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Abstract 

TR 85-035 

Monitoring is an essential part of many program development tools, and plays a central 
role in debugging, optimization, status reporting, and reconfiguration. Traditional moni­
toring techniques are inadequate when monitoring complex systems such as multiproces­
sors or distributed systems. A new approach is described in which historical databases 
form the conceptual basis for the information processed by the monitor. This approach 
permits advances in specifying the low level data collection, epecifying the analysis of 
the collected data, performing the analysis, and displaying the results. A prototype im· 
plementation demonstrates the feasibility of the approach. 
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1. Introduetlon 

Monitoring is the extraction of dynamic information concerning a. computational process, as 

that process executes, This definition encompasses aspects of measurement, observation, and test-

ing.1 Monitoring is a fundamental component of many computing activities: 

o One use of monitoring is to facilitate the debugging of complex programs. Debugging proceeds 
in five stages [Model 1978[: (1) observe the behavior of a computer program; (2) compare this 
behavior with the desired behavior; (3) analyze the differences; (4) devise changes to the pro­
gram to make its behavior conform more closely to the desired behavior; and (5) alter the pro­
gram in accordance with these changes. Monitoring is concerned with the first and, to some 
extent, the second and third stages in this process. Monitoring is a first step in understanding a 
computational process, for it provides an indication of what happened, thus serving as a prere­
quisite to ascertaining why it happened. 

o A second use of monitoring tools is in making efficient use of limited computing resources. 
Ideally, optimization of resources would be done analytically, but in general a priori determina­
tion of runtime efficiency is impossible. Thus it is necessary to tune the application program 
once it is implemented. Tuning requires feedback on the program's efficiency, which is deter­
mined from measurements on the program while it is running. 

o A third use of monitoring is to query the system, not for performance measures, but merely for 
status information, such as how far a computation has progressed, who is logged on the system 
(the system status command of most time-sharing systems), the state of certain files (the 
catalogue or directory commands), or the nature of hardware and software failures. 

o And finally, monitoring information may also be used internally by the application program. 
For example, consider a program which varies the number of processes dedicated to a particu­
lar function based on the request rate for that function. Information concerning the hardware 
utilization and the number of outstanding requests could be used by the program to determine 
whether to start up more processes to handle the current demand (if the utilization is low and 
the request rate high) [Ogle, et al. 1985, Rashid & Robertson 1982, Wulf et al. 1975]. Monitor­
ing information is also valuable for programs which must be reliable; the fact that a processor 
(executing processes belonging to a program) has failed, for example, is important to the pro­
gram if it must be able to recover from such failures. 

Monitoring is thus an essential function. In one study of program development tools [Hough-

ton 1982[, a quarter of these tools were highly dependent upon monitoring, including those under the 

categories of tracing, tuning, timing, and resource allocation. Much has been written about monitor-

ing on uniprocessor systems (c.r., the bibliographies [Agajaman 1975, Perlis, et al. 1981]) and the 

general techniques of tracing and sampling are well established. 

1 There are at le&rt two other definitiou of fftOtu'tor tha.t should be mentioned: a !)'llonym for open.tin« system a.nd u. 
~orbiter of acceae to a data. Biructure ill order to ~uure specified innriu.U, usually relat.iq: to synchronintion !Hoare 1074J. 
Both definitiou empha.si1e the cottlrol, ra.ther than the o6urvctional upecta of mon.itoriq. Monitoring ia clo11ely &!llociated 
with, but strictly aepuate from, a.ct.ivities which cha.nge the course of the compab.tiou.l adivity. The term monitor u used in 
thia paper ia the (uBUally software) agent performinc the moDitorinc. 



The term complex system used in the title is intentionally vague. We use the term here to 

include large uniprocessors, tightly coupled multiprocessor systems, and loosely coupled local and 

long haul networks. Two distinctions relevant to monitoring are that complex systems often exhibit 

a lack or central control and that a quantitative difference between simple and complex systems in 

the number or system components (processors, processes, memory, addressing domains, etc.) leads to 

a qualitative difference in the sophistication required or the monitor. These two aspects conspire to 

make monitoring a complex system a difficult (and thus interesting) task. 

In this paper, we argue that an historic•/ d•t•b•ae, an extension or a conventional relational 

database, is an appropriate formalization or the information processed by the monitor or a complex 

system. This approach induces changes in the ordering of the steps performed during monitoring, as 

well as changes in the steps themselves. In Section 2 we examine the sequential process or traditional 

monitoring. The third section reviews efforts in the area or database management that address the 

central problem of monitoring, that or information processing. Sections 4 through 8 propose the new 

approach, exposing the many opportunities such an approach presents. In Section 9 we return to the 

traditional approach, comparing it with our approach. Section 10 briefly examines a prototype 

implementation, and the last two sections offer conclusions and directions for future work. 

:t. Traditional Monitoring 

The purpose of this section is to provide an overview of monitoring as presently practiced. A 

few definitions are useful. The subject system is the software system being monitored, usually the 

operating system or the user's program. A ten• or is a section or code within the subject system 

which transfers to the monitor information concerning an event or state within the system. If the 

sensor is traced, then a data packet is transferred to the monitor each time a particular event 

occurs. If the sensor is sampled, then a data packet is transferred each time the monitor requests 

the sensor to do so. This d•l• pocket may be as simple as a bit that is complemented when the 

event occurs, or as complex as a long record containing the contents or system queues. The removal 

or irrelevant data packets is termed filtering. 



Implicit in most discussions on monitoring is a eight step sequential process: 

Step 1: Sensor Configuration 
This step involves deciding what information the sensor will record and where the sensor will 
be located. 

Step IJ: Sensor Installation 
The sensors must be coded and placed in the correct location in the subject system. Provision 
must be made ror temporary and permanent storage or the collected data. 

Step 9: Enabling Sensors 
Some sensors are permanently enabled, storing monitoring data whenever executed, while oth­
ers may be individually or collectively enabled, usually by directives from the user. 

Step -/:Data Generation 
The subject program is executed, and the collected data stored on disk or magnetic tape. Gen­
erally the user has little control or the monitoring at this point. 

Step 5: Analysis Specification 
In most systems the user is given a menu or supported analyses; sometimes a simple command 
language is available. 

Step 6: Display Specification 
Either only one display format is available, or the user is given a. menu or formats, ranging 
from a list or data packets printed in a readable form to canned reports to simple graphics 
(graphs or histograms). 

Step 7: Data Analysis 
The data analysis invariably occurs in batch mode long arter the data. has been collected. 

Step 8: Information Display 
Usually this step occurs immediately after data analysis, although a few packages allow the 
analyzed data to be displayed at a later time. 

While most monitoring systems follow the sequence or phases just listed, in the precise order 

given (e.g., [Malone 1983, Tetzlaff 1979[), there is a variety or alternative orderings within each 

phase. Many systems do not differentiate between sensor configuration and sensor installation. In 

some systems, sensors are always enabled, so that the enabling sensors step occurs in the second step 

when the sensors are installed (e.g., [Bowie & Linders 1978, IBM 1984[). Some systems support only 

one display format, effectively combining the analysis and display specification steps (e.g., [Graham 

et al. 1982, McDaniel 1982, Tolopka. 19Sl[); other systems allow the display· to be specified arter the 

data has been analyzed( e.g., [Cooperman et al. 1972, DEC 1983[). 

