
TIUANGULATION ALGORITHMS

FOR SIMPLE, CLOSED,
NOT NECESSARILY CONVEX,
POLYGONS IN THE PLANE

-I I-

JOHN II. HALTON

The University of North Carolina
Department of Computer Science

New West Hall 035 A
Chapel Hill, NC 27514 USA

J U L Y 21 , 1985

T R 85_D24

TRIANGULATION ALGORITHMS

FOR SIMPLE, CLOSED, NOT NECESSARILY CONVEX

POLYGONS IN THE PLANE

I I

John H. Halton

Professor of Computer Science
The University of North Carolina

Chapel Hill, NC 27514 USA

ABSTRACT

This paper, a sequel to an earlier work of the same title, refines

one algorithm, of an iterative character, presented there, and describes

a new algorithm, recursive in nature. Experimental results are given for

22 polygons, together with annotated listings of four "C" programs imple

menting the algorithms. The time complexity of both algorithms is fully

analysed and shown to be O(n2) where n is the number of vertices in the

polygon to be triangulated. Counts of arithmetic operations are bounded

by 54(n2 - ~ n + 5) and ~7 (n 2 - 3n + 2), respectively. The new algorithm

is therefore preferable when recursion is possible without too much labor.

Keywords: Algorithms; data structures; triangulation; polygons; graphics

{computers; techniques; performance analysis; complexity}

July 1985

Triangulation Algorithms for Simple, Closed, Not Necessarily Convex Polygons in

the Plane, II.

John H. Halt on, Otapel Hill, North Qu olina, US A

1. fut r oduc t ion

The present paper is a sequel to the earlier one of the same title [1].

This deals with the classic problem, in which we are given n points P
1

, P
2

, ... ,

P in the Euclidean plane (with P
0

= P and, in general, P. = P. k , for any
n n J J+ n

integers j and k), ordered so as to define the polygon

with vertices P. (j = 1, 2, •.. , n),
J

(j = 1, 2, ... , n); which is simple,

(1)

consisting of the n line-segments P .P.
. J J+l

in the sense that all the P . are distinct
J

and no two sides P.P.
1

and p.p.
1

have any
1.- t-+ J J+

points in common, except when i = j

[of course] or i = j- 1 [only P. in common] or i = j + 1 [only P. in common].
J 1.-

We now seek to identify a set of tPiangZes, whose interiors are disjoint, and

whose union is the interior and boundary of the polygon P. The triangulation

we seek is economical, in the sense that there are at most n - 2 triangles in

it, and the vertices of these triangles are all vertices P. of the polygon P.
J

We adopt the following convention, The removal of the polygon P from the

Euclidean plane in which it lies leaves two connected components, each an open

set. That which is bounded is the interior Ip; the other is the exterior Ep·

We now assume that the vertices of P are numbered so that, in traversing the

polygon in the order P1 , P
2

, .•• , Pn' the interior Ip is on the left. We

define the angle by which one turns from the direction of P .
1

P . to that of
t1- J

p .P. 1 to bee. in the range -TI <e.< TI, If e.> 0, we call the vertex p.
J J+ J J J J

aonvex (corresponding to a turn to the left); if e.< 0, we call P. re-entrant
J J

(corresponding to a turn to the right); and if e. 0, we say that P. is
J J

redundant or collinear.

We use the name triad for a triangle whose vertices are vertices of the

given polygon P, and write

ll . = P • lp .P '+1
J J- J J

and o(i, j, k) P .P .Pk.
1.- J

(2)

if

and

-3-

Lemma 7: The vertex Pk lies inside the convex triad ~j if and only

y[j - 1, j, k] > o,

y[j, j + 1, k] > o,
y[j + 1, j - 1, k] > 0)

Lemma 8: No simple, closed polygon has an empty interior.

(7)

Theorem 1: Every simple, closed polygon P has at least two convex

triads ~r and ~s each containing no other vertex of P.

Lemma 9: If the convex triad~.= P. 1P.P.
1

does contain certain
J J- J J+

vertices, then the vertices Ph- and Ph+ among them, respectively haVing the
+ least values of y[j - 1, j, h-] and y[j, j + 1, h] are re-entrant, and the

corresponding triads Pj-lPjPh- and PjPj+lPh+ are empty convex triads.

Lemma 13: The bound in Lemma 5 is tight: there are polygons of

any number of vertices n ~ 3 with only three convex vertices.

(Additional Lemmas 10, 11, and 12, and Theorems 2, 3, and 4, are of a

more technical nature and refer to various triangulation algorithms presented

in [l] •)

Of the algorithms presented in [1], Algorithm 0 is preparatory and

identifies the convex and re-entrant vertices of the given polynomial into

respective lists named~ and B. (Use is made of Lemmas l and 4.) This is

refined in Algorithm 0* and in the actual program presented on pages 47 - 61

(Section 7) of [1]. Algorithm 1, for successive vertices in list~. tests

all vertices in list B for inclusion in the corresponding convex triad with

apex in list~. (Use is made of Lemmas 5, 6, and 7, and Theorem 1.) When

an empty convex triad is encountered, it is added to the triangulation list

e and lists~ and Bare adjusted accordingly. This is iterated until the

triangulation is complete. Algorithm l* is a modification of this algorithm

preparatory to Algorithm 3, setting up lists of included vertices «· and
'/-

corresponding inverse lists~ (see also the actual program presented in [1]).

Algorithm 2 uses Lemma 9 to permit positive action at every convex triad;

leading to the splitting of the polygon into two or three disjoint simple

closed polygons to be triangulated, whenever a non-empty triad is encountered.

Algorithm 3 is a variant of Algorithm 1 in which information previously obtained

-4-

is retained (via Algorithm 1*), modified only when necessary, and re-used,

rather than re-calculated at each iteration. This is refined in the program

presented in [1].

In what follows, results are called Propositions, to distinguish them

from the Lemmas of the earlier paper [1].

2. Basic Propositions

PROPOSITION 1. A convex polygon has only convex or collinear vertices.

PROPOSITION 2. A polygon with only convex or collinear vertices is convex.

PROPOSITION 3. Given a convex polygon I\ and a general polygon P entirely

in or on K, if a vertex P . of P lies on K, then P . is either a convex or
J J

collinear vertex of P.

COROLLARY 3.1. If the vertices of a simple closed polygon P have the

coordinates (5), then the vertices satisfying (6) are all convex or collinear

vertices of P.

COROLLARY 3.2. Under the conditions of Froposition 3, the first and

last vertices of p (in the order in which they appear in PJ in any side of

K are convex vertices of P.

COROLLARY 3.3. Under the conditions of Corollary 3.1, the first and

last _vertices of P (in the order in which they appear in PJ satisfying any

one of the conditions (6) are convex vertices of p.

COROLLARY 3.4. Under the conditions of Corollary 3.1, any of the vertices

of P satisfying

x. • E.x.
1- J J

or y. = E.y.
1- J J

and

and

x.} '
1-

(8)

(9)

where each of E and F represents either "min" or "max", is a convex vertex of 11.

Proof. As in [1], proofs will be enclosed in double brackets [••• B. Proposi

tions 1, 2, and 3, respectively present amendments to Lemmas 2, 3, and 4, of [1].

The proofs of these results stand essentially unchanged, with the observation

that, when a vertex P. is not re-entrant (r. ~ 0), then it is either convex or
J J

collinear (r. > 0 orr.= 0); the latter alternative was previously omitted.
J J

-5-

Corollary 3.1 is similarly a restatement of the corollary to Lemma 4. We are

left with Corollaries 3.2, 3.3, and 3.4, which provide the needed sharpening

of the preceding results.

[Let AB be a side of the convex polygon K containing at least three

vertices of the included simple closed polygon P, with the customary interior

on-the-left traversal of K going from A to B. Let P and Q be two vertices of

p lying in AB. Denote the polygonal arc of P traversed from P to Q in the

interior-on-the-left direction by (PQ) , and the remainder of P, traversed

from Q to P by (QP) . If all vertices of P in (PQ) lie on AB (i.e., (PQ) is

simply a line-segment PQ lying on AB), then their order in AB is the same as

their order in P. If not, the segment PQ of AB consists of sub-segments shared

with (PQ) (in which vertices are ordered as in Pl and sub-segments not so

shared, in which the corresponding pieces of (PQ) lie in the interior of K.
Let XY be one of the latter intervals (with X andY vertices of P, of course).

Then suppose that R is a vertex of Pin (QP); if R lay in XY, the edges of P

through it would have to lie on the interior side of X and parts of them

would have to be inside the simple closed polygon formed by (XY) and the segment

YX; but this is impossible, since P can neither cross K nor itself. Thus we

see that no vertex of P not in (PQ) can lie in AB between P and Q; or, in other

words, the order of vertices of P in AB is the same as their order in P. From

this we conclude that, of the vertices of P lying in any side AB of K, the

nearest to A and to B are respectively the first and the last, in the order

in which they are traversed in p. The reasoning of the proof of Lemma 4 now

shows that these particular vertices are strictly convex. (They cannot be

collinear and be first or last in AB.) This proves Corollary 3.2.]

[Corollary 3.3 takes forK the rectangle with vertices (£~., F.y., 0),
J J J J

with each of E and F denoting either "min" or "max", as in (8) and (9). It

follows from Corollary 3.2 that the first and last vertices (as ordered in P)

lying in any side of this rectangle (whose equation is one of the equations (6))

are strictly convex. The conditions (8) and (9) identify those of the vertices

of P lying in a side of the rectangle, nearest to the end-points of this side.

As has been proved above, these are precisely the first and last of these in

the order in which they are traversed in p. This proves Corollary 3.4.]

I
I
\

' '

R

-6-

Lemmas l (with corollary), S, 6, 8, and 13, and Theorem 1, are taken

over unchanged, While Lemma 7 is correct, it is preferable to use the

following result (which is an immediate corollary).

PROPOSITION 4, The vePtex Pk lies inside OP on the convex tPiad 6j if

and only if

y[j - l, j, k] ;;. 0,

y [j. j + l, k] ;;. o, (lO)

y[j + l, j- l, k] ;;. o.
)

This prevents the problem encountered when removal of a triad leaves two

contiguous simple closed polygons (or a closed polygon which crosses itself).

