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ABSTRACT

A promising image description is produced by dividing an image into nested light
spots and dark spots by considering the image simultaneously at many levels of reso-
lution [Koenderink, 1984]. These spots each include an image extremum and are thus
called eztremal regions. The nesting can be specified by a tree indicating the contain-
ment relationships of the extremal regions. This tree description, with each region
described by intensity information, sise, shape, and most significantly a measure of
the importance, or scale, of the spot, absolutely and relative to its containing spot,
ought to be usable in finding meaningful image objects when it is used together with
a priors information about the expected structure of the image or its objects. This
paper will describe work in the development of a comrputer program to compute such
a description and its application to the display and segmentation of images from x-ray
computed tomography and nuclear medicine. .

1. PATTERN RECOGNITION AND DISPLAY VIA IMAGE DESCRIP-

TION
1.1. Introduction

Pictorial pattern recognition involves finding and labeling image objects. User
interaction with and appreciation of an image frequently requires finding and labeling
image objects, for example to allow the measurement of properties of the object or to
provide a display which enhances the object. Indeed 3D display by shaded graphics
depends on first defining the object to be displayed.

Most of the techniques attempted for defining objects work locally, directly with
pixel intensity values. For example, both edge following and conventional region grow-
ing are done pixel by pixel. These methods have achieved only limited success, because
the pixel values are too local to be easily combined into objects that are defined to
a significant degree by their global properties. The first stage of a more attractive
approach is to produce an smage description that is more global. The creation of such
a description should use only information from the image and not semantic informa-
tion (from expectations about the scene or the viewing task). The second stage would
use semantic (“real world®) a priors knowledge together with the image description to
define meaningful objects.

This approach of object definition based on a precomputed image description can
be used for either automatic or interactive scene analysis. In automatic object def-
inition the real world a prion knowledge is provided by predefined structures which
are matched to the image description. In interactive object definition information is
provided in addition by the human observer about objects he or she sees so that the




computer can ®perceive® the same object. The idea is that the observer can sper:ify
global properties of the object that is seen on some display, e.g. itl. location,‘intennty,
scale, or name, and since the image has been reduced to a description reflecting global
properties, fast interactive selection of image objects that match the observer’s indi-
cations can be accomplished. The result can be displayed to the observer, who can
accept the definition, edit it, or modify the defining parameters. The resulting object
can be used to provide measurements, e.g. of volume or shape, or to serve as the basis
for display or display interactions.

An attractive image description in this spirit [Koenderink, 1981] focuses on de-
composing the image into light and dark spots, each, except for the spot representing
the whole image, contained in others. Thus a face might be described as a light spot
containing a light spot (a reflection from the forehead) and three dark spots (the
mouth and the regions of the two eyes). In turn the eye regions would be described as
containing a dark spot (the eyebrow), a light spot (the eyelid), and a dark spot (the
eye), with the latter containing a light spot (the eyeball) which itself contains a dark
spot (the iris) which finally contains a yet darker spot (the pupil). We call these light
and dark spots, at whatever scale, eztremal regions, since they each include a local
intensity maximum or minimum.

Amount of Blurring

& Spatial Location
\A/
intenshy Exvema
in Original image
FIGURE 1. Extremal paths through the stack
1.2. _Hierarchical descriptions from multiresojution processing

The image description in terms of extremal regions can be produced by following
the paths of extrema in a stack of images in which each higher image is a slightly blurred
version of the previous one. As illustrated in figure 1 and explained in Koenderink
[1984), progressively blurring an image causes each extremum to move continuously,
and eventually to annihilate as it blurs into its background. An eztremal path is formed
by following the locations of an extremum across the stack of images.

Intensity must be monotonic (increasing for dark spots and decreasing for light
spots) as one moves along an extremal path from the original image towards images
of increased blurring. As illustrated in figure 2, while following each extremal path
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FIGURE 2. Extremal paths and associated iso-intensity contours "

one can associate each path point with the iso-intensity contour that is at that point’s
intensity and that surrounds that extremum in the original image [Koenderink, 1984].
The points (pixels) in the original image on the contours thus associated with each
extremal path then form an extremal region (see figure 3).

Each contour point in the original image can be associated with its extremal path
by following the point to another with its intensity level at the next level in the stack,
continuing through the levels until the extremal path is reached (see figure 4). This
process defines an iso-snfensity path.