When considering the monitoring or a complex system, the first strategy to be examined is to 

extend each step in obvious ways. Such an approach is problematic at every step, due to the logical 

and physical distribution or the monitor and the subject program(s). These difficulties are examined 
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in detail in Section Q, where the traditional approach is compared with our proposed approach. The 

next section will review related work in processing information, the basic function of a monitor, and 

will examine how results from this work may be applied to monitoring. Section 4 will then present a 

new approach to monitoring based on this analysis. 

3. The Relational Model 

In an abstract sense, the process of monitoring is concerned with retrieving information and 

presenting this information in a derived form to the user. Hence, the monitor is fundamentally an 

information processing agent, with the information describing time-varying relationships between 

entities involved in the computation. 

A great deal of research has considered effective ways to process information. One of the 

results of this research has been the relational model [Codd 1Q70J. The relational model provides 

both a structuring of the information and manipulations on that structure. A relation may be 

thought of as a table having a number of rows (called tuples) and columns (called attributes). New 

relations can be derived from existing ones using one of several data manipulation languages 

developed for the relational model; these querv language• are syntactically concise, yet are remark· 

ably powerful [Ullman82J. One important aspect of some query languages is that they are declara­

tive rather than procedural: they allow the user to specify what information is desired, rather than 

how this information is to be derived. 

The conceptual design of a database is aided by the entitv·relalionship model [Chen 1976[. In 

this model relations are classified as entit11 relations or relationship relations. Each tuple of an entity 

relation contains an entity identifier along with attributes describing that entity; an example is the 

entity relation Employee with attributes Name, Department, Salary, and YearsService. Each tuple 

of a relationship relation contains two or more entity identifiers along with attributes describing that 

relationship between the entities; an example is the relationship relation Manqea, with attributes 

Manager, Subordinate, and YearsUnderManager. 



Conventional databases a.re static, in that they represent the state or an enterprise at a single 

moment or time. Although their contents continue to change as new information is added, these 

changes are viewed as modifications to the state, with the old, out-of-date data. being deleted (rom 

the database. The current contents or the database may be viewed as a snapshot or the enterprise 

at a particular moment or time. 

For relational databases to be relevant to monitoring, there must be a means o( recording facts 

that are true only for a certain period or time. In the database area, attention has recently been 

focused on precisely this issue. Three types or databases have emerged that encode the notion of 

time: rollbock databases, which record the history or database activities, IJj,toricol databases, which 

record the history of the real world, and temporal databases, which incorporate both aspects 

[Snodgrass 1985, Snodgrass & Ahn 1986]. The historical database is the most appropriate model of 

the dynamic state of computation. Historical databases require more sophisticated query languages 

than static databases; TQuel (Temporal QUEry Language) is one that supports historical queries 

[Snodgrass 1985]. Examples of TQuel queries will be given in a later section, after a new approach to 

monitoring is presented. 

4. A Relational Approach to Monitoring 

The central thesis of this paper is that historical databases are an appropriate formalization of 

the information processed by the monitor. The primary benefits include a simple, consistent struc­

ture for the information, the use or powerful declarative query languages, and the availability or a 

catalogue of optimizations. In this approach, the user is presented with the conceptual view that the 

dynamic behavior or the monitored system is available as a collection or historical relations, each 

associated with a sensor in the subject system. In making historical queries on this conceptual data­

base, the user is in (act specifying in a nonprocedural fashion the sensors to be enabled, the analysis 

to be carried out, and even the graphical presentation or the derived data. 

Note that we are nol proposing to actually represent the data as relations in a. database. 

Instead, we will show that an historical database provides a convenient and powerful fiction that 
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guides the processing but does not constrain the representation. In fact, in most cases the relations 

will never actually collectively exist as data stored either in main memory or on secondary storage. 

Such an approach changes the ordering and the character of the traditional monitoring steps 

described earlier: 

Step 1: Sensor configur•tion 
This step is still performed by the user, except the result is a specification of the data to be 
collected and the placement of the sensors. Such sensors can be quite flexible; the user is only 
concerned with specifying the high level properties of the sensor. Conceptually, each sensor 
declared in this manner defines an historical relation available for later use in defining other, 
derived relations. The relations directly associated with sensors are termed primitive relations, 
as contrasted with derived rel•tiona, which are not associated directly with sensors. The 
specification of the primitive relations identify the information available to the monitor. 

Step £: Sensor inst•ll•tion 
This step occurs automatically: the sensor is produced by the monitor from the specifications. 
Relevant aspects of the sensor are communicated to the components of the monitor that need 
to know this information. The sensor code handles all the necessary interaction with the moni· 
tor, including enabling and buffering, and may be customized to the task it is to accomplish 
and the environment in which it is to execute. 

Step 9: Analysis specific•tion 
In this step, the user provides one or more historical queries, defined on the primitive relations 
specified above. 

Step 4: Displ•y specific•tion 
This step occurs concurrently with analysis specification. By associating entities and relation· 
ships with graphical icons (e.g., a square for a processor, a circle for a process, and spatial 
inclusion (circle within a box) for the relationship "running in"), sophisticated illustrations of 
dynamic behavior can be generated by the monitor. 

Step 5: Execution 
This step, comprised of enabling the sensors, generating the data, analyzing the data, and 
displaying the results, occurs automatically once the queries have been specified. The monitor 
first analyses the query to determine precisely the sensors that must be enabled to collect the 
requisite low level information needed to satisfy the query, thereby guaranteeing that extrane­
ous information is not collected. These sensors may be subsequently disabled, and other sensors 
enabled during the monitoring session based on the data that was collected. Data generation, 
considered alone, has perhaps the most in common with the traditional monitoring tools. In 
particular, all the techniques previously developed for data collection are applicable. Data 
analysis can occur either locally, on the same processing node as the sensor that collected the 
data, or at a centralized location, or at an intermediate location, depending on the precise 
query and the capacity of the communication mechanism. The monitor has sufficient informa­
tion through the sensor specification and the user's query to make the decision as to where the 
processing will occur. The monitor can also perform optimizations on the query, mapping it 
into a different query with an identical semantics but improved performance. Information 
display can also be made more efficient by capitalizing on the fact that only a small portion of 
the state changes during each transition and by utilizing incremental display algorithms. 

The steps for the proposed approach are illustrated in Figure 1, in which the traditional 

approach is compared with the new approach. The major ch!J.nge is that the sensors are enabled and 
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the data generated after the analysis specification step, allowing the sensors to be enabled automati­

cally based on information from the query. A second change is that some aspects of sensor installa­

tion are automated, as described elsewhere [Snodgrass 1986[. 

Figure 1: Steps or the New Approach to Monitoring 

Sensor Configuration (m) --------;• Sensor Configuration (m) 

Sensor Installation (m) Sensor Installation 

Enabling Sensors (m) 

Data Generation 

Analysis Specification (m) ---\--+-----<• Analysis Specification (m) 

Display Specification (m) Display Specification (m) 

Data Analysis Execution 

Information Display 

(m): This step is a manual one. 

As with the traditional approach, variations are possible. If dynamic sensor installation is sup­

ported (say, through the use or breakpoints), this step might be delayed until the execution step. By 

storing one or more relations in secondary storage, additional iterations or the analysis specification 

and execution steps (without the enabling and data generation portions) are possible. Finally, 

defaults supported by the monitor may delay some aspects of some or the steps, (e.g., display 

specification), until the execution step when they can be performed automatically. 

