeu entity relation contains two attributes,

the process identifier and the state, an ennumeration having the values Rearlv (i.e., the process is

scheduled but not currently running), Running (the process is currently running on a processor),

Blocked (the process is waiting on a mailbox), or Done (the process has halted or aborted). This

relation is always enabled and is associated with a sensor in the process manager. Finally, the Mall

box entity relation contains one attribute, the mailbox identifier, and is always enabled. Its sensor is

located in the process communication manager.

Within the monitor, relations are differentiated temporally: there are event relations and inter

val relations. Entity relations are always interval relations, for they model entities while they exist in

the subject system. Each interval relation contains two implicit attributes, the time the modeled

interval began, and the time the modeled interval ended. Figure 1 shows the three entity relations,

with user names denoting the internal entity identifiers. Most of the entities were created when the

system was brought up at 1:00:00 and destroyed when the system was halted at 4:00:00. Interval

relations are associated with two sensors, one determining when the interval began and one deter

mining when the interval ended. The first task or the data analysis portion of the monitor is to con

struct intervals from the data packets generated from these sensors.

8

Proeet1110r (Proeet1110r):

Proeeu (Proeeu, State):

Figure 11 Entity Relations

Processor I (From)

A I:OO:OO
B I:OO:OO

4:00:00
4:00:00

Process State (From) (To)

Mailbox (Mailbox):

PI
P2
PI
P2
PI
P2
PI
PI
P2
P2
P2

Ready
Ready

Running
Running
Ready

Waiting
Running

Done
Ready

Running
Done

I:OO:OO
I:23:24
2:00:00
2:05:I2
2:I5:37
2:45:30
2:45:30
2:52:47
2:54:20
2:56:10
2:57:05

Mailbox (From) (To)

2:00:00
2:05:I2
2:I5:37
2:45:29
2:45:30
2:54:20
2:52:47
4:00:00
2:56:IO
2:57:05
4:00:00

M1 I:OO:OO 4:00:00
M2 1:00:00 4:00:00
M3 I:OO:OO 4:00:00
M4 1:00:00 4:00:00
M5 I:OO:OO 4:00:00
M6 I:OO:OO 4:00:00
M7 I:OO:OO 4:00:00

Relationship relations ca.n be either event relations or interval relations. A tuple in a.n event

relation describes a. change in the sta.te of the system which occurred a.t a. particular instant of time.

An example is the SendMesaase event relation, which ha.s two explicit attributes, a Process (the

initiator) a.nd a. Mailbox (the target), and one implicit attribute, the time the event occurred (see

Figure 2). The tuple (PI, M3, 2:00:05) in this relation represents the instantaneous event of "Pro-

cess PI sent a. message to Mailbox M3 a.t time 2:00:05." The content of the messa.ge is not recorded

in this relation. This rela.tion is traced on the initiator, meaning that a. data. packet is constructed if

a message is sent to any mailbox by a process with its associated flag set.

Figure 11 An Event Relation

SendM........, (Proceu, Mailbox):

Process MailBox (At)
P1 M3 2:00:05
P1 M4 2:00:06
P1 M7 2:51:13

There are four other relations defined for this system (see Figure 3). The Runnlng()n (Pro-

eeu, Proeeuor) interval relation describes which Process (the target) is running on which Proces-

sor (the performer). This relation is sampled on performer; the scheduler of each processor will

respond with the current running process when requested by the monitor. Since the system state is

constantly changing, the relations evolve over time. For instance, the tuple (P1, B) may be valid in

the RunnlngOn relation for only a few milliseconds, and new tuples &re &dded to the SendM.,._

sage relation as messages are sent. The Waltln1 (Proceu, Mailbox) relation lists the processes

(the initiators) blocked while waiting to receive from & mailbox (the t&rget) &nd is traced on the tar-

get. Since multiple processes might be waiting on the m&ilbox, we specify that the enable ftag is a

counter several bits wide (this option was discussed briefty in Section 3). We also specify that the

sensor will decrement this counter each time & data packet is generated; this will permit an impor-

tant optimization to be discussed later. Finally, there is & Clock event rel&tion which contains no

explicit attributes. The Clock relation is treated specially by the monitor; it is generally used to

specify sampling, as will be seen below.

10

Figure 81 Remaining Primitive Relations

Runnlns(>n {Proc.,.., Proc....or):

Process Processor I (From) (To)

P1 A 2:00:00 2:15:37
P2 B 2:05:12 2:45:30.
P1 B 2:45:30 2:52:47
P2 A 2:56:10 2:57:05

Waiting (Proc.,.., MailBox):

Process MailBox I (From) (To)

P2 M7 2:45:29 2:54:20

Clock:

fAt)
1:00:00
1:00:01
1:00:02
1:00:03

The sensor configuration provides the inrormation necessary to install the sensors; the histori-

cal queries on the primitive relations associated with these sensors provides the inrormation neces-

sary to automate the remaining steps by specirying the content or derived relations. Historical

queries are expressed in the temporal query language TQue/ J23, 26j. TQuel is a general temporal

query language, augmenting the (static) relational tuple calculus query language Que! J9J with addi-

tiona! constructs and providing a more comprehensive semantics by treating time as an integral part

or the database.

