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Abstract

Monitoring is an essential part of many program development tools and plays a central
role in debugging, optimization, and reconfiguration. One aspect of monitoring, that of
collecting only needed information and discarding irrelevant data, termed filtering, is
becoming more important. By specifying monitoring in a relational database query
language before the data is collected, it is possible to selectively enable only the particu-
lar sensors needed. A high degree of filtering results from incorporating a new operator
into the algebraic form of the query and transforming the expression into a more efficient
one that enables fewer sensors.
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1. Introduetion

Monitoring is the extraction of dynamic information concerning a computational process, as

that process executes. This definition encompasses aspects of measurement, observation, and test-

.ing.l Monitoring is a fundamental component of many computing activities, One use of monitoring
is to facilitate debugging. Monitoring is a first step in understanding a computational process, for it
provides an indication of whaf happened, thus serving as a prerequisite to ascertaining why it hap-
pened. A second use of monitoring tools is in making efficient use of limited computing resources.
Tuning requires feedback on the program’s eficiency, which is determined from measurements on
the application wkile it is running. Finally, monitoring information may also be used internally by
the application program. For example, monitoring information is valuable for programs which must
be reliable; the fact that a processor (executing processes belonging to a program) has failed, for
example, is important to the program if it must be able to recover from such fa:ilures. In one study
of program development tools [11], a quarter of these tools were highly dependent upon monitoring,

including those under the categories of tracing, tuning, timing, and resource allocation. Monitoring

is thus an essentizl function,

Much has been written about monitoring on uniprocessor systems (c.f., the bibliographies [1,
17]} and the general techniques of tracing and sampling are well established. However, one aspect of
monitoring, that of collecting only needed information and removing irrelevant dynamic data,
termed filtering, is becoming more important as programs and their environments become more
complex and are distributed to a greater degree. Previous work avoided this issue, either by unreal-
istically limiting the number of sensors (e.g., [2, 8, 15]), by requiring the user to manually specify the
filtering (e.g., [3, 6]), or by accepting the high overhead of permanently enabled sensors as inevitable
(e-g., [14]). In this paper, we show that the sophisticated filtering of monitoring data is possible if the

sensors and desired analysis are precisely specified before the data collection.

1 There are at least two other definitions of monilor that should be mentioned: a syronym for operating system and an
arbiter of access to a data structure in order to ensure specified invariants, usually relating to synchronization [10], Both
defizitions emphasize the comfrol, rather than the observationsl aspects of monitoring. Monitoring is closely associated with,
but strictly separate from, activities which change the course of the computational activity. The term monitor as used in this
paper is the (asually software) agent performing the monitoring.



The fundamental problem is that traditional monitoring systems do not have sufficient infor-
mation to automastically perform substantial filtering over a large number of sensors. In Section 2,
we present a new approach to monitoring that provides the monitor with this information. The third
section discusses a dat; collection mechanism that is very flexible in terms of the filtering it sup-

- ports. Section 4 introdl_lces an example that will be used throughout this paper. The next two sec-
tions show iaow the monitor is able to utilize the information provided by the user to perform

sophisticated filtering. A final section summarizes the approach and points to further research.

2. Relational Monitoring

The purpose of this section is to provide ar overview of 8 new approach to monitoring, the
relational approach, within which sophisticated filtering is possible. This approach utilizes an exten-
sion of a conventional relational database to formalize the information processed by the monitor. A
few definitions are useful. The subject sysfem is the software system being mo'nit.ored, usually the
operating system of the user’s program. A sensor is a section of code within the subject system
which transfers to the monitor information toncerning an event or state within the system. If the
sensor is fraced, then a data packet is transferred to the monitor each time a particular event
occurs. If the sensor is sampled, then a data packet is transferred each time the monitor requests
the sensor to do so. This data packet may be as simple as a bit that is complemented when the
event oceurs, or as com.piex as a long record containing the contents of system queues. The removal

of irrelevant data packets is termed filtering.

The relational model provides both a structuring of the information and manipulations on that
structure {5). A relation may be thought of as a table having a number of rows (called fuples) and
columns (called atiributes). New relations can be derived from existing ones using one of several
data ﬁanipulation languages developed for the relational model; these guery languages are syntacti-
cally concise, yet are remarkably powerful [Ullman82|. One important aspect of some query
languages is that they are declarative rather than procedural: they allow the user to specify what

information is desired, rather than Aow this information is to be derived,



The conceptua! design of a database is aided by the entity-relationship model [4]. In this model
relations are classified as entity relations or relationship relations. Each tuple of an entity relation
contains an entity identifier along with attributes describing that entity; an example is the entity
relation Employee with attributes Name, Department, Salary, and YearsService. Each tuple of a
relationship relation contains two or more entity identifiers along with attributes describing that
relationship between the entities; an example is the relationship relation Manages, with attributes

Manager, Subordinate, and YearsUnderManager.

Conventional databases are static, in that they represent the state of an enterprise at a single
moment of time. Although their contents continue to change as new information is added, these
changes are viewed as modifications to the state, with the old, out of date data being deleted from
the database. The current contents of the database may be viewed as a snapshot of the enterprise

at a particular moment of time.

For relational databases to be relevant to monitoring, there must be 2 means of recording facts
that are true only for a certain period of time, Historical databases, which record the history of the
real world {25], can model this dynamic computation. Historical databases require more sophisti-
cated query languages than static databases; TQuel (Temporal QUEry Language) is one that
includes constructs for historical queries |23, 26]. Examples of TQuel queries will be given after the

new approach to monitoring is presented.

We have proposed a new approach to monitoring in which an historical database formalizes
the information processed by the monitor [21, 22]. The benefits include a simple, consistent structure
for the information, the use of powerful declarative query languages, and the availability of a catalo-
gue of optimizations. In this approach, the user is presented with the conceptual view that the
dynamic behavior of the monitored system is available as a collection of historical relations, zach
associated with one or more sensors in the subject system. In making historical queries on this coh-
ceptual database, the user is in fact specifying in & non-procedural fashion the sensors to be enabled,

the analysis to be carried out, and even the graphical presentation of the derived data.



