
Formatting Texts Accessed Randomly

TR85-031

November, 1985

John B. Smith and Stephen F. Weiss

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall, 083A
Chapel Hill, NC 27599-3175

A TextLab Report

UNC is an Equal Opportunity/ Affirmative Action Institution.

Pormattmg Texts Aeceued Randomly

Introduction

Storing, retrieving, and displaying text are increasingly important computing activi

ties. Co=ercial full-text databases now range from the research literature for chemistry

[American Chemical Society, 1982] to clippings from the popular press [New York Times,

1981], from legal codes [Menanteaux, 1982] to literary works [Morrissey & Del Vigna, 1983].

Because of the novelty of this new resource, users have accepted relatively primitive forms

of textual output. Some services provide data in only uppercase; others offer output that

includes upper and lower case and paragraph indentation. But, no full-text system makes

effective use of today's more sophisticated low-cost output devices, such as laser printers

and graphic terminals.

One could argue that enhanced formatting of data extracted from a full-text database

is not essential-that the new service is so valuable, the user should be glad to have an11

form of output. However, full, accurate formatting is not just aesthetic. Consider the fol

lowing hypothetical situation. Congressmen frequently read into the Congreaaioraal Record

co=ents made by others. While they often quote those who agree with their position,

they sometimes quote those who disagree in order to rebutt or ridicule that person or

that point of view. A full-text search of the CongreB3ioraal Record for passages containing

certain combinations of words could locate a passage quoted by a Congressman that rep

resented a position opposite his own. If the display did not signal through formatting that

the extracted portion was a quotation, instead of the Congressman's own words, the user

could be badly misled. Format information can, thus, contribute to the subnance of a text

as well as to its appearance. However, storing and using format information for full-text

systems that employ random access methods presents several problems.

At the time of display, format information is manifest in the pixel image of the text

or in some other analog form. One could store the actual pixel image of the original text

in the database, but the volume of data required makes this option -impractical as well

as undesirable from the standpoint of search. Normally, format information is stored in

1

the form of commands interspersed through the character stream that represents the text.

Those commands, in tum, activate various functions in a formatting program that operate

on the data and/or the display device. That is, they may activate a shift to an alternative

font, such as Italics, to mark titles or they may activate a shift to the right to mark long

quotations.

Other problems arise from the way in which format information is used. When a

text is processed sequentially, as presumed by virtually all formatting systems, the system

"knows" that it has processed or sent to. the output device all formatting commands

active for the current segment of text. However, when a text is processed randomly, using

some form of indexed or inverted file structure, the system would not process the entire

text sequentially but, instead, would jump directly to the passage identified and begin

processing the text from that point. Thus, it does not "know• whai format commands may

be in effect at that point (e.g., in the middle of a long quotation, an Italicized passage, or a

heading). The system could be instructed to "back-up• to some predefined checkpoint, such

as the beginning of a section, for which no format command would be permitted to span.

But, in general, this approach is restrictive and unpredictable in terms of performance.

For full- text systems that support random access, a more efficient and more predictable

approach is needed. We are currently developing a system, called MICROARRAS, to

provide high-performance search, retrieval, and analysis of textual data. We also want to

support sophisticated output devices. The approach we are taking is to view the set of

format commands as the symbols in a format grammar. The string of format commands

can then be parsed using the grammar to build a data structure that serves both as a parse

tree and as a search tree. While processing a retrieved text segment, the system follows the

rather shallow search tree and pipes out the format commands encountered at each node

to accumlulate the format commands active for that segment. Below, we describe each of

these steps in more detail. To illustrate our approach, we use this article as a sample text

and show the application of these methods to it.

2

Format Commands

For practical as well as theoretical reasons, we view individual format commands as

symbols identifying generic classes of information in a document. That is, a command

that identifies a long quotation signals that fact, not the indentation or other formatting

convention by which the quotation is marked on the printed or displayed page. Thus, the

set of format commands can be viewed as the architectural principles that give physical

form to the textual substance. This perspective has been voiced most strongly in IBM's

General Markup Language in its concept of doc:umer&t architecture [IBM, 1980], but a

similar view is also found in Scribe [Reid, 1980], Microsoft's Word [Microsoft, 1985], and

other more recent formatting systems [Futura, Scofield, &; Shaw, 1982].

Below is the set of high-level generic commands necessary to format this paper plus

a few extras. In most cases, commands come in pairs: the first defines the beginning of

the domain of the operation; the second defines its end. Commands are signalled by a

reserved symbol-in this case the backslash (\).

