
A Relational Approach to

Monitoring Complex Systems

December, 1985

Richard Snodgrass

Department or Computer Science
University or North Carolina

Chapel Hill, North Carolina 27514

Abstract

TR 85-035

Monitoring is an essential part of many program development tools, and plays a central
role in debugging, optimization, status reporting, and reconfiguration. Traditional moni­
toring techniques are inadequate when monitoring complex systems such as multiproces­
sors or distributed systems. A new approach is described in which historical databases
form the conceptual basis for the information processed by the monitor. This approach
permits advances in specifying the low level data collection, epecifying the analysis of
the collected data, performing the analysis, and displaying the results. A prototype im·
plementation demonstrates the feasibility of the approach.

Table or Contents

1. Introduction .. 1
2. Traditional Monitoring ... 2
3. The Relational Model ... 4

4. A Relational Approach to Monitoring ... 5
5. The Sensor Configuration Step .. 8
6. The Sensor Installation Step .. 14
7. The Analysis Specification Step ... 15

7.1. The Que! Retrieve Statement .. 15

7.2. Example TQuel Retrieve Statements .. 16

8. The Execution Step .. 20
8.1. The Relational Algebra .. 20

8.2. Algebraic Optimization Transformations .. 22
8.3. Data Generation ... 24

8.4. Data Analysis .. 24

9. Comparison with the Traditional Approach ... 25
10. Implementation ... 27

11. Comparison with Other Work ··~··················· 30
12. Future Work ... 32

13. Acknowledgements ... 33
14. Bibliography .. 34

I

List or Figures

Figure 1: Steps or the New Approach to Monitoring .. 7

Figure :t: Entity Relations.. 11

Figure 3: An Event Relation ... 12

Figure 4: Remaining Primitive Relations ... 13

Figure &: A Derived Interval Relation .. 16

Figure lh A Derived Event Relation ... 18

Figure 7: Another Derived Relation ... 19

11

List or Examples

Example 1:. Who should be promoted! .. 16

Example 1:. Which processes are currently Ready! ... 16

Example 3:. Which processes can unblock the blocked processes! 17

Example 4:. Which processors may potentially unblock processes! 17

Example 5:. Which processes were resumed by process Pl! 18

Example 11:. Sample the RunnlngOn relation. ... 18

Example 7:. When was the Process waiting unnecessarily! 19

Example 8:. How long is the queue of waiting processes for each mailbox! 19

w

1. Introduetlon

Monitoring is the extraction of dynamic information concerning a. computational process, as

that process executes, This definition encompasses aspects of measurement, observation, and test-

ing.1 Monitoring is a fundamental component of many computing activities:

o One use of monitoring is to facilitate the debugging of complex programs. Debugging proceeds
in five stages [Model 1978[: (1) observe the behavior of a computer program; (2) compare this
behavior with the desired behavior; (3) analyze the differences; (4) devise changes to the pro­
gram to make its behavior conform more closely to the desired behavior; and (5) alter the pro­
gram in accordance with these changes. Monitoring is concerned with the first and, to some
extent, the second and third stages in this process. Monitoring is a first step in understanding a
computational process, for it provides an indication of what happened, thus serving as a prere­
quisite to ascertaining why it happened.

o A second use of monitoring tools is in making efficient use of limited computing resources.
Ideally, optimization of resources would be done analytically, but in general a priori determina­
tion of runtime efficiency is impossible. Thus it is necessary to tune the application program
once it is implemented. Tuning requires feedback on the program's efficiency, which is deter­
mined from measurements on the program while it is running.

o A third use of monitoring is to query the system, not for performance measures, but merely for
status information, such as how far a computation has progressed, who is logged on the system
(the system status command of most time-sharing systems), the state of certain files (the
catalogue or directory commands), or the nature of hardware and software failures.

o And finally, monitoring information may also be used internally by the application program.
For example, consider a program which varies the number of processes dedicated to a particu­
lar function based on the request rate for that function. Information concerning the hardware
utilization and the number of outstanding requests could be used by the program to determine
whether to start up more processes to handle the current demand (if the utilization is low and
the request rate high) [Ogle, et al. 1985, Rashid & Robertson 1982, Wulf et al. 1975]. Monitor­
ing information is also valuable for programs which must be reliable; the fact that a processor
(executing processes belonging to a program) has failed, for example, is important to the pro­
gram if it must be able to recover from such failures.

Monitoring is thus an essential function. In one study of program development tools [Hough-

ton 1982[, a quarter of these tools were highly dependent upon monitoring, including those under the

categories of tracing, tuning, timing, and resource allocation. Much has been written about monitor-

ing on uniprocessor systems (c.r., the bibliographies [Agajaman 1975, Perlis, et al. 1981]) and the

general techniques of tracing and sampling are well established.

1 There are at le&rt two other definitiou of fftOtu'tor tha.t should be mentioned: a !)'llonym for open.tin« system a.nd u.
~orbiter of acceae to a data. Biructure ill order to ~uure specified innriu.U, usually relat.iq: to synchronintion !Hoare 1074J.
Both definitiou empha.si1e the cottlrol, ra.ther than the o6urvctional upecta of mon.itoriq. Monitoring ia clo11ely &!llociated
with, but strictly aepuate from, a.ct.ivities which cha.nge the course of the compab.tiou.l adivity. The term monitor u used in
thia paper ia the (uBUally software) agent performinc the moDitorinc.

The term complex system used in the title is intentionally vague. We use the term here to

include large uniprocessors, tightly coupled multiprocessor systems, and loosely coupled local and

long haul networks. Two distinctions relevant to monitoring are that complex systems often exhibit

a lack or central control and that a quantitative difference between simple and complex systems in

the number or system components (processors, processes, memory, addressing domains, etc.) leads to

a qualitative difference in the sophistication required or the monitor. These two aspects conspire to

make monitoring a complex system a difficult (and thus interesting) task.

In this paper, we argue that an historic•/ d•t•b•ae, an extension or a conventional relational

database, is an appropriate formalization or the information processed by the monitor or a complex

system. This approach induces changes in the ordering of the steps performed during monitoring, as

well as changes in the steps themselves. In Section 2 we examine the sequential process or traditional

monitoring. The third section reviews efforts in the area or database management that address the

central problem of monitoring, that or information processing. Sections 4 through 8 propose the new

approach, exposing the many opportunities such an approach presents. In Section 9 we return to the

traditional approach, comparing it with our approach. Section 10 briefly examines a prototype

implementation, and the last two sections offer conclusions and directions for future work.

:t. Traditional Monitoring

The purpose of this section is to provide an overview of monitoring as presently practiced. A

few definitions are useful. The subject system is the software system being monitored, usually the

operating system or the user's program. A ten• or is a section or code within the subject system

which transfers to the monitor information concerning an event or state within the system. If the

sensor is traced, then a data packet is transferred to the monitor each time a particular event

occurs. If the sensor is sampled, then a data packet is transferred each time the monitor requests

the sensor to do so. This d•l• pocket may be as simple as a bit that is complemented when the

event occurs, or as complex as a long record containing the contents or system queues. The removal

or irrelevant data packets is termed filtering.

Implicit in most discussions on monitoring is a eight step sequential process:

Step 1: Sensor Configuration
This step involves deciding what information the sensor will record and where the sensor will
be located.

Step IJ: Sensor Installation
The sensors must be coded and placed in the correct location in the subject system. Provision
must be made ror temporary and permanent storage or the collected data.

Step 9: Enabling Sensors
Some sensors are permanently enabled, storing monitoring data whenever executed, while oth­
ers may be individually or collectively enabled, usually by directives from the user.

Step -/:Data Generation
The subject program is executed, and the collected data stored on disk or magnetic tape. Gen­
erally the user has little control or the monitoring at this point.

Step 5: Analysis Specification
In most systems the user is given a menu or supported analyses; sometimes a simple command
language is available.

Step 6: Display Specification
Either only one display format is available, or the user is given a. menu or formats, ranging
from a list or data packets printed in a readable form to canned reports to simple graphics
(graphs or histograms).

Step 7: Data Analysis
The data analysis invariably occurs in batch mode long arter the data. has been collected.

Step 8: Information Display
Usually this step occurs immediately after data analysis, although a few packages allow the
analyzed data to be displayed at a later time.

While most monitoring systems follow the sequence or phases just listed, in the precise order

given (e.g., [Malone 1983, Tetzlaff 1979[), there is a variety or alternative orderings within each

phase. Many systems do not differentiate between sensor configuration and sensor installation. In

some systems, sensors are always enabled, so that the enabling sensors step occurs in the second step

when the sensors are installed (e.g., [Bowie & Linders 1978, IBM 1984[). Some systems support only

one display format, effectively combining the analysis and display specification steps (e.g., [Graham

et al. 1982, McDaniel 1982, Tolopka. 19Sl[); other systems allow the display· to be specified arter the

data has been analyzed(e.g., [Cooperman et al. 1972, DEC 1983[).

