
TR 85-033

Performance Evaluation of

a Temporal Database Management System

November, 1985

flsoo Ahn and Richard Snodgrasst

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27514

Abstract

A prototype of a temporal database management system was built by extending the
static DBMS lngres. It supports the temporal query language TQuel, a superset of
Que!, handling four types of databases; static, rollback, historical and temporal. A
benchmark set of queries was run to study the performance of the prototype on the four
types of databases. We analyze the results of the benchmark, and identify major fac
tors that have the greatest impact on the performance of the system. We also discuss
several mechanisms that address the performance bottlenecks identified in the proto
type.

This research wu npported by NSF pu.l DCR..S.f0233D.
t The work of this nthor wu also 1upported by &I IBM Faculty Denlopmeat Award.

Table of Contents

1. Introduction .. 1
2. Types of Databases ... 2
3. TQuel ... 3

4. A Prototype Temporal DBMS ... 3
5. Benchmarking the Prototype .. 5

5.1. The Benchmark ... 6
5.2. Performance Data !I
5.3. Analysis of Performance Data ... 11
5.4. Non-uniform Distribution .. 15

6. Performance Enhancement ... 16
7. Summary .. 1!1
8. Bibliography 20

List of Figures

Figure 1: Types or Databases ... 2
Figure 2: A TQuel Query ... 3
Figure 3: Creatin& a Temporal Databaoe 6
Figure 4: Benchmark Queries 8
Figure 5: Space Requirements (in Pa&es) .. 10
Figure 6: Input Costs for the Temporal Database with 100 % Loadin& 10
Figure 7: Number or Input Pa&es for Four Types or Databases .. 11
Figure 8: Graphs for Input Pa&es 12
Figure 9: Fixed Costs, Variable Costs and Growth Rates ... 14
Figure 10: Improvements for the Temporal Database ... 18

n

1. Introduction

Database management systems are suppooed to model reality, but conventional DBMS's lack the

capability to record and process tim~varying aspects ot the real world. With &rowin& sophistication or

DBMS applications, the lack or temporal support raises serious problems. For example, conventional

DBMS's cannot support historical queries about the past status, much less trend onalvsis which is essential

for applications such as decision support sYStems [Ariav 1084j. There is no way to represent relrooclive or

posloclive changes, while support for error correction or audit troiJ necessitates costly maintenance or

backups, checkpoints, journals or transaction lop to preserve past states. There is also a &rowing interest

in applying database methods for version monogement and design control in computer aided design,

requiring capabilities to store and process time dependent data [Katz &: Lehman 1984J. Without temporal

support from the system, many applications have been forced to manage temporal information in an ad

hoc manner.

The need for providing temporal support in DBMS's has been reco&nized for at least a decade

[Bubenko 1976, Schueler 1077J. Recently, the rapid decrease or storage cost, coupled with the emergence

or promising new mass storage technologies such as optical disks [Ammon et al. 1985, Fujitani 1084, Hoag

land 1985J, have amplified interest in database management sYstems with temporal support or version

management (Copeland 1082, Wiederhold 1084[. A bibliographical survey contained about 70 articles

relating time and information processin& (Bolour et al. 1982J; at least 30 more articles have appeared in

the literature since 1082. However, most efforts on temporal databases have focussed on conceptual

aspects such as modeling, query languages or semantics or time. Little has been written on implementa

tion issues, except for a few version management systems [Katz &: Lehman 1984, Svobodova 1981J, roll

back DBMS's [Ariav &: Morgan 1982, Copeland &: Maier 1084, Lum et al. 1084J, and an earlier version or

LEGOL 2.0 (Jones et al. 1070J. To the authors' knowledge, there has been nothing written on the imple

mentation or either historical or temporal DBMS's, let alone performance analysis or such systems.

In this paper' we discuss the implementation and performance or a prototype database management

system with temporal support, and identify major factors that have the greatest impact on the perfor

mance of the sYStem. Sections 2 and 3 briefty set the context tor this investi&ation, describin& the types

1

or databases in terms or temporal support, and the query languase supported by the prototype. The next

two sections outline the implementation and provide a comprehensive analysis or the performance or the

prototype. Finally, Section 6 discul!8e!l several mechanisms that addre58 the performance bottlenecks

identified in the prototype.

1. TyJ>H of Datab...,.

Numerous schemes have been proposed to record and process history data augmented with addi-

tiona! time attributes. A taxonomy or time to characterize the time attribute and define types or data-

base management systems in terms or temporal support was recently proposed !Snodgrass &: Ahn 1985,

Snodgrass & Ahn 1986j.

Transaction Time
No Rollback Rollback

Valid Static Queries Static Rollback

Time Historical Queries Historical Temporal

Figure 1: Types or Databases

As summarized in Figure 1, two orthogonal criteria are the capability to make Aiotoric4l guerieB

about the past status or an enterprise modeled by a database, and the ability to roUback to the past state

or a database modeling an enterprise. The former concerns the progression or events through time; the

latter concerns the recording or those events in a database. Historic4l databases support historical queries,

incorporating valid time. Rollback databases support rollback operations, incorporating transaction time.

Temporal databases support both operations and include both kinds or time. A third kind or time, UBer-

defined time, was also included. Support for user-defined time requires only minimal changes to a DBMS.

Historical databases record the history or the enterprise being modeled, and view tuples valid at

some moment as or now. Rollback databases record the history ol database activities, and view stored

tuples, whether valid or not, a• of some moment in time. Temporal databases combine the benefits or

both, viewing tuples v4lid at some moment seen 48 of some other moment. Further examples that

emphasize the often subtle dilferenees in these four types of datab,.... are described elsewhere]Snodgrass

&; Ahn 1985].

