The Usze of Points as a Cisplay Primitive
UNC-CS TR85-022

Scanned from the Original Copy

Marc Levoy, Turner Whitted

The University of North Carolina at Chapel Hill
Department of Computer Science

New West Hall 035 A

Chapel Hill, N.C. 27514

The Use of Polnts as a
Display Primitive

Mare Levoy
Turner Whitted

Computer Science Department
University of North Carolina
Chapel Hill, NC 27514

Abstract

As the visual complexity of computer generated scenes continues Lo increase, the use of classi-
cal modeling primitives as display primitives becomes less appealing. Customization of
display algonthms, the conflict between object order and image order rendering and the
reduced usefulpess of object coherence in the presence of extreme complexity are all contri-
buting factors. This paper proposes to decouple the modeling geometry from the rendering
process by introduciog the potion of points as a upiversal meta-primitive. We first demon-
strate that a discrete array of points arbitrarily displaced in space using a tabular array of
perturbations can be reandered as a continuous three-dimensional surface. This solves the
long-standiog problem of producing correct silbouette edges for bump mapped textures. We
then demonstrate that a wide class of geometrically defined objects, including both 8at and
curved surfaces, can be converted into points. The conversion can proceed in object order,
facilitating the display of procedurally defined objects. The rendering algorithm is simple and
requires po coherence in order to be eficient. It will also be shown that the points may be
rendered in random order, leading to several interesting and uaexpected applications of the
technique.

1. Introduction

In classical image synthesis, objects may be modeled using a variety of geometric primi-
tives. Examples are lines, curves or polygons in two dimensions and patches or polybedra in
three dimensions. At the simplest level, repdering consists of coaverting this geometry into a
two-dimepsional array of pixels for viewing oo a raster display. As the visval complexity of
computer geperated scenes conlinues o increase, the use of classical modeling primitives as
display primitives becomes less appealing. Three problem areas can be identified:

l. Cuslomized rendering slgorithmes. The introduction of a3 pew geometric
primitive traditionally requires the development of two algorithms, one for modeling
objects using the primitive and one for displaying them. The second step is unfor-
tunate because it requires customizing existing display algorithms for each new primi-
tive,

This paper proposes to decouple the modeling geometry from the readering pro-
cess by introducing the potioa of a mela-primilive. This mew entity mediates
between objects modeled using traditional geometry and the display pipeline.
Rendering then consists of coaverting objects from their geometric description into
the pew format, which is then displayed using a standardized algorithm. Figure 1
illustrates the concept. Of course, such an approach is only worthwhile if developing

L]

a0 algorithm to coavert traditional geometries into the meta-primitive is easier than
developing an algonthm to display them directly.

£ Object order vea. image order rendering. Procedurally defined objects bave
become very popular in the past few years. Fractals and solids of revolution are
examples of this class. The problem of customization ia the rendering algorithm
becomes even more acutle in these cases. Sioce the geometry of procedurally defined
objects is derived by executing a sequential algorithm, it would be coavesieat to
display them in the order in which they are computed. This could be called object
order rendering. Io order to compute correct visibility aod Gltering at each pixel,
most display algorithms prefer that the image be computed in image order. lo other
words, the image is constructed pixel by pixel. All objects that might contribute to a
given pixel are evaluated at the time that pixel is readered. Ray traciog and scanlioe
algoritbms fall ioto this class. The Z-bufer [4] and more recently the A-buffer [3] do
pot. Researchbers bave invested coasiderable effort in resolving the conflict between
object-driven and image-driven approaches using such techoiques as boundiog boxes
[12] and image space decomposition [14].

For this reason, we bave chosen to focus on a meta-primitive that can be ren-
dered in object order. This facilitates applying the results to the growing class of
procedurally defined objects. Of course, such an approach is valid osly if correct visi-
bility and Bltering can be computed for all pixels even though rendering is performed
in object order.

8§ Complezity vre. coherence. Geometrically defined curves and surfaces are an
efficient means for describing man-made envirooments Recently, researchers bave
begun to explore pbenomena that are not readily modeled using classical surface ele-
ments. Terrain, foliage, clouds and fire are examples in this class. As complexity
increases, coberence decreases. Beyond some threshold level, the time saved through
the evaluation of coberence does pot justify its expense. When the number of
polygons in the object exceeds the pumber of pixels on the screen, coberence becomes
almont yseless,

This paper is addressed toward the display of scenes containing a bigh level of
image complexity, particularly those in which the pumber of polygons approaches or
exceeds the pumber of pixels on the screen. For this reason, we bave chosen a meta-
primitive that can be rendered fast and without coberence.

