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ABSTRACT 

This paper, a sequel to an earlier work of the same title, refines 

one algorithm, of an iterative character, presented there, and describes 

a new algorithm, recursive in nature. Experimental results are given for 

22 polygons, together with annotated listings of four "C" programs imple­

menting the algorithms. The time complexity of both algorithms is fully 

analysed and shown to be O(n2) where n is the number of vertices in the 
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by 54(n2 - ~ n + 5) and ~7 (n 2 - 3n + 2), respectively. The new algorithm 

is therefore preferable when recursion is possible without too much labor. 
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Triangulation Algorithms for Simple, Closed, Not Necessarily Convex Polygons in 

the Plane, II. 

John H. Halt on, Otapel Hill, North Qu olina, US A 

1. fut r oduc t ion 

The present paper is a sequel to the earlier one of the same title [1]. 

This deals with the classic problem, in which we are given n points P
1

, P
2

, ... , 

P in the Euclidean plane (with P
0 

= P and, in general, P. = P. k , for any 
n n J J+ n 

integers j and k), ordered so as to define the polygon 

with vertices P. (j = 1, 2, •.. , n), 
J 

(j = 1, 2, ... , n); which is simple, 

(1) 

consisting of the n line-segments P .P. 
. J J+l 

in the sense that all the P . are distinct 
J 

and no two sides P.P. 
1 

and p.p. 
1 

have any 
1.- t-+ J J+ 

points in common, except when i = j 

[of course] or i = j- 1 [only P. in common] or i = j + 1 [only P. in common]. 
J 1.-

We now seek to identify a set of tPiangZes, whose interiors are disjoint, and 

whose union is the interior and boundary of the polygon P. The triangulation 

we seek is economical, in the sense that there are at most n - 2 triangles in 

it, and the vertices of these triangles are all vertices P. of the polygon P. 
J 

We adopt the following convention, The removal of the polygon P from the 

Euclidean plane in which it lies leaves two connected components, each an open 

set. That which is bounded is the interior Ip; the other is the exterior Ep· 

We now assume that the vertices of P are numbered so that, in traversing the 

polygon in the order P1 , P
2

, .•• , Pn' the interior Ip is on the left. We 

define the angle by which one turns from the direction of P . 
1

P . to that of 
t1- J 

p .P. 1 to bee. in the range -TI <e.< TI, If e.> 0, we call the vertex p. 
J J+ J J J J 

aonvex (corresponding to a turn to the left); if e.< 0, we call P. re-entrant 
J J 

(corresponding to a turn to the right); and if e. 0, we say that P. is 
J J 

redundant or collinear. 

We use the name triad for a triangle whose vertices are vertices of the 

given polygon P, and write 

ll . = P • lp .P '+1 
J J- J J 

and o(i, j, k) P .P .Pk. 
1.- J 

(2) 
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Lemma 7: The vertex Pk lies inside the convex triad ~j if and only 

y[j - 1, j, k] > o, 

y[j, j + 1, k] > o, 
y[j + 1, j - 1, k] > 0 ) 

Lemma 8: No simple, closed polygon has an empty interior. 

(7) 

Theorem 1: Every simple, closed polygon P has at least two convex 

triads ~r and ~s each containing no other vertex of P. 

Lemma 9: If the convex triad~.= P. 1P.P. 
1 

does contain certain 
J J- J J+ 

vertices, then the vertices Ph- and Ph+ among them, respectively haVing the 
+ least values of y[j - 1, j, h-] and y[j, j + 1, h ] are re-entrant, and the 

corresponding triads Pj-lPjPh- and PjPj+lPh+ are empty convex triads. 

Lemma 13: The bound in Lemma 5 is tight: there are polygons of 

any number of vertices n ~ 3 with only three convex vertices. 

(Additional Lemmas 10, 11, and 12, and Theorems 2, 3, and 4, are of a 

more technical nature and refer to various triangulation algorithms presented 

in [ l] • ) 

Of the algorithms presented in [1], Algorithm 0 is preparatory and 

identifies the convex and re-entrant vertices of the given polynomial into 

respective lists named~ and B. (Use is made of Lemmas l and 4.) This is 

refined in Algorithm 0* and in the actual program presented on pages 47 - 61 

(Section 7) of [1]. Algorithm 1, for successive vertices in list~. tests 

all vertices in list B for inclusion in the corresponding convex triad with 

apex in list~. (Use is made of Lemmas 5, 6, and 7, and Theorem 1.) When 

an empty convex triad is encountered, it is added to the triangulation list 

e and lists~ and Bare adjusted accordingly. This is iterated until the 

triangulation is complete. Algorithm l* is a modification of this algorithm 

preparatory to Algorithm 3, setting up lists of included vertices «· and 
'/-

corresponding inverse lists~ (see also the actual program presented in [1]). 

Algorithm 2 uses Lemma 9 to permit positive action at every convex triad; 

leading to the splitting of the polygon into two or three disjoint simple 

closed polygons to be triangulated, whenever a non-empty triad is encountered. 

Algorithm 3 is a variant of Algorithm 1 in which information previously obtained 
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is retained (via Algorithm 1*), modified only when necessary, and re-used, 

rather than re-calculated at each iteration. This is refined in the program 

presented in [ 1]. 

In what follows, results are called Propositions, to distinguish them 

from the Lemmas of the earlier paper [1]. 

2. Basic Propositions 

PROPOSITION 1. A convex polygon has only convex or collinear vertices. 

PROPOSITION 2. A polygon with only convex or collinear vertices is convex. 

PROPOSITION 3. Given a convex polygon I\ and a general polygon P entirely 

in or on K, if a vertex P . of P lies on K, then P . is either a convex or 
J J 

collinear vertex of P. 

COROLLARY 3.1. If the vertices of a simple closed polygon P have the 

coordinates (5), then the vertices satisfying (6) are all convex or collinear 

vertices of P. 

COROLLARY 3.2. Under the conditions of Froposition 3, the first and 

last vertices of p (in the order in which they appear in PJ in any side of 

K are convex vertices of P. 

COROLLARY 3.3. Under the conditions of Corollary 3.1, the first and 

last _vertices of P (in the order in which they appear in PJ satisfying any 

one of the conditions (6) are convex vertices of p. 

COROLLARY 3.4. Under the conditions of Corollary 3.1, any of the vertices 

of P satisfying 

x. • E.x. 
1- J J 

or y. = E.y. 
1- J J 

and 

and 

x.} ' 
1-

(8) 

(9) 

where each of E and F represents either "min" or "max", is a convex vertex of 11. 

Proof. As in [1], proofs will be enclosed in double brackets [ ••• B. Proposi­

tions 1, 2, and 3, respectively present amendments to Lemmas 2, 3, and 4, of [1]. 

The proofs of these results stand essentially unchanged, with the observation 

that, when a vertex P. is not re-entrant (r. ~ 0), then it is either convex or 
J J 

collinear (r. > 0 orr.= 0); the latter alternative was previously omitted. 
J J 
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Corollary 3.1 is similarly a restatement of the corollary to Lemma 4. We are 

left with Corollaries 3.2, 3.3, and 3.4, which provide the needed sharpening 

of the preceding results. 

[Let AB be a side of the convex polygon K containing at least three 

vertices of the included simple closed polygon P, with the customary interior­

on-the-left traversal of K going from A to B. Let P and Q be two vertices of 

p lying in AB. Denote the polygonal arc of P traversed from P to Q in the 

interior-on-the-left direction by (PQ) , and the remainder of P, traversed 

from Q to P by (QP) . If all vertices of P in (PQ) lie on AB (i.e., (PQ) is 

simply a line-segment PQ lying on AB), then their order in AB is the same as 

their order in P. If not, the segment PQ of AB consists of sub-segments shared 

with (PQ) (in which vertices are ordered as in Pl and sub-segments not so 

shared, in which the corresponding pieces of (PQ) lie in the interior of K. 
Let XY be one of the latter intervals (with X andY vertices of P, of course). 

Then suppose that R is a vertex of Pin (QP); if R lay in XY, the edges of P 

through it would have to lie on the interior side of X and parts of them 

would have to be inside the simple closed polygon formed by (XY) and the segment 

YX; but this is impossible, since P can neither cross K nor itself. Thus we 

see that no vertex of P not in (PQ) can lie in AB between P and Q; or, in other 

words, the order of vertices of P in AB is the same as their order in P. From 

this we conclude that, of the vertices of P lying in any side AB of K, the 

nearest to A and to B are respectively the first and the last, in the order 

in which they are traversed in p. The reasoning of the proof of Lemma 4 now 

shows that these particular vertices are strictly convex. (They cannot be 

collinear and be first or last in AB.) This proves Corollary 3.2.] 

[Corollary 3.3 takes forK the rectangle with vertices (£~., F.y., 0), 
J J J J 

with each of E and F denoting either "min" or "max", as in (8) and (9). It 

follows from Corollary 3.2 that the first and last vertices (as ordered in P) 

lying in any side of this rectangle (whose equation is one of the equations (6)) 

are strictly convex. The conditions (8) and (9) identify those of the vertices 

of P lying in a side of the rectangle, nearest to the end-points of this side. 

As has been proved above, these are precisely the first and last of these in 

the order in which they are traversed in p. This proves Corollary 3.4.] 
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Lemmas l (with corollary), S, 6, 8, and 13, and Theorem 1, are taken 

over unchanged, While Lemma 7 is correct, it is preferable to use the 

following result (which is an immediate corollary). 

PROPOSITION 4, The vePtex Pk lies inside OP on the convex tPiad 6j if 

and only if 

y[j - l, j, k] ;;. 0, 

y [j. j + l, k] ;;. o, (lO) 

y[j + l, j- l, k] ;;. o. 
) 

This prevents the problem encountered when removal of a triad leaves two 

contiguous simple closed polygons (or a closed polygon which crosses itself). 

Figure (i) illustrates this: the vertex X lies on the line PR, satisfying 

(10) but not (7). Using the negation of (7), we would try to remove the triad 

PQR, leaving polygons PX U (XP) and XR U (RX) , 

Figure (i), 

Q 

X ----------
-------------- p 

The above results suffice to establish 

the validity of Algorithms O, 0*, 1, 1*, 

and 3, . In [1], we used Lemma 9 to justify 

Algorithm 2. Here, a difficulty has been 

discovered. The concept of an "empty" 

triad turns out to have been left very 

slightly vague; and we must now sharpen 

this. Following Lemma 7 and Theorem 1 of 

[l], we define: 

DEFINITION 1, A tPiad o(i, j, k) 

P.P .Pk is said to be 
"1- J 

--- no VePtex of P otheP 

"empty" iff thePe is 

than P., P ., OP Pk 
"1- J 

within oP on it. 

Note that we have moved from (7) to (10), as indicated in Proposition 4 above. 

With either this definition or the earlier concept based on (7), we see that 

Lemma 9 stands as stated. However, emptiness turns out not to ensure that 

the triad may be removed! We define: 
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DEFINITION 2. A triad o(i, j, k) = P .P .Pk is said to be "removable" 
1- J 

if and only if (a) it is empty (in the sense of Definition 1), (b) no side 

of P intersects its interior, and (c) its interior is part of the interior 

of p. 

