
Algorithms for the Electrical
Optimization of Digital MOS Circuits

Kye S. Hedlund, Assistant Professor

The University of North Carolina at Chapel Hill
Department of Computer Science
New West Hall 035 A
Chapel Hill, N.C. 27514

TR 85-018

This work supported in part by grants from International Business Machines, Inc.
and the J\Jicroelectronics Center of North Carolina. (Submitted for publication).

1

Abstract

This work addresses the problem of automating the electrical optimization of digital

MOS circuits. Improvements to a circuit's speed, area, and power consumption are sought

through modifications to the transistor sizes in the circuit; no changes in the circuit struc

ture, number of gates or clocking are introduced. Linear algorithms are presented for

computing optimal transistor sizes to minimize delay, area or power. These algorithms

have been incorporated iL:o a prototype electrical optimization tool, EO, that assists the

designer in the performance tuning of MOS VLSI circuits. The designer provides the cir

cuit Ia you t and the requirements on its speed, power consumption, and area. EO identifies

the slowest paths through the circuit and computes the optimal transistor sizes to achieve

the performance objectives. This frees the designer to deal more directly with the speed,

poRer, and area characteristics of the circuit rather than the details of its implementation.

Due to the fast inieractive response of the tool, the designer can experiment with a large

number of different transistor sizing options to determine the best balance of delay vs.

area, delay vs. power, and power vs. area. The transistor sizing algorithms compute

optimal points so that the designer is guaranteed of making the most efficient possible

tradeoffs of scarce resources. When compared to manual designs, the circuits produced by

EO are typically faster or have substantially lower power consumption and area.

I. Introduction

In addition to being functionally correct, a chip must meet constraints on its speed,

power, and area. The packaging technolog-J places an upper bound on the power dissipation

per package. Manufacturing technology limits the size of a chip that can be reproduced

with acceptable yield, and system performance requirements dictate the required speed of

the individual chips.

Each of these three basic quantities can be traded off against each other: speed may

be increased by consuming more power, in nMOS power consumption is decreased by

lengthening pullup transistors thus increasing circuit area, etc. Much of the art of the

design process is in balancing the tradeoffs: How to achieve highest speed using the least

power and area?

This paper presents algorithms for automating the electrical optimization of digital

MOS circuits. Improvements to a circuit's speed, area, and power consumption are sought

2

through modifications to the transistor sizes in the circuit; no changes in the circuit stmc·

ture, number of gates, or clocking are introduced. The algorithms presented here work

for both nMOS and CMOS circt•its. The algorithms are fast thus allowing interactive

computation of optimal transistor sizes.

The two algorithms discussed in this paper compute optimum transistor sizes that:

1) Minimize the delay through the circuit subject to bounds on the sizes of the individual

transistors (thus limiting any increase in circuit area)

2) Minimize power coasumption (nMOS) or area (CMOS) subject to bounds on both the

maximum delay through the circuit and on the t~ansistor dimensions

A simple example will illustrate the nature of the electrical optimization problem.

Consider a chain of three CMOS inverters (Figure 1). For simplicity, assume that all

transistors have the same width and length. Let the width of both the n and p channel

transistors in gate 2 be w2 , and let D be the total delay through the three gates. Consider

the effect of increasing w, while keeping the size of the transistors in gates 1 and 3 fixed.

Increasing w2 causes the magnitude of the output current of gate 2 to increase. Thus the

time required, d2 , for gate 2 to drive its output signal will decrease (Figure 1b). However,

increasing w2 also increases the capacitive load on the output of gate 1 thus slowing the

output transition of the first gate. At some point, w2 =A, these two effects will be balanced.

This is the point ofminimmn delay (with respect to,,). The delay minimization algorithm

must find the optimum point when varying the transistor sizes of within all gates in the

circuit. This optimum point must be found within a search space whose dimensions equals

the number of gates.

When minimizing area or power, the designer specifies a target delay, D~tAx 2: DMIN. A

vec:or of transistor sizes is computed so that the sum of the transistor sizes in the circuit

is minimized (Figure lb, point B) subject to the constraint that the total delay does not

exceed DMAX· The algorithm must minimize a linear function (area or power) subject to a

nonlinear constraint (total delay) in a multi-dimensional search space.

A prototype tool, EO, for optimizing MOS circuits has been implemented. This tools

computes optimum transistor sizes to meet the performance requirements specified by the

designer. The tool assists the designer in optimally distributing power to circuit elements

and in spending circuit area to gain speed or reduce power consumption. Since the tool

can be run interactively even for large circuits, the designer can rapidly evaluate many

design alternatives choosing the best tradeoff of speed, area, and power.

3

Advantages of this work over some previous approaches (!Agul77], [Gla.s84], [Lee84J,

[Mats85aJ, [Mats85bJ, [Rueh77j, [Trim83aJ, [Trim83b]) include: fast interactive response

instead of lengthy batch-mode runs, guaranteed optimal results rather than heuristic ap

proximations, optimization over sets of paths rather than just a single path, optimization

for both polarities (0,1) of all input signals, and the capability to put limits on the maxi

mum and minimum transistor sizes.

The primary disadvantage of this approach is that SPICE level accuracy of the delay

estimation is not achieved. A premium has been placed on computational speed so that

interactive response is achieved. This dictates simplified device models and thus lower

accuracy in predicting dehy. The delay estimates are typically accurate to within ±20%

of SPICE. It is anticipated that this accuracy will suffice for many circuits. Variations

in processing parameters can cause the circuit performance to vary by amounts greater

than 20%. Work is underway to incorporate an improved delay model accurate to ±6-8%.

Where greater accuracy in de!u.y prediction is required, EO can be used for initial sizing

followed by fine tuning via SPICE simulations.

The next section describes a prototype electrical optimization tool. Section 3 briefly

presents the transistor and circuit models used to predict the electrical behavior of a

circuit. The main research results are in sections 4 and 5: the optimization algorithms

and an analysis of the al.-;orithm performance on circuits extracted from real chips. The

conclusions and directions of future research are in the final section.

2. EO -An Automated Electrical Optimization Tool

With current CAD tools, performance tuning of a circuit requires a long, iterative

procedure. An electrical model of the circuit is extracted from its mask representation.

This model is simulated on input waveforms chosen by the designer to (hopefully) expose

the worst case behavior of the circuit. This simulation output is manually analyzed. If

there are performance problems, the designer makes an educated guess at correcting the

problem and repeats the extraction and simulation process.

The process of designing a high performance circuit consists of iterating a simulate

analyze-adjust loop until adequate performance is obtained. There are several disadvan

tages to this approach.

1) It is labor intensive. Considerable designer time is required to analyze the simulation

results and make minor circuit adjustments.

4

2) Only relatively small cells may be simulated. Electrical simulators such as SPICE

can accurately predict delays, but they are compute-intensive. Fast turnaround or

interactive runs are limited to small circuits.

These limitati•)ns cr: maximum circuit size make it impractical to simulate large por

tions of a design. Only single cells or small collections of cells can be simulated. Unfor

tunately, electrical nodes often cross cell boundaries making it difficult to predict from

simulation results the behavior of a cell in its actual cr.-chip environment.

Critical path analysis addresses thesc problems. A path analysis tool [Joup83, Oust83]

finds the slowest paths in a circuit. The tool is fast enough (due to simple transistor

models) to analyze an entire chip thus the accuracy of the results do not depend on the

designer's judgment of which paths to simulate or the choice of input waveforms. However,

critical path analysis still does not address the most fundamental problem in the current

approach to performance optimization.

3) Critical path analysis tools can point out problems but they do not indicate how to

solve them. The desigPer is still caught in the loop of repeatedly simulating, analyzing,

and adjusting the circuit.

