TRIANGULATION ALGORITHMS

 FOR SIMPLE, CLOSED, NOT NECESSARILY CONVEX, POLYGONS IN THE PLANE
- 11 -

JOHN H. HALTON

The University of North Carolina Department of Computer Science New West Hall 035 A Chapel Hill, NC 27514 USA

JULY 21, 1985

TRIANGULATION ALGORITHMS

FOR SIMPLE, CLOSED, NOT NECESSARILY CONVEX POLYGONS IN THE PLANE

I I

John H. Halt on
Professor of Computer Science The University of North Carolina Chapel Hill, NC 27514 USA

ABSTRACT

This paper, a sequel to an earlier work of the same title, refines one algorithm, of an iterative character, presented there, and describes a new algorithm, recursive in nature. Experimental results are given for 22 polygons, together with annotated listings of four "C" programs implementing the algorithms. The time complexity of both algorithms is fully analysed and shown to be $O\left(n^{2}\right)$ where n is the number of vertices in the polygon to be triangulated. Counts of arithmetic operations are bounded by $54\left(n^{2}-\frac{9}{2} n+5\right)$ and $\frac{27}{2}\left(n^{2}-3 n+2\right)$, respectively. The new algorithm is therefore preferable when recursion is possible without too much labor.

Keywords: Algorithms; data structures; triangulation; polygons; graphics \{computers; techniques; performance analysis; complexity\}

Triangulation Algorithms for Simple, Closed, Not Necessarily Convex Polygons in the Plane, II.

John H. Halt on, Chapel Hill, North Carolina, USA

1. Int roduction

The present paper is a sequel to the earlier one of the same title [l]. This deals with the classic problem, in which we are given n points P_{1}, P_{2}, \ldots, P_{n} in the Euclidean plane (with $P_{0}=P_{n}$ and, in general, $P_{j}=P_{j+k n}$, for any integers j and k), ordered so as to define the polygon

$$
\begin{equation*}
\mathfrak{y} \equiv \mathrm{P}_{1} \mathrm{P}_{2} \ldots \mathrm{P}_{n}, \tag{1}
\end{equation*}
$$

with vertices $P_{j}(j=1,2, \ldots, n)$, consisting of the n line-segments $P_{j} P_{j+1}$ ($j=1,2, \ldots, n$) ; which is simple, in the sense that all the P_{j} are distinct and no two sides $P_{i} P_{i+1}$ and $P_{j} P_{j+1}$ have any points in common, except when $i=j$ [of course] or $i=j-1$ [only P_{j} in common] or $i=j+1$ [only P_{i} in common]. We now seek to identify a set of triangles, whose interiors are disjoint, and whose union is the interior and boundary of the polygon $\mathbf{m p}^{\text {. }}$. The triangulation we seek is economical, in the sense that there are at most $n-2$ triangles in it, and the vertices of these triangles are all vertices P_{j} of the polygon \mathfrak{Z}.

We adopt the following convention. The removal of the polygon from the Euclidean plane in which it lies leaves two connected components, each an open set. That which is bounded is the interior $I_{\mathfrak{p}}$; the other is the exterior E_{\sharp}. We now assume that the vertices of are numbered so that, in traversing the polygon in the order $P_{1}, P_{2}, \ldots, P_{n}$, the interior I_{1} is on the left. We define the angle by which one turns from the direction of $P_{j-1} P_{j}$ to that of $\mathrm{P}_{j} \mathrm{P}_{j+1}$ to be θ_{j} in the range $-\pi<\theta_{j}<\pi$. If $\theta_{j}>0$, we call the vertex P_{j} convex (corresponding to a turn to the left); if $\theta_{j}<0$, we call P_{j} re-entrant (corresponding to a turn to the right); and if $\theta_{j}=0$, we say that P_{j} is redundant or collinear.

We use the name triad for a triangle whose vertices are vertices of the given polygon 1 , and write

$$
\begin{equation*}
\Delta_{j}=P_{j-1} P_{j} \mathrm{P}_{j+1} \quad \text { and } \quad \delta(i, j, k)=P_{i} P_{j} \mathrm{P}_{k} . \tag{2}
\end{equation*}
$$

Lemma 7: The vertex P_{k} lies inside the convex triad Δ_{j} if and only if
and

$$
\left.\begin{array}{l}
\gamma[j-1, j, k]>0 \tag{7}\\
\gamma[j, j+1, k]>0 \\
\gamma[j+1, j-1, k]>0
\end{array}\right\}
$$

Lemma 8: No simple, closed polygon has an empty interior.
Theorem 1: Every simple, closed polygon has at least two convex triads Δ_{r} and Δ_{s} each containing no other vertex of

Lemma 9: If the convex triad $\Delta_{j}=P_{j-1} P_{j} P_{j+1}$ does contain certain vertices, then the vertices $\mathrm{P}_{h}-$ and $\mathrm{P}_{h}+$ among them, respectively having the least values of $\gamma\left[j-1, j, h^{-}\right]$and $\gamma\left[j, j+1, h^{+}\right]$are re-entrant, and the corresponding triads $P_{j-1} P_{j} P_{h}$ and $P_{j} P_{j+1} P_{h}+$ are empty convex triads.

Lemma 13: The bound in Lemma 5 is tight: there are polygons of any number of vertices $n \geqslant 3$ with only three convex vertices.
(Additional Lemmas 10, 11 , and 12, and Theorems 2, 3, and 4, are of a more technical nature and refer to various triangulation algorithms presented in [1].)

Of the algorithms presented in [1], Algorithm 0 is preparatory and identifies the convex and re-entrant vertices of the given polynomial into respective lists named A and B. (Use is made of Lemmas 1 and 4.) This is refined in Algorithm $0 *$ and in the actual program presented on pages 47-61 (Section 7) of [1]. Algorithm 1, for successive vertices in list A, tests all vertices in list B for inclusion in the corresponding convex triad with apex in list A. (Use is made of Lemmas 5, 6, and 7, and Theorem 1.) When an empty convex triad is encountered, it is added to the triangulation list C and lists A and B are adjusted accordingly. This is iterated until the triangulation is complete. Algorithm 1* * is a modification of this algorithm preparatory to Algorithm 3 , setting up lists of included vertices u_{i} and corresponding inverse lists t_{k} (see also the actual program presented in [1]). Algorithm 2 uses Lemma 9 to permit positive action at every convex triad; leading to the splitting of the polygon into two or three disjoint simple closed polygons to be triangulated, whenever a nonmempty triad is encountered. Algorithm 3 is a variant of Algorithm 1 in which information previously obtained
is retained (via Algorithm 1*), modified only when necessary, and re-used, rather than re-calculated at each iteration. This is refined in the program presented in [1].

In what follows, results are called Propositions, to distinguish them from the Lemmas of the earlier paper [1].

2. Basic Propositions

PROPOSITION 1. A convex polygon has only convex or collinear vertices.
PROPOSITION 2. A polygon with only convex or collinear vertices is convex.
PROPOSITION 3. Given a convex polygon \mathbb{K} and a general polygon $\mathfrak{l l}$ entirely in or on K , if a vertex P_{j} of lies on K , then P_{j} is either a convex or collinear vertex of

COROLLARY 3.1. If the vertices of a simple closed polygon have the coordinates (5), then the vertices satisfying (6) are all convex or collinear vertices of $\$$.

COROLLARY 3.2. Under the conditions of Proposition 3, the first and last vertices of (in the order in which they appear in in any side of \mathbb{K} are convex vertices of \mathfrak{n}.

COROLLARY 3.3. Under the conditions of Corollary 3.1, the first and Zast vertices of (in the order in which they appear in satisfying any one of the conditions (6) are convex vertices of 11.

COROLLARY 3.4. Under the conditions of Corollary 3.1, any of the vertices of satisfying
or

$$
\begin{array}{lll}
x_{i}=E_{j} x_{j} & \text { and } & y_{i}=\mathcal{F}\left\{y_{k} \mid x_{k}=x_{i}\right\}, \\
y_{i}=E_{j} y_{j} & \text { and } & x_{i}=F\left\{x_{k} \mid y_{k}=y_{i}\right\}, \tag{9}
\end{array}
$$

where each of E and F represents either " $m i n$ " or " $\max ^{\prime}$ ", is a convex vertex of n.
Proof. As in [1], proofs will be enclosed in double brackets $\mathbb{I} . . . \mathbb{I}$. Propositions 1, 2, and 3, respectively present amendments to Lemmas 2, 3, and 4, of [1]. The proofs of these results stand essentially unchanged, with the observation that, when a vertex P_{j} is not re-entrant ($\Gamma_{j} \nless 0$), then it is either convex or collinear $\left(\Gamma_{j}>0\right.$ or $\left.\Gamma_{j}=0\right)$; the latter alternative was previously omitted.

Corollary 3.1 is similarly a restatement of the corollary to Lemma 4．We are left with Corollaries $3.2,3.3$ ，and 3.4 ，which provide the needed sharpening of the preceding results．

LLet $A B$ be a side of the convex polygon K containing at least three vertices of the included simple closed polygon \ddagger ，with the customary interior－ on－the－left traversal of K going from A to B ．Let P and Q be two vertices of $\$$ lying in $A B$ ．Denote the polygonal arc of \mathfrak{T} traversed from P to Q in the interior－on－the－left direction by $\langle P Q\rangle$ ，and the remainder of M, traversed from Q to P by $\langle Q P\rangle$ ．If all vertices of in $\langle P Q$ Iie on $A B$（i．e．，〈PQ〉is simply a line－segment $P Q$ lying on $A B$ ，then their order in $A B$ is the same as their order in 7 ．If not，the segment $P Q$ of $A B$ consists of sub－segments shared with 〈PQ（in which vertices are ordered as in and sub－segments not so shared，in which the corresponding pieces of 〈 PQ\rangle lie in the interior of \mathbb{K} ． Let $X Y$ be one of the latter intervals（with X and Y vertices of I_{I} of course）． Then suppose that R is a vertex of $¥ T$ in $\langle Q P\rangle$ ；if R lay in $X Y$ ，the edges of η through it would have to lie on the interior side of X and parts of them would have to be inside the simple closed polygon formed by 〈XY〉 and the segment $Y X$ ；but this is impossible，since can neither cross \mathcal{K} nor itself．Thus we see that no vertex of not in $\langle P Q\rangle$ can lie in $A B$ between P and Q ；or，in other words，the order of vertices of in $A B$ is the same as their order in from this we conclude that，of the vertices of lying in any side $A B$ of K ，the nearest to A and to B are respectively the first and the last，in the order in which they are traversed in 7 ．The reasoning of the proof of Lemma 4 now shows that these particular vertices are strictly convex．（They cannot be collinear and be first or last in $A B$. ）This proves Corollary 3．2．1

【Corollary 3.3 takes for K the rectangle with vertices $\left(E_{j} x_{j}, F_{j} y_{j}, 0\right)$ ， with each of E and \mathcal{F} denoting either＂min＂or＂max＂，as in（8）and（9）．It follows from Corollary 3.2 that the first and last vertices（as ordered in lying in any side of this rectangle（whose equation is one of the equations（6）） are strictly convex．The conditions（8）and（9）identify those of the vertices of 1 lying in a side of the rectangle，nearest to the end－points of this side． As has been proved above，these are precisely the first and last of these in the order in which they are traversed in 9 ．This proves Corollary 3．4．1

Lemmas 1 (with corollary), $5,6,8$, and 13 , and Theorem 1 , are taken over unchanged. While Lemma 7 is correct, it is preferable to use the following result (which is an immediate corollary).