PROPOSITION 5. If p is a simple closed polygon with n ~ 4 vertices, and 

6. is a triad, removable (in the sense of Definition 2) from P; then the 
J 

polygon P' obtained from P by removing the vertex P. and directly connecting 
J 

Pj-l to Pj+l is also simple and closed, with one less vertex than P •. 

[The triad 6j = Pj-lpjpj+l' and, since 

n ~ 4, there is at least one more vertex of p. 
Since 6. is empty and no side of P intersects 

J 
the interior of 6., all sides of P except for 

J 
P . 1r . and P .P. 

1 
lie entirely outside the 

J- J J J+ 
triad. If the interior of 6. is part of the 

J 
interior of P, P • must be a convex vertex and 

J 
so 6. must be a convex triad. The proposition 

J 
now follows (see Figure (ii)).] 

P. 
]+1 

Figure ( ii). 

_, 
( \ 
'\ \ 

--------------------- \ 
P. I 

\ .!:::.1-./ 
\ 1... ( ' / ' ) - '-....--

PROPOSITION 6. If 6j is a convex triad of a simple closed polygon P, 
and if it is empty (in the sense of Definition 1); then it is removable (in 

the sense of Definition 2) from p. 

[Since the triad is convex, its interior is part of the interior of P. 
(The two interiors are disjoint if the triad is re-entrant.) Since it is 

empty, no vertex of Pother than P. 
1

, 
J­

that remains is to prove condition (b) 

P ., and P. 
1 

lies in or on 6 .. All 
J ~ J 

of Definition 2, that no side of P 
intersects the interior of 6 .• 

J 
Both ends of such a side must be outside the 

triad; and, since the polygon is simple, the side cannot intersect P. 
1
P. or 

J- ~..7 

PjPj+l• But any line which intersects the interior of a triangle must cross 

two of its sides; so a segment which is part of such a line and which has its 

ends outside the triangle either lies entirely outside the triangle or crosses 

two sides of the triangle. This completes the proof of the proposition.] 

It is this result which justifies all the algorithms except Algorithm 2 

and permits the vagueness about distinguishing emptiness and removability. 



-8-

PROPOSITION 7. It is possible for a triad 6(i, j, k) = P.P .Pk of a 
1- J 

simple dosed polygon II to be empty (in the sense of Definition 1), and yet 

for it not to be removable from Jl, 

[An illustration (counter-example to the extension of Proposition 6 to 

non-consecutive triads) is given in Figure (iii). The triad is 

though it is empty (i.e., contains no other vertices of p), the 

P .P .P. and, 
1- J J+l 

sides Ph-lph 

and PhPh+l cross its interior, in contradiction of Definition 2.] 

Figure (iii). 
~ ~ 
J+l- 'J __...-"\ ......._ 

1/' \ /""-\ 
I \ / Ph I 
I ' I ~ I \ , ~-I 

~'~ .. ~I 
h-1 ~ _/l J 

'h... f \ // /// 
I \ / / 
\ \ I ~ 

' ~ // '- .... 
---- p -i 

As a further example of this 

proposition, consider Figure (iv), 

which is a variation on the theme 

illustrated in Figures 12 and 13 of 

[1), exemplifying Lemma 9 there, 

The line FG is parallel to the side 

P. 
1
P. of the convex triad 6., inter-

J- J J 
secting Pj-lpj+l in F and PjPj+l in 

G, and passes through Ph_; Pj-lpjph_ is 

then necessarily empty (as indeed is 

the whole of the quadrilateral FGP. 
1

P .). 
J- J 

The line HK, similarly, is parallel to 

PjPj+l' intersecting Pj-lpj+l in Hand Pj-lpj inK, and passes through Ph+; 

P .P. lph+ is then empty (as is HKP .P. 1 ), We see that P. 1P .Ph_ is, in fact, 
J J+ ,7 J+ J- J 

removable; but that P .P. 1Ph+ is not, ( ) 
J J+ Figure iv • P-

since it is crossed by the sides WX 

and YZ of p, It follows from t·his 

that Algorithm 2 can fail. It is 

possible to refine the algorithm to 

deal with the difficulty revealed in 

Proposition 7; but the resulting 

procedure becomes excessively 

laborious; so it seems best to drop 

the algorithm altogether, for now. 

G 

K 

-~-~h+ --. --.. -~ 
-~--___ ... - H 

I ( 
/ \ " ..... _ 

_,/ ----

F 

I 

P. 
]-1 

I \ 
I l 
' I ,...__/ 
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PROPOSITION 8. The interior of a triad is part of the interior of the 

polygon only if no side of the polygon intersects the interior of the triad. 

[If a side of p intersects the interior of the triad, then it separates 

the interior Ip and the exterior Rp of P; whence part of the interior of the 

triad is in Rp·] Thus, Condition (c) of Definition 2 implies Condition (b) 

[and the old form of Condition (a)]. The new form of Condition (a) [see 

(10), Proposition 4, and Definition 1] requires further that the case shown 

in Figure (i) not occur (i.e., no extraneous vertex of P lie on the triad. 

The following proposition was communicated privately (without proof) to 

the author by Dr T. H. Brylawski. The proof given here is the present 

author's. 

PROPOSITION 9 [BRYLAWSKI]. Consider any convex triad 6. of a simple 
J 

closed polygon p. Either (a) the triad is empty; in which case it is 

removable, leaving a polygon of one less vertex; or (b) there is a vertex 

Ph having the greatest value of y[j - 1, h, j + 1] among all vertices in 

the triad; in which case no side of P crosses the segment PhPj, and this 

segment creates two contiguous simple closed polygons, each with less 

vertices than r. In both cases, iteration of the process leads to a full, 

economical triangulation of the polygon P. 

[If 6. is an empty convex triad; then, by Propositions 5 and 6, it is 
J 

removable from P, leaving a simple closed polygon P' of one less vertex, so 

long as P has at least four vertices; and when there are only three vertices 

left, the removal of the triad completes the process of triangulation. If 

6. is not empty, then, by Definition 1, it must contain at least one vertex 
J 

other than P. 
1

, P ., and 
J- J 

property stated in (b). 

Pj+l' and therefore there is a vertex Ph having the 

It then follows (see Figure (v) and the observation 

below) that there is a line XY, parallel toP. 1P. 1 , intersecting P. 1P. at 
J- J+ J- J 

X and PjPj+l at Y, and passing through Ph' such that the triangle XPjY is 

empty (further, Ph either lies in the interior of the triad or in the segment 

Pj-lpj+l' since it cannot lie in the sides Pj-lpj or PjPj+l). An argument 

exactly similar to that used to prove Proposition 6 shows that no side of P 
can intersect the interior of the triangle XPjY; so that no side can cross 
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P, 
J+l 

Figure (v). 
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the segment PhPj. Now, Ph and Pj divide p 
into the non-intersecting polygonal arcs 

(php J and (p /h); with (php j containing 

at least P . 
1 

and (p .Ph) containing at 
J- J 

least P. 1 . Thus, the addition of PhP. to 
J+ J 

p yields two contiguous simple closed poly-

gons, P /h U (php j and PhP j U (p /h), 

\ I ' / 

each having less vertices than P.· Iteration 

of the process yields polygons with strictly 

decreasing numbers of vertices; so that the 

entire algorithm must terminate. The 

...... __ / 
' I , 
\,. / ----

resulting triangulation is economical, since 

every triad removed has vertices of Pas its vertices.] 

We should point out that the discriminant y[i, j, k] defined in (3) is 

equal to twice the area of the 
Figure (vi). 

triangle P.P .Pk; that is, the 
'1- J 

product of the length of PjPk 

and the vertical height of P. 
'!-

above PjPk. Thus (see Figure (vi)) 

X •••.•..••• L.~.:~~---~.' ... ~.~~.: t ant ~ri.i.PkJ ~ 
-~ .................. _, __ , ......... .. 

y 

y[i, j, k] is constant, for fixed 

Pj and Pk' for all positions of Pi 

in a line XY parallel to PjPk. 

Dir e c t ion of 

inc r e as in g 

~ [i.j, k] 

As XY moves upwards above PjPk' 

the value of y[i, j, k] increases (below PjPk' y is 

9, Proposition 9, 

negative). This fact 

justifies the statements in Lemma and 

[For example, in Figure (v), if Ph has maximal y[j- 1, 

the proofs thereof. 

h, j + 1], then there 

can be no vertex above the line XY, in the triad Pj-lpjpj+l'] 

PROPOSITION 10. In Case (b) of Proposition 9, any maximal vertex Ph as 

defined there must be re-entrant or collinear; and at least one such Ph has 

to be re-entrant, ·unless the triad~. coincides with the polygon P. 
J 

[We argue similarly to the proofs of Lemma 4, Proposition 3, and Corollary 

3.2. Sides Pj-lpj and PjPj+l cannot intersect the interior of the triangle 
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XPjY; so the angle eh 
collinear, as stated. 

~ 0 (see page 1); whence Ph is either re-entrant or 

Now Ph must be strictly between X and Y (even if X 

P. 
1 

and 
J­

with the 

Y = Pj+l); so either the triad (or triangle) 

polygon P (i.e., all other vertices of pare 

P. 1P .P '+l coincides 
J- J J 

in the segment P. 
1
P. 

1
), 

J- J+ 
or there is at least one vertex of P (other than Pj-l and Pj+l) exterior to 

the triangle XPjY. In the latter case, there must be a vertex Ph lying in 

XY whose predecessor or successor in P lies off XY; and this vertex is re-

entrant.] 

Propositions 9 and 10 provide us with the foundation of a new algorithm, 

which will not fail, and which turns out to be quite efficient and simple to 

program. 

3. The Programs 

Four new: programs have been written and tested, using the improved 

results of the present study. Program A was a refined version of the program 

listed in [1) (on pages 47- 61). Applying the new program to the same four 

polygons used as examples in [l), we find that the arithmetic-operation (a.o.) 

counts are considerably improved: 

POLYGON n A.D. COUNT IMPROVEMENT 
OLD NEW (OLD- NEW)/OLD 

1 15 4,257 2, 511 41.01% 
2 20 6,579 4, 311 34.47% 
3 27 11,367 7,839 31.04% 
4 48 36,306 29,088 19.88% 

Program B was essentially the same as Program A, but modified so as to 

keep track of elapsed execution time (excluding input and output operations) 

and to work with a family of "double square spiral" polygons of 8i vertices, 

fori= 1, 2, 3, ••• , 12. Output was somewhat terser than from Program A. 

Program C was similar to Program B, except that the algorithm, instead 

of being essentially Algorithm 3 of [1), was the 'new algorithm based on 

Propositions 9 and 10 above. 

Because elapsed time is perturbed by the interstitial accounting and 

monitoring functions of the Unix operating system, each instance of the last 

two programs was run three times and the least elapsed time recorded. Even 
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so, the results were a little erratic and truncated to whole seconds. 

Program A was written to input coordinates of the vertices of a poly­

gon and triangulate it, Programs B and C input the parameter i only, 

generated the corresponding member of the family of double square spirals 

(with 8i vertices), and triangulated it. Program D bore a similar relation 

to Program A as Program C did to Program B (new algorithm; arbitrary poly­

gon input). 