Note that we are nef proposing to actually represent the data as relations in a database.
Instead, we will show that historical database provides a convenient and powerful fiction that guides
the processing but does not constrain the representation. In fact, in most cases the relations will

never actually collectively exist as data stored either in main memory or on secondary storage.
In this approach monitoring proceeds in five consecutive steps:

Step 1: Sensor configuralion
This step results in a specification of the data to be collected and the placement of the sensors.

Such sensors can be quite flexible; the user is only concerned with specifying the high level pro-
perties of the semsor. Conceptually, each sensor declared in this manner defines an historical
relation available for later use in defining other, derived relations. The relations directly asso-
ciated with sensors are termed primitive relations, as contrasted with derived relations, which
are not associated directly with sensors. The specification of the primitive relations identify the
information available to the monitor.

Step 2: Seneor installation
This step occurs automatically: the sensor is produced by the monitor from the specifications.
Relevant aspects of the sensor are communicated to the components of the monitor that need
to know this information. The sensor code handies all the necessary interaction with the moni-
tor, including enabling and buffering, and may be customized to the task it is to accomplish
and the environment in which it is to execute.

Step 8: Analysis specification
In this step, the user provides one or more historical queries, defined on the primitive relations
specified in Step 1.

Step 4: Display specification
This step occurs concurrently with analysis specification. By associating entities and relation-
ships with graphical icons (e.g, 2 square for & processor, a circle for a process, and spatial inclu-
gion {circle within a box) for the relationship “running in”), sophisticated illustrations of
dynamic behavior can be generated by the monitor.

Step 5: Ereculion

This step, comprised of enabling the sensors, generating the data, analyzing the data, and
displaying the results, occurs automatically once the queries have been specified. The monitor
first analyses the query to determine precisely the sensors that must be enabled to collect the
requisite low level information needed to satisfly the query, thereby guaranteeing that extrane-
ous information is not collected. These zensors may be subsequently disabled, and other sensors
enabled during the monitoring session based on the data that was collected. All the techniques
previously developed for data collection are applicable. Data analysis can occur either locally,
on the same processing node as the sensor that collected the data, or at a centralized location,
or at an intermediate location, depending on the precise query and the capacity of the com-
munication mechanism. The monitor has sufficient information through the sensor
specification and the user's query to make the decision as to where the processing will occur.
The monitor can also perform optimizations on the query, mapping it into a different query
with an identical semantics but improved performance. Information display can also be made
more efficient by capitalizing on the fact that only a small portion of the state changes during
each transitiop and by utilizing incremental display algorithms.



Filtering occurs in Step 5, using the specifications provided by the user in Steps 1 and 3. The
primary distinctions between the traditional approach to monitoring and the relational approach

outlined here are

e In the relational approach, sensor installation procedes automatically from the specification pro-
vided in Step 1. Most traditional systems either present a predefined collection of sensors or insist
that the user handle all details of sensor installation manually.

¢ In traditional systems, the analysis is quite constrained; usually the user is given a short menu of
predefined analysis options.

o In traditional systems, the data is first collected and stored for later analysis. In the relational
approach, the queries are first specified by the user, with the fltering, data analysis, and information
display occurring automatically, driven by the queries. '

Details of the relatioral approach, especially how TQuel may be used to specify the analysis
and how the analysis proceeds from the queries, is presented elsewhere [22]. Aspects of the display
specification and the incremental display of historical relations are under active study [19]. In this

paper we will focus on one component of Step 5, enabling the sensors. The next section will examine

in detail how this is accomplished.

3. A Bensor Enabling Mechanism

The sensors operate within an envirom.nent. comprised of 3 collection of iyped entities, both
passive (i.e., data structures, such as ready queuves and semaphores) and active (e.g., processes).
Entities have identifiers, which are system-dependent names. For insiance, in Unix [18], processes are
indicated with process-ids; in StarQOS [13] entities are named using capabilities, and in Medusa [16]
by descriptor-list foffset pairs. Instances of entity types are displayed to the user as character strings;
we assume that the operating system supports the mapping between user-oriented character strings
and internal entity identifiers. The entity identifiers are assumed to be unique across space and time.

Finally, we assume that the monitor can locate an entity given its identifier.

Type managers export operations to be applied to entities of the type(s) supported by the
manager; all operations on an entity are performed by the type manager through well-defined inter-

faces, implying the existence of a type-checking mechanism. This model thus identifies the operation



being performed on the target by the performer (the type manager) as a result of a request by an
¢nitiafor (any process). Each sensor is placed in & type manager, snd is associated with an operation
(or set of operations) provided by the type manager. For example, the file system (a type manager
for the file entity type) may have a ReadFile sensor located in the code performing the read opera-
tion, Other sensors, such as OpenFile, PhysicalBlockRead, and ModifyProtection, may also be
present in the file system. Each sensor is associated with a unique integer, the sensor identifier,
which is combined with the collected information when it is retrieved by the monitor. The model
applies to all levels of granularity; in particular, a type manager and its sensors may be implemented

in hardware, firmware, or software,

Sensors may be enabled by setting an enable flag. The placement of this flag allows Aexibility
in the enabling of events. Enable flags associated with a passive entity, such as a file, arbitrate the
collection of monitoring information for that entity. Setting the block write event flag associated
with a particular file causes information to be collected for file block writes enly for this file by any
file system process. On the other hand, setting the file block write enable flag associated with a par-
ticular file system process (a portion of the type manager) causes information to be collected for file
block writes on any file performed only by this file system process. The placement of the flags allows
filtering along three dimensions, by target, performer, or initiator; the placement of the sensor allows
filtering along the fourth dimension: the operation. Each sensor supports filtering in two of this
dimensions: the operation and one other dimension. However, several sensors can be associated with
an operation (such as the file block write operation in the previous example), each designating a

different flag to enable the sensor.