The next four sections discuss this new approach in more detail. Section 5 examines how sen­

sors may be configured by the user. Section 6 deals briefly with how this information is used by the 

monitor to install the sensors. Section 7 introduces TQuel in a tutorial fashion. The monitoring 

actions or generating the monitor data and performing the analysis are discussed in Section 8. 
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This paper will concentrate on the concepts and mechanisms directly affected by the relational 

approach. The low level data collection mechanism will only be outlined. A future paper will describe 

this mechanism in detail, focussing on bow filtering can be accomplished through an analysis of the 

user's query [Snodgrass 1986[. The graphical portions of the monitor, involved in the display 

specification and information display steps, will be dealt with in an even more cursory Cashion, and is 

discussed elsewhere [Shannon 1986[. 

6. The Sensor Configuration Step 

During sensor configuration, the user specifies the data to be collected and the placement of 

the sensors. Our approach is to provide a simple language Cor describing what information is to be 

collected by each sensor, and Cor indicating where the sensor is to reside. Once such a specification 

has been processed by the monitor, the code Cor the sensors will be available to be included in the 

subject program, the mechanisms will have been set up to get the data packets to the monitor, and 

the query processing component will know about the primitive relations associated with the sensors 

defined in the specification. In the implementation described in Section 10, a macro is generated 

automatically Cor each sensor; the user inserts an invocation or these macros at appropriate places in 

the code or the subject system. As with other aspects or the relational approach, complexity has 

been managed by requiring the user to provide a nonprocedural description or what is to be done, 

leaving the issue or how this task is to be done to the monitor, while ensuring that the monitor has 

sufficient information to make this determination. 

In the remainder or this section, we introduce an example subject system and discuss some 

sensors that might be defined in this system. Since the user is encouraged to think or sensors as 

defining historical primitive relations, we will employ the entity-relationship model to describe the 

sensors. As the syntax or the sensor description language is not critical, the sensors will be specified 

informally, rather than in that language. Although the entity-relationship model can also be used to 

describe the data collected by hardware monitors, we will ignore this possibility. Details on the sen­

sor description language and on the data collection mechanisms themselves appear in a separate 
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paper !Snodgrass 1986J. 

Throughout this paper, the following subject system (an operating system) will be assumed. 

There are three types of operating system entities known to the monitor: Processor, Process, and 

Mailbox. In this example, there are several processors, which execute the processes. At any point in 

time, a process may be executing on only one processor, though processes can execute on more than 

one processor over their lifetime. A process may send messages to a mailbox, where they will be 

queued until a process executes the receive operation on the mailbox. H a receive operation is exe­

CI!te.i on an empty mailbox, the process will block until a message is sent to that mailbox. Several 

processes may be blocked on a mailbox. Although this example is of necessity oversimplified in com­

parison with actual operating systems, it should be sufficient for the purposes of this paper. We will 

now attempt to capture the behavior or this system within the relational model. 

Entity relations must be made available for each entity type. The name of each is identical to 

the name or the type. The Proceuor entity relation contains one attribute, the processor identifier. 

This relation is always enabled; its associated sensor is placed in the configuration manager which 

handles the restarting of crashed processors. The Proceu entity relation contains two attributes, 

the process identifier and the state, one or Readu (i.e., the process is scheduled but not currently 

running), Running (the process is currently running on a processor), Blocked (the process is waiting 

on a mailbox), or Done (the process has halted or aborted)2• This relation is always enabled and is 

associated with a sensor in the process manager. Finally, the Mailbox entity relation contains one 

attribute, the mailbox identifier, and is always enabled. Its sensor is located in the process communi­

cation manager. 

Within the monitor, relations are differentiated temporally: there are went relations and inter· 

val relations. Entity relations are always interval relations, for they model entities while they exist in 

the subject system. Each interval relation contains two implicit attributes, the time the modeled 

2 The State attribute ia u enumeratioa, and hence i1 not. one of l.be entity types mentioned previously. 



interval began, and the time the modeled interval ended3• Figure 2 shows the three entity relations, 

with user names denoting the internal entity identifiers. Most of the entities were created when the 

system was brought up at 1:00:00 and destroyed when the system was halted at 4:00:00. Interval 

relations are associated with two sensors, one determining when the interval began and one deter-

mining when the interval ended. The first task of the data analysis portion of the monitor is to con-

struct intervals from the data packets generated from these sensors. 

3 The putitioniq into explicit ud implicit &ltribut.es wu done for lu.pare desip reaaou; tee !Snodgrua 1985] for more 
debit.. 
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Proeesaor (Proeeaaor ): 

Proeeu (Proeeu, State): 

Figure 2: Entity Relations 

Processor I (From) 

A 1:00:00 
B 1:00:00 

(To) 

4:00:00 
4 :00:00 

Process State ! (From) (To) 

Mailbox (Mallbox): 

P1 
P2 
P1 
P2 
P1 
P2 
P1 
P1 
P2 
P2 
P2 

Ready 
Ready 

Running 
Running 
Ready 

Waiting 
Running 

Done 
Ready 

Running 
Done 

1:00:00 
1:23:24 
2:00:00 
2:05:12 
2:15:37 
2:45:30 
2:45:30 
2:52:47 
2:54:20 
2:56:10 
2:57:05 

Mailbox (From) (To) 

2:00:00 
2:05:12 
2:15:37 
2:45:29 
2:45:30 
2:54:20 
2:52:47 
4:00:00 
2:56:10 
2:57:05 
4:00:00 

M1 1 :00 :00 4:00:00 
M2 1:00:00 4:00:00 
M3 1:00:00 4:00:00 
M4 1 :00:00 4:00:00 
M5 1 :00 :00 4:00:00 
M6 1:00:00 4 :00:00 
M7 1:00:00 4:00:00 

Relationship relations can be either event relations or interval relations. A tuple in an event 

relation describes a change in the state or the system which occurred at a particular instant or time. 

An example is the SendMeaaage event relation, which has two explicit attributes, a Process and a 

Mailbox, and one implicit attribute, the time the event occurred (see Figure 3). The tuple (P1, M3, 

2:00:05) in this relation represents the instantaneous event or "Process P1 sent & message to Mailbox 

M3 at time 2:00:05." The content or the message is not recorded in this rel&tion. 
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Figure 3: An Event Relation 

SendMeaage (Proc:.,.., Mailbox): 

Process MailBox (At) 

Pl M3 2:00:05 
Pl M4 2:00:06 
Pl M7 2:51:13 

There are four other relations defined for this system (see Figure 4). The RunnlngOn (Pro-

cess, Processor) interval relation describes which Process is running on which Processor. Since the 

system state is constantly changing, the relations evolve over time. For instance, the tuple {Pl, B) 

may be valid in the RunnlngOn relation for only a few milliseconds, and new tuples are added to 

the SendMessage relation as messages are sent. The Accuse. (Proc.,.., Mailbox) interval rela-

tion describes which mailboxes a process can send to or receive from, and is always enabled. The 

Waiting (Proc.,.., Mailbox) relation lists the processes blocked while waiting to receive from a 

mailbox. Finally, there is a Clock event relation which contains no explicit attributes. The Clock 

relation is treated specially by the monitor; it is generally used to specify sampling, as will be seen 

below. 



