
PARALLEL PROCESSING IN PIXEL-PLANES,

a VLSI logic-enhanced memory for taster graphics

Technical Reporl 85-026

August, 1985

Henry Fuchs and Jobn Poulton

The University of North Carolina at Chapel Hill
Department of Computer Science
New West Hall 035 A
Chapel Hill. N.C. 27514

To appear in Proceedings of ICCD '85, Tbe IEEE International Conference on Com­
puter Desip: VLSI in Computers, Port Chester, New Yor.k, October, 1985

PARALLEL PROCESSING IN PIXEL-PLANES,
a VLSI logic-enhanced memory for raster graphics

Henry Fuchs and John Poulton

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27514

Abstract

We give a brief overview of Pixel-planes and discuss
the ways in which the system uses parallelism to
achieve its high performance. Some of these methods
are widely used in various other VLSI logic-enhanced
memory systems; at least one--the Linear Expression
Evaluation tree--seems to be unique to Pixel-planes.

Pixel-planes Overview

This paper contains only a brief overview of the
system. [Poulton et a!. 85] contains a more complete
description of the hardware, including details of the
running prototypes; [Fuchs et a!. 85] contains more
details about the algorithms.

Figure I is a conceptual block diagram of a
conventional graphics system that can support
interaction with 3-D images. In such a system, a user
interacts with a 3-D scene stored in a database,
typically consisting of a list of vertices of polygons
that tile the surfaces of objects in the scene. Real-time
interaction depends on computation in a processing
pipeline whose elements perform the following tasks:

1) Transform the scene according to the user's
position and orientation; this step produces a list of
polygon vertices in 'eye' coordinates.

2) Clip away parts of objects that are outside the
field of view.

3) Scale for perspective by drawing closer
together objects that are farther away; the result is a
list of polygon vertices whose coordinates are given in
'screen' coordinates.

This research was supported in part by the Defense Advanced
Research Projects Agency Contract No. DAAG29-83-K-0148
(monitored by US Army Research Office, Research Triangle
Park, NC) and the National Science Foundation Grant No.
ECS-83-00970.

4) Color each polygon vertex according to a
lighting model that takes into account the positioP.,
intensity, and color of user-specified light sources.

5) Sc.an-convert each polygon, determining which
pixels are inside that polygon.

6) Remove hidden surfaces by determining which
pixels in the current polygon are obscured by
previously processed polygons.

7) Color each pixel, interpolating between vertex
colors.

8) Store pixels in a frame buffer, from which the
system can

9) Refresh the video display.

Steps (5)-(7) clearly represent the performance
bottleneck in current graphics systems. Steps (1)-(4)
require calculations whose number is only of the
order of the number of polygons in the scene. Many
current, affordable graphics systems can handle
polygon transformations sufficiently rapidly to
support real-time interaction with complex
'wire-frame' images or with a restricted class of
'flat-shaded' polygonal images. There exists,
however, no affordable solution to the problem of
rendering highly realistic, fully rendered 3-D scenes,
perhaps with image enhancements such as smooth
shading, anti-aliasing (to remove pixel artifacts),
shadows, textures, transparent surfaces, fog effects,
and so forth.

The Pixel-planes design attacks this problem by
replacing the conventional rasterizer/frame buffer
with a 'smart' frame buffer that not only stores a
digital image but also performs much of the
calculation needed to generate the image. This 'smart'
frame buffer is built from custom chips in which
conventional memory circuits are combined with

some processing circuitry that allows computations to
be carried out in parallel for all pixels in the display.

The processing circuitry in the enhanced memory
chips can perform two kinds of operations:

1) Evaluate linear expressions of the form F(x,y) =
Ax + By + C simultaneously for all pixel locations
(x,y). A,B,C are data broadcast to the memory chips.

2) Perform pixel-local arithmetic and logical
operations on data stored at the pixel and on the linear
expressions.