When considering the monitoring or a complex system, the first strategy to be examined is to

extend each step in obvious ways. Such an approach is problematic at every step, due to the logical

and physical distribution or the monitor and the subject program(s). These difficulties are examined

3

in detail in Section Q, where the traditional approach is compared with our proposed approach. The

next section will review related work in processing information, the basic function of a monitor, and

will examine how results from this work may be applied to monitoring. Section 4 will then present a

new approach to monitoring based on this analysis.

3. The Relational Model

In an abstract sense, the process of monitoring is concerned with retrieving information and

presenting this information in a derived form to the user. Hence, the monitor is fundamentally an

information processing agent, with the information describing time-varying relationships between

entities involved in the computation.

A great deal of research has considered effective ways to process information. One of the

results of this research has been the relational model [Codd 1Q70J. The relational model provides

both a structuring of the information and manipulations on that structure. A relation may be

thought of as a table having a number of rows (called tuples) and columns (called attributes). New

relations can be derived from existing ones using one of several data manipulation languages

developed for the relational model; these querv language• are syntactically concise, yet are remark·

ably powerful [Ullman82J. One important aspect of some query languages is that they are declara­

tive rather than procedural: they allow the user to specify what information is desired, rather than

how this information is to be derived.

The conceptual design of a database is aided by the entitv·relalionship model [Chen 1976[. In

this model relations are classified as entit11 relations or relationship relations. Each tuple of an entity

relation contains an entity identifier along with attributes describing that entity; an example is the

entity relation Employee with attributes Name, Department, Salary, and YearsService. Each tuple

of a relationship relation contains two or more entity identifiers along with attributes describing that

relationship between the entities; an example is the relationship relation Manqea, with attributes

Manager, Subordinate, and YearsUnderManager.

Conventional databases a.re static, in that they represent the state or an enterprise at a single

moment or time. Although their contents continue to change as new information is added, these

changes are viewed as modifications to the state, with the old, out-of-date data. being deleted (rom

the database. The current contents or the database may be viewed as a snapshot or the enterprise

at a particular moment or time.

For relational databases to be relevant to monitoring, there must be a means o(recording facts

that are true only for a certain period or time. In the database area, attention has recently been

focused on precisely this issue. Three types or databases have emerged that encode the notion of

time: rollbock databases, which record the history or database activities, IJj,toricol databases, which

record the history of the real world, and temporal databases, which incorporate both aspects

[Snodgrass 1985, Snodgrass & Ahn 1986]. The historical database is the most appropriate model of

the dynamic state of computation. Historical databases require more sophisticated query languages

than static databases; TQuel (Temporal QUEry Language) is one that supports historical queries

[Snodgrass 1985]. Examples of TQuel queries will be given in a later section, after a new approach to

monitoring is presented.

4. A Relational Approach to Monitoring

The central thesis of this paper is that historical databases are an appropriate formalization of

the information processed by the monitor. The primary benefits include a simple, consistent struc­

ture for the information, the use or powerful declarative query languages, and the availability or a

catalogue of optimizations. In this approach, the user is presented with the conceptual view that the

dynamic behavior or the monitored system is available as a collection or historical relations, each

associated with a sensor in the subject system. In making historical queries on this conceptual data­

base, the user is in (act specifying in a nonprocedural fashion the sensors to be enabled, the analysis

to be carried out, and even the graphical presentation or the derived data.

Note that we are nol proposing to actually represent the data as relations in a. database.

Instead, we will show that an historical database provides a convenient and powerful fiction that

li

guides the processing but does not constrain the representation. In fact, in most cases the relations

will never actually collectively exist as data stored either in main memory or on secondary storage.

Such an approach changes the ordering and the character of the traditional monitoring steps

described earlier:

Step 1: Sensor configur•tion
This step is still performed by the user, except the result is a specification of the data to be
collected and the placement of the sensors. Such sensors can be quite flexible; the user is only
concerned with specifying the high level properties of the sensor. Conceptually, each sensor
declared in this manner defines an historical relation available for later use in defining other,
derived relations. The relations directly associated with sensors are termed primitive relations,
as contrasted with derived rel•tiona, which are not associated directly with sensors. The
specification of the primitive relations identify the information available to the monitor.

Step £: Sensor inst•ll•tion
This step occurs automatically: the sensor is produced by the monitor from the specifications.
Relevant aspects of the sensor are communicated to the components of the monitor that need
to know this information. The sensor code handles all the necessary interaction with the moni·
tor, including enabling and buffering, and may be customized to the task it is to accomplish
and the environment in which it is to execute.

Step 9: Analysis specific•tion
In this step, the user provides one or more historical queries, defined on the primitive relations
specified above.

Step 4: Displ•y specific•tion
This step occurs concurrently with analysis specification. By associating entities and relation·
ships with graphical icons (e.g., a square for a processor, a circle for a process, and spatial
inclusion (circle within a box) for the relationship "running in"), sophisticated illustrations of
dynamic behavior can be generated by the monitor.

Step 5: Execution
This step, comprised of enabling the sensors, generating the data, analyzing the data, and
displaying the results, occurs automatically once the queries have been specified. The monitor
first analyses the query to determine precisely the sensors that must be enabled to collect the
requisite low level information needed to satisfy the query, thereby guaranteeing that extrane­
ous information is not collected. These sensors may be subsequently disabled, and other sensors
enabled during the monitoring session based on the data that was collected. Data generation,
considered alone, has perhaps the most in common with the traditional monitoring tools. In
particular, all the techniques previously developed for data collection are applicable. Data
analysis can occur either locally, on the same processing node as the sensor that collected the
data, or at a centralized location, or at an intermediate location, depending on the precise
query and the capacity of the communication mechanism. The monitor has sufficient informa­
tion through the sensor specification and the user's query to make the decision as to where the
processing will occur. The monitor can also perform optimizations on the query, mapping it
into a different query with an identical semantics but improved performance. Information
display can also be made more efficient by capitalizing on the fact that only a small portion of
the state changes during each transition and by utilizing incremental display algorithms.

The steps for the proposed approach are illustrated in Figure 1, in which the traditional

approach is compared with the new approach. The major ch!J.nge is that the sensors are enabled and

G

the data generated after the analysis specification step, allowing the sensors to be enabled automati­

cally based on information from the query. A second change is that some aspects of sensor installa­

tion are automated, as described elsewhere [Snodgrass 1986[.

Figure 1: Steps or the New Approach to Monitoring

Sensor Configuration (m) --------;• Sensor Configuration (m)

Sensor Installation (m) Sensor Installation

Enabling Sensors (m)

Data Generation

Analysis Specification (m) ---\--+-----<• Analysis Specification (m)

Display Specification (m) Display Specification (m)

Data Analysis Execution

Information Display

(m): This step is a manual one.

As with the traditional approach, variations are possible. If dynamic sensor installation is sup­

ported (say, through the use or breakpoints), this step might be delayed until the execution step. By

storing one or more relations in secondary storage, additional iterations or the analysis specification

and execution steps (without the enabling and data generation portions) are possible. Finally,

defaults supported by the monitor may delay some aspects of some or the steps, (e.g., display

specification), until the execution step when they can be performed automatically.

The next four sections discuss this new approach in more detail. Section 5 examines how sen­

sors may be configured by the user. Section 6 deals briefly with how this information is used by the

monitor to install the sensors. Section 7 introduces TQuel in a tutorial fashion. The monitoring

actions or generating the monitor data and performing the analysis are discussed in Section 8.

7

This paper will concentrate on the concepts and mechanisms directly affected by the relational

approach. The low level data collection mechanism will only be outlined. A future paper will describe

this mechanism in detail, focussing on bow filtering can be accomplished through an analysis of the

user's query [Snodgrass 1986[. The graphical portions of the monitor, involved in the display

specification and information display steps, will be dealt with in an even more cursory Cashion, and is

discussed elsewhere [Shannon 1986[.

6. The Sensor Configuration Step

During sensor configuration, the user specifies the data to be collected and the placement of

the sensors. Our approach is to provide a simple language Cor describing what information is to be

collected by each sensor, and Cor indicating where the sensor is to reside. Once such a specification

has been processed by the monitor, the code Cor the sensors will be available to be included in the

subject program, the mechanisms will have been set up to get the data packets to the monitor, and

the query processing component will know about the primitive relations associated with the sensors

defined in the specification. In the implementation described in Section 10, a macro is generated

automatically Cor each sensor; the user inserts an invocation or these macros at appropriate places in

the code or the subject system. As with other aspects or the relational approach, complexity has

been managed by requiring the user to provide a nonprocedural description or what is to be done,

leaving the issue or how this task is to be done to the monitor, while ensuring that the monitor has

sufficient information to make this determination.

In the remainder or this section, we introduce an example subject system and discuss some

sensors that might be defined in this system. Since the user is encouraged to think or sensors as

defining historical primitive relations, we will employ the entity-relationship model to describe the

sensors. As the syntax or the sensor description language is not critical, the sensors will be specified

informally, rather than in that language. Although the entity-relationship model can also be used to

describe the data collected by hardware monitors, we will ignore this possibility. Details on the sen­

sor description language and on the data collection mechanisms themselves appear in a separate

8

paper !Snodgrass 1986J.

