TR 85-033

Performance Evaluation of

a Temporal Database Management System

November, 1985

Illso0 Ahn and Richard Snodgrasst

Department of Computer Science
University of North Carolira
Chapel Hill, NC 27514

Abstract

A prototype of a temporal database management system was built by extending the
static DBMS Ingres. It supports the temporal query language TQuel, a superset of
Quel, handling four types of databases; static, roliback, historical and temporal. A
benchmark set of queries was run to study the performance of the prototype on the four
types of databases. We analyze the results of the benchmark, and identify major fac-
tors that have the greatest impact on the performance of the system. We also discuss
several mechanisms that address the performance bottlenecks identified in the proto-

type.

This research was supported by NSF grant DCR-8402339.
t The work of this author was also supported by an IBM Facelty Development Award.

O e DR e

0 -1 O

. Introduction

Table of Contents

...

. Types of Databases ...l s e e e s s e s s

. TQuel

..

. A Prototype Temporal DBMS ...t s s s sne s sssrssens e ss vanressassssnssessssssnsnsnra
. Benchmarking the PrototyPe ..oooovcviierrirerecvemircrrertrresrrereasrersssaseerarrssesss b rrvcansssneterrennsssnsrarssren

5.1. The

BeneRIMATE oottt ittt e et rrs st et s bt rbs s s aeaeses b s ta sk enanaah e it bnas nbean s ienbhbrann

5.2, Performance Datacccovivevvrercrerrsrrremmiosersnesnssssntmsss aservacarnesussssssssnsasas asssssasnssnnes e snas
5.3. Analysis of Performance Data ...t
5.4. Non-uniform DIStTIDILIONcoovviiiiiiiiiiiiiii st siessarssesssssssssssissssssssseeras ssssssssnne sonmnnnnnsne

. Performance

. Summary

. Bibliography

) DF Y B0 =) 11 + o AR

..

© D L D R e

1
15
16
19

List of Figures

Figure }: Types of Databasesoovieviccecrencecneinicnen
Figure 2: A TQuel Query ...,

..

..

Figure 3: Creating 3 Temporal Databaseccccoocrevenreniiinnnn,

Figure 4: Benchmark Queriescc...oovvvvvervcicieercennenne
Figure 5: Space Requirements (in Pages)coovenennnc.

--

--

Figure 6: Input Costs for the Temporal Database with 100 % Loadingcccourruunnnennnn..n.
Figure 7: Number of Input Pages for Four Types of Databases

Figure 8 Graphs for Input Pages

...

Figure 9: Fixed Costs, Variable Costs and Growt.h Rates
Figure 10: Improvements for the Temporal Database ...

0o O o e

10
11
12
14
18

1. Introductlion

Database management systems are supposed to model reality, but conventional DBMS’s lack the
capability to record and process time-varying aspects of the real world. Witk growing scphistication of
DBMS applications, the lack of t;emporal sapport raises serious problems. For example, conventional
DBMS's cannot support kistorical guerics about the past status, much less trend analysis which is essential
for applications such as decision support systems [Ariav 1984]. There is no way to represent refrosctive or
postactive changes, while support for error correction or audit trail necessitates costly maintenance of
backups, checkpoints, journals or transaction logs to preserve past states. There is also a growing interest
in applying database methods for version management and design control in computer aided design,
requiring capabilities to store and process time dependent data {Katz & Lehman 1984]. Without temporal
support from the system, many applications have been forced to manage temporal information in an ad-

hoc manner.

The peed for providing temporal support in DBMS's has been recognized for at least a decade
|Bubenko 1976, Schueler 1977]. Recently, the rapid decrease of storage cost, coupled with the emergence
of promising new mass storage technologies such as optical disks [Ammon et al. 1985, Fujitani 1984, Hoag-
land 1985], have amplified interest in database management systems with temporal support or version
management [Copeland 1082, Wiederhold 1984]. A bibliographical survey contained about 70 articles
relaﬂing time and information processing [Bolour et al. 1982]; at least 30 more articles have appeared in
the literature since 1982, However, most eflorts on tcmporal_ databases have focussed on conceptual
aspects such as modeling, query languages or semantics of time. Little has been written on implementa-
tion issues, except for a few version management systems [Katz £ Lehman 1984, Svobodova 1981}, roll-
back DBMS's [Ariav & Morgan 1982, Copeland & Maier 1984, Lum et al. 1984], and an earlier version of
LEGOL 2.0 [Jones et a). 1979]. To the authors' knowledge, there has been nothing written on the imple-
mentation of either historical or temporal DBMS’s, let alone performance analysis of such systems.

In this paper, we discuss the implementation and performance of a prototype database management

system with temporal support, and identify major factors that have the greatest impact on the perfor-

mance of the system. Sections 2 and 3 briefly set the context for this investigation, describing the types

of databases in terms of temporal support, and the query language supported by the prototype. The nrext
two sections cutline the implementation and provide a comprehensive analysis of the performance of the

prototype. Finally, Section 6 discusses several mechanisms that address the performance bottlenecks

identified ip the prototype.

2. Types of Databases

Numerous schemes have beer proposed to record and process history data augmented with addi-
tional time attributes. A taxonomy of time to characterize the time attribute and define types of data-
base management systems in terms of temporal support was recently proposed {Snodgrass & Ahn 1985,

Snodgrass & Abn 1986].

Transaction Time
No Roilbac! Rollback%

Valid Static Queries Static Rollback

Time Historical Queries Historical Temporal

Figure 1: Types of Databases

As summarized in Figure 1, two orthogonal criteria are the capability to make hislorical guerice
about the past status of an enterprise modeled by a database, and the ability to rollback to the past state
'of a database modeling an enterprise. The former concerns the progression of events through time; the
latter concerns the recording of those events in a database. Historical databases support historical queries,
incorporating valid time. Rollback databases support rollback operations, incorporating transaction time.
Temporal databases support both op?rations and include botk kinds of time. A third kind of time, user-

defined time, was also included. Support for user-defined time requires only minimal changes to a3 DBMS.

