TR 85-035

A Relational Approach to

Monitoring Complex Systems

December, 1985

Richard Snodgrass

Department of Computer Science
University of North Carolina
Chapel Hill, North Carolina 27514

Abstract

Monitoring is an essential part of many program development tools, and plays a central
role in debugging, optimization, status reporting, and reconfiguration. Traditional moni-
toring techniques are inadequate when monitoring complex systems such as multiproces-
sors or distributed systems. A new approach is described in which historical databases
form the conceptual basis for the information processed by the monitor. This approach
permits advances in specifying the low level data collection, specifying the analysis of
the collected data, performing the analysis, and displaying the results. A prototype im-
plementation demonstrates the feasibility of the approach.

Table of Contents

B 6118 s AT O OO TN
. Traditional MORIEOTINZ vocevreeeverrrrerrerrrsissssisasisosiiss s snater s esn s s s s sesa s somsae s asssonasnssossnssaranersnssann
. The Relational MOodel ... rie s stssssnnassrtss st ers serasnsn s easses aasses s srsse sasassan snsasssnas
. A Relational Approach to MOMILOTIRE ..ecveeiiccereniriiniiensise e s sssstsssssnesassessanssssnssnaeenese
. The Sensor ConfIguration StED .t st s sarss s st ssbaet st st snasanane
. The Sensor Installation STED .uveccremrercriascsmascnincesssserrsresnnsssssassssesssssssssnsassenmesmsnesssnsinesaeanas
. The Analysis Specification SEEP .ccerercrverrmssnirersrms s st s e
7.1. The Quel Retrieve SEAtement ...t srosasssssnnsmesisns

7.2. Example TQuel Retrieve Statementsccccovrsrrcrmsccmsmencenmmsesesesescsessensesessesesasnns

8. The EXecULION SEED uvivierervcieiieiieciississisisesesereesistsnesesssassessrarseasnssasssnsosssassssssnssnesnssns eassnsnssanssns
8.1, The Relational AIZEDra ...occcieriirieriissinesenicesiearesssesssscrsssmesensssssacessnsssasassasassnssssnes

8.2. Algebraic Optimization Transformationsc.eecvisiiesiinnisisionianes

8.3. Data Generation ..ot sss st s sas e s s as s ree s

8.4. Data ARalYsis i se s ese st e s s e s s asesee e s e sanesane s sasecanmasnans

9. Comparison with the Traditional Approach ..o,
10, IMPlemMentation .viicicorieincrnecireeieroneorrerssnse et ot raassanes s s s s ts s s s a et s bt e s asass st v sbimarasnns
11. Comparison with Other WOork .. perrereteseeeanaas
12, FULUTE WOTK coiiieiiieeeeeeevrec s rar e mros s e s s st s ea e s s e s e n b e s Ra e s R b d b e s bbb ea e e e S e b e e e s ob e s e a0
13, Acknowled@ements ... s ie s erscerer e eressseas s e ns e resnnas s e nesen v aes s rensanr st s s sanen
L T S50 T4 2 7) 1 OO O TR

= O O o L0 B e

GO Y e B b

14
15
15

BE8a

24
24
25
27
30
32
33
34

List of Figures

...

..

Flgure 4: Remaining Primitive Relationscvnivecniissicnnsnencscnneneecnens

Figure B: A Derived Interval Relation ...t ssassvacesressamnene

Figure 8: A Derived Event Relation

Figure 7: Another Derived Relation

...

...

11

12

13

16

18

19

Example 1:.
Example 2:.
Example 3:.
Example £:.
Example b:.
Example 8:,
Example 7:.

Example 8:.

List of Examples

Who should be promoted?cocceveeeens erenarereaatesseerenneraensesetreaanaeannnn
Which processes are currently Ready? .cvvivvivcniiniinsieieneccninaeens
Which processes can unblock the blocked processes?cccocevieciriivnnnes
Which processors may potentially unblock processes? ...
Which processes were resumed by process P17 .occvevvevineevenerecceeeenns
Sample the RunningOn relation. .oooeecirvcresnvveeseeneeceseensraneneseenns
When was the Process waiting unnecessarily?cccocieverneeerencricrsiinnnns

How long is the queue of waiting processes for each mailbox?

16

16

17

17

18

18

19

19

1. Introduction

that

ing.!

Monitoring is the extraction of dynamic information concerning a computational process, as

process executes. This definition encompasses aspects of measurement, observation, and test-
Monitoring is a fundamental component of many computing activities:

One use of monitoring is to facilitate the debugging of complex programs. Debugging proceeds
in five stages [Model 1978): (1) observe the behavior of a computer program; (2) compare this
behavior with the desired behavior; (3} analyze the differences; (4) devise changes to the pro-
gram to make its behavior conform more closely to the desired behavior; and (5) alter the pro-
gram in accordance with these changes. Monitoring is concerned with the first and, to some
extent, the second and third stages in this process. Monitoring is a first step in understanding a
computational process, for it provides an indication of whaf happened, thus serving as a prere-
quisite to ascertaining why it happened.

A second use of monitoring tools is in making efficient use of limited computing resources.
Ideally, optimization of resources would be done analytically, but in general a priori determina-
tion of runtime efficiency is impossible. Thus it is necessary to tune the application program
once it is implemented. Tuning requires feedback on the program’s efficiency, which is deter-
mined from measurements on the program while it is running.

A third use of monitoring is to qdery the system, not for performance measures, but merely for
status information, such as how far a computation has progressed, who is logged on the system
(the system etatus command of most time-sharing systems), the state of certain files (the
catalogue or directory commands), or the nature of hardware and software failures,

And finally, monitoring information may alsc be used internally by the application program.
For example, consider a program which varies the number of processes dedicated to a particu-
lar function based on the request rate for that function. Information concerning the hardware
utilization and the number of outstanding requests could be used by the program to determine
whether to start up more processes to handle the current demand (if the utilization is low and
the request rate high) [Ogle, et al. 1985, Rashid & Robertson 1982, Wulf et al. 1975]. Monitor-
ing information is also valuable for programs which must be reliable; the fact that a processor
{executing processes belonging to a program) has failed, for example, is important to the pro-
gram if it must be able to recover from such failures.

Monitoring is thus an essential function. In one study of program development tools [Hough-

ton 1982|, a quarter of these tools were highly dependent upon monitoring, including those under the

categories of tracing, tuning, timing, and rescurce allocation. Much has been written about monitor-

ing on uniprocessor systems (c.f., the bibliographies |[Agajaman 1975, Perlis, et al. 1981]) and the

general techniques of tracing and sampling are well established.

! There are at Jeast two other definitions of monitor that should be mentioned: a synonym for operating system and an

arbiter of access to a data structure in order to emsure specified invariants, usually relating to synchronization [Hoare 1974
Both definitions emphasize the comtrol, rather than the observational aspects of monitoring. Monitoring is closely associated
with, but strictly separate from, activities which change the course of the computational activity. The term monitor as ased in
this paper is the (vaually software) agent performing the monitoring.

The term complex system used in the title is intentionally vague. We use the term here to
include large uniprocessors, tightly coupled multiprocessor systems, and loosely coupled local and
long haul networks. Two distinctions relevant to monitoring are that complex systems often exhibit
a lack of central control and that a quantitative difference between simple and complex systems in
the number of system components (processors, processes, memory, addressing domains, etc.} leads to
a qualitative difference in the sophistication required of the monitor. These two aspects conspire to

make monitoring a complex system =z difficult (and thus interesting) task.

In this paper, we argue that an historical database, an extension of a conventional relational
database, is an appropriate formalization of the information processed by the monitor of a complex
system. This approach induces changes in the ordering of the steps performed during monitoring, as
well as changes in the steps themselves. In Section 2 we examine the sequential process of traditional
monitoring. The third section reviews efforts in the area of database management that address the
central problem of monitoring, that of information processing. Sections 4 through 8 propose the new
approach, exposing the many opportunities such an approach presents. In Section 9 we return to the
traditional approach, comparing it with our approach. Section 10 briefly examines a prototype

implementation, and the last two sections offer conelusions and directions for future work.

2. Traditional Monttoring

The purpose of this section is to provide an overview of monitoring as presently practiced. A
few definitions are useful, The subject system is the software éystem being monitored, usunally the
operating system of the user's program. A sensor is a section of code within the subject system
which transfers to the monitor information concerning an event or state within the system. If the
sensor is fraced, then a data packet is transferred to the monitor each time a particular event
occurs. If the sensor is sampled, then a data packet is transferred each time the monitor requests
the sensor to do so. This dale packef may be as simple as a bit that is complemented when the
event occurs, or as complex as a long record containing the contents of system queues. The removal

of irrelevant data packets is termed filtering.

Implicit in most discussions on monitoring is & eight step sequential process:

Step 1: Sensor Configuration
This step involves deciding what information the sensor will record and where the sensor will

be located.

Step 2: Sensor Installation
The sensors must be coded and placed in the correct location in the subject system. Provision

must be made for temporary and permanent storage of the collected data.

Step 8: Enabling Sensors
Some sensors are permanently enabled, storing monitoring data whenever executed, while oth-

ers may be individually or collectively enabled, usually by directives from the user.