Figure (i) illustrates this: the vertex X lies on the line PR, satisfying

(10) but not (7). Using the negation of (7), we would try to remove the triad

PQR, leaving polygons PX U (XP) and XR U (RX) ,

Figure (i),

Q

X ----------
-------------- p

The above results suffice to establish

the validity of Algorithms O, 0*, 1, 1*,

and 3, . In [1], we used Lemma 9 to justify

Algorithm 2. Here, a difficulty has been

discovered. The concept of an "empty"

triad turns out to have been left very

slightly vague; and we must now sharpen

this. Following Lemma 7 and Theorem 1 of

[l], we define:

DEFINITION 1, A tPiad o(i, j, k)

P.P .Pk is said to be
"1- J

--- no VePtex of P otheP

"empty" iff thePe is

than P., P ., OP Pk
"1- J

within oP on it.

Note that we have moved from (7) to (10), as indicated in Proposition 4 above.

With either this definition or the earlier concept based on (7), we see that

Lemma 9 stands as stated. However, emptiness turns out not to ensure that

the triad may be removed! We define:

-7-

DEFINITION 2. A triad o(i, j, k) = P .P .Pk is said to be "removable"
1- J

if and only if (a) it is empty (in the sense of Definition 1), (b) no side

of P intersects its interior, and (c) its interior is part of the interior

of p.

PROPOSITION 5. If p is a simple closed polygon with n ~ 4 vertices, and

6. is a triad, removable (in the sense of Definition 2) from P; then the
J

polygon P' obtained from P by removing the vertex P. and directly connecting
J

Pj-l to Pj+l is also simple and closed, with one less vertex than P •.

[The triad 6j = Pj-lpjpj+l' and, since

n ~ 4, there is at least one more vertex of p.
Since 6. is empty and no side of P intersects

J
the interior of 6., all sides of P except for

J
P . 1r . and P .P.

1
lie entirely outside the

J- J J J+
triad. If the interior of 6. is part of the

J
interior of P, P • must be a convex vertex and

J
so 6. must be a convex triad. The proposition

J
now follows (see Figure (ii)).]

P.
]+1

Figure (ii).

_,
(\
'\ \

--------------------- \
P. I

\ .!:::.1-./
\ 1... (' / ') - '-....--

PROPOSITION 6. If 6j is a convex triad of a simple closed polygon P,
and if it is empty (in the sense of Definition 1); then it is removable (in

the sense of Definition 2) from p.

[Since the triad is convex, its interior is part of the interior of P.
(The two interiors are disjoint if the triad is re-entrant.) Since it is

empty, no vertex of Pother than P.
1

,
J

that remains is to prove condition (b)

P ., and P.
1

lies in or on 6 .. All
J ~ J

of Definition 2, that no side of P
intersects the interior of 6 .•

J
Both ends of such a side must be outside the

triad; and, since the polygon is simple, the side cannot intersect P.
1
P. or

J- ~..7

PjPj+l• But any line which intersects the interior of a triangle must cross

two of its sides; so a segment which is part of such a line and which has its

ends outside the triangle either lies entirely outside the triangle or crosses

two sides of the triangle. This completes the proof of the proposition.]

It is this result which justifies all the algorithms except Algorithm 2

and permits the vagueness about distinguishing emptiness and removability.

-8-

PROPOSITION 7. It is possible for a triad 6(i, j, k) = P.P .Pk of a
1- J

simple dosed polygon II to be empty (in the sense of Definition 1), and yet

for it not to be removable from Jl,

[An illustration (counter-example to the extension of Proposition 6 to

non-consecutive triads) is given in Figure (iii). The triad is

though it is empty (i.e., contains no other vertices of p), the

P .P .P. and,
1- J J+l

sides Ph-lph

and PhPh+l cross its interior, in contradiction of Definition 2.]

Figure (iii).
~ ~
J+l- 'J __...-"\_

1/' \ /""-\
I \ / Ph I
I ' I ~ I \ , ~-I

~'~ .. ~I
h-1 ~ _/l J

'h... f \ // ///
I \ / /
\ \ I ~

' ~ // '-
---- p -i

As a further example of this

proposition, consider Figure (iv),

which is a variation on the theme

illustrated in Figures 12 and 13 of

[1), exemplifying Lemma 9 there,

The line FG is parallel to the side

P.
1
P. of the convex triad 6., inter-

J- J J
secting Pj-lpj+l in F and PjPj+l in

G, and passes through Ph_; Pj-lpjph_ is

then necessarily empty (as indeed is

the whole of the quadrilateral FGP.
1

P .).
J- J

The line HK, similarly, is parallel to

PjPj+l' intersecting Pj-lpj+l in Hand Pj-lpj inK, and passes through Ph+;

P .P. lph+ is then empty (as is HKP .P. 1), We see that P. 1P .Ph_ is, in fact,
J J+ ,7 J+ J- J

removable; but that P .P. 1Ph+ is not, ()
J J+ Figure iv • P-

since it is crossed by the sides WX

and YZ of p, It follows from t·his

that Algorithm 2 can fail. It is

possible to refine the algorithm to

deal with the difficulty revealed in

Proposition 7; but the resulting

procedure becomes excessively

laborious; so it seems best to drop

the algorithm altogether, for now.

G

K

-~-~h+ --. --.. -~
-~--___ ... - H

I (
/ \ " _

_,/ ----

F

I

P.
]-1

I \
I l
' I ,...__/

-9-

PROPOSITION 8. The interior of a triad is part of the interior of the

polygon only if no side of the polygon intersects the interior of the triad.

[If a side of p intersects the interior of the triad, then it separates

the interior Ip and the exterior Rp of P; whence part of the interior of the

triad is in Rp·] Thus, Condition (c) of Definition 2 implies Condition (b)

[and the old form of Condition (a)]. The new form of Condition (a) [see

(10), Proposition 4, and Definition 1] requires further that the case shown

in Figure (i) not occur (i.e., no extraneous vertex of P lie on the triad.

The following proposition was communicated privately (without proof) to

the author by Dr T. H. Brylawski. The proof given here is the present

author's.

PROPOSITION 9 [BRYLAWSKI]. Consider any convex triad 6. of a simple
J

closed polygon p. Either (a) the triad is empty; in which case it is

removable, leaving a polygon of one less vertex; or (b) there is a vertex

Ph having the greatest value of y[j - 1, h, j + 1] among all vertices in

the triad; in which case no side of P crosses the segment PhPj, and this

segment creates two contiguous simple closed polygons, each with less

vertices than r. In both cases, iteration of the process leads to a full,

economical triangulation of the polygon P.

[If 6. is an empty convex triad; then, by Propositions 5 and 6, it is
J

removable from P, leaving a simple closed polygon P' of one less vertex, so

long as P has at least four vertices; and when there are only three vertices

left, the removal of the triad completes the process of triangulation. If

6. is not empty, then, by Definition 1, it must contain at least one vertex
J

other than P.
1

, P ., and
J- J

property stated in (b).

Pj+l' and therefore there is a vertex Ph having the

It then follows (see Figure (v) and the observation

below) that there is a line XY, parallel toP. 1P. 1 , intersecting P. 1P. at
J- J+ J- J

X and PjPj+l at Y, and passing through Ph' such that the triangle XPjY is

empty (further, Ph either lies in the interior of the triad or in the segment

Pj-lpj+l' since it cannot lie in the sides Pj-lpj or PjPj+l). An argument

exactly similar to that used to prove Proposition 6 shows that no side of P
can intersect the interior of the triangle XPjY; so that no side can cross

(

P,
J+l

Figure (v).

-10-

the segment PhPj. Now, Ph and Pj divide p
into the non-intersecting polygonal arcs

(php J and (p /h); with (php j containing

at least P .
1

and (p .Ph) containing at
J- J

least P. 1 . Thus, the addition of PhP. to
J+ J

p yields two contiguous simple closed poly-

gons, P /h U (php j and PhP j U (p /h),

\ I ' /

each having less vertices than P.· Iteration

of the process yields polygons with strictly

decreasing numbers of vertices; so that the

entire algorithm must terminate. The

...... __ /
' I ,
\,. / ----

resulting triangulation is economical, since

every triad removed has vertices of Pas its vertices.]

We should point out that the discriminant y[i, j, k] defined in (3) is

equal to twice the area of the
Figure (vi).

triangle P.P .Pk; that is, the
'1- J

product of the length of PjPk

and the vertical height of P.
'!-

above PjPk. Thus (see Figure (vi))

X •••.•..••• L.~.:~~---~.' ... ~.~~.: t ant ~ri.i.PkJ ~
-~ _, __ ,

y

y[i, j, k] is constant, for fixed

Pj and Pk' for all positions of Pi

in a line XY parallel to PjPk.

Dir e c t ion of

inc r e as in g

~ [i.j, k]

As XY moves upwards above PjPk'

the value of y[i, j, k] increases (below PjPk' y is

9, Proposition 9,

negative). This fact

justifies the statements in Lemma and

[For example, in Figure (v), if Ph has maximal y[j- 1,

the proofs thereof.

h, j + 1], then there

can be no vertex above the line XY, in the triad Pj-lpjpj+l']

PROPOSITION 10. In Case (b) of Proposition 9, any maximal vertex Ph as

defined there must be re-entrant or collinear; and at least one such Ph has

to be re-entrant, ·unless the triad~. coincides with the polygon P.
J

[We argue similarly to the proofs of Lemma 4, Proposition 3, and Corollary

3.2. Sides Pj-lpj and PjPj+l cannot intersect the interior of the triangle

-11-

XPjY; so the angle eh
collinear, as stated.

~ 0 (see page 1); whence Ph is either re-entrant or

Now Ph must be strictly between X and Y (even if X

P.
1

and
J

with the

Y = Pj+l); so either the triad (or triangle)

polygon P (i.e., all other vertices of pare

P. 1P .P '+l coincides
J- J J

in the segment P.
1
P.

1
),

J- J+
or there is at least one vertex of P (other than Pj-l and Pj+l) exterior to

the triangle XPjY. In the latter case, there must be a vertex Ph lying in

XY whose predecessor or successor in P lies off XY; and this vertex is re-

entrant.]

Propositions 9 and 10 provide us with the foundation of a new algorithm,

which will not fail, and which turns out to be quite efficient and simple to

program.

3. The Programs

Four new: programs have been written and tested, using the improved

results of the present study. Program A was a refined version of the program

listed in [1) (on pages 47- 61). Applying the new program to the same four

polygons used as examples in [l), we find that the arithmetic-operation (a.o.)

counts are considerably improved:

POLYGON n A.D. COUNT IMPROVEMENT
OLD NEW (OLD- NEW)/OLD

1 15 4,257 2, 511 41.01%
2 20 6,579 4, 311 34.47%
3 27 11,367 7,839 31.04%
4 48 36,306 29,088 19.88%

Program B was essentially the same as Program A, but modified so as to

keep track of elapsed execution time (excluding input and output operations)

and to work with a family of "double square spiral" polygons of 8i vertices,

fori= 1, 2, 3, ••• , 12. Output was somewhat terser than from Program A.