It has been shown that all extremal paths must start in the original image if
gaussian blurring is used. Extremal paths cannot be initiated at higher stack levels.
However, as indicated above, extrema annihilate when the blurring is sufficient to make
the light or dark spot blur into an enclosing region. The amount of blurring necessary
for an extremum to annihilate is a measure of the importance or scale of the extremal
region, including the subregions that it contains.

The intensity of the topmost point on an extremal path is its annihilation inten-
sity. This is the intensity of the iso-intensity contour that forms the boundary of the
associated extremal region. Remember that the annihilation intensity bounds from
below (above) the intensities in the extremal region if the associated extremum is a
maximum (minimum).

1.3.

As illustrated in- figure 2, when an extremum annihilates at some annihilation
intensity, another region’s iso-intensity contour at that intensity encloses the region
associated with the annihilating extremum [Koenderink, 1984]. Thus, a containment
relation among extremal regions is induced by the process. This set of extremal regions
together with their containment relations can be represented by an image description
tree in which nodes represent extremal regions and a node is the child of another
if the extremal region that it represents is immediately contained by the extremal

region represented by the parent (see figure 5). The root of the image description tree
represents the entire image.
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LEVEL

FIGURE 4. Extremal paths (indicated by solid lines) and iso-intensity paths (indicated
by broken lines). Iso-intensity contours are indicated in the original image (level 0).
The relation of an extremal region enclosing another region is indicated by arrows.
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Extremal Paths and Regions image Description Tree

FIGURE 5. Extremal paths, with their regions and scales, and the associated image
description tree

Each node in the image description tree can be labeled with its scale, i.e. the total
amount of blurring necessary for its extremum to annihilate. Furthermore, each node
can be labeled with the annihilation intensity of the associated extremum. Finally,
the node can be labeled with the size, shape, onentahon, location, or other spatial
characteristics of its extremal region.

It is possible that the description process described above can be beneficially
preceded by some preprocessing, e.g. to enhance contrast or edges. In fact, Crowley
[1984] has developed a similar scheme of extremum following in a multiresolution pile
of images that are edge-enhanced by a sort of unsharp masking, and he has applied it
with promising results. We have tried such preprocessing a few times with some benefit
but will not discuss it in greater detail in this paper. However, it is worth noting that
a noncognitive component of human visual perception may possibly be well modeled
by an edge-enhancing preprocessing followed by the production of a stack-based image
description.

2. SAMPLING

With computer implementation both space and the amount of blurring become
discrete. That is, space is divided into pixels and blurring is not done continuously
but by convolution with a gaussian of a non-infinitesimal standard deviation, which
may vary from blurring step to blurring step.

The amount of blurring in each step needs to be controlled so that confusion
in following extremal paths and associated iso-intensity paths across stack levels is
avoided, while limiting the number of steps so that reasonable efficiency is achieved.
When there are many extremal paths, we have taken this criterion to imply an inter-
level blurring that is just large enough to ensure that real changes dominate changes
due to arithmetic error. When there are few extremal paths, an inter-level blurring is
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chosen that produces significant progress toward annihilation of one of the paths.

Progress toward annihilation depends on taking steps related to the distance be-
tween paths. We keep count of the number of remaining paths as we move up the
stack, and when there are fewer extremal paths than some threshold (in present use,
G), we blur at each level by averaging over a region whoee diameter is the distance
between the closest paths at that level.

For levels below the point where efficiency considerations lead to the blurring just
described, we need to interpret when “real changes dominate changes due to arithmetic
error.” Koenderink [1984] and Piger [van Os, 1984] have both interpreted this to mean
that the attenuation of the height of some basic function is a small integer multiple of
the arithmetic error, but these two investigators have chosen a different basic function.
Koenderink chose a sinusoid at the Nyquist frequency associated with the total amount
of blurring at any given level, while Pizer chose a gaussian which was a spike in the
scene (but not the original image, which already is a blurred version of the scene) on
a flat background, where the ratio of the hexght of the spike to the background has
eome value chosen as a parameter.

Koenderink’s choice leads to

b0 _, VT

03 " —logep'

where o2 is the variance of the total blurring in the image at the present stack level,
602 is the variance of the blurring to be applied to that image, p is the bound on the
relative error in the computer representation of intensity, and & is a small integer. This
has the attractive property that the amount of additional blurring (602) is proportional

to the total blurring done to create thm level.