Higher degrees of filtering are also possible. An event may be enabled on a combination of
three of the components of the operation, such as a block write operation by tAis file system on this
file. Filtering on all four aspects represents total control over which event records get generated: a
block write operation by this file system process on this file, as requested by this initiator. Achieving

higher degrees of filtering requires additional information to be stored and additional processing to



determine if the event is indeed enabled. This extension requires greater than linear space and/or

time in the number of entities, and thus is expensive in an environment supporting many entities.

The enable flag can be generalized to an integer counter if multiple enable requests are made
by the monitor before the sensor executes, In this case, enabling involves incrementing the counter

and disabling involves decrementing the counter.

In the preceding discussion, the assumption was made that the operation is sensed and the
information communicated to the rest of the monitor when the operation occurs. Such data packets
are called treced data packets, since their genefa.tion is synchronous with the operation, and thus

with the operation whose target, performer, and initiator is named in the data packet.

Sampled data packets, on the other hand, are generated at the request of the monitor, gayn-
chronously with the operation. As an example, a sensor located in the scheduler of an operating sys-
tem could generate traced data packets pertaining to context switching: process z started running at
time ¢, process y started running at time ¢, etc. Another sensor located in the scheduler could gen-
erate sampled data packets at the request of the monitor: process z is now running. A sampled sen-
sor will usually, but not necessarily, clear the enable flag after generating the data packet, thereby

causing only one data packet to be generated per request of the monitor,

4. An Example

In this section, we introduce an example subject system (an operating system) and discuss some
sensors that might be defined iﬁ this system. Since the user is encouraged to think of sensors as
defining historical primitive relations, we will employ the entity-relationship model to describe the
sensors. In practice, the user employs a gensor description language to specify these primitive rela-

tions.

In this example, there are three types of operating system entities known to the monitor: Pro-
cessor, Process, and Mailbox. In this example, there are several processors, which execute the

processes. At any point in time, a process may be executing on only one processor, though processes



can execute on more than one processor over their lifetime. A process may send messages to a mail-
box, where they will be queued until a process executes the receive operation on the mailbox. If a
receive operation is executed on an empty mailbox, the process will block until a2 message is sent to
that mailbox. Several processes may be blocked on a mailbox. Although this example is of necessity
Voversimp!iﬁed in comparison with actual operating systems, it should be sufficient for the purposes
of this paper. We will now attempt to capture the behavior of this system within the relational
model,

Entity relations must be made available for each entity type. The name of each is identical to
the name of the type. The Processor entity relation contains one attribute, the processor identifier.
This relation is always enabled; its associated sensor is placed in the configuration manager which
handles the restarting of crashed processors. The Procesas entity relation contains two attributes,
the process identifier and the state, an ennumeration having the values Reedy (i.e., the process is
scheduled but not currently running), Running (the process is currently running on a processor),
Blocked (the process is waiting on a mailbox)}, or Done (the process has halted or aborted). This
relation is always enabled and is associated with a sensor in the process manager. Finally, the Mall-
box entity relation contains one attribute, the mailbox identifier, and is always enabled. Its sensor is

located in the process communication manager.

Within the monitor, relations are differentiated temporally: there are event relations and inter-
val relations. Entity relations are always interval relations, for they model entities while they exist in
the subject system. Each interval relation contains two implicit attributes, the time the modeled
interval. began,.and the time the modeled interval ended. Figure 1 shows the three entity relations,
with user names denoting the internal entity identifiers. Most of the entities were created when the
system was brought up at 1:00:00 and destroyed when the system was halted at 4:00:00. Interval
relations are associated with two sensors, one determining when the interval began snd one deter-
mining when the interval ended. The first task of the data analysis portion of the monitor is to con-

struct intervals from the data packets generated from these sensors.



Processor {Processor):

Figure 13 Erntity Relations

Processor ”(From} I (To)

A
B

Process (Process, State):

Process State

1:00:00 | 4:00:00
1:00:00 | 4:00:00

(From) (To)

P1 Ready
P2 Ready
P1 Running
P2 Running
P1 Ready
P2 Waiting
Pl Running

1:00:00 | 2:00:00
1:23:24 | 2:05:12
2:00:00 | 2:15:37
2:05:12 | 2:45:29
2:15:37 | 2:45:30
2:45:30 | 2:54:20
2:45:30 | 2:52:47

Pi Done 2:52:47 | 4:00:00
P2 Ready 2:54:20 | 2:56:10
P2 Running [12:56:10 | 2:57:05
P2 Done 2:57:05 | 4:00:00
Matlbox (Malilbox):
Mailbox || {From) (To)
M1 11:00:00 | 4:00:00
M2 1:00:00 | 4:00:00
M3 1:00:00 | 4:00:00
M4 1:00:00 | 4:00:00
M5 1:00:00 | 4:00:00
M6 1:00:00 | 4:00:00
M7 1:00:00 | 4:00:00

Relationship relations can be either event relations or interval relations. A tuple in an event
relation describes a change in the state of the system which occurred at a particular instant of time,
An example is the SendMessage event relation, which has two explicit attributes, 8 Process (the
initiator) and a Mailbox (the target), and one implicit attribute, the time the event occurred (see
Figure 2). The tuple (P1, M3, 2:00:05) in this relation represents the instantaneous event of “Pro-
cess P1 sent a message to Mailbox M3 at time 2:00:05.” The content of the message is not recorded

in this relation. This relation is traced on the initiator, meaning that a data packet is constructed if




& message is sent to any mailbox by a process with its associated flag set.