Here we give two sample TQuel queries. These queries have been chosen to illustrate several

important filtering techniques; others based on these primitive relations defined earlier are given

elsewhere j22j. The query

11

range of W i• Waiting
range of S i8 SendMessage
retrieve ResumedbyPl (W.Process)

valid at end of w
where S.Mailbox = W.Mailbox and S.Process = Pl
when s precede end of w

Ezample 1: Which processes were resumed by process PI!

determines those processes which were initially blocked on a. mailbox, then resumed a.s a. side effect

or a. message being sent by Pl to the mailbox. The act or Pl sending a. message (s. Process =

Pl) causes, directly or indirectly (s precede end of w), another process (W .Process) that wa.s

currently blocked on a mailbox to become unblocked on that same mailbox (S .Mailbox =

W .Mailbox). This event or unblocking (valid at end of W} will be recorded in the event rela.·

tion Resumedb;yPl (see Figure 4).

Figure 41 A Derived Event Relation

Resumedb;yPl (Proeeu):

Process (At).

P2 2:54:20

The valid-at clause can be used to indicate sampling. The user can request that the RunnlngOn

relation be sampled every ten seconds through the query

range of c ia Clock[lO]
retrieve RunningOnEverylOSaconds (RO.all)

valid at c

Ezomple e: Sample the RunnlngOn relation.

Clock [10] denotes a clock that ticks once every 10 ticks or the underlying Clock relation, which

ticks once a second (c.r., Figure 3). The valid-at clause indicates that the user is interested in the

tuples or RunnlngOn only at particular clock ticks.

The expressive power or TQuel has a cost: the monitor must be able to determine which sen-

sors to enable, what calculations to perform, and how to display the results, all from the TQuel

11

query. Fortunately, there has been much work on processing relational query languages, and the

results or these efforts can be applied in this setting as well. To provide the context for this discus-

sion, we first review how conventional database management systems (DBMS) process queries.

&. The Relational Algebra

Tuple calculus queries, such as those formulated in Que!, express wlool derived information is

desired, Jetting the DBMS determine how the information is to be derived. Relational algebra

expressions serve the latter purpose. The DBMS converts each tuple calculus query into an alge-

braic expression. As this expression is usually quite inefficient, optimizations are applied that con-

vert the initial expression into a semantically equivalent one that is more efficient.

In this paper, we will use only a few common relational operations 1281:

Selection
Ir F is a formula involving constants, attribute names, arithmetic comparison operators and
logical operators, then t7F(R) is the set or tuples tin R such that, when the appropriate com
ponents or t are substituted for the occurrences or the attribute names in F, then the formula
F becomes true. For example,

u E .Dept="Toy"(Emplo;yeeE)

denotes the set of tuples in Employee who work in the Toy department. The subscript on
Employee indicates that the tuple variable E has been associated with the relation through a
range statement.

Projection
Ir R is a relation with k attributes, we Jet 7r0 1 ... 1 (R), where d; is a attribute name,

1 • ~

denote the ~gt of m-tuples 4 14 2 • • • ~!.. such that there is some k-tuple 6
1
6

2
• • • 6, in R for

which the i component in 4 is the d; component in 6. For example,

lrE .N !. Salary (Employee!)

denotes a relation with two attributes, E. Name and E.Salary.

Corlerion product
Let R and S be relations with k

1
and k

2
attributes, respectively, then RXS, the cartesian

product of R and S, is the set or tuples with k
1

+ k
2

attributes whose ftrst k
1

components
form a tuple in R and whose last k

2
components form a tuple inS. For example,

Employee! X ToPromoteT

denotes a relation with ftve attributes, E.Name, E.Dept, E.Salary, E. Manager, and
E.YearsService from the Employee rela.tion and T.Na.me from the ToPromote relation. The

non-uniqueness of attribute names is inconvenient; we make the names unique by subscripting
the tuple variable to each relation name.

To convert a Que! query into a relational algebra expression, first take the cartesian product of

the underlying relations (each associated with a tuple variable used in the query), apply a selection

with the formula coming from the where clause, and then apply a projection, with the attributes

coming from the target list. The algebra may be extended to handle TQuel's valid and when

clauses, involving the extension of the projection and selection operators, respectively. The valid

clause is handled by a temporal variant of the projection operator, denoted by a superscript of T.

This operator will project out those intervals designated by expressions in the valid clause. The

when clause is handled by a temporal variant of the selection operator, also denoted by a superscript

of T. The subscript for this operator consists of the temporal predicate specified in the when clause.

A more substantial modification is to make the operators incremental, so that they operate on

streams of tuples, one at a time, possibly generating one or more output tuples whenever an input

tuple arrives.