Historical databases record the history of the enterprise being modeled, and view tuples vaolid at
some moment as of now. Rollback databases record the history of database activities, and view stored
tuples, whether valid or not, as of some moment in time, Temporal databases combine the benefits of

both, viewing tuples valid at some moment seen as of some other moment. Further examples that

emphasize the often subtle differences in these four types of databases are described elsewhere [Snodgrass

& Abn 1985,

3. TQuel

TQuel (Temporal QUEry Language) [Snodgrass 1984, Snodgrass 1985, a superset of Quel [Held et
al. 1975], supports both historical queries and the rollback operation. It extends several Quel statements
to provide query, data definition and data manipulation capabilities supporting ali four types of data-
bases. It expresses historical queries by augmenting the refrieve statement with the when predicate to
specifly temporal relaticnships among participating tuples, and the valid clause to specify how the implicit
time attributes are computed for result tuples. The rollback operation is specified by the ss of clause for
the- rollback or the temporal DBMS’s. The append, delele, and replace statements were augmented with
the valid and the when clauses in a similar manner. Finally, the create statement was extended to specify
the type of a relation, whether static, rollback, historical or temporal, and to distinguish between an inter-
val and an event relation if the relation is historical or temporal. The semantics of TQuel was formalized
using tuple relational calculus [Snodgrass 1985).

The example query in Figure 2 inquires the state of a database a# of 1981, shifting back in time.
Retrieved tuples satisfy not only the ‘where’ clause, but also the ‘when’ clause specifying that the two
tuples must have coexisted at some moment. The ‘valid’ clause specifies the values of the ‘valid from’

and ‘valid to' attributes of the result tuples .

retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from start of (h overlap i) to end of (h extend i)
where h.id = 500 and i.amount = 73700
"when b overlap i
as of 1981"

Figure 2: A TQuel Query

4. A Prototype Temporal DBMS

It involves substantial research and implementation effort to fully integrate temporal support into

the DBMS itself. New access methods and query processing algoritbms need to be developed to achieve

reasonable performance for a variety of temporal queries, without penalizing more frequent non-temporal
queries.

As an intermediate step towards a fully integrated temporal DBMS, we built a prototype by modify-
ing portions of the static DBMS Ingres [Stonebraker et al. 1976], but still using the conventional access
methods and query processing algorithms. Hence the performance of the prototype was expected to be
less than ideal, rapidly deteriorating for both temporal and non-temporal queries. However, it is still use-
ful to identify problems with conventional access methods and query processing algorithms, and to suggest
possible mechanisms for addressing those problems. In addition, the prototype can serve as a comparison

point for fully integrated DBMS’s developed in the future.

The prototype supports ail the augmented TQuel statements: relricve, append, delcte, replace and
ereate. The valid, when and a2 of clauses are fully supported. The copy statement was modified to per-
form batch input and output of relations baving temporal attributes. It also supports all four types of

databases; static, rollback, historical and temporal.

The parser was modified to accept T'Quel statements and generate an extended syntax tree with sub-
trees for valid, when, and as-of clauses. Some of the query evaluation modules were changed to handle the
newly defined node types and implicit temporal attributes. Functions to handle temporal operators start

¢of, end of, precede, overlap, eziend, and as of were added in the one-variable query processing interpreter.

The system relation was modified to support the various combination of implicit temporal attributes
according to the type of a relation as specified by its create statement. A temporal attribute is
represented as a 32 bit integer with a resolution of obe second. It has a distinet type, so that input and
output can be dene in. human readable form by automatically converting to and from the internal
representation. Various formats of date and time are accepted for input, and resolutions ranging from a

gecond to a year are selectable for output.

One of the most important decisions was how to embed a four-dimensional temporal relation inio a
two-dimensional static relation as supported by Ingres. There are at least five such embeddings
[Snodgrass 1985]. Our prototype adopts the scheme of augmenting each tuple with two transaction time

attributes for a rollback and a temporal relation, and one or two valid time attributes for a historical and

a temporal relation depending on whether the relation models events or intervals. For a rollback relation,
an ‘append’ operation inserts a tuple with the fransaction elart and transaction slop attributes set to the
current time and “joreycr" respectively. A ‘delete’ operation on a tuple simply changes the tronsaction
stop attribute to the current time. A ‘replace’ operation first executes a ‘delete’ operation, then inserts a
new version with the fransaction slart attribute set to the current time. A historical relation follows simi-
lar procedures for ‘append’, ‘delete’ and ‘replace’ operations with the valid from and valid lo attributes as
the counterparts of {ransaction start and fronsaclion stop attributes. Values of the valid from and valid to
attributes are defaulted to the current time or “forever” as apptropriate, but also can be specified by the
‘valid' clause. For a temporal relation, an ‘append’ operation inserts a tuple with the transaciion start of
the current time, {ronesction stop of “forever”, valid from and valid to attributes set as specified by the
‘valid’ clause or defaulted otherwise. A ‘delete’ operation on a tuple sets the lransaction slop attribute to
the current time indicating that the tuple was virtually deleted from the rejation. Next a new version
with the updated valid o attribute is inserted indicating that the version has been valid until that time.
A ‘replace’ operation first executes a ‘delete’ operation as above, then appends a new version marked with
appropriate time attributes, Therefore, each ‘replace’ operation in a temporal relation inserts two new
versions. This scheme has a bigh overkead in terms of space, but captures the history of retroactive and
postactive changes completely. In addition, all modification operations for rollback and temporal relations
in this scheme are append only, so write-once optical disks can be utilized. A more detailed discussions of

these operations may be found elsewhere [Snodgrass 1985].