Figure 2: An Event Relation

SendMessage (Process, Mailbox):

Process l MailBox ” (At)

P1 M3 2:00:05
P1 M4 2:00:06
Pl M7 2:51:13

There are four other relations defined for this system {see Figure 3). Th.e RunningOn (Pro-
cess, Processor) interval relation deseribes which Process (the target) is running on which Proces-
sor {the performer). This relation is sampled on performer; the scheduler of each processor will
respond with the current running process when requested by the monitor. Since the system state is
constantly changing, the relations evolve over time. For instance, the tuple (P1, B) may be valid in
the RunningOn relation for only a few milliseconds, and new tuples are added to the SendMes-
sage relation as messages are sent. The Walting (Process, Mallbox) relation lists the processes
{the initiators) blocked while waiting to receive from a mailbox (the target) and is traced on the tar-
get. Since multiple processes might be waiting on the mailbox, we specify that the enable flag is a
counter several bits wide (this option was discussed briefly in Section 3). We also specify that the
gensor will decrement this counter each time a data packet is generated; this will permit an impor-
tant optimization to be discussed Iater. Finally, there is & Clock event relation which contains no
explicit attributes, The Cloek relation is treated specially by the monitor; it is generally used to

apecify sampling, as will be seen below,
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RunningOn (Process, Processor):

Figure 3: Remzining Primitive Relations

Process | Processor || {From) (To)
P1 A 2:00:00 | 2:15:37
P2 B 2:05:12 | 2:45:30.
Pi B 2:45:30 | 2:52:47
P2 A 2:56:10 | 2:57:05
Walting (Process, MailBox):
Process I MazilBox “(From) I (To)
P2 I M7 “2:45;29'2:54:20
Clock:
(At)
1:00:00
1:00:01
1:00:02
1:00:03

The sensor configuration provides the information necessary to install the sensors; the histori-
cal queries on the primitive relations associated with these sensors provides the information neces-
sary to automate the remaining steps by specifying the content of derived relations. Historical
queries are expressed in the temporal query language TQuel [23, 26]. TQuel is a general temporal
query language, augmenting the (static) relationa! tuple calculus query language Quel 9] with addi-

tional constructs and providing a more comprehensive semantics by treating time as an integral part

of the database,

Here we give two sample T'Quel queries. These queries have been chosen to illustrate several

important filtering techniques; others based on these primitive relations defined earlier are given

elsewhere [22]. The query
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range of W is Waiting

range of S is SendMessage

retrieve ResumedbyPl (W.Process)
valid at end of W
vhare S.Mailbox = W.Mailbox and S.Process = Pl
when S precede end of W

Ezample 1: Which processes were pesumed by process P1?

determines those processes which were initially blocked on a mailbox, then resumed as a side effect
of a message being sent by Pl to the mailbox. The act of P1 sending 2 message (S.Process =
P1) causes, directly or indirectly (S precede end of W), another process (W.Process) that was
currently blocked on a mailbox to become unblocked on that same mailbox (5.Mailbox =

W.Mailbox). This event of unblocking (valid at end of W) will be recorded in the event rela-

tion ResumedbyP1 (see Figure 4).

Flgure 4: A Derived Event Relation
ResumedbyP1 (Process):

Process I ' {At}
P2 “2:54:20

The valid-at clause can be used to indicate sampling. The user can request that the RunningOn

relation be sampled every ten seconds through the query

range of C is Clock[10]
retrieve RunningOnEverylOSeconds (RO.all)
valid at C

Ezample £: Sample the RunningOn relation.

Clock [10] denotes a clock that ticks once every 10 ticks of the underlying Cloek relatioti, which
ticks once a second (c.f., Figure 3). The valid-at clause indicates that the user is interested in the

tuples of RunningOn only at particular clock ticks,

The expressive power of TQuel has a cost: the monitor must be able to determine which sen-

sors to enable, what calculations to perform, and how to display the results, all from the TQuel

12



query. Fortunately, there has been much work on processing relational query languages, and the
results of these efforts can be applied in this setting as well. To provide the context for this discus-

sion, we first review how conventional database management systems (DBMS) process queries,

5. The Relational Algebra

Tuple calculus queries, such as those formulated in Quel, express what derived information is
- desired, letting the DBMS determine Aow the information is to be derived. Relational algebra
lexpressions serve the latter purpose. The DBMS converts each tuple calculus query into an alge-
braic expression. As this expression iz usually quite inefficient, optimizations are applied that con-

vert the initial expression into a semantically equivalent one that is more efficient.

In this paper, we will use only a few common relational operations [28]:

Selection
If F is a formula involving constants, attribute names, arithmetic comparison operators and

logical operators, then GF(R ) is the set of tuples ¢ in R such that, when the appropriate com-
ponents of ¢ are substituted for the occurrences of the attribute names in F', then the formula

F becomes true. For example,

o

B .Dept="Toy"(Emp loyeez)

denotes the set of tuples in Employee who work in the Toy department. The subscript on
Employee indicates that the tuple variable E has been associated with the relation through a
range statement.

Projection
If R is a relation with k attributes, we let Tq -
172

denote the get of m-tuples a a, - - q,, such that there is some k-tuple 6152 <. bk in R for
which the § component in 4 is the d; component in b. For example,

. 4 (R), where d. is a attribute name,
-m

e .Name,Z.8alary (Employee,)

denotes a relation with two attributes, E.-Name and E.Salary.

Cartesian product
Let R and § be relations with k, and k, attributes, respectively, then R XS, the cartesian

product of B and S, is the set of tuples with kl + k2 attributes whose first kl components
form = tuple in R and whose last l:2 components form a tuple in §. For example,

Employee, X ToPromote,

denotes a relation with five attributes, EName, E.Dept, E.Salary, E.Manager, and
E.YearsService from the Employee relation and T.Name from the ToPromote relation. The



non-uniqueness of attribute names is inconvenient; we make the names unique by subscripting
the tuple variable to each relation name.