The meta-primitive that bas been chosen is tero-dimensional poiats. Researchers bave
already shown that points are a good primitive for modeling intangible objects such as smoke
or fire. This paper will show that points are considerably more versatile than that. It will
frst be demonstrated that a discrete array of points arbitranly displaced in space using a
tabular array of perturbations can be rendered as a continvous three-dimensional surface.
One can think of this as geometric modeling without geometry. It will then be demonstrated
that a wide class of geometrically defined objects, including both Bat and curved surfaces, can
be converted iato points. The conversion caa proceed in object order, facilitatiog the display
of procedurally defined objects. The readeriog algorithm is simple aad requires po coberence
io order to be efficient. It will also be shown that the points may be readered in random
order, leading to several interesting and unexpected applications of the techoique.

2. Prlor work

The use of points to model objects is not pew. Csuri et al [7] used points quite success-
fully to model smoke. In a similar vein, Blinn bas used points to model the shading of clouds
[2] and Reeves to model fire [13] and trees [15]. All of these eflorts treated classes of objects
that could cot be modeled using classical geometries. This is not, however, a necessary res-
triction. Geometric subdivision algorithms may ultimately yield points as Catmull [4] and
Rubin and Whitted [14] bave observed. Since raster displays are discrete and of a Soite reso-
letion, points can be used to model anything which can be dusplayed. This is one of the pri-
mary reasons that points were selected as the meta-primitive for this paper. It should be
pointed out while the poiots used in this paper are superficially similar to the particles used
by Reeves, the extension of the algorithm used in displaying particles to the algorithm used in
making points appear as continuous opaque surfaces is pot trivial

From a mathematical perspective, points are discrete, rero-dimensional entities. When
a large number of points are arrayed in tabular form, they become textures and begin to take
on some of the characteristics of surfaces. Until the mid-1970', the complexity of computer-
generated images was directly proportional to the complexity of the geometric database
defining them ©Oupe of the most important tingle advances in the realism of computer
imagery came with the development of texture mappiog, Srst published by Catmull [4). By
associating 3 tabular two-dimensional array of intepsity values with each geometric primitive,
it allowed the visual complexity to far exceed the shape complexity. Blion's bump mapping
technique generalized texture mapping by using a tabular array to locally modify surface
orientation [1]. The shape, however, remains unchanged. This causes the surface to appear
three-dimensional at all poiots except along the silbouette edge, where it still appears Sat.

Several researchers, including Dungan [8] and Fisbman and Schacter [9]. bave explored
the use of tabular arrays to provide z-height for the modeling of three-dimensional terrain.
For the restricted case of a Bat plane displaced io one direction only, the visible surface prob-
lem can be solved rather trivially as described by Fisbman and also by Max [11]. More
recently, Cook [6] bas demonstrated the use of displacement maps in bis Bee Box but bas pot
described how they are rendered. This paper takes texture mapping one step further and
demonstrates how the entire geometry can be reduced to the transformation and display of
points arrayed as textures.

Object order rendering bas received little attention in the literature. A particularly sim-
ple method of rendering parametric surfaces is to select sample points in parameter space and
individually transform them to screen space [10]. The two-pass algorithm for texture map-
ping |5 is an eficient implementation of the same idea and one that carefully treats the prob-
lem of aliasing. If the texture space Lo image space mapping is many-to-one, however, the
two-pass algorithm becomes messy and loses some of its appeal. The important aspect of
both of these methods s that the geometry is not rendered directly, but rather supports the
transformation of points from a canonical texture space Lo screen space.

The only bidden-surface algorithm that allows object order rendering is the Z-buffer [4]
Carpeater’'s A-buffer 3] is an extension of this basic techoique that supports correct Sltening
of polygonally defined objects. The algorithm in this paper is similar in concept to an A-
bufler, but stripped down and modified for use with rero-dimensional points.