Step {: Dala Generstion
The subject program is executed, and the collected data stored on disk or magnetic tape. Gen-

erally the user has little control of the monitoring at this point.

Step 5: Analysiz Specification
In most systems the user is given a menu of supported analyses; sometimes a simple command
language is available.

Step 8: Display Specification
Either only one display format is available, or the user is given a menu of formats, ranging
from a list of data packets printed in a readable form to canned reports to simple graphics

(graphs or histograms).

Step 7: Dats Analysis
The data analysis invariably occurs in batch mode long after the data has been collected.

Step 8: Information Display
Usually this step occurs immediately after data analysis, although a few packages allow the
analyzed data to be displayed at a later time.

While most monitoring systems follow the sequence of phases just listed, in the precise order
given (e.g., [Mzlone 1983, Tetzlaff 1979}), there is a variety of alternative orderings within each
phase. Many systems d6 not differentiate between sensor configuration and sensor installation. In
some systems, sensors are always enabled, so that the enabling sensors step occurs in the second step
when the sensors are installed (e.g., {Bowie & Linders 1978, IBM 1984]). Some systems support only
one display format, effectively combining the analysis and display specification steps {e.g., [Graham
et al. 1982, McDaniel 1982, Tolopka Igél]); other systems allow the display to be specified after the

data has been analyzed(e.g., [Cooperman et al. 1972, DEC 1983]).

When considering the monitoring of a complex system, the first strategy to be examined is to
extend each step in obvious ways. Such an approach is problematic at every step, due to the logical

and physical distribution of the monitor and the subject program(s). These difficulties are examined

in detail in Section 9, where the traditional approach is compared with our proposed approach. The
next section will review related work in processing information, the basic function of a monitor, and
will examine how results from this work may be applied to monitoring. Section 4 will then present a

new approach to monitoring based on this analysis.

* 8. The Relational Model

In an abstract senmse, the process of monitoring is concerned with retrieving information and
presenting this information in a derived form to the user. Hence, the monitor is fundamentally an
information processing agent, with the information describing time-varying relationships between

entities involved in the computation.

A great deal of research has considered effective ways to process information. One of the
results of this research has been the relational model [Codd 1970]. The relational model provides
both a structuring of the information and manipulations on that structure. A relation may be
thought of as 2 table having a number of rows (called tuples) and columns {called atiribufes). New
relations ¢an be derived from existing ones using one of several data manipulation languages
developed for the relational model; these query languages are syntactically concise, yet are remark-
ably powerful [Ullman82|. One import_a.nt aspect of some query languages is that they are declara-
tive rather than procedural: they allow the user to_specify whaf information is desired, rather than

how this information is to be derived.

The conceptual design of a database is aided by the enisty-relationship model [Chen 1976). In
this model relations are classified as entity relations or relationship relations. Each tuple of an entity
relation contains an entity identifier along with attributes deseribing that entity; an example is the
entity relation Employee with attributes Name, Department, Salary, and YearsService. Each tuple
of a relationship relation contains two or rﬁore entity identifiers along with attributes describing that
relationship between the entities; an example is the relationship relation Manages, with attributes

Manager, Subordinate, and YearsUnderManager.

Conventional databases are static, in that they represent the state of an enterprise at a single
tmoment of time., Although their contents continue to change as new information is added, these
changes are viewed as modifications to the state, with the old, out-of-date date being deleted from
the database. The current contents of the database may be viewed as a snapshot of the enterprise

at a particular moment of time.

For relational databases to be relevant to monitoring, there must be a means of recording facts
that are true only for a certain period of time. In the database area, attention has recently been
focused on precisely this issue. Th.ree types of databases have emerged that encode the notion of
tirﬂe: rollback databases, which record the history of database activities, historical databases, which
record the history of the real world, and femporal databases, which incorporate both aspects
[Snodgrass 1985, Snodgrass & Ahn 1986|. The historical database is the most appropriate model of
the dynamic state of computation. Historical databases require more sophisticated query languages
than static databases; TQuel (Temporal QUEry Language) is one that supports historical queries
{Snodgrass 1985]. Examples of TQuel queries will be given in a later section, after a new approach to

monitoring is presented.

4. A Relational Approach to Monltoring

The central thesis of this paper is that historical databases are an appropriate formalization of
the information processed by the monitor. The primary benefits include a simple, consistent struc-
ture for the information, the use of powerful declarative query languages, and the availability of a
catalogue of optimizations. In this approach, the user is presented with the conceptual view that the
dynamic behavior of the monitored system is available as a collection of historical relations, each
associated with a sensor in the subject system. In making historical queries on this conceptual data-
base, the user is in fact specifying in a nonprocedural fashion the sensors to be enabled, the analysis

to be carried out, and even the graphical presentation of the derived data.

Note that we are nof proposing to actually represent the data as relations in a database,

Instead, we will show that an historical database provides a convenient and powerfu]l fiction that

guides the processing but does not constrain the representation. In fact, in most cases the relations

will never actually collectively exist as data stored either in main memory or on secondary storage.

Such an approach changes the ordering and the character of the traditional monitoring steps

described earlier:

Step I: Sensor configuration
’ This step is still performed by the user, except the result is a specification of the data to be

collected and the placement of the sensors. Such sensors can be quite flexible; the user is only
concerned with specifying the high level properties of the sensor. Conceptually, each sensor
declared in this manner defines an historical relation available for later use in defining other,
derived relations. The relations directly associated with sensors are termed primitive relations,
as contrasted with derived relations, which are not associated directly with sensors. The
specification of the primitive relations identify the information available to the monitor.

Step 2: Sensor installation
This step occurs automatically: the sensor is produced by the monitor from the specifications.
Relevant aspects of the sensor are communicated to the components of the monitor that need
to know this information. The sensor code handles zll the necessary interaction with the moni-
tor, including enabling and buffering, and may be customized to the task it is to accomplish

and the environment in which it is to execute.

Step 8: Analyeis specification
In this step, the user provides one or more historical queries, defined on the primitive relations
specified above.

Step 4: Display specification :
This step occurs concurrently with analysis specification. By associating entities and relation-
ships with graphical icons (e.g., a square for a processor, a circle for a process, and spatial
inclusion (circle within a box) for the relationship “running in"”), sophisticated illustrations of
dynamic behavior can be generated by the monitor.

Step 5: Ezecution

This step, comprised of enabling the sensors, generating the data, analyzing the data, and
displaying the results, occurs automatically once the queries have been specified. The monitor
first analyses the query to determine precisely the sensors that must be enabled to collect the
requisite low level information needed to satisfy the query, thereby guaranteeing that extrane-
ous information is not collected. These sensors may be subsequently disabled, and other sensors
enabled during the monitoring session based on the data that was collected. Data generation,
considered alone, has perhaps the most in common with the traditional monitoring tools. In
particular, all the techniques previously developed for data collection are applicable. Data
analysis can occur either locally, on the same processing node as the sensor that collected the
data, or at a centralized location, or at 2n intermediate location, depending on the precise
query and the capacity of the communication mechanism. The monitor has sufficient informa-
tion through the sensor specification and the user’s query to make the decision as to where the
processing will occur. The monitor can also perform optimizations on the query, mapping it
into a different query with an identical semanties but improved performance. Information
display can also be made more efficient by capitalizing on the fact that only a small portion of
the state changes during each transition and by utilizing incremental display algorithms,

The steps for the proposed spproach are illustrated in Figure 1, in which the traditional

approach is compared with the new approach. The major change is that the sensors are enabled and

the data generated affer the analysis specification step, allowing the sensors to be enabled automati-
cally based on information from the query. A second change is that some aspects of sensor installa-

tion are automated, as described elsewhere [Snodgrass 1986).

Figure 1: Steps of the New Approach to Monitoring

Sensor Configuration (m) » Sensor Configuration {m)

Sensor Installation (m) s Sensor Installation

Enabling Sensors (m)

Data Generation \
Analysis Specification (m) = Analysis Specification (m)
\\ » Display Specification (m)

Display Specification {m)
Data Analysis —/\’ Execution
Information Display

{m): This step is a manual one.

As with the traditional approach, variations are possible. If dynamic sensor installation is sup-
ported (say, through the use of breakpoints), this step might be delayed until the execution step. By
storing one or more relations in secondary storage, additional iterations of the analysis specification
and execution steps (without the enabling and data generation portions) are possible. Finally,
defaults supported by the monitor may delay some aspects of some of the steps, (e.g., display

specification), until the execution step when they ¢an be performed automatically.

The next four sections discuss this new approach in more detail. Section 5 examines how sen-
sors may be configured by the user. Section 6 deals briefly with how this information is used by the
monitor to install the sensors. Section 7 introduces TQuel in a tutorial fashion. The monitoring

actions of generating the monitor data and performing the analysis are discussed in Section 8.

This paper will concentrate on the concepts and mecharisms directly afected by the relational
approach. The low level data collection mechanism will only be outlined. A future paper will describe
this mechanism in detail, focussing on how filtering can be accomplished through an analysis of the
user's query [Snodgrass 1986]. The graphical portions of the monitor, involved in the display

specification and information display steps, will be dealt with in an even more cursory fashion, and is

discussed elsewhere [Shannon 1986].

