
Temporal Databases 

Richard Snodgrass & Ilsoo Ahn 

Department of Computer Science 

University of North Carolina 

Chapel Hill, North Carolina 27514 

August, 1985 

Abstract 

TRSS-027 

Recognizing the need for providing temporal support in database management systems, 

and spurred by the rapid decrease of storage cost in recent years, many authors have 

prop_osed systems incorporating one or more time attributes in the database management 

systems. This paper presents a taxonomy of three times, which defines four types of da­

tabases differentiated by their ability to represent temporal information. An example 

highlights the similarities and differences between the types of databases. A prototype 

implementation is briefly described. 

A preliminary version of the material in the first third of this paper appeared in the 

Proceeding6 of the A CM SIGMOD Conference on the Management of Data [Snodgrass & 

Ahn 1985]. This work was supported by NSF grant DCR-8402339. The first author was 

also supported by an IBM Faculty Development Award. 



Table of Contents 

1. Introduction ...................................................................................................................................... 1 

2. The Taxonomy ................................................................................................................................. 2 

2.1. Static Databases ..................................... :........................................................................... 2 

2.2. Rollback Databases ............................................................................................................. 4 

2.3. Historical Databases ........................................................................................................... 5 

2.4. Temporal Datab¥es ........................................................................................................... 7 

2.5. User-defined time ................................................................................................................ 8 

2.6. An Analogy ......................................................................................................................... 8 

2.7. Summary of the Taxonomy ............................................................................................... g 

3. An Example ...................................................................................................................................... 10 

3.1. Merrie joins as an Instructor .............................................................................................. 11 

3.2. Merrie is promoted to Full Professor ................................................................................ 12 

3.3. A Correction ....................................................................................................................... 15 

3.4. Merrie is promoted retroactively ....................................................................................... 16 

4. An Implementation ........................................................................................................................... 18 

5. Conclusion ......................................................................................................................................... 20 

6. Bibliography ...................................................................................................................................... 21 

1 



List or Figures 

Figure 1: A Static Relation ............................................................................................... 3 

Figure 2: A Rollback Relation ......................................................................................... 4 
Figure 3: Historical Relation ............................................................................................ 6 
Figure 4: A Temporal Relation ............. ·........................................................................... 7 
Figure 5: Types or Databases ........................................................................................... 10 

Figure 6: Attributes or the New Types or Databases ................................................. 10 
Figure 7: Merrie joins as an Instructor .......................................................................... 12 
Figure 8: Merrie is promoted to Full Proressor ........................................................... 13 

Figure 9: A Correction ....................................................................................................... 15 

Figure 10: Merrie is promoted retroactively ................................................................ 17 

n 



1. Introduetlon 

Time is an essential part of information concerning the real world, which evolves constantly. Facts 

or data need to be interpreted in the context of time. Causal relationships among events or entities are 

embedded in the temporal information. Time is a universal attribute in most information management 

applications, and deserves special treatment as such. 

Databases are supposed to model reality, but eonventional database management systems (DBMS's) 

lack the capability to record and process time-varying aspects of the real world, as will be discussed 

further in Section 2.1. With increasing sophistication of DBMS applications, the lack of temporal support 

raises serious problems in many cases. For example, conventional DBMS's cannot support historical 

queries about the past status, let alone trend analysis which is essential for applications such as decision 

support systems JAriav 1984J. There is no way to represent retroactive or postactive changes, while sup-

port for error correction or audit trail necessitates costly maintenance or backups, checkpoints, journals 

or transaction logs to preserve past states. There is a growing interest in applying database methods for 

version control and design management in computer aided design, requiring the capability to store and 

process time dependent data JKatz & Lehman 1984J. Without temporal support from the system, many 

applications have had to maintain and handle temporal information to support such functions in an ad-

hoc manner. 

The need for providing temporal support in DBMS's has been recognized for at least a decade 

JBubenko 1976, Schueler 1977J. A recent bibliography contained about 70 articles relating time and 

information processing JBolour et al. 1982J; at least 30 more articles have appeared in the literature since 

1982. Recently, the rapid decrease or storage cost, coupled having the emergence or promising new mass 

storage technologies such as optical disks /Ammon et al. 1985, Hoagland 1985J, have amplified interest in 

database management systems with version management or temporal support. G. Copeland maintained 

that 

... as the price of hardware continues to plummet, thre!!holds are eventually reached at which these 
compromises /to achieve hardware efficiencyJ must be rebalanced in order to minimize the total cost or a. 
system . ... If the deletion mechanism common to most database systems today is replaced by a non-deletion 
pOlicy ... , then these systems will realise significant improvements in functionality, inte!fity, availability, 



and simplicity. [Copeland 1982[ 

G. Wiederhold also observed, in a. review of the present state of database technology and its future, that 

The availability of ever s-reater and less expensive e:tora~e devices hM removed the impediment that 
prevented keepi~ very detailed or extensive historical information in on-line databases. ... An immediate 
effect or these changes will be the retention of past data versions over lollS' periods. [Wiederhold 1084] 

In the past five years, numerous schemes have been proposed to support temporal information prC>-

cessing in database management systems by incorporating one or two time attributes in the database 

management systems. However, there has been some confusion concerning terminology and the definition 

of these time attributes. In this paper, we describe a taxonomy of time consisting of three distinct time 

concepts for use in databases [Snodgrass & Ahn 1985j. Using the taxonomy, we define four types of data-

bases, differentiated by their ability to support these time concepts and processing of temporal informa-

tion. A series of example transactions highlights the similarities and differences among the four types of 

databases. We also describe a prototype implementation. 