3. Overview of the method

The approach proposed in this paper requires two separate but equally important algo-
rithms. The frst converts geometry ioto points and the second renders those points. Figure 1
shows their relationship. The readering pipeline is the more difficult of the two and demands

that the conversion algorithm produce certain information about a geometry in order for it to
be rendered. For this reason, the reandering algorithm will be described first and the conver-
sion algorithm second. A simple example will be used at first to illustrate the operation of the
rendering pipeline. Its extension to more complex shapes will then be developed and the
conversion algorithm presented.

The example used is a Bat rectangular polygon represented as a 170-by-170 array of
points. The shading of each point is multiplied first by the pin stripe texture shown in fgure
6a to enhance its readability, then by the reflectance map shown in figure 6b. Finally, the z-
coordinate of each point is perturbed upwards using the discrete height field shown in figure
6c. The goal of the rendering pipeline is to take this array of points and render them on a
raster display in such a masooer that they appear as a continuous, threedimensional surface.
This implies that the following three criteria must be satisfied:

f1) The texture in the interior of the array must be properly filtered.
{is) The edge of the array must be properly anti-aliased.
fiii) The array must completely obscure its background.

Two issues make this a difficult problem. In the first place, no constraint is placed on
the nature of the spatial perturbation. The example shows only 2-displacement, but x or ¥y
displacement are equally possible. Secondly, the image must look correct regardless of the
order in which the points are rendered. The Ggures in this paper were rendered in random
order. The resulting surface thus appears to ‘sparkle’ in much like a 'Scotty, beam me up’
fade-in from the Star Trek television series.

4. The rendering pipeline

4.1. Definition of a polnt

Let a source point be defined as a 7-tuple:
(z.9.2. 7. 9. 0, a)

Each of the values in the T-tuple are called attribules. The 2, y and 2 values are called spatial
atiributes and the rest are called non-spatial sfiridules. Any attribute is fair game for pertur-
bation, as we shall see later.

Let an initial grid be defined as an:

evenly spaced, rectangular two-dimensional lattice of source points bearing the
parametric coordinates u and v

At this stage, we assume that z == uw and y = v. The grid could therefore easily be stored as
a texture (i e. in a two-dimensional array without z or y values)

4.2. Selection of a polnt

Each iteration of the rendering process consists of selecting an arbitrary point from the
initial grid and sending it through the rendering pipeline. The rendering order may be
sequential in some parametric space, may be governed by the execution of a procedure or may
be random.

4.3. Perturbatlon of polnts

Let a perturbation be defined as any operation which changes any of the attributes asso-
ciated with a point. Any number of perturbations may applied to the randomly selected
point. The non-spatial attributes may be perturbed in any manner desired so long as the
resulting values fall within the range of the computer representation being used. The spatial
attributes can only be perturbed within reasonable bounds or the surface defined by the grid
becomes discontinuous. These bounds will be discussed in detail later,

44. Transformation and clipping

Let M be defined as a 4-by-4 transformation matrix that includes perspective projection.
The transformation step consists of performing the usual matrix multiplication of |z, y.2.1] by
M followed by the perspective divide. The division of z by w is suppressed so that =clipping
can be performed. The clipping of a point consists simply of comparing the transformed z, y
and z coordinates of the point against a three-dimensional frustum of vision and rejecting the
point if it falls outside the boundaries of the frustum.

4.5. Computing the density of polints In Image space

In order to properly filter a texture, the contribution of each source point to each
display pixel must be roughly proportional to its distance from the center of the pixel. This is
accomplished by assuming that each pixel is overlain by a flter function that is highest at the
center of the pixel and drops off toward zero at increasing distances. A radially symmetric
Gaussian Blter is used in this implementation. The contribution of each source point to each
pixel is determined by computing the distance from the point to the center of the pixel, then
weighting that distance according to the Gaussian function.

Since the depsity of source points in close proximity to the center of the pixel varies
with the viewing transformation, the sum of the contributions may vary. In conventional tex-
ture mapping, this problem is readily solved by summing the weights computed for each pixel
and then dividing the accumulated color by this sum. If the pixel being rendered lies along
the edge of the texture as shown in figure 2a, fewer source points contribute to it. This will
cause the sum of the weights to vary. It is a simple matter to determine if the edge of the
texture passes through a given pixel and to compute its coverage. This coverage can then be
used to control blending between this texture and other surfaces that lie behind it.