The results for Programs B and C, for the family of double square spirals, 
are shown below: 

POLYGON 
PARAMETER 

* 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

n 

8 
16 
24 
32 
40 
48 
56 
64 
72 
80 
88 
96 

A. 0. COUNT 
PROGRAM B PROGRAM C 

513 
3,393 
8' 829 

16,821 
27,369 
40,473 
56,133 
74,349 
95,121 

118,449 
144,333 
172,773 

207 
972 

2,169 
3' 7 98 
5, 859 
8,352 

11' 277 
14,634 
18,423 
22,644 
27,297 
32,382 

RATIO OF 
COUNTS 

2.48 
3.49 
4. 07 
4.43 
4. 67 
4.85 
4. 98 
5.08 
5.16 
5.23 
5.29 
5.34 

ELAPSED TIME* 
PROG. B PROG. C 

0* 
1* 
4 
6 

11 
16 
22 
30 
38 
48 
60 
72 

0* 
0* 
1* 
1* 
2 
3 
5* 
5* 
7 
9 

11 
13 

Note: elapsed times are given to the nearest second only. 

The results for Programs A and D are compared below: 

POLYGON n A.O. COUNT RATIO OF 
PARAMETER PROGRAM A PROGRAM D COUNTS 

1 15 2, 511 693 3. 62 
2 20 4, 311 l, 008 4.28 
3 27 7,839 2. 493 3.14 
4 48 29,088 4. 023 7.23 

The four example-polygons used in [1] are fully described there. In 

Figures (vii) and (viii), we show the triangulations of the second of these 

(Figure 30 of [1], a 20-gon), as performed by Programs A and D, respectively. 
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Figure (vii). 

1 

19 

angulationsr in practice. 

Figure (viii). 

We note that the order 

of triangulation is not 

the same in the two 

figures, though we begin 

with the same convex 

vertex P
1 

in each case; 

and further, the final 

triangulations differ 

in a few particulars 

(the quadrilaterals 

P3P4Pl0pll and pl2pl3 

P16P
18 

are split into 

pairs of triangles in 

different ways.) This 

is hardly surprising, 

but we did often find 

identical final tri-

Figures (ix) and 

(x) show the triangu­

lations obtained with 

Programs B and C, res­

pectively, for the 

double square spirals 

with i = 2 (i.e., 16 

vertices). This is an 

example of the situation 

mentioned above, in which 

the triangulations coin­

cide; though the order 

in which the triads are 

removed differs. 

Such experimental 

results would, in them­

selves, convince most 
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Figure ( ix). Figure (x) . 

"~ .. / !'\:~ JIB: / 

l1j If 
~:st..,.; 

~ 1x /. ~ ~37:1 
rt 
it 

v:xm:- X~ 
ll1: Vm :m: '\.. l!l' 

/:I 11 ' /_ J: Jl " 
users to choose the new algorithm, based on Propositions 9 and 10, over 

the old one, based on Algorithm 3 of [1). We shall see later that the 

theoretical worst-case bound on the a.o. count of the new algorithm is 

considerably better than that for the old one. 

In the listings below, output functions (which are dependent on the 

purpose and context of the program, and will therefore vary) are omitted. 

All the programs were written in standard "C" with preprocessor calls. 

They were run under Unix System V (version 4.2 by Callan Data Systems) 

on a C.D.S. Unistar 100/200 workstation with a Motorola 68000 c.p.u. 

4. Program A 

The program opens with preliminary definitions. 

1 #include <stdio.h> 

2 

3 
4 
5 
6 
7 
8 

9 
10 

tdefine MAX 100 

int g, 
n, 

p, 
q, 

float P[2][MAX], 

r, 
C[3)[MAX]; 

discr[MAX); 

MWX = greatest allowed number of vertices 

g = gamma (discriminant) call count 
n = number of vertices in polygon 
p = number of convex vertices (in A-list) 
q = number of re-entrant vertices (B-list) 
r = removed-triad index 
Removed triads are stored in C 

P[O) = x, P[l) = y, for polygon vertices 
discr[i] is discriminant for vertex P[i+l] 
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gamma(h, i, j) increments the gamma-count g and returns the value of the 
discriminant y(h, i, j), as defined in (3). 

11 #define ...-a(h, i, j) (g++, P[O)[h) * (P[1)[i) - P[1)(j]) \ 
12 - P[1)[h) * (P[O)[i] - P[O][j]) \ 
13 + P[O] [i] * P[1] [j] - P[1] [i] * P[O] [j]) 

Each u-list has its identifying pointer in the "up" component of a cor­
responding D-cell (see below); this points to the first cell of the u-list 
(a dummy cell of the form {ul, 0, 0}, with "ul" au-list-pointer). Each u-cell 
thereafter takes the form {ul, u.St, udex), where "ul" points to the next u-ceZZ, 
"uSt" points to the predecessor of the cell in the t-Zist S[udex] (see below) 
which itself points back to the predecessor of the current u-cell, and the index 
"udex" identifies a vertex P(udex+l) of the polygon, contained inside the convex 
triad to which the D-ee ll (whose "up" component points to the current u-list) 
refers. The list is therefore absent if "up"= 0, and effectively empty if 
up -+ ul = 0. 

14 atruct u_ce11 { atruct u_ce11 *u1; 
15 struct t_ce11 *uSt; 
16 int udex; 
17 } 

The t-lists have identifying pointers S[k], pointing to header-cells 
head-t = {tf, ts), with "tf" pointing to the first and "ts" to the last t-cell. 
The first t-cell is a dummy cell of the form {tl, o}, where "tl" is a t-list­
pointer. Every t-cell thereafter takes the form {tl, tu), where "tl" points to 
the next t-cell and "tu" points to a u-cell, which is the predecessor of a u-cell 
whose index "udex" is k, the index of the t-list S[ k] (see above). 

18 atruct t_ce11 { atruct t_ce11 *tl; 
19 atruct u_ce11 *tu; 
20 } 

21 struct head_t { atruct t_ce11 *tf, *ta; } *&(MAX]; 

The D-list initially has an identifying pointer D, pointing to the first 
D-cell. Each D-cell = {pp, np, f, b, up, index), where "pp" is a D-Ust-pointer, 
"np" is a reverse-sense D-list-pointer, "f" and "b" are other pointers to D-cells 
(see below), "up" is the identifying pointer to au-list (see above), and "index" 
is the index of the vertex P(index+l) of the polygon, to which the D-cell refers. 

The D-list incorporates two other lists, the A-list and the B-list. None of 
these three lists have header-cells. The identifying pointer of the A-list 
(which points directly to the first D-cell in the A-list) is A, and that of the 
B-list (which points to the first D-cell in the B-list) is B; the pointers X, Y, 
and Z respectively point to the last D-cells of the A-, B-, and D-lists. The 
D-cells in the A-list are those referring to convex vertices; the D-cells in the 
B-list are those referring to re-entrant vertices. The "f" and ''b" pointers are 
respectively forward and backward list-pointers for D-cells of like kind (i.e., 
both in the A-list or both in the B-list). 

When the construction of the A-, B-, and D-lists is completed, the list­
pointers of the last cells (i.e., Z -+ pp, X-+ f, andY-+ f) are made to point to 
the first cells in their respective lists, and the backward-list-pointers of the 
first cells (i.e., D + np, A -+ b, and B-+ b) are made to point to the last cells 
in their respective lists; making these lists circular. Thereafter, only the 
pointers A and B are maintained; since D, X, Y, and Z are no longer needed. 
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22 struct D_cell { struct D_cell *pp, *np, *f, *b; 
23 struct u_cell *up; 
24 int index; 
25 } *A, *B, *D, *X, *Y, *Z; 

26 

27 

28 

29 

30 

NEW-u, NEW-t, NEW-Ht, and NEW-D respectively allocate, using the function 
malloc(), and return pointers to free memory space for new u-cells, t-cells, 
t-header-cells, and D-cells, allowing us to construct the needed lists, cell-
by-cell. · 

char *malloc(); 

tdefine NEW_u 

tdefine NEW_t 

.t:define NEW_Ht 

tdefine NEW D 

(struct u_cell *) malloc(sizeof(struct u_cell)) 

(struct t_cell *) malloc(sizeof(struct t_cell)) 

(struct head_t *) malloc(sizeof(struct head_t)) 

(struct D_cell *) aalloc(sizeof(struct D_cell)) 

ins-u(u, kJ appends, to the end of the t-list S[k], a new t-cell {0, u}, 
and inserts, after the u-cell pointed to by the pointer u, a new u-cell {ul, 
S[k] ~ ts, k} (S[k] ~ ts, pointing to the old last t-cell is then updated to 
the new cell). 

31 ins_u(u, k) 

32 
33 

34 
35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

struct u_cell *u; 
int k; 

{ struct u_cell 
struct t_cell 

t = S(k] -> 
t -> tl = 0; 
t -> tu = u; 
v = NEW_u; 

ts 

v -> udex = k; 

*v; 
*t; 

-> tl = 

v -> uSt = S[k] -> ts; 
v -> ul = u -> ul; 
u -> ul = v; 
S[k] -> ts = t; 

} 

NEWt· - ' 

Pointer to predecessor u-cell 
Index of included vertex P(k+l) 

t points to new t-cell; as does last t-cell 
New last t-cell points nowhere 
Last t-cell points to given u-cell u 
v points to new u-cell 
Index of new u-cell is k (given) 
New u-cell points back to old last t-cell 
New u-cell points to successor cell of u 
Predecessor cell points to new u-cell 
S[k] ~ ts points to new last t-cell 

del-u(d) deletes, from all t-lists, cells pointing back to u-cells in the 
u-Ust pointed to by d -+ up, using the "uSt" pointers; then voids d -+ up. 

46 del_u(d) 

47 struct D_cell *d; Pointer to D-cell whose u-list is removed 

48 { struct u_cell *u; 



49 
50 
51 

52 
53 
54 } 
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if ((u = d -> up) != 0) 
{while ((u = u -> ul) != 0) 

u -> uSt -> tl = u -> uSt 

d -> up = 0; 
} 

Do nothing if u-list is absent 
For every cell in u-list: 

-> tl -> tl; remove corresponding t-cell 
from its t-Zist 

Finally, annul the u-list pointer 

del-S(i) deletes all cells referring to the vertex P(i+l) from all u-lists, 
using the listing of their predecessors in S[i]; then voids S[i]. 

55 del_S(i) 

56 int i; 

57 { struct t_cell *t; 

58 if (S(i] != 0) Do nothing if t-Zist is absent 
59 { t = S(i] -> tf; t points to first cell of t-Zist 
60 while ((t = t -> tl) != 0) For every cell in t-list: 
61 t -> tu -> ul = t -> tu -> ul -> ul; remove corresponding u-cell 

from its u-Zist 
62 S(i] = 0; Finally, annul the t-Zist pointer 
63 } 
64 } 

fill-D!j, x) appends aD-cell {0, np, 0, b, 0, j}, with null forward pointers, 
to the D-Zist, unless x = 0, and adds it to the A-list, if x > 0, or to the B-Zist, 
if x < o. In application, x = discr[j] is the discriminant associated with the 
vertex P(j+l), and this is zero for redundant (collinear) vertices, positive for 
convex vertices, and negative for re-entrant vertices. 