When performance problems are found with critical path analysis, a variety of tech

niques can be used to ;mprove circuit performance: inserting buffers, changing clocking,

precharging highly capacitive nodes, etc. Once the circuit design has been finalized, the

designer must match the drive capability of transistors to their output loads; large transis

tors are used to drive highly capacitive nodes and smaller transistors are assigned to low

capacitive outputs. Because transistor sizing is so tedious, designers tend to use "rules of

thumb" to select between a small number of sizing options.

An automated electrical optimization tool, EO, has been implemented that computes

optimum transistor sizes. This relieves the designer of the time consuming process of mak

ing an educated gueffi, simulating and refining the guess. Instead, the designer explores

optimal points in the design space searching for the right combination of circuit perfor

mance. When compared to manual designs, the optimal circuits computed by EO often

are somewhat faster and have substantiaH:• lower power consumption and area.

A prototype version of an automated electrical optimi3er was implemented in the spring

of 1984. This first version, PLAOPT, was restricted to the optimization of PLAs [Hedl84,

Hedl85]. A subsequent version, EO, was expanded to handle general nMOS circuits not

containing pass transistors or super buffers. (These restrictions come from limitations in

the user interface that generates the optimlzation model of the circuit. The optimization

5

algorithms are fully general and capable of handling all circuit constructs and both nMOS

and CMOS technology.)

EO has been used primarily as a vehicle for algorithm development. It has a rudimen

tary textual user interface. Critical path analysis is performed by the Crystal2 program

[Oust83) by John Ousterhout of the University of California at Berkeley. The C language

code for Crystal2 is used (with ninor modifications) as a module in EO.

Figure 2 shows a stylized version of an interactive session with EO.' The designer runs

EO on the circuit Lvel representation of the nMOS circuit MainCntrJ.• The input to EO

has been extracted from the mask representation and contains information about parasitic

capacitances and resistances. The first table displays the critical path through the circuit

along with the incremental delays at the six nodes of the critical path. For each gate on

the path, the pullup length and pulldown width are displayed. The designer has selected

between two sizing options (Wpd = 4.0 or 8.0} for each of the gates. This is representative

of manual transistor sizing.

The designer then specifies (in lambda units [Mead80]) the maximum pulldown width

and minimum pullup length. The minimum path delay subject to these constraints is

computed. The middle table displays the incremental delays and associated transistor

sizes to achieve minimal delay. Note that the transistors in tow of the gates i1ave been

increased to their maximum allowed size. Under the given transistor size constraints, path

delay can be reduced by 60.0% at a cost of more than tripling the static power consumption

along the path.

In this example, the designer judges, based on system requirements, that a path delay

of 45ns is sufficient. The "Minimum Power" command is used to size transistors for a path

delay longer than the minimum possible delay. The designer enters the requested delay,

45.0 (ns), and EO computes the transistor sizes to achieve this delay with minimum power

consumption. Note that all transistors in this 45ns circuit are larger than in the original

circuit but that none are at the m?.ximum allowed size.

2 Some command formats are slightly different than indicated in the figure, and critical path analysis
is not gracefully integrated into EO. Performing the operation "Critical Path" actually requires a separate
computer run.

• This is a su])circuit of a head tracker chip designed and fal>rieated])y Gary Bishop at the University of
North Carolina at Chapel Hill.

6

Several observations about this interactive session should be made:

1) The tool has fast interactive response. An optimization command typically requires

no more than 10 to 20 second of CPU time (VAX 11/750). This allows the designer

to rapidly explore optimum tradeoffs of speed, area and power.

2) The optimum transistors sizes for both "Minimum Delay" and "Minimum Power" vary

over a considerable range. This has been observed for a large number of circuits, and

this supports the claim that manually designed circuits are often far from optimum

(because designers typically select from a small number of sizing options).

3) The designer guides the optimizer by selecting the set of paths over which optimization

is performed. For simplicity, this example shows the selection of a single path. How

ever, the algorithms can perform optimization over multiple, intersecting paths. In

actual usage, the designer would make more complex selections of paths. For example

"optimize over all paths whose delay exceeds SO.Ons."

4) Designers incrementally improve their circuits. This mode of operation is built into EO.

A designer wanting to speedup a 120ns circuit to 90ns would first speed the circuit

to (say) lOOns. Due to interactions between the many paths through the circuit,

the set of critical paths may be changed by this delay reduction. A second Critical

Path command would find the key paths in this lOOns circuit. A second optimization

command would reduce the delay from lOOns to 90ns over the new set of critical paths.

The current implementation of EO's user interface has several limitations:

• Crjstal is not integrated into the optimizer

• pass transistors and super buffers are not modeled by the user interface

• transistor characteristics are coded into the program making it technology specific.

It should be emphasized that the 'lptimization algorithms are fully general and do not

suffer from these limitations.

Work is underway at the University of North Carolina and the Microelectronics Center

of North Carolina to produce a production quality electrical optimizer. The production

tool will remove these limitations, provide a graphical interface to the optimizer, and be

integrated into the VIVID symbolic design system.

7

3. Electrical Models

This section describes the models used to predict the electrical behavior of transistors,

gates, and paths. The goal is to rapidly and accurately ;Jredict the delay and power con

sumption of circuits. The fundamental equations predicting the behavior of transistors are

well known (at least for long channel devices). Simulators such as SPICE accurately pre

dict the behavior of a wide variety of MOS devices and circuit constructs. However, these

simulators achieve their high c.ccuracy at a large cost in computational effort. Electrical

optimizers based on these detailed device models are exceedingly slow [Nye81].

The goal of the models used in this research is to accurately and quickly estimate

the circuit delay. Some accuracy is sacrificed for very large decreases in compu~ational

cost. The RC model presented here is several orders of magnitude faster than SPICE

simulations. Less than 1 msec of computer time (VAX' 11/750) is required to estimate

the delay of a gate. The average error for estimating total path delay [Oust84] is about

20% for the RC model.'

The path is the highest level data structure in the electrical optimizer. A path is a

chain of gates plus the polarity of the path input signal. This single path input is assumed

to start a sequence of output transitions in the gates along the path.

In each gate, the change in the output is assumed to be triggered by a single input.

The transistor affected by this input is called the trigger transistor. All other gate inputs

are assumed to be fixed. Within the gate, all electrical pathways from the gate output

to V dd or ground that are in parallel with the trigger transistor are assumed to be open

circuited. All transistors in series with the trigger transistor must be turned-on (or else

the trigger signal would not change the gate output).

The transistor siziug algorithms associate with each gate a scale factor, s,, that deter

mines the transistor sizes within the gate. Transistor sizes scale up or down in proportion

to the scale factor. In CMOS, the widths of both the n and p channel transistors are di

rectly proportional to s, (lengths are fixed). In nMOS, the length of the pullup is inversely

proportion to s, while the pulldown width is directly proportional to s, (pullup width and

pulldown length are fixed). Thus changing the scale factor will leave the impedance ratio

' VAX is a registered footnote of the Digital Equipment Corporation.
• !Oust84l reports 24% for the RC model. The electrical optimizer models lrar:smission gates more

accurately thus reducing the error in delay estimation. We estimate the aYerage error to be reduced to 20%.

8

unchanged. In both nMOS and CMOS, the current supplied or sunk by a gate varies in

direct proportion to S;.

The electrical characteristics of a circuit are summarized by the equations predicting

the circuit's delay and either its area (CMOS) or its power consumption (nMOS). In nMOS

technology, static power consumption is proportional to sum of the pullup lengths in the

circuit
N

P(S) = LKWpu, S; (3.1)
i=t Lpu,

where K is a constant determined by the fabrication technology.