3. TQuel

TQuel (Temporal QUEry Language)]Snodgrass 1984, Snodgr""" 1085], a superset of Que)]Held et

al. 1975], supports both historical queries and the rollback operation. It extends several Que) statements

to provide query, data definition and data manipulation capabilities supporting all four types of data-

bases. It expresses historical queries by augmenting the retrieve statement with the when predicate to

specify temporal relationships among participating tuples, and the valid clause to specify how the implicit

time attributes are computed for result tuples. The rollback operation is specified by the os of clause for

the rollback or the temporal DBMS's. The append, delete, and replace statements were augmented with

the valid and the when clauses in a similar manner. Finally, the creole statement was extended to specify

the type of a relation, whether static, rollback, historical or temporal, and to distinguish between an inter-

val and an event relation if the relation is historical or temporal. The semantics of TQuel was formalized

using tuple relational calculus]Snodgrass 1985].

The example query in Figure 2 inquires the state of a database o• of 1981, shifting back in time.

Retrieved tuples satisfy not only the 'where' clause, but also the 'when' clause specifying that the two

tuples must have coexisted at some moment. The 'valid' clause specifies the values of the 'valid from'

and 'valid to' attributes or the result tuples .

retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from start of (h overlap i) to end of (h extend i)
where h.id = 500 and i.amount = 73700
when h overlap i
as or "1981"

FJsure 1: A TQuel Query

4. A Prototype Temporal DBMS

It involves substantial research and implementation efl'ort to fully integrate temporal support into

the DBMS itself. New access methods and query processing algorithms need to be developed to achieve

3

reasonable performance for a variety or temporal queries, without penalizing more frequent non-temporal

queries.

As an intermediate step towards a tully integrated temporal DBMS, we built a prototype by modify

ing portions or the static DBMS Ingres (Stonebraker et al. 1976(, but stiU using the conventional access

methods and query processing algorithms. Hence the performance or the prototype was expected to be

less than ideal, rapidly deteriorating tor both temporal and non-temporal queries. However, it is still use

ful to identify problems with conventional access methods and query processing algorithms, and to suggest

possible mechanisms tor addressing those problems. In addition, the prototype can serve as a comparison

point tor fully integrated DBMS's developed in the future.

The prototype supports all the augmented TQuel statements: retrieve, append, delete, replace and

create. The valid, when and as of clauses are fully supported. The cop71 statement was modified to per

form batch input and output or relations having temporal attributes. It also supports all tour types or

databases; static, rollback, historical and temporal.

The parser was modified to accept TQuel statements and generate an extended syntax tree with sub

trees for valid, when, and as-of clauses. Some or the query evaluation modules were changed to handle the

newly defined node types and implicit temporal attributes. Functions to handle temporal operators start

of, end of, precede, overlap, extend, and as of were added in the one-variable query processing interpreter.

The system relation was modified to support the various combination or implicit temporal attributes

according to the type or a relation as specified by its create statement. A temporal attribute is

represented as a 32 bit integer with a resolution or one second. It has a distinct type, so that input and

output can he done in human readable form by automatically converting to and from the internal

representation. Various formats of date and time are accepted tor input, and resolutions ranging from a

second to a 71ear are selectable for output.

One of the most important decisions was how to embed a tour-dimensional temporal relation into a

tw<Hiimensional static relation as supported by Ingres. There are at least &ve such embedding•

(Snodgrass 1985(. Our prototype adopts the scheme of augmenting each tuple with two transaction time

attributes for a rollback and a temporal relation, and one or two valid lime attributes for a historical and

4

a temporal relation dependin& on whether the relation models events or intervals. For a rollback relation,

an 'append' operation inserts a tuple with the lran10clion 1tort and trantoction 1top attributes set to the

current time and "forever" respectively. A 'delete' operation on a tuple limply ebanses the tran10ction

ttop attribute to the current time. A 'replace' operation llrst executes a 'delete' operation, then in~~erts a

new version with the transaction start attribute !let to the current time. A historical relation foUows simi

lar procedures for 'append', 'delete' and 'replace' operations with the valid from and vlllid to attributes as

the counterparts of transaction stort and transaction 1top attributes. Values of the vlllid from and valid to

attributes are defaulted to the current time or "forever" as appropriate, but also can be specified by the

'valid' clau~~e. For a temporal relation, an 'append' operation inserts a tuple with the transaction •tort of

the current time, trantaclion ttop of "forever", vlllid from and valid to attributes set as specified by the

'valid' clause or defaulted otherwise. A 'delete' operation on a tuple seta the transaction ttop attribute to

the current time indicatin& that the tuple was virtuaUy deleted from the relation. Next a new version

with the updated valid to attribute is inserted indicatin& that the version has been valid until that time.

A 'replace' operation first executes a 'delete' operation as above, then appends a new version marked with

appropriate time attributes. Therefore, each 'replace' operation in a temporal relation inserts two new

versions. This scheme has a high overhead in terms of space, but captures the history of retroactive and

postactive changes completely. In addition, all modification operations for roUbaek and temporal relations

in this scheme are append onlg, so write-once optical disks can be utilized. A more detailed discussions of

these operations may be found elsewhere !Snodgrass 1985J.

The prototype was constructed in about 3 person-months over a period of a year; this llgure does

not include familiarization with the Insres internals or with TQuel. Most of chanses were additions,

increasing the source by 2,900 lines, or 4.0 % (our version of lnsres is approximately 58,800 lines long).