When a spatially perturbed texture is rendered, silbouette edges may occur at any place
in the interior of the texture as shown in figure 2b. Since the algorithm permits the rendering
of surfaces for which no underlying mathematical description of their curvature exists, it is
impossible to predict these foldover points. Consequently, variations in the sum of the contri-
butions in a display pixel may result either from variations in the density of the source points
or from partial coverage along silbouette edges. In order to discern between these two cases,
it is pecessary to pre-pormalize the contributions. This forces them to sum to unity. If they
do not sum to unity despite this pre-nmormalization, it is because the texture only partially
covers the pixel. The sum of the contributions is then precisely equal to the coverage and
may be used to control blending between surfaces. The problem therefore becomes one of
predicting the density of source points in a neighborhood surrounding the current transformed
source point before rendering begins. This density can then be used to compute a normalizing
divisor for the weights.

Specifically, let:

Po = (2o b)
be a source point after perturbation but before transformation. Let:

Pe= (2, w. &)

Pe™ (24 yu 2)

be two additional points spaced one unit away from p, in u and v rnp«tiveiy. These three
points can be used to form two unit vectors:

U = (22 W=t 2-2)

v = (220 Vb, 2v2)

These unit vectors give the orientation of the perturbed but untransformed surface in a small
neighborhood around the source point.

Now let;
Po = (% th- %)

P ™= (- h-4)

Py = (7,- Y- 4)

be the coordinates of these same three points after the application of the viewing transforma-
tion M and let:

U e (A% -tk A-%)

vV = (AL f-th 4-2%)

be the corresponding transformed unit vectors. Figure 3a and 3b show these two unit vectors
before and after the application of the viewing transformation.

The assumption is made that the surface is continuwous and differentiable. The
transformed unit vectors can then be interpreted as a tangent plane passing through the point
ps> and approximating the surface in a small peighborhood around the point as shown in
figure 3c. Sioce the unit vectors bave now been transformed into screen space, the z coordi-
pate can be dropped. The resulting two-dimensional unit vectors now represent the relation-
ship of the transformed source grid to the display pixel grid. It is obvious (and can be proven
grometrically) that the the density of source points in screen space is inversely proportional to
the area of parallelogram formed by the unit vectors as shown in figure 3d. This area is sim-
ple to compute, It is equal to the absolute value of the determinant of the Jacobian matrix:

A= | det [h{p&)] | = m[f,::fg e

Knowing the density of source points, it is possible to compute the proper normalizing
divisor for any source point subject to any viewing transformation. This in turn insures that
the sum of the contributions for any display pixel will sum to unity in the interior of the tex-
ture and will sum to the coverage along the edges.

A tangent plane is of course only a local approximation of a general surface. [If either
the perturbations or the effect of perspective distortion are severe, the true density of points
will differ from the computed density. This is manifested in the Boal image by Suctuations in
computed coverage. If the coontributions sum to less than wunity, the surface will pot

completely obscure its background. It has essentially ‘pulled apart’. This error can be
characterized numerically by sudden changes in the determinant of the matrix computed
above. For two adjacent source points ps and qo, the error is:

det |Jr(P'o]|

€ == -

det | Jriqb)

If ¢ grows too large, the opacity of the surface degrades and artifacts result. On the
other band, high values of ¢ are an indication that the spatial resolution of the initial grid is
insufficient to handle the high frequencies present in the perturbation function, The solution
is either to low-pass filter the perturbation function or to increase the spatial resolution of the
initial grid.

4.8. Selecting the proper fllter radius

It would help to re-examine the procedure up to this point. The algorithm is taking a point
and a tangent plane and transforming them into image space. The result is a point 10 image
space and a scalar measurement of the area which the point would cover if it were a surface
element instead of a point. The position of these points in image space is not anchored in
any way to the location of the display sample points in the image plane. We have tried to
devise a method which simultanecusly filters the components of the resulting image, recon-
structs a continuous image function and computes display sample values. We lack a thorough
analysis of this method of copstructing an image from fuzzy points and are instead guided by
experience with texture mapping. The effective radius of a point must be a function both of
the source density and the display sample density since at least two filters are being imple-
mented in the same function. When the viewing transformation calls for minification (many
source points to one display pixel), the filter must be large enough in order to avoid aliasing
of the source function. In the case of magnification (many display pixels to one source point),
the filter must be large enough to avoid aliasing of the reconstruction. As a practical matter,
the effective radius decreases as source density increases, but reaches a minimum radius that
depends on display sample resolution.