:. The Taxonomy 

In this section we introduce the taxonomy of time for use in databases. Though the following dis-

cussion is based on the relational model, similar arguments also apply to hierarchical or network models. 

We will first discuss static databases, focusing on their representational inadequacies. We then define 

three new time concepts and discuss the features associated with particular types of DBMS's supporting 

various combinations or these time concepts. 

21.1. Static Databaaea 

Conventional databases model the real world, as it changes dynamically, by a snapshot at a particu-

lar point in time. A •late or an inBiance or a database is its current contents, which does not necessarily 

reftect the current status of the real world. The state of & database is updated using data. manipulation 

operations such as insertion, deletion or replacement, taking effect as soon as it is committed. In this prC>-

cess, past states or the database, representing those of the rea.! world, &re discarded and forgotten com-

plete!y. We term this type or database " Blatic databaBe. 

21 



Flpre 11 A Static Relation 

"' "' "' "'' ' ' r-.... 
r-... 

' 
In the relational model, a database is a collection or relation•. Each relation consists or a set of 

tuple• with the same set or attribute•, and is usually represented as a 2-dimensional table (see Figure 1). 

As changes occur in the real world, changes are made in this table. For example, an instance of a rela-

tion 'Faculty', with two attributes Name and Rank, at a certain moment may be 

Name 
Merrie 
Tom 

Rank 
Associate Professor 
Assistant Professor 

and a query in Que!, a tuple calculus based language for the INGRES database management system [Held 

et al. lg75[, requesting Merrie's rank, 

range of r i• Faculty 
retrieve (fRank) 

where r.Name -"Merrie" 

yields the rank of Associate Professor. 

There are many situations where this static database relying on snapshots is inadequate. For exam-

pie, it cannot answer queries such as 

What was Merrie's rank 2 years ago! (historical query) 

How did the number of faculty change over the last 5 years! (trend analysis) 

nor record facts like 

Merrie was promoted to a full professor starting last month. (retroactive change) 

Lee is joining the faculty next month. (postactive change) 

Without system support in this respect, many applications have had to maintain and handle temporal 

information in an ad-hoe manner. For instance, many personnel databases attempt to record the entire 

a 



employment history or the company's employees. That some or the attributes record time, and that only 

a subset or the employees actually work for the company at any particular point in time, is implicit. The 

DBMS provides no facilities for the maintenance, querying, or modification or this information; such 

operations must be provided by specially-written applications programs that interpret certain attributes 

(i.e., those encoding the time values) differently. The ra.ct tha.t da.ta varies over time is not an application 

specific aspect. Hence, this aspect should be suppor£ed in a genera.! fashion by the DBMS, rather than by 

the application programs. 

2.2. Rollbaek Databu.,. 

One approach to resolve the above deficiencies is to store all past states, indexed by time, or the 

static database as it evolves. Such an approach requires a representation or transaction time, the time the 

information was stored in the database. A relation under this approach can be illustrated conceptually in 

three dimensions (Figure 2) with transaction time serving as the third a.xis. The relation ca.n be regarded 

as a. sequence of static relations (termed static stales) indexed by time. By moving along the time axis and 

selecting a particular static state, it is possible to get a. snapshot or the relation as or some time in the 

past (a static relation) and make queries upon it. The operation of selecting a static state is termed roll-

hack, and a database supporting it is termed a static rol/hack database, or simply a rol/hack database. 

Figure 2: A Rollback Relation 

s < ....._ 
I]] c: s 

§i '11) 
transaction 

time 

Changes to a. rollback database may only be ma.de to the most recent static state. The relation ill us-

trated in Figure 2 ha.d three transactions applied to it, starting from the null relation: (1) the addition or 

three tuples, (2) the addition of one tuple, and (3) the deletion or one tuple (entered in the first transa.c-

tion) and the addition of another tuple. Each transaction results in a. new static state being appended to 

the front or the cube; once a. transaction has completed, the static states in the rollback relation may not 



be altered. 