• Sections:

\body·b

\body·e

\section-b

\section-e

\para

\header-b

\header-e

\ backmatter-b

\ backmatter-e

• Footnotes

\footnote-r

\footnote-b

\footnote-e

3

body of text begin

body of text end

section begin

section end

paragraph

section header begin

section header end

backmatter begin

backmatter end

reference to footnote

footnote begin

footnote end

• Figures:

\figure-b

\figure-e

\figure-body-b

\figure-body-e

\figure-caption-b

\figure-caption-e

• List

\list-num-b

\list-num-e

\list-bul-b

\list-bul-e

\list-b

\list-e

\item-!

\item-r

\item

• Quotes

\quote-long-b

\quote-Iong-e

\quote-short-b

\ quote-short-e

• Production Rules (Special-purpose):

\production-b

\production-e

\production-!

\production-m

\production-r

4

figure begin

figure end

figure body begin

figure body end

figure caption begin

figure caption end

numbered list begin

numbered list end

bulleted list begin

bulleted list end

list begin

list end

item left

item right

item

long quote begin

long quote end

short quote begin

short quote end

production begin

production end

left component

middle component

right component

• Title Page

\ titlepage-b

\ titlepage-e

\title-b

\title-e

\author-b

\author-e

\address-b

\address-e

\date-b

\date-e

• Emphasis

\emphasis-b

\emphasis-e

title-page begin

title-page end

title begin

title end

author begin

author end

address begin

address end

date begin

date end

emphasis begin

emphasis end

From one perspective, these commands are simply macro names and could be im

plemented that way using a number of different formatting systems. However, from a

different perspective no symbol says anything directly about physical appearance. Each

simply identifies, within the text sequence, a category of information or the end of that

category.

One restriction we have imposed is that format domains may be nested but they may

not overlap. The result, then, is a hierarchy of format functions and domains.

Format Grammar

In this section, we introduce a context-free grammar that specifies the set of well

formed formatted texts and formally captures the hierarchical structure imposed by the

format operations. Format operations are the nonterminals; word tokens are the terminals.

(In practice, the parser ignores the text words except to note the position of a format mark
'

5

within the numerical sequence of word tokens.) Note that we use the generic word marker

to rather than actual words in the grammar.

This grammar differs from a traditional context-free grammar in that the right-hand

sides of the productions may contain regular expressions made up of terminals, nontermi·

nals, and special operators.

[x] Material inside the brackets is optional

0

Choice operator: x + y means either x or y. The + operator
has lower recedance than concatenation. Thus a+ be means
either a or be.
Kleene star: operand may appear 0 or more times

Modified Kleene star: operand may appear 0, 2 or more
times.

Shorthand for z followed by z•: one or more occurrence of
%

Shorthand for z:r: followed by z•: two or more occurrences
of z
Parentheses used to define grouping.

While strictly speaking these modified productions are not context-free, they are ac

tually just a notational shorthand for a much larger set of context-free productions that

could have been specified (see Appendix A). Additionally, the modified production rules

allow the grammar to produce a parse tree whose structure more accurately reflects the

true structure of the document. For example, production 9 specifies that a section of the

text can consist of, among other things, an arbitrary number of paragraphs. Figure 1

shows the structure derived for a section comprised of five paragraphs.

\para

6
text

\section-b

\para \para

6 6
text text

Figure 1
Five-Paragraph Section

6

\para \para

~ ~
text text

Generating the same terminal string with purely context-free rules would require pro

ductions such as

\section-b -+ para-seq

para-seq -+ \para para-seq

para-seq -+ \para

Such rules require new nonterminals not directly associated with format operations and

introduce an artificial and spurious hierarchical relationship among the paragraphs that

can be seen in Figure 2.

\section-b

para-seq

~
\para

6.
text

\para

6
text

para-seq

~
para-seq

~
\para

6
text

para-seq

~
\para para-seq

~ I
\para

6
Figure 2

text

Five paragraph section from pure context-free rules

7

Following is a format grammar, using the format commands listed above, adequate to

parse this article.