Since an ideal flter is infinite in extent, the number of source points that contribute to
each display pixel remains the same regardless of the alignment between the source and
display grids. lo practice, filter functions are assumed to be zero beyond a small neighbor-
hood around the pixel. This sudden cutoff causes the number of source points that contribute
to a given display pixel and hence the sum of the contributions to vary slightly as the grids
are shifted with respect to one another. If the texture is rendered in image order, the normal-
ization process described above adjusts for these variations quite naturally and they cause no
trouble. When a texture is rendered in object order, any variation in the sum of the contribu-
tions is interpreted as a partial coverage as described above., This error manifests itself as
errors in computed coverage that change as the alignment between the grids changes. The
problem can be alleviated by extending the Gaussian filter out slightly further than usual
The small contributions by these extra source points tend to cancel out the effect of the
discontinuity in the filter function, making the filter more invariant to shifts in the grid align-
ment.

4.7. Hidden-surface elimination

As many researchers have pointed out, a standard Z-buffer hidden surface algorithm
cannot produce images with correct anti-aliasing. The difficulty arises as follows. There are

two possible ways in which the contribution of source points to display pixels might take
place:

1. Blending. If the contents of the Z-buffer for a given display pixel contains a
piece of the same surface as the incoming contribution, the two should simply be
added together. Specifically:

colorg,e = coloryy + (color acoming X weight,y ouiny)

Information about the overall transparency versus opacity of the surface, which is
contained in the a attribute, is treated exactly like color in a blending calculation.
(When a surface folds over and obscures itself, it forms two separate surfaces from
the standpoint of hidden-surface removal. This special case is treated later on.)

2. Vimbility. If the contents of the Z-buffer for a given display pixel contains a
piece of a different surface from the incoming contribution, then a depth comparison
must be performed. Let us suppose that the incoming contribution is in front of
(obscures) the surface stored in the z-buffer. In this case, the two should be merged
together as follows: ’

e.‘"..' -— ‘.k'.“ x (l - a..‘-f-‘-" 4+ t.‘.'uum.' x aﬂllw

This visibility calculation only works if the incoming color and a are completely known
(i.e. if all blending that will be required has already been performed). One cannot intersperse
blending calculations with visibility calculations. The logical solution, as demoastrated by
Carpenter in his A-buffer algorithm [3], is to gather together all contributions to a given sur-
face, performing blending calculations whenever possible Lo consolidate surface fragments, and
delaying the visibility calculation until all contributions have been made.

In the case of a point rendering pipeline, the surface fragments have no geometry (as
they do in Carpenter’s algorithm), only a weight. Contributions from each surface are
pigeonholed into unique bins and blending is performed to keep the information in each bin to
a minimum. When all surfaces have been rendered, visibility calculations are performed
between bins. This Goal step implements the hidden surface elimination. Figure 4 illustrates
the two types of computations and the order in which they are performed. It should be noted
that if all surfaces being rendered are opaque, two bins suffice to properly render any environ-
ment. Slight errors will still occur in pixels where multiple edges coincide, but these errors
are seldom visible.

As noted earlier, the sum of the weights in a particular bin is not always unity after a
surface bas been completely rendered. In particular, display pixels along the edge of a texture
will be left with contributions that sum to only a fraction of unity. In this case, the following
additional calculation is performed prior to the visibility calculations:

This adjusts the overall transparency versus opacity of the texture according to the reduced
extent to which it covers a display pixel coincident with its edge. This new a value is now
ready for use in the visibility calculations.

The only remaining difficulty is determining whether or not a contribution is from the
same surface as that contained in a particular bin, in which case a blend should be performed,
or from a diflerent surface, in which case a depth comparison should be performed. Surface
identification tags work fine on fat polygons but not on surfaces that may obscure them-
selves. The solution taken in this algorithm is to blend only those points that are conliguous
(in the sense that the shortest path between them passes along the surface rather than

through space). FPoiots that are separated from each other by space are resolved using a
depth comparison. Each bin bas associated with it a range of depths. If the transformed 2
coordinate of an incoming contribution falls within a certain tolerance of the depth of a given
bin, the contribution is blended in and the range of depths in the bin is extended to include
both its old contents and the new contribution. Otherwise, the incoming contribution is ten-
tatively placed into a separate bin. As more contributions arrive, some blending will inevit-
ably occur and the depth ranges of some bins will grow. Whenever the depth ranges of two
bins are found to be overlapping, again within a certain tolerance, their contents are com-
bined and the result is placed in a single bin.