The distinction between statio databases and rollback databases is the ability to return to any pre-

vious state to execute a (static) query. Any query language may be converted to one which may query a 

rollback database by adding a clause effecting the rollback. TQuel (Temporal QUEry Language) 

JSnodgrass 1984, Snodgrass 1985J, an extension or Que! for temporal databases, augments the retrieve 

statement with an aa of clause to specify the relevant transaction time. The TQuel query 

range of r ia Faculty 
retrieve (f.Rank) 

where f.Name -"Merrie" 
a• of "Sep, 1978" 

on a rollback relation 'Faculty' relation will find Merrie's rank as or Sep, 1978. The result or a query on a 

rollback database is a pure statio relation. 

One limitation or supporting transaction time is that the history o£ database activities, rather than 

the history or the real world, is recorded. A tuple beeomes valid as soon as it is entered into the data-

base, as in a statio database. There is no way to record retroactivefpostactive changes, nor to correct 

errors in past tuples. Errors can sometimes be overridden (if they are in the current state) but they can-

not be forgotten. For instance, if it was discovered that Merrie's promotion had occurred earlier than 

previously thought, this error could not be corrected in a rollback database, and the query given above 

would continue to respond with the ineorrect rank. 

2.3. Hlstorleal Databaaea 

While rollback databases record a sequence or static states, historical databases record a single his-

torical state per relation, storing the history as it is best known. As errors are discovered, they are 

corrected by modifying the database. Previous states are not retained, so it is not possible to view the 

database as it was in the past. There is no record kept or the errors that have been corrected. Historical 

databases are similar to static databases in this respect. Historical databases must represent valid time, 

the time during which the relationship in the rea.! world being modeled was valid. 

5 



Historical databases may also be illustrated in three dimensions (see Figure 3), where the label or 

the time axis indicates the valid time. The semantics are more closely related to reality, instead or 

update history. Both valid time and user-defined time concern modeling or reality, and so it is appropri-

ate that they should appear together. 

Figure 81 Historical Relation 

More sophisticated operations are necessary to manipulate the complex semantics of valid time ade-

quately, compared to the simple rollback operation. TQuel supports the expression or such queries 

(termed historical queries) by augmenting the retrieve statement with a valid clause to specify how the 

implicit time attribute is computed, and a when predicate to specify the temporal relationship or tuples 

participating in a derivation. These added constructs handle complex temporal relationships such as 

start of, precede, and overlap. As an example, the TQuel query requesting Merrie's rank when Tom 

arrived is 

range of n i• Faculty 
range of f2 i• Faculty 

retrieve (fi.Rank) 
where fi.Name - "Merrie" and f2.Name -"Tom" 
when n overlap •tart of f2 

The derived relation is also an historical relation, which may be used in further historical queries. 

A second distinction between historical and rollback databases is that historical DBMS's support 

arbitrary modification, whereas static rollback DBMS's only allow static states to be appended. The same 

sequence or transactions which resulted in the rollback relation in Figure 2 also results in the historical 

relation in Figure 3. However, a later transaction (not possible on a rollback relation) has removed an 

0 



erroneous tuple inserted on the first transaction. Rollback DBMS's can rollback to an incorrect previous 

static relation; historical DBMS's can record the current knowledge about the past. 

:1.4. Temporal Databases 

Benefits of both approaches can be combined by supporting both transaction time and valid time in 

the same relation. While a rollback database views tuples valid at some time as of that time, and a his-

torical database always views tuples valid at some moment as of now, a temporal DBMS makes it possi-

b!e to view tuples valid at some moment seen as of some other moment, completely capturing the history 

or retroactivefpostactive changes. 

Figure 4: A Temporal Relation 

va~ 
time 

.,~ ., •. ,. 
time time time 

transaction 

We use the term temporal database to emphasize the need for both valid time and transaction time 

in handling temporal information. Since there are two time axes involved now, temporal relations should 

be illustrated in four dimensions (Figure 4 shows a single temporal relation). A temporal relation may be 

thought of as a sequence of historical states, each of which is a complete historical relation. The rollback 

operation on a temporal relation selects a particular historical state, on which an historical query may be 

performed. Each transaction causes a new historical state to be created; hence, temporal relations are 

append-only. The temporal relation in Figure 4 is the result of four transactions, starting from a null 

relation: (I) three tuples were added, (2) one tuple was added, (3) one tuple was added and an existing 

one deleted, and (4) a previous tuple was deleted (presumably it should not have been there in the first 

place). 

Since TQuel supports both historical queries and rollback, it may be used to query temporal data-

bases. An example is the TQuel query 

7 



range of n i8 Faculty 
range of f2 ia Faculty 

retrieve (fl.Rank) 
where rt.Name -"Merrie" and f2.Name.- "Tom" 
when n overlap atart of r2 
aa of "Jan, 1979" 

which determines Merrie's rank when Tom arrived, according to the state of the database as or Jan, 

1979. This derived relation is a. temporal relation, so further temporal relations can be derived from it. Ir 

a similar query is made as or Oct, 1978, the answer may be different if the retroactive promotion was not 

yet recorde_<i_by that time. 