PROPOSITION 4. The vertex P_{k} lies inside or on the convex triad Δ_{j} if and only if

$$
\left.\begin{array}{l}
\gamma[j-1, j, k] \geqslant 0 \tag{10}\\
\gamma[j, j+1, k] \geqslant 0 \\
\gamma[j+1, j-1, k] \geqslant 0
\end{array}\right\}
$$

This prevents the problem encountered when removal of a triad leaves two contiguous simple closed polygons (or a closed polygon which crosses itself). Figure (i) illustrates this: the vertex X lies on the line PR, satisfying (10) but not (7). Using the negation of (7), we would try to remove the triad PQR , leaving polygons $\mathrm{PX} \cup\langle\mathrm{XP}\rangle$ and $\mathrm{XR} \cup\langle\mathrm{RX}\rangle$.

Figure (i).

The above results suffice to establish the validity of Algorithms $0,0 *, 1,1 *$, and 3. In [1], we used Lemma 9 to justify Algorithm 2. Here, a difficulty has been discovered. The concept of an "empty" triad turns out to have been left very slightly vague; and we must now sharpen this. Following Lemma 7 and Theorem 1 of [1], we define:

DEFINITION 1. A triad $\delta(i, j, k)=$ $\mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$ is said to be "empty" iff there is no vertex of other than $\mathrm{P}_{i}, \mathrm{P}_{j}$, or P_{k} within or on it.

Note that we have moved from (7) to (10), as indicated in Proposition 4 above. With either this definition or the earlier concept based on (7), we see that Lemma 9 stands as stated. However, emptiness turns out not to ensure that the triad may be removed! We define:

DEFINITION 2. A triad $\delta(i, j, k)=P_{i} \mathrm{P}_{j} \mathrm{P}_{k}$ is said to be "removable" if and only if (a) it is empty (in the sense of Definition 1), (b) no side of n intersects its interior, and (c) its interior is part of the interior of \mathfrak{T}.

PROPOSITION 5. If is a simple closed polygon with $n \geqslant 4$ vertices, and Δ_{j} is a triad, removable (in the sense of Definition 2) from $\mathbb{M}_{\text {; }}$ then the polygon $\mathfrak{I n}^{\prime}$ obtained from n by removing the vertex P_{j} and directly connecting P_{j-1} to P_{j+1} is also simple and closed, with one less vertex than $\mathfrak{F l}$.
[The triad $\Delta_{j}=P_{j-1} P_{j} P_{j+1}$, and, since
 $n \geqslant 4$, there is at least one more vertex of \prod_{1}. Since Δ_{j} is empty and no side of intersects the interior of Δ_{j}, all sides of \nmid except for $\mathrm{P}_{j-1} \mathrm{P}_{j}$ and $\mathrm{P}_{j} \mathrm{P}_{j+1}$ lie entirely outside the triad. If the interior of Δ_{j} is part of the interior of $\mathfrak{F}, \mathrm{P}_{j}$ must be a convex vertex and so Δ_{j} must be a convex triad. The proposition now follows (see Figure (ii)). I]

PROPOSITION 6. If Δ_{j} is a convex triad of a simple closed polygon 11 , and if it is empty (in the sense of Definition 1); then it is removable (in the sense of Definition 2) from \mathfrak{n}.
[Since the triad is convex, its interior is part of the interior of (The two interiors are disjoint if the triad is re-entrant.) Since it is empty, no vertex of \ddagger other than P_{j-1}, P_{j}, and P_{j+1} iies in or on Δ_{j}. All that remains is to prove condition (b) of Definition 2, that no side of intersects the interior of Δ_{j}. Both ends of such a side must be outside the triad; and, since the polygon is simple, the side cannot intersect $P_{j-1} P_{j}$ or $P_{j} P_{j+1}$. But any line which intersects the interior of a triangle must cross two of its sides; so a segment which is part of such a line and which has its ends outside the triangle either lies entirely outside the triangle or crosses two sides of the triangle. This completes the proof of the proposition.]

It is this result which justifies all the algorithms except Algorithm 2 and permits the vagueness about distinguishing emptiness and removability.

PROPOSITION 7. It is possible for a triad $\delta(i, j, k)=P_{i} P_{j} P_{k}$ of a simple closed polygon to be empty (in the sense of Definition 1), and yet for it not to be removable from 1 .

【An illustration (counter-example to the extension of Proposition 6 to non-consecutive triads) is given in Figure (iii). The triad is $\mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{j+1}$ and, though it is empty (i.e., contains no other vertices of \mathfrak{l}^{\prime}, the sides $\mathrm{P}_{h-1} \mathrm{P}_{h}$ and $P_{h}{ }^{\mathrm{P}} h_{h+1}$ cross its interior, in contradiction of Definition 2.1

Figure (iii).

As a further example of this proposition, consider Figure (iv), which is a variation on the theme illustrated in Figures 12 and 13 of [1], exemplifying Lemma 9 there.

The line $F G$ is parallel to the side $\mathrm{P}_{j-1} \mathrm{P}_{j}$ of the convex triad Δ_{j}, intersecting $\mathrm{P}_{j-1} \mathrm{P}_{j+1}$ in F and $\mathrm{P}_{j} \mathrm{P}_{j+1}$ in G, and passes through $\mathrm{P}_{h^{-}} ; \mathrm{P}_{j-1} \mathrm{P}_{j} \mathrm{P}_{h^{-}}$is then necessarily empty (as indeed is the whole of the quadrilateral $\mathrm{FGP}_{j-1} \mathrm{P}_{j}$). The line HK, similarly, is parallel to
$P_{j} P_{j+1}$, intersecting $P_{j-1} P_{j+1}$ in H and $P_{j-1} P_{j}$ in K, and passes through $P_{h^{+}}$;
 removable; but that $\mathrm{P}_{j} \mathrm{P}_{j+1}{ }^{\mathrm{P}} h^{+}$is not, since it is crossed by the sides WX and $Y Z$ of $\mathfrak{X H}$. It follows from this that Algorithm 2 can fail. It is possible to refine the algorithm to deal with the difficulty revealed in Proposition 7; but the resulting procedure becomes excessively laborious; so it seems best to drop the algorithm altogether, for now.

PROPOSITION 8. The interior of a triad is part of the interior of the polygon only if no side of the polygon intersects the interior of the triad.

【If a side of intersects the interior of the triad, then it separates the interior I_{n} and the exterior $E_{\mathfrak{p}}$ of whence part of the interior of the triad is in $\left.E_{1}.\right]$ Thus, Condition (c) of Definition 2 implies Condition (b) [and the old form of Condition (a)]. The new form of Condition (a) [see (10), Proposition 4, and Definition 1] requires further that the case shown in Figure (i) not occur (i.e., no extraneous vertex of lie on the triad.

The following proposition was communicated privately (without proof) to the author by Dr T. H. Brylawski. The proof given here is the present author's.

PROPOSITION 9 [BRYLAWSKI]. Consider any convex triad Δ_{j} of a simple closed polygon \mathfrak{H}. Either (a) the triad is empty; in which case it is removable, leaving a polygon of one less vertex; or (b) there is a vertex ${ }^{P_{h}}$ having the greatest value of $\gamma[j-1, h, j+1]$ among all vertices in the triad; in which case no side of \prod_{1} crosses the segment $P_{h} P_{j}$, and this secment creates two contiguous simple closed polygons, each with less vertices than 1 . In both cases, iteration of the process leads to a full, economical triangulation of the polygon 1 .

IIf Δ_{j} is an empty convex triad; then, by Propositions 5 and 6, it is removable from $\left\{\right.$, leaving a simple closed polygon $\prod^{\prime \prime}$ of one less vertex, so long as has at least four vertices; and when there are only three vertices left, the removal of the triad completes the process of triangulation. If Δ_{j} is not empty, then, by Definition 1 , it must contain at least one vertex other than P_{j-1}, P_{j}, and P_{j+1}, and therefore there is a vertex P_{h} having the property stated in (b). It then follows (see Figure (v) and the observation below) that there is a line $X Y$, parallel to $P_{j-1} P_{j+1}$, intersecting $P_{j-1} P_{j}$ at X and $\mathrm{P}_{j} \mathrm{P}_{j+1}$ at Y , and passing through P_{h}, such that the triangle $\mathrm{XP}_{j} \mathrm{Y}$ is empty (further, P_{h} either lies in the interior of the triad or in the segment $\mathrm{P}_{j-1} \mathrm{P}_{j+1}$, since it cannot lie in the sides $\mathrm{P}_{j-1} \mathrm{P}_{j}$ or $\mathrm{P}_{j} \mathrm{P}_{j+1}$). An argument exactly similar to that used to prove Proposition 6 shows that no side of \mathfrak{p} can intersect the interior of the triangle $\mathrm{XP}_{j} \mathrm{Y}$; so that no side can cross

Figure (v).

the segment $\mathrm{P}_{h} \mathrm{P}_{j}$. Now, P_{h} and P_{j} divide η into the non-intersecting polygonal arcs $\left\langle\mathrm{P}_{h} \mathrm{P}_{j}\right\rangle$ and $\left\langle\mathrm{P}_{j} \mathrm{P}_{h}\right\rangle$; with $\left\langle\mathrm{P}_{h} \mathrm{P}_{j}\right\rangle$ containing at least P_{j-1} and $\left\langle\mathrm{P}_{j} \mathrm{P}_{h}\right\rangle$ containing at least P_{j+1}. Thus, the addition of $P_{h} P_{j}$ to Y yields two contiguous simple closed polygons, $\mathrm{P}_{j} \mathrm{P}_{h} \cup\left\langle\mathrm{P}_{h} \mathrm{P}_{j}\right\rangle$ and $\mathrm{P}_{h} \mathrm{P}_{j} \cup\left\langle\mathrm{P}_{j} \mathrm{P}_{h}\right\rangle$, each having less vertices than $\mathfrak{\sharp 1}$. Iteration of the process yields polygons with strictly decreasing numbers of vertices; so that the entire algorithm must terminate. The resulting triangulation is economical, since

We should point out that the discriminant $\gamma[i, j, k]$ defined in (3) is equal to twice the area of the triangle $\mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$; that is, the product of the length of $P_{j} P_{k}$ and the vertical height of P_{i} above $P_{j} P_{k}$. Thus (see Figure (vi)) $\gamma[i, j, k]$ is constant, for fixed P_{j} and P_{k}, for all positions of P_{i} in a line $X Y$ parallel to $P{ }_{j} \mathrm{P}_{k}$.
As $X Y$ moves upwards above $\stackrel{\vee}{P}_{j}^{P}{ }_{k}$,

Figure (vi).
 the value of $\gamma[i, j, k]$ increases (below $P_{j} P_{k}, \gamma$ is negative). This fact justifies the statements in Lemma 9, Proposition 9, and the proofs thereof. [For example, in Figure (v), if P_{h} has maximal $\gamma[j-1, h, j+1]$, then there can be no vertex above the line $X Y$, in the triad $\mathrm{P}_{j-1} \mathrm{P}_{j} \mathrm{P}_{j+1}$.]

PROPOSITION 10. In Case (b) of Proposition 9, any maximal vertex P_{h} as defined there must be re-entrant or collinear; and at least one such P_{h} has to be re-entrant, unless the $t r i a d \Delta_{j}$ coincides with the polygon 3 .