Throughout this paper, the following subject system (an operating system) will be assumed.

There are three types of operating system entities known to the monitor: Processor, Process, and

Mailbox. In this example, there are several processors, which execute the processes. At any point in

time, a process may be executing on only one processor, though processes can execute on more than

one processor over their lifetime. A process may send messages to a mailbox, where they will be

queued until a process executes the receive operation on the mailbox. H a receive operation is exe­

CI!te.i on an empty mailbox, the process will block until a message is sent to that mailbox. Several

processes may be blocked on a mailbox. Although this example is of necessity oversimplified in com­

parison with actual operating systems, it should be sufficient for the purposes of this paper. We will

now attempt to capture the behavior or this system within the relational model.

Entity relations must be made available for each entity type. The name of each is identical to

the name or the type. The Proceuor entity relation contains one attribute, the processor identifier.

This relation is always enabled; its associated sensor is placed in the configuration manager which

handles the restarting of crashed processors. The Proceu entity relation contains two attributes,

the process identifier and the state, one or Readu (i.e., the process is scheduled but not currently

running), Running (the process is currently running on a processor), Blocked (the process is waiting

on a mailbox), or Done (the process has halted or aborted)2• This relation is always enabled and is

associated with a sensor in the process manager. Finally, the Mailbox entity relation contains one

attribute, the mailbox identifier, and is always enabled. Its sensor is located in the process communi­

cation manager.

Within the monitor, relations are differentiated temporally: there are went relations and inter·

val relations. Entity relations are always interval relations, for they model entities while they exist in

the subject system. Each interval relation contains two implicit attributes, the time the modeled

2 The State attribute ia u enumeratioa, and hence i1 not. one of l.be entity types mentioned previously.

interval began, and the time the modeled interval ended3• Figure 2 shows the three entity relations,

with user names denoting the internal entity identifiers. Most of the entities were created when the

system was brought up at 1:00:00 and destroyed when the system was halted at 4:00:00. Interval

relations are associated with two sensors, one determining when the interval began and one deter-

mining when the interval ended. The first task of the data analysis portion of the monitor is to con-

struct intervals from the data packets generated from these sensors.

3 The putitioniq into explicit ud implicit <ribut.es wu done for lu.pare desip reaaou; tee !Snodgrua 1985] for more
debit..

10

Proeesaor (Proeeaaor):

Proeeu (Proeeu, State):

Figure 2: Entity Relations

Processor I (From)

A 1:00:00
B 1:00:00

(To)

4:00:00
4 :00:00

Process State ! (From) (To)

Mailbox (Mallbox):

P1
P2
P1
P2
P1
P2
P1
P1
P2
P2
P2

Ready
Ready

Running
Running
Ready

Waiting
Running

Done
Ready

Running
Done

1:00:00
1:23:24
2:00:00
2:05:12
2:15:37
2:45:30
2:45:30
2:52:47
2:54:20
2:56:10
2:57:05

Mailbox (From) (To)

2:00:00
2:05:12
2:15:37
2:45:29
2:45:30
2:54:20
2:52:47
4:00:00
2:56:10
2:57:05
4:00:00

M1 1 :00 :00 4:00:00
M2 1:00:00 4:00:00
M3 1:00:00 4:00:00
M4 1 :00:00 4:00:00
M5 1 :00 :00 4:00:00
M6 1:00:00 4 :00:00
M7 1:00:00 4:00:00

Relationship relations can be either event relations or interval relations. A tuple in an event

relation describes a change in the state or the system which occurred at a particular instant or time.

An example is the SendMeaaage event relation, which has two explicit attributes, a Process and a

Mailbox, and one implicit attribute, the time the event occurred (see Figure 3). The tuple (P1, M3,

2:00:05) in this relation represents the instantaneous event or "Process P1 sent & message to Mailbox

M3 at time 2:00:05." The content or the message is not recorded in this rel&tion.

11

Figure 3: An Event Relation

SendMeaage (Proc:.,.., Mailbox):

Process MailBox (At)

Pl M3 2:00:05
Pl M4 2:00:06
Pl M7 2:51:13

There are four other relations defined for this system (see Figure 4). The RunnlngOn (Pro-

cess, Processor) interval relation describes which Process is running on which Processor. Since the

system state is constantly changing, the relations evolve over time. For instance, the tuple {Pl, B)

may be valid in the RunnlngOn relation for only a few milliseconds, and new tuples are added to

the SendMessage relation as messages are sent. The Accuse. (Proc.,.., Mailbox) interval rela-

tion describes which mailboxes a process can send to or receive from, and is always enabled. The

Waiting (Proc.,.., Mailbox) relation lists the processes blocked while waiting to receive from a

mailbox. Finally, there is a Clock event relation which contains no explicit attributes. The Clock

relation is treated specially by the monitor; it is generally used to specify sampling, as will be seen

below.

Figure 4• Remaining Primitive Relations

RunnlngOn (Proceu, Proeeuor):

Process Processor I (From) (To)

PI A 2:00:00 2:I5:37
P2 B 2:05:I2 2:45:30
PI B 2:45:30 2:52:47
P2 A 2:56:IO 2:57:05

Aeeeuea (Proceu, MailBox):

Process MailBox I (From) (To)

PI M3 I:OO:OO 2:57:23
PI M4 I:OO:OO 2:57:24
PI M7 I:00:05 2:57:23
P2 M7 I:23:24 2:40:29

Waiting (Proceu, MailBox):

Process MailBox I (From) (To)

P2 M7 2:45:29 2:54:20

Clock:

(At)

I:OO:OO
I:OO:OI
I:00:02
I:00:03

The primitive relations contain timestamps from a gloabl clock maintained across the entire

system. Unfortunately, it is theoretically impossible to synchronize imprecise physical clocks over a

geographically distributed network with nondeterministic transmission times[Lamport I978[. How-

ever, Lamport does give' an algorithm for maintaining a global clock with a bounded imprecision

that maintains the invariant that messages are received at a global time that is later than the global

time the message was sent. The partial ordering or local events necessary for debugging will be

preserved and the (unknown) total ordering will embed this partial ordering. This time-keeping

13

algorithm can be embedded in the operating system itselr, with timestamps appended to every mes-

sage, or in the monitor, with timestamps included in messages sent by the monitor. Note that the

monitor may be able to adequately maintain a global clock with rew additional messages. A second

option is to simulate Lamport's algorithm in the remote monitor. This approach incurs a greater

overhead than Lamport's algorithm itselr, due to the additional communication necessary. Another

consideration is that ir the operating system provides a reliable communication mechanism, support-

ing recovery rrom lost messages or crashed processors, then a global dock is probably already com-

puted by this mechanism (e.g., !Birrell & Nelson 1983J; all reliable communication mechanisms

known to the author use some kind or global clock.) In any ease, ira global clock is provided by the

monitor, other components or the operating system may profit rrom its presence. Given these con-

siderations, we will assume that a global clock is implemented by a distributed algorithm, and is

available to each processor. Ir such a clock is not reasible due to efficiency constraints, as in some

real-time systems, then more sophisticated approaches, yet to be developed, are necessary.

8. The Sensor Installation Step

In the previous step, the user specified the sensors in a sensor description language. At the

same time, the location or the sensor was indicated. The sensor specification is used by the monitor

to

• generate the code ror each sensor (in the implementation described in Section 10, the code is
in the rorm or a C macro);

• possibly allocate buffers, packet identifiers, counters, and bit vectors ror enabling the sensors;

• create primitive relations to be rererenced in queries; and

• record inrormation concerning the sensors ror later use.

Compilation and linkage or the subject system also occurs in this step. This step is entirely

automatic, and generates a rully instrumented subject system. The details or this process appear

elsewhere !Snodgrass 1986J.

14

'1. The Analyolo Speclfleatlon Step

The sensor configuration provides the information necessary to install the sensors; the histori­

cal queries on the primitive relations associated with these sensors provides the information neces­

sary to automate the remaining steps by specifying the content of derived relations. In this way,

information not anticipated by the designer of the monitor may still be requested by the user, pro­

vided the basic information (i.e., the primitive relations) is available to the monitor. Historical

queries arc expressed in the temporal query language TQuel [Snodgrass 1985[. TQuel is a general

tempr,ral query language, augmenting the (static) relational tuple calculus query language Que! [Held

et al. 1975j with additional constructs and providing a more comprehensive semantics by treating

time as an integral part of the database. TQuel includes fifteen other statement types, supporting

the creation and destruction of databases and relations, storage structure modification, bulk copy of

data, and consistency, integrity, and concurrency control. As these statement types are not relevant

to the subject of this paper, they will not be discussed further. Instead, we will briefly review the

Que! retrieve statement, then present an extended example employing the TQuel retrieve statement.