Figure 4• Remaining Primitive Relations 

RunnlngOn (Proceu, Proeeuor): 

Process Processor I (From) (To) 

PI A 2:00:00 2:I5:37 
P2 B 2:05:I2 2:45:30 
PI B 2:45:30 2:52:47 
P2 A 2:56:IO 2:57:05 

Aeeeuea (Proceu, MailBox): 

Process MailBox I (From) (To) 

PI M3 I:OO:OO 2:57:23 
PI M4 I:OO:OO 2:57:24 
PI M7 I:00:05 2:57:23 
P2 M7 I:23:24 2:40:29 

Waiting (Proceu, MailBox): 

Process MailBox I (From) (To) 

P2 M7 2:45:29 2:54:20 

Clock: 

(At) 

I:OO:OO 
I:OO:OI 
I:00:02 
I:00:03 

The primitive relations contain timestamps from a gloabl clock maintained across the entire 

system. Unfortunately, it is theoretically impossible to synchronize imprecise physical clocks over a 

geographically distributed network with nondeterministic transmission times[Lamport I978[. How-

ever, Lamport does give' an algorithm for maintaining a global clock with a bounded imprecision 

that maintains the invariant that messages are received at a global time that is later than the global 

time the message was sent. The partial ordering or local events necessary for debugging will be 

preserved and the (unknown) total ordering will embed this partial ordering. This time-keeping 
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algorithm can be embedded in the operating system itselr, with timestamps appended to every mes-

sage, or in the monitor, with timestamps included in messages sent by the monitor. Note that the 

monitor may be able to adequately maintain a global clock with rew additional messages. A second 

option is to simulate Lamport's algorithm in the remote monitor. This approach incurs a greater 

overhead than Lamport's algorithm itselr, due to the additional communication necessary. Another 

consideration is that ir the operating system provides a reliable communication mechanism, support-

ing recovery rrom lost messages or crashed processors, then a global dock is probably already com-

puted by this mechanism (e.g., !Birrell & Nelson 1983J; all reliable communication mechanisms 

known to the author use some kind or global clock.) In any ease, ira global clock is provided by the 

monitor, other components or the operating system may profit rrom its presence. Given these con-

siderations, we will assume that a global clock is implemented by a distributed algorithm, and is 

available to each processor. Ir such a clock is not reasible due to efficiency constraints, as in some 

real-time systems, then more sophisticated approaches, yet to be developed, are necessary. 

8. The Sensor Installation Step 

In the previous step, the user specified the sensors in a sensor description language. At the 

same time, the location or the sensor was indicated. The sensor specification is used by the monitor 

to 

• generate the code ror each sensor (in the implementation described in Section 10, the code is 
in the rorm or a C macro); 

• possibly allocate buffers, packet identifiers, counters, and bit vectors ror enabling the sensors; 

• create primitive relations to be rererenced in queries; and 

• record inrormation concerning the sensors ror later use. 

Compilation and linkage or the subject system also occurs in this step. This step is entirely 

automatic, and generates a rully instrumented subject system. The details or this process appear 

elsewhere !Snodgrass 1986J. 
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'1. The Analyolo Speclfleatlon Step 

The sensor configuration provides the information necessary to install the sensors; the histori­

cal queries on the primitive relations associated with these sensors provides the information neces­

sary to automate the remaining steps by specifying the content of derived relations. In this way, 

information not anticipated by the designer of the monitor may still be requested by the user, pro­

vided the basic information (i.e., the primitive relations) is available to the monitor. Historical 

queries arc expressed in the temporal query language TQuel [Snodgrass 1985[. TQuel is a general 

tempr,ral query language, augmenting the (static) relational tuple calculus query language Que! [Held 

et al. 1975j with additional constructs and providing a more comprehensive semantics by treating 

time as an integral part of the database. TQuel includes fifteen other statement types, supporting 

the creation and destruction of databases and relations, storage structure modification, bulk copy of 

data, and consistency, integrity, and concurrency control. As these statement types are not relevant 

to the subject of this paper, they will not be discussed further. Instead, we will briefly review the 

Que! retrieve statement, then present an extended example employing the TQuel retrieve statement. 

'1.1. The Que! Retrieve Statement 

The Que! retrieve statement selects a subset of the tuples in one or more relations, extracts 

one or more attributes from the tuples in this subset, and combines the attributes into result tuples. 

The retrieve statement works in conjunction with the range statement. Assume that the two rela­

tions mentioned earlier, Employee and Manageo, are available. The statement 

range of E ia Employee 

specifies that the tuple variable E will represent, for example, the tuples of Employee on any subse­

quent retrieve statements. 

The retrieve statement creates a new relation whose tuples satisfy a boolean expression. The 

expressions appearing in the retrieve statement contain constants and attributes from previously 

defined tuple variables. For example, the following query finds all employees making more than 
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Ken, who is their manager: 

range of E2 ia Employee 
range of M ia Manages 
retrieve into ToPromote (Name = E.Name) 

where E.Name = M.Subordinate and M.Manager = E2.Name 
and E.Salary > E2.Salary and E2.Name = "Ken" 

Ez•mple 1: Who should be promoted! 

This query results in a new relation, called ToPromote. The target list "(Name = E. Name)" 

specifies the attribute(s) or the new relation. The where clause specifies which tuples will contribute 

toward the new relation. The retrieve statement thus consists or a •llribute Bpecific•tian component 

(the target list) and a tuple Belectian component (the where clause). 

7.Z. Example TQuel Retrieve Statement& 

Since TQuel is a superset or Que!, all valid Que! statements are also valid TQuel statements. 

By utilizing only the target list and where clause in TQuel, many interesting questions may be asked. 

For instance, to select the processes which are currently Ready, use 

range of E ia Process 
retrieve into ReadyToRun (E.Process) 

where E.State =Ready 

Ez•mple e: Which processes are currently Ready! 

ReadyToRun has only one explicit attribute, a Pr~cess (see Figure 5). Since the underlying relation 

(Process) was an interval relation, ReadyToRun is also an interval relation. 

Flpre 6: A Derived Interval Relation 

ReadyToRun (Proceu): 

Process I (From) l_To) 
P1 1:00:00 2:00:00 
P2 1:23:24 2:05:12 
P1 2:15:37 2:45:30 
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Intervals can be derived from other intervals. The WaltlngOn relation identifies those 

processes which can unblock the currently blocked processes by sending messages: 

range of W i• Waiting 
range of A i• Accesses 
retrieve WaitingOn (Blocked = W.Process, CanUnBlock = A.Process) 

where W.Mailbox = A.Mailbox and E.Process = W.Process and E.State = Blocked 

Ezample 9: Which processes can unblock the blocked processes! 

This characterization or "CanUnB!ock" is conservative since it includes processes which may in fact 

not be able to unblock another process (if, for instance, they never send messages to the relevant 

mailbox). 

Given WaltlngOn, the relation WaltlngOnProeeuor, specifying the processors running the 

processes which have the capacity to unblock the currently blocked processes, may be defined: 

range of RO i• RunningOn 
range of wo i• WaitingOn 
retrieve WaitingOnProcessor (WO.Blocked, CanUnBlockProcessor = RO.Processor) 

where WO.CanUnBlock = RO.Process 

Ezample 4: Which processors may potentially unblock processes! 

This information is or more than academic interest, since it identifies those processes which may be 

permanently blocked if a particular processor crashed. 

So far, all the example queries were syntactically correct Que! statements, although the seman-

tics is more involved, since the database contains the implicit time attribute. TQuel also includes 

two additional clauses in the retrieve statement: the valid clause and the when clause. The valid 

clause is similar semantically to the target list. The when clause is similar to the where clause. 