To convert a Quel query into a relational algebra expression, first take the cartesian product of
the underlying relations (each associated with a tuple variable used in the query), apply = selection
with the formula coming from the where clause, and then apply a projection, with the attributes
coming from the target list. The algebra may be extended to handle TQuel's valid and when
clauses, involving the extension of the projection and selection operators, respectively. The valid
clause is handled by a temporal varizant of the projection operator, denoted by a superseript of T,
This operator will project out those intervals designated by expressions in the valid clause. The
when clause is handled by a temporal variant of the selection operator, also denoted. by a superscript
of T. The subscript for this operator consists of the temporal predicate specified in the when clause.
A more snbstantial modification is to make the operators incremental, so that they operate on
streams of fup!es, one at a time, possibly generating one or more output tuples whenever an input
tuple arrives.

As an example, the query for ResumedbyP1 has the corresponding temporal relational alge-

braic expression

T T
(E1) WW.Process(ﬂnt end of w(as preceds and of W(as.nallboxﬂl' .Hailbox(as.Process’-'-Pl(

Waiting,, X SendMessage,)))))

and the query for RunningOnEvery108Seconds has the corresponding expression

(E2) rt (RunningOn_ X Clock[10] )

at C

8. Incorporating Primitive Relations in the Algebra

Enabling sensors manually in a complex system is very difficult for the user, due to the poten-
tially large number of sensors. One salternative, the brute-force enabling of all sensors, is excessively
inefficient. Hence, the monitor should handle the task of determining which sensors to enable, and

should only enable the necessary sensors, thereby filtering out u-nnecessary data packets. Filtering

14



should occur early and often, so that scarce communication and processing resources are not

expended on data which is later discarded.

The monitor must utilize as much information concerning the query to enable the correct sen-

sors. This information is used

' to enable the appropriate traced sensors, and
e to trigger the appropriate sampled sensors at the appropriate times on the appropriate entities.

The strategy employed here was to modify the temporal relational algebra to accommodate primi-
tive relations, The algorithm which translates TQuel statements to algebraic expressions specifies
defaults for which sensors to enable. Transformations then map these expressions into semantically
equivalent expressions that enable fewer sensors. These transformations are similar to those used to

optimize conventional algebraic expressions generated from static query languages.

6.1. The o Operator

To incorporate primitive relations in the algebra, a new operator, @, is used. One parameter
of this operator results in a relation indicating which sensors to enable; the outpat of the operator
consists of the tuples generated by these sensors. The subscript of this operator denotes the tuple
variable associated with primitive relation, and thus, indirectly, the primitive relation itsélf. The

superscript denotes the strategy employed to collect the data associated with the primitive relation:

o T:P Traced, with the enable flag in the performer.

o T:J Traced, with the enable flag in the initiator.

o T:T Traced, with the enable flag in the target entity.

e S:P Sampled, with the enable flag in the performer.

o S5:T Sampled, with the enabled flag in the target entity.

s P Traced, then disabled, with the ensble flag in the performer.

e D:1I Traced, then dissbled, with the enable fag in the initiator,
T Traced, then disabled, with the enable fiag in the performer.

§:I is not useful, since the initiator is always the monitor process in the case of sampled sensors.

The a operator is substituted for the primitive relation(s) appearing in the expression. For
example, the SendMessage event relation is traced on the initiator. If this relation was referenced

in a query through the tuple variable S, it would appear in the algebraic expression as
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ag (9
The “?’ is replaced with an slgebraic expression computing the processes for which this sensor is to
be enébled. Let us suppose that this expression was simply the constant process entity identifier P1.
Thern this operator wou_ld cause the enable flag in the process named by P1 for the SendMessage
gensor to be set. When the process named by P1 executed a SendMessage operation, the sensor
would fire and would generate a data packet containing the entity identifier for the process (i.e.,
P1), the entity identifier for the mailbox being sent to, and a timestamp (c.f., Figure 2). This data

packet would be converted into a tuple, which would be contained in the relation output by the a

operator.

The ar:P, aT:I, aT:T, aD:P, aD:I, and aD:r operators have one argument, the relation
comprized of entities containing the flag to be enabled. The aD operators, termed disable-traced,
are associated with sensors that immediately disable their enable fag after generating a data packet.
The as:P operator has two arguments: the entity containing the enable flag (the performer) and a
gpecification of when to sample. The as:r operator has three arguments: what to enable {the target
entity), who to request the sampling of (the performer), and when to sample. In all cases, the output

consists of the tuples in the relevant primitive relation generated as a side effect of tuples entering
the o operator,

A few examples will clarify the differences between the types of & operators. We have already
examined the SendMessage event relation. The RunningOn interval relation is sampled on the
performer, and would appear in the algebraic expression of a query referencing it through the tuple

variable RO as
S:P
o, (7 9)

The first “f” would be replaced with an expression computing processes; the second “#” would be
replaced with an expression computing events, at which times the request to sample would be con-

veyed to the processes comprising the first argument. Generally the secondary argument is a Cloek
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relation. The Walting interval relation is disable traced on the target mailbox:

o2 (9

When entities arrive from the expression replacing the “#”, the Waiting sensor is enabled. However,

it is immediately disabled once the operation occurs and the sensor generates the data packet.

The @ operator is distinct from the other relational operators in that the output tuples are not
simply a function of the input tuples. Instead, the output tuples comprise a subset of a primitive
relation, the subset being determined indirectly by the input tuples. Equivalently, the output tuples
comprise the data packets generated by the associated sensor, which was enabled as a side effect of
input tuples entering the o operator. The incrementation execution of a temporal relational alge-
braic expression is coupled with the sensors in the subject system through the & operator(s) appear-

ing in the expression.