As an example, the query for Ruumedb;yPl bas the corresponding temporal relational alge-

braic expression

(El}
T T

~W.Process(~at end of ~US precede end of W(uS.Ma1lbox=W.Ma1lbox(uS.Process=Pl(

Waltlns., X SendMessage
8

)))))

and the query for RunnlngOnEverylOSeconds bas the corresponding expression

(E!J)
T

~at c(Running()n,_0 X Cloek[lOJc)

8. Incorporating Primitive Relations In the Algebra

Enabling sensors manually in a complex system is very difficult for the user, due to the paten-

tially large number of sensors. One alternative, the brute-force enabling of all sensors, is excessively

inefficient. Hence, the monitor should handle the task of determining which sensors to enable, and

should only enable the necessary sensors, thereby filtering out unnecessary data packets. Filtering

14

should occur early and orten, so that scarce communication and processing resources are not

expended on data which is later discarded.

The monitor must utilize as much information concerning the query to enable the correct sen-

sors. This information is used

• to enable the appropriate traced sensors, and

• to trigger the appropriate sampled sensors at the appropriate times on the appropriate entities.

The strategy employed here was to modify the temporal relational algebra to accommodate primi-

tive relations. The algorithm which translates TQuel statements to algebraic expressions specifies

defaults for which sensors to enable. Transformations then map these expressions into semantically

equivalent expressions that enable fewer sensors. These transformations are similar to those used to

optimize conventional algebraic expressions generated from static query languages.

11.1. The 0< Operator

To incorporate primitive relations in the algebra, a new operator, a, is used. One parameter

or this operator results in a relation indicating which sensors to enable; the output of the operator

consists of the tuples generated by these sensors. The subscript of this operator denotes the tuple

variable associated with primitive relation, and thus, indirectly, the primitive relation itself. The

superscript denotes the strategy employed to collect the data associated with the primitive relation:

• T:P
• T:l
• T:T
• S:P
• S:T
eD:P
eD:l
eD:T

Traced, with the enable flag in the performer.
Traced, with the enable flag in the initiator.
Traced, with the enable flag in the target entity.
Sampled, with the enable flag in the performer.
Sampled, with the enabled flag in the target entity.
Traced, then disabled, with the enable flag in the performer.
Traced, then disabled, with the enable flag in the initiator.
Traced, then disabled, with the enabl'e flag in the performer.

S:/ is not useful, since the initiator is always the monitor process in the case of sampled sensors.

The 0< operator is substituted for the primitive relation(s) appearing in the expression. For

example, the SeadMeuqe event relation is traced on the initiator. Ir this relation was referenced

in a. query through the tuple variable S, it would appear in the algebraic expression as

16

The "I"' is replaced with an algebraic expression computing the processes for which this sensor is to

be enabled. Let us suppose that this expression was simply the constant process entity identifier Pl.

Then this operator would cause the enable Oag in the process named by Pl for the SendMessage

sensor to be set. When the process named by Pl executed a SendMessage operation, the sensor

would fire and would generate a data. packet containing the entity identifier for the process (i.e.,

Pl), the entity identifier for the mailbox being sent to, and a timestamp (c.r., Figure 2). This data

packet would be converted into a tuple, which would be contained in the relation output by the t:r

operator.

T:P T:l T:T D:P D:l D:T
The t:r t:r t:r t:r t:r , and t:r operators have one argument, the relation

D
comprised or entities containing the flag to be enabled. The t:r operators, termed disable-traced,

are associated with sensors that immediately disable their enable flag after generating a data packet.

S:P
The t:r operator has two arguments: the entity containing the enable flag (the performer) and a

S:T
specification or when to sample. The t:r operator has three arguments: what to enable (the target

entity), who to request the sampling or (the performer), and when to sample. In all eases, the output

consists or the tuples in the relevant primitive relation generated as a side effect or tuples entering

the t:r operator.

A few examples will clarify the differences between the types or t:r operators. We have already

examined the SendMesaap event relation. The Runnlng()n interval relation is sampled on the

performer, and would appear in the algebraic expression or a query referencing it through the tuple

variable RO as

The first "I"' would be replaced with an expression computing processes; the second "f'' would be

replaced with an expression computing events, at which times the request to sample would be con-

veyed to the processes comprising the first argument. Generally the secondary argument is a Clock

18

relation. The Waiting interval relation is disable traced on the target mailbox:

When entities arrive from the expression replacing the "f'', the Waiting sensor is enabled. However,

it is immediately disabled once the operation occurs and the sensor generates the data packet.

The o: operator is distinct from the other relational operators in that the output tuples are not

simply a function of the input tuples. Instead, the output tuples comprise a subset of a primitive

relation, the subset being determined indirectly by the input tuples. Equivalently, the output tuples

comprise the data packets generated by the associated sensor, which was enabled as a side effect of

input tuples entering the o: operator. The incrementation execution of a temporal relational alge-

braic expression is coupled with the sensors in the subject system through the o: operator(s) appear-

ing in the expression.