Recall that the target list specifies the attributes to appear in the derived relation. In TQuel, 

the target list specifies the ezplicit attributes, and the implicit attributes (those containing time 

values) is specified by an additional clause. The query 
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range of S i~ SendMessage 
retrie~a Res~dbyPl (W.Process) 

valid at end of w 
where S.Mailbox = W.Mailbox and S.Process = Pl 
when s overlap w 

Eromple 5: Which processes were resumed by process Pl! 

determines those processes which were initially blocked on a mailbox, then resumed as a side effect 

of a message being sent by Pl to the mailbox. Since the valid-at clause was -used, the resulting r.ela-

tion is an event relation (see Figure 6). 

Figure II: A Derived Event Relation 

Reoumedb:yPl (Proeeu): 

Process (At) 
P2 2:54:20 

The valid-at clause can also be used to indicate sampling. The user can request that the Run-

nlngOn relation be sampled every ten seconds through the query 

range of C is Clock[lO] 
retrieve RunningOnEverylOSeconds (RO.all) 

valid at C 

Ezample 6: Sample the RunnlngOn relation. 

The valid-at clause indicates that the user is interested in the tuples of RunnlngOn only at clock 

ticks (occurring, in this case, every second). 

If the query is defining a derived interval relation, the valid-from-to clause specifies the delim-

iting instants of the time interval. This clause also takes a variant of path expressions as an argu-

ment. To determine the lateneu of resumption, that is, the interva.l between a message being sent 

and the recipient being unblocked, 
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retrieve Resumptionr ... ;.,,..cy (W.Process) 
valid fr011 S t.•' '""" of W 
where S.Mailbox ~ W.Mailbox 

E::amp/e 7: When was the Process waiting unnecessarily! 

Each tuple in ReaumptlonLatene;y starts when the message is sent and stops when the process 

stops waiting {see Figure 7). 

Figure 71 Another Derived Relation 

ReaumptlonLatene;y (Proeeu): 

Process (From) {To) 
P2 2:51:13 2:54:20 

Aggregate functionB are found in Que!; they have been extended somewhat in TQuel [Gomez & 

Snodgrass 1986J. These functions refer to groups or tuples rather than individual tuples. For 

instance, the relation 

retrieve MBoxQLength (W.MBox, Length= Count(W.Process by W.MBox)) 

Example 8: How long is the queue of waiting processes ror each mailbox! 

will compute the current length or the queue {of waiting processes) of each mailbox. The contents or 

this relation change over time, as do all the others. The 'by' clause partitions the tuples according 

to the MBox attribute; the Count aggregate function is then applied to each partition. The aggre-

gate runctions in Que! (and thus TQuel) are min, max, avg, sum, and count. The total run-

ning time, ready time, and blocked time ror a process and the the percentage or time a process was 

Running versus the time it was Ready or Blocked can also be calculated by using aggregate rune-

tions. 

In converting Que! to TQuel, the syntax was changed as little as possible. The attribute 

specification component now includes the valid clause, and the tuple selection component now 

includes the when clause. A few additional aggregate operators complete the syntactic changes to 



the language. The TQuel semantics is an extension or the Que! semantics; both are based on the 

tuple calculus [Snodgrass 1985[. 

The graphical attributes or the primitive relations may be specified when the sensors are 

configured or when the queries are specified. Graphica.l aspects a.re associa.ted with both entity and 

relationship relations. There is flexibility in both the iconic representations and the graphic attri­

butes. For example, the shape, color, intensity, size, and position can each be fixed or can be tied to 

the value of an attribute. Details of the display specification and generation steps are beyond the 

scope or this paper. 

8. The Exeeutlon Step 

The expressive power of TQuel has a cost: the monitor must be able to determine which sen­

sors to enable, what calculations to perform, and how to display the results, all from the TQuel 

query. Fortunately, there has been much work on processing relational query languages, and the 

results of these efforts can be applied in this setting as well. This section will address generating the 

data and analyzing the data. The relational model also facilitates filtering the data. packets and 

displaying the derived relations; those aspects are beyond the scope of this paper. To provide the 

context for this discussion, we first review how a conventional database management system (DBMS) 

processes queries. 

8.1. The Relational Algebra 

Tuple calculus queries, such as those formulated in Que!, express what derived information is 

desired, letting the DBMS determine how the information is to be derived. Relational algebra 

expressions serve the latter purpose. The DBMS converts each tuple calculus query into an alge­

braic expression. Ail this expression is often quite inefficient, optimizations a.re applied that convert 

the initial expression into a semantically equivalent one tha.t is more efficient. 

In this paper, we will use only a. few common relational operations [Ullman 1982[: 
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Selection 
Ir F is a rorruula involving constants, attribute names, arithmetic comparison operators and 
logical operators, then u F(R) is the set or tuples t in R such that, when the appropriate com­
ponents or t are substituted for the occurrences or the attribute names in F, then the formula 
F becomes true. For example, 

u E. Dept="Toy"(EmployeeE) 

denotes the set or tuples in Employee who work in the Toy department. The subscript on 
Employee indicates that the tuple variable E bas been associated with the relation through a 
range statement. 

Projection . 
Ir R is a relation with k attributes, we let 1r0 4 ... 4 (R), where di is a attribute name, 

1 • ~ 

denote the ~gt or m-tuples 11 1 11 2 • • • qllo such that there is some k-tuple 6162 • • • 6t in R for 
which the i component in 11 is the d. component in 6. For example, • 

1TE.Name,E .Salary (Employee!:) 

denotes a relation with two attributes, E.Name and E.Salary. 

Cartesian product 
Let R and S be relations with k

1 
and k

2 
attributes, respectively, then RXS, the cartesian 

product orR and S, is the set or tuples with k
1 
+ k

2 
attributes whose first k

1 
components 

form a tuple in R and whose last k
2 

components form a tuple in S. For example, 

Employee!: X ToPromoteT 

denotes a relation with five attributes, E.Name, E.Dept, E.Salary, E.Manager, and 
E.YearsService from the Employee relation and T.Name from the ToPromote relation. The 
non-uniqueness of attribute names is inconvenient; we make the names unique by subscripting 
the tuple variable to each relation name. 

To convert a Que! query into a relational algebra expression, first take the cartesian product or 

the underlying relations (each associated with a tuple variable used in the query), apply a. selection 

with the formula from the where clause, and then apply a projection, with the attributes from the 

target list. For example, the query given in Example 1 or Section 7.1 retrieving the ToPromote 

relation has the following algebraic equivalent 

(El) 1TE.Name(uE .Name--M. Subord1nata(17H .Hanaqar=l!l.Name(O'E .Salary>El. Salary( 

O'El.Nama="Kan"(EmployeeE X EmployeeEl X ManagesH))))) 

The algebra may be extended to handle TQuel's valid and when clauses, involving the exten-

sion or the projection and selection operators, respectively. The projection and selection operators 



remain, but only involve the explicit, non-temporal domains. The valid clause is handled by a tern-

poral variant of the projection operator, denoted by a superscript ofT. This operator will project 

out those intervals designated by expressions in the valid clause. The when clause is handled by a 

temporal variant of the selection operator, also denoted by a superscript ofT. The subscript for this 

operator consists of the temporal predicate specified in the when clause. All an example, the query 

for ReaumedbyPl, given in Example 5 of Section 7.2, has the corresponding temporal relational 

algebra expression, 

(E2} 
T T 

~W.Process(~at end o! W(as overlap W(uS.Ma1lbox=W.Ma1lbox(uS.Process=Pl( 

WaitinSw X SendMessage
5

))))) 

A more substantial modification is to make the operators incremental, so that they operate on 

streams of tuples, one at a time, possibly generating one or more output tuples whenever an input 

tuple arrives. The selection and projection operators (both conventional and temporal) are straight-

forward to extend to operating on streams rather than sets. Each such operator would generate at 

most one output tuple for each input tuple, and no tuples would have to be stored, assuming that 

the projection operator does not perform duplicate elimination. The cartesian operator is more com-

plex, for two reasons: it is a binary operator and it requires internal storage. It stores the tuples 

arriving from the left, and concatenates all of these tuples to tuples arriving from the right, thereby 

generating multiple output tuples for each input tuple. The brute force cartesian operator requires 

storage for all the input tuples; more space efficient variants also exist. 