'1.1. The Que! Retrieve Statement

The Que! retrieve statement selects a subset of the tuples in one or more relations, extracts

one or more attributes from the tuples in this subset, and combines the attributes into result tuples.

The retrieve statement works in conjunction with the range statement. Assume that the two rela­

tions mentioned earlier, Employee and Manageo, are available. The statement

range of E ia Employee

specifies that the tuple variable E will represent, for example, the tuples of Employee on any subse­

quent retrieve statements.

The retrieve statement creates a new relation whose tuples satisfy a boolean expression. The

expressions appearing in the retrieve statement contain constants and attributes from previously

defined tuple variables. For example, the following query finds all employees making more than

1&

Ken, who is their manager:

range of E2 ia Employee
range of M ia Manages
retrieve into ToPromote (Name = E.Name)

where E.Name = M.Subordinate and M.Manager = E2.Name
and E.Salary > E2.Salary and E2.Name = "Ken"

Ez•mple 1: Who should be promoted!

This query results in a new relation, called ToPromote. The target list "(Name = E. Name)"

specifies the attribute(s) or the new relation. The where clause specifies which tuples will contribute

toward the new relation. The retrieve statement thus consists or a •llribute Bpecific•tian component

(the target list) and a tuple Belectian component (the where clause).

7.Z. Example TQuel Retrieve Statement&

Since TQuel is a superset or Que!, all valid Que! statements are also valid TQuel statements.

By utilizing only the target list and where clause in TQuel, many interesting questions may be asked.

For instance, to select the processes which are currently Ready, use

range of E ia Process
retrieve into ReadyToRun (E.Process)

where E.State =Ready

Ez•mple e: Which processes are currently Ready!

ReadyToRun has only one explicit attribute, a Pr~cess (see Figure 5). Since the underlying relation

(Process) was an interval relation, ReadyToRun is also an interval relation.

Flpre 6: A Derived Interval Relation

ReadyToRun (Proceu):

Process I (From) l_To)
P1 1:00:00 2:00:00
P2 1:23:24 2:05:12
P1 2:15:37 2:45:30

111

Intervals can be derived from other intervals. The WaltlngOn relation identifies those

processes which can unblock the currently blocked processes by sending messages:

range of W i• Waiting
range of A i• Accesses
retrieve WaitingOn (Blocked = W.Process, CanUnBlock = A.Process)

where W.Mailbox = A.Mailbox and E.Process = W.Process and E.State = Blocked

Ezample 9: Which processes can unblock the blocked processes!

This characterization or "CanUnB!ock" is conservative since it includes processes which may in fact

not be able to unblock another process (if, for instance, they never send messages to the relevant

mailbox).

Given WaltlngOn, the relation WaltlngOnProeeuor, specifying the processors running the

processes which have the capacity to unblock the currently blocked processes, may be defined:

range of RO i• RunningOn
range of wo i• WaitingOn
retrieve WaitingOnProcessor (WO.Blocked, CanUnBlockProcessor = RO.Processor)

where WO.CanUnBlock = RO.Process

Ezample 4: Which processors may potentially unblock processes!

This information is or more than academic interest, since it identifies those processes which may be

permanently blocked if a particular processor crashed.

So far, all the example queries were syntactically correct Que! statements, although the seman-

tics is more involved, since the database contains the implicit time attribute. TQuel also includes

two additional clauses in the retrieve statement: the valid clause and the when clause. The valid

clause is similar semantically to the target list. The when clause is similar to the where clause.

Recall that the target list specifies the attributes to appear in the derived relation. In TQuel,

the target list specifies the ezplicit attributes, and the implicit attributes (those containing time

values) is specified by an additional clause. The query

17

range of S i~ SendMessage
retrie~a Res~dbyPl (W.Process)

valid at end of w
where S.Mailbox = W.Mailbox and S.Process = Pl
when s overlap w

Eromple 5: Which processes were resumed by process Pl!

determines those processes which were initially blocked on a mailbox, then resumed as a side effect

of a message being sent by Pl to the mailbox. Since the valid-at clause was -used, the resulting r.ela-

tion is an event relation (see Figure 6).

Figure II: A Derived Event Relation

Reoumedb:yPl (Proeeu):

Process (At)
P2 2:54:20

The valid-at clause can also be used to indicate sampling. The user can request that the Run-

nlngOn relation be sampled every ten seconds through the query

range of C is Clock[lO]
retrieve RunningOnEverylOSeconds (RO.all)

valid at C

Ezample 6: Sample the RunnlngOn relation.

The valid-at clause indicates that the user is interested in the tuples of RunnlngOn only at clock

ticks (occurring, in this case, every second).

If the query is defining a derived interval relation, the valid-from-to clause specifies the delim-

iting instants of the time interval. This clause also takes a variant of path expressions as an argu-

ment. To determine the lateneu of resumption, that is, the interva.l between a message being sent

and the recipient being unblocked,

18

retrieve Resumptionr ... ;.,,..cy (W.Process)
valid fr011 S t.•' '""" of W
where S.Mailbox ~ W.Mailbox

E::amp/e 7: When was the Process waiting unnecessarily!

Each tuple in ReaumptlonLatene;y starts when the message is sent and stops when the process

stops waiting {see Figure 7).

Figure 71 Another Derived Relation

ReaumptlonLatene;y (Proeeu):

Process (From) {To)
P2 2:51:13 2:54:20

Aggregate functionB are found in Que!; they have been extended somewhat in TQuel [Gomez &

Snodgrass 1986J. These functions refer to groups or tuples rather than individual tuples. For

instance, the relation

retrieve MBoxQLength (W.MBox, Length= Count(W.Process by W.MBox))

Example 8: How long is the queue of waiting processes ror each mailbox!

will compute the current length or the queue {of waiting processes) of each mailbox. The contents or

this relation change over time, as do all the others. The 'by' clause partitions the tuples according

to the MBox attribute; the Count aggregate function is then applied to each partition. The aggre-

gate runctions in Que! (and thus TQuel) are min, max, avg, sum, and count. The total run-

ning time, ready time, and blocked time ror a process and the the percentage or time a process was

Running versus the time it was Ready or Blocked can also be calculated by using aggregate rune-

tions.

In converting Que! to TQuel, the syntax was changed as little as possible. The attribute

specification component now includes the valid clause, and the tuple selection component now

includes the when clause. A few additional aggregate operators complete the syntactic changes to

the language. The TQuel semantics is an extension or the Que! semantics; both are based on the

tuple calculus [Snodgrass 1985[.

The graphical attributes or the primitive relations may be specified when the sensors are

configured or when the queries are specified. Graphica.l aspects a.re associa.ted with both entity and

relationship relations. There is flexibility in both the iconic representations and the graphic attri­

butes. For example, the shape, color, intensity, size, and position can each be fixed or can be tied to

the value of an attribute. Details of the display specification and generation steps are beyond the

scope or this paper.

8. The Exeeutlon Step

The expressive power of TQuel has a cost: the monitor must be able to determine which sen­

sors to enable, what calculations to perform, and how to display the results, all from the TQuel

query. Fortunately, there has been much work on processing relational query languages, and the

results of these efforts can be applied in this setting as well. This section will address generating the

data and analyzing the data. The relational model also facilitates filtering the data. packets and

displaying the derived relations; those aspects are beyond the scope of this paper. To provide the

context for this discussion, we first review how a conventional database management system (DBMS)

processes queries.

8.1. The Relational Algebra

Tuple calculus queries, such as those formulated in Que!, express what derived information is

desired, letting the DBMS determine how the information is to be derived. Relational algebra

expressions serve the latter purpose. The DBMS converts each tuple calculus query into an alge­

braic expression. Ail this expression is often quite inefficient, optimizations a.re applied that convert

the initial expression into a semantically equivalent one tha.t is more efficient.

In this paper, we will use only a. few common relational operations [Ullman 1982[:

20

Selection
Ir F is a rorruula involving constants, attribute names, arithmetic comparison operators and
logical operators, then u F(R) is the set or tuples t in R such that, when the appropriate com­
ponents or t are substituted for the occurrences or the attribute names in F, then the formula
F becomes true. For example,

u E. Dept="Toy"(EmployeeE)

denotes the set or tuples in Employee who work in the Toy department. The subscript on
Employee indicates that the tuple variable E bas been associated with the relation through a
range statement.

Projection .
Ir R is a relation with k attributes, we let 1r0 4 ... 4 (R), where di is a attribute name,

1 • ~

denote the ~gt or m-tuples 11 1 11 2 • • • qllo such that there is some k-tuple 6162 • • • 6t in R for
which the i component in 11 is the d. component in 6. For example, •

1TE.Name,E .Salary (Employee!:)

denotes a relation with two attributes, E.Name and E.Salary.

Cartesian product
Let R and S be relations with k

1
and k

2
attributes, respectively, then RXS, the cartesian

product orR and S, is the set or tuples with k
1
+ k

2
attributes whose first k

1
components

form a tuple in R and whose last k
2

components form a tuple in S. For example,

Employee!: X ToPromoteT

denotes a relation with five attributes, E.Name, E.Dept, E.Salary, E.Manager, and
E.YearsService from the Employee relation and T.Name from the ToPromote relation. The
non-uniqueness of attribute names is inconvenient; we make the names unique by subscripting
the tuple variable to each relation name.