0. root -+ \text-b \text-e

1. \text-b-+ [\titlepage-b \titlepage-e] \body-b \body-e (\backmatter-b \backmatter-eJ

2. \ titlepage-b -+ \ title-b \ title-e
(\author-b \author-e)*
(\address-b \address-e)*
[\date-b \date-e]

3. \title-b t

4. \author-b -+ t

5. \address-b -+ t

6. \date-b -+ t

7. \body-b \para* (\section-b \section-e)*2

8. \para-+ t

9. \section-b [\header-b \header-e] \para* (\section-b \section-e)"2

10. \header-b t

11. t (w+
\emphasis-b \emphasis-e+
\quote-short-b \quote-short-e +
\quote-long-b \quote-long-e +
\list-b \list-e +
\list-num-b \list-num-e +
\list-bul-b \list-bul-e +
\footnote-b \footnote-e +
\footnote-r +
\figure-b \figure-e +
\production-b \production-e

)*

12. \emphasis-b t

13. \quote-short-b-> t

14. \quote-long-b t \para*

15. \list-b \item+2

8

16. \list-num-b --+ \item+2

17. \list-bul-b--+ \item+2

18. \item--+ t + \production-b \production-e
+ \item-1 \item-r

19. \item-1 --+ t + \production-b \production-e

20. \item-r --+ t + \production-b \production-e

21. \footnote-r --+ literal

22. \footnote-b --+ t \para*

23. \figure-b--+ \figure-body-b \figure-body-e \figure-caption-b \figure-caption-e

24. \figure-body-b --+ literal

25. \figure-caption-b --+ t

27. \production-b --+\production-! \production-m \production-r

28. \production-! --+ w+

29. \production-m ---+ "----+"

30. \production-! --+ t

31. \backmatter-b--+ t

32. {any operation}-e --+ e (each scope terminating operator is replaced by the empty

string)

The nonterminal t is not associated with any format operator, but is instead a nota

tional shorthand for the right-hand-side of production 11. In the actual parse tree, t's are

eliminated; the children of each t are lifted and become the children of t's parent node.

The Parse/Search 'bee

Figure 3 shows the parse tree associated with the second paragraph of the next section

(beginning "Assume that we are searching •.. "). Contiguous strings of word tokens are

indicated using elipses. The parse tree serves four distinct and uselul roles. First, the

tree indicates the structure and well-formedness of the text with respect to the format

9

operations. Second, a left to right scan of the leaves of the tree yields the text without

format operations. Third, a pre-order traversal of the tree yields the complete text with

format operations in place. And finally, with the addition of some search information

at each node, a top to bottom scan of a path in the tree from the root to an arbitrary

word w will recover all the formatting operations that apply to w. Since the height of the

parse tree is typically proportional to the logarithm of its number of leaves, recovering the

formatting environment in this way is far faster than a sequential scan from the beginning

of the text.

Of the four capabilities, only the first and fourth are important. The text file is a

far more efficient source of running text (with or without format operations), and we will

assume the availability of such a file. Thus, we will use the parse tree only for determining

well-formedness and for recovering the formatting environment for an arbitrary token in

the text. For these applications we need not actually store the word tokens in the parse

tree. Instead, we represent individual word tokens by a pointer into the sequential text file.

Strings of contiguous tokens are represented by a pointer to the beginning of the string in

the sequential text file and an integer indicating the length of the string. This provides

for a very compact representation of text strings and greatly reduces the size of the parse

tree. Figure 4 shows the tree from Figure 3 represented this way. (Appendix B shows the

paragraph printed in list form.)

Figure 5 shows the simple parse tree into which search information has been added.

Two numbers are associated with each node. The first is the linear position in the text

of the first token within the domain of the operation associated with that node. The

second is the number of tokens within the domain. Empty domains, for operations such as

\emphasis-e, have zero length. Thus, in the example, the domain of \para is from token 1

through token 187; the domain of the first \emphasis-b is token 16; and \emphasis-e has

a.n empty domain.

Since the parse/search tree will not be used for text reconstruction, it need not actually

contain contiguous blocks of text nor operations with empty domains: Figure 6 shows the

tree from previous figures as it is actually stored.

10

Assume ... position \emphasis-b \emphasis-e in ... halts. \list-num-b \list-nom-e

p

\item \item \item \item

If ... node.] Scan ... position \emphasis-b \emphasis-e • ... contains ~mphasis-b \emphasis-e •] output, , . operation. Repeat ... position. \emphasis-b \emphasis-e .)

p p p

Figure 3
Parse of a paragraph with embedded emphasis and numbered list

1,15 \emphasis-b \emphasis-e 17,32 \Jist-num-b \list-num-e

/
!6,! \item \item \item \item

49,34 83,20 \emphasis-b \emphasis-e 104,46 \emphasis-b \emphasis-e 151,2 153,5 158,27 \emphasis-b \emphasis-e 186,2

103,1 150,1 !85,1

Figure 4
Parse of a paragraph with text replaced by pointers.