Area minimization is inherently complex. The relationship between transistor sizes

and overall cell area can be a complex function of the layout geometry. Some dense

portions of the layout may be highly sensitive to changes in transistor dimensions, whereas

other portions of the design may have sufficient unused area to accommodate variations in

transistor sizes without affecting cell area.

For practical use, we need a relationship between the transistor sizes and gate area that

is independent of the specific circuit layout. Assume that gate area can be approximated

by gate height times gate width. The height is proportional to the number of transistors

in the gate. Gate width is determined by transistor width, and this is proportional to S;.

This gives the following approximation to the transistor size - gate area relationship

N

A(S) = LT;S; (3.2)
i=l

where T, is the number of transistors in gate i.

The total delay through a path is simply the sum of the individual gate delays

N

D(S) = L d; (3.3)

To estimate gate delay, a simple RC model is used. In the RC model, the resistance

and capacitance is computed for each node and transistor in the path. Figure 3 shows the

elect.rical model of an nMOS circuit path. Extension to CMOS is straight-forward. The

resistances and capacitances are separately summed, and their product is the estimate of

the gate delay

(H)

9

The capacitance load on the output is the sum of the parasitic wire capacitance between

gate ; and ; + 1, c.,,, and the input capacitance of gate i + 1. Since the width of the pulldown

transistors is proportional to the gate scale factor, the input capacitance of gate i + 1 is

s,+ICc,., where Cc,+, is the gate capacitance of the original circuit before optimization.

The effective resistance of each transistor is individually computed and added to the

parasitic wire resistance, Rw,. For nMOS technology, the gate resistance, R;f s,, depends

on the sum of the transistor resistances

R; = Rpu, if gate output = 1

R; = Rpo, +RoN, if gate output = 0

where Rpu, and Rpo, are the effective resistance of a single pullup and pulldown transis

tor in gate i. RoN; is the total resistance of the turned-on transistors in series with the

trigger transistor (Figure 3). Since the asped ratio {length/width) of all transistors in the

gate decreases in direct proportion to s,, the effective resistance of the gate is inversely

proportional to s,.

The extension to CMOS is straight-forward. R, is the sum of the resistances between

the output node and either Vdd or ground depending on the output polarity.

Each transistor is modeled as an input capacitor and a switched resistor (Figure 4).

The effective resistance of a single transistor is determined by its type (n or p channel,

depletion mode, etc.), geometry and the data value it transmits. The dependence on

the data value (logical '0' or '1' on the gate output) insures more accurate modeling of

transmission gates. A table of effective resistances gives the resistance in ohms per square.

This table is indexed by the transistor type and data value, and the table entry is multiplied

by the transistor's length/width to give its effective resistance.

The table values of effective resistance can be supplied by the user to define the char

acteristics of a particular technology or fabrication line. The model is general enough to

handle both CMOS and nMOS transistors. The table is generated by running SPICE

simulations on a single gate. A step function drives the input, and the effective resistance

is the delay divided by the load capacitance.

This table driven approach is a type of macromodeling. The electrical optimizer can
treat gates as atomic entities rather than collections of transistors. The electrical charac

terization of the gates is done once in the computation of the table. The input processor of

the electrical optimizer coalesces transistors into gatell. Thus the delay computations can

10

proceed at the gate level rather than the transistor level as in SPICE. Using >his higher

level of abstraction results in significant speed savings.

There are three main sources of error in the RC n~odel. First, self loading of the output

capacitance is not taken into account. Self loading results from the built-in diffusion

capacitance of the transisturs and is proportional to the transistor width. It could be

incorporated into the model by adding the term S,C1; to the output capacitance in equation

3.4 where Cr; is the internal capacitance of the trigger transistor of gate i.

Secondly, the lumping of resistances and capacitances tends to overestimate delays since

it assumes that all the capacitance must be discharged through all the resistance. This

could be improved upon using the Penfield-Rubinstein models for distributed capacitance

[Penf81, Rubi83]. However, the electrical optimizer treats transmission gates as separate

gates rather than as a part of a complex stage [Oust84, Toku83]. This eliminates the

largest source of error when lumping resistances and capacitances.

The most significant source of error is the lack of characterization of waveform shape

[Oust84]. The RC model is most accurate when the waveforms rise and fall quickly. In

practice, the effective resistance of a transistor depends on the shape of the input signal.

A slow rise on the gate input means that the gate turns on slowly. The trigger transistor

may do much of its work while only partially turned-on. Thus R, will be overly optimistic.

4. Algorithms for Transistor Sizing

Algorithms for two operations will be discussed:

a) Minimize the delay through a set of paths

b) Minimize the power consumption or area of a set of paths subject to a bound on the

maximum path delay.

The electrical characteristics of a path are modeled by two equations representing the

path delay and either its area or its power consumption (equations 3.3, 3.2 and 3.1). The

gate scale factors, s,, are the independent variables. A vector, s, is sought to minimize

either the delay, power, or area. This problem is formulated as a nonlinear optimization

problem that is solved subject to constraints.

Note that this expression and the equations for power consumption and area (equations

3.1 and 3.2) both are linear combinations of the s,. They differ only in the constants.

Consequently, the same algorithm will be used for both power and area minimization. We

will restrict our discussion to power Il"inimization.

11

A. Praetieal Requirements

Any practical algorithm must allow the designer to exercise substantial control over

the algorithm and the form of the solution it computes. These constraints may reflect

layout geometry restrictions and constraints external to the circuit being optimized. The

delay and power minimization algorithms reported here handle the following practical

requirements:

• Limits on transistor sizes

• Asymmetric rise and fall times of gates

• Data independent optimization

• Multiple paths

Limits must be placed on the maximum and minimum transistor sizes. This avoids

unrealistically small devices and allows the designer to control any increase in circuit area

by bounding the maximum size of any transistor. As noted earlier, the sizing in different

gates may have different effects on circuit area. This makes it desirable to allow the

designer to control the sizing bounds of each gate individually. Some gates may be allowed

a wider sizing range than others depending on their relative area and delay sensitivities.

The designer is free to choose larger ranges for gates that are especially speed sensitive

(i.e. have large output loads) or smaller ranges for the gates that are area sensitive.

Gate delays in nMOS technology are inherently asy=etric; rising transitions take

significantly longer than falling transitions. Similarly in CMOS, differences in carrier

mobility make n channel transistors typically four times faster than p channel transistors.

This can be compensated for by making every p channel device four times the width of its

n channel counterpart. However, this is not always practical. Reducing layout area often

forces n and p transistors to be the same size. Additionally, most of the transistors in a

design are not on the critical path hence it is not necessary to spend layout area to provide

oversize p channel transistors. Consequently, the delay model must take into account

asymmetries in the rise and fall times of gates for both nMOS and CMOS technology.

Given that a gate may have unequal rising and falling delays, the delay of a path will be

dependent on the polarity of the input to the first gate in the path. Recall that we assume

that a single input triggers a series of signal changes in the path. Each path must be

optimized over both a logical '0' path input and a logical '1' input. Optimizing the circuit

for only one of the inputs produces a "picket fence" solution (Figure 5). Transistors are

made large for gates with the slower output transition, and small transistors are allocated

12

to gates with the faster transition. The transistor sizes chosen for a single input polarity

result in very slow delay for the input signal of opposite polarity.

In a practical design environment, designers are typically concerned not with the per

formance of an individual path but of a whole circuit. There are many different paths

through even a simple circuit. In some cases the critical path may b·~ obvious (for exam

ple, the carry chain in a ripple adder). Often designers have difficulty accurately predicting

the slow paths [Oust83]. This makes it essential for the optimiz:.tion algorithms to handle

multiple, perhaps interacting, paths.