65 fill_D(j, x) 

66 int j; 
67 float x; 

68 { struct D_cell *d; 

69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 

if (x != 0) 
{ d = NEW_D; 

} 

d -> pp = d -> f = 0; 
d -> up = 0; 
d -> index = j; 
if (Z != 0) 

{ z -> pp = d; 
d -> np = Z; 

} 
else 

{ d -> np = 0; 
D = d; 

} 
z = d; 

Omit redundant (collinear) vertices 
d points to new D-cell 
New cell points nowhere !forward) 
New cell has no u-list 
Index of new cell is j (given) 
If this is not the first D-cell: 

old last cell points to new one 
new c~ll points back to old last one 

If this is the first D-cell: 
new cell points back nowhere 
D points to first D-cell 

Z points to (new) last D-cell 



84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 

if (x > 0) 
{ if (X != 0) 

{ X -> f = d; 
d -> b = X; 

} 
else 

{ d -> b = 0; 
A= d; 

} 
X = d; 

} 

if (x < 0) 
{ if (Y != 0) 

{ y -> f = d; 
d -> b = Y; 

} 
else 

{ d -> b = 0; 
B = d; 

} 
y = d; 

} 
} 
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If vertex is convex: 
if this is not the first A-cell: 

old last cell points to new one 
new cell points back to old last one 

if this is the first A-cell: 
new cell points back nowhere 
A points to first A-cell 

X points to (new) last A-cell 

If vertex is re-entrant: 
if this is not the first B-cell: 

old last cell points to new one 
new cell points back to old last one 

if this is the first B-cell: 
new cell points back nowhere 
B points to first B-cell 

Y points to (new) last B-cell 

adjust(c, d, e, x) makes the necessary adjustments when a vertex which was 
re-entrant becomes convex or collinear. Pointers c and e point to consecutive 
convex vertices with the vertex pointed to by d, originally re-entrant, between 
them. The new value of the discriminant of d is x. 

107 adjust(c, d, e, x) 

108 float(x); 
109 struct D_ce11 *c, *d, *e; 

110 

111 
112 
113 
114 

115 
116 
117 
118 

119 

120 
121 

{ q--; 

if (d -> f != d) 
{ d -> f -> b = d -> b; 

d -> b -> f = d -> f; 
} 

if (x -- 0) 
{ d -> pp -> np = d -> np; 

d -> DP -> pp = d -) pp; 
if (d -> np -- c) find_u(c); 

if (d -> pp -- e) find_u(e); 

de1_S(d -> index); 
} 

Decrement the re-entrant vertex count q 

If d was not the last re-entrant vertex: 
eliminate d from B-list, in both 

directions 

If dis now redundant (collinear): 
eliminate d from D-list, in both 

directions 
if c is predecessor of d: 

construct new u-list for c 
if e is successor of d: 

construct new u-list for e 
delete references to d in all u-lists 



122 
123 
124 
125 
126 
127 
128 
129 
130 

is 
131 

132 

133 
134 
135 

136 

137 
138 
139 
140 

141 
142 
143 

144 

145 
146 
147 
148 

149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 

160 
161 
162 

} 

else 
{ p++; 

} 

d -> b = c; 
c -> f = d; 
d -> f = e; 
e -> b = d; 
find_u(d); 
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If d is now convex: 
increment convex vertex count p 
insert d into A-list, 

between c and e, 
in both directions 

construct new u-list for d 

find-u(d) constructs a u-list for the vertex whose corresponding D-cell 
pointed to by the pointer d. d must point to a convex vertex. 
struct D_ce11 *find_u(d) 

struct D_ce11 *d; 

{ int h, i, j, k, mt; 
struct u_cel1 *u; 
struct D_ce11 *c; 

del_u(d); 

u = d -> up = NEW_u; 
u -> ul = 0; 
u -> ust = 0; 
u -> udex = 0; 

h = d -> np -> index; 
i = d -> index; 
j = d -> pp -> index; 

mt = 0; 

c = B; 
if(c!=O) 

do 
{ k = c -> index; 

Delete any previous u-list for d 

u and d ~ up point to new u-cell 
First u-cell is dummy, 

with uSt null 
and udex = 0 

h = index of predecessor of d 
i =index of d 
j = index of successor of d 

mt = "empty triad" flag; initially zero, 
meaning "empty" 

Starting with B, 
if B-list not empty 

For every B-cell: c points to cell 
k = index of c 

if (k != h && k != i && k != j) 

if (ga.ma(i, j, k) >= 0) 
if k is not h, i, or j, 

and if k 
if (gamma(j, h, k) >= 0) is inside or on 

triad y(h, i, j): if (gamma(h, i, k) >= 0) 
{ mt = 1; mt = 1, meaning "non-empty" 

insert cell referring to k, 
after u in u-list, and 
advance u to new cell 

next B-ce ll 

ins_u(u, k); 
u = u -> ul; 

} 
c = c -> f; 

} 
while (c != B) ; 

if (at == 1) 
{ c = A; 

do 

go to 

until cycle back to B 

If the triad is not empty: 
starting with A, for every A-cell: 



163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 

175 
176 
177 } 

} 
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{ k = c -> index; 

} 

if (k != h && k != i && k != j) 
if (ga.aa(i, j, k) >= 0) 

if (gamma(j, h, k) >= 0) 
if (gamma(h, i, k) >= 0) 

{ ins_u(u, k); 
u = u -> ul; 

} 
c = c -> f; 

while (c != A) ; 

Do the same for 
the A-list as 
was done before 
for the B-Zist, 
seeking included 
vertices and 
adding them to 
the u-list 

if (mt -- 0) return(d); 
else return(Z); 

If the triad is empty, return pointer d 
If not, return the pointer Z (initially 0) 

[Above used only in line 224 to find 
the first empty convex triad.] 

THE MAIN PROGRAM. After reading-in the polygon (number n of vertices first; 
then the coordinate-pairs of the vertices, in cyclic order, interior-on-the-left 
or reverse sense), the program constructs the D-, A-, B-, and all u- and t-lists; 
and then executes the algorithm, finding and removing to the C-array successive 
empty convex triads. 

178 aain() 
179 { int h, i, j, k; 
180 float x, y; 
181 struct D_ce11 *c, *d, *find_u(); 
182 struct t_cell *t; 

183 
184 
185 
186 
187 
188 

189 

190 
191 
192 
193 
194 
195 
196 

197 
198 
199 

200 

do scanf( "%d ", &n); while (n < 3); 
for (i = 0; i < n; i++) 

Input n = number of vertices 
and coordinates (x, y) 

{ scanf("%f %f ", &x, &y); 
P[O] (i] = x; 
P[l] [i] = y; 

} 

g = p = q = r = 0; 

h = 0; x = P[O](O]; 
for (i = 0; i < n; i++) 

{ if (P(O] (i] > x) 
{ h = i; 

x=P(O][i]; 
} 

of each vertex into 
P[O][ ... ] and 
P[l]( ... ] 

Initialize all counts to zero 

Find vertex P(h+l) with greatest 
x-coordinate x = P[O][h], and if 
several such, that with greatest 
y-coordinate P[l][h] 

if (P[O][i] --X && P(l](i] > P(l][h]) h = i; 

if (i == 0) discr[i] = g81111Da(n - 1, 0, 1); 
else if (i == n - 1) discr[i] = g81111Da(n - 2, n - 1, 0); 
else discr[i] = gBIIIIDa(i - 1, i, i + 1); 

C[O][i] = C[l][i] = C(2](i] = 0; Initialize (empty) C-array 



201 
202 
203 
204 
205 

206 
207 
208 
209 
210 
211 

212 

213 
214 

215 
216 
217 
218 
219 
220 

221 
222 
223 
224 
225 
226 
227 

228 
229 
230 
231 
232 

233 
234 
235 
236 

237 
238 
239 

240 
241 
242 
243 
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S(i] = NEW_Ht; 
t = S(i] -> tf = S[i] -> ts = NEW_t; 
t -> tl = 0; 

S[i] points to new t-header cell 
t, S[i] ~ tf, and S[i] ~ ts point 

to new t-cell, initiated with 
null pointers forward t -> tu = 0; 

} 

x = ((discr[h] > 0) ? 1 : (-1)); 
for (i = 0; i < n; i++) 

Extreme vertex P(h+l) must be convex; 
so its discriminant should be positive. 
Adjust alZ discriminant values to be 
of appropriate signs (for interior­
on-the-left sense of traversal) 

{ discr[i] = x * discr[i]; 
if (discr[i] > 0) p++; 
if (discr[i] < 0) q++; 

} 

A = X = B = Y = D = Z = 0; Initialize all list-pointers to be null 

if (x > 0) for (i = 0; i < n; i++) fill_D(i, discr[i]); Construct 
else for (i = n - 1; i > - 1; i-) fill_D(i, discr[i]); the D-, A-, 

Z -> pp = D; 
D -> np = Z; 
X -> f = A; 
A-> b = X; 
Y -> f = B; 
B -> b = Y; 

d = X; 
z = 0; 
do 

{ Z = find_u(d); 
d = d -> b; 

} 
while (d != X) 

while (p > 2) 
{ X = Z -> np; 

y = z -> pp; 
X -> pp = Y; 
Y -> np = X; 

C(O] [r] = h = 
C[l][r] = i = 
C(2] (r] = j = 
r++; 

p--; 
del_S(i); 
del_u(Z); 

X -> index; 
z -> index; 
y -> index; 

c = z -> f -> b = z -> b; 
d = z -> b -> f = z -> f; 
if (A == Z) A = Z -> f; 
discr(i] = 0; 

Connect beginnings and ends 
of D-, A-, and B-lists, 
so as to make each list 
circular, in both 
directions 

and B-lists 

Beginning with the last A-cell and cycling 
backwards through the A-list: 

construct the u-list for each convex 
vertex 

(end-up with the Z pointing to the 
first empty convex triad) 

So long as three convex vertices remain: 
X points to predecessor of Z in D-list 
Y points to successor of Z in D-list 
remove Z from D-list, in both 

directions 

put the triad o(h, i, j) into the 
C-array 

increment the removed-triad count 

decrement the convex vertex count 
delete all u-cells referring to P(i+l) 
delete all t-cells pointing back to 

the u-list of Z (i.e., of P(i+l)}. 

delete Z from the A-list, and let c and 
be previous and next convex vertices 

if A = Z, move A forward 



244 
245 
246 
247 
248 
249 
250 
251 
252 
253 

254 
255 
256 
257 
258 
259 
260 
261 
262 
263 

264 
265 
266 
267 
268 
269 
270 
271 
272 
273 

B 22: 

B Ja: 

B U: 

B 2&: 

} 
} 
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if X was re-entrant: if (diacr[h] < 0) 
{ x = discr[h] = 

if (x >= 0) 
g-a(X -> np -> index, h, j); x = new discriminant 

} 

{ if (X -> f == X) B = 
if (B == X) B = B -> 
adjust(c, X, d, x); 
if (x > 0) c = X; 

} 

else find_u(X); 

if (discr[j] < 0) 
{ x = discr[j] = gamma(Y -> 

if (x >= 0) 

} 

{ if (Y -> f == Y) B = 
if (B == Y) B = B -> 
adjust(c, Y, d, x); 
if (x > 0) d = Y; 

} 

else find_u(Y); 

if X changes to collinear or convex: 
0; if X was last re-entrant, annul B 
b; if B = X, move B back 

if X is now convex, move c to X 

if X was convex, recompute its u-list 

if Y was re-entrant: 
pp -> index, h, j); x =new discriminant 
if Y changes to collinear or convex: 

0; if Y was last re-entrant, annul B 
b; if B = Y, move B back 

if Y is now convex, move d to Y 

if Y was convex, recompute its u-list 

h = 1; h = "empty triad" flag; initially l, meaning 
while (h == 1) non-empty. Begin with d = next convex vertex 

{ if (d -> up -> ul == 0) if u-list of d is empty: 
{ h = 0; h = 0 (meaning empty triad found) 

Z = d; Z points to first empty triad found, 
} after that just removed 

else d = d -> f; if u-list of d is not empty, 
} advance d to next convex vertex 

5. Program B 

Program B was a modification of Program A to generate members of the 

family of "double square spiral" polygons, on input of only the parameter i 

(see Figures (ix) and (x)). In the listing below, only the changes from 

Program A are noted (all line numbers refer to Program A). 