:1.5. User-defined time 

User-defined time !Jones & Mason 1980/ is necessary when additional temporal information, not 

handled by transaction or valid time, is stored in the database. The values or user-defined temporal 

attributes are not interpreted by the DBMS, and are thus the easiest to support; all that is needed is an 

internal representation and input and output functions. Such attributes will then be present in the rela-

tion scheme. Multiple representations are also possible, each associated with input and output functions. 

No an example of user-defined time, consider a. 'Promotion' relation w.ith three attributes: Name, Rank, 

and Effective-Date. The Effective-Date (a user-defined time) is the date stated in the promotion letter 

that the promotion was to take effect; the valid date is the date the promotion letter was signed, i.e., the 

date the promotion was validated; and the transaction date is the date the information concerning the 

promotion was stored in the database. The effective date is application-specific; it is merely a· date which 

appears in the promotion letter. 

:1.11. An Analogy 

A simple analogy will help clarify the subtle differences among the four types of databases categor-

ized above. 

First, a static relation can be compared to a latest payroll stub showing the current position of the 

recipient. If the person gets a promotion, the next stub shows the new rank, but there is no way to find 

8 



out about a past rank from the stub. 

If all the payroll stubs are carefully collected without discarding any of them, as some people do, it 

is possible to determine the rank as of some time in the past from the stub of that period. This collection 

of payroll stubs can be compared to a rollback relation, a state of which is a static relation comparable to 

a payroll stub. These stubs will be printed in indelible ink, so that it will not be possible to make changes 

to payroll stubs of the past, even when there is a retroactive promotion or an error in last year's salary. 

An historical relation can be compared to a resume, containing the history of job positions a person 

went through up to the moment the resume was prepared. If an error is found in the contents of the 

resume, or one gets a promotion whether retroactively or postactively, a new resume is in order reflecting 

the change accordingly. 

A temporal relation can be considered as a collection of all such resumes marked by the date when 

each of them was prepared. It is possible and often interesting to go back to an old resume, and read 

about the personal data as known at some past moment. 

An analogy for user-defined time would be the date printed on each payroll stub indicating when 

the pay period started. Note that this date does not necessarily correspond to the date the check (or the 

previous check) wa.s issued. 

2. 7. Summary ot the Taxonomy 

Three kinds of time, transaction time, valid time, and user-defined time, were introduced, resulting 

in a categorization of the types of database management systems based on their support for handling 

temporal information. As shown in Figure 5, transaction and valid time define the two orthogonal capa­

bilities of rollback and historical queries, thereby differentiating four types of databases: static, rollback, 

historical and temporal. 



Flpre lis Types or Databases 

Transaction Time 
No Rollback Rollback 

Valid Static Queries Static Rollback 
Time Historical Queries Historical Temporal 

Support or the rollback capability requires the incorporation or transaction time, which concerns the 

representation; support or historical queries requires the incorporation or valid time, which is associated 

with reality. Support of user-defined time is orthogonal to support or historical queries and to support or 

rollback. Hence the three kinds or time actually define eight different types or databases. The taxonomy 

presented here defines four types based on their support or transaction and valid time (see Figure 6). 

Each or these types may or may not support user-defined time. However, we note that user-defined time 

is much closer to valid time than to transaction time, in that both valid time and user-defined time 

involve reality itself, as opposed to transaction time which involves only the model or reality (i.e., the 

database). DBMS's (and their query languages) purporting to fully support temporal information'should 

support all three kinds or time. Section 4 will briefly describe one such DBMS based on TQuel. 

Flpre lh Attributes or the New Types or Databases 

Transaction Valid 
Static 
Rollback v 
Historical v 
Temporal v v 

3. An Example 

The following example highlights the similarities and differences among the four types or databases. 

Starting with an empty relation, a series or update operations are performed. Each update is applied to 

four relations,. one or each type discussed previously. Each relation is then displayed: the static relation 

in a conventional format as a single static state, the rollback relation as a sequence or static states, the 

historical relation as a single historical state, and the temporal relation as a sequence or historical states. 

10 



Several queries on these relations focus on what information is and, more importantly, perhaps, i8 not 

stored in each relation. 

The schemes for the four relations may be expressed in TQuel as follows: 

create Static (Name - c20, Rank - c20) 
create peraiatent Rollback (Name - c20, Rank - c20) 
create interval Historical (Name - c20, Rank - c20) 
create peraiatent interval Temporal (Name - c20, Rank - c20) 

These are the relations alluded to earlier, namely, the latest payroll check (Static), the collection of all 

past payroll stubs (Rollback), the most current resume (Historical), and the collection of all past resumes 

(Temporal). 

3.1. Merrie Jolna aa an lnlltruetor 

In September, 1973, the following statement is executed: 

append to! (Name - "Merrie", Rank- "Instructor") [Sep, 1973] 

In these examples, when a TQuel statement is given, the date the statement was executed by the data-

base management system is shown in brackets to the right of the statement. The "?" would be replaced 

by the relation's name, i.e., Static, Rollback, Historical, or Temporal. . 