As an example, suppose that the surface is as shown in Figure 5. Suppose further that
point #1 is the first to arrive. It will be stored in bin #1. If point #2 is the next to arrive,
its depth does not fall within the allowed tolerance of the depth in bin #1. It is therefore
placed into bin #2. Sooner or later, point #3 will arrive. Its depth matches that of bin #1
within the tolerance and so it is blended in. The resulting depth range of bin #1 now over-
laps with the depth range of bin #2 and so all the contributions are combined and the result
placed into bin w1. In this manner, the stack of contributions grows and shrinks dynamically
as the readering progresses. By the end, there should be exactly as many bins as there are
non-contiguous surfaces. Visibility ecalculations are then performed between the remaining
bins.

The required depth tolerance z,,, depends on the separation between the transformed 2
coordinates of adjacent source points. A rough approximation that works reasonably well is:

Teai x ¢

e 1

(£-%) + (4-%)

As it turns out, yet another test must be performed before two contributions may be
blended together. As a curved surface folds over and obscures itself, it forms two separate
surfaces from the standpoint of hidden-surface removal. Despite the fact that points just
barely on the front-facing side of the fold are contiguous with points just barely on the back-
facing side, they should not be blended together. This situation can be detected by compar-
ing the transformed surface normals at two such points. If both face the same way, they can
be blended. If one is front-facing and the other is back-facing, or vice versa, a depth com-
patison is performed. The surface normal for a small seighborhood around each point is com-
puted by taking the cross product of w’ and v'

w o (e A= X ¥

Since these unit vectors bave already been transformed into display space, the sign of 7, tells
whether a surface faces front or back.

6. Converslon of geometries lnto polnts

Haviog followed the rendering pipeline through from begioning to end using a simple
geometry, we are pow in a3 position to state minimum conditions that any geometry must
meet in order to be handled by this algorithm:

{i) It must be possible to break the surface into points.

{13} The surface must be continuous and differentiable in a small seighborbhood around
each point,

10

(13) lo order to find the determinant of the Jacobian, it must be possible to find two
pon-collinear vectors that both lie on a tangent plane that locally approximates the
surface at the point. These two vectors can also be used to fnd the surface normal
vector which is required by the foldover detector.

These are the only conditions a surface must meet. In particular, nothing is required
about the spacing or distribution of the points. They may be spaced evenly in texture space,
evenly in image space, or peither. They may be parametrically derived, randomly derived,
ete. The sphere described in the pext section was defined by loading texture and displace-
ment maps into rectangular arrays whose uw and v coordinates were then re-interpreted as ¢
and ¢ for mapping into polar coordinates. Points were sparse around the equator and dense
at the poles, but the determinant of the Jacobian matrix gave the necessary flter sizing and
pormalization coeflicients.

What kinds of geometry does this allow and what kinds does it prohibit? It obviously
allows flat or perturbed polygons. It also allows spheres. The mathematics for handling
spheres can be trivially extended to bandle any conic section. la fact, the algorithm can ban-
dle any parametrically defined surface. Although it may be ineflicient, it is always possible to
produce a set of parametrically spaced points to feed the algorithm. It is less clear whether
the algorithm can bandle fractals. One of the major features of fractals are their lack of local
derivatives. They are rough at all scales. Extension to three-dimensional density maps are
also possible, but the hidden-surface processing performed by the algorithm would have to be
modified.

8. Implementation and experlence

The algorithm presented in this paper bas been implemented in the C language on a
VAX-11/780. The photographs accompanying this paper were produced using this implemen-
tation. Figure 7 shows the result of passing two copies of the example array from figure 6
through the rendering pipeline. The texture on the surface appears correctly fltered, the
edges exhibit correct anti-aliasing and each fold of the surface completely obscures whatever
is behind it. The stretching and distortion of the array caused by the height field perturba-
tion have po effect on the apparent continuity and opacity of the surface. Figure 8 shows the
result of adding a ripple perturbation to the surface of a sphere. Note that the resulting sur-
face is fully three-dimensional and that the ripples may be seen along the silbouette edge.