Pizer’s choice leads to

5o  Ko(1+8%)
o3 = l__k,pp,t ’

where p is as before, k' is a small integer, g is the ratio of background to peak height in
the scene, and o3 is the blurring due to imaging. Eventually the peak height relative
to the background becomes so small that no blurring can reduce it to the criterion
degree. At this point the blurring at each step is chosen to allow a decrease in spatial
sampling of 2 in each dimension, a common approach in multiresolution methods. To
achieve this goal, §0? must be proportional to 02 with a constant of proportionality of

3; the result is that the total blurring standard deviation increases by 2 at each step. -

Studies by van Os and Piger (1984| indicate that Pizer's choice leads to fewer
levels of blurring with no major loss in the quality of the result, when the blurring
used in the very first step of the two approaches is the same.

The sampling in space should, by normal sampling practice, decrease as you move
up the stack, i.e. as the amount of blurring increascs. More precisely, the inter-
pixel distance should be proportional to the standard deviation of the total amount of
blurring due to imaging together with the stack blurring. Using an argument based on
the aliasing error at the Nyquist frequency, Pizer suggests a proportionality constant
of approximately »/\/1 = log.p.
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However, changing the spatial sampling as you move up the stack complicates the
extremum and iso-intensity path following processes. As a result, in this early stage
of our research, we have left the spatial sampling in all stack levels the same as in the
original image. Part of the efficiency of resampling is achieved in our method, since
only pixels that are on an iso-intensity or extremum path are followed to the next
level.

S. AN ALGORITHM FOR PRODUCING A STACK-BASED IMAGE
DESCRIPTION TREE
_Algorithm description

It is our plan to use the image description region tree presented above for both
automatic and interactive object definition. However, this object definition work is still

in its early stages, and most of the remainder of this paper will focus on computing

the image description and on properties of the resulting description.

Programs to compute the image description tree by successive blurring, extremal
path following, and iso-intensity pixel linking have been written at Rijksuniversiteit
Utrecht and The University of North Carolina. These programs differ slightly in the
implementation details. Some of these differences will be presented later. The initial
description will be of the UNC version. The programs are applicable in one, two, and
three dimensions, in the last case not slice by slice but fully in 3D.

The tree described in section 1.3 represents the nesting structure of extremal
regions. On the way to producing this structure it is useful to create an sntermed;-
ate description tree which contains more detailed information about individual pixels.
Each node in this tree corresponds to one pixel in the image stack, but only some
pixels in the stack have a node in the tree. In particular, pixels that are either on an
extremum path or an iso-intensity path make up the nodes in the tree.

A node corresponding to a non-extremum pixel is called a normal node, while
one representing an extremum is an eziremum node. Extremum nodes are linked by
extremal path links to form a representation of an extremal path. Similarly, normal
nodes are linked by normal path links to represent an iso-intensity path. A link to a
normal node parent is called a normal path link, regardless of whether the child is a
normal or extremum node, and an extremum node can be linked to an extremum parent
by a normal path link if the connection is not part of an extremal path. Annihilation
is represented by the connection of an extremum node via a normal path link to either
a normal parent, or an extremum parent on a different extremal path.

An overview of the algorithm is as follows. The program links pixels in each level
of the stack to pixels in the level above them. During this process it also creates nodes
in the intermediate description tree. To accomplish this linking, the program works
on the two adjacent images at the two stack levels being linked.

Each pixel in an image can be thought of as a potential node in the intermediate
description tree. All pixels in the original image form leaf nodes of the tree; each
will be either on an extremal path or an iso-intensity path. After acting on the two
images as described below, the lower image is discarded (but any nodes created are
kept in the tree); the upper image becomes the lower image; and the next slightly
more blurred image becomes the new upper image. This process continues until only
one extremal path remains. The remaining nodes are linked to this path, and the tree
is then written to a file.
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A skeleton of the procedure in pseudo-code is as follows:

find extrema in the original (currently “lower®) image
while more than one extremum remains do
blur “lower” image to create “upper” image
find extrema in the upper image
link pixels in the lower level to those in the upper level, creating nodes in the
intermediate description tree as appropriate
discard lower image; upper image becomes new lower image
link remaining paths to last extrem.al path. output tree to a file.

An explanation of the main elements of this algorithm follows.