5. The Sensor Configuration Step

During sensor configuration, the user specifies the data to be collected and the placement of
the sensors. Our approach is to provide a simple language for deseribing what information is to be
collected by each sensor, and for indicating where the sensor is to reside. Once such a specification
has been processed by the monitor, the code for the sensors will be available to be included in the
subject program, the mechanisms will have been set up to get the data packets to the monitor, and
the query processing component will know about the primitive relations sssociated with the sensors
defined in the specification. In the implementation described in Section 10, a macro is generated
automatically for each sensor; the user inserts an invocation of these macros at appropriate places in
the code of the subject system. As with other aspects of the relational approach, complexity has
been managed by requiring the user to provide a nonprocedural description of what is to be done,
leaving the issue of how this task is to be done to the monitor, while ensuring that the monitor has

sufficient information to make this determination.

In the remainder of this section, we introduce an example subject system and discuss some
sensors that might be defined in this system. Since the user is encouraged to think of sensors as
defining historical primitive relations, we will employ the entity-relationship model to describe the
sensors. As the syntax of the sensor description language is not e¢ritical, the sensors will be specified
informally, rather than in that language. Although the entity-relationship model can also be used to
describe the data collected by hardware monitors, we will ignore this possibility., Details on the sen-

sor description language and on the data collection mechanisms themselves appear in a separate

paper [Snodgrass 1986].

Throughout this paper, the following subject system (an operating system) will be assumed.
There are three types of operating system entities known to the monitor: Processor, Process, and
Mailbox. In this example, there are several processors, which execute the processes. At any point in
time, a process may be executing on only one processor, though processes can execute on more than
one processor over their lifetime. A process may send messages to a mailbox, where they will be
queued until 2 process executes the receive operation on the mailbox. If a receive operation is exe-
cuted on an empty mailbox, the process will block until a message is sent to that mailbox. Several
processes may be blocked on a mailbox. Although this example is of necessity oversimplified in com-
parison with actual operating systems, it should be sufficient for the purposes of this paper. We will

I3

now attempt to capture the behavior of this system within the relational model.

Entity relations must be made available for each entity type. The name of each is identical to
the name of the type. The Processor entity relation contains one attribute, the processor identifier.
This relation is always enabled; its associated sensor is placed in the configuration manager which
handles the restarting of crashed processors. The Process entity relation contains two attributes,
the process identifier and the state, one of Ready (i.e., the process is scheduled but not currently
running), Running {(the process is currently running on a processor), Blocked (the process is waiting
on a mailbox), or Done (the process has halted or #borted)"'. This relation is always enabled and is
associated with a sensor in the process manager. Finally, the Mallbox entity relation contains one
attribute, the mailbox identifier, and is always enabled. Its sensor is located in the process communi-

cation manager.

Within the monitor, relations are differentiated temporally: there are event relations and inter-
val relations. Entity relations are always interval relations, for they model entities while they exist in

the subject system. Each interval relation contains two implicit attributes, the time the modeled

2 The State attribute is an enumeration, and hence is not one of the entity types mestioned previously.

interval began, and the time the modeled interval ended®. Figure 2 shows the three entity relations,
with user names denoting the internal entity identifiers. Most of the entities were created when the
system was brought up at 1:00:00 and destroyed when the system was halted at 4:00:00. Interval -
relations are associated with two sensors, one determining when the interval began and one deter-
mining when the interval ended. The first task of the data analysis portion of the monitor is to con-

struct intervals from the data packets generated from these sensors.

3 The partitioning into explicit and implicit attribates was done for language design reasons; see {Snodgrass 1985| for more
details.

10

Figure 2: Entity Relations

Processor (Processor):

Processor ”(Fromj | (To)

A 1:00:00 | 4:00:00
B 1:00:00 | 4:00:00

Process (Process, State):

Process State (From) (To)
P1 Ready 1:00:00 | 2:00:00
P2 Ready 1:23:24 | 2:05:12
P1 Running |} 2:00:00 | 2:15:37
P2 Running || 2:05:12 | 2:45:29
P1 Ready 2:15:37 | 2:45:30
P2 Waiting |}2:45:30 | 2:54:20
P1 Running |]2:45:30 | 2:52:47
P1 Done 2:52:47 | 4:00:00
P2 Ready 2:54:20 | 2:56:10
P2 Running {]2:56:10 | 2:57:05
P2 Done 2:57:05 | 4:00:00

Mailbox (Mallbox):

Mailbox || {From) {To)
M1 1:00:00 | 4:00:00
M2 1:00:00 | 4:00:00
M3 1:00:00 | 4:00:00
M4 || 1:00:00 | 4:00:.00
M5 1:00:00 | 4:00:00
M6 1:00:00 | 4:00:00
M7 1:00:00 | 4:00:00

Relationship relations can be either event relations or interval relations. A tuple in an event
relation describes a change in the state of the system which occurred at a particular instant of time.
An example is the SendMessage event relation, which has two explicit attributes, 2 Process and a
Mailbox, and one implicit attribute, the time the event occurred (see Figure 3). The tuple (P1, M3,
2:00:05) in this relation represents the instan‘taneous event of “Process P1 sent a message to Mailbox

M3 at time 2:00:05.” The content of the message is not recorded in this relation.

11

Figure 3: An Event Relation

SendMessage (Process, Mallbox):

Process [MailBox H {At)

P1 M3 2:00:05
P1 M4 2:00:06
P1 M7 2:51:13

There are four other relations defined for this system (see Figure 4). The RunningOn (Pro-
cess, Processor) interval relation describes which Process is running on which Processor. Since the
system state is constantly changing, the relations evolve over time. For instance, the tuple (P1, B)
may be valid in the Runnlngbn relation for only a few milliseconds, and new tuples are added to
the SenciMeuage relation as messages are sent. The Accesses (Process, Mallbox) interval rela-
tion describes which mailboxes a proc;ass can send to or receive from, and is always enabled. The
Waiting (Process, Mailbox) relation lists the processes blocked while waiting to receive from a
mailbox. Finally, there is a Clock event relation which contains no explicit attributes. The Clock
relation is treated specially by the monitor; it is generally used to specify sampling, as will be seen

below.

12

Flgure 4: Remaining Primitive Relations

RunningOn (Process, Processor):

Process | Processor || {From) {To)

P1 A 2:00:00 | 2:15:37
P2 B 2:05:12 | 2:45:30
P1 B 2:45:30 | 2:52:47
P2 A 2:56:10 | 2:57:06

Accesses (Process, MailBox):

Process | MailBox || {From) (To}
P1 M3 1:00:00 | 2:57:23
P! M4 1:00:00 | 2:57:24
P1 M7 1:00:05 | 2:57:23
P2 M7 1:23:24 | 2:40:29
Walting (Process, MallBox):

Process | MailBox |l (From) | {To)
P2 | M7 ||2:4s:29 | 2:54:20

Clock:

(At)
1:00:00
1:00:01
1:00:02
1:00:03

The primitive relations contain timestamps from 2 gloabl clock maintained across the éntire
system. Unfortunately, it is theoretically impossible to synchronize imprecise physical clocks over &
geographically distributed network with nondeterministic transmission timesLamport 1978]. How-
ever, Lamport does give' an algorithm for maintaining 2 global clock with a bounded imprecision
that maintains the invariant that messages are received at a global time that is later than the giobal
time the message was sent. The partial ordering of local events necessary for debugging will be

preserved and the (unknown) total ordering will embed. this partial ordering. This time-keeping

13

algorithm can be embedded in the operating system itself, with timestamps appended to every mes-
sage, or in the monitor, with timestamps included in messages sent by the monitor. Note that the
monitor may be able to adequately maintain s global clock with few additional messages. A second
option is to simulate Lamport’s algorithm in the remote monitor. This approach incurs a greater
overhead than Lamport’s slgorithm itself, due to the additional communication necessary, Another
consideration is that if the operating system provides a reliable communicatior mechanism, support-
ing recovery from lost messages or crashed processors, then a global clock is probably already com-
puted by this mechanism (e.g., [Birrell & Nelson 1983} all reliable communication mechanisms
known to the author use some kind of global clock.) In any case, if a global clock is provided by the
monitor, other components of the operating system may profit from its presence. Given these con-
siderations, we will assume that a global clock is implemented by a distributed algorithm, and is
available to each processor. If such a ¢lock is not feasible due to efficiency constraints, as in some

real-time systems, then more sophisticated approaches, yet to be developed, are necessary.

8. The Bensor Installation Step

In the previous step, the user specified the sensors in & sensor description language. At the
same time, the location of the sensor was indicated. The sensor specification is used by the monitor

to

e generate the code for each sensor (in the implementation described in Section 10, the code is
in the form of a C macro);

» possibly allocate buffers, packet identifiers, counters, and bit vectors for enabling the sensors;
& create primitive relations to be referenced in queries; and

o record information concerning the sensors for later use.