6. Benehmarklns the Prototype

We define the update count as the number of update operations for a tuple, and the average update

count for a relation as the average of the update counts over all tuples in the relation. We hypothesized

that, as the average update count increases, performance of our prototype with conventional access

methods would deteriorate rapidly not only for temporal but also for static queries. We postulated the

major facton to a.B:eet the performance of a temporal DBMS were the type or a database, the query type,

the access methods and loadin& facto"' used, and the update count.

A benchmark was run to confirm these hypotheses in various situations, 1111d to determine the rate or

performance degradation as the average update count increases. This section describes the details or the

benchmark, presents its results, and analyzes the performance data from the benchmark.

&.1. The Benehmuk

To compare performance on different types or databases, we needed test databases or all four types

described in Section 2. For each or the four types, we created two databases, one with a 100 % loading

factor and the other with a 50 % loading factor. As the sample commands for a temporal database in

Figure 3 show, each database contains two relations, Twe_h and TNp<_i, where TNP• is one or Static,

Rollback, Historical, and Temporal. Tgpe_h is stored in a hashed file, and TNp<_i is stored in an !SAM

file. The loading factor or the files are specified with the filifaetor parameter in a 'modify' statement

[Woodfill et al. 1981[.

create persistent interval Temporal_h (id = H, amount = i4, seq = H, string = c96)
modify Temporal_h to hash on id where fillfactor = 100

create persistent interval Temporal_i (id = i4, amount = i4, seq = i4, string = c96)
modify Temporal_i to isam on id where fillfactor = 100

FIIJure 3: Creating a Temporal Database

Each relation has 108 bytes or data in four attributes; id,. omounl, ug and •Iring. ld, a four byte

integer, is the key in both relations. Amount and •Iring are randomly ~tenerated as inte~ters and strings

respectively, and Beg is initialized as zero. In addition, historical and rollback relations carry two time

attributes, while temporal relations contain four time attributes. The tronaoction Blort and volid from

attributes are randomly initialized to values between Jan. 1 and Feb. 15 in 1980, with tromoetion •lop

and valid to attributes set to "forever" indicating that they are the cunent venions. The evolution of

these relations will be described shortly.

6

Each relation io initialized to have 1024 tuples uoin& a COPN otatement. The pase oize in our proto

type is 1024 bytes. With 100 % loadin&, there are 0 tuples per pa&e in static relations, and 8 tuples per

page in rollback, historical, or temporal relations. Therefore, we need at least 114 pages for each static

relation, and 128 pages for each of the others. The actual oize depends on the database type, the access

method, the loading factor, and the average update count.

Twelve sample queries with varying characteristics comprise the benchmark as shown in Figure 4.

These queries were chosen in an attempt to exercise the access methods available in lngres, to isolate the

effects of various TQuel clauses, and to demonstrate the possibility of performance enhancement. The

number of output tuples were kept constant regardless of update count, except for queries QOI, Q02 and

Q12.

QOI retrieves all versions of a tuple (veraion ecan} from a hashed file given a key. Q03 is a roUback

query, applicable only to rollback and _temporal databases, retrieving the state of a relation as of some

moment in the past. Q05 retrieves the most recent version of a tuple from a bashed file &iven a key,

while Q07 retrieves the most recent version of a tuple from a bashed file without a key, resulting in a

sequential scan of the whole file. Queries Q02, Q04, Q06 and QOS are counterparts of Q01, Q03, Q05,

and Q07 respectly, where the even numbered queries access an !SAM file and the odd numbered access a

bashed file. Both Q09 and Q!O join current versions of two relations; Q09 goes through the primary

access path of a hashed file and Q10 goes through an !SAM file.

Queries Q05 through Q!O all refer to only the most recent versions. They are termed tlalic queries

in the sense that they retrieve the current state of a database as if from a static database. For a static

database, the 'when' clause in these queries are neither necessary nor applicable. For a rollback database,

we use an as of clause instead of the when clause. For example, when z overlop "now"will become •• of

11now".

Qll is a query involving a temporal join, a join of two tuples based on temporal information. In

this query, the •,.. or clause specifies the rollback operation sbiftin& the reference point to a p88t moment,

the 'when' clause specifies a temporal relationship between tuple versions, and the 'valid' clause deter

mines values of time attributes in the result tuples. Q12 contains all types of clauses in TQuel, inquiring

7'

range or h
range or i

is temporal_h
is temporal_i

/• 1024 tuples, hashed on id • /
/• 1024 tuples, !SAM on id •/

Q01 : retrieve (h.id, h.seq)
where h.id = 500

Q02 : retrieve (i.id, i.seq)
where i.id = 500

Q03 : retrieve (h.id, h.seq)
88 or "08:00 1/1/80"

Q04 : retrieve (i.id, i.seq)
as or "08:00 1/1/80"

Q05 : retrieve (h.id, h.seq)
where h.id = 500
when h overlap "now"

Q06 : retrieve (i.id, i.seq)
where i.id = 500
when i overlap "now"

Q07 : retrieve (h .id, h .seq)
where h.amount = 69400
when b overlap "now"

Q08 : retrieve (i.id, i.seq)
where i.amount = 73700
when i overlap "now"

QOO: retrieve (h.id, i.id, i.amount)
where h .id = i.amount
when h overlap i and

QlO: retrieve (i.id, h.id, h.amount)
where i.id = h.amount
when h overlap i and

Qll : retrieve (h.id, h.seq, i.id, i.seq, i.amount)

i overlap "now"

h overlap "now"

valid from start or h to end or i
when start or h precede i
as or "4:00 1/1/80"

Ql2: retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from start or (h overlap i) to end or (h extend i)
where h.id = 500 and i.amount = 73700
when h overlap i
as of "now"

Figure 41 Benchmark Queries

the state or a database as or "now" r;iven both temporal and non-temporal constraint... Obviously, Qll

and Q12 are relevant only for a temporal database.