3.1.1. _Extrema identification. Each of the two active planes is examined sepa-

rately to find the existence and location of extrema. A point in an image is considered
a maximum (minimum) if it is of greater (lesser) intensity than all of its eight sur-
rounding pixels. The entire image is examined, and each of the extrema are marked as
such. All other pixels are called “normal” pixels. Once this is done for the upper plane
(it having previously been done for the lower plane), the linking routine is invoked.

3.1.2. _Linking. The linking routine examines each pixel in the lower plane that is
on an extremum or iso-intensity (normal) path, i.e., that is a node in the tree. It finds
an appropriate pixel in the upper plane to link to. The linking strategy for extremum
pixels differs slightly from that for normal pixels.

The algorithm tries to link an extremum pixel in the lower image to a similar type
(maximum or minimum) of extremum in the upper image. If it fails to be able to do so,
then it invokes the linker for normal pixels, which has less stringent criteria for linking.
The general strategy is to search for a parent in the small neighborhood surrounding
the pixel directly above it in the upper image. The pixel in this neighborhood with
intensity value closest to that of the child’s in the lower image is picked as its parent.
There is a maximum intensity difference allowed between a pixel in the lower plane
and its parent. If no pixel in the selected upper plane neighborhood is close enough
in intensity to the lower pixel, the neighborhood is enlarged slightly and the search
continues. If no viable candidate is found then, the maximum intensity difference
allowed is incremented and the neighborhood search is repeated. If this process fails
to find a viable parent, the pixel is linked to the pixel directly above it.

Many extremum nodes can link to the same extremum father even though the
theory for the continuous case does not allow an extremum to merge directly with
another extremum, but instead requires it to merge with a saddle point, with both
the saddle point and the extremum annihilating. If more than one extremum pixel
is linked to the same extremum father, the extremum son with the closest intensity
on the appropriate side of the father’s intensity (above for a maximum, below for a
minimum) is connected via an extremal path link. All of the others are connected by
normal path links.

3.1.3. _Node creation, Conceptually any pixel in the upper level which has at
least one child becomes a node in the intermediate description tree. Space is saved by
representing the frequently occurring chains of pixels linked to the pixel directly below
them with a single node holding the range of levels of the chain. A node may have
many children. Both normal and extremum nodes may have normal and extremum
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children.

3.1.4. Extremum annihilation and object definition. Extremum nodes lie on
extremal paths. That is, they have at least one child which is an extremal node, and

they usually have a father which is an extremal node. This extremal path is considered
to have annihilated if the extremum node is not linked to an extremum father or if it
is linked via a normal path link.

The extremal node which is has been identified as annihilating is at the root of a
subtree in the intermediate description tree. All nodes in this subtree belong to the
extremal region associated with its extremal path. The nodes in the original image
form the extremal region associated with this annihilation. This region frequently
includes other extremal regions; that is, some of the subtree’s nodes are annihilating
extrema in their own right. '

3.1.5. _Termination. When only one extremum remains in the upper plane, the
program is near completion. Links are created from the lower to upper plane in the
usual fashion. Following this, one additional node is created. This becomes the root
node of the intermediate description tree, and all nodes from the upper image plane
are forced to link to this root node, in the process creating new subregion to region
connections. The tree data structure, now complete, is written out to a file which can
be read in and traversed by a display or pattern recognition program at a later time.

3.2. .lmplementation complications
The theory behind the stack technique was developed in continuous space. This

means that intensity quantization (floating point), extremum and iso-intensity path
following across discrete levels with discrete pixels, and finiteness of image size are all
aspects which are not explicitly addressed in the basic theory.

The most significant problem arises from the non-infinitesimal blurring between
each level in the stack. The major complication that this introduces is an uncertainty
as to which pixel in the upper plane a pixel in the lower plane should link. In the
continuous case, there is always a pixel in the upper plane with precisely the same
intensity as the pixel in the lower plane, and it is always “close® to the same position
as the lower pixel (in fact the path taken by the pixel from level to level is an integral
curve of a vector field [Koenderink, 1984]). In the discrete case no pixel in the upper
plane will have exactly the same intensity as its child, and the distance to be traversed
for the link may be several pixels. Decision criteria must be developed to determine
which possible linking candidate for parent pixel is the one to be chosen.