The four relations resulting from the execution of this statement are almost identical (see Figure 7). 

The Static relation shows that Merrie is currently an instructor. The Rollback relation contains a single 

static state that was created on September, 1973 (the transaction time that indexes the static states is 

shown on the right of the state), indicating that Merrie started receiving payroll checks made out to 

"Instructor Merrie" in September 1983. The Historical relation indicates that Merrie has been hired as 

an Instructor (the valid time for each tuple in the historical state is shown on the lert of the tuple); there 

is currently one line on Merrie's resume. The Temporal relation contains one historical state, containing 

one tuple; analogously there is one resume, with one entry, in Merrie's resume file. 

11 



Figure 7: Merrie joins as an Instructor 

Static: 

Name Rank 

Merrie Instructor 

Rollback: 

Name Rank Transaction Time 

Merrie Instructor (Sep, 1973) 

Hl•torlcah 

Rank 
Instructor 

Temporal: 

Rank Transaction Time 

Instructor (Sep, 1973) 

If we asked back in October, 1973 what was Merrie's rank, 

range or f is 1 
retrieve (f.Rank) 

where f.Name -"Merrie" !Oct, 1973] 

the same information would be returned from all four relations: "Instructor," but in rather different 

ways. For the Rollback relation, the current static state is used; for the Historical relation, the tuples 

currently valid are searched; and for the Temporal relation, the tuples currently valid in the current his-

torical state are searched. The defaults defined in TQuel ensure that queries containing only where 

clauses will return the same information regardless of type !Snodgrass 1985]. 

3.2. Merrie I• promoted to Full Profe•aor 

Later that year (1973), a replace statement is executed: 

replace r (Rank - "Full Professor") 
where f.Name - "Merrie" 

Figure 8 illustrates the changes in the four relations. 

1:1 

!Dec, 1973] 



Figure 81 Merrie is promoted to Full Professor 

Static• 

Name Rank 
Merrie Full Professor 

Rollback• 

Name Rank (Transaction Time) 
Mertie Instructor (Sep, 1973) 

······················ ································ 
Merrie Full Professor (Dec, 1973) 

Historical• 

{Valid Time) Name Rank 

(Sep, 1973) Merrie Instructor 
(Dec, 1973) Merrie Full Professor 

Temporal• 

(Valid Time) Name Rank (Transaction Time) 

(Sep, 1973) Merrie Instructor (Sep, 1973) 
.................... ······················ ································ 
(Sep, 1973) Merrie Instructor (Dec, 1973) 
(Dec, 1973) Merrie Full Professor 

Since the Static relation always records current information, the one tuple is modified, as is the next pay-

roll check made out to Merrie. A new static state is appended to the Rollback relation; Merrie's pay 

stubs for September, 1973 through November, 1973 still read "Instructor Merrie," but the December, 

1973 pay check is made out to "Full Professor Merrie." Static states within the Rollback relation are 

separated by dotted lines. A tuple is added to the Historical relation with a valid time or December, 

1973, and an entry is also added to Merrie's resume. The Historical relation always contains only one his-

torical state, so no dotted lines will ever appear in its illustration. The Historical relation is an interval 

relation. In the representation shown in Figure 8, a tuple is valid until the next tuple with the same key 

is valid. Hence the Historical relation in this figure indicates that Merrie was an Instructor from Sep-

tember, 1973 until December, 1973, when she became a Full Professor. The Temporal relation contains 

two historical states: one which was current from September through November, 1973 and a longer one 

that was created in December, 1973. Merrie's resume file now contains two resumes, one dated 

13 



September, 1973 and containing one job position, and the more current one dated December, 1973 and 

containing two job positions. Only one transaction time is needed for each historical state, even if it con-

tains multiple tuples. 

When we ask the next month about Merrie's rank; 

retrieve (f.Rank) 
where f.Name -"Merrie" ]Jan, 1974] 

we again get the same result from all four relations: "Full Professor." If we ask in January what was 

Merrie's rank last October: 

retrieve (f.Rank) 
where f.Name -=="Merrie" 
vhen f overlap "Oct, 1973" ]Jan, 1974] 

we run into some difficulties. This query cannot be executed on a static relation, since information about 

the past is not stored (looking at Merrie's pay stub from January won't tell us what the pay check read 

three months prior). The Rollback relation can't give us an answer either. Of course, we could flip 

through the payroll stubs, but such a search won't tell us if Merrie was given a retroactive promotion 

(such a situation will be examined shortly). Both the Historical and Temporal relations can provide the 

answer, "Instructor," by examining the current resume (the Historical relation records only the current 

one anyway). 