These twelve queries were run on each or eight test databases as described earlier; two databases,

with the loading factor or 100 % and 50 % respectively, for each or Static, Rollback, Historical, and

8

Temporal. The benchmark was run on a Vax 11/78/J, consuming approximately 20 hours of CPU time.

We focused solely on the number ot disk acceMeS per query at a &ranularity ot a pase, .., this metric is

highly correlated with both CPU time and response time. There are a few pitfalls to be avoided with this

metric. Disk accesses to system relations are relatively independent of the database type or the charac

teristics of queries, but more dependent on how a particular DBMS manages system relations. The

number of disk accesses varies greatly dependin& on the number of internal buffers and the algorithm for

butrer management. To eliminate such inftuences, which are outside the !!COpe of this paper, we counted

only disk accesses to user relations, and allocated only 1 butrer for each user relation so that a page resides

in main memory only until another page from the same relation is brought in.

Once performance statistics were collected for all sample queries, we simulated the uniformly distri

buted evolution of a database by incrementin& the value of •eq attribute in each of the current versions.

The time attributes were appropriately chansed for this 'replace' operation uoin& the default of valid from

"now" to ''forever" as described in Section 4. Thus a new version (two new versions for temporal rela

tions) of each tuple is inserted, and the averase update count of the database io increased by one. Perfor

mance on the sample queries were measured after determining the size of each relation appended with new

versions. This process was repeated until the average update count reached 15, which we believed high

enough to show the relationship between the srowth of 1/0 cost and the average update count.

5.1. Performance Data

Space requirements in various databases were measured as the average update count ranged from 0

to 15, which is useful for analyzing the 1/0 cost measured in the benchmark. Figure 5 shows the data for

the average update count of 0 and 14 alons with the growth per update and the 1rowth rate which is

obtained by dividing the srowth per update by the size for the update count of 0. The rollback and the

historical databases have the same space requirements. The temporal database consumes the same

amount of space as rollback and historical databases for the update count of 0, but requires almost twice

the additional pages as the update count increases accordin& to the embeddin& !!Cherne described in Sec

tion 4. The growth per update for a hashed Ole varies slightly owin& to key collisions in hashing.

II

Ty~ Static Rollback Hil!torical
Loading 100% 50% 100% 50% 100% 50%
Relation H I H I H I H I H I H I

Size, UC= 0 66 115 257 259 129 129 257 259 129 129 257 259
Size UC=14 - - - - 1927 1921 2048 2051 1927 1921 2048 2051
Growth per - - - -Update

Growth
- - - -

Rate

Notes:

Relation H is a hashed file.
Relation I is an !SAM file.
'UC' denotes Update Count.
'-' denotes not applicable.

28.4 128.0 127.9 128.0 28.4 128.0 127.9 128.0

1 1 0.5 0.5 1 1 0.5 0.5

Figure &t Space Requirements (in Pages)

Temporal
100% 50%

H I H I

129 129 257 259
3717 3713 3839 3843

~56.3 256.0 255.9 256.0

1.99 2 1 1

1/0 costs for sample queries on each database was measured as the average update count increased

from 0 to 15. Output costs result from storing temporary relation•, which remain constant becauoe the

size or temporary relations stays the same for the sample queries regardless or the update count. Since

they are negligible compared with the input costs, being 56 pages for Q09 and Q10 each, 4 pages for Q12,

and 0 for the others, we concentrate on the analysis or the input costs. Figure 6 shows the input costs for

the temporal database with 100 % loading.

Update 0 I 2
Count

3 4 5 6 7 8 D 10 II 12 13 14 15

QOI I 3 5 7 D II 13 15 17 ID 21 23 25 27 29 31
Q02 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Q03 129 387 645 903 1153 1411 1669 1027 2177 2435 2603 2951 3201 3450 3717 3075
Q04 128 384 640 8D6 1152 1408 1664 1020 2176 2432 2688 2944 3200 3456 3712 3068
Q05 I 3 5 7 0 II 13 15 17 10 21 23 25 27 29 31
Q06 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Q07 129 387 645 003 1153 1411 1&60 1027 2177 2435 2603 2951 3201 3450 3717 3975
Q08 128 384 640 8D6 1152 1408 1664 1020 2176 2432 2688 2944 3200 3456 3712 3968
Q09 1200 3512 5816 8120 10386 12690 14904 17298 19564 21868 24172 26476 28742 31046 33350 35654
Q!O 2233 4539 6845 9151 11440 13755 16081 18387 20885 22971 25277 27583 29881 32187 34403 36709
Q11 385 1155 1025 2605 3457 4227 4907 5767 8529 7290 8060 8830 0601 10371 11141 11911
Q12 131 38D 647 005 1163 1431 1870 1037 2105 2453 2711 2980 3227 3485 3743 4001

Figure tit Input Costs for the Temporal Database with 100 % Loading

10

Similar tables, a total or 8, were obtained for e..,h database or diferent types and loadin& r..,tors.

We summarize the input cost for sample queries on various databases with the average update count or 0

and 14 in Figure 7.

Ty!><' Static Rollback
Loading 100% 50% 100%

Query uc uc uc
0 0 0 14

QOl 2 1 1 15
Q02 2 3 2 16
Q03 - - 129 1927
Q04 - - 128 1920
Q05 2 1 1 15
QOO 2 3 2 16
Q07 166 257 129 1927
Q08 114 256 128 1920
Q09 1585 1276 1141 17242
Q10 2214 3329 ~177 18311
Qll - - - -
c;ll2 - - - -

Notes :

'U C' denotes Update Count.
'-'denotes not applicable.