There is one additional connection between the input and output tuples of an o operator. As
an example, we will use aT:P. The set of entity identifiers present in the input tuples of this opera-
tor will be a superset of the set of entity identifiers present in the Per former position of the out-
put tuples, since only those entities Were'ever enabled. Similar statements can be made of each type

of & operator. This connection will soon prove quite valuable.

6.2. Entlty Sources

The algorithm translating TQuel queries to algebraic expressions must specify defaults lfor
which'seﬁsors to enable, i.e., what the arguments to the & operators must consist of. Here the entity
relations {defined in Section 4) for the entity types in the subject system are used. These relations
generate tuples naming all existing entities of that type, and are termed entily sources. Entity
sources are denoted by the enﬁty pame; Proceass denotes the entity relation and hence the associ-
ated sensor that generates all existing process entities (recall from Section 3 that this sensor may be

found in the process manager).
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Entity sources complete the terms replacing the primitive relations. The term replacing
SendMessage, in (E1} is

Tl

% ('“Procou(Procm))

Note that 2 projection operator is necessary for those entity relations that contain more than one
attribute, For the second argument of sampled & operators, which specifies when to sample, one of

the primitive clock relations is used as a defaunlt. The term for RunningOnlo is
S:P
a,, (Processor, Clock)
(note that Clock is an entity source) and the term replacing Waiting, in (E2} is simply
n:T
a,  (Mailbox)

The final algebraic expression for the Resumedby®1 query can now be presented (compare with

(E2)):

T T
{E‘?} #W.Process(ﬂ.at end of H(as preceds and of H(as.sauboxzw.ﬂailbox(as.Procoss=?1(
D:.T T:1
o, (Mailbox) X o, "(m __ __ (Process)}))))

as can the expression for the RunningOnEvery10Second query (compare with (E2)):

T 5:F
(Ei) 7, o, (Processor, Clock) X Clock(10] )

.. .Entity sources are associated with sensors that are permanently enabled. Note that an entity
relation need not be an entity source, if it never appears as a default parameter of an « operator,

but an entity source must be an entity relation.

6.3. Data Generation and Analysis

Recall from Section 5 that the temporal relaticnal operators are incremental, in that they take
streams of input tuples and possibly generate one or more output tuples whenever an input tuple

arrives. The expression is started by having the constants and entity sources (e.g., Mailbox and

18



Process in Expression (ES)) generate initial tuple streams. These streams are comprised of unary
tuples, each containing one entity identifier, Entity identifiers may be accessible by the monitor, or
they may have to be supplied by the user. Expression (E3) is “primed” with two streams, one con-
taining a tuple for each processor, acquired from system configuration tables, and one containing a

tuple for each mailbox, acquired from the process communication manager.

The initial tuples fow into the specified operators. In the case of o operators, the tuples indi-
cate which entities contain the appropriate enable flags to set. The monitor deduces the entity's
location from the entity identifier (the mechanism presented in Section 3 assumed that this was pos-
sible} within the tuple, and sets the enable flag in the entity, thereby enabling the sensor. Once
enabled, the sensors generate data packets, which are gathered and sent to the monitor, where they
are separated by sensor identifier. The sensor identifier names a particular a operator associated
with a tuple variable ranging over the primitive relation associated with a sensor. The data pz‘ackets
containing the correct sensor identifier form the tuples cutput by the a operator. Hence, tuples
flowing into the & operator indirectly enable various sensors, which generate dé.t.a. packets that even-
tually comprise the output of the & operator. The tuples flowing into & operators representing inter-
vals specify both when to enable a sensor on a particular entity and when to disable that sensor on

that entity. Data generation occurs until al the sensors are disabled in the course of execution.

The processing resulting from Expression (ES} is very inefficient. The Mallbox sensor gen-
erates all the Mailboxes and the Process sensor generates all the current processes. The Walting
sensor is enabled for the mailboxes and the Send sensor is enabled for the processes. The cartesian
product generates a tuple for each combination of tuples generated by the Walting and Send sen-
sors; the number of generated tuples grows as the product of the total number of block and send
operations by all processes. Almost all the tuples are subsequently discarded by the three selection
operators. Finally, one explicit and one implicit attribute are projected out, forming the resulting
tuples. Similarly, the processing of Expression (E{) results in samples taken every second, then con-

catenated with a tuple for every clock tick, then discarded if the time the sample was taken does not
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correspond to the time s particular clock tick occurred. The (in)efficiency of Expressions (E2} and
{E{) is a direct result both of the expressive power of the non-procedural query language TQuel and
of the simplicity of the initial translation into s relational algebraic expression. Clearly, this

inefliciency is unacceptab!é and must be corrected if the relational approach is to be a viable one.

6.4. Algebraic Transformations

Using entity sources as arguments to & corresponds to enabling everything. However, transfor-
mations may be applied to map expressions into semantically equivalent expressions that enable
fewer sensors by replacing entity sources with more constrained expressions that produce fewer enti-
ties to enable. One benefit éf using the relational model with monitoring is that traditional transfor-

mation techniques may be utilized. An example is the transformation
(01) o, (R, XR,)—R Xo.(R)

which is correct if the predicate F does not include attributes from Rl. This transformation can
dramatically reduce the number of tuples generated by the cartesian product, since uninteresting
tuples are discarded Before rather than after the cartesian product. This optimization can be

applied to the Expression {E9), with the substitutions
¢ S.Process=Plfor F.

. a“D : T(Ma.ilbox) for R,.

T.1

¢ as (ﬂl’roun

(Process)) for R,
resulting in
T T
{ES} IH.Procon(’r_nt end of l‘as precede end of H(as.nanhox#.nnbox(

a:) :T(Mallbox) X o, T (Process}))))))

.Proco-s=P1(as (“Proceso

A collection of such transformations has been developed for the conventional refational algebra [20];

these transformations apply directly to the temporal relational algebra.