1,15 \emphasis-b

/'"'
16,1

49,34

, \item
49,34

83,20

\emphasis-e
17,0

\emphasis-b \emphasis-e
,103,1 104,0

103,1

17,32

104,46 \emphasis-b \emphasis-e 151,2
,150,1 151,0

150,1

Figure 5
Parse of a paragraph with search information added.

\list-num-e
188,0

153,5 158,27 \emphasis-b \emphasis-e 186,2
,185,1 186,0

185,1

\emphasis-b
16,:!.

\item
49,34

\emphs.sis-b
103,1

\emphasis-b
150,1

Figure 6
Parse tree as it is actually stored

\item
153,5

\item
158,30

\emphasis-b
185,1

Search Algorithm

Recovering the format environment for a particular token in the text requires a top

to bottom scan of the tree. In describing the algorithm, we use the term current node to

refer to the node currently being examined; the current operation is the format operation

associated with the current node.

Assume that we are searching for the format environment for the token at position

p in the text. Initially, the current node is the root of the search tree. We search by

repeating steps 1, 2, and 3 until the algorithm halts.

1. If the current node has no children, halt. If the current node has children, then

_ descend to its eldest child. [This child now becomes the current node.]

2. Scan the current node and its siblings, left to right, looking for an operation whose

domain includes position p. If such a node is found, make it the current node; if

not, stop. [Operations have been defined so that domains can be nested but cannot

overlap; therefore the domain of at most one of the siblings will contain p.]

3. Output the current operation.

4. Repeat the prdcess. [When the algorithm stops, the string of operations sent to the

output comprise the format environment for the word at position p.]

If, for example, we search Figure 6 for the formatting environment of the token at

position 103, we would visit six nodes of the tree: the root; the two nodes at the next level;

the first two children of \list-num-b; and the first child of the second item. The operations

encountered along the direct path from the root to token 103 comprise the formatting

operations that apply to this token. Specifically, the token at position 103 is emphasized

within the second item of a numbered list within a paragraph.

The Parse Algorithm

The parsing algorithm constructs the appropriate parse/search tree from a well-formed

sequential string of tokens (words and format operators). For non-well-formed strings, it

11

provides appropriate diagnostics. This process differs from the general context-free parsing

problem in that the input string contains both terminals (words) and nonterminals (format

operators) rather than just terminals. The input is in essence the linearized preorder

traversal of the parse tree; the parser's job is, thus, to reconstruct that tree.

We will give only general information about the parser here. Essentia.lly, the parser

is a deterministic push down automaton (PDA) with two states, p and q. The machine's

stack holds a set of goals that must be satisfied in order for the text to be well-formed. As

the text is scanned, each token satisfies the current goal and/or causes new subgoals to be

added to the stack.

The PDA starts in state p and puts the initial goal on the stack (root). The machine

then enters state q where it stays for the remainder of the parse. The operation of the

parser is governed by an n x n table, where n is the number of symbols (terminals plus

non-terminals) in the grammar. At any point in its operation, the parser is looking at a

token t from the text and has a goal symbol s at the top of the stack. From the way the

grammar is constructed we know that the table contains exactly one row for t and at most

one column for s. The intersection of row t and column s contains instructions as to what

to do next. These instructions include:

1. An indication as to whether t can lega.lly satisfy (or partia.lly satisfy) s. H not, issue an

error message and stop or perform one of several fix-ups and continue. The possible

fix-ups include adding a token that was expected but not found, deleting a token that

was found but not expected, or a combination of the two. For example, we could

convert an unexpected token into one that was expected. The most common errors

can each be given their own entry in the table. Thus we can perform at each point

the particular fix-up that is most appropriate to the error encountered. Less common

errors produce a general purpose error message.

2. A stack instruction: remove the symbols s11 s2 , ••• , s;, i ~ 0, from the stack and

replace them with the (possibly empty) set of symbols s~, s~, ... , s1 .•
,3

12

3. Instructions for constructing the parse/search tree. These consist of traversal instruc

tions (e.g. create a new child node and descend to it; create a new sibling node and

go to it; or ascend to the parent node) as well as instructions for setting the start

pointer and length field.

4. After the instructions have been executed, move to the next token and repeat the

process.

If we reach the end of the input text and at the same time satisfy all goals (the stack

is empty), then we have a successful parse. If either the input or the stack run out before

the other, then the input is not well-formed. Since there is at most one entry for each

token/goal pair, parsing can be done in a single left to right pass of the input with parse

time proportional to the input length.

Data Structures

The data structure for a node of the tree, shown in Figure 7, contains five fields:

the format operation, two integer fields that define the domain of that operation: its

starting point in the sequential text file and its length; and two pointers that define the

tree structure: one to the node's leftmost child and one to its sibling on the immediate

right. (Pointers are stacked to permit reverse traversal of the tree from any given point.)