50%
uc

0 14

1 8
3 10

257 2048
256 2048

1 8
3 10

257 2048
256 2048

1271 10240
3329 12288

- -
- -

Historical Tern ;>oral
100% 50% 100% 50%
uc uc uc uc

0 14 0 14 0 14 0 14

1 15 1 8 1 29 1 15
2 16 3 10 2 30 3 17

- - - - 129 3717 257 3839
- - - - 128 3712 256 3840

1 15 1 8 1 29 1 15
2 16 3 10 2 30 3 17

129 1927 257 2048 129 3717 257 3839
128 1920 256 2048 128 3712 256 3840

1197 17298 1327 10296 1200 33350 1333 19256
2233 18367 3385 12344 ~233 34493 3385 21303
- - - - 385 11141 769 11519
- - - - 131 3743 259 3857

F)aure 7: Number or Input Pages ror Four Types or Databases

Figure 7 shows that the roUback and the historical databases exhibit similar performance, while the

temporal database is about twice more expensive than rollb..,k and historical databases ror the update

count or 14. If we draw a graph for the input cost shown in Figure 7, we set Figure 8 (a). Figure 8 (b) is

a similar graph for the rollb..,k database with 50% loading, showing jagged lines caused by the odd num-

bered updates filling the sp..,e left over by the previous updates before adding overftow pages.

&.3. Analysis of Performance Data

The sraphs in Figure 8 show that input cost increases almost linearly with the update count, but

with varying slopes for different queries. A question is whether there are any particular relationships

inde!><'ndent of query types between the input cost and the average update count, and between the input

cost and the datablll!e tYP<'· To answer this question, we now analyze how e..,h oample query is processed,

11

Input
Pages

5 10

Qll

QJa.<;1 ,1,12

15 Update
Count

(a) Temporal Database with 100% Loading

Input
Page

5 10 15 Update
Count

(b) Rollback Database with 50% Loading

FJsure 81 Graphs for Input Pa&es

and identify the dominant operations which can characterize each query.

Though queries Q01 and Q05 are functionally dif!erent from each other, one for the vernon •eon and

the other for a static querv, our prototype built with conventional access methods uses the same meehan-

ism to process them. Both queries are evaluated by aceessinr; a hashed file r;iven a key {huhed access).

Likewise, QOZ and Q06 requires the access to an !SAM file r;iven a key {/SAM acce••J. Quories Q03, Q04,

Q07 and Q08 all need to sean a file, whether hashed or !SAM (~equential •can).

Processing Q09 first scans an !SAM file sequentially doing l!<'leetion and projection into a temporary

relation (one variable delachmenl}. It then performs one hashed access for each or 1024 tuples in the tem

porary relation (tuple substitution}. Here the dominant operation is the hashed access, repeated 1024

times. Q10 is similar to Q09 except that the roles or the hashed file and the ISAM file are reversed.

Hence the dominant operation for Q10 is the ISAM access.

Qll is evaluated by sequentially scanning one file to find versions satisfying the 'as of' clause. For

such a version, the other file is sequentially ~~eanned for versions satisfying both the 'as or clause and the

'when' clause. Here the dominant operation is the sequential sean. Proeessinr; Q12 requires a sequential

11

I!Can and a bash access to find versions satisfyin& the 'where' clause, then joins them on temporal attri-

butes according to the 'when' clause. Since the number of versions extracted for the join is small enough

to fit into one page each, the dominant operation is the sequential I!CaD.

From this analysis, we can divide the input cost into the fized portion and the voridle portion. The

fixed cost is the constant portion which stays the same re&ardless or the update count. It accounts for

traversing the directory in the !SAM, or for creatin& aod accessin& a temporary relation whose size is

independent of the update count. The variable cost is defined to be the reault of subtracting the fixed

cost from the cost of a query on a database with no update. Operations contributin& to the variable cost

will grow more expensive as the number of updates on the relation increase~~.

Now we can define the growth rate of the input cost on a database with the update count or n as :

Growth Rate.

= (increaae in coat aa update count grow• from 0 to n)
(variable coat) X (increaae in update count)

_ (coat for update count of n)- (coat for update count ofO)
(variable coat) X n

The growth rate is the key aspect of an implementation, capturin& the performance degradation as the

update count increases. Clearly the ideal would be a growth rate close to 0.

Fixed costs, variable costs and growth rates for sample queries on various types of databases were

calculated. The growth rate was independent of the update count n, as indicated by the linearity shown

in Figure 8. Figure 9 shows &xed costs, variable costs aod growth rates for sample queries on the rollback

and the temporal databases with the loadiD& factor of 100 % and 50 % each. The historical database

shows the same variable costs and the growth rates as the rollback database, bot its fixed costs are the

same as the temporal database, except for Q03, Q04, Qll &: Ql2 which are not applicable because they

involve the rollback or historical access.