Compilation and linkage of the subject system nlso occurs in this step. This step is entirely
automatic, and generates & fully instrumented subject system. The details of this process appear

elsewhere {Snodgrass 1986,

14

7. The Analysis Specification Step

The sensor configuration provides the information necessary to install the sensors; the histori-
cal queries on the primitive relations associated with these sensors provides the information neces-
sary to automate the remaining steps by specifying the content of derived relations. In this way,
information not anticipated by the designer of the monitor may still be requested by the user, pro-
vided the basic information (i.e., the primitive relations) is available to the monitor. Historical
queries are expressed in the temporal query language TQuel [Snodgrass 1985]. TQuel is a general
temporal query language, augmenting the (static) relational tuple calculus query language Quel [Held
et al. 1975} with additional constructs and providing a more comprehensive semantics by treating
time as an integral part of the databa.s;e. TQuel includes fifteen other statement types, supporting
the creation and destruction of databases and relations, storage structure modification, bulk copy of
datz, and consistency, integrity, and concurrency control. As these statement types are not relevant
to the subject of this paper, they will not be discussed further. Instead, we will briefly review the

Quel retrieve statement, then present an extended example employing the TQuel retrieve statement.

7.1. The Quel Retrleve Statement

The Quel retrieve statement selects a subset of the tuples in one or more relations, extracts
one or more attributes from the tuples in this subset, and combines the attributes into result tuples.
The retrieve statement works in conjunction with the range statement. Assume that the two rela-

tions mentioned earlier, Employee and Manages, are available. The statement
range of E is Employee

specifies that the tuple variable E will represent, for example, the tuples of Employee on any subse-

quent retrieve statements.

The retirieve statement creates a new relation whose tuples satisfy s boolean expression. The
expressions appearing in the retrieve statement contain constants and attributes from previously

defined tuple variables. For example, the following query fiuds all employees making more than

15

Ken, who is their maiager:

range of E2 is Employee
range of M 18 Manages
retrieve into ToPromcte (Name = E.Name)
where E.Name = M.Subordinate and M.Manager = E2.Name
and E.Salary > E2.Salary and E2.Name = "Ken"

Ezample 1: Who should be promoted?

This query results in a new relation, called ToPromote. The target list " (Name = E . Name)"
specifies the attribute(s) of the new relation. The where clause specifies which tuples will contribute
toward the new relation. The retrieve statement thus consists of a atiribule specification component

(the target list) and a fuple selection component (the where clause).

7.2. Example T'Quel Retrieve Statements

Since TQuel is a superset of Quel, all valid Quel statements are also valid TQuel statements.
By utilizing only the target list and where clause in TQuel, many interesting questions may be asked.

For instance, to select the processes which are currently Ready, use

range of E i8 Process
retrieve into ReadyToRun (E.Process)
where E.State = Ready

Ezample 2: Which processes are currently Ready?

ReadyToRun has only one explicit attribute, 2 Process (see Figure 5). Since the underlying relation

(Process) was an interval relation, ReadyToRun is also an interval relation.

Figure B: A Derived Interval Relation

ReadyToRun (Process):

Process ”(From) I {To)
P1 1:00:00 | 2:00:00
P2 1:23:24 | 2:05:12
P1 2:15:37 | 2:45:30

16

Intervals can be derived from other intervals. The WaltlngOn relation identifies those

processes which can unblock the currently blocked processes by sending messages:

range of W is Waiting
range of A 18 Accesses
retrieve WaitingOn (Blocked = W.Process, CanUnBlock = A.Process)
where W.Mailbox = A.Mailbox and E.Process = W.Process and E.State = Blocked

Ezxample 8: Which processes can unblock the blocked processes?

This characterization of *“CanUnBlock™ is conservative since it includes processes which may in fact

not be able to unblock another process (if, for instance, they never send messages to the relevant
mailbox).

Given WaltingOn, the relation WaltingOnProcessor, specifying the processors running the

processes which have the capacity to unblock the currently blocked processes, may be defined:

range of RO is RunningOn

range of WO is WaitingOn
retrieve WaltingCnProcessor (WO.Blocked, CanUnBlockProcessor = RO.Processor)

whera WO.CanUnBlock = RO.Process

Ezample 4: Which processors may potentially unblock processes?

This information is of more than academic¢ interest, since it identifles those processes which may be

permanently blocked if a particular processor crashed.

So far, all the example queries were syntactically correct Quel statements, although the seman-
tics is more involved, since the database contains the implicit time attribute. TQuel also includes
two additional clauses in the retrieve statement: the valid clause and the when clause. The valid

clause is similar semantically to the target list. The when clause is similar to the where clause,

Recall that the target list specifies the attributes to appear in the derived relation. In TQuel,
the target list specifies the ezplicit attributes, and the ¢mplicit attributes (those containing time

values) is specified by an additional clause. The query

17

range of 5 is SendMessage
retrieve ResumedbyPl (W.Process)
valid at end of W
where S.Mailbox = W.Mailbox and S.Process = Pl

when S overlap W

Ezxample 5: Which processes were resumed by process P1?

determines those processes which were initially blocked on a mailbox, then resumed as a side effect

of a message being sent by P1 to the mailbox. Since the valid-at clause was used, the resulting reta-

tion is an event relation (see Figure 8).

Figure 8: A Derived Event Relation
ResumedbyP1 (Process):

Process ” {At)
P2 “2:54:20

The valid-at clause can also be used to indicate sampling. The user can request that the Run-

ningOn relation be sampled every ten seconds through the query

range of C 18 Clock[10]
retrieve RunningOnEverylOSeconds (RO.all)
valid at C

Ezample £: Sample the RunningOn relation.
The valid-at clause indicates that the user is interested in the tuples of RunningOn only at chuck
ticks (occurring, in this case, every second).
If the query is defining 2 derived interval relation, the valid-from-to clause specifies the delim-

iting instants of the time interval. This clause also takes a variant of path expressions as an argu-

ment. To determine the latency of resumplion, that is, the interval between a message being sent

and the recipient being unblocked,

18

retrieve Resumptioniaiancy (W. Process)
valld from S t¢ cua of W :
where S.Mailbox = W.Mallbox

Ezample 7: When was the Process waiting unnecessarily?

Each tuple in ResumptionLatency starts when the message is sent and stops when the process

stops waiting (see Figure 7).

Figure T: Another Derived Relation

ResumptionLatency (Process):

Process ”(From) | {To)
P2 “2:51:13 | 2:54:20

Aggregate functions are found in Quel; they have been extended somewhat in TQuel [Gomez &
Snodgrass 1986]. These functions refer to groups of tuples rather than individual tuples. For

instance, the relation

retrieve MBoxQLength (W.MBox, Length = Count (W.Process by W.MBox))

Ezample 8: How long is the queue of waiting processes for each mailbox?

will compute the current length of the queue {of waiting processes) of each mailbox. The contents of
this relation change over time, as do all the others. The ‘by’ clause partitions the tuples according
to the MBox attribute; the Count aggregate function is then applied to each partition. The aggre-
gate functions in Quel (and thus TQuel) are min, max, avg, sum, and count. The total run-
ning time, ready time, and blocked time for a process and the the percentage of time a process was
Rurning versus the time it was Ready or Blocked can also be calculated by using aggregate funec-

tions.

In converting Que] to TQuel, the syntax was changed as little as possible. The attribute
gpecification component now includes the valid clause, and the tuple selection component now

includes the when clause. A few additional aggregate operators complete the syntactic changes to

19

the language. The TQuel semantics is an extension of the Quel semantics; both are based on the
tuple calculus [Snodgrass 1985).

The graphical attributes of the primitive relations may be specified when the sensors are
configured or when the queries are specified. Graphical aspects are-a.ssociated with both entity and
relationship relations. There is flexibility in both the iconic representations and the graphic attri-
butes. For example, the shape, color, intensity, size, and position can each be fixed or can be tied to
the value of an attribute. Details of the display specification and generation steps are beyond the

scope of this paper.

8. The Execution Step

The expressive power of TQuel has a cost: the monitor must be able to determine which sen-
sors to enable, what calculations to perform, and how to display the results, all from the TQuel
query. Fortunately, there has been much work on processing relational query languages, and the
results of these efforts can be applied in this setting as well. This section wil} address generating the
data and analyzing the data. The relational model also facilitates filtering the data packets and
displaying the derived relations; those aspects are beyond the scope of this paper. To provide the
context for this discussion, we first review how a conventional database management system {DBMS)

processes queries.

8.1. The Relational Algebra

Tuple calculus queries, such as those formulated in Quel, express what derived information is
desired, letting the DBMS determine how the information is to be derived. Relational algebra
expl;essions serve the latter purpose. The DBMS converts each tuple caleulus query into an aige-
braic expression. As this expression is often quite inefficient, optimizations are applied that convert

the initial expression into a semantically equivalent one that is more efficient.

In this paper, we will use only a few common relational operations [Ullman 1982]:

Selection
If F is a formula involving constants, attribute names, arithmetic comparison operators and

logical operators, then UF(R) is the set of tuples ¢t in R such that, when the appropriate com-
ponents of ¢ are substituted for the occurrences of the attribute names in F', then the formula
F becomes true. For example,

UE .Dept="Toy

denotes the set of tuples in Employee who work in the Toy department. The subscript on
Employee indicates that the tuple variable E has been associated with the relation through a

range statement.