Random order rendering has been mentioned several times in this paper. It is Goally
time to suggest a use for it. The authors envision (but have not implemented) an interactive
image synthesis system that operates in the following manner. The user sits in froot of a ras-
ter display. Vector outhines of polygons or surfaces move in real-time as the user selects a
viewpoint or manipulates a geometry usiog a joy stick. When the user releases the stick, the
surfaces in the environment are rendered in random order. This gives the user an immediate
although noisy impression of the image. As the user waits, the signakto-noise ratio increases
and the image ‘sparkles’ in. As an example, figures 92 and Ob show the image from figure 7
after 50 and 75 of the points bave been rendered. The user may of course decide based
on the bary image viewed thus far that more manipulation is required and resumes manipula-
tion of the joy stick. Image syothesis stops immediately and the real-time vector outlines
appear opce again. The advantage of this approach over traditional readering algorithms is
clear. Rather than appearing top-down or surface-by-surface, all portions of the image appear
simultaneously. . User comprebension of the partially formed image is enbanced.

A simple yet eflective way to render a texture in random order is as follows. A list of u
and v parametric coordinates s compiled. This list is then randomly permuted. Finally,

oordinate pairs are selected by moving sequentially through the list. This insures that the
rendering = random,. yet that no point is readered twice. The list can be computed in
wivance and re-used each tune & surface s rendered. If the List is treated sa cyclic and the
starting index s made a random function of a surface identification tag, then the same list
:an be used for all surfaces 10 the environment.

No attempt bas been made to optimize the code in this implementation. In fact, the
Gaussian weighting function is currently being computed for every contribution. The use of
lookup tables would increase its speed several-fold. Timing statistics are therefore sot
presented. The computational complexity of this algorithm is identical to classical texture
mapping One weighting computation or table lookup is required for each contribution made
by a source point to a display pixel. The pon-tero portion of the Gaussian is slightly larger in
this algorithm thas in classical texture mappiog for reasons already explained. This increases
the number of contributions slightly. Based oo informal timing tests and general experience
with lookup tables, the authors estimate that this method could be made to operate at about
MY to TA7F the speed of conventional texture mapping algorithms

There are two msues that the authors have not yet completely resolved. The first is a
more nigorous charactenzation of the sensitivity of the algorithm to extreme perturbations
In other words, it would be advantageous to know in advance whether a set of points s too
severely perturbed to be rendered successfully as a continuous surface. Tests bave indicated
some seasitivity to bigh frequencies.

Secondly, numerical errors that arise from the finite extent of the Gaussian flter, while
they are not objectionable in simple static scenes, might pose problems during animation or in
scenes involving recursive visibility calculations. It » suspected that a more sophisticated
filter shape might vield weightiog calculations that are more tolerant of the spatial cutoff

7. Concluslons

This paper bas addressed the problems that increasing image complexity has brought to
geometric modeling The notion of decoupling the modeling geometry from the rendenng
process has been proposed by introducing the potion of points as & mela-primitive. Several
thapes have been converted from geometry into points and the continuity and opacity of the
onginal geometry is preserved. The extension of the technique to more complex geometries
bas been discussed,

The major advantages of this approach are

/1) A standardized rendering algorithm can be used to display any geometry. Cus
tomization for each new modeling primitive is ot necessary.

i) Geametrieas can be rendered in object order. This s particularly advaotageous 1o
the case of procedurally defined objects.

(111) The algorithm is capable of rendering as surfaces arrays of points that have no
underlying geometry. This provides a simple solution to the bump mappiog
silbouette problem

fiw) The point meta-primitive is simple and requires no coherence in order to be ren-
dered efliciently.

As a Boal note, the capability w render the points in random order suggests that the

tendering of each point s independent from the rendenng of any other point. This suggests a
parallel or bardware implementation.

8. References

[
(2
13
4]
1s)

6]

9l

BLINN, JAMES T., “Simulation of Wrinkled Surfaces,”” Compuler Graphice, Vol. 12, No.
3, August, 1978, pp. 286-292.