There is one additional connection between the input and output tuples of an o: operator. As

T:P
an example, we will use o: . The set of entity identifiers present in the input tuples of this opera-

tor will be a superset of the set of entity identifiers present in the Performer position of the out-

put tuples, since only those entities were ever enabled. Similar statements can be made of each type

of o: operator. This connection will soon prove quite valuable.

11.:1. Entity Soureet1

The algorithm translating TQuel queries to algebraic expressions must specify defaults for

which· sensors to enable, i.e., what the arguments to the o: operators must consist of. Here the entity

relations (defined in Section 4) for the entity types in the subject system are used. These relations

generate tuples naming all existing entities of that type, and are termed enlilg ••urc••· Entity

sources are denoted by the entity name; Proeeu denotes the entity relation and hence the associ-

ated sensor that generates all existing process entities (recall from Section 3 that this sensor may be

found in the process manager).

1'1

Entity sources complete the terms replacing the primitive relations. The term replacing

SendMessage
8

in {El} is

T·l
o

8
· (lrP (Process)) roceea

Note that a projection operator is necessary for those entity relations that contain more than one

attribute. For the second argument or sampled or operators, which specifies when to sample, one or

the ·primitive clock relations is used as a default. The term for RunningOnao is

S·P
O<R~ (Processor, Clock)

(note that Cloek is an entity source) and the term replacing Waiting, in {Efl} is simply

D·T
o

11
• (Mailbox)

The final algebraic expression for the Reaumedby.Pl query can now be presented (compare with

{Efl}):

{E9}
T T

lrlf.Process(lrat end of J(fs precede end of J(fs.Mailbox=lf.Mailbo)(fs.Process=Pl(
D·T T-1

o
11

• (Mailbox) X a
8

· (lrP (Process))))))) rocess

as can the expression for the Runnlng()nEverylOSecond query (compare with {Ef!)):

{E4)
T S·P

lrat c(aR~ (Processor, Clock) X Clock[lOJcl

Entit_y sources are associated with sensors that are permanently enabled. Note that an entity

relation need not be an entity source, if it never appears as a default parameter or an or operator,

but an entity source must be an entity relation.

e.a. Data Generation and Analyala

Recall from Section 5 that the temporal relational operators are incremental, in that they take

streams or input tuples and possibly generate one or more output tuples whenever an input tuple

arrives. The expression is started by having the constants and entity sources (e.g., Mailbox and

18

Process in Expression {E9}} generate initial tuple streams. These streams are comprised or unary

tuples, each containing one entity identifier. Entity identifiers may be accessible by the monitor, or

they may have to be supplied by the user. Expression {E9} is "primed" with two streams, one con

taining a tuple for each processor, acquired from system configuration tables, and one containing a

tuple for each mailbox, acquired from the process communication manager.

The initial tuples flow into the specified operators. In the ease or Ct operators, the tuples indi

cate which entities contain the appropriate enable flags to set. The monitor deduces the entity's

location from the entity identifier (the mechanism presented in Section 3 assumed that this was pos

sible) within the tuple, and sets the enable ftag in the entity, thereby enabling the sensor. Once

enabled, the sensors generate data packets, which are gathered and sent to the monitor, where they

are separated by sensor identifier. The sensor identifier names a particular Ct operator associated

with a tuple variable ranging over the primitive relation associated with a sensor. The data packets

containing the correct sensor identifier form the tuples output by the Ct operator. Hence, tuples

flowing into the Ct operator indirectly enable various sensors, which generate data packets that even

tually comprise the output or the Ct operator. The tuples flowing into Ct operators representing inter

vals specify both when to enable a sensor on a particular entity and when to disable that sensor on

that entity. Data generation occurs until all the sensors are disabled in the course or execution.

The processing resulting from Expression {E9} is very inefficient. The Mailbox sensor gen

erates all the Mailboxes and the Proeeu sensor generates all the current processes. The Waltlns

sensor is enabled for the mailboxes and the Send sensor is enabled for the processes. The cartesian

product generates a tuple for each combination or tuples generated by the Waltlns and Send sen

sors; the number or generated tuples grows as the product or the total number or block and send

operations by all processes. Almost all the tuples are subsequently discarded by the three selection

operators. Finally, one explicit and one implicit attribute are projected out, forming the resulting

tuples. Similarly, the processing or Expression (EI} results in samples taken every second, then con

catenated with a tuple for every clock tick, then discarded if the time the sample was taken does not

Ill

correspond to the time a particular clock tick occurred. The (in)eftlciency of Expressions {EI!} and

(E-1} is a direct result both of the expressive power of the non-procedural query language TQuel and

of the simplicity of the initial translation into a relational algebraic expression. Clearly, this

inefficiency is unacceptable and must be corrected if the relational approach is to be a viable .one.