The strategy for applying this system to a given
graphics image generation problem is to recast the
problem into a form that requires only
linear-expression evalution and pixel-local operations.
To make use of these operations, the Translator (see
Figure I) converts the conventional description of
graphics primitives (e.g., a list of vertices for each
polygon) into the form of coefficients A,B,C and
instructions for the pixel-local processors. The Image
Generation Controller converts these coefficients and
instructions into bit-serial form and broadcasts them
to the array of enhanced memory chips.

A basic set of graphics operations for rendering
convex polygons is described below. (Algorithms for
shadows, spheres, textures, anti-aliased edges, etc. are
described in [Fuchs et al. 85].)

Scan-conversion. At the beginning of each
polygon, all pixels are enabled. For each edge of a
polygon, the Translator calculates the coefficients for
an expression F(x,y)=Ax+By+C, where F(x,y)=O
defines the points that lie along a line connecting two
adjacent vertices, and broadcasts A,B,C and an 'edge'
instruction to the array of enhanced memory chips.
Each pixel-processor examines the sign of its value for
the expression F. If negative, the pixel is outside the
current polygon and is disabled for further
processing. If positive, the pixel remains enabled. As
each succeeding edge is processed, pixels are disabled
by half-planes, until, after all edges are processed,
only those inside the polygon remain enabled.

Hidden-surface Elimination. The Translator
calculates a set of coefficients for the expression
z=F(x,y)=Ax+By+C, the planar equation for the
current polygon's surface, and broadcasts A,B,C and
z-compare instructions to the memory chips. Each
pixel maintains the z-coordinate of the closest visible
polygon so far processed. Each pixel compares the
value of the linear expression with its stored z; if the

new z is farther away than the stored z, the pixel is
disabled (the new polygon is obscured at that pixel); if
closer, the pixel remains enabled.

Smooth Shading. The Translator calculates, for
each color, coefficients for the expression
Intensity=Ax+By+C and broadcasts these coefficients
and 'color' instructions to the memory chips. A
multi-sided polygon is at this stage broken into
triangular patches for shading. For each patch, and
for each primary color, enabled pixels update their

. color-intensity buffers with the new color intensity.

As mentioned above, a number of other algorithms
have been developed, including casting shadows,
drawing and shading spheres, painting textures, and
anti-aliasing edges [Fuchs et al. 85]. Figures 2 and 3
illustrate the results of some of these algorithms.

Most of the system's processing power derives from
Pixel-planes's novel Linear Expression Evaluator
(LEE), a binary-tree structure distributed uniformly
over an array of identical enhanced memory chips that
form the 'smart' frame buffer. The principal of the
LEE is illustrated in Figure 4. Each node of the tree
takes in a serial bit-stream at its 'top' input, passing it
unchanged, but delayed by one clock cycle, to the
left-hand output. The right-hand output is formed by
adding a second bit-stream from the 'side' input;
bit-serial addition injects a one-cycle delay in the right
branch and requires the usual local carry register
shown in the figure. In effect, each tree node forms
both possible values of a partial product contributing
to Ax + C. Because of the leading O's in the A bit
stream, A0 arrives at the bottom level of the tree at the

same time as C0; thus, 1 *A is added at each node at the

bottom level. At the second level, A0 is bit-aligned

with Cl' so that 2* A is added at this level, and so on.

In general an n-level tree can generate 2" distinct
values for an expression of the form Ax +C.

To generate the full linear expression for a system
with 1024xl024 pixels, a 10-level X-tree is required
to generate the I 024 distinct values of Ax+C. The
outputs of this tree in turn feeds the 'top' input of I 024
Y -trees, and this ensemble generates the 220 distinct
values of Ax+By+C. Note that the cost in silicon area
for this entire structure is only a single tree node
(three one-bit registers and one bit-serial adder) for
each pixel, but the performance is equivalent to a full
20-stage serial multiplier at every pixel.