«(Employee)

Projection _
If R is 2 relation with k attributes, we let @, , (R), where d. is a attribute name,
1 m

2
denote the ggt of m-tuples a,a, « * - q_ such that there is some k-tuple b b, - - - b, in R for
which the § component in g is the d’. component in . For example,

ﬁ! .Name E.Salary (Employee!:)

denotes a relation with two attributes, E.Name and E.Salary.

Carlesian product
Let R and S be relations with k! and k2 attributes, respectively, then B XS, the cartesian

product of R and S, is the set of tuples with k + k, attributes whose first k components
form a tuple in B and whose last k2 components form a tuple in 5. For example,

Employee_ X ToPromote,,
denotes a relation with five attributes, E.Name, E.Dept, E.Salary, E.Manager, and
E.YearsService from the Employee relation and T.Name from the ToPromote relation. The

non-uniqueness of attribute names is inconvenient; we make the names unique by subscripting
the tuple variable to each relation name.

To convert a Quel query into a relational algebra expression, first take the cartesian product of
the underlying relations (each associated with a tuple variable used in the query), apply a selection
with the formula from the where clause, and then apply a projection, with the attributes from the
target list. For example, the query given in Example 1 of Section 7.1 retrieving the ToPromote

relation has the following algebraic equivalent

{El} 7I‘11'.N'.'o.lm(‘:’.r.’ .Nama=M. Subordlnate(aﬂ .Manager=E1. Ham(az .Balary>El. Salary(

o (Employee, X Employee_ . X Manages,}})))

E2.Name="Xen"

The algebra may be extended to handle TQuel's valid and when clauses, involving the exten-

sion of the projection and selection operators, respectively. The projection and selection operators

21

remain, but only involve the explicit, non-temporal domains. The valid clause is handled by a tem-
poral variant of the projection operator, denoted by a superscript of T. This operator will project
out those intervals designated by expressions in the valid clause. The when clause is handled by a
temporal variant of the selection operator, also denoted by a superscript of T'. The subseript for this
operator consists of the temporal predicate specified in the when clause. As an example, the query

for ResumedbyP1, given in Example 5 of Section 7.2, has the corresponding temporal relational

algebra expression,

T T
(EB} ﬂW.Process(ﬂat and of H(as overlap W(ds .Hailbox#.uailhox(as .Procass=P1(

Waiting . X SendMessage.)))))

A more substantial modification is to make the operators incremental, so that they operate on
streams of tuples, one at a time, possibly generating one or more output tuples whenever an input
tuple arrives. The selection and projection operators (both conventional and temporal) are straight-
forward to extend to operating on streams rather than sets. Each such operator would génerate at
most one output tuple for each input t_uple, and no tuples would have to be stored, assuming that
the projection operator does not perform duplicate elimination. The cartesian operator is more com-
plex, for two reasons: it iz a binary operator and it requires internal storage. It stores the tuples
arriving from the left, and concatenates all of these tuples to tuples arriving from the right, thereby
generating multiple output tuples for each input tuple. The brute force cartesian operator requires

storage for all the input tuples; more space efficient variants also exist.

Once the relational algebra expressions for the TQuel queries have been generated, they can be

used to enable sensors and analyze the incoming data.

B8.2. Algebralc Optimlzation Transformations

The term “optimization” is 2 misnomer; & more accurate term is “improvement”, for an

optimal solution almost never results. However, we will continue to use this term, with the under-

stood proviso.

One benefit of using the relational model with monitoring is that traditional optimization tech-

niques may be utilized directly. One example is the transformation

o, (R XR,)—R X0, (R,)

which applies if the predicate F only involves attributes from Rz' This transformation can dramati-
cally reduce the number of tuples generated by the cartesian product, since uninteresting tuples are
discarded before rather than after the cartesian product. This transformation may be applied twice

to Expression {(E!] given in the previous section to obtain

o
’rE .Name(az Name=M. Subord 1nate(M.Manager=E2 .Hame(al! .Balary>E2. Salary(EmployeeE

X (Employee,)) X Manages)))

El1.Name="Ken"

This optimization ¢an also be applied to the Expression (E¢}, with the substitutions
. S.Process=Pl for F.

. Waiting for ..

o SendMessage for R,

resulting in

T T .
(E'?) rW.Process(ﬂat end of w(as overlap H(as.milbox'sw.milbox(

Waiting, X o SendMessage)))))

S.Procass=P1(

A collection of such transformations has been developed for the conventional relational algebra
[Smith 1975].

A second class of transformations involves the primitive relations. These transformations
improve the algebraic expression by enabling fewer sensors, or by replacing sampling with tracing, or
by sampling less frequently. Approximately ten transformations, each with several variants, have

been developed thus far. These transformations are discussed in detail elsewhere {Snodgrass 1988].

Finally, a third ¢lass of transformations select a more efficient variant of an operation based on

the temporal ordering of the input tuples to the operator and the desired temporal ordering of the

23

output. For example, the cartesian product operator in its most general form must store internally
all incoming tuples fromn the left, so that they can be later concatenated with incoming tuples from

the right. If the tuples on both sides were in temporal order, and their overlap was desired, a much

more efficient cartesian product may be used:

(E,XE)—E X E,

atl overlap t,

where)'f.1 denotes the particular variant of the cartesian product. This operator would only store
those tuples from the left that could possibly overlap with those from the right, discarding the rest

from internal storage. This transformation may be applied to Expression (ES} resulting in

T
(E‘U Ww.Procoss(”at aend of W(os.milboﬁﬂ.mnbox(

 Waiting_ X, o SendMessage,))))

B .Process=P1(

The transformations from the three classes are repeatedly applied (in order) to the algebraic

expression until no more are applicable.

8.3. Data Generation

The final result of the optimization phase is an algebraic expression for each query specified by
the user. This expression may contain one or more of the following operators: m, o, or, and X.
Recall from Section 8.1 that these operators are incremental, in that they take streams of input
tuples and possibly generate one or more output tuples whenever an input tuple arrives. The expres-
sion is started by having the primitive relations (e.g., Walting in Expression (E{}) generate initial

tuple streams. The initial tuples flow into the specified operators.

B8.4. Data Analysls

Data generation and analysis proceed in parallel. After the algebraic expression is primed with
tuple streams from the constants and primitive relations, the tuples flow through the expression in
an incremental fashion. One profitable way to view the process is to visualize the parse tree of the

expression, with tuples flowing up the ares. The tupies flowing cut of the expression comprise the

24

historical relation that was specified in the original TQuel query. Performing this analysis in realtime
allows the low level data to be discarded after participating in the analysis, with only the derived

information stored if desired.

9. Comparison with the Traditional Approach

This paper has argued that monitoring complex systems is fundamentally an information pro-
cessing activity, and that the relational model provides an effective formalization of this information.
In this section, we summarize the steps in the relational approach, ther discuss how the new
approach addresses problems with applying each step of the traditional approach to monitering to a

complex system.

Step 1: Sensor configuration
Sensors are described in a sensor description language as a collection of primitive event and

interval relations. The user also specifies the location of these sensors within the code of the
subject system. This deseription forms the conceptual view that the dynamic behavior of the
subject system is available as the collection of historical relations.

Step £: Sensor inslallation .
The code for the sensors is generated by the monitor. This step is entirely automatic, resulting

in a fully instrumented subject system.

Step 8: Analysis specification
TQue! queries are made on this fictional database.

Step 4: Display specification
At the same time, the user specifies the graphical representation of the derived relations.

Step 5: Ezeculion
The queries are first converted into relational algebra expressions, which are optimized

through the application of a series of transformations. Processing is started by enabling sensors
associated with the primitive relations appearing in the expression. As tuples flow through the
expressions, other sensors are enabled, therebly creating other tuple streams. The tuples
flowing out of the expressions are displayed as directed by the user.

This approach provides solutions to many of the problems encountered in the application of

the traditional approach to monitoring in the presence of complexity.

o Sensgor Cenfiguration
One difficulty is communicating the configuration to the monitor, which is distributed along
with the sensors. The format of the collected data potentially must be known by all com-
ponents that handle this data, including the analysis and display components. This issue
involves the physical distribution of the monitor. A second difficulty involves the correctness of
the sensor code. When monitoring information is used in debugging, the annoying task of
debugging the debugger arises. The approach taken by most systems fails to resolve this prob-
lem; only a fixed number (10-20) of predefined semsors are usually provided, implying that

future users of the monitor will need only the information determined at the time the monitor
was implemented. Such an approach unnecessarily limits the ussbility of the tool.

In the proposed approach, the relevant aspects of sensors are specified in a high level sensor
description language. The translator for this language automatically handles the details of gen-
erating the code for each sensor and communicating needed information to the monitor,
thereby greatly reducing the chance for error.

& Sensor Installation
The problem here lies in the possible physical distribution of the subject program. In a cen-

tralized system, each sensor will reside in an individual program. In a complex system, pro-
grams may be physically distributed. Hence the monitor must contend with not knowing until
rather late where each sensor resides.