【We argue similarly to the proofs of Lemma 4, Proposition 3, and Corollary 3.2. Sides $P_{j-1} P_{j}$ and $P_{j} P_{j+1}$ cannot intersect the interior of the triangle
$X P_{j} Y$; so the angle $\theta_{h} \leqslant 0$ (see page 1); whence P_{h} is either re-entrant or collinear, as stated. Now P_{h} must be strictly between X and Y (even if $X=$ P_{j-1} and $\mathrm{Y}=\mathrm{P}_{j+1}$); so either the triad (or triangle) $\mathrm{P}_{j-1} \mathrm{P}_{j} \mathrm{P}_{j+1}$ coincides with the polygon (i.e., all other vertices of n_{1} are in the segment $P_{j-1} P_{j+1}$), or there is at least one vertex of \ddagger (other than P_{j-1} and P_{j+1}) exterior to the triangle $\mathrm{XP}{ }_{j} \mathrm{Y}$. In the latter case, there must be a vertex P_{h} lying in $X Y$ whose predecessor or successor in lies of f XY; and this vertex is reentrant.】

Propositions 9 and 10 provide us with the foundation of a new algorithm, which will not fail, and which turns out to be quite efficient and simple to program.

3. The Programs

Four new programs have been written and tested, using the improved results of the present study. Program A was a refined version of the program listed in [1] (on pages 47-61). Applying the new program to the same four polygons used as examples in [l], we find that the arithmetic-operation (a.o.) counts are considerably improved:

POLYGON	n	A.O. COUNT		
			OLD	IMPROVEMENT
1	15	4,257	2,511	41.01%
2	20	6,579	4,311	34.47%
3	27	11,367	7,839	31.04%
4	48	36,306	29,088	19.88%

Program B was essentially the same as Program A, but modified so as to keep track of elapsed execution time (excluding input and output operations) and to work with a family of "double square spiral" polygons of $8 i$ vertices, for $i=1,2,3, \ldots, 12$. Output was somewhat terser than from Program A.

Program C was similar to Program B, except that the algorithm, instead of being essentially Algorithm 3 of [1], was the new algorithm based on Propositions 9 and 10 above.

Because elapsed time is perturbed by the interstitial accounting and monitoring functions of the Unix operating system, each instance of the last two programs was run three times and the least elapsed time recorded. Even
so, the results were a little erratic and truncated to whole seconds.
Program A was written to input coordinates of the vertices of a polygon and triangulate it. Programs B and C input the parameter i only, generated the corresponding member of the family of double square spirals (with $8 i$ vertices), and triangulated it. Program D bore a similar relation to Program A as Program C did to Program B (new algorithm; arbitrary polygon input).

The results for Programs B and C, for the family of double square spirals, are shown below:

POLYGON	n	A. 0	COUNT	RATIO OF	ELAPS	TIME*
PARAMETER		PROGRAM B	PROGRAM C	COUNTS	PROG. B	PROG. C
1	8	513	207	2.48	0*	$0 *$
2	16	3,393	972	3.49	1*	$0 *$
3	24	8,829	2,169	4.07	4	1*
4	32	16,821	3,798	4.43	6	1*
5	40	27,369	5,859	4.67	11	2
6	48	40,473	8,352	4.85	16	3
7	56	56,133	11,277	4.98	22	5*
8	64	74,349	14,634	5.08	30	5*
9	72	95,121	18,423	5.16	38	7
10	80	118,449	22,644	5.23	48	9
11	88	144,333	27,297	5.29	60	11
12	96	172,773	32,382	5.34	72	13

*Note: elapsed times are given to the nearest second only.

The results for Programs A and D are compared below:

| POLYGON
 PARAMETER | n | | A.O. COUNT | |
| :---: | :---: | ---: | :---: | :---: |\quad| RATIO OF |
| :---: |
| COUNTS |

The four example-polygons used in [1] are fully described there. In Figures (vii) and (viii), we show the triangulations of the second of these (Figure 30 of [1], a 20-gon), as performed by Programs A and D, respectively.

We note that the order of triangulation is not the same in the two figures, though we begin with the same convex vertex P_{1} in each case; and further, the final triangulations differ in a few particulars (the quadrilaterals $\mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{10} \mathrm{P}_{11}$ and $\mathrm{P}_{12} \mathrm{P}_{13}$ $\mathrm{P}_{16} \mathrm{P}_{18}$ are split into pairs of triangles in different ways.) This is hardly surprising, but we did often find identical final tri-
angulations, in practice.

Figures (ix) and (x) show the triangulations obtained with Programs B and C, respectively, for the double square spirals with $i=2$ (i.e., 16 vertices). This is an example of the situation mentioned above, in which the triangulations coincide; though the order in which the triads are removed differs.

Such experimental results would, in themselves, convince most

Figure (ix).

Figure (x).

users to choose the new algorithm, based on Propositions 9 and 10 , over the old one, based on Algorithm 3 of [I]. We shall see later that the theoretical worst-case bound on the a.o. count of the new algorithm is considerably better than that for the old one.

In the listings below, output functions (which are dependent on the purpose and context of the program, and will therefore vary) are omitted. All the programs were written in standard "C" with preprocessor calls. They were run under Unix System V (version 4.2 by Callan Data Systems) on a C.D.S. Unistar $100 / 200$ workstation with a Motorola $68000 \mathrm{c} \cdot \mathrm{p} . \mathrm{u}$.

4. Program A

The program opens with preliminary definitions.

1 : \#include 〈stdio.h〉

2: *define MAX 100
3: int g,

5 : p,
6 :
7 :
8: C[3][MAX];
9: float P[2][MAX],
10 :

MAX $=$ greatest allowed number of vertices
$g=$ gamma (discriminant) call count
$n=$ number of vertices in polygon
$p=$ number of convex vertices (in A-list)
$q=$ number of re-entrant vertices ($B-l i s t$)
$r=$ removed-triad index
Removed triads are stored in C
$P[0]=x, P[1]=y$, for polygon vertices discr[$i]$ is discriminant for vertex $P[i+1]$
gamma(h, i, j) increments the gamma-count g and returns the value of the discriminant $\gamma(h, i, j)$, as defined in (3).
11 : \#define gama(h, $i, j)\left(g^{++}, P[0][h] *(P[1][i]-P[1][j])\right.$ \
12: $\quad-P[1][h] *(P[0][i]-P[0][j]) \backslash$
13 :
$+\mathrm{P}[0][\mathrm{i}] * \mathrm{P}[1][\mathrm{j}]-\mathrm{P}[1][\mathrm{i}] * \mathrm{P}[0][\mathrm{j}])$
Each u-list has its identifying pointer in the "up" component of a corresponding D-cell (see below); this points to the first cell of the u-list (a durmy cell of the form \{ul, 0, 0\}, with "ul" a u-list-pointer). Each u-cell thereafter takes the form $\{u l$, ust, udex\}, where "ul" points to the next u-cell, "uSt" points to the predecessor of the cell in the $t-l i s t S[u d e x]$ (see below) which itself points back to the predecessor of the current u-cell, and the index "udex" identifies a vertex $P(u d e x+1)$ of the polygon, contained inside the convex triad to which the D-cell (whose "up" component points to the current u-list) refers. The list is therefore absent if "up" $=0$, and effectively empty if $u p \rightarrow u l=0$.
14 : struct u_cell \{ struct u_cell *ul;
15 : struct t_{-}cell *uSt;
int udex;
\} ;
The t-lists have identifying pointers $S[k]$, pointing to header-cells head-t $=\{t f, t s\}$, with "tf" pointing to the first and "ts" to the last t-cell. The first t-cell is a durmy cell of the form $\{t 2,0\}$, where " t l" is a t-listpointer. Every t-cell thereafter takes the form $\{t 7$, tu\}, where " t " points to the next t-cell and "tu" points to a u-cell, which is the predecessor of a u-cell whose index "udex" is k, the index of the t-list $S[k]$ (see above).

21 :

struct head_t \{ struct $t_{\text {_ cell }} \boldsymbol{* t f}$, *ts; \} $\boldsymbol{*}$ [MAX];

The D-Iist initially has an identifying pointer D, pointing to the first D-cell. Each D-cell $=\{p p, n p, f, b, u p$, index $\}$, where "pp" is a D-Iist-pointer, "np" is a reverse-sense D-list-pointer, " f " and " b " are other pointers to D-cells (see below), "up" is the identifying pointer to a u-list (see above), and "index" is the index of the vertex $P($ index +1$)$ of the polygon, to which the D-cell refers.

The D-list incorporates two other lists, the A-list and the B-list. None of these three lists have header-cells. The identifying pointer of the A-list (which points directly to the first D-cell in the A-list) is A, and that of the B-Iist (which points to the first D-cell in the B-list) is B; the pointers X, Y, and Z respectively point to the last D-cells of the $A-, B-$, and D-lists. The $D-c e l l s$ in the A-list are those referring to convex vertices; the D-cells in the B-list are those referring to re-entrant vertices. The " f " and "b" pointers are respectively forward and backward list-pointers for D-cells of like kind (i.e., both in the A-list or both in the B-list).

When the construction of the $A-, B-$, and D-lists is completed, the listpointers of the last cells (i.e., $Z \rightarrow p p, X \rightarrow f$, and $Y \rightarrow f$) are made to point to the first cells in their respective lists, and the backward-list-pointers of the first cells (i.e., $D \rightarrow n p, A \rightarrow b$, and $B \rightarrow b$) are made to point to the last cells in their respective lists; making these lists circular. Thereafter, only the pointers A and B are maintained; since D, X, Y, and Z are no longer needed.

22 : struct D_cell \{struct D_cell *pp, *np, *f, *b;
23 :
24 : struct u_cell *up; int index;
25 :
\} $\ddagger \mathrm{A}, * \mathrm{~B}, * \mathrm{D}, \star \mathrm{X}, \star \mathrm{Y}, \star \mathrm{Z}$;
$N E W-u$, NEW-t, NEW-Ht, and NEW-D respectively allocate, using the function malloc(), and return pointers to free memory space for new u-cells, t-cells, $t-h e a d e r-c e l l s$, and D-cells, allowing us to construct the needed lists, cell-by-cell.