&.4. Algebraic Tr&llllformatlona

Using entity sources as arguments to a corresponds to enabling everything. However, transfor-

mations may be applied to map expressions into semantically equivalent expressions that enable

fewer sensors by replacing entity sources with more constrained expressions that produce fewer enti-

ties to enable. One benefit of using the relational model with monitoring is that traditional transfor-

mation techniques may be utilized. An example is the transformation

which is correct if the predicate F does not include attributes from R
1

• This transformation can

dramatically reduce the number of tuples generated by the cartesian product, since uninteresting

tuples are discarded before rather than after the cartesian product. This optimization can be

applied to the Expression {ES}, with the substitutions

• S.Process=Pl for F.

• a:'
1
(Mailbox) for R 1•

T·l
• a,· {li'Pr•.,.••(Proeess)) for R 2.

resulting in

{E5)
T T

ll'lf.Proca••{ll'at an4 of Jus precede an4 of Jus.ma1lbox=lf.aa1lbox(
D·T T·J

O'w. (Mailbox) X O'S.Proceaa=Pl(O's . {li'Proce .. (Proeess)))))))

A collection of such transformations has been developed for the conventional relational algebra [20[;

these tro.nsformations apply directly to the temporal relational algebra.

10

A second class or transformations involves the n operator. These transformations improve the

algebraic expression by enabling fewer sensors or by replacing sampling with tracing, or by sampling

less frequently. Approximately ten transformations, each with several variants, have been developed

thus far; only a few will be discussed here. The first shares some features with the one just given:

(0£)

In these transformation schema.s, variables to be substituted are in italics. Intutively, this transfor-

mation states that, rather than enabling a sensor on a large number or processes and then discarding

many or the data packets so generated, enable the sensor on only the relevant processes. The reason

T:l
that u

1
=If,.E) appears on the right hand side rather than simply the constant K is that n

1
should

be enabled for process K only ir E contains K.

In this transformation, E is an arbitrary algebraic expression that returns a relation with one

attribute or type process; I is a tuple variable associated with a primitive relation traced on the ini-

tiator; K is a constant denoting a particular process identifier; and "1" is the name or the first attri-

bute. In the expression before the transformation is applied, the appropriate sensors is enabled for

all processes, with most or the resulting data packets (tuples) discarded by the selection operator. In

the expression resulting from the transformation, if E contains the process K, then the appropriate

sensor in that process is enabled. There is no need to discard any data packets, because all the data.

packets are guaranteed to have a performer or K. This transformation can be applied to Expression

(E5), with the substitutions

• S for I.

• S .Process for l.iniliolor.

• Pl forK.

• II"Proc•••(Process) for E.

resulting in

(E6)
T T

~~"w. Proee .. (II" at eDd of J tT s precede eDd of J tT s . Ma1lbox=II.Ma1lbox(
D·T T·l

a 11 · (Mailbox) X a8 · (o-1=Pl(li"Proc•••(Proeess)))))))

II

There is another transformation that is even closer (semantically, not syntactically) to the

traditional one:

{09}

In the left hand side or this transformation, the attribute A, which must be in E
2

, is being used to

D:T
select tuples generated by a

1
• An example may be found in Expression {E6}, where S.Mailbox is

D:T
used to select tuples generated by a., . However, since the associated sensor is disable traced on

the appropriate attribute (the target) anyway, the filtering may occur when enabling the sensor,

rather than later, after the unnecessary data packet has been generated. On the right hand side of

D:T T
the transformation, a

1
is enabled on only the relevant entities. The temporal selector ~ on the

D:T
left hand side is necessary because E

2
cannot be used to enable a 1 if t finishes before E

2
•

There are three restrictions on the application or this transformation:

(1) Only attributes associated with the tuple variable t may be used by operators on the tuples
produced by the expression; those found in E

2
are not available for further use.

(2) A must be an attribute in E
2

•

{3) The attribute •tart of I is not needed.

This transformation may be used on Expression {ED), using the substitutions

• W for I.

• W .Mailbox for I. target.

• llailhozfor E1.
T,/

• a 1 (<71=Pt("Proc ... (Proeeu))) for E2.

• S. Mailbox for A .

• "S precede end of W'' for "•tart of E2 precede end of 1", since they are
equivalent (s is associated with an event relation, and W with an interval relation).

resulting in

{E7}

There are many variants on this transformation, each on different kinds or n operators and each

having different constraints.

It should be noted that complications a.rise when multiple a operators rererring to the same

primitive relation a.re present in a collection or queries. Either this situation must not be allowed, or

the monitor must be able to sort out the incoming data packets rrom the sensors and determine

which a operators to send each packet to, or the a operators must perrorm this selection them-

selves. The correct filtering is still perrormed at the sensors, in any ease.