The prototype was constructed in about 3 person-monaths over a period of a year; this figure does
not include familiarization with the Ingres internals or with TQuel. Most of changes were additions,

increasing the source by 2,900 lines, or 4.9 % (our version of Ingres is approximately 58,800 lines long).

5. Benchmarking the Prototype

We define the update count as the number of update operations for a tuple, and the average updale
coun! for a relation as the average of the update counts over all tuples in the relation. We bypothesized
that, as the average update count increases, performance of our piototype with conventional access

methods would deteriorate rapidly not only for temporal but also for static queries. We postulated the

major factors to affect the performance of a temporal DBMS were the type of a database, the query type,

the access methods and loading factors used, and the update count.

A benchmark was run to confirtn these hypotheses in various situations, and to determine the rate of
performance degradatiop as the average update count increases. This section describes the details of the

benchmark, presents its results, and analyzes the performance data from the benchmark.

5.1. The Benchmark

To compare performance on different types of databases, we needed test databases of all four types
described in Section 2. For each of the four types, we created two databases, one with a 100 % loading
factor and the other with a 50 % loading factor. As the sample commands for 3 temporal database in
Figure 3 show, each database contains two relations, Type_h and Type_i, where Type is one of Static,
Rollback, Historical, and Temporal. Typc_h is stored in a hashed file, and Type_i is stored in an ISAM
file. The loading factor of the files are specified with the fillfacior paramef,er in a ‘modify’ statement

[Woodfill et al. 1981].

create persistent interval Temporal_h (id = i4, amount = i4, seq = i4, string = c96)
modify Temporal_h to hash on id where fillfactor = 100

create persistent interval Temporal_i (id = i4, amount = i4, seq = i4, string = c96)
modify Temporal_i to isam on id where fillfactor = 100

Figure 3: Creating a Temporal Database

Each relation has 108 bytes of data in four attributes; id, amount, #¢g and string. Id, a four byte
integer, is the key in both relations. Amount and siring are randomly generated as integers and strings
respectively, and seq is initialized as zero. In addition, historical and rollback relations carry two time
attributes, while temporal relations contain four time attributes. The transaction eiart and valid from
attributes are randomly initialized to valués between Jan. 1 and Feb. 15 in 1980, with Iranssction stop
and valid lo attributes set to “forever” indicating that they are the current versions. The evolution of

these relations will be described shortly.

Each relation is initialized to have 1024 tuples using a copy statement. The page size in our proto-
type is 1024 bytes. With 100 % loading, there are 9 tuples per page in static relations, and 8 tuples per
page in rollback, historical, or temporal relations. Therefore, we need at least 114 pages for each static
relation, and 128 pages for each of the others. The actual size depends on the database type, the access

:hethod, the loading factor, and the average ypdate count.

Twelve sample gueries with varying characteristics comprise the benchmark as shown in Figure 4.
These queries were chosen in an attempt to exercise the access methods available in Ingres, to isolate the
eflects of various TQuel clauses, and to demonstrate the possibility of performance enhancement. The

pumber of output tuples were kept constant regardless of update count, except for queries Q01, Q02 and

Q12

Q01 retrieves all versions of a tuple {version scan) from a hashed file given a key. Q03 is a rollback
query, applicable only to rollback and temporal databases, retrieving the state of a relation as of some
moment in the past. Q05 retrieves the most recent version of a tuple from a hashed file given a key,
while Q07 retrieves the most recent version of a tuple from a hashed file without a key, resulting in a
sequential scan of the whole file. Queries Q02, Q04, Q06 and Q08 are counterparts of Q01, Q03, QO5,
and QO7 respectly, where the even numbered queries access an ISAM file and the odd numbered access a
hashed file. Both Q09 and Q10 join current versions of two relations; Q09 goes through the primary

access path of a hashed file and Q10 goes through an ISAM file.

Queries Q05 through Q10 all refer to only the most recent versions. They are termed siatic queries
in the sense that they retrieve the current state of a database as if from a static database. For a static
database, the ‘when’ clause in these queries are neither necessary nor applicable, For a rollback database,

we use an a# of clause instead of the when clause. For example, when z overlap “now’’ will become as of

1¥

“now’’,

Q11 is a query involving a femporal join, a join of two tuples based on temporal information. In
this query, the ‘as of’ clause speciﬂ& the rollback operation shifting the reference point to a past moment,
the ‘when’ clause specifies a temporal relationship between tuple versions, and the ‘valid' clause deter-

mibes values of time attributes in the result tuples. Q12 contains all types of clauses in TQuel, inquiring

range of b is temporal_h /* 1024 tuples, bashed on id =/
range of i is temporal_i /* 1024 tuples, ISAM on id */

Q01 : retrieve (h.id, b.seq)

where h.id = 500
Q02 : retrieve (i.id, i.seq)

where i.id = 500

Q03 : retrieve (h.id, h.seq)

asof “08:00 1/1/80"
Q04 : retrieve {i.id, i.seq)

asof ‘‘08:00 1/1/80""

Q05 : retrieve (b.id, h.seq)
where bh.id = 500
when b overlap “now”
Q06 : retrieve (i.id, i.seq)
where i.id = 500
when i overlap “now”’

Q07 : retrieve {h.id, h.seq)
where b.amount = 69400
when h overlap "‘now”
QO8 : retrieve (i.id, i.seq)
where i.amount = 73700
when i overlap “now”

Q09 : retrieve {h.id, i.id, i.amount)

where h.id = i.amount

when h overlap i and i overlap “now’’
Q10 : retrieve (i.id, h.id, h.amount)

where i.id = h.amount

when h overlap i and h overlap “now”

Q11 : retrieve (h.id, bseq, i.id, i.seq, i.amount)
valid from start of h toend of i
wher start of h precede i

| asof *4:00 1/1/80"

Q12: retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid - from start of (b overlap i) to end of (b extend i)
where h.id = 500 and i.amount = 73700
when h overlapi
asof ‘‘now”

Flgure 4: Benchmark Queries

the state of a database as of ‘nou’’ given both temporal and non-temporal constraints. Obviously, Q11

and Q12 are relevant only for a temporal database.