Still interacting with the DBMS in January, 1974, we ask, what did we think Merrie's current rank 

was three months ago! 

retrieve (f.Rank) 
where f.Name - "Merrie" 
•• of "Oct, 1973" ]Jan, 1974] 

This query effectively turns back the clock to October; all changes after October are not considered. A 

result is not forthcoming from either the Static or the Historical relations, because they both record only 

current knowledge (in the case of historical relations, current knowledge about the past). In this case, 

however, flipping through the pay stubs or the stack of resumes (the Rollback and Temporal relations, 

respectively) will allow us to determine what we knew in October, 1973: that Merrie was currently an 

lnstr u ctor. 



3.3. A Correction 

However, in the next month we realize we have made a mistake, and we eorreet it: 

replace f (Rank - "Assistant Professor") 
valid fro. "Dee, 1973" 
where f.Name -"Merrie" JFeb,1974J 

Last Dee ember, Merrie wasn't promoted from Instructor to Full Professor; she was only promoted to 

Assistant Professor. Figure 9 shows that the next pay cheek will indicate a new rank, pay cheeks issued 

from February, 1974 on bear the eorreet title, and the current resume is eorreeted. 

Figure 0: A Correction 

Statle: 

Name Rank 
Merrie Assistant Professor 

Rollbaek: 

Name Rank (Transaction Time) 

Merrie Instructor (Sep, 1973) 
............................... . ............................... 

Merrie Full Professor (Dee, 1973) 
............................... . ............................... 

Merrie Assistant Professor (Feb, 1974) 

H1stor1eal: 

(Valid Time) Name Rank 

(Sep, 1973) Merrie Instructor 
(Dec, 1973) Merrie Assistant Professor 

Temporal: 

(Valid Time) Name Rank (Transaction Time) 

(Sep, 1973) Merrie Instructor (Sep, 1973) 
.................... ............................... ································ 

(Sep, 1973) Merrie Instructor (Dee, 1973) 
(Dee, 1973) Merrie Full Professor 

···················· ............................... ································ 
(Sep, 1973) Merrie Instructor (Feb, 1974) 
(Dec, 1973) Merrie Assistant Professor 

Note that the pay stubs for December, 1973 and January, 1974 still mention "Full Professor Merrie," and 

that the resume file still contains an old resume with the incorrect promotion rank: both of these 

15 



relations are by definition append-only. 

We perform three queries later that summer. We first ask for Merrie's current rank, 

retrieve (f.Rank) 
where f.Name - "Merrie" [Aug, 1974[ 

All four relations respond with "Assistant." When asked what Merrie's rank was in January, 

retrieve (f.Rank) 
where f.Name - "Merrie" 
when f overlap" Jan, 1974" [Aug, 1974[ 

the Static and Rollback relations cannot provide an answer. However, the Historical and Temporal Rela-

tions both respond with "Assistant Professor," supplying the corrected rank. 

If, instead we ask the different question, what was Merrie's current rank as was best known last 

January, 

retrieve (f.Rank) 
where f.Name -"Merrie" 
•• of "Jan, 1974" [Aug, 1974[ 

then the Static and Historical relations cannot reply, since they only record information as is best known 

currently. Both the Rollback and Temporal relations can provide the information we request: "Full Pro-

fessor." 

3.4. Merrie Ia promoted retroaetlvel:y 

In December, 1978, Merrie is promoted to Associate Professor, retroactive to June, 1978: 

replace f (Rank - "Associate") 
valid fro." Jun, 1978" 
where f.Name =="Merrie" [Dec, 1978[ 

As shown in Figure 10, the fact that the promotion was retroactive is irrelevant in the Static and Roll-

back relations. In particular, the pay stubs (i.e., the Rollback relation) from February, 1974 to 

November, 1978 still specify "Assistant Professor Merrie". However, the current resume (the Historical 

relation) and the most recent resume in the resume file (the Temporal relation) will both record the pro-

motion date as June, 1978. 

Ul 



Figure lOa Merrie is promoted retroactively 

Statlca 

Name Rank 
Merrie Associate Professor 

Rollback• 

Name Rank {Transaction Time) 

Merrie Instructor (Sep, 1973) 

······························· ································ 
Merrie Full Professor (Dec, 1973) 

............................... ································ 
Merrie Assistant Professor (Feb, 1974) 

............................... ································ 
Merrie Associate Professor (Dec, 1978) 

Historical: 

(Valid Time) Name Rank 
(Sep, 1973) Merrie Instructor 
(Dec, 1973) Merrie Assistant Professor 
(Jun, 1978) Merrie Associate Professor 

Temporal• 

(Valid Time) Name Rank (Transaction Time) 
(Sep, 1973) Merrie Instructor (Sep, 1973) 
.................... ······························· ································ 

(Sep, 1973) Merrie Instructor (Dec, 1973) 
(Dec, 1973) Merrie Full Professor 
.................... . .............................. ································ 

(Sep, 1973) Merrie Instructor (Feb, 1974) 
(Dec, 1973) Merrie Assistant Professor 