26 : char *malloc();
27 : \#define NEW_u (struct u_cell *) malloc(sizeof(struct u_cell)).
28 : \#define NEW_t (struct t_cell *) malloc(sizeof(struct t_cell))
29 : \#define NEW_Ht (struct head_t *) malloc(sizeof(struct head_t))
30 : *define NEW_D (struct $D_{-} c e l l$ *) malloc (sizeof(struct $\left.\left.D_{-} c e l l\right)\right)$
$i n s-u(u, k)$ appends, to the end of the $t-l i s t S[k]$, a new $t-c e l l\{0, u\}$, and inserts, after the u-cell pointed to by the pointer u, a new u-cell $\{u l$, $S[k] \rightarrow t s, k\}(S[k] \rightarrow t s, p o i n t i n g$ to the old last t-cell is then updated to the new cell).
31 : ins_u(u, k)
32 : struct u_cell $*$ u;
Pointer to predecessor u-cell
33 : int k;
Index of included vertex $P(k+1)$
34 : $\quad\{$ struct u_cell $* v ;$
35 : struct t_cell *t;
$36: \quad t=\mathbf{S}[k] \rightarrow t s \rightarrow t l=N E W _t ; \quad t$ points to new t-cell; as does last t-cell
$37: \quad \mathbf{t} \rightarrow \mathbf{t l}=0 ; \quad$ New last t-cell points nowhere
$38: \quad \mathbf{t} \rightarrow \mathbf{t u}=\mathbf{u} ; \quad$ Last t-celて points to given u-celて u
39 : $v=$ NEW_u; v points to new u-cell
40: $\quad \mathbf{v} \rightarrow$ udex $=\mathbf{k}$; Index of new u-cell is k (given)
41: $\quad \mathbf{v} \rightarrow \mathbf{u S t}=\mathbf{S}[\mathbf{k}] \rightarrow \mathbf{t s} ; \quad$ New u-cell points back to old last t-cell
$42: \quad \mathbf{v} \rightarrow \mathbf{u l}=\mathbf{u} \rightarrow \mathbf{u l} ; \quad$ New u-cell points to successor cell of u
43 : $\mathbf{u} \rightarrow \mathbf{u l}=\mathbf{v} ; \quad$ Predecessor cell points to new u-cell
$44: \quad \mathbf{S}[\mathbf{k}] \rightarrow \mathbf{t s}=\mathbf{t} ; \quad S[k] \rightarrow$ ts points to new last t-cell
$45:\}$
del-u(d) deletes, from all t-lists, cells pointing back to u-cells in the u-list pointed to by $d \rightarrow u p$, using the "uSt" pointers; then voids $d \rightarrow u p$.
46 : del_u(d)
47: struct D_cell *d; Pointer to D-cell whose u-list is removed
48 : \{struct u_cell *u;

$$
\text { if }((u=d \rightarrow u p)!=0)
$$

Do nothing if u-list is absent For every cell in u-list:
$\mathbf{u} \rightarrow \mathbf{u S t} \rightarrow \mathrm{tl}=\mathrm{u} \rightarrow \mathrm{uSt} \rightarrow \mathrm{tl} \rightarrow \mathrm{tl}$;
remove corresponding t-cell
from its t-list
Finally, annul the u-list pointer

52 :
53 :
54 :
d \rightarrow up $=0$;
\}
\}
del-S (i) deletes all cells referring to the vertex $P(i+1)$ from all u-lists, using the listing of their predecessors in $S[i]$; then voids $S[i]$.
55 : del_S(i)
56 : int i;
57 : \quad \{ struct t_{-}cell *t;
$58:$
59 :
60 :
61 :
62 :
63 :
64 :

$$
\text { if }(S[i]!=0)
$$

Do nothing if t-list is absent
if $(S[i]!=0)$
$\{t=S[i] \rightarrow t f ;$ t points to first cell of t-list For every cell in t-list:
remove corresponding u-cell
from its u-list
$S[i]=0 ; \quad$ Finally, annul the t-list pointer
\}
\}
fill-D(j, x) appends a D-cell $\{0, n p, 0, b, 0, j\}$, with null fomard pointers, to the D-Iist, unless $x=0$, and adds it to the A-list, if $x>0$, or to the B-list, if $x<0$. In application, $x=$ discr $[j]$ is the discriminant associated with the vertex $P(j+1)$, and this is zero for redundant (collinear) vertices, positive for convex vertices, and negative for re-entrant vertices.
65 : fill_D(j, x)
66 : int j;
67 : float x ;
68 : \{ struct D_cell *d;
69
. if ($\mathrm{x}:=0$)
70
71 :
\{ $\mathbf{d}=$ NEW_D;
$\mathrm{d} \rightarrow \mathrm{pp}=\mathrm{d} \rightarrow \mathrm{f}=0$;
Omit redundant (collinear) vertices

72 :
73 :
74 :
75 :
76 :
77 :
78 :
79 :
80
81 :
82 :
83 :
d \rightarrow up $=0$
d \rightarrow index $=\mathrm{j}$; if ($Z:=0$)
\{ $\mathrm{Z} \rightarrow \mathrm{pp}=\mathrm{d}$; $\mathrm{d} \rightarrow \mathrm{np}=\mathrm{Z}$;
\}
else \{ d $\rightarrow \mathrm{np}=\mathbf{0}$; D = d; \}
Z = d;
\}

84	if (x > 0)
85	\{ if (X := 0)
86	$\{\mathrm{X} \rightarrow \mathrm{f}=\mathrm{d}$;
87	$\mathrm{d} \rightarrow \mathrm{b}=\mathrm{X}$;
88	\}
89	else
90	\{ d -> b = 0;
91	$A=d ;$
92	\}
93	$\mathrm{X}=\mathrm{d}$;
94	\}
95	if ($\mathrm{x}<0$)
96	\{ if (Y ! = 0)
97	$\{\mathrm{Y} \rightarrow \mathbf{f}=\mathrm{d}$;
98	d -> b $=\mathrm{Y}$;
99	\}
100	else
101	$\{\mathrm{d} \rightarrow \mathrm{b}=0$;
102	$\mathrm{B}=\mathrm{d}$;
103	\}
104	$\mathrm{Y}=\mathrm{d} ;$
105	\}
106	\}

If vertex is convex:
if this is not the first A-cell:
old last cell points to new one new cell points back to old last one
if this is the first A-cell:
new cell points back nowhere A points to first A-cell
X points to (new) last A-cell

If vertex is re-entrant:
if this is not the first B-cell: old last cell points to new one new cell points back to old last one
if this is the first B-cell:
new cell points back nowhere B points to first B-cell

Y points to (new) last B-cell
adjust (c, d, e, x) makes the necessary adjustments when a vertex which was re-entrant becomes convex or collinear. Pointers c and e point to consecutive convex vertices with the vertex pointed to by d, originally re-entrant, between them. The new value of the discriminant of d is x.

107 :
108 : 109 :

110 :
111 :
112 :
113 :
114 :
115 :
116 :
117 :
118 :
119 :
120 : 121 :
adjust (c, d, e, x)
float(x);
struct D_{-}cell *c, *d, *e;
\{ q--;
Decrement the re-entrant vertex count q
if ($\mathrm{d} \rightarrow \mathrm{f}:=\mathrm{d}$)
\{d $\rightarrow \mathbf{f} \rightarrow b=d \rightarrow b ;$
$d \rightarrow b \rightarrow f=d \rightarrow f ;$
If d was not the last re-entrant vertex:
eliminate d from $B-l i s t$, in both
directions
\}
if ($x==0$)
If d is now redundant (collinear):
$\{d \rightarrow p p \rightarrow n p=d \rightarrow n p ;$
$\mathrm{d} \rightarrow \mathrm{np} \rightarrow \mathrm{pp}=\mathrm{d} \rightarrow \mathrm{pp}$;
eliminate d from D-list, in both
if ($\mathrm{d} \rightarrow \mathrm{np}==\mathrm{c}$) find_u(c)
if c is predecessor of d :
construct new u-list for c
if (d $->$ pp $==e$) find_u(e);
if e is successor of d :
construct new u-list for e
del_S(d \rightarrow index);
delete references to d in all u-lists


```
        \{ \(\mathrm{k}=\mathrm{c}->\) index;
                if ( \(k\) ! \(=h\) \&\& \(k\) ! \(i\) \&\& \(k\) != \(j\) )
            if (gama \((i, j, k)>=0)\)
                if (gamma( \(j, h, k)>=0)\)
                            if (gamma(h,i,k) \(>=0\) )
                            \{ ins_u(u, k);
                                    \(\mathbf{u}=\mathbf{u} \rightarrow \mathbf{u l}\);
                                    \}
                        \(c=c->f ;\)
                \}
            while (c != A) ;
                \}
```

 if (mt == 0) return(d);
 If the triad is empty, retum pointer \(d\)
 else return(Z); If not, return the pointer \(Z\) (initially 0)
 \}
 [Above used only in line 224 to find
 the first empty convex triad.]
 THE MAIN PROGRAM. After reading-in the polygon (number n of vertices first; then the coordinate-pairs of the vertices, in cyclic order, interior-on-the-left or reverse sense), the program constructs the $D-, A-, B-$, and all u - and t-lists; and then executes the algorithm, finding and removing to the C-array successive empty convex triads.

179 :
180 :
181 : 182 :

183 :
184 :
185 :
186 :
187 :
188 :
189 :
190
191 :
192 :
193 :
194 :
195 :
196 :
197 :
198 : 199 :

200 :

main()

\{ int h, i, j, k;
float x, y;
struct D_{-}cell *c, *d, *find_u();
struct t_cell *t;
do scanf("\%d ", \&n); while (n<3);
for ($i=0 ; i<n ; i++$)
\{ scanf("\%f \%f ", \&x, \&y); $\mathrm{P}[0][\mathrm{i}]=\mathrm{x}$;
$P[1][i]=y ;$
\}

$$
g=p=q=r=0 ;
$$

Initialize all counts to zero

$$
h=0 ; x=P[0][0] ;
$$

$$
\text { for }(i=0 ; i<n ; i++)
$$

$$
\{\text { if }(P[0][i]>x)
$$

\{ $h=i$;
$\mathrm{x}=\mathrm{P}[0][\mathrm{i}] ;$
\}
if $(P[0][i]==x \& \&[1][i]>P[1][h]) h=i$;
if ($i=0$)
$\operatorname{discr}[i]=\operatorname{gama}(n-1,0,1) ;$
else if ($i=n-1$) else $\quad \operatorname{discr}[i]=\operatorname{gama}(i-1, i, i+1)$;

$$
\mathbf{C}[0][i]=\mathbf{C}[1][i]=\mathbf{C}[2][i]=0 ; \quad \text { Initialize (empty) C-array }
$$

$$
\mathbf{x}=((\text { discr }[\mathrm{h}]>0) ? 1:(-1)) ; \text { Extreme vertex } P(h+1) \text { must be convex; }
$$

$$
\text { for }(i=0 ; i<n ; i++)
$$

 \(\{\) discr[i] \(=x * \operatorname{discr}[i]\);
 if (discr[i] > 0) \(\mathrm{p}^{++}\);
 if (discr[i] < 0) \(\mathrm{q}^{++}\);
 \}
 $\mathrm{A}=\mathrm{X}=\mathrm{B}=\mathrm{Y}=\mathrm{D}=\mathrm{Z}=\mathbf{O} ;$

Initialize all list-pointers to be null
if ($x>0$) for ($\mathbf{i}=0 ; \quad i<n ; \quad i++$) fill_D(i, discr[i]); Construct else for ($i=n-1 ; i>-1 ; i-)$ fill_D(i, discr[i]); the $D-, A-$,

$$
\begin{aligned}
& Z \rightarrow p p=\mathrm{D} ; \\
& \mathrm{D} \rightarrow \mathrm{np}=\mathrm{Z} ; \\
& \mathrm{X} \rightarrow \mathbf{f}=\mathrm{A} ; \\
& \mathrm{A} \rightarrow \mathrm{~b}=\mathrm{X} ; \\
& \mathrm{Y} \rightarrow \mathbf{f}=\mathrm{B} ; \\
& \mathrm{B} \rightarrow \mathrm{~b}=\mathrm{Y} ;
\end{aligned}
$$

Connect beginnings and ends of $D-, A-$, and $B-$ lists, so as to make each list circular, in both directions

$$
\begin{aligned}
& \begin{array}{l}
d=X ; \\
Z=0 ; \\
d o \\
\{Z=\text { find_u }(d) ; \\
d=d \rightarrow b ;
\end{array} \\
& \text { while (d :=X);} \\
& \text { while (p>2) } \\
& \left\{\begin{array}{l}
X=Z \rightarrow n p ; \\
Y=Z \rightarrow p p ; \\
X \rightarrow p p=Y ; \\
Y \rightarrow n p=X ;
\end{array}\right.
\end{aligned}
$$