A simplified block diagram of the Pixel-planes
memory chip is shown in Figure 5. In addition to the

Linear Expression Evaluator, these chips contain an
array of tiny bit-serial ALU's that perform pixel-local
operations (one ALU for each pixel), the pixel
memory itself, and circuitry for scanning out data to
refresh a display. Only a small subset of the pixels in a
display can be placed on a single chip, so the LEE is
easily distributed over many chips. This is done by
building a subtree that covers only the pixels on the
chip (organized as a vertical column); the remainder
of the tree is. implemented by circuitry that maps a
path through the complete tree. Called a 'supertree',
this path is programed during system intialization,
loading each chip with its pixel-column's address in
the display. The supertree construct considerably
simplifies the system-level implementation of our
system at little cost (about 5%) in silicon area. In our
current chips, about 18% of the circuit area is devoted
to the LEE, about 12% to the ALU array, and the
remaining 70% is memory.

Uses of Parallelism

C. Seitz in his survey of concurent VLSI architectures
[Seitz 84] notes that logic-enhanced memory systems
"achieve rather remarkable performance per cost, in
comparison to the same computation on a general
purpose sequential computer, by 1) specialization of
the system to the algorithms, 2) concurrent operation
of an appreciable subset of the nodes in the system, 3)
localization of communication between the stored data
and the logic in the node (an unlimited storage
bandwidth), and 4) localization of communication in
the connnection plan between nodes." All these
methods are used by Pixel-planes:

I) Pixel-planes is highly specialized to its applicafon,
graphic operations on frame buffer memories. It is
tuned to a rather general class of algorithms most of
whose operations can be expressed as linear functions
of the pixel's address on the screen. We note,
however, that Pixel-planes is not restricted to any
particular set of algorithms, as several outside
researchers have already devised clever algorithms
for the system.

2) Concurrent operation of a large subset of the nodes
in the system normally takes place, since all the pixel
processors can be operating at the same time, in SIMD
fashion. Certain algorithms, of course, exploit this
parallelism better than others. Shadow volume
calculations, for example, will keep a significant
fraction of the pixel processors busy (doing useful
work) if the shadow of a polygon is cast throughout
much of the image. On the other hand, processing
small polygons is often inefficient since for much of

the processing time, most of the pixel processors are
idle . If the chips were to be decoupled with some
FIFO buffers, however, different polygons can be
processed in different chips [Poulton et al 85].
Simulations indicate that speedups of 5X or more
could be achieved for even simple scenes with about
1000 poly~ons.

3) Pixel-planes achieves "localization of
communication between stored data and logic in the
node" by having each pixel processor's memory
physically adjacent to the processor. A pixel's
memory can only communicate with its processor and
the video scanout control. Similarly a processor can
only receive data from the Linear Expression
Evaluator tree or its memory. It can only write data
into its own memory. In addition, since the entire
machine operates on the same instruction stream, all
the pixel memories address the same bit at any given
cycle, so space efficiency is gained by having a single
common memory control for the entire chip.

4) Communication between nodes is a massive
problem in most concurrent systems. W .D. Hillis
[Hillis 81] notes that "the most difficult technical
problem in constructing a connection memory is the
communications network." Pixel-planes is fortunate
to be dealing with a class of applications that do not
rely on node-to-node communications, so no such
communications are included in the machine.
Although we have considered several communication
mechanisms, we have not found any to be necessary.

We conclude this discussion by restating our earlier
point that most of the system's processing power
comes from its novel Linear Expression Evaluator. If
the modules in the system in front of the memory
chips (the translator and controller) could operate
rapidly enough to take advantage of it, we'd consider
adding another LEE tree on the chips. Many of the
algorithms could be speeded up by having multiple
linear expressions evaluated concurrently -- multiple
edges of a polygon, for instance. Similarly, multiple
color primaries (red, green, blue) could be calculated
1t the same time, multiple shadow volume planes, etc.