A second class of transformations involves the a operator. These transformations improve the
algebraic expression by enabling fewer sensors or by replacing sampling with tracing, or by sampling
less frequently. Approximately ten transformations, each with several variants, have been developed

thus far; only a few will be discussed here. The first shares some features with the one just given:

(02) ey = o o, _ B

. o o
at.mstmtor-K( ¢

In these transformation schemas, variables to be substituted are in italics. Intutively, this transfor-
mation states that, rather than enabling s sensor on a large number of processes and then discarding
many of the data packets so generated, enable the sensor on only the relevant processes. The reason

T:1
that o,_ AE ) appears on the right hand side rather than simply the constant K is that @, should
be enabled for process K only if £ contains K.

In this transformation, E is an arbitrary algebraic expression that returns a relation with one
attribute of type process; f is a tuple variable associated with a primitive relation traced on the ini-
tiator; K is a constant denoting a particular process identifier; and ““1" is the name of the first attri-
bute. In the expression before the trapsformation is applied, the sppropriate sensors iz enabled for
all processes, with most of the resulting data packets (tuples) discarded by the selection operator. In
the expression resulting from the transformation, if E contains the process K, then the appropriate

sensor in that process is enabled. There is no need to discard any data packets, because all the data

A

packets are guaranteed to have a performer of K. This transformation ¢an be applied to Expression

{E5}, with the substitutions
. 8 for &

. S.Process for t.inilialor.
e PlforK.

. {Process) for E.

“Procell

resulting in

T T
{E6} Ww.Procou(’rlt and of H(as preceds and of w(

a: :T(Mailbox) X a::f(a

as .Hailhox‘#.lhllbox(

(Process)})))))

1=P1(1rProcen
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There is another transformation that is even closer (semsntically, not syntactically) to the

traditional one:

D:T D:T
{08)  Ogiart of E, precede end of t(aA=t.t¢rget(at (E) X E) —a, (E n T, (E,)

In the left hand side of this transformation, the attribute A, which must be in Ez’ is being used to
select tuples generated by a‘D T An example may be found in Expression (E6), where S.Mailbox is
used to select tuples generated by af T However, since the associated sensor is disable traced on
the appropriate attribute (the target) anyway, the ﬁlteri_ng may occur when enabling the sensor,
rather than later, after the unnecessary data packet has been generated. On the right hand side of

D:T T
the transformation, &,  is enabled on only the relevant entities. The temporal selector & on the

: D.T
left hand side is necessary because E2 cannot be used to enable &,  if ¢ finishes before Ez'

There are three restrictions on the application of this transformation:

(1) Only attributes associated with the tuple variable # may be used by operators on the tuples
produced by the expression; those found in E2 are pot available for further use.

{2) A must be an attribute in E,,.
(3) The attribute start of ¢is not needed.

This transformation may be used on Expression (E6}, using the substitutions
. W for .
. W.Mailbox for Liargel.

. Mailbox for El.
T

. al (014,1(7?,‘_““‘(!’1'068!!))) for E2'
e S.Mailboxfor A.
. “s precede end of W' for “start of Ez precede end of {’, since they are

equivalent (S is associated with an event relation, and W with an interval relation).

resulting in

(E7) ﬂ.li.li'rcw:eu(ﬂ.ﬂ: end of U(

or (Mailbox M r_ [

(eg (0 (Process)))))))

.Mailbox 1=P1(1rProc:ess
There are many variants on this transformation, each on different kinds of @ operators and each

having different constraints,



It should be noted that complications arise when multiple & operators referring to the same
primitive relation are present in a collection of queries. Either this situation must not be allowed, or
the monitor must be able to sort out the incoming data packets from the sensors and determine
which @ operators to send each packet to, or the o operators must perform this selection them-

selves. The correct filtering is still performed at the sensors, in any case.

A third class of transformations involves entity sources. We give two here:

(04) o,_ () =K
(055 ¢tNVE—E

Both derive from the definition of the entity source £ and elementary set theory, and assume that
K and E are of the same entity type as f. The first states that selecting a particular entity out of
an entity set results in that entity, The second states thé.t taking the intersection of a subset of enti-
ties and an entity set result in that subset. The first transformation can be applied to Expression
{E7), substituting “P1” for “K" and “‘m, (Process)” for “f" to get

Process

T D:T . T:f
(E8} WW.Proc:s(wlt and of W aw (Mallbox n WS.Ma.llbox(as (Pl))}))

. . . . S T4
The second transformation can be applied to this expression substituting “m, .. . (o, "(P1))"
for “E" and Mallbox for * "’ to get

(E9) “H.Procass(’rat and of w(a::r(ﬂs.Mailbox(asT:I(Pl)))))

The fourth class of transformations involves the Clock event relation, This relation can be

used to specify éampling rates; several of the transformations allow the monitor to handle this. The

transformation

00 7, de, " (Ey E) X Clock[]o) ~ a; " (E,, E, N Clock[],)

 modifies the second argument of the & operator, which specifies the sampling frequency. The sub-
seript C on Clobk[i] indicates the tuple variable zssociated with this predefined relation. Recall

that the postfix “[i]"’ denotes a clock that ticks once every ¢ ticks of the underlying clock.