Beginning with the last A-cell and cycling backwards through the A-List:

> construct the u-list for each convex vertex
(end-up with the 2 pointing to the first empty convex triad)
So long as three convex vertices remain: X points to predecessor of Z in D-list Y points to successor of Z in D-list remove Z from D-list, in both directions
put the triad $\delta(h, i, j)$ into the $\mathrm{C}[0][\mathrm{r}]=\mathrm{h}=\mathrm{X} \rightarrow$ index; $\mathrm{C}[\mathrm{l}][\mathrm{r}]=\mathrm{i}=\mathrm{Z} \rightarrow$ index; $\mathrm{C}[2][\mathrm{r}]=\mathrm{j}=\mathrm{Y} \rightarrow$ index; r++;

p--;

del_S(i); del_u(Z); $c=z \rightarrow f \rightarrow b=Z \rightarrow b ;$ $d=Z \rightarrow b \rightarrow f=Z \rightarrow f ;$ if $(A=Z) A=Z \rightarrow f ;$ discr[i] $=0$; c-array
increment the removed-triad count decrement the convex vertex count delete all u-cells referring to $P(i+1)$ delete all t-cells pointing back to the u-list of $Z(i . e .$, of $P(i+1))$.
delete Z from the $A-l i s t$, and let c and be previous and next convex vertices if $A=Z$, move A forward
$\mathbf{S}[\mathrm{i}]=\mathrm{NEW}_{-} \mathrm{Ht}$;
$S[i]$ points to new t-header cell
$\mathbf{t}=\mathbf{S}[\mathbf{i}] \rightarrow \mathbf{t f}=\mathbf{S}[\mathbf{i}] \rightarrow \mathbf{t s}=\mathbf{N E W} \mathbf{t} ; \quad t, S[i] \rightarrow t f$, and $S[i] \rightarrow$ ts point
$\mathrm{t} \rightarrow \mathrm{tl}=0 ; \quad$ to new t-cell, initiated with
$t \rightarrow t u=0 ;$
null pointers forward

244
245 :
246 :
247 :
248 :
249 :
250 :
251 :
252 :
253 :
254
255 :
256 :
257 :
258 :
259 :
260 :
261 :
262 :
263 :
264
265
266 :
267 :
268 :
269 :
270 :
271 :
272 :
273 :

```
    if (discr[h] < 0) if X was re-entrant:
    { x = discr[h] = gamsa(X >> np -> index, h, j); x= new discriminant
        if (x>=0) if X changes to collinear or convex:
                            {if (X >> f == X) B = 0; if X was last re-entrant, annul B
                                if ( }\mathbf{B}==\mathbf{X}\mathrm{ ) }\mathbf{B}=\mathbf{B}->\mathbf{D}; if B=X, move B back
                                adjust(c, X, d, x);
                                if (x>0)c=X; if X is now convex, move c to }
            }
            }
    else find_u(X); if X was convex, recompute its u-list
    if (discr[j] < 0) if Y was re-entrant:
    { x = discr[j] = gamma(Y >> pp -> index, h, j); x= new discriminant
                if (x>=0) if Y changes to collinear or convex:
                        { if (Y > f == Y) B = 0; if Y was last re-entrant, annul B
                        if ( }\mathbf{B}==\mathbf{Y})\mathbf{B}=\mathbf{B}->\mathbf{b}; if B=Y, move B bac
                adjust(c, Y, d, x);
                if (\mathbf{x}>0)\mathbf{d}=\mathbf{Y};\quad if Y}\mathrm{ is now convex, move d to Y
            }
        }
    else find_u(Y); if Y was convex, recompute its u-list
    h=1; }\quadh="empty triad" flag; initially 1, meaning
    while (h == 1) non-empty. Begin with d = next convex vertex
        { if (d -> up -> ul == 0) if u-list of d is empty:
            { h=0; h=0 (meaning empty triad found)
                        Z = d; Z points to first empty triad found,
            }
                        after that just removed
        else d = d -> f;
    if u-list of d is not empty,
                        advance d to next convex vertex
        }
```

 \}
 \}

5. Program B

Program B was a modification of Program A to generate members of the family of "double square spiral" polygons, on input of only the parameter i (see Figures (ix) and (x)). In the listing below, only the changes from Program A are noted (all line numbers refer to Program A).

Lines $1-21$ are unchanged. Lines 22-25 are replaced by
struct D_cell \{ struct D_cell *pp, *np, *f, *b; struct u_cell *up;
int index;
\} *A, *B, *Z;
removing pointers D, X, and Y from global to main() declaration. Lines 26-64 and 107-177 are unchanged. The fill-D (j, x) function is omitted (it is incorporated in main(): see below), leaving out lines 65-106. The declarations in lines 178-182 become (note line 181)

B136:
B1 3 7:
B188:
B1 39 :
B140:

B141:
B142:
B143:
B144:
B145:
B146:
B147:
B148:
B149:
B150:
B151:
B152:
B153:

B154:
B155:
B156:
B157:
B158-162:
B163:
B164;
B165:

B166:

B167:
B16 8 :
B169-182:
BIE 8 :
3184-158:
1919:
B195-204:

2205:

B206-264:

```
    main()
    { int h, i, j, k;
        float x;
        struct D_cell *c, *d, *D, *X, *Y, *find_u();
        struct t_cell *t;
```

 Lines \(183-188\) (polygon input) are replaced by
 scanf("\%d \%d", \&i, \&prfl);
 \(\mathrm{n}=8\) * i ;
 for (h \(=0 ; h<i ; h++)\)
 \(\{\mathrm{P}[0][4 * \mathrm{~h}]=-2 * \mathrm{~h} \quad ; \mathrm{P}[1][4 * \mathrm{~h} \quad \mathrm{l}]=2 * \mathrm{~h}\);
 \(\mathrm{P}[0][\mathrm{n}-4 * \mathrm{~h}-1]=-2 * \mathrm{~h}-1 ; \mathrm{P}[1][\mathrm{n}-4 * \mathrm{~h}-1]=2 * \mathrm{~h}+1\);
 \(P[0][4 * h+1]=2 * h+2 ; P[1][4 * h+1]=2 * h\);
 \(P[0][n-4 * h-2]=2 * h+3 ; P[1][n-4 * h-2]=2 * h+1\);
 \(P[0][4 * h+2]=2 * h+2 ; P[1][4 * h+2]=-2 * h-2\);
 \(P[0][n-4 * h-3]=2 * h+3 ; P[1][n-4 * h-3]=-2 * h-3\);
 \(P[0][\quad 4 * h+3]=-2 * h-2 ; P[1][\quad 4 * h+3]=-2 * h-2\);
 \(P[0][n-4 * h-4]=-2 * h-3 ; P[1][n-4 * h-4]=-2 * h-3 ;\)
 \}
 Line 189 initializes all counts to zero as in Program A. Since all the spiral polygons are traversed in the accepted interior-on-the-left sense, the discriminant calculation and the generation of the $D-, A-$, and B-lists are slightly simplified. Lines 190-199 become

```
for (i = 0; i < n; i++)
    { if (i== 0) discr[i] = gama(n-1, 0, l);
    else if (i == n - 1) discr[i] = gamma(n - 2, n - 1, 0);
    else discr[i] = gama(i - 1, i, i + 1);
```

lines 200-204 are unchanged, and lines 205-211 become

```
        if (discr[i] > 0) p++;
        if (discr[i] < 0) q++;
```

 \}
 Line 212 initializes all list-pointers to be null as in Program A. Then lines 213 and 214 are replaced by the inclusion of the equivalent of fill-D (j, x), as follows

```
for (i = 0; i < n; i++)
```

 \{ if (discr[i] := 0)
 then Zines 70-83, then

```
            if (discr[i] > 0)
```

then lines 85-94, then

if (discr[i] < 0)

then lines 96-105, then
\}
The remainder of the program, namely, lines 215-273, are then unchanged; since the algorithm is the some.

6. Program C

This program again, like Program B, generates members of the family of double square spirals (see Figures (ix) and (x)), on input of the parameter $i=1,2,3, \ldots, 12 ;$ but it uses the new algorithm, based on Propositions 9 and 10 , instead of the old one. In the listing below, comparison with the previous programs is stressed.

We omit all reference to u - and t-lists; so lines A14-21 and B14-21 are left out of the program.
C 12 : struct D_cell \{struct D_cell *pp, *np, *f, *b; Compare lines A 22-25
C 13 : int index;
C 14 : $\}$ *A, *B;
and $B 22-25$: only
A and B are global, and no u-list (up)
C 15 : char *malloc();
Like lines A 26 and B 26
Omit NEW-u, NEW-t, NEW-Ht (Zines A27-29 and B27-29)
C 16 : *define NEW_D (struct D_cell *) malloc(sizeof(struct D_cell))
Like Zines A 30 and B 30
Omit ins-u(), dez-u(), del-S() (Zines A31-64 and B31-64) and fill-D(), which is incorporated in main() later (Zines A65-106).

The adjust() function below is essentially the same as those in Programs A and B, except for the absence of reference to u - and t-lists, and no updating of the convex and re-entrant vertex counts p and q.

We now come to the crucial SPLIT() routine, which recursively calls itself until the triangulation is completed.

The call is to split(Q, R), where Q points to the current A-list (convex vertices) and R points to the current B-list (re-entrant vertices). Taking the convex triad $\Delta_{i}=\delta(h, i, j)=P(h+1) P(i+1) P(j+1)$, where Q points to the D-cell corresponding to $P(i+1)$; the routine searches the B-list for any re-entrant vertices in or on the triad, and among these, for the last one with maximal $\gamma[j, h, k]$ (see Figure (v)). If the triad is empty, the triad is removed to the C-array and the routine recurs on the reduced polygon. If not, the segment $P(i+1) P(k+1)$ defined by the pointers Q and Z (Z points to the selected re-entrant vertex, which is $P(k+1)$) is used to split the polygon into two contiguous and smaller simple closed polygons, and the routine recurs to each of them in turm.

```
Cl06 : split(Q, R)
```

Cl07 : struct D_cell *Q, *R; Q points to current $A-$ Iist, R to B-Iist
Cl08: \quad int $h, i, j, k ;$
Cl09: float x, y;

Clll: if $(\mathbb{Q} \rightarrow \mathbf{f} \rightarrow \mathbf{f}=\mathbf{Q})$ return; Stop when onty two convex vertices
C112: $\quad h=Q \rightarrow n p \rightarrow$ index; $\quad h=$ index of predecessor of Q
Cl13: $\quad i=Q \rightarrow$ index; $\quad i=$ index of (convex vertex) Q
Cl14: $\quad j=Q \rightarrow p p \rightarrow i n d e x ; \quad j=$ index of successor of Q
Cl15 : $\quad y=0$;
Cl16: $\quad Z=Q$;
Cl17: \quad if ($\mathrm{R}:=0$)
Cl18: $\quad\{d=R$;
Cl19 : do
Cl20 : $\quad\{k=d->$ index;
C121: \quad if ($k:=h$ \&\& $k!=i$ \&\& $k!=j$)
$\begin{array}{cc}\text { Cl22 : } & \text { if (gamana } \mathbf{h}, \mathbf{i}, \mathbf{k})>=0) \\ \text { C123 : } & \text { if }(\operatorname{gamma}(\mathbf{i}, \mathbf{j}, \mathrm{k})>=0)\end{array}$
$\begin{array}{cc}\text { Cl22 : } & \text { if (gamma } \mathbf{h}, \mathbf{i}, \mathbf{k})>=0) \\ \text { Cl23 : } & \text { if }(\operatorname{gamma}(\mathbf{i}, \mathbf{j}, \mathbf{k})>=0)\end{array}$
Cl24
C125
Cl26
C127
Cl28
C129 :
Cl30 : \quad while ($\mathrm{d}:=\mathrm{R}$) ;
Cl31 : \}
Compare Zines A 144-159.
if $((x=\operatorname{gamma}(j, h, k))>=y)$
Initially, $Z=Q$ (convex);
if any re-entrant vertex
(pointer d, index k) lies
in or on the triad $\delta(h$,
i, j), we put $Z=d$ for
the last included re-
entrant vertex with
maximal $\gamma[j, h, k]$
(See Propositions 9 and
10 in Section 2.)