Conclusions

Pixel-planes achieves its execution efficiency by a
variety of techniques, most of which are also
applicable to other logic-enhanced memory systems.
Although its algorithms could be executed on many
fine-grained multiprocessors with enough nodes to
allocate one per pixel, Pixel-planes achieves its
dramatically faster performance by using an

additional structure, a binary tree (the LEE) for
parallel, pipelined evaluation of its often-needed
linear expressions.

References

Fuchs, H., J. Goldfeather, J.P. Hultquist, S. Spach,
J.D. Austin, F.P. Brooks, J.G. Eyles, J. Poulton,
"Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements with
Pixel-planes", Computer Graphics, Vol. 19., No.
3, July 1985 (Proceedings, Siggraph '85).

Hillis, W.D., "The connection machine (computer
architecture for the new wave," Massachusetts

Inst. Techno!., Cambridge, AI Memo 646, Sept.
1981.

Poulton, J., H. Fuchs, J.D. Austin, J.G. Eyles, J.
Heinecke, C-H Hsieh, J. Goldfeather, J o
Hultquist, and S. Spach, "Pixel-planes: Buildir g ,
VLSI-Based Graphic System," Proceeding' 0 ;

the 1985 Chapel Hm Conference on Very Lar~e
Scale lnte~ration, Computer Science Press,
Rockville, MD.

Seitz, C.L., " Concurrent VLSI Architectures," JBE.E
Transactions on Computers, Vol. C-33, No. 12,
December 1984.

*

iewing Direction, User-Defined
rientation or User _Light Sources v

Rasterizer/Frame Buffer Organization

•-T
in Conventional Grae;hics Svstem

Geometric Clipping,

~
Lighting r 3-D Object v T"osfo,m•tion r. Perspective Model .I Rasterizer ~ Dat~base Engme Scaling Calculator _y .I

(PolygonVmo~ .J ~ Clipped Polygon Vertices

m 'World Coordinates
Polygon Vertices J
in~ Coordinates with Modified Vertex Color

(x,y,z,R,G,B·)

~
(\

y
[Clipp<d. Coloml

Polygon Vertices
in Screen Coordina!eS

TransJator {\,
Image

D
'Smart'

Generation Frame

y Controller y Burrer

Coefficients A.B.C of Linear Bit -Serial Coefi's +
Expresslons AX+By+C Instructions and

~ and Insttuctions Memory Addr's

Pixel-planes Graphic Engine
Video

Controller

I

•
Figure 1: Relationship between Pixel-planes Graphics Engine and a conventional

system for rendering 3-D images. The Engine replaces rasterizer and frame buffer
with a 'smart' frame buffer built from custom, logic-enhanced memory chips.

Frame
Buffer

~
Video

Controller

I •
8

/

Figure 2: The Chapel Hill "Old Well", smooth
shaded and with true shadows (simulation).
Input is list of 357 polygons; estimated time
with 10~1Hz system is 13.8 msec without
textures, 14.3msec with textures (66 textured
pol)·gons).

Linear Expres.<;ion E\'aluator

/]
B----------;~/~----~------~

A-.//
10-leH! X
SuperTree

Instructions

Figure 3: Simulated image by Pixel-planes
functional simulator of Trimethoprim mokcuk
containing 40 side-lit spheres. Estimated 1 ime
for IOMHz system is 1.7msec. (Data courtesy
of Dr. Michael Corey and Lee Kuyper of
Burroughs \Vellcome and Michael Pi4ul' and
Doug Schiff of UNC.)

Address

Memory Array

(6-1 Pixels X 72 Bits/Pixel)

::::::~B~i~ts~I;P~ix:e~J~::::~

d
Pixels

il
Pix~:l Addn~s.
Control

Video Data

Fig-ure 4: Fundamental operation of the Linear Expression Evalualor .

... A3 A2 AI 0 0

... C3 C2 Cl

Tree Node

figure 5: Block diagram of Pixel-planes enhanced memory chips.