A second transformation
(07) Clock{n] [ Clock|n*] — Clock[n*]]
allows longer frequences to be used. Both transformations may be applied to Expression {Ef). The

first transformation results in

S:P(Processor, Clock [ Clock[10] J

(E10) @,

and the second in

S\P

(E11) o (Processor, Clock[10] )

(Clock is equivalent to Clock[1]) with the result that the RunningOn sensor is sampled every 10

seconds, rather than the default sampling frequency,

The transformations from the four classes (traditional, involving the a operator, involving
entity sources, and involving the Cloek event relation) are repeatedly applied in order to the alge-
braic expression until no more are applicable. A comparison of the processing resulting from the
“before” Expression (E8) with the processing resulting from the “after” Expression (E9) for the
ResumedbyP1 query indicates the increase in efficiency that is possible. The previous examination
of Expression {E8) revealed that it was very inefficient. The transformed expression, on the other
hand, is quite efficient. First, the SBend sensor is enabled only for the P1 process (asT:J(PI)). When
P1 actually sends 2 message, the mailbox identifier is extracted from the data packet (ns_m nhu)
and the Walting sensor is enabled for this mailbox (o:: :T). Since the enable flag is actually an
integer (c.f., Section 4}, multiple send operations by P1 are handled correctly. When a process is
unblocked, receiving the message, the Walting sensor sends s data packet containing the process
identifier and the mailbox identifier. This sensor is also disabled by the monitor, awaiting reenabling
when P1 sends another message to the mailbox. The process identifier and end time are projected
out of the data packet, forming the resulting tuple. Using the sample data from Sectior 4, Expres-
sion (E9) is primed with the single process identifier for P1; tuples flow out of a::I operator {those

shown in Figure 2) and into the projection operator, resulting in the tuples (M3, 2:00:05), (M4,
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2:00:08), and (M7, 2:51:13). These tuples successively flow into a: :r, which subsequently genperates
the tuple (P2, M7, 2;45;29, 2:54:20), which flows into the two projection operators, resulting in the
tuple (P2, 2:54:20} az shown in Figure 4. The number of generated tuples is linear in the number of
send operations by P1. ‘

Expression (E11) is also much more efficient than the initial attempt (Expression (Ef)). The
optimized expression specifies that the RunningQn sensor is to be sampled by the scheduler of each
processor every 10 clock ticks.

The relative increase in efficiency is primarily an indication of the gross inefficiency of the
unoptimized expression; the absolule efficiency suggests that the optimizations are able to enable the

minimal sensors and perform just the computations needed to derive the desired information.

7. Conclusions and Future Work

In the traditional approach, automatic filtering is very difficult, for two related reasons. The
major reason is that filtering is encountered too early. There is no way for the monitor to base filter-
ing decisions on how the collected data will be analyzed or displayed; those tasks are specified later.
Secondly, even if this information was available, it is not clear how it would be used by the monitor.
The filtering capabilities of conventional sensors are primitive, generally consisting of either enabling
or disableing the sensor. The analysis specification is also simplistic, thereby reducing the p.otential

benefit gained by analyzing these specifications for hints on filtering.

In this paper we have shown that sophisticated filtering is possible if the sensors and the moni-
toring queries are precisely specified before the data collection. In the relational approach to moni-
toring, sensors are specified as historical relations. Filtering is accomplished by associating the e.na.ble
flag with either the initiator, performer, or target of the operation. Monitoring queries are specified
on this relations in TQuel, a non-procedural historical query language. These queries are converted
into expression in an incremental temporal relational algebra. The primitive relations are incor-
porated through 2 new algebraic operator, a. Optimizations transform the initial expression into a

more efficient one that enables fewer sensors, thereby effecting a high degree of filtering. An example



demonstrated the improvement possible on two queries.

Our approach has several advantages over the traditional one:

@ Sensor Configurstion and Installation
In the traditional approach, the user had to keep track of which programs contained each sen-
gor and where these programs were located in the distributed system. The new approach asso-
ciates sensors and their epable flags with entities based on 2 simple model of the environment.
For many sensors, the enable flag is in the initiator or the target, decoupled from the per-
former where the sensor resides. The user need not be concerned with details of where sensors

or enable flags are located.

e Enabling Sensors
It was originally the user’s responsibility to determine which sensors to enable and to locate

these sensors in the distributed system. Our approach makes use of the @ operator and a col-
lection of optimizations to determine precisely which sensors to enable. The entity identifier is
used to locate the entities which contain the enable flags,

¢ Data Generation _
The volume of data collected is reduced considerably through filtering. The appropriate sen-
sors are initially enabled, and can be disabled and other sensors enabled as a side effect of the

analysis of previously generated data.

While sophisticated fltering within the context of the relational approach to monitoring has

been demonstrated, there are several areas where further work is needed.

On the theoretical side, we are developing a formalization of the ineremental temporal algebra
discussed in Section 6. Such a formalization will be used to
¢ ensure that the operators are well defined

¢ prove that the mapping from TQuel to the relatioral algebra is correct, using TQuel's tuple cal-

culus semantics [23]
o prove that the optimizations do not alter the semantics of the expression they are transforming

¢ perhaps suggest further optimizations

We also want to incorporate data collection techniques other than sampling and tracing into the o

operator and its formalization, thereby precisely specifying these data collection techniques,

On the practical side, the next step is to implement 2 relational monitor to assess the applica-
bility of the optimizations on sctual monitoring queries and to determine the effectiveness of the
filtering. We have implemented the data collection mechanism discussed in Section 3, as well as the
portions of the monitor involved in processing the TQuel queries [22, 24]. Data collection has been
implemented on Cm* [7, 27] under the StarOS [12, 13] and Medusa [16] operating systems, and on

the Vax under Unix. That both operating systems on Cm® are object-based allowed the implementa-



tions to closely match the conceptual model presented in Section 3; the Unix implementation is not
as generzal nor as consistent with the model. However, we have found it convenient to think in terms
of the model even if the implementation does not mirror it exactly. The next step is to implement

the optimizations and to make the system available to others for feedback.

Anocther area still to be investigated is filtering within hardware sensors. While the & operator
conceptually could be coupled just as easily to hardware as to software, the actual mechanisms

necessary to do so have not been developed.

Finally, it might be desirable to have the monitor play a greater part in sensor specification
{e.g., allow it to substitute sampling for tracing to lower the data collection overhead) and sensor
installation (e.g., allow it to install the sensors at execution time by using conventional breakpointing

mechanisms). How this m:iy be done is an open question.
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