BLINN, JAMES F., "Light Reflection Functions for Simulation of Clouds and Dusty Sur-
faces,” Compuler Graphice, Vol, 16, No. 3, July, 1982, pp. 21-29.

CARPENTER, LOREN, "The A-buffer, an Antialiased Hidden Surface Method,” Com-
puter Graphice, Vol. 18, No. 3, July 1984, pp. 103-108,

CATMULL, EDWIN E., A Subdivision Algorithm for Computer Display of Curved Sur-
Jacer, Dissertation, University of Utah, Salt Lake City, December 1974,

CATMULL, EDWIN E. AND SMITH, ALVY RAY, “3d Transformation of Images in
Scanline Order,” Compuler Graphics, Vol. 14, No. 3, July, 1980, pp. 279-285.

COOK, ROBERT L., “Shade Trees,” Computer Graphice, Vol. 18, No. 3, July, 1984, pp.
223.231.

CSURI, C., HACKATHORN, R., PARENT, R, CARLSON, W. AND HOWARD, M,
“Towards an loteractive High Visual Complexity Asimation System,” Compuler Graph-
ice, Vol 13, No. 2, August, 1979, pp. 280-208.

DUNGAN, WILLIAM, JR., "A Terrain and Cloud Computer Image Generation Model,"
Computer Graphics, Vol. 13, No. 2, August, 1979, pp. 143-150.

FISHMAN, B. AND SCHACHTER, B., "Computer Display of Height Fields,"” Compuler
and Graphics, Vol. 5, 1980, pp. 53-60.

[10] FORREST, A. R., "On the Rendering of Surfaces,” Computer Graphics, Vol. 13, No. 2,

August, 1979, pp. 253-259.

11 MAX, NELSON L., ""Vectorized Procedural Models for Natural Terrain: Waves and

Islands in the Sunset,"” Computer Graphice, Vol. 15, No. 3, August, 1981, pp. 317-324.

12 KAJIYA, JAMES T., “New Techniques for Ray Tracing Procedurally Defined Objects.”™

Computer Graphice, Vol. 17, No. 3, July 1983, pp. 91-102.

13] REEVES, WILLIAM T, “Particle Systems - A Technique for Modeling a Class of Fuzzy

Objects,”” Computer Graphice, Vol 17, No. 3, July, 1983, pp. 359-376.

14] RUBIN, STEVEN M. AND WHITTED, TURNER, "“A 3-Dimensional Representation for

Fast Rendering of Complex Scenes,”” Compuler Graphice, Vol 14, No. 3, July 1980, pp.
110-116.

15] SMITH, ALVY RAY, "“Plants, Fractals and Formal Languages,” Compuler Graphics, Vol.

18, No. 3, July, 1984, pp. 1-10.

),

- <]

fbonis as rehJennq F re'tne amnae
Qa mc'fa “premi tive For P°'"
£
Jcrunanq
3eomefr’j

Figgfc 1: Overvlew of a'cjor.‘ﬂ\m

edjc Fo’c‘ovt"

di | di P |
sluouhj ';P' l':::feraje S“!o:.n"h’ F\:n,fr"i Co:ru’Q

| &igre 2a: Edqeof texture E;g-e 2b: Foldover

)
-

<4

a0l

3
Y

<V}

F:‘}i'e 3q: Umf vectors

Fu:dlc 35 Un.f'v cfors
- ce ur e
#ufbe'r&u‘l” f Transformed
no‘f Transformed v-v space

<

—— —— e
——

-
———— - —

F-';u-e 3c: Tan'?f;f;:‘:'ne F}gwe BJ Am oF

ra lel
small reiq hborheod 51:9
Sovrce pom"’

Each bin‘?onfa:ns: ®
- th ran
. o°q°' } ” ®
L4 paci
bin @
transformed souvtce
(Far) pomg's From like
wutle are
Clended together
Fiqurc 4a: FBlen diml calculations
(ha:u)
@ —>
Firnal
® - i c:lir
—_—
- }
—
" —_—
bm © contents of bins

(Fa) qrii’mer,ed :‘:
' a 'i'rg Py do'

Eii‘”e 4b : Visibi]ity calevlations

Jg rf"l fo’f lance

Firoe 5: Depth comparisons with Tolerance

A

Figure 9b