A third class or transrormations involves entity sources. We give two here:

{0-1} ul=K(f) -+ K

{05} ?nE -+E

Both derive rrom the definition or the entity source I' and elementary set theory, and assume that

K and E are or the same entity type as f. The first states that selecting a particular entity out or

an entity set results in that entity. The second states that taking the intersection or a subset or enti-

ties and an entity set result in that subset. The first transrormation can be applied to Expression

(.E7) substituting 11Pl" for "K" and""' (Process)" for "f" to get
' Proc•••

The second transrormation can be applied to this expression substituting ""a ... u ••• (a:~(Pl))"

ror "E" and Mailbox ror "I'" to get

{ED}

The rourth class or transrormations involves the Clock event relation. This relation can be

used to speciry sampling rates; several or the transrormations allow the monitor to handle this. The

transrormation

modifies the second argument or the Q operator, which specifies the sampling rrequency. The sub-

script C on Clock[•1 indicates the tuple variable associated with this predefined relation. Recall

that the postfix "(•]" denotes a clock that ticks once every i ticks or the underlying clock.

13

A second transformation

(07} Clock(n) n Clock[n*iJ- Clock(n*•J

allows longer (requences to be used. Both transformations may be applied to Expression (E./). The

first transformation results in

S·P n
(EJO) aR~ (Processor, Clock Clock(lO)c)

and the second in

{E11}
S·P

aR~ (Processor, Clock(lO]c)

(Cloek is equivalent to Cloek[l)) with the result that the Runnlng()n sensor is sampled every 10

seconds, rather than the default sampling frequency.

The transformations from the (our classes (traditional, involving the Q operator, involving

entity sources, and involving the Cloek event relation) are repeatedly applied in order to the alge-

braic expression until no more are applicable. A comparison or the processing resulting from the

"before" Expression (E9} with the processing resulting (rom the "after" Expression {ED} (or the

ReoumedbyPl query indicates the increase in efficiency that is possible. The previous examination

or Expression (E9) revealed that it was very inefficient. The transformed expression, on the other

T:/
hand, is quite efficient. First, the Send sensor is enabled only Cor the Pl process (et8 (Pl)). When

Pl actually sends a message, the mailbox identifier is extracted from the data packet (~r8 .Mailboxl
D:T

and the Waltlna sensor is enabled Cor this mailbox (etw). Since the enable flag is actually an

integer (d., Section 4), multiple send operations by Pl are handled correctly. When a. process is

unblocked, receiving the message, the Waltln1 sensor sends a. data packet containing the process

identifier and the mailbox identifier. This sensor is also disabled by the monitor, awaiting reena.bling

when Pl sends another message to the mailbox. The process identifier and end time are projected

out or the data packet, forming the resulting tuple. Using the sample data. from Section 4, Expres

T:/
sion {ED} is primed with the single process identifier Cor Pl; tuples flow out or et8 operator (those

shown in Figure 2) and into the projection operator, resulting in the tuples (M3, 2:00:05), (M4,

14

D:T
2:00:06), and (M7, 2:51:13). These tuples successively flow into aw , which subsequently generates

the tuple (P2, M7, 2;45;29, 2:54:20), which flows into the two projection operators, resulting in the

tuple (P2, 2:54:20) as shown in Figure 4. The number or generated tuples is linear in the number or

send operations by Pl.

Expression {E11) is also much more efficient than the initial attempt (Expression (E-1)). The

optimized expression specifies that the RunningOn sensor is to be sampled by the scheduler or each

processor every 10 clock ticks.

The relative increase in efficiency is primarily an indication or the gross inefficiency or the

unoptimized expression; the aholule efficiency suggests that the optimizations are able to enable the

minimal sensors and perform just the computations needed to derive the desired information.

'1. Coneluolona and Future Work

In the traditional approach, automatic filtering is very difficult, for two related reasons. The

major reason is that filtering is encountered too early. There is no way for the monitor to base filter-

ing decisions on bow the collected data will be analyzed or displayed; those tasks are specified later.

Secondly, even if this information was available, it is not clear bow it would be used by the monitor.

The filtering capabilities or conventional sensors are primitive, generally consisting or either enabling

or disableing the sensor. The analysis specification is also simplistic, thereby reducing the potential

benefit gained by analyzing these specifications for hints on filtering.

In this paper we have shown that sophisticated filtering is possible if the sensors and the moni-

toring queries are precisely specified before the data collection. In the relational approach to moni-

toring, sensors are specified as historical relations. Filtering is accomplished by associating the enable

Bag with either the initiator, performer, or target or the operation. Monitoring queries are specified

on this relations in TQuel, a non-procedural historical query language. These queries are converted

into expression in an incremental temporal relational algebra. The primitive relations are incor-

porated through a new algebraic operator, a. Optimizations transform the initial expression into a

more efficient one that enables fewer sensors, thereby effecting a high degree or filtering. An example

15

demonstrated the improvement possible on two queries.