Linking criteria developed at UNC and at Rijksuniversiteit Utrecht differ some-
what. The main difference is in the way extremal points are handled. As mentioned
above, at UNC each of the two active images is examined separately to locate extremal
points. The points in the lower plane are then linked to an extremal point in the upper
plane if possible, first by checking a close neighborhood and then a larger one. If no
extremum father is found, the point is linked to a normal point.

At Rijksuniversiteit Utrecht extrema are identified only if an extremum son links
to it. As at UNC the algorithm attempts to link each extremum in the lower image to
an extremal point in the neighborhood just above it. If a match is not found, then hill
climbing (or pit sliding) is performed until 2 maximum or a minimum, as appropriate
for the extremal path in question, is reached. The pixel is linked to this. An extremal
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path is said to annihilate if a second extremal path links to the same parent pixel, in
which case a decision is made as to which of the two is considered to be annihilating
based on geometric and intensity differences between the father and the extremum
sons.
The UNC approach requires more searching for extrema than the Utrecht ap-
proach, and it allows new extremal paths to begin at levels above the bottom. How-
ever, for evaluation of the method it allows the user to see which extrema have been
missed, and extrema which are in fact due to arithmetic error do not cause problems
because they annihilate quickly. The hill climbing (or pit sliding) heuristic used in
Utrecht is not guaranteed to find correct links, but it may infrequently find a link that
is missed by the UNC method and thus avoid creating a false annihilation.

Some other complications include determination of appropriate boundary condi-
tions for the finite image and creation of extrema due to quantisation effects. These
complications can be dealt with by standard approaches without much difficulty.

3.3. Implementation performance

The current implementations have not béen optimized for speed of execution or
minimization of space. Some indications of the speed and size of the current UNC
algorithm are nevertheless in order. The program has been applied to between five
and ten CT images of the upper abdomen. It has also analyzed several synthetic images
of one, two, and three dimensions. The Utrecht program has been applied to over ten
2D and 3D images from scintigraphy, MRI, radiography, and normal photography; the
third dimension in the 3D images has sometimes been spatial depth and sometimes
time. Most of the images have been reduced to 64 by 64 images to reduce time and
space requirements of the algorithm in its testing and initial evaluation stage. Running
on a moderately loaded VAX 780, the UNC program takes approximately 45 seconds
to 1 minute to create each level in the stack, together with all its associated structures
(marking extrema, linking to the new level, etc.). The 64 by 64 images tend to need
about 20 levels of blurring before only one extremum remains. Thus the program
runs for about 20 minutes. The intermediate description tree created takes about
250 kbytes, of which about half is blank inter-entry separators. Considerable space
and display time could be saved by reducing the intermediate description tree to the
simpler image description tree.

All of the above numbers scale approximately linearly with image area. Of course,
an image with a lot of noise or very many objects will tend to take longer and create
a larger data structure and so forth. If it is known in advance that the structures of
interest in an image are of small scale, the processing may be terminated before only
one extrema remains, saving much time.

4. INTERACTIVE DISPLAY BASED ON AN IMAGE DESCRIPTION

TREE
The subdivision into regions labeled by scale and intensity provides the oppor-

tunity for the user to explore the extremal regions in the tree and select ones that
are clinically meaningful and of interest. With previously available methods, defining
such objects frequently involves drawing the boundary point by point. This is time
consuming in two dimensions. In three dimensions not only is it unacceptably time
consuming, but the normal approach of working slice by 2D slice impedes the use of
interslice relations in defining the boundary.




In the approach that we have investigated, the user specifies dynamically a range
of intensities and a range of scales, as well as a spatial window, and all original image
pixels in regions with intensity or scale labels in these ranges are displayed if they are
in the appropriate spatial window. When the user sees an object that is meaningful,
the selected pixels can be taken to define the object or the result can be edited by the
user. Then display or measurement operations on that object can commence.

Whenever it is desired to view the image, the display program reads in the im-
age description tree from a file. The user is then able interactively to control which
extremal regions in the image are displayed. This is done by means of various A/D
devices. Two sliders are used to specify a scale range for objects to be viewed. For
example, only big or high contrast objects could be displayed. Similarly, two sliders
specify the intensity range of objects to be displayed. This would be used, for example,
to select bright objects (like the spinal column). Four knobs are used to control the
spatial locations in the image that are to be displayed (maximum and minimum x and
y dimensions).

Currently the display program takes approximately two or three seconds to update
the image displayed. This number is highly variable depending upon the number of
objects in the image, their inter-relationships, the system load, and the speed of writing
to the display device.