···················· ······························· ································ 
(Sep, 1973) Merrie Instructor (Dec, 1978) 
(Dec, 1973) Merrie Assistant Professor 
(Jun, 1978) Merrie Associate Professor 

When we query the relations the following March, all four will list Merrie's current rank as "Associ-

ate Professor." The Historical and Temporal relations will list her rank in October, 1978 as "Associate 

Professor"; !he Static Rollback and Temporal relations will list her current rank, as best known in 

October, 1Q78 ·as "Assistant Professor," indicating that the promotion bad not been made. However, the 

Temporal relation can answer even more involved queries, such as, what was Merrie's rank in October, 

1Q78, as best known in November, 1978: 

17 



retrieve (r.Rank) 
when r overlap "Oct, 1978" 
where f.Name - "Merrie" 
aa of "Nov, 1978" [Mar, 1979[ 

This query can only be answered by the Temporal relation, which returns a rank of "Assistant Profes-

sor." If the as or clause had been omitted, the result would have been "Associate Professor". 

In summary, we have examined the information stored by each of the four types or relation, and 

have shown how each relation responds to various update and retrieval operations. A few tautologies 

should now be defensible: 

• The most recent static state in the Rollback relation is always identical to the entire contents or 
the Static relation. 

• Similarly, the most recent historical state in the Temporal relation is always identical to the entire 
contents of the Historical relation. 

• The results of a query containing only a target list and a where clause will be the same in the 
explicit attributes (and in the valid and transaction times, when present) when applied to any of the 
four types or relations. 

4. An Implementation 

There are several approaches to implementing a DBMS supporting the operations described above. 

When confronted with the task of adding temporal support to a DBMS, one reasonable initial strategy 

would be to interpose a layer of code between the user and the database system. This layered approach 

has the significant advantage or not requiring any change to the complex data structures and algorithms 

within the DBMS proper. However, the performance of such a system may be inadequate. The immedi-

ate concern is the monotonically increasing and potentially enormous storage requirements. In addition, 

there are multiple versions for some tuples, rendering conventional storage schemes such as indexing or 

hashing less effective. Performance will deteriorate rapidly not only for temporal queries but also for 

non-temporal queries. 

An alternative is to integrate temporal support into the DBMS itself, developing new query evalua-

tion algorithms and access methods to achieve reasonable performance for a variety of temporal queries, 

without penalizing more frequent non-temporal queries. There are several issues which need to be 

addressed for this integrated approach, including tuple v•. attribute versioning [Ahn 1985[. This 

18 



approach clearly involves substantial research and implementation ell'ort, yet holds the promise for 

addressing deficiencies in performance. 

We have adopted an intermediate strategy in implementing our prototype temporal DBMS. This 

prototype will be used as ,. comparison point for the fully integrated DBMS we are now developing. We 

started with the static DBMS INGRES ]Held et al. 1075], m&king modific&tions only when they promised 

an immediate improvement in efficiency. 

One or the most important decisions was determining ,. means or embedding a four-dimensional 

temporal relation in a two-dimensional static relation as supported by INGRES. There are at least five 

ways to embed a temporal relation in a static relation ]Snodgrass 1985]. Our prototype adopted the 

scheme or attaching one or two valid time attributes (depending on whether the relation modeled events 

or intervals), and two transaction time attributes to each tuple. Each update operation on an existing 

tuple generates a new version or the tuple, marked with appropriate values or the time attributes indicat­

ing the period while the version is active. Though this tuple versioning scheme appears to have a very 

high degree or redundancy, in that the entire tuple is duplicated, an analysis reveals that this scheme 

consumes less space than attribute versioning up to a certain degree or volatility ]Ahn 1985]. 

The prototype involved minimal additions to INGRES. The parser was modified to accept TQuel 

statements aad generate an extended syntax tree with subtrees for valid, when, and as-of clauses. Some 

o( the query evaluation modules were changed to handle the newly defined node types and the implicit 

temporal attributes. Functions to handle the temporal operators start of, end of, precede, overlap, 

eztend, and as of were added in the interpreter. 

The resulting prototype supports all the TQuel statements, including the augmented statements 

create, oppend, delete, reploce &nd retrieve. The valid, when &nd os of clauses are fully supported. Pro­

posed extensions to the language, including indetermin&cy and aggregate functions, are not yet supported. 

All three kinds or time are supported, as are &II four types or relations. The system relation was 

modified to support the various combin&tion or implicit temporal &ttributes &ccording to the type or a 

relation as specified by its create statement. A temporal attribute is represented as a 32 bit integer with 

10 



a resolution or one second. It is a distinct type, so that input and output can be done in human readable 

rorm by automatically converting to and from the internal representation. Various formats or date or 

time are accepted for input, and resolutions ranging from •econd to uear are selectable ror output. The 

Copu statement was also modified to support batch input and output or relations having temporal attri· 

butes. 

The prototype was constructed in about 2 person-months over a period or a year; this figure does 

not include familiarization with the INGRES internals or with TQuel. Most or changes were additions, 

increasing the source by 2,700 lines, or 4.7% (our version or INGRES is approximately 56,400 lines long). 