These twelve queries were run on each of eight test databases as described earlier; two datzbases,

with the loading factor of 100 % and 50 % respectively, for each of Statie, Rollback, Historical, and

Temporal. The benchmark was run on a Vax 11/780, consuming approximately 20 hours of CPU time.
We focused solely on the number of disk accesses per query at a granularity of s page, as this metric is
highly correlated with both CPU time and response time. There are a few pitfalls to be avoided with this
metric. Disk accesses to system relations are relatively independent of the database type or the charac-
teristics of queries, but more dependent on how a particular DBMS manages system relations. The
number of disk accesses varies greatly depending on the number of internal buflers and the algorithm for
buffer management. To eliminate such influiences, which are cutside the scope of this paper, we counted
only disk accesses to user relat'ions, and allocated only 1 buffer for each uvser relation so that a page resides

in main memory only until another page from the same relation is brought in.

‘Once performance statistics were collected for all sample queries, we simulated the uaiformly distri-
buted evolution of a database by incrementing the value of seg atiribute in each of the current versions.
The time attributes were appropriately changed for this ‘replace’ operation using the defaglt of valid from
‘“mow’’ to ‘forever'’ as described in Section 4. Thus a new version (two new versions for temporal rela-
tions) of each tuple is inserted, and the average update count of the database is increased by one. Perfor-
mance on the sample queties were measured after determining the size of each relation appended with new
versions. This process was repeated until the average update count reached 15, which we believed high

enough to show the relationship between the growth of 1/O cost and the average update count.

5.2, Performance Data

Space requirements in various databases were measured as the average update count ranged from 0
to 15, which is useful for analyzing the I/O cost measured in the .benchmark. Figure 5 shows the data for
the average update count of 0 and 14 along with the growth per update and the growth rate which is
obtained by dividing the growth per update by the size for the update count of 0. The rollback and the
historical databases have the same space requirementa. The temporal databaée consumes the same
amount of space as rollback and historical databases for the update count of 0, but requires almost twice
the additional pages as the update count increases according to the embedding scheme described in Sec-

tion 4. The growth per update for a hashed file varies slightly owing to key collisions in hashing.

Type Static Rollback Historical Temporal
Loading []100 % | 50 % 100 % 50 % 100 % 50 % 100 % 50 %

Relation HillHi{il{ H I H 1 H 1 H | H 1 H 1
Size, UC= 0|h66 115 (257]250(| 120] 120] 257 259|| 120] 120] 257| 280l 120] 120| 257 230
size, UC=14]| -] -| -l -Jl1927] 1921} 2048] 2051)| 1927] 1921} 2048} 2051!|3717| 3713] 3830| 3843
-G%’;’;:tfe’ |2l - hos.4f128.0(127.9]128.0()t28.4]128.0] 127.0] 128.0lp56 3| 256.0|255.9|256.0

Growth || [t | I 4] 1] os] os|| 1l 1| os] osllies] 2] 1} 1

Rate
Notes :

Relation H is a hashed file.
Relation I is an ISAM file.
‘UC"* denotes Update Count.
‘=’ denotes not applicable.

Figure 5: Space Requirements {in Pages)

I/O costs for sample queries on each database was measured as the average update count increased
from 0 to 15. Output costs result froﬁ storing temporary relations, which remain constant because thé
size of temporary relations stays the same for the sample queries regardless of the update count. Since
they are pegligible compared with the input costs, being 56 pages for Q09 and Q10 each, 4 pages for Q12,
and O for the others, we concesntrate on the analysis of the input costs. Figure 6 shows the input costs for

the temporal database with 100 % loading.

Update Il o | y |2 P3| 4 5 6 7 8 9 10 |11 12]131]14]15
Count
Qo1 1] 3] s] 7 ol 1] 3] 15f w7y 1s| 21| 23] 25| 27f 20 3
Qo2 2 4] 8] s8] 10| 12f 14 18] 18] 20| 22| 24! 28] 28 30 32

Qo3 129! 387) 645] 903| 1153| 1411] K866} 1927| 2177| 2435| 2663 2051 3201; 3459 3717| 3975
Qo4 128] 384| 840 808] 1152| 1408| 1684 1920| 2176 2432| 2688 2044| 3200| 3456| 3712 3968
Q05 1 3 5| ¢ ¢ 11 13 15 17 19 21 23| 25 27 20 31
Qo6 2 4 8] 8 10 12 14 16 18] 207 221 24| 26f 28 30 32
Qo7 1291 387 645]| 903| 1153| 1411] 1860] 18271 2177 2435| 2693 2951] 3201| 3459 3717} 3075
Qo8 128] 384) 640! 896| 1152 1408 1664] 1920) 2176 2432| 2688| 2044 3200| 3456; 3712 3968
Qo9 1200)3512{5818 812010386 | 12600 114994 {17298 | 10564 | 21868 |24172|26476 2874231045 [33350 35654
Q10 2233|4539 (6845[9151 [1144013755 |16061 | 18387 | 20665 [22071 {25277 | 27583 | 20881 | 32187 {34493 | 36709
Q1 38511551925 2695 3457| 4227] 4997 5767] 6529) 7200] 8069; 8839| 9601 (10371[11141]116¢1
Qi2 131] 38¢) 647 905| 1163| 1421 1679| 1937| 2105| 2453} 2TH1| 2069 3227] 3485| 3743| 400!