18

Type Rollback Temooral
Loading 100% 50% 100% 50%

Query Cost (in Pages) Growth Cost (in Pages) Growth Cost (in Pages) !Growth Coet (in Pases) Growth
Fixed Variable Rate Fixed Variable Rate ixed Variable Rate IFixed Variable Rate

Q01 0 1 1 0 1 0.5 0 1 2 0 1 1
Q02 1 1 1 2 1 0.5 1 1 2 2 1 1
Q03 0 129 1 0 257 0.5 0 129 1.00 0 257 1
Q04 0 128 1 0 256 0.5 0 128 2 0 256 1
Q05 0 1 1 0 1 0.5 0 1 2 0 1 1
QOO 1 1 1 2 1 0.5 1 1 2 2 1 1
Q07 0 129 1 0 257 0.5 0 129 1.00 0 257 1
Q08 0 128 1 0 256 0.5 0 128 2 0 256 1
Q09 0 1141 1.01 0 1271 0.5 56 1141 2.01 56 1277 1
Q10 1024 1153 1 2048 1281 0.5 080 1153 2 2104 1281 1
Qll - - - - - - 0 385 2 0 769 1
Q12 - - - - - - 2 129 2 2 257 1

Note : '-' denotes not •pp/ie•ble.

Figure II: Fixed Costs, Variable Costs and Growth Rates

Rather surprisingly, the growth rate turned out to be independent or the query type and the access

method as tar as access methods or sequential scan, hashing or ISAM are concerned. It was, however,

dependent on the database type and the loading factor. For example, the growth rates tor operations

such as sequential scan, bashed access, and access or data pages in ISAM are all 2.0 in case or a temporal

database with 100 % loading. On the other hand, the growth rates for similar operations are approxi-

mately 0.5 in case or a rollback or a historical database with 50% loading.

From these analyses, we can make several observations as tar as access methods or sequential scan,

hashing or ISAM are concerned.

• The fixed and the variable costs are dependent on the query type, the access method and the
loading factor, but relatively independent or the database type.

• The growth rate is approximately equal to the loading factor or relations tor rollback or histori
cal databases.

• The growth rate is approximately twice the loading factor ol relations ror temporal databases.

• The growth rate is independent or the query type and the access method.

The tact that the growth rate can be determined given the database type and the loading factor

without regard to the query type or the access method has a useful consequence. From the definition or

the growth rate, we can derive the following formula tor the cost ol a query when the update count is n.

14

Cost for upd•te count of n

=(cost for update count ofO) +(growth rate) X (variable coli) X (n)

= (!ized co•l) + (v•ri•ble corl) +(growth r•te) X (v•rio61e co1t) X (n)

= (!ized cost)+ (v•ria61e cost) X (1 +(growth role) X n)

Therefore, when the cost or a query on a datab81le with the update count or 0 io known and ito fixed por

tion io identified, it is possible to predict future performance or the query on the database when the

update count grows to n. Note that the fixed cost, and hence the variable cost, ean even be counted by

the system, except when the size or a temporary relation varies greatly dependin& on the update count.

&.4. Non-uniform Dlatrlbutlon

Thus rar, we have assumed uniform distribution or updates where each tuple will be updated for

equal number or times as the average update count increases. Since the assumption or uniform distribu

tion may appear rather idealistic, we also ran an experiment with a non-uniform distribution. To simu

late a maximum variance case, only 1 tuple was updated repeatedly to attain a certain average update

count. We measured performance or queries on the updated tuple and on any or remainin& tuples, then

averaged the results weighted by the number or such tuples. Since it takes O(n") page accesses to update

a single tuple for n times, owing to the overftow chain ever lengthenin&, we repeated the process only up

to an update count or 4, which was &ood enough to confirm our subsequent analysis.

Performance or a query io highly dependent upon whether the tuple participatin& in the query has

an overftow chain or not. We hypothesized that updating tuples with a hip variance would affect the

growth rate significantly, owing to the presence or Jon& overftow chains ror some tuples and the absence or

such chains for others. However, the growth rate averaged over all tuples turned out to remain the same

aa the uniform distribution case. For example, ir we update one tuple in a temporal relation 1024 times,

the average update count becomes one. For a query like QOl, a hashed access to any tuple sharin& the

same pa&e as the changed tuple eost8 257 pase accesses, while a hashed access to any tuple residing on a

pase without an overftow eost8 just one pase access. Therefore, the avera&e eost becomes three page

accesses, the same as the uniform distribution case.

We may extend this result to a more general case. II the number of primal)' pa&es is ~ *ith 100 %

loading, there wiU be approximately t~ overftow pa&es for the average npdate count of one in a temporal

relation. Let 11 be the number of primal)' Pa&es which have over8ow pages, and z be the Dumber of pri-

mal)' pages which do not have an overftow, with 11 + z = z. Since the average length of over8ow chains

is 2"' pages, the average cost of a hashed access to such a relation will be :
II

2z
11 X (- + 1) + z X 1

II
v+z

showing the same result as the more restricted case discu88ed above.

This reasoning can be generalized for other database type, acce88 method, loading factor, query

type, and update count in a similar fashion. Now one more oheervation about the growth rate can be

added.

• The growth rate is independent of the distribution of updated tuples.

We conclude that the results from the benchmark we ran under the &llllumption of uniform distribution

are still valid for any other distribution.

0. Performance Enhancement

A.B the results of the benchmark indicate, sequential scans are expensive. Access methods such as

hashing and ISAM also suffer from rapid degradation in performance due to ever-growing overftow chains.

Reorganization does not help to shorten overftow chains, because all versions of a tuple share the same

key.

Since lower loading reduces the number of overftow pa&es in hashin& and ISAM, it results in a lower

growth rate. Hence better performance is achieved with a lower loading factor when the update count is

high. But there is an overhead for maintainin& a lower loading factor, which may cause worse perfor-

mance than a higher loading when the update count is low. Lower loading requires more space for pri-

mal)' pages. Scanning such a file sequentially (e. f. for query Q07 or QOS) is more expensive. Especially

for ISAM, lower loading requires more directory p&~es, which may increase the height of the directory.

18

For example, query Q10 ror the update count or 0 in Fisure 10 reads in 3385 pa,;es with 50 % loading,

significantly higher thau 2233 pages with 100 % loadint;.