To convert a Que! query into a relational algebra expression, first take the cartesian product or

the underlying relations (each associated with a tuple variable used in the query), apply a. selection

with the formula from the where clause, and then apply a projection, with the attributes from the

target list. For example, the query given in Example 1 or Section 7.1 retrieving the ToPromote

relation has the following algebraic equivalent

(El) 1TE.Name(uE .Name--M. Subord1nata(17H .Hanaqar=l!l.Name(O'E .Salary>El. Salary(

O'El.Nama="Kan"(EmployeeE X EmployeeEl X ManagesH)))))

The algebra may be extended to handle TQuel's valid and when clauses, involving the exten-

sion or the projection and selection operators, respectively. The projection and selection operators

remain, but only involve the explicit, non-temporal domains. The valid clause is handled by a tern-

poral variant of the projection operator, denoted by a superscript ofT. This operator will project

out those intervals designated by expressions in the valid clause. The when clause is handled by a

temporal variant of the selection operator, also denoted by a superscript ofT. The subscript for this

operator consists of the temporal predicate specified in the when clause. All an example, the query

for ReaumedbyPl, given in Example 5 of Section 7.2, has the corresponding temporal relational

algebra expression,

(E2}
T T

~W.Process(~at end o! W(as overlap W(uS.Ma1lbox=W.Ma1lbox(uS.Process=Pl(

WaitinSw X SendMessage
5

)))))

A more substantial modification is to make the operators incremental, so that they operate on

streams of tuples, one at a time, possibly generating one or more output tuples whenever an input

tuple arrives. The selection and projection operators (both conventional and temporal) are straight-

forward to extend to operating on streams rather than sets. Each such operator would generate at

most one output tuple for each input tuple, and no tuples would have to be stored, assuming that

the projection operator does not perform duplicate elimination. The cartesian operator is more com-

plex, for two reasons: it is a binary operator and it requires internal storage. It stores the tuples

arriving from the left, and concatenates all of these tuples to tuples arriving from the right, thereby

generating multiple output tuples for each input tuple. The brute force cartesian operator requires

storage for all the input tuples; more space efficient variants also exist.

Once the relational algebra expressions for the TQuel queries have been generated, they can be

used to enable sensors and analyze the incoming data.

8.Z. Algebraic Optimisation Tr&natormatlona

The term "optimization" is a misnomer; a. more accurate term is "improvement", for an

optimal solution almost never results. However, we will continue to use this term, with the under-

stood proviso.

One benefit or using the relational model with monitoring is that traditional optimization tech-

niques may be utilized directly. One example is the transrormation

which applies ir the predicate F only involves attributes rrom R
2
• This transrormation can dramati-

cally reduce the number or tuples generated by the cartesian product, since uninteresting tuples are

discarded before rather than ofter the cartesian product. This transrormation may be applied twice

to Expression (El} given in the previous section to obtain

1r (u (u (u (Employee E.Name E.Nama=M.Subordinate M.Managar=El.Nama E.Salary>El.Salary E

This optimization can also be applied to the Expression (E£}, with the substitutions

• S .Process=Pl ror F.

• Waiting ror R
1

•

• SendMessage ror R2•

resulting in

(E9)
T T

~W.Process(~at end of W(us overlap W{aS.mailbox=W.mailbox(

WaitinSw X O'S.Proceas=Pl(SendMessage8)))))

A collection or such transrormations has been developed ror the conventional relational algebra

[Smith 1975].

A second class or transrormations involves the primitive relations. These transrormations

improve the algebraic expression by enabling rewer sensors, or by replacing sampling with tracing, or

by sampling less rrequently. Approximately ten transrormations, each with several variants, have

been developed thus rar. These transrormations are discussed in detail elsewhere [Snodgrass 1986].

Finally, a third class or transrormations select a more efficient variant or an operation based on

the temporal ordering or the input tuples to the operator and the desired temporal ordering or the

Z3

output. For example, tht cartesian product operator in its most general form must store internally

all incoming tuples from the left, so that they can be later concatenated with incoming tuples from

the right. If the tuples on both sides were in temporal order, and their overlap was desired, a much

more efficient cartesian product may be used:

u 1 t (El X E2) - Ei XI E2 t 1 over ap 2

where X
1

denotes the particular variant of the cartesian product. This operator would only store

those tuples from the left that could possibly overlap with those from the right, discarding the rest

from internal storage. This transformation may be applied to Expression (E9} resulting in

{E-1)
T

~W.Process(~at end of W(uS.ma1lboX:W.ma1lbox(

The transformations from the three classes are repeatedly applied (in order) to the algebraic

expression until no more are applicable.

8.3. Data Generation

The final result of the optimization phase is an algebraic expression for each query specified by

T T
the user. This expression may contain one or more of the following operators: 71", u, 7r , u , and X.

Recall from Section 8.1 that these operators are incremental, in that they take streams or input

tuples and possibly generate one or more output tuples whenever an input tuple arrives. The expres-

sian is started by having the primitive relations (e.g., Waiting in Expression (E-1)) generate initial

tuple streams. The initial tuples flow into the specified operators.

8.4. Data Analyala

Data generation and analysis proceed in parallel. Mter the algebraic expression is primed with

tuple streams from the constants and primitive relation•, the tuples 8ow through the expression in

an incremental fashion. One profitable way to view the process is to visua.lize the pa.rse tree or the

expression, with tuples flowing up the arcs. The tuples flowing out of the expression comprise the

historical relation that was specified in the original TQuel query. Performing this analysis in realtime

allows the low level data to be discarded after participating in the analysis, with only the derived

information stored if desired.

11. Comparison with the Traditional Approaeh

This paper has argued that monitoring complex systems is fundamentally an information pro-

cessing activity, and that the relational model provides an effective formalization or this information.

In this section, we summarize the steps in the relational approach, then discuss how the new

approach addresses problems with applying each step or the traditional approach to monitoring to a

complex system.

Step 1: Sensor configuration
Sensors are described in a sensor description language as a collection or primitive event and
interval relations. The user also specifies the location or these sensors within the code or the
subject system. This description forms the conceptual view that the dynamic behavior or the
subject system is available as the collection or historical relations.

Step e: Sensor installation
The code for the sensors is generated by the monitor. This step is entirely automatic, resulting
in a fully instrumented subject system.

Step 9: Analysis specification
TQuel queries are made on this fictional database.

Step 4: Display specification
At the same time, the user specifies the graphical representation or the derived relations.

Step 5: Execution
The queries are first converted into relational algebra expressions, which are optimized
through the application or a series or transformations. Processing is started by enabling sensors
associated with the primitive relations appearing in the expression. As tuples How through the
expressions, other sensors are enabled, therebly creating other tuple streams. The tuples
ftowing out or the expressions are displayed as directed by the user.

This approach provides solutions to many or the problems encountered in the application or

the traditional approach to monitoring in the presence or complexity.

• Sensor Configuration
One difficulty is communicating the configuration to the monitor, which is distributed along
with the sensors. The format or the collected data potentially must be known by all com­
ponents that handle this data, including the analysis and display components. This issue
involves the physical distribution or the monitor. A second difficulty involves the correctness or
the sensor code. When monitoring information is used in debugging, the annoying task or
debugging the debugger arises. The approach taken by most systems rails to resolve this prob­
lem; only a fixed number (11~20) or predefined sensors are usually provided, implying that

16

future users of the monitor will need only the information determined at the time the monitor
was implemented. Such an approach unnecessarily limits the usability of the tool.

In the proposed approach, the relevant aspeets of sensors are specified in a high level sensor
description language. The translator for this language automatically handles the details of gen­
erating the code for each sensor and communicating needed information to the monitor,
thereby greatly reducing the chance for error.

• Sensor Installation
The problem here lies in the possible physical distribution of the subject program. In a cen­
tralized system, each sensor will reside in an individual program. In a complex system, pro­
grams may be physically distributed. Hence the monitor must contend with not knowing until
rather late where each sensor resides.

In the new approach, the sensors are handled automatically by the monitor, freeing the user
from being concerned with details of how the sensors are implemented or on which processor
each is executing.

• Enabling Sensors
There are two difficulties involved here. One is specifying which sensors are to be enabled, a
task made difficult by a late binding of program to machine and the sheer magnitude of the
number of machines. Determining which processor a process is executing on, out of a large
number of processors, can be a tedious and time consuming chore. The task is rendered even
more difficult when there are a collection of sensors to be enabled, each on a different subset of
processors. The second difficulty is in performing the operation of enabling a remote sensor,
while still ensuring that protection between processes is not compromised. Both difficulties
involve the physical and logical distribution of the subject program. The approach taken by
most systems avoids these problems by permanently enabling all the sensors. In a complex sys­
tem with many sensors, this approach will quickly overwhelm the processing and communica­
tion resources with excess data packets, most of which are not used in the subsequent analyses.