Figure 6: Input Costs for the Temporal Database with 100 % Loading

10

Similar tables, a total of B, were obtained for each database of different types and loading factors.
We summarize the input cost for sample queries on various databases with the average update count of 0

and 14 in Figure 7.

Type Static Rollback Historical Temporal
Loading {}100 % (50 % || 100 % 50 % 100 % 50 % 100 % 50 %
Uuc jucC Uuc | uc UcC uc uc UcC

Query ' 0" | o lo | 14 ot 14 Hol 1a ot 14alo) el o] 14

Qo1 2 1 1 15 1 8 1 15 1 8 1 29 1 15
Qo2 2 3 2 16 3 10 2 16 3 10 2 30 3 17
Q03 - - 129 1927 | 257| 20481 - - - - 129) 3717 257] 3839
Q04 - - 1281 1920 256| 2048 - - - - 128§ 37121 256| 3840
Q05 2 1 i 15 1 8 1 15 1 8 1 29 1 15
Qo6 2 3 2 16 3 10 2 16 3 10 2 30 3 17

Qa7 166 | 257 (| 1291 1927 257| 2048|f 129 1927] 257 2048]| 129 3717} 257| 3839
Qo8 114 | 2561 1281 1920 | 256| 2048(| 128} 1920 256| 2048 128 3712 256| 3840
Qo9 1585 | 1276 [11141 (1724211271]10240})1197 [17298 | 1327 | 102961200 133350 | 1333 | 19256
Q10 2214 | 3329 [12177 {18311 | 332012288 12233 | 18367 [3385 | 12344 |2233 1 34493 | 338521303

Q11 - - - - - - - - - - 385111141 769111519
Q12 - - - — — - — - - - 131 | 3743) 259] 3857
Notes :

‘U C" denotes Update Count.
‘' denotes not applicable.

Figure 7: Number of Input Pages for Four Types of Databases

Figure 7 shows that the roliback and the historical databases exhibit similar performance, while the
temporal database is about twice more expensive than rollback and historical databases for the update
count of 14, If we draw a graph for the input cost shown in Figure 7, we get Figure 8 (a). Figure 8 (b) is
a similar graph for the rollback database with 50 % loading, showing jagged lines caused by the odd pum-

bered updates filling the space left over by the previous updates before adding overflow pages.

5.3. Analysis of Performance Data

The graphs in Figure 8 show that input cost increases almost linearly with the update count, but
with varying slopes for different queries. A question is whether there are any particular relationships
independent of guery types between the input cost and the average update count, and between the input

cost and the database type. To answer this question, we now analyze how each sample query is processed,

11

Input ' Input

Pages) Pagesh
0
- Qo0
30000} 10500)
20000 7000
Q@
10000 3500
QAT
Q34,7812 /
L L ACRLZSS 4 A In DE2 . .
5 10 15 Update 5 10 15 Update
Count Count
(a) Temporal Database with 100 % Loading {b) Rollback Database with 50 % Loading

Figure 8: Graphs for Input Pages
and identify the dominant operations which can characterize each query.

Though queries Q01 and Q05 are functionally different from each other, one for the version scan and
the other for a siatic guery, our prototype built with conventional access methods uses the same mechan-
ism to process them. Both queries are evaluated by accessing a hashed file given a key {hashed access).
Likewise, Q02 and Q06 requires the access to an ISAM file given a key {ISAM access]. Queries Q03, QU4,

Q_O‘I and QOB all need to scan a file, whether hashed or ISAM (sequential #can).

Processing Q09 first scans an ISAM file sequentially doing selection and projection into a temporary
relation {one variable detechment). It then performs one hashed access for each of 1024 tuples in the tem-
porary relation (tuple substitution). Here the dominant operation is the hashed access, repeated 1024
times. Q10 is similar to Q09 except that the roles of the hashed file and the ISAM file are reversed.

Hence the dominant operation for Q10 is the ISAM access.

Q11 is evaluated by sequentially scanning one file to find versions satisfying the ‘as of’ clause. For
such a version, the other file is sequentially scanned for versions satisfying both the ‘as of’ clause and the

‘when’ clause. Here the dominant operation is the sequential scan. Processing Q12 requires a sequential

12

scan and a hash access to find versions satisfying the ‘where’ clause, then joins them on temporal attri-
butes according to the ‘when’ clause. Since the number of versions extracted for the join is small enough

to fit into one page each, the dominant operation is the sequential scan.

From this analysis, we can divide the input cost into the fized portion and the variable portion. The
fixed cost is the constant portior which stays the same regardless of the update count. It accounts for
traversing the directory in the ISAM, or for creating and accessing a temporary relation whose size is
independent of the update count. The variable cost is defined to be the result of subtracting the fixed
cost from the cost of a query on a database with no update. Qperations contributing to the variable cost

will grow motre expensive as the number of updates on the relation increases.

Now we cap define the growth rate of the input cost on a database with the update count of nas:

Growth Rate,

__ {increase in cost as update count grows from 0 to n)
(variable cost} X (increase in update count)

{cost for update count of n} - (cost for update count of 0)
(variable cost) X n

The growth rate is the key aspect of ap implementation, capturing the performance degradation as the

update count increases. Clearly the ideal would be a growth rate close to 0.