Lines 1-21 are unchanged. Lines 22-25 are replaced by 

struct D_cell { atruct D_cell *pp, *np, *f, *b; 
atruct u cell *up; 
int indeX; 

} *A, *B, *Z; 

B 26- u: removing pointers D, X, andY from global to main() declaration. Lines 26-64 
B 6&-186: and 107-177 are unchanged. The fill-D(j, .x) function is omitted (it is incor­

porated in main(): see below), leaving out lines 65-106. The declarations in 
lines 178-182 become (note line 181) 



813 6: 

813 7: 

818 8: 

813 9: 

B140: 

BUl: 

Bl 4 2: 

B143: 

814 4: 

814 5: 

8146: 

Bl4 7: 

8148: 

8149: 

8150: 

8151: 

815 2: 
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-in() 
{ int h, i, j, k; 

float x; 
struct D_cell *c, *d, *D, *X, *Y, *find_u(); 
struct t_cell *t; 

Lines 183-188 (polygon input) are replaaed by 

scanf("~ ~". &i, &prfl); 
n = 8 * i; 
for (h = 0; h < i; h++) 

{ P[O] [ 4 * h ) = 2 * h P[l) [ 4 * h ) 

} 

P[O)[n- 4 * h- 1) =- 2 *h-I; P[l)[n 4 * h 1) 
P[O)[ 4 * h + l) = 2 * h + 2; P[l)[ 4 * h + l) 
P[O)[n- 4 * h- 2) = 2 * h + 3; P[l)[n- 4 * h- 2) 
P[O)[ 4 * h + 2) = 2 * h + 2; P[l)[ 4 * h + 2] 
P[O)[n- 4 * h- 3] = 2 * h + 3; P[l)[n- 4 * h- 3] 
P[O][ 4 * h + 3] =- 2 * h- 2; P[l)[ 4 * h + 3] 
P[O][n- 4 * h- 4] =- 2 * h- 3; P[l][n- 4 * h- 4] 

= 
= 
= 
= 
= 
= 
= 
= 

2 * h 
2 * h 
2 * h 
2 * h 
2 * h 

- 2 * h 
2 * h 

- 2 * h 

B15 3: Line 189 initializes all aounts to zero as in Program A. Since all the spiral 
polygons are traversed in the accepted interior-on-the-left sense, the discri­
minant calculation and the generation of the D-, A-, and B-lists are slightly 
simplified. Lines 190-199 become 

8164: 

815 5: 

Bl5 6: 

B15 7: 

for 
{ 

(i = 
if (i 
else 
else 

0; i < 
== 0) 

if (i 

n; i++) 
discr[i] = gB~Ba(n -

-- n - l) discr[i] = g81Ba(n -
discr[i] = (81Ba(i -

Bt58-162: lines 200-204 are unchanged, and lines 205-211 become 

Bt&a: if (discr[i] > 0) p++; 
Bl64: if (discr[i] < 0) q++; 
B16 5: } 

l, 0, 1); 
2, n - l, 0); 
l, i, i + l); 

»!66: Line 212 initializes all list-pointers to be null as in Program A. Then lines 
213 and 214 are replaced by the inclusion of the equivalent of fill-D(j, x), as 
foZ lows 

Bl67: for (i = 0; i < n; i++) 
atse: { if (discr[i] != 0) 

Bl69-182: then lines 70-83, then 

8118: if (discr[ i] > 0) 

8184-118: then lines 85-94, then 

11t4: if (discr[i] < 0) 

B195~204: then lines 96-105, then 

120fo: } 

B2os-264: The remainder of the program, namely, lines 215-273, are then unchanged; since 
the algorithm is the same. 

; 
+ 1; 

; 
+ 1; 
- 2; 
- 3; 
- 2; 
- 3; 



c 1 

c 2 

c 3 
c 4 
c 5 
c 6 

c 7 
c 8 

c 9 
c 10 
c 11 

c 12 
c 13 
c 14 

c 15 

c 16 
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6. Program C 

This program again, like Program B, generates members of the family of 

double square spirals (see Figures (ix) and (x)), on input of the parameter 

i = 1, 2, 3, ••• , 12; but it uses the new algorithm, based on Propositions 

9 and 10, instead of the-old one. In the listing below, comparison with the 

previous programs is stressed. 

are 

#include <stdio.h> 

#define MAX 100 

int g, 
n, 

r, 
C[3][MAX]; 

float P[2](MAX], 
discr [MAX] ; 

} Like lines A 1, 2 and B 1, 2 

) Unlike lines A 3-8 and B 3-8 : 
vertex counts p and q are 
removed from global to main() 

Like lines A 9-13 and B 9-13 

#define gamma(h, i, j) (g++, P[O)(h] * (P[l)[i) - P[l)[j)) \ 
- P(l][h) * (P(O][i) - P[O)[j)) \ 
+ P[O)[i) * P[l)[j)- P(l](i) * P[O][j)) 

We omit all reference to u- and t-lists; so lines A 14--21 and B 14--21 
left out of the program. 

struct D_cell { struct D_cell *pp, *np, *f, *b; } 
int index; 

} *A, *B; 

Compare lines A 22--25 
and B 22--25 : only 
A and B are global, 
and no u-list (up) 

char *malloc(); Like lines A 26 and B 26 

Omit NEW-u, NEW-t, NEW-Ht (lines A27--29 and B 27--29) 
#define NEW_D (struct D_cell *) aalloc(sizeof(struct D_cell)) 

Like lines A 30 and B 30 

Omit ins-u(), del-u(), del-S() (lines A31~4 and B31~4) and fill-D(), 
u;hich is incorporated in main(} later (lines A65-106 ). 

The adJust() function beloUJ is essentially the same as those in Programs 
A and B, except for the absence of reference to u- and t-lists, and no up­
dating of the convex and re-entrant vertex counts p and q. 
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C 17 adjust(c, d, e, x) 

C 18 float x; 
C 19 struct D_cell *c, *d, *e; 

c 20 
c 21 
c 22 
c 23 
c 24 
c 25 
c 26 
c 27 
c 28 
c 29 
c 30 
c 31 
c 32 
c 33 
c 34 

{ if (d -> f != d) 

} 

{ d -> f -> b = d -> b; 
d -> b -> f = d -> f; 

} 
if (x == 0) 

{ d -> pp -> np = d -> np; 
d -> np -> pp = d -> pp; 

} 
else 

{ d -> b = c; 
c -> f = d; 
d -> f = e; 
e -> b = d; 

} 

Compare lines Al07-130and B65--88: 
same, except for omission of 
find-u(J and del-S() calls: no 
u- and t-lists; also, no p and 
q count updates 

Omit function find-u(J (lines Al31-177 and 889-135 ), 

C 36 { int h, i, j, k, p, q; Compare lines AJ78-182 
C 35 aain() } 

C 37 struct D_cell *AA, *BB, *D, *DD, *d; and B 136-140 

c 38 
c 39 
c 40 
c 41 
c 42 
c 43 
C44 
c 45 
c 46 
c 47 
c 48 
c 49 

c 50 

c 51 
c 52 
c 53 
C54 
c 55 
c 56 
c 57 
c 58 

c 59 

scanf("%d", &i); 
n = 8 * i; 
for (h = 0; h < i; h++) 

{ P[O][ 4 * h ] 
P[O][n- 4 * h- 1] 
P[O][ 4 * h + 1] 
P[O] [n - 4 * h - 2] 
P[O] [ 4 * h + 2] 
P[O][n- 4 * h- 3] 
P[O][ 4 * h + 3] 
P[O][n- 4 * h- 4] 

} 

g = p = q = r = 0; 

Like lines B 141-152 

= - 2 * h ; 
= - 2 * h - 1; 
= 2 * h + 2; 
= 2 * h + 3; 
= 2 * h + 2; 
= 2 * h + 3; 
= - 2 * h - 2; 
= - 2 * h - 3; 

P[l] [ 4 * h ] = 2 * h , 
P[l][n- 4 * h- 1] = 2 * h + 1; 
P[l][ 4 * h + 1] = 2 * h , 
P[1][n- 4 * h- 2] = 2 * h + 1; 
P[1][ 4 * h + 2] =- 2 * h- 2; 
P[l][n- 4 * h- 3] =- 2 * h- 3; 
P[1][ 4 * h + 3] =- 2 * h- 2; 
P[l][n- 4 * h- 4] =- 2 * h- 3; 

Like lines A 189 and B 153 

for (i = 0; i < n; i++) Like lines B 154-157 l 
{ if (i == 0) discr[i] = gamma(n- 1, 0, 1); 

else if (i == n- 1) discr[i] = gamma(n - 2, n- 1, 0); 
else discr(i] = ga.ma(i - 1, i, i + 1); 
if (discr[i] > 0) p++; ) Like lines B 158 

Compare 
lines 
A190 
-211 if (discr[i] < 0) q++; and B 163-J65 

C[O)[i) = C[l)[i] = C[2][i) = 0; 
} 

A = AA = B = BB = D = DD = 0; Compare lines A212 and B 166 



C60 
c 61 
c 62 
c 63 
C64 
C65 
c 66 
c 67 
c 68 
c 69 
c 70 
C71 
c 72 
c 73 
c 74 
c 75 
c 76 
c 77 
c 78 
c 79 
c 80 
c 81 
c 82 
c 83 
C84 
C85 
c 86 
c 87 
c 88 
c 89 
c 90 
c 91 
c 92 
c 93 
C94 
C95 
C96 
c 97 
c 98 
c 99 
ClOO 
ClOl 
Cl02 
Cl03 
Cl04 
Cl05 } 

for (i = 0; i < n; i++) 
{ if (discr[i] != 0) 

{ d = NEW_D; 
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d -> pp = d -> f = 0; 
d -> index = i; 

} 

} 

if (DD != 0) 
{ DD -> pp = d; 

d -> np = DD; 
} 

else 
{ d -> np = 0; 

D = d; 
} 

DD = d; 

if (discr[i] > 0) 
{ if (AA ! = 0) 

} 

{ AA -> f = d; 
d -> b = AA; 

} 
else 

{ d -> b = 0; 
A = d; 

} 
AA = d; 

if (discr(i] < 0) 
{ if (BB != 0) 

} 

{ BB -> f = d; 
d -> b = BB; 

} 
else 

{ d -> b = 0; 
B = d; 

} 
BB = d; 

DD -> pp = D; 
D -> np = DD; 
AA -> f = A; 
A -> b = AA; 
BB -> f = B; 
B -> b = BB; 
split(A~ B); 

Compare lines B 167-205 and the fill-D() 
function in lines A 65-106 : here, 
AA, BB, and DD play the parts of 
X, Y, and Z there (also, lines 
A 72 and B 174 are not needed, 
since the D-cells have no up 
u-list pointer 

Compare lines A 215--220 and B 206--211 

CALL THE RECURSIVE SPLIT() ROUTINE 
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We now come to the crucial SPLIT() routine, which recursively calls itself 

until the triangulation is completed. 