Our approach makes use of a collection of optimizations to determine precisely which sensors
to enable. The monitor uses information from the sensor specification and the algebraic expres­
sion to automatically enable only relevant sensors.

• Data Generation
The primary difficulty is in collecting monitoring data from distributed sites. A related issue is
the volume of data, and the artifact caused by the collection operation itself. Physical distri­
bution is the culprit here.

The volume of data collected is reduced considerably through filtering. The appropriate sen­
sors are initially enabled, and can be disabled and other sensors enabled as a side effect of the
analysis of previously generated data. Special techniques allow temporal ordering of data
packets from multiple buffers. Because sensors are generated by the monitor, there is the
opportunity for automatically compensating for the monitoring artifact.

• Ana/usia Specification
Any attempt to understand the behavior of a (logically) distributed program must focus on the
interrelationship of events occurring in different processes. The diversity of interactions pre­
eludes the menu or simple command language approach favored by most monitoring systems.
Instead, more powerful languages expressing complex patterns are required.

In our approach, TQuel is used to specify the desired information. TQuel is a high level, non­
procedural language. Since TQuel is an extension of Que!, it is relational complete JCodd
1Q70J. The when clause can be used to specify temporal relationships between events and inter­
vals occurring in the subject system. The valid clause can be used to specify when the derived

Zll

events or intervals are to be valid, as well as suggesting that sampling be done. Aggregate
functions provide .. dditional expressive power. This language results in a powerful user inter­
face for querying the monitor concerning the behavior of the system.

• Display Specification
When the user is given any choice at all concerning the display of information, the options are
generally limited to canned reports.

In the relational approach, displays are specified by associating graphical attributes with enti­
ties and relationships, for both primitive and derived relations.

• Data Analysis
Monitoring complex systems involves sophisticated data analysis. The centralized, brute-force
techniques used by most monitors become inadequate as the subject system becomes more
complex.

A collection of conventional and monitoring specific optimization transformations may be
applied to the initial algebraic expression, often resulting in dramatic improvements in execu­
tion speed. There is the opportunity for analyzing the collected data in a distributed fashion
(see Section 12). .

While the above analysis demonstrates the many advantages of the relational approach over

traditional monitoring techniques, two substantial issues remain: system complexity and perfor-

mance.

10. Implementation

In order to assess the practical benefits of the relational approach, we have completed one pro-

totype implementation and have made significant progress towards a second implementation. In this

section, we will outline the structure or the prototype and discuss its performance.

The system monitored by the prototype was Cm*, a tightly-coupled multiprocessor composed

or 50 DEC LSI-ll's and a substantial amount of memory]Fuller et al. Jg78, Swan et al. 1g11]. Two

operating systems were available on Cm*, StarOS]Gehringer & Chansler 1gs2, Jones et al. Jg78,

Jones et al. 1g7gl and Medusa]Ousterhout et al. Jgsoj.

The monitor prototype consisted of two main components: a remote monitor, performing those

functions requiring close interaction with the user, and a resident monitor, performing the functions

requiring close interaction with the monitored system. This separation is necessary when monitoring

a distributed system, where a resident monitor exists at each processor, sending collected data to the

centralized remote monitor, which may or may not execute on one of the processors being

monitored. Functionally, the resident monitor eollects the data. pa.ckets a.nd interacts with the

operating system, and the remote monitor a.nalyzes and displays the monitoring data.. The prototype

ignored the issue of displaying the results graphically, and so the display specification and informa­

tion display steps were omitted.

The remote monitor ran on a Vax under Berkeley Unix and was itself composed of three

modules. The TQuel compiler translated the query into an initial algebraic expression. The parse

tree for this expression was termed an update network, referring to the tuples flowing across the

arcs. The movement of tuples through this network was handled by the update networ/; interpreter.

The remote accountant handled the Ethernet protocol, sending tuples to the interpreter and sending

commands to the resident monitor.

Two resident monitors were implemented, one on StarOS called StarMon, and one on Medusa

called Medic. The remote monitor on the Vax communicated with the resident monitor on Cm*

over an Ethernet [Metcalfe & Boggs 1975[, a high bandwidth {3 MBaud) network.

A minimal monitor was implemented, with all aspects carried far enough to demonstrate feasi­

bility and to investigate efficiency aspects. More specifically, the update network, resident monitors,

remote accountant, and TQuel parser and code generator were essentially complete. The TQuel

semantic analysis phase was only partially implemented and the optimization phase was designed but

never implemented. The graphical display aspect was not addressed at all in the prototype.

Several of the components were instrumented to determine the overall performance of the

monitor. The rest of this section will briefly discuss the performance of the sensors, the Ethernet

protocol, and the update network interpreter. Details are given elsewhere [Snodgrass 1982[.

The efficiency or the data collection mechanism is important, for it determines the monitoring

granularity (the level or abstraction at which the monitoring takes place). The mechanism imple­

mented supported strong type checking, multiple type managers, and a. high degree or filtering. The

sensors required 600-1400 microseconds, depending on the amount or data stored in the data packet.

This execution time is equivalent to 85-200 store instructions, or 6 to 14 procedure calls. Hence, the

28

monitoring grain for this implementation of sensors is larger than a procedure call, but perhaps

equal to a procedure that does something interesting, in turn calling other procedures. Given this

sensor efficiency, with intelligent filtering reducing the monitoring overhead to 1%, the 50 processors

would generate approximately SOO event records per second.

The Ethernet protocol is a variant of the Ethernet File Transfer Protocol (EFTP) [Shoch

1979[, simulating a transmission from the remote monitor (the host) to the resident monitor (the

slave). The protocol uses checksums, timeouts, and packet retransmission for reliability. Using

actual record and packet sizes and observing the transmission rate for the standard EFTP, a max­

imum transmission rate or 600 event records per second was calculated.

The performance of the update network was measured using a small but relatively complex set

of TQuel queries. The initial update network, before optimizations were performed, could process

approximately 3 input tuples per second (assuming a dedicated Va.x 11/780). Two stages or optimi­

zation were performed manually to assess their effect. The first stage applied the transformations

discussed in Section 8.2. This step resulted in a speedup of S, to 15 input tuples per second. The

second stage involved substituting the interpreter and general operator algorithms with a Lisp func­

tion. Conceptually, the entire algebraic expression was converted into a specialized operator. The

Lisp function was then compiled by the FranzLisp compiler into Va.x assembly language. The result­

ing code could process approximately 600 input tuples per second. The four transformations per­

formed in pursuit of reasonable efficiency (TQuel query -+ initial update network -+ optimized

update network-+ Lisp-+ assembly language) resulted in an improvement of more than two orders

or magnitude.

The general result of these measurements is that, given the monitoring granularity supported

by this implementation, the monitor can indeed contend with the number of event records generated

by the 50 processors in Cm*. Hence, it is possible to implement a monitor supporting the high level

conceptual viewpoint or a dynamic relational database on the system's behavior which can be mani­

pulated by a temporal, non-procedural query language, with sufficient efficiency to monitor a large,

Ill

complex, distributed system.

11. Comparloon with Other Work

The majority or work in monitoring bas concerned the development and application or tech­

niques within the context or the traditional approach. In Section g we compared the traditional

approach with the relational approach. In this section we examine other research that also addressed

inadequacies or the traditional approach.

The basic idea behind the approach espoused here, using historical databases to formalize

dJ n,,,,jc information, bas been suggested in various guises by others. Ripley organized performance

information concerning static program structures (e.g., routines, statements) into a hiera.rchy and

represented hierarchical measurement data as ordered n-tuples, such as (program, routine, state­

ment, primitive operation) [Ripley 1977[. He then suggested applying the relational projection opera­

tor on this relation, and implemented a simple system to collect data from Snobol programs and pro­

ject relevant attributes. This paper is the only one suggesting a relational approach that predates

0Uf8.

Garcia-Molina, German, and Kohler went a step further, suggesting that the monitoring rela­

tion should be tied to sensors (24 are listed in the paper) rather than to the static program struc­

ture, and mentioning that the relational query language Sequel could be used to retrieve information

(rom this relation [Garcia-Molina et al. 1984[. No implementation was attempted.

LeDoux and Parker went a step further still and defined & separate relation for each sensor,

presenting 14 predefined relations [LeDoux & Parker 1985[. This database is queried via Prolog. A

prototype debugger was implemented using this approach.

One other research project bas employed the relational model for monitoring inform&tion. The

High-level Ada Relational Debugger (HARD) [DiMaio et &1 1985[is a component or the Ada Rela­

tional Translator, in which ell data structures are relations [Ceri & Crespi-Reghizzi 1983[. The fact

that the dynamic behavior is c&ptured in relations is hidden from the user. Intern&lly the relational

ao

algebra is used to manipulate the information, but externally the user writes Ada tasks to specify

the monitoring.