When the triad is empty, we treat is much as before.

C132 :	if ($\mathrm{Z}==\mathbf{Q}$) If the triad is empty: remove	it and recur:
Cl33 :	$\{\mathrm{C}[0][\mathrm{r}]=\mathrm{h} ;$	
C134 :	C[1][r] = i;	
C135 :	$C[2][r]=j ;$	
C136 :	r++;	
C137 :	$\mathrm{X}=\mathrm{Q} \rightarrow \mathrm{np} ; \quad$ Compare lines A 229-236,	240, 241, 243
C138 :	$\mathbf{Y}=\mathbf{Q} \rightarrow \mathrm{pp} ; \quad\}$	
C139 :	$X \rightarrow p p=Y$;	
C140 :	$\mathrm{Y} \rightarrow \mathrm{np}=\mathrm{X}$;	
C141 :	$c=0 \rightarrow \mathbf{f} \rightarrow \mathrm{~b}=0 \rightarrow \mathrm{~b}$;	
Cl42 :	$\mathbf{d}=\mathbf{Q} \rightarrow \mathbf{b} \rightarrow \mathbf{f}=\mathbf{Q} \rightarrow \mathrm{f} ;$	
C143 :	discr $[\mathrm{i}]=0$;	
C144 :	$\mathbf{W}=\mathbf{R} ; \quad$ Pointer to B-iist	
Cl45 :	if (discr $[\mathrm{h}]<0$)	
C146 :	$\{\mathrm{x}=\operatorname{discr}[\mathrm{h}]=\operatorname{gamma}(\mathrm{X} \rightarrow \mathrm{np} \rightarrow$ index, $\mathrm{h}, \mathrm{j})$;	
C147 :	if ($\mathrm{x}>=0$)	
C148 :	$\{$ if $(X \rightarrow f==X) W=0$;	Like lines
Cl49	if ($\mathbf{W}==\mathbf{X}$) $\mathbf{W}=\mathbf{W} \rightarrow \mathbf{b}$;	A 244-252,
C150	adjust (c, $\mathrm{X}, \mathrm{d}, \mathrm{X}$);	with W for B
C151 :	if ($x>0$) $c=X$;	
C152 :	\}	
C153	\} $\}$	
C154 :	if (discr $[\mathrm{j}]<0$)	
C155	\{ $\mathrm{x}=\operatorname{discr}[\mathrm{j}]=\mathrm{gram}(\mathrm{Y} \rightarrow \mathrm{pp} \rightarrow$ index, $\mathrm{h}, \mathrm{j})$;	
C156	if $(\mathrm{x}>=0$)	
C157	$\{\mathrm{if}(\mathrm{Y} \rightarrow \mathrm{f}==\mathrm{Y}) \mathrm{W}=0$;	Like Lines
C158	if ($\boldsymbol{W}=\mathbf{=} \mathbf{Y}$) $\mathbf{W}=\boldsymbol{W} \rightarrow \mathbf{f}$;	A 254-262,
C159	adjust ($\mathrm{C}, \mathrm{Y}, \mathrm{d}, \mathrm{X}$);	with W for B
C160	if ($\mathrm{x}>0$) $\mathrm{d}=\mathrm{Y}$;	
C161	\}	
C162	\}	
C163 :	split(d, W); Recur to split() routine	
C164	\}	

When the triad is not empty, the segment $Q Z$ is used to split the polygon.
We interrupt to explain the situation. Since they are so selected, we know that Q points to [we often corrupt the language and say that Q "is"] a convex vertex, and Z is a re-entrant vertex. By Propositions 9 and 10 [the indices are differently named: $\mathrm{P}_{j-1} \mathrm{P}_{j} \mathrm{P}_{j+1}$ in Figure (v) becomes $\mathrm{P}_{h+1} \mathrm{P}_{i+1} \mathrm{P}_{j+1}$ here (vertices are no longer consecutively numbered, because of previous removals) and P_{h} there becomes P_{k+1} here; and so Q points to P_{i+1} (or $P(i+1)$) and Z to P_{k+1} (or $P(k+1)$)] we know that, if the triad is not empty, such a Z exists; and the segment $Q Z$ (more properly, $P_{i+1} P_{k+1}$) splits the polygon \mathfrak{p}_{0} into two
contiguous simple closed polygons $\mathbb{X I}_{1}$ and \mathbb{N}_{2}, having only the segment $Q Z$ in common. Each will recur to the split() routine with its own A - and $B-1 i s t s ;$ which must be constructed appropriately. We note further that, in the two new polygons, Q will still be convex; but Z may become collinear or convex. Each of the new polygons will have at least 3 vertices, and, by Lemma 5, each will contain at least one more convex vertex, but not necessarily any additional re-entrant vertex, beside Q and Z. Thus, $Q \rightarrow f$ is (more properly, "points to a vertex") in \prod_{1} and $Q \rightarrow b$ is in $\prod_{2} ;$ but $Z \rightarrow f$ and $Z \rightarrow b$ may be in either polygon, and may equal Z itself. Of course, $Q \rightarrow p p$ and $Z \rightarrow n p$ will be in \prod_{1}, and $Q \rightarrow n p$ and $Z \rightarrow p p$ will be in \prod_{2}.

In setting up n_{1}, we must store the pointers to be used in $\|_{2}$. This is tabulated below. It is assumed that U denotes the first re-entrant vertex after Q (must exist in \prod_{1}; may be Z) and that V denotes the last convex vertex before Z (must exist in η_{1}; will be after Q); then $U \rightarrow b$ and $V \rightarrow f$ must be in π_{2} (the former may be Z; the latter will be before 0).

POINTER	IN n_{0}	IN \prod_{1}	IN ${ }_{2}$
$Q \rightarrow p p$	$Q \rightarrow p p$	$Q \rightarrow p p$	2
$Q \rightarrow n p$	$Q n p=Q \rightarrow n p$	2	Qnp
$Z \rightarrow p p$	$Z p p=Z \rightarrow p p$	Q	Zpp
$2 \rightarrow n p$	$Z \rightarrow n p$	$Z \rightarrow n p$	Q
$Q \rightarrow f$	$Q \rightarrow f$	$Q \rightarrow f$	$Q f=V \rightarrow f$
$Q \rightarrow b$	$Q b=Q \rightarrow b$	V	$Q b$
$Z \rightarrow f=U:$			
$\bar{Z} \rightarrow f$	$Z \rightarrow f$	U	$Z f=2$
$Z \rightarrow b$	$Z \rightarrow b$	$z \rightarrow b$	$2 b=2$
$Z \rightarrow f \neq U:$			
$Z \rightarrow f$	$Z f=Z \rightarrow f$	U	Zf
$Z \rightarrow b$	$z \rightarrow b$	$\left.\begin{array}{l} Z \\ Z \end{array}\right\}$	$Z b=U \rightarrow b$
$U \rightarrow b$	$U \rightarrow b$	2	---
$V \rightarrow f$	$V \rightarrow f$	Q	---
$Q f \rightarrow b$	V	---	Q
$2 b \rightarrow f$	U	---	- 2

The various situations are illustrated in the figures below.

At least one
[convex] vertex
here

At least one
[convex] vertex
here
Figure (xiii).
B-2ists.
$\bar{U}=Z \rightarrow f=Z$.

Figure (xv). $\quad \frac{B-2 i s t s .}{Z \rightarrow f \neq Z=U} Z$

Figure (xvi). B-lists. $Z \rightarrow f \neq Z \neq U$.
Figure (xiv). B-Iists. $U=2 \rightarrow f \neq Z$.

$$
\begin{aligned}
& \text { No re -entrant } \\
& \text { vertex here }
\end{aligned}
$$

Here, f_{1} is the forward pointer relative to \prod_{1}, and f_{2} that relative to ${ }_{2}$. The correspondence to the table is seen when it is observed that $Z \rightarrow f=Z$ only when there is only one re-entrant vertex and $U=Z$ also.

C165	else If the triad is not empty: split it and recur:
Cl66	\{ $\mathbf{k}=\mathbf{Z} \rightarrow$ index; $\quad k=$ index of (re-entrant vertex) 2
C167	Qnp $=Q \rightarrow \mathrm{np} ; \quad$ record $Q \rightarrow n p$ as Qnp and
C168	Q $\rightarrow \mathrm{np}=\mathrm{Z} ; \quad$ replace with Z
C169	$\mathbf{W}=\mathrm{Z} \rightarrow \mathrm{BP} ; \quad{ }^{\text {a }}$
C170	$\mathrm{d}=\mathrm{Z} \rightarrow \mathrm{b}$;
C171	while ($W==\mathrm{d}$) find last convex vertex ("V") Before Z
C172	$\{\mathbf{W}=W \rightarrow \mathrm{Wp} ; \quad$ and put it in W
C173	$\mathrm{d}=\mathrm{d} \rightarrow \mathrm{b} ;$.
C174	
C175	$\mathrm{Qb}=\mathrm{Q} \rightarrow \mathrm{b}$; record $Q \rightarrow b$ as $Q b$ and
C176	Q $\rightarrow \mathbf{b}=\mathbf{W} ; \quad$ replace with W (i.e. "V")
C177	Qf $=\mathbf{W} \rightarrow \mathbf{f} ; \quad$ record $W \rightarrow f$ as Qf and
C178	$\mathbf{W} \rightarrow \mathbf{f}=\mathbf{Q} ; \quad$ replace with Q
C179	$\mathrm{Zpp}=\mathrm{Z} \rightarrow \mathrm{pp} ; \quad$ record $Z \rightarrow p p$ as Zpp and
C180	$\mathbf{Z} \rightarrow \mathrm{pp}=\mathbf{Q} ; \quad$ replace with Q
C181	$\mathrm{W}=0 \rightarrow \mathrm{pp}$;
C182	$\mathbf{d}=\mathbf{Q} \rightarrow \mathbf{f}$;
C183	while ($W==\mathrm{d}$) $\}$ find first re-entrant vertex ("U") after Q
C184	$\{\mathbf{W}=W \rightarrow \mathrm{Wp} ; \quad$ and put it in W
C185	d = d \rightarrow f;
C186	\}
C187	if ($Z \rightarrow$ ¢ $\mathrm{f}=\mathrm{W}$) $\mathrm{Zf}=\mathrm{Zb}=\mathrm{Z}$;
C188	else
C189	\{ $\mathbf{Z f}=\mathbf{Z} \rightarrow \mathbf{~} \mathbf{f}$
C190	$\mathbf{Z b}=\mathbf{W} \rightarrow \mathbf{b} ; \quad\}$ (see tabulated relations)
C191	if ($\mathbf{W}==\mathbf{Z}$) $\mathbf{Z} \rightarrow$ b $=\mathbf{Z}$; \quad (see
C192	\}
C193	$\mathbf{Z} \rightarrow \mathbf{f}=\mathbf{W}$;
C194	W \rightarrow b $=\mathbf{Z}$;
C195	$x=\operatorname{discr}[k]=\operatorname{gamma}(\mathrm{Z} \rightarrow \mathrm{np} \rightarrow$ index, $k, i)$;
C196	
C197	\{ if (Z $->$ f $==Z$) $W=0$; with Z for $X, Q \rightarrow b$ for c,
C198	\} adjust $(Q \rightarrow \mathbf{b}, \mathrm{Z}, \mathrm{Q}, \mathbf{x})$; and Q for d
C200	$\boldsymbol{s p l i t}(\mathbf{Q} \rightarrow \mathbf{f}, \mathbf{W})$; Recur to split() routine for first polygon

7. Program D

This final program uses the new splitting algorithm; but, like Program A, applies it to an arbitrary polygon, whose vertices are input one-by-one.