In the new approach, the sensors are handled automatically by the monitor, freeing the user
from being concerned with details of how the sensors are implemented or on which processor

each is executing.

o Enagbling Sensgore
There are two difficulties involved here. One is specifying which sensors are to be enabled, 2

task made diffieult by a late binding of program to machine and the sheer magnitude of the
number of machines. Determining which processor a process js executing on, cut of a large
number of processors, can be a tedious and time consuming chore. The task is rendered even
more difficult when there are a collection of sensors to be enabled, each on a different subset of
processors. The second difficulty is in performing the operation of enabling a remote sensor,
while still ensuring that protection between processes is not compromised. Both difficulties
involve the physical and logical distribution of the subject program. The approach taken by
most systems avoids these problems by permanently enabling all the sensors. In a complex sys-
tem with many sensors, this approach will quickly overwhelm the processing and communica-
tion resources with excess data packets, most of which are not used in the subsequent analyses.

Qur approach makes use of a collection of optimizations to determine precisely which sensors
to enable, The monitor uses information from the sensor specification and the algebraic expres-
gion to automatically enable only relevant sensors.

¢ Data Generation ,
The primary difficulty is in collecting monitoring data from distributed sites. A related issue is

the volume of data, and the artifact caused by the collection operation itsell. Physical distri-
bution is the culprit here.

The volume of data collected is reduced considerably through filtering. The appropriate sen-
sors are initially enabled, and can be disabled and other sensors enabled as a side effect of the
analysis of previously generated data, Special techniques allow temporal ordering of data
packets from multiple buffers. Because sensors are generated by the monitor, there is the
opportunity for automatically compensating for the monitoring artifact.

® Analyeie Specification
Any attempt to understand the behavior of a (logically) distributed program must focus on the
interrelationship of events occurring in different processes. The diversity of imteractions pre-
cludes the menu or simple command language approach favored by most monitoring systems.
Instead, more powerful languages expressing complex patterns are required,

In our approach, TQuel is used to specify the desired information. TQuel is a high level, non-
procedural language, Since TQuel is an extension of Quel, it is relational complete [Codd
1970|. The when clause can be used to specify temporal relationships between events and inter-
vals occurring in the subject system. The valid clzuse can be used to specily when the derived

events or intervals are to be valid, as well as suggesting that sampling be done. Aggregate
functions provide additional expressive power. This language results in a powerful user inter-
face for querying the monitor concerning the behavior of the system.

o Display Specification
When the user is given any choice at zll concerning the display of information, the options are
generally limited to canned reports.

In the relational approach, displays are specified by associating graphical attributes with enti-
ties and relationships, for both primitive and derived relations.

e Data Analysis
Monitoring complex systems involves sophisticated data analysis, The centralized, brute-force

techniques used by most monitors bhecome inadequate as the subject system becomes more
complex,

A collection of conventional and monitoring specific optimization transformations may be
applied to the initial algebraic expression, often resulting in dramatic improvements in execu-
tion speed. There is the opportunity for analyzing the collected data in 2 distributed fashion

(see Section 12).

While the above analysis demonstrates the many advantages of the relational approach over
traditional monitoring techniques, two substantial issues remain: system complexity and perfor-

mance.

10. Implementation

In order to assess the practical benefits of the relational approach, we have completed one pro-
totype implementation and have made significant progress towards a second implementation. In this

section, we will outline the structure of the prototype and discuss its performance.

The system monitored by the prototype was Cm?*, a tightly-coupled multiprocessor composed
of 50 DEC LSI-11's and a substantial amount of memory [Fuller et al. 1978, Swan et al. 1977|. Two
operating systems were available on Cm®, StarOS [Gehringer & Chansler 1982, Jones et al. 1978,

~ Jones et al. 1979] and Medusa [Ousterhout et al. 1980).

The monitor prototype consisted of two main components: a femotc monitor, performing those
functions requiring close interaction with the user, and a resident monitor, performing the functions
requiring close interaction with the monitored system. This separation is necessary when moritoring
a..distributed system, where a resident monitor exists at each processor, sending collected data to the |

centralized remote monitor, which may or may not execute on one of the processors being

27

monitored. Functionally, the resident monitor collects the data packets and interacts with the
operating system, and the remote monitor analyzes and displays the monitoring data. The prototype
ignored the issue of displaying the results graphically, and so the display specification and informa-

tion display steps were omitted.

The remote monitor ran on a Vax under Berkeley Unix #nd was itsell composed of three
modules. The TQuel compiler translated the query into an initial algebraic expression. The parse
tree for this expression was termed an update network, referring to the tuples flowing across the
arcs, The movement of tuples through this network was handled by the update network interpretfer.

The remote accouniant handled the Ethernet protocol, sending tuples to the interpreter and 'sending

commands to the resident monitor.

Two resident monitors were implemented, one on StarOS called StarMon, and one on Medusa
called Medic. The remote monitor on the Vax communicated with the resident monitor on Cm*

over an Ethernet [Metcalfe & Boggs 1975, a high bandwidth (3 MBaud) network.

A minimal monitor was implemented, with all aspects carried far enough to demonstrate feasi-
bility and to investigate efficiency aspects. More specifically, the update network, resident monitors,
remote accountant, and TQuel parser and code generator were essentially complete. The TQuel
semantic analysis phase was only partially implemented and the optimization phase was dasigned but

never implemented. The graphical display aspect was not addressed at all in the prototype.

Several of the components were instrumented to determine the overall performance of the
monitor. The rest of this section will briefly discuss the performance of the sensors, the Ethernet

protocol, and the update network interpreter. Details are given elsewhere [Snodgrass 1982},

The efficiency of the data collection mechanism is important, for it determines the monitoring
granularity (the level of abstraction at which the monitoring takes place). The mechanism imple-
mented supported strong t,yp'e checking, multiple type managers, and a high degree of filtering. The
sensors required 600-1400 microseconds, depending on the amount of data stored in the data packet.

This execution time is equivalent to 85-200 store instructions, or 6 to 14 procedure cafls. Hence, the

monitoring grain for this implementation of sensors is larger than a procedure ecall, but perhaps
equal to a procedure that does something interesting, in turn calling other procedures. Given this
sensor efficiency, with intelligent filtering reducing the monitoring overhead to 19, the 50 processors

would generate approximately 500 event records per second.

The Ethernet protocol is a variant of the Ethernet File Transfer Protocol (EFTP) [Shoch
1979|, simulating a transmission from the remote monitor (the host) to the resident monitor (the
glave). The protocol uses checksums, timeouts, and packet retransmission for refiability. Using
actual record and packet sizes and observing the transmission rate for the standard EFTP, s max-

imum transmission rate of 600 event records per second was calculated.

The performance of the update network was measured using a small but relatively complex set
of TQuel queries. The initial update network, before optimizations were performed, could process
approximately 3 input tuples per second (assuming a dedicated Vax 11/780). Two stages of optimi-
zation were performed manually to assess their effect. The first stage applied the transformations
discussed in Section 8.2. This step resulted in a speedup of 5, to 15 input tuples per second. The
second stage involved substituting the interpreter and general operator algorithms with 2 Lisp fune-
tion. Conceptually, the entire algebraic expression was converted into a specialized operator. The
Lisp function was then compiled by the FranzLisp compiler into Vax assembly language. The result-
ing code could process approximately 600 input tuples per second. The four transformations per-
formed in pursuit of reasonable efficiency (TQuel query —» initial update network —» optimized
update network —» Lisp -—+ assembly languzge) resulted in an improvement of more than two orders

of magnitude.

The general result of these measurements is that, given the monitoring granularity supported
by this implementation, the monitér can indeed contend with the number of event records generated
by the 50 processors in Cm®. Hence, it iz possible to implement a monitor supporting the high level
conceptual viewpoint of a dynamic relational database on the system’s behavior which can be mani-

pulated by a temporal, non-procedural query language, with sufficient efficiency to monitor a large,

0

complex, distributed system.

11. Comparison with Other Work

The majority of work in monitoring has concerned the development and application of tech-
niques within the context of the traditional approach. In Section 8 we compared the traditional
approach with the relational approach. In this section we examine other research that also addressed

inadequacies of the traditional approach.

The basic idea behind the approach espoused here, using historical databases to formalize
dynzroic information, has been suggested in various guises by others. Ripley organized performance
information concerning static program structures (e.g., routines, statements) into a hierarchy and
represented hierarchical measurement data as ordered n-tuples, such as (program, routine, state-
ment, primitive operation) [Ripley 1977|. He then suggested applying the relational projection opera-
tor on this relation, and implemented & simple system to collect data from Snobol programs and pro-

ject relevant attributes, This paper is the only one suggesting a relational approach that predates

OUrs.

Garcia-Molina, German, and Kohler went a step further, suggesting that the monitoring rela-
tion should be tied to sensors (24 are listed in the paper) rather than to the static program strue-
ture, and mentioning that the relational query language Sequel could be used to retrieve information
from this relation [Garcia-Molina et al. 1984|. No implementation was attempted.