Once the relational algebra expressions for the TQuel queries have been generated, they can be 

used to enable sensors and analyze the incoming data. 

8.Z. Algebraic Optimisation Tr&natormatlona 

The term "optimization" is a misnomer; a. more accurate term is "improvement", for an 

optimal solution almost never results. However, we will continue to use this term, with the under-

stood proviso. 



One benefit or using the relational model with monitoring is that traditional optimization tech-

niques may be utilized directly. One example is the transrormation 

which applies ir the predicate F only involves attributes rrom R
2
• This transrormation can dramati-

cally reduce the number or tuples generated by the cartesian product, since uninteresting tuples are 

discarded before rather than ofter the cartesian product. This transrormation may be applied twice 

to Expression (El} given in the previous section to obtain 

1r (u (u (u (Employee E.Name E.Nama=M.Subordinate M.Managar=El.Nama E.Salary>El.Salary E 

This optimization can also be applied to the Expression (E£}, with the substitutions 

• S .Process=Pl ror F. 

• Waiting ror R
1

• 

• SendMessage ror R2• 

resulting in 

(E9) 
T T 

~W.Process(~at end of W(us overlap W{aS.mailbox=W.mailbox( 

WaitinSw X O'S.Proceas=Pl(SendMessage8 ))))) 

A collection or such transrormations has been developed ror the conventional relational algebra 

[Smith 1975]. 

A second class or transrormations involves the primitive relations. These transrormations 

improve the algebraic expression by enabling rewer sensors, or by replacing sampling with tracing, or 

by sampling less rrequently. Approximately ten transrormations, each with several variants, have 

been developed thus rar. These transrormations are discussed in detail elsewhere [Snodgrass 1986]. 

Finally, a third class or transrormations select a more efficient variant or an operation based on 

the temporal ordering or the input tuples to the operator and the desired temporal ordering or the 
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output. For example, tht cartesian product operator in its most general form must store internally 

all incoming tuples from the left, so that they can be later concatenated with incoming tuples from 

the right. If the tuples on both sides were in temporal order, and their overlap was desired, a much 

more efficient cartesian product may be used: 

u 1 t (El X E2) - Ei XI E2 t 1 over ap 2 

where X
1 

denotes the particular variant of the cartesian product. This operator would only store 

those tuples from the left that could possibly overlap with those from the right, discarding the rest 

from internal storage. This transformation may be applied to Expression (E9} resulting in 

{E-1) 
T 

~W.Process(~at end of W(uS.ma1lboX:W.ma1lbox( 

The transformations from the three classes are repeatedly applied (in order) to the algebraic 

expression until no more are applicable. 

8.3. Data Generation 

The final result of the optimization phase is an algebraic expression for each query specified by 

T T 
the user. This expression may contain one or more of the following operators: 71", u, 7r , u , and X. 

Recall from Section 8.1 that these operators are incremental, in that they take streams or input 

tuples and possibly generate one or more output tuples whenever an input tuple arrives. The expres-

sian is started by having the primitive relations (e.g., Waiting in Expression (E-1)) generate initial 

tuple streams. The initial tuples flow into the specified operators. 

8.4. Data Analyala 

Data generation and analysis proceed in parallel. Mter the algebraic expression is primed with 

tuple streams from the constants and primitive relation•, the tuples 8ow through the expression in 

an incremental fashion. One profitable way to view the process is to visua.lize the pa.rse tree or the 

expression, with tuples flowing up the arcs. The tuples flowing out of the expression comprise the 



historical relation that was specified in the original TQuel query. Performing this analysis in realtime 

allows the low level data to be discarded after participating in the analysis, with only the derived 

information stored if desired. 

11. Comparison with the Traditional Approaeh 

This paper has argued that monitoring complex systems is fundamentally an information pro-

cessing activity, and that the relational model provides an effective formalization or this information. 

In this section, we summarize the steps in the relational approach, then discuss how the new 

approach addresses problems with applying each step or the traditional approach to monitoring to a 

complex system. 

Step 1: Sensor configuration 
Sensors are described in a sensor description language as a collection or primitive event and 
interval relations. The user also specifies the location or these sensors within the code or the 
subject system. This description forms the conceptual view that the dynamic behavior or the 
subject system is available as the collection or historical relations. 

Step e: Sensor installation 
The code for the sensors is generated by the monitor. This step is entirely automatic, resulting 
in a fully instrumented subject system. 

Step 9: Analysis specification 
TQuel queries are made on this fictional database. 

Step 4: Display specification 
At the same time, the user specifies the graphical representation or the derived relations. 

Step 5: Execution 
The queries are first converted into relational algebra expressions, which are optimized 
through the application or a series or transformations. Processing is started by enabling sensors 
associated with the primitive relations appearing in the expression. As tuples How through the 
expressions, other sensors are enabled, therebly creating other tuple streams. The tuples 
ftowing out or the expressions are displayed as directed by the user. 

This approach provides solutions to many or the problems encountered in the application or 

the traditional approach to monitoring in the presence or complexity. 

• Sensor Configuration 
One difficulty is communicating the configuration to the monitor, which is distributed along 
with the sensors. The format or the collected data potentially must be known by all com­
ponents that handle this data, including the analysis and display components. This issue 
involves the physical distribution or the monitor. A second difficulty involves the correctness or 
the sensor code. When monitoring information is used in debugging, the annoying task or 
debugging the debugger arises. The approach taken by most systems rails to resolve this prob­
lem; only a fixed number (11~20) or predefined sensors are usually provided, implying that 
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future users of the monitor will need only the information determined at the time the monitor 
was implemented. Such an approach unnecessarily limits the usability of the tool. 

In the proposed approach, the relevant aspeets of sensors are specified in a high level sensor 
description language. The translator for this language automatically handles the details of gen­
erating the code for each sensor and communicating needed information to the monitor, 
thereby greatly reducing the chance for error. 

• Sensor Installation 
The problem here lies in the possible physical distribution of the subject program. In a cen­
tralized system, each sensor will reside in an individual program. In a complex system, pro­
grams may be physically distributed. Hence the monitor must contend with not knowing until 
rather late where each sensor resides. 

In the new approach, the sensors are handled automatically by the monitor, freeing the user 
from being concerned with details of how the sensors are implemented or on which processor 
each is executing. 