These four practical requirements greatly complicate the optimization algorithms. To

simplify the presentation of the algorithms, sections B and C present versions of the algo

rithms capable of handling only transistor size limitations and asymmetric rise/fall times

of gates. The extension to all four practical requirements is in section D.

B. Delay Minimization for a Single Path

This section considers the problem of delay minimbation restricted to a single path

and a single polarity of the path input signal. This is the simplest case, and, a.~ is explained

above, it is not sufficient for a practical CAD algorithm. However, the more complex cases

of optimization over multiple paths with data independent optimization will be developed

from this simplified analysis and algorithm. The algorithm is this section does allow

bounds to be placed on the maximum and minimum tranBistor sizes and takes into account

asymmetric rise/fall times of gates.

1. Restricted Model and Problem Formulation

Consider the delay through a single path containing N gates. Arbitrarily select path

input '0'. Since the rise and fall times of the gate may be different, the effective resistance

of the gate may depend on the polarity of the gate output signal. Let R;(O) be the transistor

resistance of gate i with gate output '0', and R;(I) corresponds to gate output '1'. The

delay through the i'' gate in the path is

where "odd(i)" accounts for the gate output inverting through each successive gate. The

total path delay (with 'O' path input) is denoted by Do and is the sum of the individual

gate delays.
N

Do(SJ = Ld;
i=l

13

The delay minimization problem is formulated as a nonlinear optimization problem

with constraints.
N

minimize Do(S) = Ld;
i=l

subject to I; :5 s, :5 u, i = l, ... ,N

The 1, and u, are simply derived from the limits on transistor sizes specified by the

user. For example, if gate k has a pulldown width of 4A and the designer specifies the

maximum and minimum widths to be 12-\ and 2-\ respectively, then "• = 3.0 and h = 0.5.

2. Method of Solution

The nonlinear optimization problem is solved by a standard quasi-Newton mdhod.

The algorithm is sketched below (Figure 6) but see [Gil!Bl] for details. The algorithm uses

an (approximate) second order model of the delay function, D0 (S), and makes successive

steps reducing the nelay until no further delay reduction is possible.

An approximation, B, to the Hessian of Do (the matrix of second p:o.rtial derivatives of

Do) is maintained and updated at every iteration. B is represented by its Cholesky factors,

B = LDLT, where Lis a unit lower triangular matrix and Dis a diagonal matrix with strictly

positive diagonal elements. Each update of B requires only a low rank modification of B

and hence is computationally efficient.

During the search, some of the s, may be on their bounds (either s, = u, or s, = 1,.

The s, that are not on their bounds are the free variables, N,. Let {j, denote the vector

of derivatives of Do (S) with respect to the free variables. A search direction, q,, in the

subspace of free variables is determined by solving the set of linear equations

Bij', = -{j,

The!l a is found such that D0 (S + aij',) is approximately minimum. Sis replaced by S +aij,

and B is updated. If any s, reaches its bound during the search along q, it is removed from

N, for the next iteration. Step length control is provided so that a does not force any s,
to violate their bounds.

Stepping from s to S +aq", may move somes, off their bounds so that they become free

variables. To detect this, Lagrangian multipliers are estimated for a.l.l active bounds. If

any estimate is sufficiently negative then one of the associated variables is released from its

bound and added to N,. The search at the next iteration is performed over the extended

subspace. Otherwise, minimization continues in the current subspace.

14

3. Algorithm Convergence

The dela.y optimization algorithm has been run oa a number of paths extracted from

four different chip designs. In all instances extremely rapid convergence has been observed

(Table 1). Typically, 4-6 iterations suffice to find the minimum delay to an accuracy of±

0.1 on each of the s,. 7 Monitoring the progress of the iteration shows that the algorithm

typically locates a point withi:~ about 10% of the minimum in 1-2 iterations. The delay

function is flat in the region about the minimum delay so the algorithm spends over half

its time exploring the region close to the optimum. This indicates that an algorithm for

finding the approximate minimum delay (within 10%) would be even more rapid than the

exact minimum delay algorithm reported here.

The algorithm exhibits two desirable features. First, the execution time is insensitive

to the starting point of the algorithm. Starting p()ints farther from the optimum simply

result in larger step sizes during the first few iterations and don't force additional iterations.

The reason for this is that the algorithm uses an approximate second order model of the

delay function and this model is an accurate predictor of the function behavior (see below).

Second, the running time of the algorithm is approximately linearly proportional to the

requested accuracy. The algorithm locates the region near the optimum in a fixed number

of iterations and then explores the flat region about the optimum in time proportional to

the requested accuracy. This allows the designer to trade runtime for accuracy in a simple

and predictable fashion.

The rapid convergence and robustness of the algorithm results from the well-behaved

nature of the delay function. The delay function is continuous, smooth, and monotonic.

Furthermore,

• D 0 (S) is everywhere convex (see Appendix}. This means that it has a single global

minimum. There are no local minima for the algorithm to become stuck in.

• D 0 (S) is a quadratic function. This is closely modeled by the (approximate) second

order model of the quasi-Newton algorithm. The Taylor series expansion of D0 (S) is

7 Many optimum points reported in this paper have been veri!led by eY.haustive search in a bounding
box e·ntered about the optimum point reported by the delay minimization algorithm. The convexity of the
delay and power functions (see below) g-uarantees that this will find the global minimum.

15

where u• = vDo{S•) and B is the approximation to the Hessian of D0 • With Do being

quadratic, iligher terms in this expansion are zero. Thus the approximation is exact

to the extent that D approximates the true Hessian. The experimental evidence shows

this accuracy to be good.•

• In practical circuits, the s, are of similar scale (i.e. the relative size of the smallest

and largest transistors does not vary by several orders of magnitude). This means that

the search for the minimum is not prone to hemstitching. Each step in the iteration

reduces the delay by a significant percentage of the distance to the optimum point.

C. Area and Power Minimization for a Single Path

This section considers the problem of power minimization restricted to a single path

and a single polarity of the path input signal. As noted previously, area minimization

is handled with exactly the same algorithm as power minimization. Limitations on the

sizes of transistors will be taken into consideration in this section. Extensions to the other

practical requirements are made in the following section.

1. Problem Formulation and Method of Solution

Consider minimizing the power consumption of a path while insuring th0.t the path

delay does not exceed a fixed bound, DMAx, and that user specified bounds on transistor

sizes are satisfied. As with delay minimization, arbitrarily choose path input '0'. Define

the power minimization problem to be

subject to 11 .$ S, $ u, i = 1, ... , N

and G(S) = Do{S)- DMAX = 0

The linear objective functi•cn is minimized subject to one nonlinear constraint and N bounds

constraints. As with delay minimization, 1, and u;, are simply determined from the user

specified bounds on transistor size.

6 A full second derivative method using direct computation of the Hessian wns also implemented. Its
execution tin1~s were greater than those for the quasi-Newton approach. This suggests that for the objective
function D0 {S), Dis a good approximation to the true Hessian.

16

The delay constraint is written a.s an equality rather than an inequality since delay

can be traded for power; the point of minimum power consumption will always occur at

the maximum allowable delay and never less.

Nonlinear constraints are difficult to handle directly because it is generally impossible

to follow the surface of the nonlinclr function. Given any point i such that C(i) = o, in

general there is no feasible direction f such that C(i + o:q1 = 0 for all sufficiently small Ia I.

To handle the nonlinear deby constraint, note that [GillS I, Mab85a] at the point, §•,

that minimizes power subject to the constraints, the delay and power contours are tangent.