D1-1 1 :
D1 2 : D1 3: D14:

D1 5-58:
D59-76:
D77:
D7 8 :
D79:
D80-104:
D105-227

Begin with Zines C1-11. Replace Iines C12-14 with
struct D_cell \{struct D_cell *pp, *np, *f, *b;
int index;
\} *A, *B, *D, *AA, *BB, *DD;
Lines C15, C16 folzow. Then comes fill-D(), from lines A65-106. when we have adjust() from lines C17-34. The main() function begins with
main()
\{ int h, i, j, k, p, q; flaat x, y;
Then follow lines A183-200 and A206-211; C59 (instead of A212) and A213, 214. After this, we have C98-218, completing the program.

8. Performance Bounds: Programs A and B

Since the form of input (and output) is irrelevant to our timing estimates, it follows that Programs A and B, and Programs C and D, may be treated as one.

We begin with Programs A and B. We first deal with the auxiliary functions. ins-u() takes time $O(1)$. del-u() deletes a u-list and all references to its cells in all t-lists. del-S() deletes a t-list and all references to
its vertex in all u-lists. Let us write

$$
\begin{equation*}
m=p+q \tag{11}
\end{equation*}
$$

for the current number of vertices in process (i.e., in the D-1ist). Then each $u-1$ ist or $t-1$ ist has length not greater than $m=O(m)$, since a list never refers to the same vertex twice. Therefore the timing-bound for del-u() and del-S() is also $O(m)$ fill-D() appends one cell in time $O(1)$. find-u() calls del-u() once and then runs through the $B-1 i s t$ and possibly the $A-1 i s t$, for a timing of $O(m)$. If we count arithmetic operations (a.o.) as the number of calls to gamma() times 9 [see lines All-13; remaining arithmetic operations are a single multiplication in line A208, plus possible subtractions implied in all the tests used, certainly not disturbing the general behavior of the algorithm], we see that each call to find-u() involves at most 3 (m - 3) gammas $=27(m-3)$ a.o. Thus, adjust(), involving as it does as many as two calls to find-u() and one to del-S(), has a timing of $O(m)$. Its gamma-count is a little complicated, in practice: if one takes the line in which the number m of vertices is reduced by one, then as many as two calls to find-u() lead to a maximum of $6(m-4)$ gammas; but, if one takes the other line, in which m does not diminish, then only one call is made to find-u(), and the maximum is $3(m-3)$.

We now come to the main program. After input, which we will not count, but which only takes time $O(n)$, in any case; we compute the n discriminants, for a time $O(n)$ with n gammas $=9 n$ a.o. (lines Al90-211). The calls to fill-D() in lines A213 and A214 take time $O(n)$ too; and then the u-lists for all convex vertices are computed in time $O(p n)=O\left(n^{2}\right)$, with at most $3 p(n-3)$ gammas.

The triangulation loop (1ines A228-272) remains. For each of at most $n-2$ triads; we call del-S() and del-u(), and, for both of the two flanking vertices of the triad being removed to the C-array, we perform the operations of lines A244-263. The total time is clearly $O\left(n^{2}\right)$. Lastly, we seek the next. empty convex triad, a process which takes time $O(p)$, for a total of $O\left(n^{2}\right)$. Thus, the entire program takes a time $O\left(n^{2}\right)$ to execute. This agrees with Theorem 4 of [1].

Turning to gamma-counts, we see that the preliminaries take at most $3 n^{2}-8 n$ gammas $=9\left(3 n^{2}-8 n\right)$ a.o. In the triangulation loop, the only calls to gamma arise in lines A244-263. The situation in which the flanking vertex
was re-entrant and does not remain so is clearly somewhat more laborious than those in which it was convex (call to find-u() only) or in which it was reentrant and remains re-entrant (call to gamma() only). Here, there is a call to gamma() and then one to adjust(), involving at least one call to find-u(). Three cases arise: (i) no additional vertices eliminated: in the worst case, we call gamma() and find-u() twice each, for a gamma-count of $6 m-22$, emerging with $m-1$ vertices. The total gamma-count under this regime is

$$
\begin{equation*}
(6 n-22)+(6 n-28)+(6 n-34)+(6 n-40)+\ldots \tag{12}
\end{equation*}
$$

(ii) one additional vertex is eliminated: in the worst case, we call gamma() twice and find-u() thrice, for a gamma-count of at most $9 m-40$ (when the second flanking vertex is eliminated as collinear), emerging with m - 2 vertices. The total gamma-count now becomes

$$
\begin{equation*}
(9 n-40)+(9 n-58)+(9 n-76)+\ldots \tag{13}
\end{equation*}
$$

Comparing the first two terms of (12) with the first term of (13), so as to arrive at the same situation, with $n-2$ vertices; we see that $12 n-50 \geqslant$ $9 n-40$, so long as $3 n \geqslant 10$ (i.e., $n \geqslant 4$). Thus, case (i) is more laborious than case (ii) (when $n=3$, the count is zero, anyway). (iii) two additional vertices are eliminated: in the worst case, we call gamma() twice and find-u() four times, for a gamma-count of at most $12 m-64$, emerging with $m-3$ vertices. The total gamma-count under this regime is then

$$
\begin{equation*}
(12 n-64)+(12 n-100)+(12 n-136)+\ldots \tag{14}
\end{equation*}
$$

Comparing the first three terms of (12) with the first term of (14), so as to arrive at $n-3$ vertices; we see that $18 n-84 \geqslant 12 n-64$, so long as $6 n \geqslant 20$ (i.e., $n \geqslant 4$ again). Once more, we see that case (i) is the more laborious; and so (12) is the worst-case gamma-count. The sum is

$$
\begin{align*}
\sum_{m=4}^{n}(6 m-22)=\sum_{s=1}^{n-3}(6 s-4) & =3(n-3)(n-2)-4(n-3) \\
& =(n-3)(3 n-10) \tag{15}
\end{align*}
$$

We have thus established:
PROPOSITION 11. The old algorithm (embodied in Programs A and B)
(i) always yields a complete, economical triangulation, and (ii) takes less than

$$
\begin{equation*}
27\left(2 n^{2}-9 n+10\right)=27(n-2)(2 n-5) \tag{16}
\end{equation*}
$$

a.o. and $O\left(n^{2}\right)$ other operations.

【We have shown that the preliminaries take at most $3 n^{2}-8 n$ gammas, and, by (15), the triangulation loop takes $3 n^{2}-19 n+30$ gammas. The total is $6 n^{2}-27 n+30$; and (16) follows.

We observe that (16) is an improvement on Theorem 4 of [1], which gives the formula

$$
\begin{equation*}
8 \ln (n+1)-360 . \tag{17}
\end{equation*}
$$

It is interesting to compare the bound (16) with the actual experimental a.o. counts obtained with the programs.
n A.O. COUNT THEOR. BOUND RATIO

Program A

15	2,511	8,775	3.49
20	4,311	17,010	3.95
27	7,839	33,075	4.22
48	29,088	113,022	3.89

Program B

8	513	1,782	3.47
16	3,393	10,206	3.01
24	8,829	25,542	2.89
32	16,821	47,790	2.84
40	27,369	76,950	2.81
48	40,473	113,022	2.79
56	56,133	156,006	2.78
64	74,349	205,902	2.769
72	95,121	262,710	2.762
80	118,449	326,430	2.756
88	144,333	397,062	2.751
96	172,773	474,606	2.747

Two causes may be adduced to account for the overestimation of observed a.o. counts by the theoretical bounds. First, find-u() only examines A-vertices for inclusion in a u-list when a B-vertex has been found in the triad; and
secondly, many vertices are excluded from a $u-1$ ist by the first or second discriminant evaluated, whereupon the rest of the three gammas are omitted. These two features of the execution have the major effect; but other overestimates occur also, and have a lesser inflationary effect. The observed ratios between 2.7 and 4.3 are consonant with this explanation.

9. Performance Bounds: Programs C and D

Beginning with auxiliary functions, we observe that there are now no $u-1 i s t s$ or $t-1 i s t s ;$ so that ins-u(), del-u(), del-S(), and (notably) find-u() are absent. Thus, adjust() now takes time $O(1)$. The main program now takes a minor role, too. The calculation of discriminants and the construction of the $D-, A-$, and $B-1 i s t s$ contribute time $O(n)$ with n gammas, since the $u-1$ ists need no longer be computed.

The crux of the matter is in the recursive function split(). We now suppose that an upper bound for the execution time of split() when there are m vertices in the polygon is $T(m)$, and that an upper bound for the gammacount is $\phi(m)$.

We begin with the time estimate. The first part of the function (lines Cll2-131) determines whether the selected convex triad is indeed empty or not; and, in the same process, if not, finds the closest re-entrant vertex to the apex. Much as in find-u() before, we see that time $O(q)=O(m)$ is required. Two branches occur: (i) if the triad is empty, time $O(1)$ [adjust() is now less complex and laborious] suffices to remove it to the C-array and prepare the polygon (with at most m - l vertices) for recursion; (ii) if the triad contains a re-entrant vertex, suppose that the segment $Q 2$ [see the discussion in Section 6] divides the polygon into one of r and one of $m-r+2$, with $3 \leqslant r \leqslant m-1$. The search for the vertices U and V may take time as great as $2 r-3$ times a constant, and this is $O(m)$; the rest of the function takes only $O(1)$ time. Thus,

$$
\begin{align*}
& T(m)=\max \{O(m)+T(m-1), \\
& O(m)+T(r)+T(m-r+2)\} \tag{18}
\end{align*}
$$

(Note that the maximum runs over all allowable values of r.) We must assume that the $O(m)$ terms can actually attain behavior proportional to m; so that (18) immediately tells us that $T(m)=\Omega(m)$. Suppose, therefore, that

$$
\begin{equation*}
T(m) \sim \mathrm{Cm}^{\alpha}, \quad \text { with } \quad \alpha \geqslant 1, C>0 \tag{19}
\end{equation*}
$$

Then, in the first option of the maximum,

$$
\begin{align*}
T(m)-T(m-1) & \sim C\left[m^{\alpha}-(m-1)^{\alpha}\right]=C\left[\alpha m^{\alpha-1}-\frac{1}{2} \alpha(\alpha-1) m^{\alpha-2}+\ldots\right] \\
& \sim C \alpha m^{\alpha-1}=O(m) \tag{20}
\end{align*}
$$

which tells us that $\alpha \leqslant 2$ (and indeed that $\alpha=2$ if the $O(m)$ attains the behavior proportional to m). Now examine the second option of the maximum. First, we must maximize $T(r)+T(m-r+2) \sim C\left[r^{\alpha}+(m-r+2)^{\alpha}\right]$. It is readily seen that the derivative of the last expression (divided by $C \alpha$) is $r^{\alpha-1}-(m-r+2)^{\alpha-1}$, which, since $\alpha \geqslant 1$, is negative for all $r<m-r+2$ and positive for all $r>m-r+2$; there is thus a minimum at $r=(m+2) / 2$ and the maximum is attained when $r=3$ or $m-1$, with the value $C\left[3^{\alpha}+(m-1)^{\alpha}\right]$. The second option thus becomes the same as the first, and we see that

$$
\begin{equation*}
T(m)=O\left(m^{2}\right) \tag{2l}
\end{equation*}
$$

Since the preliminaries all take time $O(n)$, it follows that the entire program takes a time $O\left(n^{2}\right)$.