• Enabling Sensors 
There are two difficulties involved here. One is specifying which sensors are to be enabled, a 
task made difficult by a late binding of program to machine and the sheer magnitude of the 
number of machines. Determining which processor a process is executing on, out of a large 
number of processors, can be a tedious and time consuming chore. The task is rendered even 
more difficult when there are a collection of sensors to be enabled, each on a different subset of 
processors. The second difficulty is in performing the operation of enabling a remote sensor, 
while still ensuring that protection between processes is not compromised. Both difficulties 
involve the physical and logical distribution of the subject program. The approach taken by 
most systems avoids these problems by permanently enabling all the sensors. In a complex sys­
tem with many sensors, this approach will quickly overwhelm the processing and communica­
tion resources with excess data packets, most of which are not used in the subsequent analyses. 

Our approach makes use of a collection of optimizations to determine precisely which sensors 
to enable. The monitor uses information from the sensor specification and the algebraic expres­
sion to automatically enable only relevant sensors. 

• Data Generation 
The primary difficulty is in collecting monitoring data from distributed sites. A related issue is 
the volume of data, and the artifact caused by the collection operation itself. Physical distri­
bution is the culprit here. 

The volume of data collected is reduced considerably through filtering. The appropriate sen­
sors are initially enabled, and can be disabled and other sensors enabled as a side effect of the 
analysis of previously generated data. Special techniques allow temporal ordering of data 
packets from multiple buffers. Because sensors are generated by the monitor, there is the 
opportunity for automatically compensating for the monitoring artifact. 

• Ana/usia Specification 
Any attempt to understand the behavior of a (logically) distributed program must focus on the 
interrelationship of events occurring in different processes. The diversity of interactions pre­
eludes the menu or simple command language approach favored by most monitoring systems. 
Instead, more powerful languages expressing complex patterns are required. 

In our approach, TQuel is used to specify the desired information. TQuel is a high level, non­
procedural language. Since TQuel is an extension of Que!, it is relational complete JCodd 
1Q70J. The when clause can be used to specify temporal relationships between events and inter­
vals occurring in the subject system. The valid clause can be used to specify when the derived 
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events or intervals are to be valid, as well as suggesting that sampling be done. Aggregate 
functions provide .. dditional expressive power. This language results in a powerful user inter­
face for querying the monitor concerning the behavior of the system. 

• Display Specification 
When the user is given any choice at all concerning the display of information, the options are 
generally limited to canned reports. 

In the relational approach, displays are specified by associating graphical attributes with enti­
ties and relationships, for both primitive and derived relations. 

• Data Analysis 
Monitoring complex systems involves sophisticated data analysis. The centralized, brute-force 
techniques used by most monitors become inadequate as the subject system becomes more 
complex. 

A collection of conventional and monitoring specific optimization transformations may be 
applied to the initial algebraic expression, often resulting in dramatic improvements in execu­
tion speed. There is the opportunity for analyzing the collected data in a distributed fashion 
(see Section 12). . 

While the above analysis demonstrates the many advantages of the relational approach over 

traditional monitoring techniques, two substantial issues remain: system complexity and perfor-

mance. 

10. Implementation 

In order to assess the practical benefits of the relational approach, we have completed one pro-

totype implementation and have made significant progress towards a second implementation. In this 

section, we will outline the structure or the prototype and discuss its performance. 

The system monitored by the prototype was Cm*, a tightly-coupled multiprocessor composed 

or 50 DEC LSI-ll's and a substantial amount of memory ]Fuller et al. Jg78, Swan et al. 1g11]. Two 

operating systems were available on Cm*, StarOS ]Gehringer & Chansler 1gs2, Jones et al. Jg78, 

Jones et al. 1g7gl and Medusa ]Ousterhout et al. Jgsoj. 

The monitor prototype consisted of two main components: a remote monitor, performing those 

functions requiring close interaction with the user, and a resident monitor, performing the functions 

requiring close interaction with the monitored system. This separation is necessary when monitoring 

a distributed system, where a resident monitor exists at each processor, sending collected data to the 

centralized remote monitor, which may or may not execute on one of the processors being 



monitored. Functionally, the resident monitor eollects the data. pa.ckets a.nd interacts with the 

operating system, and the remote monitor a.nalyzes and displays the monitoring data.. The prototype 

ignored the issue of displaying the results graphically, and so the display specification and informa­

tion display steps were omitted. 

The remote monitor ran on a Vax under Berkeley Unix and was itself composed of three 

modules. The TQuel compiler translated the query into an initial algebraic expression. The parse 

tree for this expression was termed an update network, referring to the tuples flowing across the 

arcs. The movement of tuples through this network was handled by the update networ/; interpreter. 

The remote accountant handled the Ethernet protocol, sending tuples to the interpreter and sending 

commands to the resident monitor. 

Two resident monitors were implemented, one on StarOS called StarMon, and one on Medusa 

called Medic. The remote monitor on the Vax communicated with the resident monitor on Cm* 

over an Ethernet [Metcalfe & Boggs 1975[, a high bandwidth {3 MBaud) network. 

A minimal monitor was implemented, with all aspects carried far enough to demonstrate feasi­

bility and to investigate efficiency aspects. More specifically, the update network, resident monitors, 

remote accountant, and TQuel parser and code generator were essentially complete. The TQuel 

semantic analysis phase was only partially implemented and the optimization phase was designed but 

never implemented. The graphical display aspect was not addressed at all in the prototype. 

Several of the components were instrumented to determine the overall performance of the 

monitor. The rest of this section will briefly discuss the performance of the sensors, the Ethernet 

protocol, and the update network interpreter. Details are given elsewhere [Snodgrass 1982[. 

The efficiency or the data collection mechanism is important, for it determines the monitoring 

granularity (the level or abstraction at which the monitoring takes place). The mechanism imple­

mented supported strong type checking, multiple type managers, and a. high degree or filtering. The 

sensors required 600-1400 microseconds, depending on the amount or data stored in the data packet. 

This execution time is equivalent to 85-200 store instructions, or 6 to 14 procedure calls. Hence, the 
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monitoring grain for this implementation of sensors is larger than a procedure call, but perhaps 

equal to a procedure that does something interesting, in turn calling other procedures. Given this 

sensor efficiency, with intelligent filtering reducing the monitoring overhead to 1%, the 50 processors 

would generate approximately SOO event records per second. 

The Ethernet protocol is a variant of the Ethernet File Transfer Protocol (EFTP) [Shoch 

1979[, simulating a transmission from the remote monitor (the host) to the resident monitor (the 

slave). The protocol uses checksums, timeouts, and packet retransmission for reliability. Using 

actual record and packet sizes and observing the transmission rate for the standard EFTP, a max­

imum transmission rate or 600 event records per second was calculated. 

The performance of the update network was measured using a small but relatively complex set 

of TQuel queries. The initial update network, before optimizations were performed, could process 

approximately 3 input tuples per second (assuming a dedicated Va.x 11/780). Two stages or optimi­

zation were performed manually to assess their effect. The first stage applied the transformations 

discussed in Section 8.2. This step resulted in a speedup of S, to 15 input tuples per second. The 

second stage involved substituting the interpreter and general operator algorithms with a Lisp func­

tion. Conceptually, the entire algebraic expression was converted into a specialized operator. The 

Lisp function was then compiled by the FranzLisp compiler into Va.x assembly language. The result­

ing code could process approximately 600 input tuples per second. The four transformations per­

formed in pursuit of reasonable efficiency (TQuel query -+ initial update network -+ optimized 

update network-+ Lisp-+ assembly language) resulted in an improvement of more than two orders 

or magnitude. 

The general result of these measurements is that, given the monitoring granularity supported 

by this implementation, the monitor can indeed contend with the number of event records generated 

by the 50 processors in Cm*. Hence, it is possible to implement a monitor supporting the high level 

conceptual viewpoint or a dynamic relational database on the system's behavior which can be mani­

pulated by a temporal, non-procedural query language, with sufficient efficiency to monitor a large, 
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complex, distributed system. 