Program C was similar to Program B, except that the algorithm, instead

of being essentially Algorithm 3 of [1), was the 'new algorithm based on

Propositions 9 and 10 above.

Because elapsed time is perturbed by the interstitial accounting and

monitoring functions of the Unix operating system, each instance of the last

two programs was run three times and the least elapsed time recorded. Even

-12-

so, the results were a little erratic and truncated to whole seconds.

Program A was written to input coordinates of the vertices of a poly

gon and triangulate it, Programs B and C input the parameter i only,

generated the corresponding member of the family of double square spirals

(with 8i vertices), and triangulated it. Program D bore a similar relation

to Program A as Program C did to Program B (new algorithm; arbitrary poly

gon input).

The results for Programs B and C, for the family of double square spirals,
are shown below:

POLYGON
PARAMETER

*

1
2
3
4
5
6
7
8
9

10
11
12

n

8
16
24
32
40
48
56
64
72
80
88
96

A. 0. COUNT
PROGRAM B PROGRAM C

513
3,393
8' 829

16,821
27,369
40,473
56,133
74,349
95,121

118,449
144,333
172,773

207
972

2,169
3' 7 98
5, 859
8,352

11' 277
14,634
18,423
22,644
27,297
32,382

RATIO OF
COUNTS

2.48
3.49
4. 07
4.43
4. 67
4.85
4. 98
5.08
5.16
5.23
5.29
5.34

ELAPSED TIME*
PROG. B PROG. C

0*
1*
4
6

11
16
22
30
38
48
60
72

0*
0*
1*
1*
2
3
5*
5*
7
9

11
13

Note: elapsed times are given to the nearest second only.

The results for Programs A and D are compared below:

POLYGON n A.O. COUNT RATIO OF
PARAMETER PROGRAM A PROGRAM D COUNTS

1 15 2, 511 693 3. 62
2 20 4, 311 l, 008 4.28
3 27 7,839 2. 493 3.14
4 48 29,088 4. 023 7.23

The four example-polygons used in [1] are fully described there. In

Figures (vii) and (viii), we show the triangulations of the second of these

(Figure 30 of [1], a 20-gon), as performed by Programs A and D, respectively.

-13-

Figure (vii).

1

19

angulationsr in practice.

Figure (viii).

We note that the order

of triangulation is not

the same in the two

figures, though we begin

with the same convex

vertex P
1

in each case;

and further, the final

triangulations differ

in a few particulars

(the quadrilaterals

P3P4Pl0pll and pl2pl3

P16P
18

are split into

pairs of triangles in

different ways.) This

is hardly surprising,

but we did often find

identical final tri-

Figures (ix) and

(x) show the triangu

lations obtained with

Programs B and C, res

pectively, for the

double square spirals

with i = 2 (i.e., 16

vertices). This is an

example of the situation

mentioned above, in which

the triangulations coin

cide; though the order

in which the triads are

removed differs.

Such experimental

results would, in them

selves, convince most

-14-

Figure (ix). Figure (x) .

"~ .. / !'\:~ JIB: /

l1j If
~:st..,.;

~ 1x /. ~ ~37:1
rt
it

v:xm:- X~
ll1: Vm :m: '\.. l!l'

/:I 11 ' /_ J: Jl "
users to choose the new algorithm, based on Propositions 9 and 10, over

the old one, based on Algorithm 3 of [1). We shall see later that the

theoretical worst-case bound on the a.o. count of the new algorithm is

considerably better than that for the old one.

In the listings below, output functions (which are dependent on the

purpose and context of the program, and will therefore vary) are omitted.

All the programs were written in standard "C" with preprocessor calls.

They were run under Unix System V (version 4.2 by Callan Data Systems)

on a C.D.S. Unistar 100/200 workstation with a Motorola 68000 c.p.u.

4. Program A

The program opens with preliminary definitions.

1 #include <stdio.h>

2

3
4
5
6
7
8

9
10

tdefine MAX 100

int g,
n,

p,
q,

float P[2][MAX],

r,
C[3)[MAX];

discr[MAX);

MWX = greatest allowed number of vertices

g = gamma (discriminant) call count
n = number of vertices in polygon
p = number of convex vertices (in A-list)
q = number of re-entrant vertices (B-list)
r = removed-triad index
Removed triads are stored in C

P[O) = x, P[l) = y, for polygon vertices
discr[i] is discriminant for vertex P[i+l]

-15'-

gamma(h, i, j) increments the gamma-count g and returns the value of the
discriminant y(h, i, j), as defined in (3).

11 #define ...-a(h, i, j) (g++, P[O)[h) * (P[1)[i) - P[1)(j]) \
12 - P[1)[h) * (P[O)[i] - P[O][j]) \
13 + P[O] [i] * P[1] [j] - P[1] [i] * P[O] [j])

Each u-list has its identifying pointer in the "up" component of a cor
responding D-cell (see below); this points to the first cell of the u-list
(a dummy cell of the form {ul, 0, 0}, with "ul" au-list-pointer). Each u-cell
thereafter takes the form {ul, u.St, udex), where "ul" points to the next u-ceZZ,
"uSt" points to the predecessor of the cell in the t-Zist S[udex] (see below)
which itself points back to the predecessor of the current u-cell, and the index
"udex" identifies a vertex P(udex+l) of the polygon, contained inside the convex
triad to which the D-ee ll (whose "up" component points to the current u-list)
refers. The list is therefore absent if "up"= 0, and effectively empty if
up -+ ul = 0.

14 atruct u_ce11 { atruct u_ce11 *u1;
15 struct t_ce11 *uSt;
16 int udex;
17 }

The t-lists have identifying pointers S[k], pointing to header-cells
head-t = {tf, ts), with "tf" pointing to the first and "ts" to the last t-cell.
The first t-cell is a dummy cell of the form {tl, o}, where "tl" is a t-list
pointer. Every t-cell thereafter takes the form {tl, tu), where "tl" points to
the next t-cell and "tu" points to a u-cell, which is the predecessor of a u-cell
whose index "udex" is k, the index of the t-list S[k] (see above).

18 atruct t_ce11 { atruct t_ce11 *tl;
19 atruct u_ce11 *tu;
20 }

21 struct head_t { atruct t_ce11 *tf, *ta; } *&(MAX];

The D-list initially has an identifying pointer D, pointing to the first
D-cell. Each D-cell = {pp, np, f, b, up, index), where "pp" is a D-Ust-pointer,
"np" is a reverse-sense D-list-pointer, "f" and "b" are other pointers to D-cells
(see below), "up" is the identifying pointer to au-list (see above), and "index"
is the index of the vertex P(index+l) of the polygon, to which the D-cell refers.

The D-list incorporates two other lists, the A-list and the B-list. None of
these three lists have header-cells. The identifying pointer of the A-list
(which points directly to the first D-cell in the A-list) is A, and that of the
B-list (which points to the first D-cell in the B-list) is B; the pointers X, Y,
and Z respectively point to the last D-cells of the A-, B-, and D-lists. The
D-cells in the A-list are those referring to convex vertices; the D-cells in the
B-list are those referring to re-entrant vertices. The "f" and ''b" pointers are
respectively forward and backward list-pointers for D-cells of like kind (i.e.,
both in the A-list or both in the B-list).

When the construction of the A-, B-, and D-lists is completed, the list
pointers of the last cells (i.e., Z -+ pp, X-+ f, andY-+ f) are made to point to
the first cells in their respective lists, and the backward-list-pointers of the
first cells (i.e., D + np, A -+ b, and B-+ b) are made to point to the last cells
in their respective lists; making these lists circular. Thereafter, only the
pointers A and B are maintained; since D, X, Y, and Z are no longer needed.

-16-

22 struct D_cell { struct D_cell *pp, *np, *f, *b;
23 struct u_cell *up;
24 int index;
25 } *A, *B, *D, *X, *Y, *Z;

26

27

28

29

30

NEW-u, NEW-t, NEW-Ht, and NEW-D respectively allocate, using the function
malloc(), and return pointers to free memory space for new u-cells, t-cells,
t-header-cells, and D-cells, allowing us to construct the needed lists, cell-
by-cell. ·

char *malloc();

tdefine NEW_u

tdefine NEW_t

.t:define NEW_Ht

tdefine NEW D

(struct u_cell *) malloc(sizeof(struct u_cell))

(struct t_cell *) malloc(sizeof(struct t_cell))

(struct head_t *) malloc(sizeof(struct head_t))

(struct D_cell *) aalloc(sizeof(struct D_cell))

ins-u(u, kJ appends, to the end of the t-list S[k], a new t-cell {0, u},
and inserts, after the u-cell pointed to by the pointer u, a new u-cell {ul,
S[k] ~ ts, k} (S[k] ~ ts, pointing to the old last t-cell is then updated to
the new cell).

31 ins_u(u, k)

32
33

34
35

36
37
38
39
40
41
42
43
44
45

struct u_cell *u;
int k;

{ struct u_cell
struct t_cell

t = S(k] ->
t -> tl = 0;
t -> tu = u;
v = NEW_u;

ts

v -> udex = k;

*v;
*t;

-> tl =

v -> uSt = S[k] -> ts;
v -> ul = u -> ul;
u -> ul = v;
S[k] -> ts = t;

}

NEWt· - '

Pointer to predecessor u-cell
Index of included vertex P(k+l)

t points to new t-cell; as does last t-cell
New last t-cell points nowhere
Last t-cell points to given u-cell u
v points to new u-cell
Index of new u-cell is k (given)
New u-cell points back to old last t-cell
New u-cell points to successor cell of u
Predecessor cell points to new u-cell
S[k] ~ ts points to new last t-cell

del-u(d) deletes, from all t-lists, cells pointing back to u-cells in the
u-Ust pointed to by d -+ up, using the "uSt" pointers; then voids d -+ up.

46 del_u(d)

47 struct D_cell *d; Pointer to D-cell whose u-list is removed

48 { struct u_cell *u;

49
50
51

52
53
54 }

-17-

if ((u = d -> up) != 0)
{while ((u = u -> ul) != 0)

u -> uSt -> tl = u -> uSt

d -> up = 0;
}

Do nothing if u-list is absent
For every cell in u-list:

-> tl -> tl; remove corresponding t-cell
from its t-Zist

Finally, annul the u-list pointer

del-S(i) deletes all cells referring to the vertex P(i+l) from all u-lists,
using the listing of their predecessors in S[i]; then voids S[i].