Fixed costs, variable costs and growth rates for sample queries on various types of databases were
calculated, The growth rate was independent of the update count n, as indicated by the linearity shown
in Figure 8. Figure 9 shows fixed cm&, variable costs and growth rates for tample queries on the rollback
and the tempora) databases with the loading factor of 100 % and 50 % each. The historical database
shows the same variable costs and the growth rates as the rollback database, but its fixed costs are the
same as the temporal database, except for Q03, Q04, Q11 & Q12 which are not applicable becauvse they

involve the rollback or historical access.

13

Type ' Roilback Temporal
Loading 100 % 50 % 100 % 50 %
Query Cost (in Pages)|Growth]Cost (in Pages)|Growth{Cost (in Pages)|Growth|Cost (in Pages)|Growth
Fixed| Variable | Rate Eixcd Variable | Rate {Fixed| Variable | Rate |[Fixed| Variable | Rate

Qo1 0 1 1 0 1 0.5 0 1 2 0 1 1
Qo2 1 1 1 2 1 0.5 1 1 2 2 1 1
Qo3 0 129 1 0 257 0.5 0 129 1.99 0 257 1
Q04 0 128 1 0 256 0.5 0 128 2 0 256 1
Q05 0 1 1 0 1 0.5 0 1 2 0 1 1
Q06 1 1 1 2 1 0.5 1 1 2 2 1 1
Qo7 0 129 1 0 257 0.5 1] 129 1.99 0 257 1
Qo8 0 128 1 0 256 0.5 0 128 2 0 256 1
Qo9 o] 141 1.01 o 1271 0.5 561 1141 2.01 56| 1277 1
Q10 |}1024] 1153 1 2048] 1281 0.5 |{1080) 1153 2 2104 1281 1
Qi || - - - |- - - o] 38 |2 o| 769 1
Q12 - - = - - = 2 129 2 2 257 1

Note : ‘- denotes no!l applicable.

Figure 9: Fixed Costs, Variable Costs and Growth Rates

Rather surprisingly, the growth rate turned out to be independent of the query type and the access’
method as far as access methods of sequential scan, hashing or ISAM are concerned. It was, however,
dependent on the database type and the loading factor. For example, the growth rates for operations
such as sequential scan, hashed access, and access of data pages in ISAM are all 2.0 in case of a temporal
database with 100 % loading. On the other hand, the growth rates for similar operations are approxi-

mately 0.5 in case of a rollback or a historical database with 50 % loading.

From these analyses, we can make several observations as far as access methods of sequential scan,

hashing or ISAM are concerned.

e The fixed and the variable costs are dependent on the query type, the access method and the
loading factor, but relatively indeperdent of the database type.

¢ The growth rate is approximately equal to the loading factor of relations for rollback or histori-
cal databases.

¢ The growth rate is approximately twice the loading factor of relations for temporal databases.
o The growth rate is independent of the query type and the access method.
The fact that the growth rate can be determined given the database type and the loading factor

without regard to the query type or the access method has a useful consequence. From the definition of

the growth rate, we can derive the following formula for the cost of a query when the update count is n.

14

Cost for updale count of n
= {cost for updaie count of 0) + (growth rate) X (varioble coat) X (n)
== {fized cost) + (variable cost) + {growth rate) X (variable cost) X (n)

== (fized coat) + (variable cost) X [1 + (growth rate}) X n}

Therefore, when the cost of a query on a database with the update count of 0 is known and its fixed por-
tion is identified, it is possible to predict future performance of the query on the database when the
update count grows to n. Note that the fixed cost, and hence the variable cost, can even be counted by

the system, except when the size of a temporary relation varies greatly depending on the update count.

54 Non-uniform Distribution

Thus far, we have assuxhed uniform distribution of updates where eack tuple will be updated for
equal number of times as the average update count increases. Since the assumption of upiform distribu-
tion may appear rather idealistic, we also ran an experiment with a non-uniform distribution. To simu-
late 2 maximum variance case, only 1 tuple was updated repeatedly to attain a certain average update
count. We measured performance of queries on the updated tuple and on any of remairing tuples, then
averaged the results weighted by the number of such tuples. Since it takes O(n?) page accesses to update
a single tuple for n times, owing to the overfiow chain ever lengthening, we repeated the process only up

to an update count of 4, which was good enough to confirm our subsequent analysis.

Performance of a query is highly dependent upon whether the tuple participating in the query has
an overflow chain or not. We hypothesized that updating tuple-s with a high variance would affect the
growth rate significantly, owing to the presence of long overfiow chains for some tuples and the absence of
such chains for others. However, the growth rate averaged over all tuples turned out to remain the same
as the uniform distribution case. For example, if we update one tuple in a temporal relation 1024 times,
the average update count becomes one. For a query like QO01, a hashed accés to any tuple sharing the
same page as the changed tuple costs 257 page accesses, while a hashed access to any tuple residing on a
page without an overflow costs just one page access. Therefore, the average cost becomes three page

accesses, the same as the uniform distribution case.

15

We may extend this result to a more general case. If the number of primary pages is z %ith 100 %
loading, there will be approximately £z overfliow pages for the average update count of one in a temporal
relation. Let y be the number of primary pages which have overflow pages, and z be the number of pri-

mary pages which do not have an overflow, with y + 2= 2. Since the average length of overflow chains

is -?y-i pages, the average cost of a hashed access to such a relation will be :

yx(2—:+1)+zx1
iz o4

y+z_3
z

-+

H e

. 22
¥

showing the same result as the more restricted case discussed above.

This reasoping can be generalized for other database type, access method, loading factor, query
type, and update count in a similar fashion. Now one more observation about the growth rate can be
added.

e The growth rate is independent of the distribution of updated tuples.
We conclude that the results from the benchmark we ran under the assumption of uniform distribution

are still valid for any other distribution.