We now turn to the a.o. count. We know from the foregoing that this will have to be $O\left(n^{2}\right)$ also, of course. Retracing our steps over the program, we remember that the preliminaries required n gammas. In the split() function, with m vertices, lines c112-131 require $3 q \leqslant 3(m-3)$ gammas. In the first branch of the function (empty triad removed), we get $\phi(m) \geqslant 3 m-7+\phi(m-1)$. In the second branch (split the polygon into two), we get $\phi(m) \geqslant 3 m-7+$ $\phi(r)+\phi(m-r+2)$. Thus, much like (18), we obtain

$$
\begin{align*}
& \phi(m)=\max \{3 m-7+\phi(m-1) \\
& 3 m-7+\phi(r)+\phi(m-r+2)\} \tag{22}\\
& \quad \phi(m)=a m^{2}+b m+c, \quad \text { with } \quad a>0 \tag{23}
\end{align*}
$$

Let
since $\phi(m)$ must be positive as $m \rightarrow \infty$. Then the same argument as before shows that $\phi(r)+\phi(m-r+2)$ has a minimum when $r=(m+2) / 2$ and a maximum when $r=3$ or $m-1$; whence the second option in (22) becomes $3 m-7+\phi(3)+\phi(m-1)$,
which exceeds the first option by $\phi(3)$. However, a little thought shows that $\phi(3)=0$, since the triad is empty and there are no re-entrant vertices to test! Thus, we are left with the equation

$$
\begin{align*}
\phi(m)-\phi(m-1) & =a\left[m^{2}-(m-1)^{2}\right]+b[m-(m-1)] \\
& =a(2 m-1)+b=3 m-7 \tag{24}
\end{align*}
$$

whence

$$
\begin{equation*}
a=\frac{3}{2} \quad \text { and } \quad b=a-7=-\frac{11}{2} . \tag{25}
\end{equation*}
$$

The complete solution is obtained when we observe that, as stated above,

$$
\begin{equation*}
\phi(3)=0=9 a+3 b+c ; \tag{26}
\end{equation*}
$$

whence

$$
\begin{equation*}
c=3 . \tag{27}
\end{equation*}
$$

The complete gamma-count is thus

$$
\begin{equation*}
\phi(m)=\frac{3}{2} m^{2}-\frac{11}{2} m+3 ; \tag{28}
\end{equation*}
$$

PROPOSITION 12. The new algorithm (based on Propositions 9 and 10, and embodied in Programs C and D) (i) always yields a complete, economical triangulation, and (ii) takes less than

$$
\begin{equation*}
\frac{27}{2}\left(n^{2}-3 n+2\right)=\frac{27}{2}(n-1)(n-2) \tag{29}
\end{equation*}
$$

a.o. and $O\left(n^{2}\right)$ other operations.

WWe have shown that the preliminaries take n gammas, and the split() function (with all recursions) $\phi(n)$ gammas. The total gamma-count, by (28), is thus $\frac{3}{2} n^{2}-\frac{9}{2} n+3$, and (29) follows on multiplication by 9.1

We note that the ratio of the bounds (16) and (29) for the two algorithms is just $(2 n-5) / \frac{1}{2}(n-1) \rightarrow 4$ as $n \rightarrow \infty$.

Comparison of the bound (29) with actual experimental results yields the following table.

| | n | A.O. COUNT | THEOR. BOUND |
| :---: | ---: | ---: | ---: | RATIO

The bulk of the work is done in lines C122-124, finding the re-entrant vertex Z (if any). Since only the B-list is scanned, we may grossly over estimate the $3 q$ gammas by using $3(m-3)$; and the same argument as before suggests that the factor of 3 (for the three gammas in the tests), since any failure in the tests will eliminate further computation for that B-vertex. The observed ratios of the theoretical upper bounds to the actual a.o. counts range between 2.7 and 4.6 , except for the unusually high ratio of 7.26 for the 48 -gon run with Program D. This is comparable with the ratios for Programs A and B.

A couple of additional observations may be made. (i) If we examine the earlier comparisons of Programs A and B with Programs C and D (i.e., of the old and new algorithms); we see that (a) the theoretical bounds have a ratio tending to 4 (for $n=20,40$, and 80 , the ratios are $3.68,3.85$, and 3.92, respectively), and (b) the observed a.o. counts have ratios rising monotonically from 2.48 to 5.34 for the double square spirals (Programs B and C), and $3.62,4.28,3.14$, and 7.23 for the miscellaneous polygons run with Programs A and D. Clearly, the 48 -gon among these last is a special case, exceptionally well treated by the new algorithm. (ii) The ratios for the double square spirals under Program B (old algorithm), of the bounds to
the actual a.o. counts, decrease monotonically from 3.47 to 2.75 , as n increases; those for Program C (new algorithm) increase from 2.74 to 3.72, for the same values of n. The cause of this is not apparent; but one may hazard a guess that it is a peculiarity of the family of double square spirals, relative to the two algorithms, and not a significant universal property of the algorithms themselves.

10. A Fur ther Experiment

To add weight to the experimental evidence, we carried out twelve further runs (six on each of Programs A and D), using a different family of polygons, called "ropes", with $16 i$ vertices ($i=1,2,3,4,5,6$) arranged as a 2 i-fold 8 -point square spiral, the skeins being connected into a zig-zag. This is illustrated below in Figures (xvii) - (xx).

Figure (xvii). D.S.SpiraZ, $i=2$.

We note that the d.s.spiral with $i=2$ and the rope with $i=1$ (both having 16 vertices) are almost and essentially identical; but, while the d.s.spiral with $i=4$ winds four times instead of twice, keeping to two skeins, the rope with $i=2$ still winds twice, but with four skeins (both have 32 vertices). Thereafter, the i-rope has $2 i$ skeins, but winds twice; the $2 i-d . s . s p i r a l$ has two skeins (hence "double") but winds $2 i$ times.

Note: (i) This time, except for the l-rope (which is virtually identical to the 2-d.s.spiral), the "rope" polygons'are extra-easy for the new algorithm Figure (xx). Rope: $i=2$.
 to triangulate (about as easy as was the 48 -gon run with Program D). (ii) This time, the ratios for the old algorithm (Program A) increase with n; while the ratios for the new algorithm (Program D) decrease with n (after $n=48$). Thus our guess, that the increase or decrease is a function of both the algorithms and the polygons, rather than characteristic of the algorithms alone, is verified (or, at least, strongly indicated).

11. C onclusions

After a somewhat circuitous journey, we have arrived at two working and practically useful triangulation algorithms, which we have dubbed the "old" (Algorithm 3 from [1]) and the "new", based on Propositions 9 and 10 in the present paper. The old algorithm has been proved to take time $O\left(n^{2}\right)$ and to require no more than (see (16))

$$
\begin{equation*}
54\left(n^{2}-\frac{9}{2} n+5\right) \tag{30}
\end{equation*}
$$

a.o. The new algorithm has also been proved to take $O\left(n^{2}\right)$ time and to require no more than (see (29))

$$
\begin{equation*}
\frac{27}{2}\left(n^{2}-3 n+2\right) \tag{31}
\end{equation*}
$$

a.o. The ratio of these bounds tends to 4 as $n \rightarrow \infty$; and indeed, we see that

$$
\begin{equation*}
"(30) " \geqslant \alpha \times "(31) " \text { for all } n \geqslant n_{0} \tag{32}
\end{equation*}
$$

is equivalent to the assertion that (since we know that $n \geqslant 3$) $4 n-10 \geqslant$ $\alpha(n-1)$; or $(4-\alpha) n \geqslant 10-\alpha$. Since we know (from the asymptotic behavior as $n \rightarrow \infty$) that

$$
\begin{equation*}
\alpha<4 ; \tag{33}
\end{equation*}
$$

we can infer that

$$
\begin{equation*}
n_{0}=(10-\alpha) /(4-\alpha) \tag{34}
\end{equation*}
$$

Finally, this gives us that the upper bounds for the a.o. counts of the two algorithms satisfy the relationship (32) with (for example)

$$
\left.\begin{array}{llll}
\alpha=1 & \text { and } & n_{0}=3 ; & \alpha=2
\end{array} \begin{array}{ll}
& \text { and } \tag{35}\\
n_{0}=4 ; \\
\alpha=3 & \text { and } \\
n_{0}=7 ; & \alpha=3 / 3
\end{array} \text { and } n_{0}=10, ~\right\} ~
$$

In the similar "C" language programs listed above, we see that the old algorithm takes 264 and 273 lines (Programs B and A, respectively); while the new one takes 218 and 227 lines (Programs C and D, respectively). Thus the new algorithm is somewhat more simple to program, it would seem.

It is clear that any algorithm dealing with an n-vertex polygon in order to triangulate it must take time $\Omega(n)$. Since it is essential to the process of triangulation that the triads removed to the C-array (in which the final triangulation appears) should be empty (in the sense of Definition 1) and removable (in the sense of Definition 2), it is necessary to verify this fact for every triad removed (numbering $n-2$, unless some vertices turn out to be redundant - a situation which cannot be guaranteed). There appears to be no way of doing this, except by examining all of (at least) the re-entrant vertices, which (by Lemma 13 of [1]) may be as many as $n-3$. It is not clear how this can be achieved in under $(n-2)(n-3)$ times some constant. If, indeed, this is impossible; then the bound of $O\left(n^{2}\right)$ is best-possible, and all that can be hoped-for is a reduction of the coefficients of the quadratic expressions (30) and (31). However, there remains the challenge to find an algorithm taking time $o\left(n^{2}\right)$, though certainly $\Omega(n)$; or to prove that no such algorithm is possible.

12. Acknowledgement

While repeating my debt to G. C. Clark and H. Fuchs, mentioned in [1], I wish to add my thanks to Dr T. H. Brylawski of The University of North Carolina for mentioning his result, given in Proposition 9, during a discussion following a presentation of the results reported in [1]. His own interest, I understand, had been in providing a proof that triangulation of a simple closed polygon in the Euclidean plane was always possible.

13. Reference

[1] J. H. HALTON. Triangulation Algorithms for Simple, Closed, Not Necessarily Convex, Polygons in the Plane. (The University of North Carolina at Chapel Hill, Computer Science Department; Technical Report TR 85-008; 1985) 84 pp.