55 del_S(i)

56 int i;

57 { struct t_cell *t;

58 if (S(i] != 0) Do nothing if t-Zist is absent
59 { t = S(i] -> tf; t points to first cell of t-Zist
60 while ((t = t -> tl) != 0) For every cell in t-list:
61 t -> tu -> ul = t -> tu -> ul -> ul; remove corresponding u-cell

from its u-Zist
62 S(i] = 0; Finally, annul the t-Zist pointer
63 }
64 }

fill-D!j, x) appends aD-cell {0, np, 0, b, 0, j}, with null forward pointers,
to the D-Zist, unless x = 0, and adds it to the A-list, if x > 0, or to the B-Zist,
if x < o. In application, x = discr[j] is the discriminant associated with the
vertex P(j+l), and this is zero for redundant (collinear) vertices, positive for
convex vertices, and negative for re-entrant vertices.

65 fill_D(j, x)

66 int j;
67 float x;

68 { struct D_cell *d;

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

if (x != 0)
{ d = NEW_D;

}

d -> pp = d -> f = 0;
d -> up = 0;
d -> index = j;
if (Z != 0)

{ z -> pp = d;
d -> np = Z;

}
else

{ d -> np = 0;
D = d;

}
z = d;

Omit redundant (collinear) vertices
d points to new D-cell
New cell points nowhere !forward)
New cell has no u-list
Index of new cell is j (given)
If this is not the first D-cell:

old last cell points to new one
new c~ll points back to old last one

If this is the first D-cell:
new cell points back nowhere
D points to first D-cell

Z points to (new) last D-cell

84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99

100
101
102
103
104
105
106

if (x > 0)
{ if (X != 0)

{ X -> f = d;
d -> b = X;

}
else

{ d -> b = 0;
A= d;

}
X = d;

}

if (x < 0)
{ if (Y != 0)

{ y -> f = d;
d -> b = Y;

}
else

{ d -> b = 0;
B = d;

}
y = d;

}
}

-18-

If vertex is convex:
if this is not the first A-cell:

old last cell points to new one
new cell points back to old last one

if this is the first A-cell:
new cell points back nowhere
A points to first A-cell

X points to (new) last A-cell

If vertex is re-entrant:
if this is not the first B-cell:

old last cell points to new one
new cell points back to old last one

if this is the first B-cell:
new cell points back nowhere
B points to first B-cell

Y points to (new) last B-cell

adjust(c, d, e, x) makes the necessary adjustments when a vertex which was
re-entrant becomes convex or collinear. Pointers c and e point to consecutive
convex vertices with the vertex pointed to by d, originally re-entrant, between
them. The new value of the discriminant of d is x.

107 adjust(c, d, e, x)

108 float(x);
109 struct D_ce11 *c, *d, *e;

110

111
112
113
114

115
116
117
118

119

120
121

{ q--;

if (d -> f != d)
{ d -> f -> b = d -> b;

d -> b -> f = d -> f;
}

if (x -- 0)
{ d -> pp -> np = d -> np;

d -> DP -> pp = d -) pp;
if (d -> np -- c) find_u(c);

if (d -> pp -- e) find_u(e);

de1_S(d -> index);
}

Decrement the re-entrant vertex count q

If d was not the last re-entrant vertex:
eliminate d from B-list, in both

directions

If dis now redundant (collinear):
eliminate d from D-list, in both

directions
if c is predecessor of d:

construct new u-list for c
if e is successor of d:

construct new u-list for e
delete references to d in all u-lists

122
123
124
125
126
127
128
129
130

is
131

132

133
134
135

136

137
138
139
140

141
142
143

144

145
146
147
148

149
150
151
152
153
154
155
156
157
158
159

160
161
162

}

else
{ p++;

}

d -> b = c;
c -> f = d;
d -> f = e;
e -> b = d;
find_u(d);

-19-

If d is now convex:
increment convex vertex count p
insert d into A-list,

between c and e,
in both directions

construct new u-list for d

find-u(d) constructs a u-list for the vertex whose corresponding D-cell
pointed to by the pointer d. d must point to a convex vertex.
struct D_ce11 *find_u(d)

struct D_ce11 *d;

{ int h, i, j, k, mt;
struct u_cel1 *u;
struct D_ce11 *c;

del_u(d);

u = d -> up = NEW_u;
u -> ul = 0;
u -> ust = 0;
u -> udex = 0;

h = d -> np -> index;
i = d -> index;
j = d -> pp -> index;

mt = 0;

c = B;
if(c!=O)

do
{ k = c -> index;

Delete any previous u-list for d

u and d ~ up point to new u-cell
First u-cell is dummy,

with uSt null
and udex = 0

h = index of predecessor of d
i =index of d
j = index of successor of d

mt = "empty triad" flag; initially zero,
meaning "empty"

Starting with B,
if B-list not empty

For every B-cell: c points to cell
k = index of c

if (k != h && k != i && k != j)

if (ga.ma(i, j, k) >= 0)
if k is not h, i, or j,

and if k
if (gamma(j, h, k) >= 0) is inside or on

triad y(h, i, j): if (gamma(h, i, k) >= 0)
{ mt = 1; mt = 1, meaning "non-empty"

insert cell referring to k,
after u in u-list, and
advance u to new cell

next B-ce ll

ins_u(u, k);
u = u -> ul;

}
c = c -> f;

}
while (c != B) ;

if (at == 1)
{ c = A;

do

go to

until cycle back to B

If the triad is not empty:
starting with A, for every A-cell:

163
164
165
166
167
168
169
170
171
172
173
174

175
176
177 }

}

-20-

{ k = c -> index;

}

if (k != h && k != i && k != j)
if (ga.aa(i, j, k) >= 0)

if (gamma(j, h, k) >= 0)
if (gamma(h, i, k) >= 0)

{ ins_u(u, k);
u = u -> ul;

}
c = c -> f;

while (c != A) ;

Do the same for
the A-list as
was done before
for the B-Zist,
seeking included
vertices and
adding them to
the u-list

if (mt -- 0) return(d);
else return(Z);

If the triad is empty, return pointer d
If not, return the pointer Z (initially 0)

[Above used only in line 224 to find
the first empty convex triad.]

THE MAIN PROGRAM. After reading-in the polygon (number n of vertices first;
then the coordinate-pairs of the vertices, in cyclic order, interior-on-the-left
or reverse sense), the program constructs the D-, A-, B-, and all u- and t-lists;
and then executes the algorithm, finding and removing to the C-array successive
empty convex triads.

178 aain()
179 { int h, i, j, k;
180 float x, y;
181 struct D_ce11 *c, *d, *find_u();
182 struct t_cell *t;

183
184
185
186
187
188

189

190
191
192
193
194
195
196

197
198
199

200

do scanf("%d ", &n); while (n < 3);
for (i = 0; i < n; i++)

Input n = number of vertices
and coordinates (x, y)

{ scanf("%f %f ", &x, &y);
P[O] (i] = x;
P[l] [i] = y;

}

g = p = q = r = 0;

h = 0; x = P[O](O];
for (i = 0; i < n; i++)

{ if (P(O] (i] > x)
{ h = i;

x=P(O][i];
}

of each vertex into
P[O][...] and
P[l](...]

Initialize all counts to zero

Find vertex P(h+l) with greatest
x-coordinate x = P[O][h], and if
several such, that with greatest
y-coordinate P[l][h]

if (P[O][i] --X && P(l](i] > P(l][h]) h = i;

if (i == 0) discr[i] = g81111Da(n - 1, 0, 1);
else if (i == n - 1) discr[i] = g81111Da(n - 2, n - 1, 0);
else discr[i] = gBIIIIDa(i - 1, i, i + 1);

C[O][i] = C[l][i] = C(2](i] = 0; Initialize (empty) C-array

201
202
203
204
205

206
207
208
209
210
211

212

213
214

215
216
217
218
219
220

221
222
223
224
225
226
227

228
229
230
231
232

233
234
235
236

237
238
239

240
241
242
243

-21:..

S(i] = NEW_Ht;
t = S(i] -> tf = S[i] -> ts = NEW_t;
t -> tl = 0;

S[i] points to new t-header cell
t, S[i] ~ tf, and S[i] ~ ts point

to new t-cell, initiated with
null pointers forward t -> tu = 0;

}

x = ((discr[h] > 0) ? 1 : (-1));
for (i = 0; i < n; i++)

Extreme vertex P(h+l) must be convex;
so its discriminant should be positive.
Adjust alZ discriminant values to be
of appropriate signs (for interior
on-the-left sense of traversal)

{ discr[i] = x * discr[i];
if (discr[i] > 0) p++;
if (discr[i] < 0) q++;

}

A = X = B = Y = D = Z = 0; Initialize all list-pointers to be null

if (x > 0) for (i = 0; i < n; i++) fill_D(i, discr[i]); Construct
else for (i = n - 1; i > - 1; i-) fill_D(i, discr[i]); the D-, A-,

Z -> pp = D;
D -> np = Z;
X -> f = A;
A-> b = X;
Y -> f = B;
B -> b = Y;

d = X;
z = 0;
do

{ Z = find_u(d);
d = d -> b;

}
while (d != X)

while (p > 2)
{ X = Z -> np;

y = z -> pp;
X -> pp = Y;
Y -> np = X;

C(O] [r] = h =
C[l][r] = i =
C(2] (r] = j =
r++;

p--;
del_S(i);
del_u(Z);

X -> index;
z -> index;
y -> index;

c = z -> f -> b = z -> b;
d = z -> b -> f = z -> f;
if (A == Z) A = Z -> f;
discr(i] = 0;

Connect beginnings and ends
of D-, A-, and B-lists,
so as to make each list
circular, in both
directions

and B-lists

Beginning with the last A-cell and cycling
backwards through the A-list:

construct the u-list for each convex
vertex

(end-up with the Z pointing to the
first empty convex triad)

So long as three convex vertices remain:
X points to predecessor of Z in D-list
Y points to successor of Z in D-list
remove Z from D-list, in both

directions

put the triad o(h, i, j) into the
C-array

increment the removed-triad count

decrement the convex vertex count
delete all u-cells referring to P(i+l)
delete all t-cells pointing back to

the u-list of Z (i.e., of P(i+l)}.

delete Z from the A-list, and let c and
be previous and next convex vertices

if A = Z, move A forward

244
245
246
247
248
249
250
251
252
253

254
255
256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271
272
273

B 22:

B Ja:

B U:

B 2&:

}
}

-22-

if X was re-entrant: if (diacr[h] < 0)
{ x = discr[h] =

if (x >= 0)
g-a(X -> np -> index, h, j); x = new discriminant

}

{ if (X -> f == X) B =
if (B == X) B = B ->
adjust(c, X, d, x);
if (x > 0) c = X;

}

else find_u(X);

if (discr[j] < 0)
{ x = discr[j] = gamma(Y ->

if (x >= 0)

}

{ if (Y -> f == Y) B =
if (B == Y) B = B ->
adjust(c, Y, d, x);
if (x > 0) d = Y;

}

else find_u(Y);

if X changes to collinear or convex:
0; if X was last re-entrant, annul B
b; if B = X, move B back

if X is now convex, move c to X

if X was convex, recompute its u-list

if Y was re-entrant:
pp -> index, h, j); x =new discriminant
if Y changes to collinear or convex:

0; if Y was last re-entrant, annul B
b; if B = Y, move B back

if Y is now convex, move d to Y

if Y was convex, recompute its u-list

h = 1; h = "empty triad" flag; initially l, meaning
while (h == 1) non-empty. Begin with d = next convex vertex

{ if (d -> up -> ul == 0) if u-list of d is empty:
{ h = 0; h = 0 (meaning empty triad found)

Z = d; Z points to first empty triad found,
} after that just removed

else d = d -> f; if u-list of d is not empty,
} advance d to next convex vertex

5. Program B

Program B was a modification of Program A to generate members of the

family of "double square spiral" polygons, on input of only the parameter i

(see Figures (ix) and (x)). In the listing below, only the changes from

Program A are noted (all line numbers refer to Program A).