8. Performance Enhancement

As the results of the benchmark indicate, sequential scans are expensive. Access methods such as
hashing and ISAM also suffer from rapid degradation in performance due to ever-growing overflow chains.
Reorganization does not help to shorten overflow chains, because all versions of a tuple share the same
key. |

Since lower loading reduces the number of overflow pages in hashing and ISAM, it results in a fower
growth rate. Hence better performance is achieved with a lower locading factor when the update count is
high. But there is an overhead for maintaining a lower loading factor, which may cause worse perfor-
mance than a higher.loading when the update count is low. Lower loading requires more space for pri-
" mary pages. Scanning such a file sequen'tially (e.g. for query QO7 or QU8) is more expensive. Especially

for ISAM, lower loading requires more directory pages, which may increase the height of the directory.

18

For example, query Q10 for the update count of 0 in Figure 10 reads in 3385 pages with 50 % loading,
significantly bigher than 2233 pages with 100 % loading.

We conclude that access methods such as hashing or ISAM are not suitable for s database with a
large update count. There are other access methods that adapt to dynamic growth better, such as B-trees
{Comer 1979], dynamic hashing [Larson 1078], extendible hashing [Fagin et al. 1079 or grid files [Niever-
gelt & Hinterberger 1984]. But these methods require complex algorithms and significant overhead to
maintain gertain structures as new records are added. Furthermore, a large number of versions for some
tuples will require more than a bucket for a single key, causing similar problems exhibited in conventional
hashing and ISAM. It is also difficult to maintain secondary indices for these methods, which often split a
bucket and rearrange records in it. New storage structures and access methods tailored to the particular

characteristics of temporal databases are needed to enhance performance significantly.

Databases with temporal support maintain both the current and the history data on line. But the
current and the history data exhibit clear differences in their characteristics, such as the number of ver-
sions, storage requirements, access frequency and update patterns. These differences make it natural to
divide them into two and process them separately exploiting their unique characteristics. Therefore, we
adopt a twe level store with two storage areas to separate history data from current data. The primary
store contains current versions which can satisfy all non-temporal quefies and poesibly some of frequently
accessed history versions. The history sfore holds the remaining history versions [Ahn 1986]. This scheme
to separate current data from the bulk of history data can minimize the ovethead for non-temporal
queries, and at the same time provide a fast access path for temporal queries.

In addition, queries retrieving records through non-key attributes (c.g. Q07 and QOR) can be facili-
tated by secondary indezing. There are several alternative structares for a secondary index on a refation
with multiple versions. The index may be stored into a single file for all the versions (I level), or may
itsell be maintained as a 2-level structure having a current index for current data and s history index for

history data. In each case, any storage structure such as s heap, hashing or ISAM may be chosen for the

index.

17

Figure 10 shows the estimated input cost for the sample queries on the temporal database with the
two level store and the secondary indexing. The advantage of the two level store is evident in processing
static queries suck as QO5 through Q0. The cost remains constant for any update count. As shown
under the column Simple in Figure 10, Q10 on the temporal database with the update count of 14 costs
2233 pages instead of 34493 pages. Version scan (Q01 and QO02) can also be improved by clustering his-
tory versions of the same tuple into a2 minimum pumber of pages, e.g. 28 history versions into 4 pages as

the column Clusiered in Figure 10 shows.

Conventional 2-Level Store for Update Count = 14
Query Update Count . Indexed on amount
- 0 14 Simple | Clustered as 1-Level as 2-Level
. as Heap as Hash |_as_ Heap as Hash

Qo1 1 29 - 8§ - - - -
Qo2 2 30 - 6 - - - -
Qo3 120 8717 - - - - - -
Qo4 128 3712 - - - - - -
Qo5 1 2 | 1 - - - - -
Qo6 2 30 2 - - - - -
Qo7 129 3717 129 - 324 30 12 2
Qo8 128 3712 128 - 324 30 12 2
Qoo || 1200 33350 1200 - - - - -
Q10 || 2233 34493 2233 - - - - -
Q1 385 11141 - - - - - -
Q12 131 3743 - - - - - -

Note : ‘-’ denotes same ag Lhe left adjacent column.

Figure 10: Improvements for the Temporal Database

Columns under a# I-Leve! in Figure 10 show the estimated input cost when an index is maintained
as a single file on the amount attribute for the temporal relation. The index needs eight bytes for each
entry, four for the secondary key and four for a tuple id, and hence can store 101 entries in a page of 1024
bytes. Since there are 20 versions Imultiplied by 1024 tuples, 295 pages are needed for the index. If we
store them in a heap, 324 pages, 205 index plus 29 data pages, are accessed to evaluate QO7. This is in
fact more expensive than the simple 2-level store without any index, though better than the conventional
structure itself. If we use hashing for the index, the cost is reduced to 30 page accesses with 1 index page

and 29 data pages.

18

If we use the 2-level indexing with a separate index for current data, there are only 1024 entries in
the index, requiring 11 index pages. QO07 costs 12 pages with a heap index, while it costs only 2 pages
with a bashed index, as shown in columns under a2 2-Level in Figure 10. Note the difference between

3717 pages and 2 pages for processing the same query.

7. Summary

We built a prototype of a temporal database management system by extending the static DBMS
Ingres. It supports the temporal query language TQuel, a superset of Quel, handling all four types of
databases; static, rollback, historical and temporal. A benchmark with a set of queries was run to study
the performance of the prototype on the four types of databases witl_l two loading factors. We analyzed
the results of the benchmark, and identified major factors that have the greatest impact on the perfor-
mance of the system. As far as the access methods of sequéntia.! scan, hashing or ISAM are concerned, the
growth rate is determined by the database type and the loading factor, but independent of the query type,
- the access method, or even the distribution of updated tuples. A formula was obtained to estimate the
cost of a query on a database with multiple temporal versions, when the cost of a query on a database
with a single version is known and its fixed portion is identified. We also discussed possible performance

enhancements using two-level storage structures and secondary indexing mechanisms tailored for data-

bases with temporal support.