Below is a series of images duplayed on our system. The original image that was
analyzed is shown in figure 6a. This is a CT image of the upper abdomen, scaled
down to a size of 64 by 64 pixels. It is displayed by adjusting the interactive knobs
and sliders so as to ask for objects of all possible resolution siges, intensity ranges,
and spatial positions. The light area in the center bottom of the image is the spinal
column. The roundish objects, one on either side of the spinal column, are the kidneys.
On the left, about halfway up is the liver, which seems to be merging with the chest
wall in this image. On the right side, above the kidney is the jejunum, and above that
the transverse colon. The very dark regions are gas.

In figure 6b we have adjusted the sliders to ask only for those objects of larger
scale, thus eliminating the noise. Notice that the darker regions around the kidneys are
displayed as objects, even though medically they are not organs. This is an example
of the program finding something which is not semantically meaningful, even though
it is understandable why it did so. The major organs are clearly visible.

In figure 6¢ the spinal column has been eliminated by changing the intensity slid-
ers to specify that bright objects not be displayed. It should be emphasized that these
regions have been eliminated because they are regions associated with extremal paths
whose annihilation intensities did not fall within the specified range. The display pro-
gram is not simply looking at individual pixel intensities in the image. Only eztremal
regions can be displayed or removed.

In figure 6d the scale range requested specifies only the biggest objects, and all
intensities are selected, resulting in a selection of the liver.

In figure 6e we have specified objects of slightly smaller scale only and have limited
intensity to a middle range, thus obtaining the kidneys and jejunum. The liver is now
gone.

6. EFFECTIVENESS AND FUTURE DIRECTIONS
The image descriptions produced when this stack method is applied to medical
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FIGURE 6. Interactive display based on image description of CT of the upper ab-
domen (at UNC) :

images frequently contain regions that seem well related to meaningful image segments.
This is true even in images with a low signal to noise ratio, such as those from nuclear
medicine (see figure 7). There is therefore indication that segmentation methods based
on this description will obtain far better eegments than more common segmentation
methods of edge detection or region growing. However, regions sometimes break up in
semantically unnatural ways. For example, a blood vessel may break up into a number
of pieces, and one piece may be a subregion of the organ in which it is contained, and
another piece, say on the edge of the organ, may be a subregion of the region adjacent
to the organ. '

Structural pattern recognition techniques seem appropriate to bring eemantic in-
formation to bear to correct this situation and at the same time label the objects,
e.g. the blood vessel as such. These techniques operate by matching descriptions of
known objects, e.g. an image description tree for a typical structure for a particu-
lar organ, to the description of our image, or a portion thereof. The multiresolution
approaches have already shown themselves to be very well suited to this requirement
[Rosenfeld, 1984; Crowley, 1084], as they allow one to operate at large scale (high in
the description tree) first and to use matches there to guide matches at lower scale.

The results of such a matching process is the labeling of objects in the image
description or the reorganization of the description tree to combine subobjects into
previously undefined objects and then label the results. However, because the labeling
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FIGURE 7. Extremal regions from image description of scintigram of the pelvis (at
Rijksuniversiteit Utrecht). Upper left: original image. Other quadrants: each extremal
region of scale smaller than some specified value is displayed with all its pixels at its
average intensity.

d~pends on an image description that in the semantic sense is in error, it is likely that
matching errors will result. We hypothesize that the labeling produced to date by
image description followed by matching can be taken as tentative and used to produce
an improved image description, which in turn could be used to produce an improved
object definition and labeling. Therefore, we are presently working on
(1) creating improved image descriptions by letting the blurring used in producing
the stack at any step depend on the previous tentative segmentation, and
(2) developing methods for matching the image description tree to a prion description
trees for images or image objects to produce a labeled segmentation into image
objects.
The modified blurring is nonstationary and nonisotropic, depending in scale in each
direction on the scale and orientation of nearby objects that are at the stack level in
question in the tentative segmentation.
We also anticipate using digplay based on the image description tree for defining
abjects in three dimensions. We plan to allow the user to select extremal regions
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by scale and intensity ranges, plus a 3D window, with the result displayed on the
varifocal mirror or another self-luminous 3D display. When a meaningful object is
seen, its surface can be directly calculated and used as the basis of a display that is
more appropriate for therapy planning, such as a shaded graphics display.
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