Hence their gradients point in the same direction.

gP(S*) =A* gC(S*)

where ,* is the Lagrangian multiplier. Consequently, s• is a stationary point of the La

grangian function P(SJ - A*C(SJ

g(P(S*)- A*C(S*)) = 0 (U)

Since the Lagrangian function is convex (see Appendix), §• is also a minimum of the

Lagrangian function. However, it is important to note that the value of the Lagrangian

multiplier, ,*, is not known in advance.

This suggests the general form of the algorithm for power minimization (see Figure 7):

estimate A*, find the minimum of a Lagrangian-type function and repeat. At each step, the

solution to the minimization subproblem is used to make an improved estimate for A• and

a point closer to the desired minimum, s•. In effect, a subproblem is formulated whose

solution approximates the solution of the power minimization problem. This subproblem

is solved and a refined subproblem is formulated. This is repeated until the subproblem

has a solution sufficient.ly close to the solution of the power minimization problem.

The primary advantage of this approach is that it transforms a problem with both

nonlinear and bounds constraints into a sequence of subproblems involving only bounds

constraints. Each of these subproblems is solved by quasi-Newton methods identical to

those used for delay minimization. Both theory and experience indicate rapid convergence

of the subproblems. Hence, the key to this approach is the formulation of the subproblems.

One disadvantage of using the Lagrangian function above for the minimization sub

problem is that the solution to the subproblem is very sensitive to the estimate of the

Lagrangian multiplier [Gi!l81], and no prior knowledge of the Lagrangian multiplier is

17

known. This means that the number of subproblems req1:ired may be large and consider

able computation time may be spent solving subproblems whose solutions are not close to

the minimum of the power minimization problem. The initial subproblem solutions serve

primarily to refine the successive subproblerns.

This problem can be avoided by modifying the form of the subproblem. By adding

to the Lagrangian function a quadratic penalty term, we form the augmented Lagrangian

function

L(S,.\,p) = P(s)- >.C(S) + ~pe(sfc(S)

where p is a positive scalar.

This objective function has the following advantages over use of the Lagrangian function

without augmentation

• Reduced sensitivity to the estimate of.*

• The penalty term strongly steers the iterations towards feasible points

• Relatively low sensitivity to p

The addition of the penalty term makes the augmented Lagrangian function relatively

insensitive to errors in the estimate of the Lagrangian multiplier. Since no advance knowl

edge of the Lagrangian multiplier is known, the algorithm converges to the optimum point

more rapidly. From a body of experimental evidence optimizing paths extracted from real

chips, no more than two iterations of the loop in Figure 7 has been required for optimizing

a single path. For optimization over multiple sets of paths, two iterations usually suffice

but no more than three iterations have been required. Experimentation with various initial

estimates of.\' also substantiate these sensitivity findings.

The quadratic growth of the penalty term forces iterations to remain close to the delay

bound. If the starting point of the algorithm is not feasible, the penalty term forces rapid

convergence to a feasible point.

A potential disadvantage of this approach is that it is possible for the subproblellli! to

be ill conditioned if p is large. In practice it has been observed that the update procedure

{or p (Figure 8) does not lead to ill conditioning. In fact, the progress of the minimization

algorithm is relatively insensitive to changes in p.

18

2. Implementation

A more detailed version of the power minimization algorithm is in Figure 8. Its speed

depends on the matching of both the algorithm and objective function to the characteris

tics of the power minimization problem. It should also be emphasized that the speed of

the algorithm is critically dependent on the implementation of the algorithm. Implemen

tation tuning produced three orders of magnitude improvement in the algorithm speed.

This involved: op~imal use of derivative information, selecting subproblem and line search

accuracy, setting termination criteria, etc. A few of the more important implementation

features are discussed here.

The initial values for A and p where empirically chosen by experimenting over a small

set of paths and a modest range of values. The algorithm is not sensitive to their initial

value.s so little effect on the execution time of the algorithm was observed.

The execution time of the algorithm is sensitive to the accuracy of the initial guess

for 5;.9 Although this is to be expected, experimentation with a variety of heuristics for

choosing the starting point yielded the following surprising result: the number of iterations

required by the algorithm is

• sensitive to the distance of the otarting point from the delay bound

e relatively insensitive to the distance on the delay bound from the optimum point.

Choosing a. near feasible darting point is important; the power consumption at the

starting point is relatively unimportant. The reason for this is unknown, but it is conjec

tured that the bounds constraints often cause a small step size from one iteration to the

next. This forces the algorithm to execute many iterations to locate the delay bound.

The following heuristic is used to generate an initial guess for S. Recall that the delay

minimization algorithm is very fast and takes large initial steps towards the optimum. The

iteration sequence of the delay minimization algorithm is used to find two points, §I•J and

s1 •+~J, whose delay falls above and below the delay bound. Binary search is then used on

the line segment between st•J and st•+I) to locate a starting point whose delay is close to

DMAX•

9 Note tha.t the algorithm will converge for virtually any starting point (see Appendlx). The speed is
sensitive to $(1), but the convergence of the algorithm has not been found to be dependent on the starting
poil:t.

19

There is no reason for this starting point to have low power consumption. Howev~r,

once the algorithm is on the delay bound the value of the augmented Lagrangian function

is don,inatcd by the power term, P(S). Thus, the following steps of the iterations solely

minimiz~ power without having to first satisfy the delay constraint. Furthermore, the

penalty term of the augmented La.ngra.ngian function insures that the search direction

does not stray far from the delay bound.

This heuristic for the starting point was found to perform substantially better tha.n

various fixed choices for s, (such as s, = 1.0 Vi). It is also superior to any of the heuristics

tested that find low power solutions not necessarily close to the delay bound.

At each iteration it is necessary to update the estimate of the Lagrangian multiplier,

.*. At the optimum point, s•, we know (equation 4.1) V'P(S*) = .* V' C(S*). This suggests

estimating .* by finding a. .\ that comes as close as possible to making the equality hold

at the current iteration point; in other words, find .\(k+t) that is the least squares solution

to V'P(sC•l) = .\ V' C(sC•l). This is a first order estimate based on the current point in the

iteration.

Other Lagrangian multiplier estimates were investigated. Experiments were performed

with selected values of.\ close to.* determined by previous runs on the problem instance.

This lea.d to little or no decrease in total execution time. Additionally, it has been noted

that very few loop executions in Figure 7 a.re required. These two results lead to the

conclusion that the increased computational cost of more accurate second order estimates

of the Lagrangian multiplier is not justified.

Information about the effect of the previous step on the augmented Lagrangian function

is used to update the subproblem and determine convergence. At each iteration, the norm

of the constraint function is calculated. At the optimum it should be zero. This is scaled

by the size of the elements of the Jacobian matrix. This value, newnorm, is a measure of

the infeasibility of the delay constraint at the current point. 'oldnorm' is the value at the

previous iteration point.

The relative values of the norms (newnorm and oldnonn) are used to adjust the sub

problem and its required accuracy. The penalty constant, p, is adjusted up or down de

pending on whether the new point is more or less feasible than the previous point. Smaller

values of p reduce the condition number of the subproblem. Hence it is desirable to reduce

pas low as possible while still insuring that the eubproblem has a bounded minimum.

As noted earlier, the execution time of the subproblem is roughly directly propor

tional to the required accuracy. For a fast implementation, the required accuracy of the

20

subproblem should be proportional to the degree to which the subproblem approximates

the original power minimization problem. Decreasing values of the norm dictate more

accurate solutions to the subproblems. This is reflected by adjusting ~inner _stol• for each

subproblem.