19

8. Bibllography

[Ahn 1986] Ahn, I. Towarde an Implementation of Dotabaee Management Systems with Temporal Support.
In the Second Internationsl Conference on Data Engineering (to appear), Feb, 1986,

|[Ammon et al. 1985 Ammon, G., J. Calabria and D. Thomas. A High-Speed, Large-Capacity, Jukeboz
Optical Disk System. IEEE Computer, 18, No. 7, July 1985, pp. 36-46.

[Ariav & Morgan 1982] Ariav, G. and H. L. Morgan. MDM: Embedding the Time Dimension in Informa-
tion Systems. Technical Report 82-03-01. Department of Decision Sciences, The Wharton School,
University of Pennsylvania. 1982.

[Ariav 1984] Ariav, G. Preserving The Time Dimension In Information Systems. PhD. Diss. The Wharton
School, Uriversity of Pennsylvania, Apr. 1984.

[Bolour et al. 1982] Bolour, A., T.L. Anderson, L.J. Debeyser and HK.T. Wong. The Role of Time in
' Information Processing: A Survey. SigArt Newsletter, 80, Apr. 1082, pp. 28-48.

[Bubenko 1976] Bubenko, J. A., Jr. The temporal dimension in information modeling. Technical Report
RC 6187 #26479. IBM Thomal J. Watson Research Center. Nov. 1976.

[Comer 1879] Comer, D. The Ubiguitous B-tree. Computing Surveys, 11, No. 2 (1979} pp. 121-138.

{Copeland 1982] Copeland, G. What If Mass Storage Were Freef. Computer, 15, No. 7, July 1982, pp. 27-
35.

[Copeland & Maier 1984} Copeland, G. and D. Maier. Making Smalltalk s Database System. In Proceed-
ings of the Sigmod ‘84 Conference, June 1984 pp. 316-325.

[Fagin et al. 1979] Fagin, R., J. Nievergelt, N. Pippenger and H. Strong. Ezlendible Hashing - A Fas!
Access Method for Dynamic Filee. ACM Transactions on Datgbase Systems, 4, No. 3, Sep. 1979,
pp. 315-344.

[Fujitani 1984] Fujitani, L. Leser Optical Disk: The Coming Revolution in On-Line Storage. Communica-
tions of the Aesociation of Cornputing Machinery, 27, No. 8, June 1984, pp. 546-554.

[Held et al. 1975] Held, G.D., M. Stonebraker and E. Wong. INGRES--A relational data base mansgement
system. Proceedings of the 1875 National Computer Conference, 44 (1975) pp. 409-416.

[Hoagland 1985] Hoagland, A. Information Storage Technology : A Look at the Future. IEEE Compuler,
18, No. 7, July 1985, pp. 60-67.

‘[Jones et al. 1979] Jones, S., P. Mason and R. Stamper. LEGOL £.0: a relational specification language for
complez rules. Informetion Systems, 4, No. 4, Nov. 1979, pp. 203-305.

[Katz & Lehman 1984] Katz, R. and T. Lehman. Dalabase Support for Versions and Alternatives of Large
Design Filee, IEEE Transactions on Software Engineering, SE-10, No. 2, Mar. 1984, pp. 191-200.

[Larson 1978] Larson, P. Dynamic Hashing. BIT, 18 (1978) pp. 184-201.
[Lum et al. 1984] Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and J.

Woodfill. Designing DBMS Support for the Temporal Dimension. In Proceedings of the Sigmod '84
Conference, June 1984 pp. 115-130.

[Nievergelt & Hinterberger 1984] Nievergelt, J. and H. Hinterberger. The Grid File: An Adaptable, Sym-
metric Multikey File Structure. ACM Transactions on Database Systems, 9, No. 1, Mar, 1984, pp.

38-71.

[Schueler 1977] Schueler, B. Update Reconsidered. In Architecture and Models in Date Base Management
Systems. Ed. G. M. NijssenNorth Holland Publishing Co., 1977.

[Snodgrass 1984] Snodgrass, R. The Temporsl Query Language TQuel. In Proceedings of the Third ACM
SIGAct-SIGMOD Symposium on Principles of Database Systems, Waterloo, Ontario, Canada: Apr.

1684 pp. 204-212.

[Snodgrass 1985) Snodgrass, R. A Temporal Query Language. Technical Report 85-013. Computer Science
Department, University of North Carolina at Chapel Hill. May 1985.

[Srodgrass & Ahn 1985] Snodgrass, R. and 1. Ahn. A Tazonomy of Time in Datsbases. In Proceedings of
the International Conference on Management of Data, ACM SIGMod. Austin, TX: May 1985,

[Snodgrass & Ahn 1986] Snodgrass, R. and . Abn. Temporal Databsses. In IEEE Computer (to appear),
1986.

{Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and Implementa-
tion of INGRES. ACM Transactions on Database Systeme, 1, No. 3, Sep. 1976, pp. 189-222.

[Svdbodova 1981} Svobodova, L. A reliable object-oriented data depository for o distributed computer. In
Proceedings of Sth Symposium on Operating Systeme Principles, Dec. 1981 pp. 47-58,

[Wiederhold 1984] Wiederhold, G. Databases. IEEE Computer, 17, No. 10, Oct. 1984, pp. 211-223.

[Woodfill et al. 1881] Woodfill, J., P. Siegal, J. Ranstrom, M. Meyer and E. Allman. Ingres Reference
Menual, Version 7 ed. 1981.

t) |