Lines 1-21 are unchanged. Lines 22-25 are replaced by

struct D_cell { atruct D_cell *pp, *np, *f, *b;
atruct u cell *up;
int indeX;

} *A, *B, *Z;

B 26- u: removing pointers D, X, andY from global to main() declaration. Lines 26-64
B 6&-186: and 107-177 are unchanged. The fill-D(j, .x) function is omitted (it is incor

porated in main(): see below), leaving out lines 65-106. The declarations in
lines 178-182 become (note line 181)

813 6:

813 7:

818 8:

813 9:

B140:

BUl:

Bl 4 2:

B143:

814 4:

814 5:

8146:

Bl4 7:

8148:

8149:

8150:

8151:

815 2:

-23-

-in()
{ int h, i, j, k;

float x;
struct D_cell *c, *d, *D, *X, *Y, *find_u();
struct t_cell *t;

Lines 183-188 (polygon input) are replaaed by

scanf("~ ~". &i, &prfl);
n = 8 * i;
for (h = 0; h < i; h++)

{ P[O] [4 * h) = 2 * h P[l) [4 * h)

}

P[O)[n- 4 * h- 1) =- 2 *h-I; P[l)[n 4 * h 1)
P[O)[4 * h + l) = 2 * h + 2; P[l)[4 * h + l)
P[O)[n- 4 * h- 2) = 2 * h + 3; P[l)[n- 4 * h- 2)
P[O)[4 * h + 2) = 2 * h + 2; P[l)[4 * h + 2]
P[O)[n- 4 * h- 3] = 2 * h + 3; P[l)[n- 4 * h- 3]
P[O][4 * h + 3] =- 2 * h- 2; P[l)[4 * h + 3]
P[O][n- 4 * h- 4] =- 2 * h- 3; P[l][n- 4 * h- 4]

=
=
=
=
=
=
=
=

2 * h
2 * h
2 * h
2 * h
2 * h

- 2 * h
2 * h

- 2 * h

B15 3: Line 189 initializes all aounts to zero as in Program A. Since all the spiral
polygons are traversed in the accepted interior-on-the-left sense, the discri
minant calculation and the generation of the D-, A-, and B-lists are slightly
simplified. Lines 190-199 become

8164:

815 5:

Bl5 6:

B15 7:

for
{

(i =
if (i
else
else

0; i <
== 0)

if (i

n; i++)
discr[i] = gB~Ba(n -

-- n - l) discr[i] = g81Ba(n -
discr[i] = (81Ba(i -

Bt58-162: lines 200-204 are unchanged, and lines 205-211 become

Bt&a: if (discr[i] > 0) p++;
Bl64: if (discr[i] < 0) q++;
B16 5: }

l, 0, 1);
2, n - l, 0);
l, i, i + l);

»!66: Line 212 initializes all list-pointers to be null as in Program A. Then lines
213 and 214 are replaced by the inclusion of the equivalent of fill-D(j, x), as
foZ lows

Bl67: for (i = 0; i < n; i++)
atse: { if (discr[i] != 0)

Bl69-182: then lines 70-83, then

8118: if (discr[i] > 0)

8184-118: then lines 85-94, then

11t4: if (discr[i] < 0)

B195~204: then lines 96-105, then

120fo: }

B2os-264: The remainder of the program, namely, lines 215-273, are then unchanged; since
the algorithm is the same.

;
+ 1;

;
+ 1;
- 2;
- 3;
- 2;
- 3;

c 1

c 2

c 3
c 4
c 5
c 6

c 7
c 8

c 9
c 10
c 11

c 12
c 13
c 14

c 15

c 16

-24-

6. Program C

This program again, like Program B, generates members of the family of

double square spirals (see Figures (ix) and (x)), on input of the parameter

i = 1, 2, 3, ••• , 12; but it uses the new algorithm, based on Propositions

9 and 10, instead of the-old one. In the listing below, comparison with the

previous programs is stressed.

are

#include <stdio.h>

#define MAX 100

int g,
n,

r,
C[3][MAX];

float P[2](MAX],
discr [MAX] ;

} Like lines A 1, 2 and B 1, 2

) Unlike lines A 3-8 and B 3-8 :
vertex counts p and q are
removed from global to main()

Like lines A 9-13 and B 9-13

#define gamma(h, i, j) (g++, P[O)(h] * (P[l)[i) - P[l)[j)) \
- P(l][h) * (P(O][i) - P[O)[j)) \
+ P[O)[i) * P[l)[j)- P(l](i) * P[O][j))

We omit all reference to u- and t-lists; so lines A 14--21 and B 14--21
left out of the program.

struct D_cell { struct D_cell *pp, *np, *f, *b; }
int index;

} *A, *B;

Compare lines A 22--25
and B 22--25 : only
A and B are global,
and no u-list (up)

char *malloc(); Like lines A 26 and B 26

Omit NEW-u, NEW-t, NEW-Ht (lines A27--29 and B 27--29)
#define NEW_D (struct D_cell *) aalloc(sizeof(struct D_cell))

Like lines A 30 and B 30

Omit ins-u(), del-u(), del-S() (lines A31~4 and B31~4) and fill-D(),
u;hich is incorporated in main(} later (lines A65-106).

The adJust() function beloUJ is essentially the same as those in Programs
A and B, except for the absence of reference to u- and t-lists, and no up
dating of the convex and re-entrant vertex counts p and q.

-25-

C 17 adjust(c, d, e, x)

C 18 float x;
C 19 struct D_cell *c, *d, *e;

c 20
c 21
c 22
c 23
c 24
c 25
c 26
c 27
c 28
c 29
c 30
c 31
c 32
c 33
c 34

{ if (d -> f != d)

}

{ d -> f -> b = d -> b;
d -> b -> f = d -> f;

}
if (x == 0)

{ d -> pp -> np = d -> np;
d -> np -> pp = d -> pp;

}
else

{ d -> b = c;
c -> f = d;
d -> f = e;
e -> b = d;

}

Compare lines Al07-130and B65--88:
same, except for omission of
find-u(J and del-S() calls: no
u- and t-lists; also, no p and
q count updates

Omit function find-u(J (lines Al31-177 and 889-135),

C 36 { int h, i, j, k, p, q; Compare lines AJ78-182
C 35 aain() }

C 37 struct D_cell *AA, *BB, *D, *DD, *d; and B 136-140

c 38
c 39
c 40
c 41
c 42
c 43
C44
c 45
c 46
c 47
c 48
c 49

c 50

c 51
c 52
c 53
C54
c 55
c 56
c 57
c 58

c 59

scanf("%d", &i);
n = 8 * i;
for (h = 0; h < i; h++)

{ P[O][4 * h]
P[O][n- 4 * h- 1]
P[O][4 * h + 1]
P[O] [n - 4 * h - 2]
P[O] [4 * h + 2]
P[O][n- 4 * h- 3]
P[O][4 * h + 3]
P[O][n- 4 * h- 4]

}

g = p = q = r = 0;

Like lines B 141-152

= - 2 * h ;
= - 2 * h - 1;
= 2 * h + 2;
= 2 * h + 3;
= 2 * h + 2;
= 2 * h + 3;
= - 2 * h - 2;
= - 2 * h - 3;

P[l] [4 * h] = 2 * h ,
P[l][n- 4 * h- 1] = 2 * h + 1;
P[l][4 * h + 1] = 2 * h ,
P[1][n- 4 * h- 2] = 2 * h + 1;
P[1][4 * h + 2] =- 2 * h- 2;
P[l][n- 4 * h- 3] =- 2 * h- 3;
P[1][4 * h + 3] =- 2 * h- 2;
P[l][n- 4 * h- 4] =- 2 * h- 3;

Like lines A 189 and B 153

for (i = 0; i < n; i++) Like lines B 154-157 l
{ if (i == 0) discr[i] = gamma(n- 1, 0, 1);

else if (i == n- 1) discr[i] = gamma(n - 2, n- 1, 0);
else discr(i] = ga.ma(i - 1, i, i + 1);
if (discr[i] > 0) p++;) Like lines B 158

Compare
lines
A190
-211 if (discr[i] < 0) q++; and B 163-J65

C[O)[i) = C[l)[i] = C[2][i) = 0;
}

A = AA = B = BB = D = DD = 0; Compare lines A212 and B 166

C60
c 61
c 62
c 63
C64
C65
c 66
c 67
c 68
c 69
c 70
C71
c 72
c 73
c 74
c 75
c 76
c 77
c 78
c 79
c 80
c 81
c 82
c 83
C84
C85
c 86
c 87
c 88
c 89
c 90
c 91
c 92
c 93
C94
C95
C96
c 97
c 98
c 99
ClOO
ClOl
Cl02
Cl03
Cl04
Cl05 }

for (i = 0; i < n; i++)
{ if (discr[i] != 0)

{ d = NEW_D;

-26-

d -> pp = d -> f = 0;
d -> index = i;

}

}

if (DD != 0)
{ DD -> pp = d;

d -> np = DD;
}

else
{ d -> np = 0;

D = d;
}

DD = d;

if (discr[i] > 0)
{ if (AA ! = 0)

}

{ AA -> f = d;
d -> b = AA;

}
else

{ d -> b = 0;
A = d;

}
AA = d;

if (discr(i] < 0)
{ if (BB != 0)

}

{ BB -> f = d;
d -> b = BB;

}
else

{ d -> b = 0;
B = d;

}
BB = d;

DD -> pp = D;
D -> np = DD;
AA -> f = A;
A -> b = AA;
BB -> f = B;
B -> b = BB;
split(A~ B);

Compare lines B 167-205 and the fill-D()
function in lines A 65-106 : here,
AA, BB, and DD play the parts of
X, Y, and Z there (also, lines
A 72 and B 174 are not needed,
since the D-cells have no up
u-list pointer

Compare lines A 215--220 and B 206--211

CALL THE RECURSIVE SPLIT() ROUTINE

-27-

We now come to the crucial SPLIT() routine, which recursively calls itself

until the triangulation is completed.