None or these papers proposed using algebraic expressions to specify which sensor to enable,

nor using monitoring specific optimizations. A second difference is that the static relational model is

employed is all or these papers, with the temporal aspect or the monitored data encoded in an ad

hoc manner.

Several researchers have proposed high-level languages for specifying the analysis to be per­

formed by the monitor. As just mentioned, Garcia-Molina et a!. suggested using Sequel, LeDoux and

Parker used Prolog, and DiMaio, Ceri, and Reghizzi used Ada. In the Interactive Distributed

Debugger (IDD), Harter, Heimbigner, and King used interval logic]Schwartz et a!. 1983], an exten­

sion or linear time temporal logic]Lamport 1980], to specify assertions that are tested in real time

]Harter et a!. 1985]. It is not clear how this logic compares with TQuel in expressive power, or how

hard it will be to implement the assertion checker, as an operational semantics has not yet been

developed for interval logic.

Bates and Wiled en has defined an Event Definition Language {EDL) in order to obtain a

behavioral abstraction, in which the system is viewed in terms or higher level events, which are

defined in terms or primitive events]Bates & Wileden 1983]. EDL is based on regular expressions

augmented with a shuffle operator. It can be shown that TQuel is as expressive as EDL. Implementa­

tion experiences with EDL have not yet been reported.

Bruegge and Hibbard applied path expressions]Habermann 1975], originally used to specify

constraints on parallel computation, to the specification or event sequences]Bruegge & Hibbard

1983]. Actions may be performed when a particular event sequence is recognized. A prototype was

implemented on the Accent operating system. Path expressions were also the basis for the expres­

sions used in the when and valid clauses in TQuel, so the languages are similar in expressive power.

While a moderate amount or research has concerned monitoring distributed systems (e.g.,

]Miller 1985, Model 1978, Nutt 1979]), no one until now has dealt with the issues or sensor

31

specification, filtering, or tailoring the display of derived relations. We argued in Section 9 that sen-

sor specification in a complex system was a difficult talk to perform manually. Most systems support

a fixed collection of predefined sensors, which makes sensor specification trivial, yet tremendously

limits the data that can be collected. We also argued that powerful filtering techniques were abso-

lutely vital in limiting the number of generated data packets. Most systems permanently enable all

sensors, or force each sensor to be enabled manually. We disagree strongly with LeBlanc and Rob-

bins, who assert that every event must be stored for later analysis for debugging distributed pro-

grams]LeBlanc and Robbins 1985]. This requirement is unncecessary restrictive when many (say,

hundreds) of sensors are present, and is usually impossible to satisfy in terms of computing and

storage resources in a complex system.

121. Future Work

While the anticipated benefits or a relational approach to monitoring have been demonstrated,

there are several areas where further work is needed. On the theoretical side, we are developing a

formalization of the incremental temporal algebra discussed in Section 8.1. Such a formalization will

be used to

• ensure that the operators are well defined;
• prove that the mapping from TQuel to the relational algebra is correct, using TQuel's tuple cal­
culus semantics]Snodgrass 1985];
• prove that the optimizations do not alter the semantics of the expression they are transforming;
• and perhaps suggest further optimizations.

Another area to be investigated is distributing the analysis. In monitoring a distributed sys-

tern, the analysis generally occurs at a central node, with the data packets sent to this node from

buffers in the processors where the sensors were located that generated the packets. However, much

of the analysis should occur locally, with only that analysis requiring more global information being

performed remotely. One possibility involves the concept from distributed databases of horizontal

fragmentation, where a relation is broken into two or more subsets or tuples, the union or which is

the original relation]Ceri & Pelagatti 1984]. In distributed databases, each subset may be stored on

a separate node. In the monitoring domain, each primitive relation can be fragmented on the

attribute that specifies where the data packet is generated. The algebraic equivalents or queries on

such relations may be duplicated for execution locally on each processor, with the resulting tuples

sent to the central node, thereby reducing the load on the network. Optimizations that are not

applicable at the central node may still apply to the expression when executed separately on the

nodes producing the fragments. Exactly how and when this should be done is under study.

One problem with the relational approach is that the queries must be specified before the data

is collected or processed. Because this constraint is placed on the ordering of the steps, the relevant

sensors can be enabled automatically. Ideally, there should be some way for the user to indicate with

arbitrary precision the data to be collected. In this way, the monitor could support activity at any

point along the spectrum between traditional monitoring at one end of the spectrum, where the data

is first collected and then analyzed, and relational monitoring at the other end, where the query is

specified before any data is collected.

A second problem is the danger that an innocuous query will require an enormous amount of

computation. Because the non-procedural nature of TQuel shelters the user from the complex pro-

cessing resulting from the query, the user has less intuition concerning the cost of queries. Tools

need to be developed that indicate the expense or evaluating queries.

Finally, there are implementation issues that should be studied. The goals of the prototype

implementation were to demonstrate the feasibility or the relational approach and to identify poten-

tial problems requiring further investigation. It was successful in both aspects. However, the proto-

type lacked optimization and graphic display components and was baroque and inefficient. We are

working on a second implementation that will include these components. While the prototype

demonstrated the feasibility of the relational approach, we hope to show with the second implemen-

tation that a robust, reliable, efficient monitor based on this approach can be constructed.

13. Aeltnowledgementa

I wish to thank William Wulf, Anita Jones, Joseph Newcomer, and Zary Segall for valuable
comments and suggestions on all aspects of this research, and M. Satyanaranan and K. Schwan for
detailed comments on this paper. In the prototype implementation, Peter Highnam helped with the
design of the EtherNet and implemented Medic, and Ivor Durham implemented the first version of

the StarMan sensors. The research performed at Carnegie-Mellon University was sponsored in part
by the Defense Advanced Projects Agency (DOD), ARPA Order 3597, monitored by the Air Force
Avionics Laboratory under Contract F3361f>.7S.C-1551, the Ballistic Missile Defense Advanced
Technological Center under Contract DASG00.81-0077, and through a National Science Foundation
graduate fellowship. The research performed at the University of North Carolina at Chapel Hill was
supported by the National Science Foundation under Grant No. DCR-8402339, and by an IBM
Faculty Development Award.

14. Blbllograph:y

JAgajaman 1975J Agajaman, A.H. A Bibliographu on Sustem Perform•nce Ev•luation. Computer, 8,
No. 11, Nov. 1975, pp. 63-74.

JBates & Wileden 1983J Bates, P. and J.C. Wileden. An Appro•ch to High-Level Debugging of Distri­
buted Systems. In Proceedings of the ACM Sigsoft/Sigpl•n Software Engineering Sumpo­
sium on High-Level Debugging, Ed. M.S. Johnson. Association for Computing Machinery.
Pacific Grove, CA: acm, Aug. 1983 pp. 107-111.

JBirrell & Nelson 1983J Birrell, A.D. and B.J. Nelson. Implementing Remote Procedure Calls. In
Proceeding• of the ACM Symposium on Operating Sustem Principle•, Association for Com­
puting Machinery. Bretton Woods, NH: acm, Oct. 1983 pp. 3.

jBowie & Linders 1978] Bowie, W.S. and J.G. Linders. A Software Troce F•cili/11 for OS/ MVT.
Software--Practice and Ezperience, 9 (1978} pp. 53f>.545.

]Bruegge & Hibbard 1983J Bruegge, B. and P. ffibbard. Generalized P•th Ezpressions: A High Level
Debugging Mech•nism. In Proceedings of the ACM Sigaoft/Sigplan Softwore Engineering
Symposium on High-Level Debugging, Ed. M.S. Johnson. Association for Computing
Machinery. Pacific Grove, CA: acm, Aug. 1983 pp. 34-44.

JCeri & Crespi-Reghizzi 1983J Ceri, S. and S. Crespi-Reghizzi. Relotional Dota B•aea In The Design
of Program Construction Svstem•. ACM Sigaoft Softwore Engineen'ng Notes, 8, No. 3, July
1983, pp. 17-29.

]Ceri & Pelagatti 1984J Ceri, S. and G. Pelagatti. Distributed Dat•baaes Principles 15 Svstems. NY:
McGraw-Hill, 1984.

JChen 1976J Chen, P. P-S. The Entity-Relationahip Model-- Toword a Unified View of Data. ACM
TranBactions on D•t•b•u Svstem•, 1, No. 1, Mar. 1976, pp. 11-36.

JCodd 1970J Codd, E.F. A Relotion•l Model of Data for Lorge Shored Dat• Bank. Communic•tions of
the A••oci•tion of Computing M•chinerv, 13, No. 6, June 1970, pp. 377-387.

]Cooperman et a!. 1972J Cooperman, J.A., H.W. Lynch and W.H. Tetzlaff. SPG: An Effective Use of
Performance •nd Us•ge Data. Computer, 5, No.5, sept/oct 1972, pp. 20-23.

]DEC 1983] DEC Ohaerver: Software Product De•cription. 1983. (Unpublished paper.)