Measurements or the time and space overhead in the prototype are currently underway, and new access 

methods ror temporal relations are being investigated. 

6. Conelutlon 

In this paper, we described a taxonomy or time consisting or three distinct concepts ror use in data· 

bases: transaction time, valid time, and user-defined time. Using the taxonomy, we defined rour types or 

databases differentiated by their a~ility to support these time concepts: static, rollback, historical and 

temporal databases. An analogy was presented to clarify the subtle differences among the four types or 

databases, and a series or example transactions highlighted their similarities and differences. We also 

described a prototype implementation or the temporal DBMS ror TQuel. 

While fifteen years or research has focused on formalizing and implementing static databases, only a 

few researchers have recently studied the formalization or historical databases (e.g., [Clifford & Warren 

1983[) and the implementation or rollback databases (e.g., [Lum et al. 1984[). To the authors' knowledge, 

there has been nothing published on formalizing rollback or temporal databases, nor implementing histor­

ical or temporal databases. The special opportunities promised by temporal databases are, at this time, 

matched by the challenges in supporting them. 

10 



e. Blbllosraph7 

[Ahn 1985[ Ahn, I. Toward• an Implementation of Database Management Sv•tem~ witA Temporal Support. 
1985. (Submitted for publication.) 

[Ammon et al. 1985J Ammon, G., J. Calabria and D. Thomas. A High-Speed, Large-Capacity, lulcebox 
Optical Disk Svstem. IEEE Computer, 18, No. 7, July 1985, pp. 3tl-46. 

[Ariav 1984J Ariav, G. Preserving The Time Dimennon In Information Sv•tem~. PhD. Diss. The Wharton 
School, University of Pennsylvania, Apr. 1984. 

[Bolour et al. 1982J Bolour, A., T.L. Anderson, L.J. Debeyser and H.K.T. Wong. The Role of Time in 
Information Processing: A Survev. SigArt Newsletter, 80, Apr. 1982, pp. 28-48. 

[Bubenko 1976J Bubenko, J. A., Jr. The temporal dimennon in information modeling. Technical Report 
RC 6187 #26479. IBM Thoma.! J. Watson Research Center. Nov. 1976. 

[Clifford & Warren 1983[ Clifford, J. and D. S. Warren. Formal Semantict for Time in Databates. ACM 
Transactions on Databate Svatem~, 8, No. 2, June 1983, pp. 214-254. 

JCopeland 1982J Copeland, G. What If Ma•• Storage Were Fred. Computer, 15, No. 7, July 1982, pp. 
27-35. 

[Held et al. 1975J Held, G.D., M. Stonebraker and E. Wong. INGRES--A relational data ba•e management 
svstem. Proceedings of the 1975 National Computer Conference, 44 (1975) pp. 4!J9..416. 

[Hoagland 1985J Hoagland, A. Information Storage Technologg :A Look at the Future. IEEE Computer, 
18, No. 7, July 1985, pp. 6().67. 

[Jones & Mason 1980J Jones, S. and P. J. Mason. Handling the Time Dimension in a Data Base. In 
Proceedings of the International Conference on Data Bout, Ed. S.M. Deen and P. Hammersley. 
British Computer Society. University of Aberdeen: Heyden, July 1980 pp. 65-83. 

JKatz &.Lehman 1984J Katz, R. and T. Lehman. Database Support for Vernon• and Alternatives of Lorge 
Design Files. IEEE Transactions on Software Engineering, SE-10, No. 2, Mar. 1984, pp. 191-200. 

[Lum et al. 1984J Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and J. 
Woodfill. Designing DBMS Support for the Temporol Dimension. In Proceedings of the Sigmod 
'8-1 Conference, June 1984 pp. 115-130. 

JSchueler 1977J Schueler, B. Update Reconsidered. In Architecture and Models in Data Bate Management 
Svatema. Ed. G. M. NijssenNorth Holland Publishing Co., 1977. 

[Snodgrass 1984J Snodgrass, R. The Temporal Querv Language TQuel. In Proceeding• of the Third ACM 
S/GAct-SIGMOD Symposium on Principl<B of Database Svatema, Waterloo, Ontario, Canada: 
Apr. 1984 pp. 204-212. 

[Snodgrass 1985J Snodgrass, R. A Temporal Querv Language. Technical Report 85-013. Computer Sci­
ence Department, University of North Carolina. at Chapel Hill. May 1985. 

[Snodgrass & Ahn 1985[ Snodgrass, R. and I. Abo. A Taxonomv of Time in Datohatea. In Proceedings of 
the International Conference on Management of Data, ACM SIGMod. Austin, TX: May 1985. 

11 



!Wiederhold 19841 Wiederhold, G. D4lab4•e•. IEEE Computer, 17, No. 10, Oct. 1Q84, pp. 211-223. 