Our approach has several advantages over the traditional one:

• SenBor Configuration and lnslallalion
In the traditional approach, the user had to keep track or which programs contained each sen
sor and where these programs were located in the distributed system. The new approach asso
ciates sensors and their enable ftags with entities based on a simple model or the environment.
For many sensors, the enable ftag is in the initiator or the target, decoupled from the per
former where the sensor resides. The user need not be concerned with details or where sensors
or enable ftags are located.

• Enabling Sen•ors
It was originally the user's responsibility to determine which sensors to enable and to locate
these sensors in the distributed system. Our approach makes use or the ct operator and a. col
lection or optimizations to determine precisely which sensors to enable. The entity identifier is
used to locate the entities which contain the enable Oags.

• Dolo Generation
The volume or data collected is reduced considerably through filtering. The appropriate sen
sors are initially enabled, and can be disabled and other sensors enabled as a side effect or the
analysis or previously generated data.

While sophisticated filtering within the context or the relational approach to monitoring has

been demonstrated, there are several areas where further work is needed.

On the theoretical side, we are developing a formalization or the incremental temporal algebra

discussed in Section 6. Such a formalization will be used to

• ensure that the operators are well defined
• prove that the mapping from TQuel to the relational algebra. is correct, using TQuel's tuple cal
culus semantics j23J
• prove that the optimizations do not alter the semantics or the expression they are transforming
• perhaps suggest further optimizations

We also want to incorporate data collection techniques other th&n sampling and tracing into the ct

operator and its formalization, thereby precisely specifying these data. collection techniques.

On the practical side, the next step is to implement a relational monitor to assess the a.pplica.-

bility or the optimizations on actual monitoring queries and to determine the effectiveness or the

filtering. We have implemented the d&ta collection mechanism discussed in Section 3, as well as the

portions of the monitor involved in processing the TQuel queries j22, 24J. Data collection has been

implemented on Cm* [7, 27] under the StarOS J12, 13[and Medus& [16] oper&ting systems, &nd on

the Va.x under Unix. That both operating systems on Cm* are object-based &!lowed the implemeata-

Ill

tions to closely match the conceptual model presented in Section 3; the Unix implementation is not

as general nor as consistent with the model. However, we have found it convenient to think in terms

of the model even if the implementation does not mirror it exactly. The next step is to implement

the optimizations and to make the system available to others for feedback.

Another area. still to be investigated is filtering within hardware sensors. While the 0< operator

conceptually could be coupled just as easily to hardware as to software, the actual mechanisms

necessary to do so have not been developed.

Finally, it might be desirable to have the monitor play a greater part in sensor specification

(e.g., allow it to substitute sampling for tracing to lower the data collection overhead) and sensor

installation (e.g., allow it to install the sensors at execution time by using conventional breakpointing

mechanisms). How this may be done is an open question.

8. Aeknowledgements

I wish to thank William Wulf, Anita Jones, Joseph Newcomer, and Zary Segall for valuable
comments and suggestions on all aspects of this research, and Ma.hadev Satya.na.ranan and Karsten
Schwan for detailed comments on previous incarnations of this paper. In the prototype implementa
tion, Peter Highnam implemented the data. collection mechanism on Medusa. and Ivor Durham
implemented the first version of the data collection mechanism on Sta.rOS at Carnegie-Mellon
University. In the second implementation, still in progress at the University of North Carolina.,
Chapel Hill, David Doerner, Stephen Duncan, Frederick Fisher, Earle MacHardy, and Steven Reu
man all participated in the implementation of the data collection mechanism on Unix. The research
performed at Carnegie-Mellon University was sponsored in part by the Defense Advanced Projects
Agency (DOD), ARPA Order 3597, monitored by the Air Force Avionics Laboratory under Contract
F3361&-78-C-1551, the Ballistic Missile Defense Advanced Technological Center under Contract
DASG60-81-0077, and through a National Science Foundation graduate fellowship. The research
performed at the University of North Carolina, Chapel Hill was supported in part by the National
Science Foundation under Grant No. DCR-8402339, and by an ffiM Faculty Development Award.

11. Bibliography

JtJ Agajaman, A.H. A Bibliograph11 on Svstem Performance Evaluation. Computer, 8, No. 11 Nov.
1975 pp. 63-74.

[2J Bauer, M.J. and J.W. McCredie. AMS: A Software Monitor For Performance Evaluation And Sys
tem Control. In Proceeding• of the Annual Sigmelrics SympoBium on Me•eurement and Ev•lu•tion,
Palo Alto, CA: Feb. 1973 pp. 147-160.

j3J Blake, R. XRAY: /nBtrumentation for Multiple Computer•. In S11mpoBium on Computer Perfor
mance Modeling, MeaBurement, and Evaluation, In proe. or aem. Toronto, Canada: aero, May 1980
pp. 11-25.

J4J Chen, P. P-S. The Entit11-Relationdip Model-- Toward a Unified View of Data. ACM Tran•ae
tion• on Databa•e S11•tem8, 1, No. 1 Mar. 1976 pp. 9-36.