D. Multiple Paths and Delay Independence

This section extends the modeling of the delay, area, and power minimization problems

to permit optimization over multiple paths through the circuit. The optimization will also

be independent of the data values propagating through the circuit; delay, power, or area

will be optimized over both polarities of the input signal to each p:1th.

These cases conclude the four practical requirements that the optimization algorithms

must handle. The problem models in this section correspond to those implemented in the

automated electrical optimization tool, EO.

First, consider data independence. For a single path, D0 (S) has been defined to be the

path delay with a logical 'O' value as the input to the path; D,(s) corresponds to a 'I' path

input. The goal is to optimize the circuit behavior independent of the path input. For the

delay minimization problem, this means minimizing the objective function

max (D0 (S), Dt{S))

This function has a discontinuous derivative arising from shifts in the maximum delay

from one input signal polarity to the other. Continuous first derivatives are essential for

the speed and convergence of the quasi-Newton algorithm.'"

The maximum function is approximated by the smooth function, smaz [Rueh77],

_ 1, a~t a:r .. •maz{z., ... ,z.)--.n{e + ... +e)
a

where a is the smoothing constant that determines the sharpness of the transition from

one delay to another. The optimization problem becomes

minimize •maz(D0 (S), Dt(S))

10 A version of tho quasi-Newton algorithm not using direct computation of the derivative was implemented
and evaluated. !t required approximately 50 times as many function evaluations as compared to using
derivative information and thus was prohibitively slow.

21

This will optimize the delay through a eingle path independent of the data values in the

circuit.

Next, consider multiple paths. The designer's goal is to optimize circuit behavior. This

requires considering multiple paths from circuit bputs or memory nodes to the circuit

outputs. The critical path capability of EO identif.es all critical and near critical paths

through the circuit. Over this path set, the goal is to minimize or bound the delay through

any path in a path set a!!d with any combination of input values to the !Ja.ths.

Let Q be a set of paths through a circuit. For any path q E Q, let D011 be the delay

through path q with logical '0' path input and D1, be the delay with '1' input. The delay

minimization problem for multiple paths with data independence becomes

subject to I; ~ S, ~ u; i = 1, ... , N

where N is the total number of gates in all the paths. This minimizes the maximum delay

over all paths and all input data values.

For power and area minimization, the objective functions P(S) and A(S) are unchanged,

but the summation must be performed over all gates in all paths. The delay constraint

must, of course, be the maximum delay over all paths. For example, the power minimiza

tion problem becomes

subj ect to l; ~ S; ~ u; i E G

and C(.S) = DQ(S)- DMAX = 0

where G is the set of all gates contained in the path set Q.

The problem formulation for area minimization is similar.

5. Summary of Results

EO has been used to extract, analyze and optimize paths from a number of nMOS chip

designs. The algorithms \'vork for CMOS circuits, but they have not been run on any CMOS

designs. Tables 1 and 2 show the results of performing delay and power minimization on

two sample circuits. The circuit 'Control' is the control logic section from a larger chip,

and 'Decode' is an instruction decoder circuit .

22

For each of the circuits, performance is optimize:! fer a varying number of paths. All

paths were selected by critical p2.th analysis. The single path (Number of Paths = 1) is

the slowest path in the circuit. Each larger set of paths includes the next smaller set. Thus

the path sets for each circuit include successively larger groups of critical and near critical

paths. In all three tables, s, was restricted to the range 0.5 $ s, $ 4.0 for all i. The tables

also show the number of different gates appearing in the set of paths.

The results of minimizing delay are summarized in Table 1. This show 3 the delay in the

or:ginal circuit before optimization and the delay at the optimum point. The number of

search points is one greater than the number of iterations (Figure 7) of the delay algorithm

and is thus one measure of computational cost. The CPU time is another more direct

measure.

Several conclusions can be drawn from this data:

• Substantial delay reductions were achieved in all circuits analyzed. Total delay could

often be cut by a factor of three as compared to the original, unoptimized circuit.

• Low computational effort was required. CPU times were short allowing the interactive

response of EO to be very fast. Typical delays are at most a few seconds.

The results of minimizing power are shown in Table 2. The same path sets are used

as in the first table. Power was minimized while holding the delay through the slowest

path constant(± 1.0%). EO reallocated power between gates in a given path and between

paths (slowing down paths that do not limit circuit performance). This causes optimal

utilization of a scarce resource (power) while not affecting circuit speed. Power reduc~ions

of 10 to 30% are common.

The response time for power minimization was fast. No more than 25 seconds of CPU

time were required for fairly large path sets.

In sum, both the delay and power minimization algorithms rapidly compute optimal

transistor sizes. This allows EO to provide very fast response time. This interactive

capability of EO is a substantial advance over batch-mode tools for optimization. With

our limited experience, EO has proved to be a highly effective tool.

The dependence of compute time on problem size is a key characterization of the algo

rithms. The complex nature of the optimization routines precludes meaningful theoretical

results for the power and delay minimization problems. Instead, an empirical evaluation

has been conducted.

23

A single, very long path was selected. H was subdivided into its first 2 gates, first

5 gates, etc. Optimization was performed on each of these increasingly long subsections

cf the path. The compute requirements as a function of path length are shown in Table

3. For power minimization, the number of subproblems is the number of loop executions

in Figure 7; each loop execution requires the minimization of a single subproblem. The

number of search pc:nts visited to solve each of the subproblems is reported. Their sum

is a measure of the compute time required for the problem.

The growth in CPU time is approximately a linear function of the number of gates in

the path (Figure 9). The varying contours of the objective functions causes some instances

to be more costly and some less; this is typical for many search problems. The pattern

is for a linear increase of CPU time with steeper slope for power minimization. This is

corroborated by the growth rate of the total number of the number of search points.

Linear growth has been observed for many paths, and it is believed to be typical for

these algorithms. However, in general, nonlinear optimization has greater than linear

compute time growth. The superior performance of delay or power minimization due to

several factors:

o The objective and constraint functions are quadratic and well-behaved. The prob

lem is inherently well conditioned, and the (approximate) second order quasi-Newton

methods accurately predict th~ behavior of the objective and constraint functions.

• The algorithms are well matched to the problems. The use of an augmented Lagrangian

function results in very few subproblems (2} and hence is an excellent model of the

power minimization problem.

6. Conclusions and Topics for Further Research

Simplified electrical models of transistors and gates are used to estimate the perfor

mance of digital MOS circuits. Using these models, linear time algorithms compute the

optimum transistors sizes to minimize delay, area or power. Based on these models and

algorithms, an interactive electrical optimization tool was implemented. During the past

two year this tool has been used to analyze a variety of industrial and university nMOS

circuits.

The major conclusions of this research are:

1) Automatic computation of optimal transistor sizes produces circuits that are often

substantially better than those produced by manual design. Optimal circuits are typ

ically faster and have substantialiy improved area and power consumption. This of

24

course depends on the amount of manual effort the designer has invested. The tedium

of manual tr:msistor sizing typically forces the designer to choose from a small set of

sizing alternatives. Optimal circuits exhibit a much wider range of sizes and thus are

often prohibitively difficult to discover manually.

2} Optimal transistor sizea can be rapidly comp::ted. The experimental evidence shows

the algorithms to be approximately linear. Compute times are typically 2·20 seconds

even for fairly large sets of paths containing 30 to 40 gates. The speed of the algorithms

allows interactive computation of transistor sizes.

3) An interactive tool to compute optimal transistor sizes increases designer productivity

and improves circuit quality. The initial experience with EO has been very favorable.

The response time of the tool is very fast, and the basic user interface hirly simple.