The call is to split(Q, R), where Q points to the current A-list (convex 
vertices) and R points to the current B-list (re-entrant vertices). Taking the 
convex triad 6. = o(h, i, j) = P(h+l)P(i+l)P(j+l), where Q points to the D-cell 
corresponding ~o P(i+l); the routine searches the B-list for any re-entrant 
vertices in or on the triad, and among these, for the last one with maximal 
y[j, h, k] (see Figure (v)). If the triad is empty, the triad is removed to 
the C-array and the routine recurs on the reduced polygon. If not, the segment 
P(i+l)P(k+l) defined by the pointers Q and Z (Z points to the selected re-entrant 
vertex, which is P(k+l)) is used to split the polygon into two contiguous and 
smaller simple closed polygons, and the routine recurs to each of them in turn. 

Cl06 split(Q, R) 

Cl07 struct D_cell *0, *R; Q points to current A-list, R to B-list 

Cl08 { int h, i, j, k; 
Cl09 float x, y; 
CllO struct D_cell *c, *d, *Qnp, ~b, *Qf, *W, *X, *Y, *Z, *Zpp, *Zb, *Zf; 

Clll 

Cll2 
Cll3 
Cll4 

Cll5 
Cll6 
Cll7 
Cll8 
Cll9 
Cl20 
Cl21 
Cl22 
Cl23 
Cl24 
Cl25 
Cl26 
Cl27 
Cl28 
Cl29 
Cl30 
Cl31 

if (Q -> f -> f == Q) return; Stop when only two convex vertices 
remain 

h = Q -> np -> index; 
i = Q -> index; 
j = Q -> pp -> index; 

h = index of predecessor of Q 
i = index of (convex vertex) Q 
j = index of successor of Q 

y = 0; 
z = Q; 
if (R != 0) 

{ d = R; 
do 

} 

{ k = d -> index; 

} 

if (k != h && k != i && k != j) 
if (gamma(h, i, k) >= 0) 

if (gamma(i, j, k) >= 0) 
if ((x = gamma(j, h, k)) >= y) 

{ Y = x; 
z = d; 

} 
d = d -> f; 

while (d != R) ; 

Compare lines A 144-159 . 

Initially, Z = Q (convex); 
if any re-entrant vertex 
(pointer d, index k) lies 
in or on the triad o(h, 
i, j), we put Z = d for 
the last included re­
entrant vertex with 
maximal y[j, h, k] 
(See Propositions 9 and 
10 in Section 2.) 



Cl32 
Cl33 
Cl34 
Cl35 
Cl36 
Cl37 
Cl38 
Cl39 
Cl40 
Cl4l 
Cl42 
Cl43 

Cl44 

Cl45 
Cl46 
Cl47 
Cl48 
Cl49 
Cl50 
Cliil 
Cl52 
Cl53 

Cl54 
Cl55 
Cl56 
Cl57 
Cl58 
Cl59 
Cl60 
Cl61 
Cl62 

Cl63 
Cl64 
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we treat is much as before. When the triad is empty, 

if (Z == Q) If the triad is empty: remove it and recur: 
{ C[O] [r] = h; 

C[l] [r] = i; 
C[2][r] = j; 
r++; 
X = Q -> np; 
y = Q -> pp; 
X -> pp = Y; 
Y -> np = X; 

Compare lines A229-236, 240, 241, 243 

} 

c = Q -> f -> b = Q -> b; 
d = Q -> b -> f = Q -> f; 
discr[i] = 0; 

W = R; Pointer to B-list 

if (discr[h] < 0) 
{ x = discr[h] = gamma(X -> np -> index, h, j); 

if (x >= 0) 

} 

{ if (X -> f == X) W = 0; 
if (W == X) W = W -> b; 
adjust(c, X, d, x); 
if (x > 0) c = X; 

} 

if (discr[j] < 0) 
{ x = discr[j] = ga.ma(Y -> pp -> index, h, j); 

if (x >= 0) 

} 

{ if (Y -> f == Y) W = 0; 
if (W == Y) W = W -> f; 
adjust(c, Y, d, x); 
if (x > 0) d = Y; 

} 

split(d, W); Recur to split() routine 

Like lines 
A244-252, 
with W forB 

Like lines 
A254-262, 
with W forB 

When the triad is not empty, the segment QZ is used to split the polygon. 

We interrupt to explain the situation. Since they are so selected, we 

know that Q points to [we often corrupt the language and say that Q "is"] ~ 

convex vertex, and Z is a re-entrant vertex. By Propositions 9 and 10 [the 

indices are differently named: Pj-lpjpj+l in Figure (v) becomes Ph+lpi+lpj+l 

here (vertices are no longer consecutively numbered, because of previous removals) 

and Ph there becomes Pk+l here; and so Q points to Pi+l (or P(i+l)) and Z to 

Pk+l (or P(k+l))] we know that, if the triad is not empty, such a Z exists; 

and the segment QZ (more properly, Pi+lpk+l) splits the polygon p
0 

into two 
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contiguous simple closed polygons p
1 

and p
2

, having only the segment QZ in 

common. Each will recur to the split() routine with its own A- and B-lists; 

which must be constructed appropriately, We note further that, in the two 

new polygons, Q will still be convex; but Z may become collinear or convex. 

Each of the new polygons will have at least 3 vertices, and, by Lemma 5, 

each will contain at least one more convex vertex, but not necessarily any 

additional re-entrant vertex, beside Q and z. Thus, Q ~ f is (more properly, 

"points to a vertex") in p
1 

and Q ~ b is in p
2

; but Z ~ f and Z ~ b may be in 

either polygon, and may equal Z itself. Of course, Q ~ pp and Z + np will be 

in p
1

, and Q + np and Z + pp will be in p
2

, 

In setting up P
1

, we must store the pointers to be used in ~2 . This 

is tabulated below. It is assumed that U denotes the first re-entrant vertex 

after Q (must exist in p
1

; may be Z) and that V denotes the last convex 

vertex before Z (must exist in P
1

; will be after Q); then U +band V + f 

must be in P
2 

(the former may be Z; the latter will be before Q). 

POINTER 

Q -+ pp 
Q + np 

z + pp 
z + np 

Q-+f 
Q -+ b 

z + i= U: 
z -+ f 
z -+ b 
z -+ t.<~ U: 
z -+ f 
z + b 

U-+b 
v-+ f 

Qf + b 

Zb + f 

IN p
0 

IN p
1 

Q + pp Q -+ pp 
Qnp = Q + np z 
Zpp = Z + pp Q 

Z -+ np z + np 

Q+f Q+f 
Qb = Q + b v 

z -+ f u 
z + b z -+b 

Zf= Z -+ f u 
z -+ b {g; ~; z 

-+ b} z 
u + b z 
V-+ f Q 

v 

u 

z 
Qnp 

Zpp 
Q 

Qf= v + f 
Qb 

Zf = Z 
Zb Z 

Zf 
Zb=U-+b 

Q 

z 

The various situations are illustrated in the figures below. 



Figure (xi), D-Zists. 

I 
I 
I 
I 
\ .... __ 

Z -rnp 

At least one 
[convex] v e r t e x 

here 

Q 

At least one 
[convex] vertex 

here 

Figure (xiii). B-lists. 
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Figure (xii). A-lists. 

' .. 
(La s t c on v e x v e r t ex 
before re-entrant Z) 

Figure ( x i v) . ;:B~-.::Z.::i~s_::t~s.!.. _;:U_=_:::.Z_-+_.._f~I:__;Z,_,. 
u = z -+ f = z. 

No re-entrant ~___j 
vertex here 

No re-entrant 
vertex here 

Figure (xv). B-Zists. 

Q 

z -+ f ;i z = u. 
(May be the 
same vertex) 

Zb .. ~.-::f· = U-+ b 
' , 

' •, 
I' 

(May be the 
same vertex) 

No r e -e n t r a n t 
vertex here 

Figure (xvi). ;::B_-.::.Z.::.i:::.s::.t:::.s,_. _:=_Z_-+~.:..f~;i'-'Z"-';i~U. 

(First 
re-entrant 
vertex after 
convex Q) .. . , 

~u 

' '/ r 
(May be t be 
same vertex) 

Here, [
1 

is the forward pointer relative to P1 , and [
2 

that relative to P
2

• 

The correspondence to the table is seen when it is observed that Z -+ f = Z 

only when there is only one re-entrant vertex and U = Z also. 