The call is to split(Q, R), where Q points to the current A-list (convex
vertices) and R points to the current B-list (re-entrant vertices). Taking the
convex triad 6. = o(h, i, j) = P(h+l)P(i+l)P(j+l), where Q points to the D-cell
corresponding ~o P(i+l); the routine searches the B-list for any re-entrant
vertices in or on the triad, and among these, for the last one with maximal
y[j, h, k] (see Figure (v)). If the triad is empty, the triad is removed to
the C-array and the routine recurs on the reduced polygon. If not, the segment
P(i+l)P(k+l) defined by the pointers Q and Z (Z points to the selected re-entrant
vertex, which is P(k+l)) is used to split the polygon into two contiguous and
smaller simple closed polygons, and the routine recurs to each of them in turn.

Cl06 split(Q, R)

Cl07 struct D_cell *0, *R; Q points to current A-list, R to B-list

Cl08 { int h, i, j, k;
Cl09 float x, y;
CllO struct D_cell *c, *d, *Qnp, ~b, *Qf, *W, *X, *Y, *Z, *Zpp, *Zb, *Zf;

Clll

Cll2
Cll3
Cll4

Cll5
Cll6
Cll7
Cll8
Cll9
Cl20
Cl21
Cl22
Cl23
Cl24
Cl25
Cl26
Cl27
Cl28
Cl29
Cl30
Cl31

if (Q -> f -> f == Q) return; Stop when only two convex vertices
remain

h = Q -> np -> index;
i = Q -> index;
j = Q -> pp -> index;

h = index of predecessor of Q
i = index of (convex vertex) Q
j = index of successor of Q

y = 0;
z = Q;
if (R != 0)

{ d = R;
do

}

{ k = d -> index;

}

if (k != h && k != i && k != j)
if (gamma(h, i, k) >= 0)

if (gamma(i, j, k) >= 0)
if ((x = gamma(j, h, k)) >= y)

{ Y = x;
z = d;

}
d = d -> f;

while (d != R) ;

Compare lines A 144-159 .

Initially, Z = Q (convex);
if any re-entrant vertex
(pointer d, index k) lies
in or on the triad o(h,
i, j), we put Z = d for
the last included re
entrant vertex with
maximal y[j, h, k]
(See Propositions 9 and
10 in Section 2.)

Cl32
Cl33
Cl34
Cl35
Cl36
Cl37
Cl38
Cl39
Cl40
Cl4l
Cl42
Cl43

Cl44

Cl45
Cl46
Cl47
Cl48
Cl49
Cl50
Cliil
Cl52
Cl53

Cl54
Cl55
Cl56
Cl57
Cl58
Cl59
Cl60
Cl61
Cl62

Cl63
Cl64

-28-

we treat is much as before. When the triad is empty,

if (Z == Q) If the triad is empty: remove it and recur:
{ C[O] [r] = h;

C[l] [r] = i;
C[2][r] = j;
r++;
X = Q -> np;
y = Q -> pp;
X -> pp = Y;
Y -> np = X;

Compare lines A229-236, 240, 241, 243

}

c = Q -> f -> b = Q -> b;
d = Q -> b -> f = Q -> f;
discr[i] = 0;

W = R; Pointer to B-list

if (discr[h] < 0)
{ x = discr[h] = gamma(X -> np -> index, h, j);

if (x >= 0)

}

{ if (X -> f == X) W = 0;
if (W == X) W = W -> b;
adjust(c, X, d, x);
if (x > 0) c = X;

}

if (discr[j] < 0)
{ x = discr[j] = ga.ma(Y -> pp -> index, h, j);

if (x >= 0)

}

{ if (Y -> f == Y) W = 0;
if (W == Y) W = W -> f;
adjust(c, Y, d, x);
if (x > 0) d = Y;

}

split(d, W); Recur to split() routine

Like lines
A244-252,
with W forB

Like lines
A254-262,
with W forB

When the triad is not empty, the segment QZ is used to split the polygon.

We interrupt to explain the situation. Since they are so selected, we

know that Q points to [we often corrupt the language and say that Q "is"] ~

convex vertex, and Z is a re-entrant vertex. By Propositions 9 and 10 [the

indices are differently named: Pj-lpjpj+l in Figure (v) becomes Ph+lpi+lpj+l

here (vertices are no longer consecutively numbered, because of previous removals)

and Ph there becomes Pk+l here; and so Q points to Pi+l (or P(i+l)) and Z to

Pk+l (or P(k+l))] we know that, if the triad is not empty, such a Z exists;

and the segment QZ (more properly, Pi+lpk+l) splits the polygon p
0

into two

-29-

contiguous simple closed polygons p
1

and p
2

, having only the segment QZ in

common. Each will recur to the split() routine with its own A- and B-lists;

which must be constructed appropriately, We note further that, in the two

new polygons, Q will still be convex; but Z may become collinear or convex.

Each of the new polygons will have at least 3 vertices, and, by Lemma 5,

each will contain at least one more convex vertex, but not necessarily any

additional re-entrant vertex, beside Q and z. Thus, Q ~ f is (more properly,

"points to a vertex") in p
1

and Q ~ b is in p
2

; but Z ~ f and Z ~ b may be in

either polygon, and may equal Z itself. Of course, Q ~ pp and Z + np will be

in p
1

, and Q + np and Z + pp will be in p
2

,

In setting up P
1

, we must store the pointers to be used in ~2 . This

is tabulated below. It is assumed that U denotes the first re-entrant vertex

after Q (must exist in p
1

; may be Z) and that V denotes the last convex

vertex before Z (must exist in P
1

; will be after Q); then U +band V + f

must be in P
2

(the former may be Z; the latter will be before Q).

POINTER

Q -+ pp
Q + np

z + pp
z + np

Q-+f
Q -+ b

z + i= U:
z -+ f
z -+ b
z -+ t.<~ U:
z -+ f
z + b

U-+b
v-+ f

Qf + b

Zb + f

IN p
0

IN p
1

Q + pp Q -+ pp
Qnp = Q + np z
Zpp = Z + pp Q

Z -+ np z + np

Q+f Q+f
Qb = Q + b v

z -+ f u
z + b z -+b

Zf= Z -+ f u
z -+ b {g; ~; z

-+ b} z
u + b z
V-+ f Q

v

u

z
Qnp

Zpp
Q

Qf= v + f
Qb

Zf = Z
Zb Z

Zf
Zb=U-+b

Q

z

The various situations are illustrated in the figures below.

Figure (xi), D-Zists.

I
I
I
I
\ __

Z -rnp

At least one
[convex] v e r t e x

here

Q

At least one
[convex] vertex

here

Figure (xiii). B-lists.

-30-

Figure (xii). A-lists.

' ..
(La s t c on v e x v e r t ex
before re-entrant Z)

Figure (x i v) . ;:B~-.::Z.::i~s_::t~s.!.. _;:U_=_:::.Z_-+_.._f~I:__;Z,_,.
u = z -+ f = z.

No re-entrant ~___j
vertex here

No re-entrant
vertex here

Figure (xv). B-Zists.

Q

z -+ f ;i z = u.
(May be the
same vertex)

Zb .. ~.-::f· = U-+ b
' ,

' •,
I'

(May be the
same vertex)

No r e -e n t r a n t
vertex here

Figure (xvi). ;::B_-.::.Z.::.i:::.s::.t:::.s,_. _:=_Z_-+~.:..f~;i'-'Z"-';i~U.

(First
re-entrant
vertex after
convex Q) .. . ,

~u

' '/ r
(May be t be
same vertex)

Here, [
1

is the forward pointer relative to P1 , and [
2

that relative to P
2

•

The correspondence to the table is seen when it is observed that Z -+ f = Z

only when there is only one re-entrant vertex and U = Z also.

Cl65
Cl66
Cl67
Cl68
Cl69
Cl70
Cl71
Cl72
Cl73
Cl74
Cl75
Cl76
Cl77
Cl78
Cl79
ClBO
ClBl
Cl82
Cl83
Cl84
Cl85
Cl86
Cl87
ClBB
Cl89
Cl90

. Cl91
Cl92
Cl93
Cl94

Cl95
Cl96
Cl97
Cl98
Cl99

C200

else
{ k = Z -> index;

Qnp = Q -> np;
Q -> np = Z;
W = Z -> np;
d = z -> b;
while (W == d)

{ W = W -> np;
d = d -> b;

}
Qb = Q -> b;
Q -> b = W;
Qf = w -> f;
w -> f = Q;
Zpp = Z -> pp;
z -> pp = Q;
w = Q -> pp;
d = Q -> f;
while (W == d)

{ w = w -> pp;
d = d -> f;

}

-31-

If the triad is not empty: split it and recur:
k = index of (re-entrant vertex) Z
record Q + np as Qnp and
replace with Z

find last convex vertex ("V") before Z
and put it in W

·record Q +bas Qb and
replace with W (i.e. "V")
record W + f as Qf and
replace with Q
record Z + pp as Zpp and
replace with Q

find first re-entrant vertex ("U") after Q
and put it in W

if (Z -> f == W) Zf = Zb = Z;
else

{ Zf = Z -> f;
Zb = W -> b;
if (W == Z) Z -> b = Z;

}
Z -> f = W;
W -> b = Z;

(see tabulated relations)

x = discr[k]
if (x >= 0)

= gamma(Z -> np -> index, k, i);

{ if (Z -> f == Z) W = 0;
adjust(Q -> b, Z, Q, x);

}

compare lines CJ46-152,
with Z for X, Q + b for c,
and Q for d)

split(Q -> f, W); Recur to split() routine for first polygon

C201
C202
C203
C204
C205
C206
C207
C208
C209
C210

Q -> np = Qnp;
Q -> PP = Z;
Q -> b = Qb;
Q -> f = Qf;
Qf -> b = Q;
Z -> np = Q;
Z -> pp = Zpp;
Z -> b = Zb;
Zb -> f = Z;
W = Z -> f = Zf;

-32-

restore all pointers for second polygon
(see tabulated relations)

(note that W is reset)

C211
C212
C213
C214
C215

x = discr[k] = gamma(Z -> pp
if (x >= 0)

-> index, i, k);
adjust for Z possibly
becoming redundant or convex

(see lines C 195-199)
{ if (Z -> f == Z) W = 0;

adjust(Q, Z, Q -> f, x);
}

C216
C2l7
C218 }

}
split(Q -> b, W); Recur to split() routine for second polygon

Dl-11:

7. Program D

This final program uses the new splitting algorithm; but, like Program A,

app~ies it to an arbitrary polygon, whose vertices are input one-by-one.