This data structure permits very efficient implementation of the operations necessary for

the search: descend to the left-most child and traverse through siblings, left and right. The

data structure also minimizes the number of pointers necessary to implement this n-ary

tree.

operation
domain pointer

start length oldest next
child

Figure 7:

'Iree Node

13

sibling

Since the parser table is quite sparce, it is implemented as a case statement. Each

token/goal pair is a separate case. This structure can be easily modified and expanded

to incorporate new format operations, and it facilitates a simple default error message for

token/goal pairs that are not in the table.

Conclusion

To get a sense of the efficiency of this approach, consider the format tree for this

document. It contains four hundred forty-nine nodes, approximately one node for each

operation used to format the paper. However, it is not really representative of most texts

since three hundred eighty-one nodes come from just two paragraphs containing long lists.

The remainder of the document, more typical of coventional texts, requires only eighty

eight nodes. The maximum path length from the root of the tree to a leafis nine. And while

the number of children of a node is as high as thirty-two in one case (in the list of thirty-two

productions), the average number of children per interior node is 2.5. This means that

recovering the format environment for a particular word requires, on the average, looking

at fewer than twenty nodes. This represents at least two orders of magnitude improvement

over a sequential scan of the text.

This paper is roughly equivalent to one chapter of a book. We expect that for each

order of magnitude increase in text size (for example, from chapter to book, and from

book to collection of books), the format tree will increase by one level. Since the points of

major complexity in the tree tend to be at the lowest levels (for example, in a paragraph

containing a complex list), we expect the average number of children per node to remain

about the same even for large text collections. Hence, the format tree will allow extremely

fast recovery of the format environment for any point, even in a very large collection of

texts.

14

Refereneea

American Chemical Society (1981). User's Guide: American Ch.emical Society Ezperimemal

Full-tezt Primary Journal Databtue. Columbus, Ohio: American Chemical Society.

Futura, R., Scofield, J., & Shaw, A. (1982). Document Formatting Systems. Computing

Surveys 14(3), pp. 417-72.

IBM (1980). Document Composition Facility Generalized Markup Language: Starter Set

Reference. Tucson, Arizona: IBM Corporation, General Products Division, #SH2o-

9187-o.

Microsoft Corporation (1985).Microsoft Word. Bellevue, WA: Microsoft Corporation.

Menanteaux, A.R. (1982). A User's Companion to Westlow and Lexis. Legal Reference

Services Quarterly 2(2), pp. 19-23.

Morrissey, R. & Del Vigna, C. (1983). A Large Natural Language Date Base: American

and French Research on the Treasury of the French Language. Educom 18(1), pp.

to-13.

New York Times (1981). The Information Bank II: BRS/SEARCH Protocol User Guide.

New York: The New York Times.

Reid, B.K. (1980). Scribe: A Document Specification Language and Its Compiler. Pitts

burg, PA: Carnegie-Mellon University Tech. Rep. CMU-cS-81-100.

15

Appendix A

We show in this appendix that the modified context-free rules used in the format

grammar are in fad context-free by showing for each modified production a corresponding

set of context-free productions that has precisely the same effect.

1. A--+ z[y]z is equivalent to A--+ xyz

A--+ xz

2. A -+x+y is equivalent to

3. A--+ x• is equivalent to

4. A--+ x·~ is equivalent to

5. A--+x+ is equivalent to

is equivalent to

A--tel

A--+zA

A-+e

A--+xx

A-xzB

B--> xB

B---+ z

A--+z

A--+ xA

A-+zz

A zzB

B-+z

B--ozB

16

Appendix B

1 Assume current includes
that node position I
we has p Output
are no . the
searching children If current
for J such operation
the haU a .
format . node Repeat
environment If is the

10 for 60 the 110 found 160 process
the current J

token node make ~en at has it
position children the the
p J current algorithm
in then node stops
the descend J J

text to if the
. its not string

20 Initially 70 eldest 120 J 170 of
J child stop operations
the sent
current ~his [. to
node Operat1ons the
is child . have output
the now been comprise
root becomes defined the
of the 80 format
the current that environment

30 search 80 node 130 domains 180 for
tree . can the

I be wol'd
We Scan nested at
search the but position
by current cannot p
repeating node overlap .
steps and J J
1 its therefore
J siblings the

40 2 90 ' 140 domain
, left of
and to at
3 right most
until J one
the looking of
algorithm for the
halts an siblings . operation will
If whose contain

50 the 100 domain 150

17