Cl65 
Cl66 
Cl67 
Cl68 
Cl69 
Cl70 
Cl71 
Cl72 
Cl73 
Cl74 
Cl75 
Cl76 
Cl77 
Cl78 
Cl79 
ClBO 
ClBl 
Cl82 
Cl83 
Cl84 
Cl85 
Cl86 
Cl87 
ClBB 
Cl89 
Cl90 

. Cl91 
Cl92 
Cl93 
Cl94 

Cl95 
Cl96 
Cl97 
Cl98 
Cl99 

C200 

else 
{ k = Z -> index; 

Qnp = Q -> np; 
Q -> np = Z; 
W = Z -> np; 
d = z -> b; 
while (W == d) 

{ W = W -> np; 
d = d -> b; 

} 
Qb = Q -> b; 
Q -> b = W; 
Qf = w -> f; 
w -> f = Q; 
Zpp = Z -> pp; 
z -> pp = Q; 
w = Q -> pp; 
d = Q -> f; 
while (W == d) 

{ w = w -> pp; 
d = d -> f; 

} 
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If the triad is not empty: split it and recur: 
k = index of (re-entrant vertex) Z 
record Q + np as Qnp and 
replace with Z 

find last convex vertex ( "V") before Z 
and put it in W 

·record Q +bas Qb and 
replace with W (i.e. "V") 
record W + f as Qf and 
replace with Q 
record Z + pp as Zpp and 
replace with Q 

find first re-entrant vertex ("U") after Q 
and put it in W 

if (Z -> f == W) Zf = Zb = Z; 
else 

{ Zf = Z -> f; 
Zb = W -> b; 
if (W == Z) Z -> b = Z; 

} 
Z -> f = W; 
W -> b = Z; 

(see tabulated relations) 

x = discr[k] 
if (x >= 0) 

= gamma(Z -> np -> index, k, i); 

{ if (Z -> f == Z) W = 0; 
adjust(Q -> b, Z, Q, x); 

} 

compare lines CJ46-152, 
with Z for X, Q + b for c, 
and Q for d ) 

split(Q -> f, W); Recur to split() routine for first polygon 



C201 
C202 
C203 
C204 
C205 
C206 
C207 
C208 
C209 
C210 

Q -> np = Qnp; 
Q -> PP = Z; 
Q -> b = Qb; 
Q -> f = Qf; 
Qf -> b = Q; 
Z -> np = Q; 
Z -> pp = Zpp; 
Z -> b = Zb; 
Zb -> f = Z; 
W = Z -> f = Zf; 
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restore all pointers for second polygon 
(see tabulated relations) 

(note that W is reset) 

C211 
C212 
C213 
C214 
C215 

x = discr[k] = gamma(Z -> pp 
if (x >= 0) 

-> index, i, k); 
adjust for Z possibly 
becoming redundant or convex 

(see lines C 195-199) 
{ if (Z -> f == Z) W = 0; 

adjust(Q, Z, Q -> f, x); 
} 

C216 
C2l7 
C218 } 

} 
split(Q -> b, W); Recur to split() routine for second polygon 

Dl-11: 

7. Program D 

This final program uses the new splitting algorithm; but, like Program A, 

app~ies it to an arbitrary polygon, whose vertices are input one-by-one. 

Begin with lines C 1-11 • Replace lines C 12-14 with 

012, struct D_cell { struct D_cell *pp, *np, *f, *b; 
013, int index; 
014, } *A, *B, *D, *AA, *BB, *DD; 

D15-58' Lines CIS, CJ6 follow. Then comes fill-D(), from lines A65-106. Then 
ns o-7 6' we have adjust () from lines C 17-34 . The main () function begins with 

o77, -in() 
o78' { int h, i, j, k, p, q; 
o79' float x, y; 

o8o-Io4, Then follow lines AJ83-200 and A206-211; C59 (instead of A212) and 
01os-227, A213, 214 . After this, we have C98--218, completing the program. 

8. Performance Bounds: Programs A and B 

Since the form of input (and output) is irrelevant to our timing esti­

mates, it follows that Programs A and B, and Programs C and D, may be treated 

as one. 

We begin with Programs A and B. We first deal with the auxiliary func­

tions. ins-u() takes time 0(1). del-u() deletes au-list and all references 

to its cells in all t-lists. del-S() deletes a t-list and all references to 
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its vertex in all u-lists. Let us write 

m = p + q (11) 

for the current number of vertices in process (i.e., in the D-list). Then 

each u-list or t-list has length not greater than m = O(m), since a list 

never refers to the same vertex twice. Therefore the timing-bound for del-u() 

and del-S() is also O(m), fill-D() appends one cell in time 0(1), find-u() 

calls del-u() once and then runs through the B-list and possibly the A-list, 

for a timing of O(m). If we count arithmetic operations (a.o.) as the number 

of calls to gamma() times 9 [see lines All-13; remaining arithmetic operations 

are a single multiplication in line A208, plus possible subtractions implied 

in all the tests used, certainly not disturbing the general behavior of the 

algorithm], we see that each call to find-u() involves at most 3(m- 3) gammas 

= 27(m- 3) a.o. Thus, adjust(), involving as it does as many as two calls to 

find-u() and one to del-S(), has a timing of O(m). Its gamma-count is a little 

complicated, in practice: if one takes the line in which the number m of ver­

tices is reduced by one, then as many as two calls to find-u() lead to a maxi­

mum of 6(m - 4) gammas; but, if one takes the other line, in which m does not 

diminish, then only one call is made to find-u(), and the maximum is 3(m- 3). 

We now come to the main program. After input, which we will not count, 

but which only takes time O(n), in any case; we compute then discriminants, 

for a time O(n) with n gammas = 9n a.o. (lines Al90-211). The calls to fill-D() 

in lines A213 and A214 take time O(n) too; and then the u-lists for all convex 

vertices are computed in time O(pn) = O(n2), with at most 3p(n- 3) gammas. 

The triangulation loop (lines A228-272) remains, For each of at most 

n- 2 triads; we call del-S() and del-u(), and, for both of the two flanking 

vertices of the triad being removed to the C-array, we perform the operations 

of lines A244-263. The total time is clearly O(n2). Lastly, we seek the next 

empty convex triad, a process which takes time O(p), for a total of O(n2). 

Thus, the entire program takes a time O(n2) to execute. This agrees with 

Theorem 4 of [1]. 

Turning to gamma-counts, we see that the preliminaries take at most 

3n2 - 8n gammas = 9(3n2 - 8n) a.o. In the triangulation loop, the only calls 

to gamma arise in lines A244-263. The situation in which the flanking vertex 



-34-

was re-entrant and does not remain so is clearly somewhat more laborious than 

those in which it was convex (call to find-u() only) or in which it was re­

entrant and remains re-entrant (call to gamma() only). Here, there is a call 

to gamma() and then one to adjust(), involving at least one call to find-u(). 

Three cases arise: (i) E£ additional vertices eliminated: in the worst case, 

we call gamma() and fina-u() twice each, for a gamma-count of 6m - 22, emer­

ging with m - 1 vertices. The total gamma-count under this regime is 

(6n- 22) + (6n- 28) + (6n- 34) + (6n- 40) + ••• (12) 

(ii) one additional vertex is eliminated: in the worst case, we call gamma() 

twice and find-u() thrice, for a gamma-count of at most 9m - 40 (when the 

second flanking vertex is eliminated as collinear), emerging with m- 2 ver­

tices. The total gamma-count now becomes 

(9n- 40) + (9n- 58)+ (9n- 76) + .•• (13) 

Comparing the first two terms of (12) with the first term of (13), so as to 

arrive at the same situation, with n - 2 vertices; we see that 12n - 50 ~ 

9n- 40, so long as 3n > 10 (i.e., n > 4). Thus, case (i) is more laborious 

than case (ii) (when n 3, the count is zero, anyway). (iii)~ additional 

vertices are eliminated: in the worst case, we call gamma() twice and find-u() 

four times, for a gamma-count of at most 12m - 64, emerging with m- 3 vertices. 

The total gamma-count under this regime is then 

(12n- 64) + (12n- 100) + (12n- 136) + •.. (14) 

Comparing the first three terms of (12) with the first term of (14), so as 

to arrive at n - 3 vertices; we see that 18n - 84 > 12n - 64, so long as 

6n > 20 (i.e., n > 4 again). Once more, we see that case (i) is the more 

laborious; and so (12) is the worst-case gamma-count. The sum is 

n n-3 
I (6m - 22) = I (6s - 4) 3(n- 3)(n 2) - 4(n - 3) 

m=4 s=l 
= (n- 3)(3n- 10). (15) 
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We have thus established: 

PROPOSITION 11. The old algorithm (embodied in Programs A and B) 

(i) always 

than 

yields a complete, economical triangulation, and (ii) takes less 

27(2n
2

- 9n + 10) = 27(n- 2)(2n- 5) 

a.o. and O(n2) other operations. 

(16) 

2 [We have shown that the preliminaries take at most 3n - 8n gammas, 

and, by (15), the triangulation loop takes 3n2 - l9n + 30 gammas. The 

total is 6n2 - 27n + 30; and (16) follows.] 

We observe that (16) is an improvement on Theorem 4 of [1], which 

gives the formula 
8ln(n + l) - 360. (17) 

It is interesting to compare the bound (16) with the actual experimental 

a.o. counts obtained with the programs. 

n 

Program A 

Program B 

15 
20 
27 
48 

8 
16 
24 
32 
40 
48 
56 
64 
72 
80 
88 
96 

A.O. COUNT 

2, 511 
4,311 
7,839 

29,088 

513 
3' 393 
8,829 

16,821 
27,369 
40,473 
56' 133 
74' 349 
95,121 

118,449 
144,333 
172,773 

THEOR. BOUND 

8' 775 
17,010 
33' 07 5 

113' 022 

1,782 
10,206 
25,542 
47,790 
76,950 

113' 022 
156,006 
205,902 
262,710 
326,430 
397,062 
474,606 

RATIO 

3.49 
3.95 
4.22 
3.89 

3.47 
3. 01 
2.89 
2.84 
2.81 
2.79 
2.78 
2.769 
2.762 
2.756 
2.751 
2.747 

Two causes may be adduced to account for the overestimation of observed a.o. 

counts by the theoretical bounds. First, find-u() only examines A-vertices 

for inclusion in a u-list when a B-vertex has been found in the triad; and 
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secondly, many vertices are excluded from a u-list by the first or second 

discriminant evaluated, whereupon the rest of the three gammas are omitted, 

These two features of the execution have the major effect; but other over­

estimates occur also, and have a lesser inflationary effect. The observed 

ratios between 2.7 and 4.3 are consonant with this explanation. 

9. Performance Bounds: Programs C and D 

Beginning with auxiliary functions, we observe that there are n9w no 

u-lists or t-lists; so that ins-u(), del-u(), del-S(), and (notably) find-u() 

are absent. Thus, adjust() now takes time 0(1). The main program now takes 

a minor role, too. The calculation of discriminants and the construction of 

the D-, A-, and B-lists contribute time O(n) with n gammas, since the u-lists 

need no longer be computed, 

The crux of the matter is in the recursive function split(). We now 

suppose that an upper bound for the execution time of split() when there 

are m vertices in the polygon is T(m), and that an upper bound for the gamma­

count is ¢(m). 

We begin with the time estimate. The first part of the function (lines 

Cll2-131) determines whether the selected convex triad is indeed empty or not; 

and, in the same process, if not, finds the closest re-entrant vertex to the 

apex. Much as in find-u() before, we see that time O(q) = O(m) is required. 

Two branches occur: (i) if the triad is empty, time 0(1) [adjust() is now 

less complex and laborious] suffices to remove it to the C-array and prepare 

the polygon (with at most m - 1 vertices) for recursion; (ii) if the triad 

contains a re-entrant vertex, suppose that the segment QZ [see the discussion 

in Section 6] divides the polygon into one of r and one of m - r + 2, with 

3 ~ r ~ m- 1. The search for the vertices U and V may take time as great 

as 2r- 3 times a constant, and this is O(m); the rest of the function takes 

only 0(1) time. Thus, 

T(m) =max {O(m) + T(m- 1), 

O(m) + T(r) + T(m - r + 2) }. (18) 
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(Note that the maximum runs over all allowable values of r.) We must assume 

that the O(m) terms can actually attain behavior proportional to m; so that 

(18) immediately tells us that T(m) = Q(m). Suppose, therefore, that 

T(m) - Cma., with a;;.l,C)O. (19) 

Then, in the first option of the maximum, 

T(m) - T(m - 1) 
a. a. C[m - (m - 1) ] 

a.-1 1 a.-2 C[a.m - 2a.(a.- l)m + ... ] 

a.-1 Cam = O(m), (20) 

which tells us that a. ~ 2 (and indeed that a. = 2 if the O(m) attains the 

behavior proportional tom). Now examine the second option of the maximum. 