LeDoux and Parker went a step further still and defined a separate relation for each sensor,
presenting 14 predefined relations [LeDoux & Parker 1985]. This database is queried via Prolog. A
prototype debugger was implemented using this approach.

One other research project has employed the relational model for monitoring information. The
High-level Ada Relational Debugger (HARD) [DiMaio et al 1985] is a component of the Ada Rela-

tional Translator, in which oll data structures are relations [Ceri & Crespi-Reghizzi 1983]. The fact

that the dynamic behavior is captured in relations iz hidden from the user. Internally the relational

algebra is used to manipulate the information, but externally the user writes Ada tasks to specify
the monitoring.

None of these papers proposed using algebraic expressions to specify which sensor to enable,
nor using monitoring specific optimizations. A second difference is that the static relatioral model is

employed is all of these papers, with the temporal aspect of the monitored data encoded in an ad
hoe manner.

Several researchers have proposed high-level languages for specifying the analysis to be per-
formed by the monitor. As just mentioned, Garcia-Molina et al. suggested using Sequel, LeDoux and
Parker used Prolog, and DiMalo, Ceri, and Reghizzi used Ada. In the Interactive Distributed
Debugger (IDD), Harter, Heimbigner, and King used interval logic [Schwartz et al. 1983], an exten-
sion of linear time temporal logic [Lamport 1980|, to specify assertions that are tested in real time
[Harter et al. 1985]. It is not clear how this logic compares with TQuel in expressive power, or how
hard it will be to implement the assertion checker, as an operational semantics has not yet been

developed for interval logic.

Bates and Wileden has defined an Event Definition Language (EDL) in order to obtain a
behavioral absiraction, in which the system is viewed in terms of higher level events, which are
defined in terms of primitive events [Bates & Wileden 1983]. EDL is based on regular expressions
augmented with a shuffle operator. It can be shown that TQue! is as expressive as EDL. Implementa-

tion experiences with EDL have not yet been reported.

Bruegge and Hibbard applied path expressions [Habermann 1975|, originally used to specify
constraints on parallel computation, to the specification of event sequences [Bruegge & Hibbard
1983]. Actions may be performed when a particular event sequence is recognized. A prototype was
implemented on the Accent operating system. Path expressions were also the basis for the'expres-

sions used in the when and valid clauses in TQuel, so the languages are similar in expressive power.

While a moderate amount of research has concerned monitoring distributed systems (e.g.,

[Miller 1985, Model 1978, Nutt 1979]), no one until now has dealt with the issues of sensor

31

specification, filtering, or tailoring the display of derived relations. We argued in Section 9 that sen-
sor specification in a complex system was a difficult talk to perform manually. Most systems support
a fixed collection of predefined sensors, which makes sensor specification trivial, yet tremendously
limits the data that can be collected. We also argued that powerful fiitering techniques were abso-
lutely vital in limiting the number of generated data packets. Most systems permanently enable all
sensors, or force each sensor to be enabled manually. We disagree strongly with LeBlanc and Rob-
bins, who assert that every event must be stored for later analysis for debugging distributed pro-
grams [LeBlanc and Robbins 1985|. This requirement is unncecessary restrictive when many (say,

hundreds) of sensors are present, and is usually impossible to satisfy in terms of computing and

storage resources in a complex system.

12. Future Work

While the anticipated benefits of a relational approach to monitoring have been demonstrated,
there are several areas where further work is needed. On the theoretical side, we are developing a

formalization of the incremental temporal algebra discussed in Section 8.1. Such a formalization will

be used to
¢ ensure that the operators are well defined;

o prove that the mapping from TQuel to the relational algebra is correct, using TQuel's tuple cal-

culug semantics [Snodgrass 1985[;
prove that the optimizations do not alter the semantics of the expression they are transforming;

e and perhaps suggest further optimizations.

Another area to be investigated is distribating the analysis. In monitoring a distributed sys-
tem, the analysis generally oeccurs at a central node, with the data packets sent to this node from
buflers in the processors where the sensors were located that generated the packets. However, much
of the analysis should occur locally, with only that analysis requiring more global information being
’performed remotely, One possibility involves the concept from distributed databases of horizontal
fragmentation, where a relation is broken into two or more subsets of tuples, the union of which is
the original relation [Ceri & Pelagatti 1984]. In distributed databases, each subset may be stored on-

a separate node. In the monitoring domain, each primitive relation can be fragmented on the

attribute that specifies where the data packet is generated. The algebraic equivalents of queries on
such relations may be duplicated for execution locally on each processor, with the resulting tuples
sent to the central node, thereby reducing the load on the network. Optimizations that are not
applicable at the central node may still apply to the expression when executed separately on the

nodes producing the fragments. Exactly how and when this should be done is under study.

One problem with the relational approach is that the queries must be specified before the data
is collected or processed. Because this constraint is placed on the ordering of the steps, the relevant
sensors can be enabled automatically. Ideally, there should be some way for the user to indicate with
arbitrary precision the data to be collected. In this way, the monitor tould support activity at any
point along the spectrum between traditional monitoring at one end of the spectrum, where the data
is first collected and then analyzed, and relational monitoring at the other end, where the query is

specified before any data is collected,

A second problem is the danger that an innocuous query will require an enormous amount of
computation. Because the non-procedural nature of TQuel shelters the user from the complex pro-
cessing resulting from the query, the user has less intuition concerning the cost of queries. Tools

need to be developed that indicate the expense of evaluating queries.

Finally, there are implementation issues that should be studied. The goals of the prototype
implementation were to demonstrate the feasibility of the relational approach and to identify poten-
tial problems requiring further investigation. It was successful in both aspects. However, the proto-
type lacked optimization and graphic display components and was baroque and inefficient. We are
working on a second implementation that will include these components. While the prototype
demonstrated the feasibility of the relational approach, we hope to show with the second implemen-

tation that a robust, reliable, efficient monitor based on this approach can be constructed.

13. Acknowledgements

I wish to thank William Wulf, Anita Jones, Joseph Newcomer, and Zary Segall for valuable
comments and suggestions on all aspects of this research, and M. Satyanaranan and K. Schwan for
detailed comments on this paper. In the prototype implementation, Peter Highnam helped with the
design of the EtherNet and implemented Medic, and Ivor Durham implemented the first version of

the StarMon sensors. The research performed at Carnegie-Mellon University was sponsored in part
by the Defense Advanced Projects Agency (DOD), ARPA Order 3597, monitored by the Air Force
Avionics Laboratory under Contract F33615-78-C-1551, the Ballistic Missile Defense Advanced
Technological Center under Contract DASGS0-81-0077, and through a National Science Foundation
graduate fellowship. The research performed at the University of North Carolina at Chapel Hill was
supported by the National Science Founrdation under Grant No. DCR-8402330, and by an IBM

Faculty Development Award.

14. Bibliography

[Agajaman 1975] Agajaman, A.H. A Bibliography on System Performance Evaluation. Computer, 8,
No. 11, Nov. 1975, pp. 63-74.

[Bates & Wileden 1983| Bates, P. and J.C. Wileden. An Approach to High-Level Debugging of Distri-
buted Syetems. In Proceedings of the ACM Sigsoft/Sigplan Software Engineering Sympo-
sium on High-Level Debugging, Ed. M.S. Johnson. Association for Computing Machinery.
Pacific Grove, CA: acm, Aug. 1983 pp. 107-111.

[Birrell & Nelson 1983| Birrell, A.D. and B.J. Nelson. /mplementing Remote Procedure Calls. In
Proceedings of the ACM Symposium on Operaling System Principles, Association for Com-
puting Machinery. Bretton Woods, NH: sem, Cet. 1983 pp. 3.

[Bowie & Linders 1978| Bowie, W.S. and J.G. Linders. A Software Trace Facility for OS{MVT.
Software--Practice and Ezperience, 8 (1978) pp. 535-545.

[Bruegge & Hibbard 1983] Bruegge, B. and P. Hibbard. Generalized Path Ezpressions: A High Level
Debugging Mechanism. In Proceedings of the ACM Sigsoft/Sigplan Software Engineering
Symposium on High-Level Debugging, Ed. M.S. Johnson. Association for Computing
Machinery. Pacific Grove, CA: acm, Aug. 1983 pp. 34-44,

[Ceri & Crespi-Reghizzi 1983] Ceri, S. and S. Crespi-Reghizzi. Relationsl Data Bases In The Design
of Program Consiruction Systems. ACM Sigeoft Software Engineering Noles, 8, No. 3, July
1983, pp. 17-29.

[Ceri & Pelagatti 1984] Ceri, S. and G. Pelagatti. Distributed Databases Principles & Systems. NY:
MeGraw-Hill, 1984.

[Chen 1976] Chen, P. P-S. The Entiiy-Relationship Model -- Toward o Unified View of Dats. ACM
Transactions on Database Systems, 1, No. 1, Mar. 1976, pp. 9-36.

[Codd 1970} Codd, EF. A Relational Model of Data for Large Shared Dats Bank. Communications of
the Association of Computing Mackinery, 13, No. 6, June 1970, pp. 377-3%7.