Begin with lines C 1-11 • Replace lines C 12-14 with

012, struct D_cell { struct D_cell *pp, *np, *f, *b;
013, int index;
014, } *A, *B, *D, *AA, *BB, *DD;

D15-58' Lines CIS, CJ6 follow. Then comes fill-D(), from lines A65-106. Then
ns o-7 6' we have adjust () from lines C 17-34 . The main () function begins with

o77, -in()
o78' { int h, i, j, k, p, q;
o79' float x, y;

o8o-Io4, Then follow lines AJ83-200 and A206-211; C59 (instead of A212) and
01os-227, A213, 214 . After this, we have C98--218, completing the program.

8. Performance Bounds: Programs A and B

Since the form of input (and output) is irrelevant to our timing esti

mates, it follows that Programs A and B, and Programs C and D, may be treated

as one.

We begin with Programs A and B. We first deal with the auxiliary func

tions. ins-u() takes time 0(1). del-u() deletes au-list and all references

to its cells in all t-lists. del-S() deletes a t-list and all references to

-33-

its vertex in all u-lists. Let us write

m = p + q (11)

for the current number of vertices in process (i.e., in the D-list). Then

each u-list or t-list has length not greater than m = O(m), since a list

never refers to the same vertex twice. Therefore the timing-bound for del-u()

and del-S() is also O(m), fill-D() appends one cell in time 0(1), find-u()

calls del-u() once and then runs through the B-list and possibly the A-list,

for a timing of O(m). If we count arithmetic operations (a.o.) as the number

of calls to gamma() times 9 [see lines All-13; remaining arithmetic operations

are a single multiplication in line A208, plus possible subtractions implied

in all the tests used, certainly not disturbing the general behavior of the

algorithm], we see that each call to find-u() involves at most 3(m- 3) gammas

= 27(m- 3) a.o. Thus, adjust(), involving as it does as many as two calls to

find-u() and one to del-S(), has a timing of O(m). Its gamma-count is a little

complicated, in practice: if one takes the line in which the number m of ver

tices is reduced by one, then as many as two calls to find-u() lead to a maxi

mum of 6(m - 4) gammas; but, if one takes the other line, in which m does not

diminish, then only one call is made to find-u(), and the maximum is 3(m- 3).

We now come to the main program. After input, which we will not count,

but which only takes time O(n), in any case; we compute then discriminants,

for a time O(n) with n gammas = 9n a.o. (lines Al90-211). The calls to fill-D()

in lines A213 and A214 take time O(n) too; and then the u-lists for all convex

vertices are computed in time O(pn) = O(n2), with at most 3p(n- 3) gammas.

The triangulation loop (lines A228-272) remains, For each of at most

n- 2 triads; we call del-S() and del-u(), and, for both of the two flanking

vertices of the triad being removed to the C-array, we perform the operations

of lines A244-263. The total time is clearly O(n2). Lastly, we seek the next

empty convex triad, a process which takes time O(p), for a total of O(n2).

Thus, the entire program takes a time O(n2) to execute. This agrees with

Theorem 4 of [1].

Turning to gamma-counts, we see that the preliminaries take at most

3n2 - 8n gammas = 9(3n2 - 8n) a.o. In the triangulation loop, the only calls

to gamma arise in lines A244-263. The situation in which the flanking vertex

-34-

was re-entrant and does not remain so is clearly somewhat more laborious than

those in which it was convex (call to find-u() only) or in which it was re

entrant and remains re-entrant (call to gamma() only). Here, there is a call

to gamma() and then one to adjust(), involving at least one call to find-u().

Three cases arise: (i) E£ additional vertices eliminated: in the worst case,

we call gamma() and fina-u() twice each, for a gamma-count of 6m - 22, emer

ging with m - 1 vertices. The total gamma-count under this regime is

(6n- 22) + (6n- 28) + (6n- 34) + (6n- 40) + ••• (12)

(ii) one additional vertex is eliminated: in the worst case, we call gamma()

twice and find-u() thrice, for a gamma-count of at most 9m - 40 (when the

second flanking vertex is eliminated as collinear), emerging with m- 2 ver

tices. The total gamma-count now becomes

(9n- 40) + (9n- 58)+ (9n- 76) + .•• (13)

Comparing the first two terms of (12) with the first term of (13), so as to

arrive at the same situation, with n - 2 vertices; we see that 12n - 50 ~

9n- 40, so long as 3n > 10 (i.e., n > 4). Thus, case (i) is more laborious

than case (ii) (when n 3, the count is zero, anyway). (iii)~ additional

vertices are eliminated: in the worst case, we call gamma() twice and find-u()

four times, for a gamma-count of at most 12m - 64, emerging with m- 3 vertices.

The total gamma-count under this regime is then

(12n- 64) + (12n- 100) + (12n- 136) + •.. (14)

Comparing the first three terms of (12) with the first term of (14), so as

to arrive at n - 3 vertices; we see that 18n - 84 > 12n - 64, so long as

6n > 20 (i.e., n > 4 again). Once more, we see that case (i) is the more

laborious; and so (12) is the worst-case gamma-count. The sum is

n n-3
I (6m - 22) = I (6s - 4) 3(n- 3)(n 2) - 4(n - 3)

m=4 s=l
= (n- 3)(3n- 10). (15)

-35-

We have thus established:

PROPOSITION 11. The old algorithm (embodied in Programs A and B)

(i) always

than

yields a complete, economical triangulation, and (ii) takes less

27(2n
2

- 9n + 10) = 27(n- 2)(2n- 5)

a.o. and O(n2) other operations.

(16)

2 [We have shown that the preliminaries take at most 3n - 8n gammas,

and, by (15), the triangulation loop takes 3n2 - l9n + 30 gammas. The

total is 6n2 - 27n + 30; and (16) follows.]

We observe that (16) is an improvement on Theorem 4 of [1], which

gives the formula
8ln(n + l) - 360. (17)

It is interesting to compare the bound (16) with the actual experimental

a.o. counts obtained with the programs.

n

Program A

Program B

15
20
27
48

8
16
24
32
40
48
56
64
72
80
88
96

A.O. COUNT

2, 511
4,311
7,839

29,088

513
3' 393
8,829

16,821
27,369
40,473
56' 133
74' 349
95,121

118,449
144,333
172,773

THEOR. BOUND

8' 775
17,010
33' 07 5

113' 022

1,782
10,206
25,542
47,790
76,950

113' 022
156,006
205,902
262,710
326,430
397,062
474,606

RATIO

3.49
3.95
4.22
3.89

3.47
3. 01
2.89
2.84
2.81
2.79
2.78
2.769
2.762
2.756
2.751
2.747

Two causes may be adduced to account for the overestimation of observed a.o.

counts by the theoretical bounds. First, find-u() only examines A-vertices

for inclusion in a u-list when a B-vertex has been found in the triad; and

-36-

secondly, many vertices are excluded from a u-list by the first or second

discriminant evaluated, whereupon the rest of the three gammas are omitted,

These two features of the execution have the major effect; but other over

estimates occur also, and have a lesser inflationary effect. The observed

ratios between 2.7 and 4.3 are consonant with this explanation.

9. Performance Bounds: Programs C and D

Beginning with auxiliary functions, we observe that there are n9w no

u-lists or t-lists; so that ins-u(), del-u(), del-S(), and (notably) find-u()

are absent. Thus, adjust() now takes time 0(1). The main program now takes

a minor role, too. The calculation of discriminants and the construction of

the D-, A-, and B-lists contribute time O(n) with n gammas, since the u-lists

need no longer be computed,

The crux of the matter is in the recursive function split(). We now

suppose that an upper bound for the execution time of split() when there

are m vertices in the polygon is T(m), and that an upper bound for the gamma

count is ¢(m).

We begin with the time estimate. The first part of the function (lines

Cll2-131) determines whether the selected convex triad is indeed empty or not;

and, in the same process, if not, finds the closest re-entrant vertex to the

apex. Much as in find-u() before, we see that time O(q) = O(m) is required.

Two branches occur: (i) if the triad is empty, time 0(1) [adjust() is now

less complex and laborious] suffices to remove it to the C-array and prepare

the polygon (with at most m - 1 vertices) for recursion; (ii) if the triad

contains a re-entrant vertex, suppose that the segment QZ [see the discussion

in Section 6] divides the polygon into one of r and one of m - r + 2, with

3 ~ r ~ m- 1. The search for the vertices U and V may take time as great

as 2r- 3 times a constant, and this is O(m); the rest of the function takes

only 0(1) time. Thus,

T(m) =max {O(m) + T(m- 1),

O(m) + T(r) + T(m - r + 2) }. (18)

-37-

(Note that the maximum runs over all allowable values of r.) We must assume

that the O(m) terms can actually attain behavior proportional to m; so that

(18) immediately tells us that T(m) = Q(m). Suppose, therefore, that

T(m) - Cma., with a;;.l,C)O. (19)

Then, in the first option of the maximum,

T(m) - T(m - 1)
a. a. C[m - (m - 1)]

a.-1 1 a.-2 C[a.m - 2a.(a.- l)m + ...]

a.-1 Cam = O(m), (20)

which tells us that a. ~ 2 (and indeed that a. = 2 if the O(m) attains the

behavior proportional tom). Now examine the second option of the maximum.

First, we must maximize T(r) + T(m- r + 2)- C[ra. + (m- r +'2)a]. It is

readily seen that the derivative of the last expression (divided by Ca.) is
a.-1 a.-1 r - (m - r + 2) , which, since a ;;. 1, is negative for all r < m - r + 2

and positive for all r > m- r + 2; there is thus a minimum at r = (m + 2)/2

and the maximum is attained when P = 3 or m- 1, with the value C[3a. + (m- l)a].