J5J Codd, E.F. A Relational Model of Data for Large Shared Data Bank. Communication• of the
A••ociation of Computing Maehiner11, 13, No.6 June 1970 pp. 377-387.

J6J DEC SPM: Software Product De•cription. 1984. (Unpublished paper.)

j7J Fuller, S.H. Multi-micro proceBors: An Overview and Working Ezample. Proceeding• of the IEEE,
66, No. 2 (1978) pp. 216-228.

j8J Garcia-Molina, H, Jr., F Germano and W.H. Kohler. Debugging a Distributed Computing Sy•tem.
IEEE TranBactionB on Software Engineering, SE-10, No.2 Mar. 1984 pp. 210.219.

j9J Held, G.D., M. Stonebraker and E. Wong. INGRES--A relational data baBe management BgBtem.
Proceeding• of the 1975 National Computer Conference, 44 (1975) pp. 409-416.

jtoJ Hoare, C.A.R. Monitor•: An Operating Sy•tem Structuring Concept. Communication• of the
A••ociation of Computing MachinerlJ, 17, No. 10 Oet. 1974 pp. 549-557.

j11J Houghton, R.C., Jr. Software Development ToolB. Special Publication 500-88. National Bureau
or Standards. Mar. 1982.

j12J Jones, A.K., R.J., Jr. Chansler, I. Durham, P. Feiler, D. Scelza, K. Schwans and S.R. Vegdahl.
Programming iBBUeB raiBed b11 a multiproce••or. Proceeding• of the IEEE, 66, No. 2 Feb. 1978 pp.
229-37.

j13J Jones, A.K., R.J., Jr. Chansler, I. Durham, K. Schwans and S.R. Vegdahl. StarOS, a Multipro
CeBB Operating S11•tem for the support of Task Forces. In Proceeding• of the ACM SympoBium on
Operating S11•tem Principle•, Sep. 1979 pp. 117-127.

JHJ LeBlanc, R.J. and A.D. Robbins. Event-Driven Monitoring of Distributed Progra'f118. In Proceed
ing• of the International Conference on Distributed Computing, In proc. or IEEE. Austin, TX: 1985
pp. 515-521.

J15J LeDoux, C.H. and Jr. D.S. Parker. Saving Traces for ADA Debugging. SIGAda International
Ada Conference, (1985) 1-12.

18

J16J Ousterhout, JK., D.A. Scelza and P.S. Sindhu. Meduso: on e:l!periment in distributed operating
Bl/Btem structure. Communication• of the Association of Computing Moellinerl/, 23, No. 2 Feb. 1980
pp. 92-105.

J17J Perlis, A., F. Seyward and M. Shaw. Software Metric•. Cambridge, MA: MIT Press, 1981.

J18J Ritchie, D.M. and K. Thompson. The Uni:l! Time-Shoring S11•tem. Communications of the A••o
cialion of Computing Machinerv, 17, No.7 July 1974 pp. 361>-375.

J19J Shannon, K.P. The Displog of Temporal Information. Computer Science Department, University
or North Carolina at Chapel Hill. 1986.

J20J Smith, J.M. and P.Y-J. Chang. Optimizing the Performance of a Relational Algebra Database
Interface. Communications of the Association of Computing Mochinerg, 18, No. 10 Oct. 1975 pp.
568-579.

J21J Snodgrass, R. A Relational Approach to Monitoring. In Proceedings of the Sgmpoaium on Prac
tical Software Development Environment•, Pittsburgh, PA: Apr. 1984.

J22J Snodgrass, R. A Relational Approach to Monitoring Comp/e:l! Sgstems. Technical Report TR8&-
035. Computer Science Department, University or North Carolina at Chapel Hill. Dec. 1985.

J23J Snodgrass, R. A Temporal Querv Longuoge. Technical Report TR81>-013. Computer Science
Department, University or North Carolina at Chapel Hill. May 1985.

J24J Snodgrass, R. Monitoring Distributed S11atem•: A Relational Approach. Ph.D. Diss. Computer
Science Department, Carnegie-Mellon University Dec. 1982.

J25J Snodgrass, R. and I. Ahn. Temporal Datobases. Computer (to oppeor), (1986) .

J26J Snodgrass, R. The Temporal Querg Language TQuel. In Proceeding• of the Third ACM
SIGAct-SIGMOD Svmposium on Principle• of Datobo•e Sg•tem•, Waterloo, Ontario, Canada: Apr.
1984 pp. 204-212.

J27J Swan, R.J., A. Bechtolshem, K.W. Lai and J.K. Ousterhout. The implementation of the Cm•
multi-microproce•sor. In Proceedings of the Notional Computer Conference, AFIPS, 1977 pp. 641>-
55.

J28J Ullman, J.D. Principle• of Database SgBiems, Second Edition. Potomac, Maryland: Computer
Science Press, 1982.

Ill