A surprising result is that nonlinear optimization techniques are sufficiently fast to

handle even large circuits. The high speed and fast response of EO results from three

factors:

• The optimization problem has been carefully formulated to be well behaved. Also,

the algorithms and their implementations have been carefully tailored to the specific

problems at hand. As a result, little searching of the state space is required.

• Simplified transistor models allow the problem to be formulated as a relatively simple

set of tridiagonal, quz.dratic equations. These can be solved with high computational

efficiency. Simulators such as SPICE require two to three orders of magnitude more

computation time making the optimization problem prohibitively costly.

• The electrical models of the paths to be optimized is represented by a simple and

compact data structure thus allowing rapid access. The full circuit is represented by

a complex grap~ structure composed of interconnected paths, gates, transistors and

nodes. From this, a compact optimization model is extracted. It consists of a simple set

of arrays containing resistances, capacitances, etc. These arrays can be rapidly accessed

with a minimum of indirect addressing. This substantially reduces the overhead of the

optimization algorithms. Direct access of the graph structure would be approximately

50% slower. In addition, the optimization modeler coalesces individual transistors and

nodes into gates. Thus the optimizer works at a higher level of abstraction.

• EO is well matched to the activities performed by designers. The goa! is to form

a man-machine combination that is more effective then either alone. To accomplish

this, the basic mode of operation built into EO is that of making incremental circuit

25

improvements based on guidance from the designer; the designer specifies path sets

and performance requirements. Incremental improvement is a fundamental engineering

method. User guidance in part prevents the CAD tool from becoming overwhelmed

with the complexity of VLSI circuits. Typically, only l-10%of the gates in a large

circuit need be optimized at any one time.

There are numerous topics for future research. The primary topic is investigating more

accur;,.te models for delay prediction. A slope model [Oust84] that incorporates the effed

of waveform slope h<J.S been added to the most recent version of EO. It computes path

delays to within 6-8% of SPICE.

Additional work is underway on analytical analysis of the problem: What simplifica

tions must be made in order to derive closed for solutions to the optimization problems?

The development of a production quality electrical optimizer was begun in June 1985.

Planned are extensions to CMOS technology, a graphical interface and integration into a

symbolic layout system.

Acknowledgements

Many people have contributed to this work. Conversations with Gershon Kedem have
been most enlightening. Richard Craddock, Rick Gross, William Hargrove, and John
Poulton read a draft of this paper and made numerous helpful comments. Leigh Pittman
did a superb job preparing the figures and the manuscript. Last but not least, John
Ousterhout 's work on Crystal has contributed greatly to this research. The critical path
analysis and trigger model have been borrcwed from Crystal.

Agul77

Gill81

Gla.s84

Hedl85

Hedl84

Joup83

Lee84

Mats85a

Mats85b

Nye81

Okaz84

Oust83

Oust84

Penf81

References

Agule, B.J., Lesser, J.D., Ruehli, A.E. and Wolff, P.K. •An Experi
mental System for Power/Timing Optimization of LSI Chips," Pro
ceedings of the Fourteenth Design Automation Conference (1977).

Gill, P.E., Murray, W. and Wright, M.H. Practical Optimization, Aca
demic Press (1981).

Glasser, L.A. and Boyte, I,.P.J. "Delay and Power Optimization in
VLSI Circuits," Proc. £1st Design .tlutomation Conf. (1984), 529-
535.

Hedlund, K.S. "Electrical Optimization of PLAs," Proc. ££nd. De
sign Automation Conf. (June 1985).

Hedlund, K.S. "Models and Algorithms for Transistor Sizing in MOS
Circuits," IEEE International Conf. on Computer-Aided Design
(Oct. 1984).

Jouppi, N.P. "Timing Analysis for nMOS VLSI," Proc. £0th Design
Automation Conf. (1983), 411-418.

Lee, C.M. and Soukup, H. "An Algorithm for CMOS Timing and Area
Optimization,• J. of Solid-State Ci1"cuits, SC-19, 5 (Oct. 1984}, 781-
787.

Matson, M.D. "Optimization of Digital MOS VLSI Circuits," 1985
Chapel Hill Conf. on VLSI (May 1985).

Matson, M.D. Macromodeling and Optimization of Digital MOB VLSI
Circuits (Feb. 1985), Ph.D. Thesis, MIT.

Nye, W., eta!. "DELIGHT: An Optimization-Based Computer-Aided
Design System," Proceedings IEEE International Symposium on Cir
cuits and Systems, (Aprill981), 851-855.

Okazaki, K., Moriya, T. and Yahara, T. "A Multiple Media Delay
Simulator for MOS LSI Circuits" Proc. 20th Design Automation
Con/. (1984), 279-285.

Ousterhout, J.K. "Crystal: A Timing Analyzer for nMOS VLSI Cir
cuits," Third Caltech Conference on Very Large Scale Integration,
(Jan. 1983), 57-70. ·

Ousterhout, J.K. "Switch-Level Delay Models for Digital MOS VLSI,"
Proc. 215t Design Automation Conf. (June 1984), 542-548.

P{'!lfield, P. Jr. and Rubinstein, J. "Signal Delay in RC Tree Net
works," Proc. 18th Design Automation Conf. (1981), 613-617.

26

Rubi83

Rueh77

Tamu83

Toku83

Trim83a

Trim83b

Rubinstein, J., Penfield, P. Jr. and Horowitz, M.A. "Signal Delay in
RC Tree Networks" IEEE 7raM. on CAD/ICAS CAD-2 3 (July
1983), 202-211.

Ruehli, A.E., Wolff, P.K. and Goertzel, G. "Analytical Power/Timing
Optimization Techniques for Digital Systems," Proceedings of the
Fourteenth Design Automation Conference (1977).

Tamura, E., Ogawa, K. and Nakano, T. "Path Delay Analysis for
Hierarchical Building Block Layout System," Proc. 2oth Design Au
tomation Conf. (1983), 411-418.

Tokuda, T. et.al. «Delay-Time Modeling for ED MOS Logic LSI,"
IEEE Trans. on Computer-Aided Design, CAD-2, 3 (July 1983),
129-134.

Trimberger, S.M. Automated Performancu Optimization of Custom
Integmted Circuits, (Jan. 1983), Ph.D. Thesis, Cal Tech.

Trimberger, S.M. "Automated Performance Optimization of Custom
Integrated Circuits," VLSI 89, (Aug. 1983), 99-108.

27

Appendix • Theoretical Results

This section establishes the convexity of the objective functions used in power and

delay minimization. Convexity guarantees that a single global minimum exists.

Theorem 1 - D0 (S) is convex.

Proof-To establish this, we must show that G(S), the Hessian of D0 (S), is positive definite.

In other words,

for any nonzero vector z

By definition, the s, form an orthogonal basis for the search space. Let 1/i be the unit

vector in directions,, IIi=< o, ... ,l, ... ,o >with the one in the ,~• position. We need show

only

i= l, ... ,N

But

which is strictly positive. Consequently, G(S) is everywhere positive definite. a

The convexity of D0 (S) establishes that the delay minimization problem for a single

path without bounds on the s, has a single global minimum. D1 differs from Do only by

substituting even(i) for odd{i). Thus D1(S) is also convex.

Next we show convexity of the objective function for multiple paths.

Theorem 2- If !1 are convex functions then smax fi is convex.