[Cooperman et al. 1972} Cooperman, J.A., HW. Lynch and W.H. Tetzlafl. SPG: An Effective Use of
Performance and Usage Data. Computer, 5, No. b, septfoct 1972, pp. 20-23.

[DEC 1983 DEC Observer: Software Product Description. 1983. (Unpublished paper.)
[DiMaio et al 1985] DiMaio, A., S. Ceri and C. Reghizzi. Ezecution Monitoring and Debugging Tool
Jor Ada Using Relational Algebra. In Proceedings of the Ada International Conference on

Ada in Use, Ed. J.G.P. Barnes and G.A. Fisher, Jr. ACM. Paris;: Cambridge University
Press, May 1985 pp. 109-123,

a4

{Fuller et al. 1978| Fuller, S., J. Qusterhout, L. Raskin, 8. Rubinfeld, P. Sindhu and R. Swan. Muiti-
microprocessors; An overview end working ezample. Proceedinge of the IEEE, 66, No. 2,
Feb. 1978, pp. 216-28.

[Garcia-Molina et al. 1984] Garcia-Molina, H, Jr., F Germano and W.H. Kohler. Debugging a Distri-
buted Compufing System. IEEE Transactions on Software Engineering, SE-10, No. 2, Mar.
1984, pp. 210-219.

|Gehringer & Chansler 1982| Gehringer, EF. and R.J,, Jr. Chansler. StarOS User and System Struc-
ture Manual. Technical Report. Computer Science Department, Carnegie-Mellon University.
July 1982,

[Gomez & Snodgrass 1986] Gomez, S. and R. Snodgrass. A Formal Semantica for Aggregates in
TQuel. 1986. (in preparation.}

[Graham et al. 1982} Graham, S. L., P. B. Kessler and M. K. McKusick. gprof: a Call Graph Ezecu-
tion Profiler. In Proceedings of the SIGPlan °82 Symposium on Compiler Construction,
ACM. Boston, MA: June 1982 pp. 120-1286.

{Habermann 1975] Habermann, AN. Path Ezpressions. Technical Report. Computer Science
Department, Carnegie-Mellon University. June 1975.

[Harter et al. 1985] Harter, Jr. P.K., D.M. Heimbigner and R. King. /dd: An Intersctive Distributed
Debugger. In Proceedings of the Fifth International Conference on Distributed Computing

Systems, May 1985 pp. 1-9,

[Held et al. 1975] Held, G.D., M. Stonebraker and E. Wong. INGRES--A relstional data base
management system. Proceedings of the 1975 National Computer Conference, 44 (1975) pp.
409-416.

[Hoare 1974| Hoare, C.A.R. Monitors: An Operating System Siructuring Concept. Communications
of the Association of Computing Machinery, 17, No. 10, Oct. 1674, pp. 549-557.

[Houghton 1982] Houghton, Jr. R.C. Software Development Tools. Technical Report 500-88. U.S.
Department of Commerce, Mar, 1982.

[IBM 1884} IBM VM/370 Real Time Monitor, Program Description/Operations Manual. IBM Cor-
poration, Cary, NC, 1984, :

|Jones et al. 1978 Jones, AK., R.J,, Jr. Chansler, L. Durham, P, Feiler, D, Scelza, K. Schwans and
S.R. Vegdahl. Programming issues raised by a multiprocessor. Proceedings of the IEEE, 66,
No. 2, Feb. 1978, pp. 229-37.

[Jones et al. 1979] Jones, A K., R.J, Jr. Chansler, I. Durham, K. Schwans and S.R. Vegdahl. Star0S,
8 Multiprocess Operating System for the eupport of Task Forces. In Proceedings of the
ACM Symposium on Operating System Principles, Sep, 1979 pp. 117-127.

[Lamport 1978] Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the Association of Computing Machkinery, 21, No. 7, July 1978, pp. 558
o65.

[Lamport 1980] Lamport, L. “Sometime™ is Sometimes ‘‘Not Never': On the Temporal Logic of
Programs, Conference Record of the Tih Annusl ACM Symposium en the Principles of

35

Programming Languages, , Jan. 1980, pp. 174-185.

[LeBlanc and Robbins 1985] LeBlanc, R.J. and A.D. Robbins. Event-Driven Monitoring of Distributed
Programs. In Proceedinge of the International Conference on Distributed Computing, TEEE.

Austin, TX: 1985 pp. 515-521.

iLeDoux & Parker 1985] LeDoux, C.H. and Jr. D.S. Parker. Ssving Traces for ADA Debugging.
S1GAda International Ada Conference, (1985) pp. 1-12. _

[Malone 1983| Malone, J. R. Implementation of 8 Retrospective Tracing Facility. Software--Practice
and Ezperience, 13 (1983) pp. 781-796.

[McDaniel 1982] McDaniel, G. The Mesa Spy: An Interactive Tool for Performance Debugging. In
Performance Evaluation Rewview, Association for Computing Machinery. Seattle, WA: acm,
aug-sep 1982 pp. 68-76.

[Metcalfe & Boggs 1975] Metcalfe, R.M. and D.R. Boggs. Ethernet: Distributed Packet Switching for
Local Computer Networks. Technical Report CSL-75-7. Xerox Palo Alto Research Center.

Nov, 1975.
[Miller 1985] Miller, B.P. . PhD. Diss. ucbesd, Aug. 1985.

[Model 1978] Model, M. Monitoring System Behavior in & Complez Computsiional Environment.
PhD. Diss. Stanford University, Jan. 1978.

[Nutt 1979] Nutt, G. J. A Survey of Remole Monitors. Technical Report 500-42. National Bureau of
Standards. Jan. 1979.

[Ogle, et al. 1985 Ogle, D., K. Schwan and R. Snodgrass. The Real-Time Collection and Analysis of
Dynamic Information in a Distributed System. Technical Report OSU-CISRC-TR-85-12.
Computer and Information Science Research Center, The Ohio State University. Sep. 1985.

[Ousterhout et al. 1980] Ousterhout, JXK., D.A. Scelza and P.S. Sindhu. Medusa: an ezperiment in
distributed operating system struclure, Communications of the Associstion of Compuling
Machinery, 23, No. 2, Feb. 1980, pp. 92-105.

[Perlis, et al. 1981] Perlis, A., F. Seyward and M. Shaw, Software Metrics. Cambridge, MA: MIT
Press, 1981.

[Rashid & Robertson 1982 Rashid, R.F. and G.G. Robertson. Accent: A communication oriented
nefwork operating system kernel. In Proceedings of the ACM Symposium on Operating Sys-
tem Principles, ACM. 1982 pp. 64-75,

[Ripley 1977) Ripley, G.D. Program Perspectives: A Relational Representation of Measurement Data.
ieeetse, SE-3, No. 4, July 1977, pp. 206-300.

[Schwartz et al. 1983] Schwartz, R.L., P.M. Melliar-Smitk and F.H. Vogt. An Interval Logic for
Higher-Level Temporal Reasoning. In Proceedings of the Second Annual Symposium on
Principles of digtributed Compufing, Montreal, Quebec: Aug. 1983 pp. 173-186.

[Shannon 1986] Shannon, K.P. The Display of Temporal Information. Computer Science Department,
University of North Carclina at Chapel Hill, 1986. In preparation..

[Shoch 1979] Shoch, J. EFTP: A Pup-based Ether file transfer protocol. 1979. (Unpublished
specification.)

[Smith 1975] Smith, D.C. Pygmalion: A Creative Programming Environment. Technical Report
STAN-CS5.75-499. Stanford Computer Science Department. June 1975,

[Snodgrass 1982] Snodgrass, R. Monitoring Distributed Systems: A Relational Approach. PhD. Diss.
Computer Science Department, Carnegie-Mellon University, Dec. 1982,

[Snodgrass 1985] Snodgrass, R. A Temporal Query Language. Technical Report TR85-013. Com-
puter Science Department, University of North Carolina at Chapel Hill. May 1985,

[Snodgrass 1986 Snodgrass, R. Monitoring Data Collection. 1988. (In preparation.)

[Snodgrass & Ahn 1986] Snodgrass, R. and I. Ahn. Temporal Databases. Computer (to appear),
(1986).

[Swan et al. 1977] Swan, R.J,, A. Bechtolshem, K.W. Lai and JK. Ousterhout. The implementation
of the Cm* multi-microprocessor. In Proceedings of the National Computer Conference,
AFIPS, 1977 pp. 645-55.

[Tetzlaff 1979] Tetzlafl, W.H. State Sampling of Interactive VM/ 870 Users. IBM Systems Journal, 18,
No. 1 (1979} pp. 164-180.

[Tolopka 1981| Tolopka, S. An Event Trace Monitor For The Vaz 11/780. In Proceedings of the
1981 ACM Conference, Association for Computing Machinery. acm, 1981 pp. 121-128,

[Ullman 1982] Ullman, J.D. Principles of Databose Systems, Second Edition. Potomac, Maryldnd:
Computer Science Press, 1982,

[Wulf et al. 1975 Wulf, W.A., R. Levin and C. Pierson. Overview of the Hydra Operating System. In
Proceedings of the ACM Symposium on Operating System Principles, ACM. Nov. 1975,

a7