The second option thus becomes the same as the first, and we see that

(21)

Since the preliminaries all take time O(n), it follows that the entire program

takes a time O(n2
).

We now turn to the a.o. count. We know from the foregoing that this will

have to be O(n2) also, of course. Retracing our steps over the program, we

remember that the preliminaries required n gammas. In the split() function,

with m vertices, lines Cll2-131 require 3q ~ 3(m - 3) gammas. In the first

branch of the function (empty triad removed), we get ¢(m);;. 3m- 7 + ¢(m- 1).

In the second branch (split the polygon into two), we get ¢(m);;. 3m- 7 +

¢(r) + ¢(m- r + 2). Thus, much like (18), we obtain

¢(m) =max {3m 7 + ¢(m- 1),

3m- 7 + ¢(r) + ¢(m- r + 2)}. (22)

Let ¢(m) = am2 + bm + c, with a > 0, (23)

since ¢(m) must be positive as m ~ ~. Then the same argument as before shows

that ¢(r) + ¢(m- r + 2) has a minimum when r = (m + 2)/2 and a maximum when

r = 3 or m- 1; whence the second option in (22) becomes 3m- 7 + ¢(3) + ¢(m- 1) 1

-38-

which exceeds the first option by ~(3). However, a little thought shows that

~(3) = 0, since the triad is empty and there are no re-entrant vertices to test!

Thus, we are left with the equation

Hm) - ¢(m - 1) a[m 2 (m 2
1)] + b[m - (m- 1)]

a(2m - 1) + b = 3m - 7; (24)

whence
3 11 a=
2

and b a- 7 = - z• (25)

The complete solution is obtained when we observe that, as stated above,

¢ (3) = 0 = 9a + 3b + c; (26)

whence c = 3. (27)

The complete gamma-count is thus

¢(m) = % m2 - 121 m + 3; (28)

PROPOSITION 12. The new algoPithm (based on Propositions 9 and 10, and

embodied in Programs C and D) (i) always yields a complete, economical tPi

angulation, and (ii) takes less than

12cn2 - 3n + 2) = 12cn- l)(n- 2)
2 2

(29)

a.o. and O(n2) otheP opePations.

[We have shown that the preliminaries take n gammas, and the split()

function (with all recursions) ~(n) gammas. The total gamma-count, by (28),

is thus l n2 - 2 n + 3, and (29) follows on multiplication by 9.]
2 2

We note that the ratio of the bounds (16) and (29) for the two algorithms

is just (2n- S)lt<n- 1) ~ 4 as n ~ oo.

Comparison of the bound (29) with actual experimental results yields the

following table.

-39-

n A.O. COUNT THEOR. BOUND RATIO

Program c
8 207 567 2.74

16 972 2,835 2. 92
24 2,169 6,831 3.15
32 3. 7 98 12,555 3.31
40 5,859 20,007 3.41
48 8,352 29,187 3.49
56 11,277 40,095 3.56
64 14,634 52,731 3.60
72 18,423 67,095 3. 64
80 22,644 83,187 3.67
88 27,297 101,007 3.70
96 32,382 120,555 3. 72

Program D

15 693 2,457 3.55
20 1,008 4,617 4.58
27 2,493 8. 775 3.52
48 4,023 29,187 7.26

The bulk of the work is done in lines Cl22-124, finding the re-entrant vertex

Z (if any). Since only the B-list is scanned, we may grossly over estimate

the 3q gammas by using 3(m- 3); and the same argument as before·suggests

that the factor of 3 (for the three gammas in the tests), since any failure

in the tests will eliminate further computation for that B-vertex. The

observed ratios of the theoretical upper bounds to the actual a.o. counts

range between 2.7 and 4.6, except for the unusually high ratio of 7.26 for

the 48-gon run with Program D. This is comparable with the ratios for

Programs A and B.

A couple of additional observations may be made. (i) If we examine

the earlier comparisons of Programs A and B with Programs C and D (i.e.,

of the old and new algorithms); we see that (a) the theoretical bounds have

a ratio tending to 4 (for n = 20, 40, and 80, the ratios are 3.68, 3.85, and

3.92, respectively), and (b) the observed a.o. counts have ratios rising

monotonically from 2.48 to 5,34 for the double square spirals (Programs B

and C), and 3.62, 4.28, 3.14, and 7.23 for the miscellaneous polygons run

with Programs A and D. Clearly, the 48-gon among these last is a special

case, exceptionally well treated by the new algorithm. (ii) The ratios for

the double square spirals under Program B (old algorithm), of the bounds to

-40-

the actual a.o. counts, deorease monotonically from 3.47 to 2.75, as n in

creases; those for Program C (new algorithm) inorease from 2.74 to 3.72,

for the same values of n. The cause of this is not apparent; but one may

hazard a guess that it is a peculiarity of the family of double square

spirals, relative to the two algorithms, and not a significant universal

property of the algorithms themselves.

10. A Further Experiment

To add weight to the experimental evidence, we carried out twelve

further runs (six on each of Programs A and D), using a different family of

polygons, called "ropes", with 16i vertices (i = 1, 2, 3, 4, 5, 6) arranged

as a 2i-fold 8-point square spiral, the skeins being connected into a zig-zag.

This is illustrated below in Figures (xvii) - (xx).

Figure (xvii). D.S.Spiral, i = 2. Figure (xviii). Rope: i = 1,

12 n

12 n 5 6

5 6
16 116 15

"
15 1 2

1 2
4 3

4 3 13 14

13 14 8 7

8 7 9 / :rJ

9 / :rJ

We note that the d.s.spiral with i = 2 and the rope with i = 1 (both having

16 vertices) are almost and essentially identical; but, while the d.s.spiral

with i = 4 winds four times instead of twice, keeping to two skeins, the

rope with i = 2 still winds twice, but with four skeins (both have 32 vertices).

Thereafter, the i-rope has 2i skeins, but winds twice; the 2i-d.s.spiral has

two skeins (hence "double") but winds 2i times.

•
-41~

Figure (xix). D.S.Spiral, i = 4.

lll 19

l3 23

9 :J)

:!! Zl

5 . "'
6

"\. 31

1 2

4 3

,.. 3)

8 7

25 lll

12 n
21 22

A.O. counts, theoretical

upper bounds for these, and the

resulting ratios are tabulated

below, as before.

njA.O. COUNTjTHEOR. BOUND,RATIO

Program A

16 3,366
32 18,252
48 43,011
64 78,048
80 123,462
96 179,172

Program D

10,206
47,790

113' 022
205' 902
326,430
474,606

3.03
2.618
2.628
2.638
2.644
2. 649

16 1fi

16 954
32 2,025
48 3,708
64 6' 984
80 11,808
96 18,198

2,835
12,555
29,187
52,731
83,187

120,555

2.97
6.20
7.87
7.55
7.04
6.62 /

:1!

,..

..
/

18

Note: (i) This time, except for the 1-rope (which is virtually identical

to the 2-d.s.spiral), the "rope"
Figure (xx). Rope: i = 2.

21. "'
12 11

5 6

32 31

17"-. 18

16 l5

1 2

4 3

l3 14 ,., 19

3)

8 7

•/ 10

•I

polygons·are extra-easy for the new algorithm

Zl

•

to triangulate (about as easy as

was the 48-gon run with Program D).

(ii) This time, the ratios for the

old algorithm (Program A) increase

with n; while the ratios for the

new algorithm (Program D) decrease

with n (after n = 48). Thus our

guess, that the increase or de

crease is a function of both the

algorithms and the polygons, ra

ther than characteristic of the

algorithms alone, is verified (or,

at least, strongly indicated).

-42-

11. Conclusions

After a somewhat circuitous journey, we have arrived at two working and

practically useful triangulation algorithms, which we have dubbed the "old"

(Algorithm 3 from [1]) and the "new", based on Propositions 9 and 10 in the

present paper. The old ·algorithm has been proved to take time O(n2) and to

require no more than (see (16))

2 9
54(n - 2 n + 5) (30)

a.o. The new algorithm has also been proved to take O(n2) time and to

require no more than (see (29))

12cn2
- 3 n + 2)

2
(31)

a.o. The ratio of these bounds tends to 4 as n ~ oo; and indeed, we see that

"(30)" ;;;, C< X "(31)" for all n ;;;. n
0

(32)

is equivalent to the assertion that (since we know that n ;;;, 3) 4n - 10 ;;;.

a(n- 1); or (4- a)n;;;, 10- a. Since we know (from the asymptotic behavior

as n + oo) that

"' < 4; (33)

we can infer that n
0

= (10- a)/(4- a). (34)

Finally, this gives us that the upper bounds for the a.o. counts of the two

algorithms satisfy the relationship (32) with (for example)

"' 1 and

"' = 3 and n 7·,
0

(l = 2

and } (35)
and n = 4· 0 •

In the similar "C" language programs listed above, we see that the old

algorithm takes 264 and 273 lines (Programs Band A, respectively); while

the new one takes 218 and 227 lines (Programs C and D, respectively). Thus

the new algorithm is somewhat more simple to program, it would seem.

-43-

It is clear that any algorithm dealing with an n-vertex polygon in order

to triangulate it must take time rl(n). Since it is essential to the process

of triangulation that the triads removed to the C-array (in which the final

triangulation appears) should be empty (in the sense of Definition 1) and

removable (in the sense of Definition 2), it is necessary to verify this fact

for every triad removed (numbering n - 2, unless some vertices turn out to

be redundant--- a situation which cannot be guaranteed). There appears to

be no way of doing this, except by examining all of (at least) the re-entrant

vertices, which (by Lemma 13 of [1]) may be as many as n - 3. It is not clear

how this can be achieved in under (n- 2)(n- 3) times some constant. If,

indeed, this is impossible; then the bound of O(n2) is best-possible, and

all that can be hoped-for is a reduction of the coefficients of the quadratic

expressions (30) and (31). However, there remains the challenge to find an

algorithm taking time o(n2), though certainly rl(n); or to prove that no such

algorithm is possible.

12. Acknowledgement

While repeating my debt to G. C. Clark and H. Fuchs, mentioned in [1],

I wish to add my thanks to Dr T. H. Brylawski of The University of North

Carolina for mentioning his result, given in Proposition 9, during a dis

cussion following a presentation of the results reported in [1]. His own

interest, I understand, had been in providing a proof that triangulation of

a simple closed polygon in the Euclidean plane was always possible.

13. Reference

[1] J. H. HALTON. Triangulation Algorithms for Simple, Closed, Not

Necessarily Convex, Polygons in the Plane. (The University of North

Carolina at Chapel Hill, Computer Science Department; Technical Report

TR 85-008; 1985) 84 pp.

'•