We conclude that aecess methods such as hashin& or ISAM are not suitable for a database with a

lart;e update count. There are other aecess methods that adapt to dynamic gowtb better, such as B-trees

(Comer 1979J, dynamic bashin& (Larson 1978J, extendible bashin& (Fapn et al. 1979j or &rid files (Niever

selt ll Hinterberger 1984J. But these methods require complex algorithms aDd si&nillcaut overhead to

maintain certain structures as new records are added. Furthermore, a larse number or versions for some

tuples wiD require more thau a bucket for a sinsle key, causin& similar problems exhibited in conventional

bashing and !SAM. It is also difficult to maintain secondary indices for these methods, which often split a

bucket and rearrauge records in it. New storase structures and access methods tailored to the particular

characteristics or temporal databases are needed to enhauce performance signillcantly.

Databases with temporal support maintain both the current and the history data on line. But the

current and the history data exhibit clear differences in their characteristics, such as the number of ver

sions, storage requirements, access frequency and update patterns. These ditrerences mate it natural to

divide them into two and process them separately exploitin& their unique characteristics. Therefore, we

adopt a two level otore with two storage areas to separate history data from current data. The primarv

store contains current versions which can satisfy all non-temporal queries and possibly some or frequently

accessed history versions. The historvotore holds the remainin& history versions (Ahn 1986J. This scheme

to separate current data from the bulk of history data can minimize the overhead for non-temporal

queries, and at the same time provide a fast access path for temporal queries.

In addition, queries retrievin& records throop non-tey attributes (e.g. Q07 and Q08) cau be facili

tated by oecondarv indezing. There are several alternative structures for a secondary index on a relation

with multiple versions. The index may be stored into a single file for all the versions (1 level}, or may

itaelr be maintained as a t-level structure havin& a current index for current data and a history index for

history data. In each case, any stor.,;e structure such as a heap, hasbin& or !SAM may be chosen for the

index.

Figure 10 shows the estimated input cost for the sample queries OD the temporal database with the

two level store and the secondary indexing. The advantage of the two level store ia evident in processing

static queries such as Q05 through Q10. The cost remains constant for any update count. AB shown

under the column Simple in Figure 10, Q10 on the temporal database with the update count or 14 costs

2233 pages instead of 34493 pages. Version sean (Q01 and Q02) can also be improved by clustering his-

tory versions of the same tuple into a minimum number of pages, e.,. 28 history versions into 4 pages as

the column Clustered in Figure 10 shows.

Conventional ~Level Store for Update Count = 14

Update Count Indexed on amount
Query

Simple Clustered as 1-Level as ~Level 0 14 as HeaD as Hash as HeaD as Hash

Q01 1 29 - 5 - - - -
Q02 2 30 - 6 - - - -
Q03 129 3717 - - - - - -
Q04 128 3712 - - - - - -
Q05 1 29 1 - - - - -
Q06 2 30 2 - - - - -
Q07 129 3717 129 - 324 30 12 2
Q08 128 3712 128 - 324 30 12 2
Q09 1200 33350 1200 - - - - -
Q10 2233 34493 2233 - - - - -
Qll 385 11141 - - - - - -
Q12 131 3743 - - - - - -

Note : '-' denotes same G8 lht left adjacent column.

Figure 101 Improvements for the Temporal Database

Columns under a• 1-Level in Figure 10 show the estimated input cost when an index is maintained

as a single file on the amount attribute for the temporal relation. The index needs eight bytes for each

entry, four for the secondary key and four for a tuple id, and hence can store 101 entries in a page of 1024

bytes. Since there are 29 versions multiplied by 1024 tuples, 295 pages are needed for the index. II we

store them in a heap, 324 pages, 295 index plus 29 data pages, are accessed to evaluate Q07. This is in

fact more expensive than the simple ~level store without any index, though better than the conventional

structure itself. II we use bashing for the index, the cost is reduced to 30 page accesses with 1 index page

and 29 data pages.

18

U we use the 2-level indexing with a separate index for current data, there are only 1024 entries in

the index, requirin& 11 index pages. Q07 coslo 12 pa&es with a heap index, while it coslo only 2 p&&es

with a hashed index, as shown in columns onder 111 t-Level in Figure 10. Note the diJrerence between

3717 pages and 2 pages for proeessin& the same query.

'1. Summary

We built a prototype or a temporal database management system by extendin& the static DBMS

Ingres. It supports the temporal query language TQuel, a superset of Quel, handlin& all four types or

databases; static, rollback, historical and temporal. A benchmark with a set of queries was run to study

the performance or the prototype OD the four types or databases with two loadin& factors. We analyzed

the results or the benchmark, and identified major factors that have the ueatest impact on the perfor

mance or the system. As far as the access methods or sequential sean, hashing or ISAM are concerned, the

growth rate is determined by the database type and the loadin& factor, but independent or the query type,

the access method, or even the distribution of updated tuples. A formula was obtained to estimate the

cost of a query on a database with multiple temporal versions, when the cost or a query on a database

with a single version is known and its &xed portion is identified. We also discussed possible performance

enhancements using two-level storage structures and secondary indexing mechanisms tailored for data

bases with temporal support.

IV

8. BlbHograph)'

(Abo 1986(Abo, I. Toward• an Implementation of Dola6o1e Management S111tem1 with Temporal Support.
In the Second International Corlference on Dolo Engineering {to appear), Feb. 1986.

[Ammon et at. 1985(Ammon, G., J. Calabria and D. Thomas. A High-Speed, Lar,e-Capacitll, lukeboz
Optical Di8k S11otem. IEEE Computer, 18, No. 7, July 1985, pp. 36-46.