JDiMaio et al 1985] DiMaio, A., S. Ceri and C. Reghizzi. Ezecution Monitoring •nd Debugging Tool
for Ada Using Rel•tional Algebro. In Proceeding• of the Ad• [ntern•tion•l Conference on
Ad• in Use, Ed. J.G.P. Barnes and G.A. Fisher, Jr. ACM. Paris: Cambridge University
Press, May 1985 pp. 1011-123.

14

!Fuller et al. 1978J Fuller, S., J. Ousterhout, L. Raskin, S. Rubinfeld, P. Sindhu and R. Swan. Multi­
microprocessoro: An overview and worJ:ing e::ample. Proceedings of the IEEE, 66, No. 2,
Feb. 1978, pp. 216-28.

JGarcia-Molina et al. 1984j Garcia-Molina, H, Jr., F Germano and W.H. Kohler. Debugging a Distri­
buted Computing Svstem. IEEE Transactions on Software Engineering, SE-10, No. 2, Mar.
1984, pp. 210-219.

JGehringer & Chansler 1982J Gehringer, E.F. and R.J., Jr. Chansler. StarOS User and System Struc­
ture Manual. Technical Report. Computer Science Department, Carnegie-Mellon University.
July 1982.

JGomez · & Snodgrass 1986J Gomez, S. and R. Snodgrass. A Formal Semantic. for Aggregates in
TQuel. 1986. (in preparation.)

JGraham et al. 1982j Graham, S. L., P. B. Kessler and M. K. McKusick. gprof: a Call Graph Execu­
tion Profiler. In Proceedings of the SIGPian 'Sf! Symposium on Compiler Construction,
ACM. Boston, MA: June 1982 pp. 120-126.

!Habermann 1975J Habermann, A.N. Path Expressions. Technical Report. Computer Science
Department, Carnegie-Mellon University. June 1975.

JHarter et al. 1985J Harter, Jr. P.K., D.M. Heimbigner and R. King. Jdd: An Interactive Distributed
Debugger. In Proceedings of the Fifth International Conference on Distributed Computing
Systems, May 1985 pp. 1-9.

[Held et al. 1975J Held, G.D., M. Stonebraker and E. Wong. INGRES--A relational data base
management svstem. Proceedings of the 1975 National Computer Conference, 44 (1975) pp.
409-416.

JHoare 1974J Hoare, C.A.R. Monitoro: An Operating Svstem Structuring Concept. Communication•
of the Association of Computing Machinerv, 17, No. 10, Oct. 1974, pp. 549-557.

JHoughton 1982J Houghton, Jr. R.C. Software Development Tools. Technical Report 500-88. U.S.
Department of Commerce. Mar. 1982.

[IBM 1984J IBM VM/ 970 Real Time Monitor, Program Description/ Operations Manual. IBM Cor­
poration, Cary, NC, 1984.

!Jones et al. 1978J Jones, A.K., R.J., Jr. Chansler, I. Durham, P. Feiler, D. Scelza, K. Schwans and
S.R. Vegdahl. Programming issueo raioed bv a multiprocessor. Proceeding• of the IEEE, 66,
No. 2, Feb. 1978, pp. 229-37.

!Jones et al. 1979J Jones, A.K., R.J., Jr. Chansler, I. Durham, K. Schwans and S.R. Vegdahl. StarOS,
a Multiprocess Operating Svstem for the support of Tasl: Force1. In Proceedings of the
ACM Svmposium on Operating SvBiem Principle~, Sep. 1979 pp. 117-127.

JLamport 1978J Lamport, L. Time, Clocb, and the Ordering of Event1 in a Diotributed Sustem.
Communication• of the A•sociation of Computing Machinerv, 21, No. 7, July 1978, pp. 558-
565.

[Lamport 1980J Lamport, L. "Sometime" ;. Sometime~ "Not Never": On the Temporal Logic of
Program~. Conference Record of the 7th Annual ACM Svmposium on the Principles of

36

Programming Languages, , Jan. 1980, pp. 174-185.

]LeBlanc and Robbins 1985] LeBlanc, R.J. and A.D. Robbins. Event-Driven Monitoring of Distributed
Programs. In Proceedings of the International Conference on Distributed Computing, IEEE.
Austin, TX: 1985 pp. 515-521.

]LeDoux & Parker 1985] LeDoux, C.H. and Jr. D.S. Parker. Saving Traces for ADA Debugging.
Sf GAda International Ada Conference, (1985) pp. 1-12.

]Malone 1983] Malone, J. R. Implementation of a Retrospective Tracing Facilitv. Software--Practice
and Experience, 13 (1983) pp. 791-796.

]McDaniel 1982] McDaniel, G. The Meaa Spv: An Interactive Tool for Performance Debugging. In
Performance Evaluation Review, Association for Computing Machinery. Seattle, WA: acm,
aug-sep 1982 pp. 68-76.

[Metcalfe & Boggs 1975[Metcalfe, R.M. and D.R. Boggs. Ethernet: Distributed Packet Switching for
Local Computer Networks. Technical Report CSL-75-7. Xerox Palo Alto Research Center.
Nov. 1975.

]Miller 1985] Miller, B.P .. PhD. Diss. ucbcsd, Aug. 1985.

[Model 1978] Model, M. Monitoring System Behavior in a Complez Computational Environment.
PhD. Diss. Stanford University, Jan. 1978.

]Nutt 1979] Nutt, G. J. A Surveu of Remote Monitors. Technical Report 500-42. National Bureau of
Standards. Jan. 1979.

]Ogle, et al. 1985] Ogle, D., K. Schwan and R. Snodgrass. The Real-Time Collection and Analysis of
Dunamic Information in a Distributed Svstem. Technical Report OSU-CISRC-TR-85-12.
Computer and Information Science Research Center, The Ohio State University. Sep. 1985.

JOusterhout et al. 1980] Ousterhout, J.K., D.A. Scelza and P.S. Sindhu. Medusa: an experiment in
distributed operating system structure. Communicotions of the Association of Computing
Machinerv, 23, No.2, Feb. 1980, pp. 92-105.

[Perlis, et al. 1981[Perlis, A., F. Seyward and M. Shaw. Software Metrics. Cambridge, MA: MIT
Press, 1981.

]Rashid & Robertson 1982[Rashid, R.F. and G.G. Robertson. Accent: A communication oriented
network operating system kernel. In Proceeding• of the ACM Svmpo•ium on Operating Sv•­
tem Principles, ACM. 1982 pp. 64-75.

]Ripley 1977[Ripley, G.D. Program Pertpective•: A Relational Repreuntation of Mea•urement Data.
ieeetB<, SE-3, No. 4, July 1977, pp. 296-300.

]Schwartz et al. 1983] Schwartz, R.L., P.M. Melliar-Smith and F .H. Vogt. An Interval Logic for
Higher-Level Temporal Reasoning. In Proceedings of the Second Annual Svmporium on
Principle• of distributed Computing, Montreal, Quebec: Aug. 1983 pp. 173-186.

]Shannon 1986[Shannon, K.P. The Display of Temporal Information. Computer Science Department,
University of North Carolina at Chapel Hill, 1986. In preparation ..

311

jShoch 1979J Shoch, J. EFTP: A Pup-based Ether file lran•fer protocol. 1979. (Unpublished
specification.)

jSmith 1975J Smith, D.C. Pugmalion: A Creative Programming Environment. Technical Report
STAN-CS.75-499. Stanford Computer Science Department. June 1975.

!Snodgrass 1982j Snodgrass, R. Monitoring Distributed System.: A Relational Approach. PhD. Diss.
Computer Science Department, Carnegie-Mellon University, Dec. 1982.

!Snodgrass 1985J Snodgrass, R. A Temporal Queru Language. Technical Report TR85-013. Com­
puter Science Department, University of North Carolina at Chapel Hill. May 1985.

!Snodgrass 1986J Snodgrass, R. Monitoring Data Collection. 1986. (In preparation.)

!Snodgrass & Ahn 1986J Snodgrass, R. and I. Abo. Temporal Database•. Computer (to appear),
(1986).

jSwan et al. 1977J Swan, R.J., A. Bechtolshem, K.W. Lai and J.K. Ousterhout. The implementation
of the Cm* multi-microprocessor. In Proceedings of the National Computer Conference,
AFIPS, 1977 pp. 645-55.

!Tetzlaff 1979J Tetzlaff, W.H. Stale Sampling of Interactive VM/970 Users. IBM Systems Journal, 18,
No. 1 (1979) pp. 164-180. ·

jTolopka 1981J Tolopka, S. An Event Trace Monitor For The Vaz 11/780. In Proceeding• of the
1981 ACM Conference, Association for Computing Machinery. acm, 1981 pp. 121-12&.

jUIIman 1982J Ullman, J.D. Principles of Database Sustem•, Second Edition. Potomac, Maryland:
Computer Science Press, 1982.

jWulf et al. 1975J Wulf, W.A., R. Levin and C. Pierson. Overview of the Hudra Operating System. In
Proceedings of the ACM Sumpooium on Operating Sustem Principles, ACM. Nov. 1975.