Proof- As in Theorem 1, we must show

1
yT{smax IJ)IJ; = yf(-;;ln :~:::>"'i)y; > 0 i = l, ... ,N

j

~max /j is convex iff :[1 e"h is convex. Since e"f; is monotonic, it mlist be convex if t1 is

convex. o

Gate 1 2 3 Delay

B A

a) Three CMOS Inverters b) Delay Behavior

Figure 1 - Example of Effect of Transistor Sizing
on Delay (D =total delay through all 3 gates;

d2 = output delay of gate 2)

%eo MainCntrl.sim

••• MainCntrl: 111 nodes 97 depletion 408 enhancement

eo> Critical Path
Transition Delay Lpu
InSt2* -> 0 1.4 (ns)

jbar -> 1 13.5 (ns) 2.0
jbuf -> 0 4.6 (ns) 2.0
r16 -> 1 15.1 (ns) 4.0

zObar -> 0 2.2 (ns) 4.0
MO -> 1 31.0 (ns) 2.0

path pMO delay 67.8 (ns)

eo> Set max pdwidth 32
eo> Set min pulength 0.5
eo> Minimum Delay pMO

Maximum Delay
Power Consumption

Transition
InSt2* -> 0

jbar -> 1
jbuf -> 0
r16 -> 1

zObar -> 0
MO -> 1

path pMO delay

Delay
2.6
5.7
4.0
4.9
1.4
8.4

27.0

eo> Minimum Power pMO

Before Opt
67.8 (ns)
13.1 (mW)

Lpu
(ns)
(ns) 0.50
(ns) 0.80
(ns) 1.00
(ns) 1.67
(ns) 0.50
(ns)

~"lpd

8.0
8.0
4.0
4.0
8.0

After Opt
27.0 (ns)
45.0 (mW)

Wpd

32.0
20.0
16.0
9.6

32.0

After/Before
0.399
3.43

*** enter (flt pt) Maximum Allowable Delay (ns) = 45.0

Before Opt After Opt After/Before
Maximum Delay 67.8 (ns) 45.0 (ns) 0.661

Power Consumption 13.1 (mW) 17.3 (mW) 1.317

Transition Delay Lpu Wpd
InSt2* -> 0 1.5 (ns)

jbar -> 1 12.4 (ns) 1.82 8.8
jbuf -> 0 4.8 (ns) 2.50 6.4
r16 -> 1 8.8 (ns) 1.11 7.2

zObar -> 0 1.9 (ns) 3.10 5.2
MO -> 1 15.6 (ns) 1.00 16.0

path pMO delay 45.0 (ns)

eo> Quit
[39.7 V.~ 11/750 CPU seconds]

Figure 2 - Interactive Session with Electrical Optimizer

c , c.,.
I Ccl+f

R ,

Figure 3 - Electrical Model of a Path (nMO S)

+ o-----1

Figure 4 - Electrical Model of a Transistor

si = 4.o 2.3 4.o 2.3

--~~~--~~»--~~~--~---

Total
Path
Delay

01S X ?.Ons X 12.0ns X ?.Ons X 12.0ns 32.0ns

01S 4.0ns 3.5ns 4.0ns 3.5ns 21.0ns

a) Circuit optimized for '0' path input

si = 2.1 4.o 2.1 4.o

--[>o----1~»----1~>-----[>o--

01S x13.1nsx ?.Ons x13.1nsx ?.Ons

015 3.8ns 4.0ns 3.8ns 4.0ns

b) Circuit optimized for '1' path input

~ = 3.1

--~~»--~[>o»---~~~--C>o,___-
3.1 3.1 3.1

01S X 8.9ns X 8.9ns X 8.9ns X 8.9ns

015 2.6ns 2.6ns 2.6ns 2.6ns

c) Circuit optimized for both polarities of path input

Figure 5 - Dependence of Delay Optimization

21.6ns

34.2ns

23.0ns

23.0ns

on Input Signal Polarity (gate scale factors appear
above gates; nMOS inverters with impedance ratio= 4.0)

Compute I; and u; based on transistor size limitations

S; = 1.0 i = 1, ... , N

B 1 = identity matrix

k=l

repeat

compute search direction P. by solving DtP. = v>D0 (St)

find step length, a., that approximately minimizes Do(S. + at.Pt)

make step length a in direction .Pt' s.+l = s. + atfii:

update B.

k=k+l

until convergence

Figure 6-0utline of Quasi Newton Algorithm for Delay Minimization

Along a Single Path.

Compute I; and u; based on transistor size limitations

Initialize ,\ and p

Make an initial guess of S;

repeat

minimize L(S, -\, p) = P(S)- -\C(S) + ~pCT(S)C(S)
subject to I;$ S; $ u; i = J, ... ,N

update,\

update p

until convergence

Figure 7-0utline of Algorithm for Power or Area Miminization

Compute 1, and u, based on transisto1· size limitations

Initialize scalars ,l,Ct) = 1.0 and ;.•> = 10.0

Make an initial guess of vector §<•>
stol = user requested acuracy of s,
inner_stol = required accuracy of s, for subproblem = stol

newnonn = 0.01

k=O

repeat

k=k+1

required accuracy of subproblem = inner_stol =

max(•':' , min(oldnonn, inner_stol))
minimize L(§Ck),>.(k),,Jk>) = P(§Ck))- >.!k)C(§!k)) + !,.Jk>c(§<k)T)C(SCk))

subject to 1, :5 s, ~ u, i = 1, ... , N

by the quasi-Newton algorithm

choose >.Ck+•) to minimize II-' yoC(§!k))- yoP(§'!k)lll~

oldnonn = newnonn
_ {c-(-:-g,.._,,-) T-,-C-(g-=-,-,,-,

newnonn - V -11 vC(s<•-••lll~
P(k+l) = lOp(k) !!_~,..norm

old norm

until convergence

Figure 8 - More Detailed Summary of Algorithm for Power or Area Minimization

Table 1 -Performance of Electrical Optimizer on Delay Minimization

Dehy l\1inimization

Circuit Number Number Delay (ns) Number of CPU
of Paths of Gates Before Opt After Opt Search Points Time (sec)

Control 1 5 69.6 26.1 9 0.8
4 12 69.6 26.3 7 1.2

12 33 69.6 26.2 13 5.5
37 36 69.6 26.5 10 7.5

Decode 1 5 58.7 19.9 6 0.8
6 20 59.1 21.0 13 1.6

10 31 59.1 21.0 13 4.6
16 46 59.1 21.0 15 6.1

Table 2- Performance of Electrical Optimizer on Power Minimization (Delay Constant)

Power Minimization

Circuit Number Number Power (mW) CPU
of Paths of Gates Before Opt After Opt Time (sec)

Control 1 5 13.1 10.5 1.6
4 12 29.5 24.1 3.2

12 33 80.4 52.0 13.3
37 36 88.6 61.9 24.4

Decode I 5 13.1 10.2 1.4
6 20 45.9 39.8 9.1

10 31 70.5 54.4 20.0
16 46 112.3 87.5 26.5

CPU times are measured on a VAX 11/750 with floating point accelerator.

Table 3 - Compute Time vs. Problem Size for Delay and Power Minimization on a Single Path

Power Minimization Delay Minimization

Number CPU Number of Search Points CPU Number of
of Gates Time(sec) Subproblems Per Subproblem Time(sec) Search Points

2 1.8 2 5 3 0.5 3
5 1.4 2 11 3 0.6 6
10 2.0 2 14 3 0.8 6
15 3.9 2 27 5 1.0 7
20 5.8 2 30 4 1.2 7
25 8.2 2 28 15 3.1 16
30 7.1 2 24 2 3.5 14

CPU times are measured on a VAX 11/750 with floating point accelerator

CPU

Time

(sec)

9.0

8.0 • Power Minimization

+ Delay Minimization
7.0

6.0

5.0

4.0

3.0

2.0

1.0

10 20
Number of gates

Figure 9 - Delay and Power Minimization on a Single Path as
a Function of the Number of Gates (see Table 3)

•

30