(Ariav k Morgan 1982(Ariav, G. and H. L. Morgan. MDM: Embedding the Time Dimenrion in Informa
tion S11otemo. Technical Report 82-03-01. Department of Decision Sciences, The Wharton School,
University of Pennsylvania. 1982.

(Ariav 1984(Ariav, G. Preserving The Time Dimenrion In /rlformation S11otem1. PhD. Diss. The Wharton
School, University of Pennsylvania, Apr. 1984.

(Bolour et at. 1982(Bolour, A., T.L. Anderson, L.J. Debeyser and H.K.T. Wong. The Role of Time in
Information ProceBBing: A Survev. SigArt Newsletter, 80, Apr. 1982, pp. 28-48.

(Bubenko 1976(Bubenko, J. A., Jr. The temporal dimenlion in irl/ormation modeling. Technical Report
RC 6187 #26479. ffiM Thoma! J. Watson Research Center. Nov. 1976.

(Comer 1979J Comer, D. The UbiquitoUB B-tree. Computin1 Surve11•. 11, No. 2 (1979) pp. 121-138.

(Copeland 1982(Copeland, G. What If Mo11 Storage Were Freef. Computer, 15, No.7, July 1982, pp. 27-
35.

(Copeland & Maier 1984J Copeland, G. and D. Maier. Making Smalltolk • Dato601e Sv•tem. In Proceed
ing• of the Sigmod '81 Corlference, June 1984 pp. 316-325.

[Fagin et al. 1979(Fagin, R., J. Nievergelt, N. Pippenger and H. Strong. Eztendible H01hing - A Fast
AcceBB Method for Dvnamic FileB. ACM TronBoclionB on Dotobo1e S111tems, 4, No. 3, Sep. 1979,
pp. 315-344.

(Fujitani 1984(Fujitani, L. Later Optical Di81:: The Coming Revolution in On-Line Storage. Communica
tion• of the Aooociation of Computing Machiner11, 27, No.6, June 1984, pp. 546-554.

(Held et al. 1975J Held, G.D., M. Stonebraker and E. Wong. INGRES--A relational data 6aoe management
•vstem. Proceeding• of the 11175 Notional Computer Corlference, 44 (1975) pp. 409-416.

(Hoagland 1985J Hoagland, A. Information Storage TecAnolo111 : A Lool: ot the Future. IEEE Computer,
18, No.7, July 1985, pp. 60-67.

(Jones et at. 1979J Jones, S., P. Mason and R. Stamper. LEGOL t.O: a relotionoiBpecificotion language for
complez rule•. lrlformotion Svotemo, 4, No.4, Nov. 1979, pp. 293-305.

(Katz 8l Lehman 1984[Katz, R. and T. Lehman. Dotob01e Support for Verliont and Alternative• of Lorge
Delign File~. IEEE Tromoctiont on Software Engineering, SE-10, No. 2, Mar. 1984, pp. 191-200.

(Larson 1978[Larson, P. D11namic Hading. BIT, 18 (1978) pp. 184-~ll.

(Lum et al. 1984(Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and J.
Woodfill. Deli1ning DBMS Support for the Temporal Dimenlion. In Proceeding• of the Si1mod '81
Conference, June 1984 pp. 115-130.

10

·- (Nieverselt II; Hinterberser 1084) Nieverselt, J. ud H. Hinterberser. TAe Grid File: An Adaptahle, Sum·
metric Multil:e11 File Structure. ACM Tran1actiou on Datdau S11•tefll8, 9, No. 1, Mar. 1084, pp.
3S-71.

(Schueler 1977) Schueler, B. Update Reconlidered. ID ArcAitecture •nd Model# in Data Ba1e Management
SI!Biem~. Ed. G. M NijsaenNorth Holland Publishin& Co., 11177.

(Snodgrass 1984] Snodgrass, R. TAe Temporal Quer11 Language TQuel. ID Proceeding• of tAe Third ACM
SIGAci·SIGMOD Sumpo•ium on Principle• of Databue Sl!•lem~, Waterloo, Ontario, Canada: Apr.
1984 pp. 204-212.

(Snodgrass 1985] Snodgrass, R. A Temporal Queru Language. Teehnical Report 8C..013. Computer Science
Department, University or North Carolina at Chapel Hill. May 1985.

(Snodgrass II; Ahn 1985) Snodgrass, R. and I. Ahn. A Tazonom11 of Time in DatabaBeB. In Proceeding• of
IAe International Conference on Management of Data, ACM SIGMod. A01tin, TX: May 1985.

(Snodgrass II; Ahn 1986) Snodgrass, R. and I. Ahn. Temporal Databue1. ID IEEE Computer (to appear},
1986.

(Stonebraker et al. 1976(Stonebraker, M., E. Won&, P. Kreps ud G. Held. TAe Duign and Implemenla·
lion of INGRES. ACM Trauaction1 on Databue Susteml, 1, No.3, Sep. 1976, pp. 18~222.

(Svobodova 1981] Svobodova, L. A reliable object-oriented data deporiloru for a distributed computer. In
Proceeding• of Bib Sumpolium on Operating Su1lem1 Principle~, Dee. 1981 pp. 47-58.

(Wiederhold 1984] Wiederhold, G. Datahae~. IEEE Computer, 17, No. 10, Oct. 1984, pp. 211-223.

(Woodfill et al. 1981] Woodfill, J., P. Siegal, J. Ranstrom, M. Meyer ud E. Allman. lngre1 Reference
Manual. Version 7 ed. 1981.

11