First, we must maximize T(r) + T(m- r + 2)- C[ra. + (m- r +'2)a]. It is 

readily seen that the derivative of the last expression (divided by Ca.) is 
a.-1 a.-1 r - (m - r + 2) , which, since a ;;. 1, is negative for all r < m - r + 2 

and positive for all r > m- r + 2; there is thus a minimum at r = (m + 2)/2 

and the maximum is attained when P = 3 or m- 1, with the value C[3a. + (m- l)a]. 

The second option thus becomes the same as the first, and we see that 

( 21) 

Since the preliminaries all take time O(n), it follows that the entire program 

takes a time O(n2
). 

We now turn to the a.o. count. We know from the foregoing that this will 

have to be O(n2) also, of course. Retracing our steps over the program, we 

remember that the preliminaries required n gammas. In the split() function, 

with m vertices, lines Cll2-131 require 3q ~ 3(m - 3) gammas. In the first 

branch of the function (empty triad removed), we get ¢(m);;. 3m- 7 + ¢(m- 1). 

In the second branch (split the polygon into two), we get ¢(m);;. 3m- 7 + 

¢(r) + ¢(m- r + 2). Thus, much like (18), we obtain 

¢(m) =max {3m 7 + ¢(m- 1), 

3m- 7 + ¢(r) + ¢(m- r + 2)}. (22) 

Let ¢(m) = am2 + bm + c, with a > 0, (23) 

since ¢(m) must be positive as m ~ ~. Then the same argument as before shows 

that ¢(r) + ¢(m- r + 2) has a minimum when r = (m + 2)/2 and a maximum when 

r = 3 or m- 1; whence the second option in (22) becomes 3m- 7 + ¢(3) + ¢(m- 1) 1 
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which exceeds the first option by ~(3). However, a little thought shows that 

~(3) = 0, since the triad is empty and there are no re-entrant vertices to test! 

Thus, we are left with the equation 

Hm) - ¢(m - 1) a[m 2 (m 2 
1) ] + b[m - (m- 1)] 

a(2m - 1) + b = 3m - 7; (24) 

whence 
3 11 a= 
2 

and b a- 7 = - z• (25) 

The complete solution is obtained when we observe that, as stated above, 

¢ (3) = 0 = 9a + 3b + c; (26) 

whence c = 3. ( 27) 

The complete gamma-count is thus 

¢(m) = % m2 - 121 m + 3; (28) 

PROPOSITION 12. The new algoPithm (based on Propositions 9 and 10, and 

embodied in Programs C and D) (i) always yields a complete, economical tPi­

angulation, and (ii) takes less than 

12cn2 - 3n + 2) = 12cn- l)(n- 2) 
2 2 

(29) 

a.o. and O(n2) otheP opePations. 

[We have shown that the preliminaries take n gammas, and the split() 

function (with all recursions) ~(n) gammas. The total gamma-count, by (28), 

is thus l n2 - 2 n + 3, and (29) follows on multiplication by 9.] 
2 2 

We note that the ratio of the bounds (16) and (29) for the two algorithms 

is just (2n- S)lt<n- 1) ~ 4 as n ~ oo. 

Comparison of the bound (29) with actual experimental results yields the 

following table. 
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n A.O. COUNT THEOR. BOUND RATIO 

Program c 
8 207 567 2.74 

16 972 2,835 2. 92 
24 2,169 6,831 3.15 
32 3. 7 98 12,555 3.31 
40 5,859 20,007 3.41 
48 8,352 29,187 3.49 
56 11,277 40,095 3.56 
64 14,634 52,731 3.60 
72 18,423 67,095 3. 64 
80 22,644 83,187 3.67 
88 27,297 101,007 3.70 
96 32,382 120,555 3. 72 

Program D 

15 693 2,457 3.55 
20 1,008 4,617 4.58 
27 2,493 8. 775 3.52 
48 4,023 29,187 7.26 

The bulk of the work is done in lines Cl22-124, finding the re-entrant vertex 

Z (if any). Since only the B-list is scanned, we may grossly over estimate 

the 3q gammas by using 3(m- 3); and the same argument as before·suggests 

that the factor of 3 (for the three gammas in the tests), since any failure 

in the tests will eliminate further computation for that B-vertex. The 

observed ratios of the theoretical upper bounds to the actual a.o. counts 

range between 2.7 and 4.6, except for the unusually high ratio of 7.26 for 

the 48-gon run with Program D. This is comparable with the ratios for 

Programs A and B. 

A couple of additional observations may be made. (i) If we examine 

the earlier comparisons of Programs A and B with Programs C and D (i.e., 

of the old and new algorithms); we see that (a) the theoretical bounds have 

a ratio tending to 4 (for n = 20, 40, and 80, the ratios are 3.68, 3.85, and 

3.92, respectively), and (b) the observed a.o. counts have ratios rising 

monotonically from 2.48 to 5,34 for the double square spirals (Programs B 

and C), and 3.62, 4.28, 3.14, and 7.23 for the miscellaneous polygons run 

with Programs A and D. Clearly, the 48-gon among these last is a special 

case, exceptionally well treated by the new algorithm. (ii) The ratios for 

the double square spirals under Program B (old algorithm), of the bounds to 
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the actual a.o. counts, deorease monotonically from 3.47 to 2.75, as n in­

creases; those for Program C (new algorithm) inorease from 2.74 to 3.72, 

for the same values of n. The cause of this is not apparent; but one may 

hazard a guess that it is a peculiarity of the family of double square 

spirals, relative to the two algorithms, and not a significant universal 

property of the algorithms themselves. 

10. A Further Experiment 

To add weight to the experimental evidence, we carried out twelve 

further runs (six on each of Programs A and D), using a different family of 

polygons, called "ropes", with 16i vertices (i = 1, 2, 3, 4, 5, 6) arranged 

as a 2i-fold 8-point square spiral, the skeins being connected into a zig-zag. 

This is illustrated below in Figures (xvii) - (xx). 

Figure (xvii). D.S.Spiral, i = 2. Figure (xviii). Rope: i = 1, 

12 n 

12 n 5 6 

5 6 
16 116 15 

" 
15 1 2 

1 2 
4 3 

4 3 13 14 

13 14 8 7 

8 7 9 / :rJ 

9 / :rJ 

We note that the d.s.spiral with i = 2 and the rope with i = 1 (both having 

16 vertices) are almost and essentially identical; but, while the d.s.spiral 

with i = 4 winds four times instead of twice, keeping to two skeins, the 

rope with i = 2 still winds twice, but with four skeins (both have 32 vertices). 

Thereafter, the i-rope has 2i skeins, but winds twice; the 2i-d.s.spiral has 

two skeins (hence "double") but winds 2i times. 
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Figure (xix). D.S.Spiral, i = 4. 
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A.O. counts, theoretical 

upper bounds for these, and the 

resulting ratios are tabulated 

below, as before. 

njA.O. COUNTjTHEOR. BOUND,RATIO 

Program A 

16 3,366 
32 18,252 
48 43,011 
64 78,048 
80 123,462 
96 179,172 

Program D 

10,206 
47,790 

113' 022 
205' 902 
326,430 
474,606 

3.03 
2.618 
2.628 
2.638 
2.644 
2. 649 

_16_ 1fi 

16 954 
32 2,025 
48 3,708 
64 6' 984 
80 11,808 
96 18,198 

2,835 
12,555 
29,187 
52,731 
83,187 

120,555 

2.97 
6.20 
7.87 
7.55 
7.04 
6.62 / 

:1! 

,.. 

.. 
/ 

18 

Note: (i) This time, except for the 1-rope (which is virtually identical 

to the 2-d.s.spiral), the "rope" 
Figure (xx). Rope: i = 2. 

21. "' 
12 11 

5 6 

32 31 

17"-. 18 

16 l5 
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4 3 

l3 14 ,., 19 

3) 

8 7 

•/ 10 

•I 

polygons·are extra-easy for the new algorithm 

Zl 

• 

to triangulate (about as easy as 

was the 48-gon run with Program D). 

(ii) This time, the ratios for the 

old algorithm (Program A) increase 

with n; while the ratios for the 

new algorithm (Program D) decrease 

with n (after n = 48). Thus our 

guess, that the increase or de­

crease is a function of both the 

algorithms and the polygons, ra­

ther than characteristic of the 

algorithms alone, is verified (or, 

at least, strongly indicated). 
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11. Conclusions 

After a somewhat circuitous journey, we have arrived at two working and 

practically useful triangulation algorithms, which we have dubbed the "old" 

(Algorithm 3 from [1]) and the "new", based on Propositions 9 and 10 in the 

present paper. The old ·algorithm has been proved to take time O(n2) and to 

require no more than (see (16)) 

2 9 
54(n - 2 n + 5) (30) 

a.o. The new algorithm has also been proved to take O(n2) time and to 

require no more than (see (29)) 

12cn2 
- 3 n + 2) 

2 
(31) 

a.o. The ratio of these bounds tends to 4 as n ~ oo; and indeed, we see that 

"(30)" ;;;, C< X "(31)" for all n ;;;. n 
0 

(32) 

is equivalent to the assertion that (since we know that n ;;;, 3) 4n - 10 ;;;. 

a(n- 1); or (4- a)n;;;, 10- a. Since we know (from the asymptotic behavior 

as n + oo) that 

"' < 4; (33) 

we can infer that n
0 

= (10- a)/(4- a). (34) 

Finally, this gives us that the upper bounds for the a.o. counts of the two 

algorithms satisfy the relationship (32) with (for example) 

"' 1 and 

"' = 3 and n 7·, 
0 

(l = 2 

and } (35) 
and n = 4· 0 • 

In the similar "C" language programs listed above, we see that the old 

algorithm takes 264 and 273 lines (Programs Band A, respectively); while 

the new one takes 218 and 227 lines (Programs C and D, respectively). Thus 

the new algorithm is somewhat more simple to program, it would seem. 
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It is clear that any algorithm dealing with an n-vertex polygon in order 

to triangulate it must take time rl(n). Since it is essential to the process 

of triangulation that the triads removed to the C-array (in which the final 

triangulation appears) should be empty (in the sense of Definition 1) and 

removable (in the sense of Definition 2), it is necessary to verify this fact 

for every triad removed (numbering n - 2, unless some vertices turn out to 

be redundant--- a situation which cannot be guaranteed). There appears to 

be no way of doing this, except by examining all of (at least) the re-entrant 

vertices, which (by Lemma 13 of [1]) may be as many as n - 3. It is not clear 

how this can be achieved in under (n- 2)(n- 3) times some constant. If, 

indeed, this is impossible; then the bound of O(n2) is best-possible, and 

all that can be hoped-for is a reduction of the coefficients of the quadratic 

expressions (30) and (31). However, there remains the challenge to find an 

algorithm taking time o(n2), though certainly rl(n); or to prove that no such 

algorithm is possible. 
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