11. Comparloon with Other Work 

The majority or work in monitoring bas concerned the development and application or tech­

niques within the context or the traditional approach. In Section g we compared the traditional 

approach with the relational approach. In this section we examine other research that also addressed 

inadequacies or the traditional approach. 

The basic idea behind the approach espoused here, using historical databases to formalize 

dJ n,,,,jc information, bas been suggested in various guises by others. Ripley organized performance 

information concerning static program structures (e.g., routines, statements) into a hiera.rchy and 

represented hierarchical measurement data as ordered n-tuples, such as (program, routine, state­

ment, primitive operation) [Ripley 1977[. He then suggested applying the relational projection opera­

tor on this relation, and implemented a simple system to collect data from Snobol programs and pro­

ject relevant attributes. This paper is the only one suggesting a relational approach that predates 

0Uf8. 

Garcia-Molina, German, and Kohler went a step further, suggesting that the monitoring rela­

tion should be tied to sensors (24 are listed in the paper) rather than to the static program struc­

ture, and mentioning that the relational query language Sequel could be used to retrieve information 

(rom this relation [Garcia-Molina et al. 1984[. No implementation was attempted. 

LeDoux and Parker went a step further still and defined & separate relation for each sensor, 

presenting 14 predefined relations [LeDoux & Parker 1985[. This database is queried via Prolog. A 

prototype debugger was implemented using this approach. 

One other research project bas employed the relational model for monitoring inform&tion. The 

High-level Ada Relational Debugger (HARD) [DiMaio et &1 1985[ is a component or the Ada Rela­

tional Translator, in which ell data structures are relations [Ceri & Crespi-Reghizzi 1983[. The fact 

that the dynamic behavior is c&ptured in relations is hidden from the user. Intern&lly the relational 
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algebra is used to manipulate the information, but externally the user writes Ada tasks to specify 

the monitoring. 

None or these papers proposed using algebraic expressions to specify which sensor to enable, 

nor using monitoring specific optimizations. A second difference is that the static relational model is 

employed is all or these papers, with the temporal aspect or the monitored data encoded in an ad 

hoc manner. 

Several researchers have proposed high-level languages for specifying the analysis to be per­

formed by the monitor. As just mentioned, Garcia-Molina et a!. suggested using Sequel, LeDoux and 

Parker used Prolog, and DiMaio, Ceri, and Reghizzi used Ada. In the Interactive Distributed 

Debugger (IDD), Harter, Heimbigner, and King used interval logic ]Schwartz et a!. 1983], an exten­

sion or linear time temporal logic ]Lamport 1980], to specify assertions that are tested in real time 

]Harter et a!. 1985]. It is not clear how this logic compares with TQuel in expressive power, or how 

hard it will be to implement the assertion checker, as an operational semantics has not yet been 

developed for interval logic. 

Bates and Wiled en has defined an Event Definition Language {EDL) in order to obtain a 

behavioral abstraction, in which the system is viewed in terms or higher level events, which are 

defined in terms or primitive events ]Bates & Wileden 1983]. EDL is based on regular expressions 

augmented with a shuffle operator. It can be shown that TQuel is as expressive as EDL. Implementa­

tion experiences with EDL have not yet been reported. 

Bruegge and Hibbard applied path expressions ]Habermann 1975], originally used to specify 

constraints on parallel computation, to the specification or event sequences ]Bruegge & Hibbard 

1983]. Actions may be performed when a particular event sequence is recognized. A prototype was 

implemented on the Accent operating system. Path expressions were also the basis for the expres­

sions used in the when and valid clauses in TQuel, so the languages are similar in expressive power. 

While a moderate amount or research has concerned monitoring distributed systems (e.g., 

]Miller 1985, Model 1978, Nutt 1979]), no one until now has dealt with the issues or sensor 
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specification, filtering, or tailoring the display of derived relations. We argued in Section 9 that sen-

sor specification in a complex system was a difficult talk to perform manually. Most systems support 

a fixed collection of predefined sensors, which makes sensor specification trivial, yet tremendously 

limits the data that can be collected. We also argued that powerful filtering techniques were abso-

lutely vital in limiting the number of generated data packets. Most systems permanently enable all 

sensors, or force each sensor to be enabled manually. We disagree strongly with LeBlanc and Rob-

bins, who assert that every event must be stored for later analysis for debugging distributed pro-

grams ]LeBlanc and Robbins 1985]. This requirement is unncecessary restrictive when many (say, 

hundreds) of sensors are present, and is usually impossible to satisfy in terms of computing and 

storage resources in a complex system. 

121. Future Work 

While the anticipated benefits or a relational approach to monitoring have been demonstrated, 

there are several areas where further work is needed. On the theoretical side, we are developing a 

formalization of the incremental temporal algebra discussed in Section 8.1. Such a formalization will 

be used to 

• ensure that the operators are well defined; 
• prove that the mapping from TQuel to the relational algebra is correct, using TQuel's tuple cal­
culus semantics ]Snodgrass 1985]; 
• prove that the optimizations do not alter the semantics of the expression they are transforming; 
• and perhaps suggest further optimizations. 

Another area to be investigated is distributing the analysis. In monitoring a distributed sys-

tern, the analysis generally occurs at a central node, with the data packets sent to this node from 

buffers in the processors where the sensors were located that generated the packets. However, much 

of the analysis should occur locally, with only that analysis requiring more global information being 

performed remotely. One possibility involves the concept from distributed databases of horizontal 

fragmentation, where a relation is broken into two or more subsets or tuples, the union or which is 

the original relation ]Ceri & Pelagatti 1984]. In distributed databases, each subset may be stored on 

a separate node. In the monitoring domain, each primitive relation can be fragmented on the 



attribute that specifies where the data packet is generated. The algebraic equivalents or queries on 

such relations may be duplicated for execution locally on each processor, with the resulting tuples 

sent to the central node, thereby reducing the load on the network. Optimizations that are not 

applicable at the central node may still apply to the expression when executed separately on the 

nodes producing the fragments. Exactly how and when this should be done is under study. 

One problem with the relational approach is that the queries must be specified before the data 

is collected or processed. Because this constraint is placed on the ordering of the steps, the relevant 

sensors can be enabled automatically. Ideally, there should be some way for the user to indicate with 

arbitrary precision the data to be collected. In this way, the monitor could support activity at any 

point along the spectrum between traditional monitoring at one end of the spectrum, where the data 

is first collected and then analyzed, and relational monitoring at the other end, where the query is 

specified before any data is collected. 

A second problem is the danger that an innocuous query will require an enormous amount of 

computation. Because the non-procedural nature of TQuel shelters the user from the complex pro-

cessing resulting from the query, the user has less intuition concerning the cost of queries. Tools 

need to be developed that indicate the expense or evaluating queries. 

Finally, there are implementation issues that should be studied. The goals of the prototype 

implementation were to demonstrate the feasibility or the relational approach and to identify poten-

tial problems requiring further investigation. It was successful in both aspects. However, the proto-

type lacked optimization and graphic display components and was baroque and inefficient. We are 

working on a second implementation that will include these components. While the prototype 

demonstrated the feasibility of the relational approach, we hope to show with the second implemen-

tation that a robust, reliable, efficient monitor based on this approach can be constructed. 
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